Sample records for viscous liquid storage

  1. Gaseous and Liquid Hydrogen Storage

    Broader source: Energy.gov [DOE]

    Today's state of the art for hydrogen storage includes 5,000- and 10,000-psi compressed gas tanks and cryogenic liquid hydrogen tanks for on-board hydrogen storage.

  2. Particles accelerate the detachment of viscous liquids

    E-Print Network [OSTI]

    Merlijn S. van Deen; Thibault Bertrand; Nhung Vu; David Quéré; Eric Clément; Anke Lindner

    2013-01-31T23:59:59.000Z

    During detachment of a viscous fluid extruded from a nozzle a filament linking the droplet to the latter is formed. Under the effect of surface tension the filament thins until pinch off and final detachment of the droplet. In this paper we study the effect of the presence of individual particles trapped in the filament on the detachment dynamics using granular suspensions of small volume fractions ({\\phi} particle strongly modifies the detachment dynamics. The particle perturbs the thinning of the thread and a large droplet of fluid around the particle is formed. This perturbation leads to an acceleration of the detachment of the droplet compared to the detachment ob- served for a pure fluid. We quantify this acceleration for single particles of different sizes and link it to similar ob- servations for suspensions of small volume fractions. Our study also gives more insight into particulate effects on de- tachment of more dense suspensions and allows to explain the accelerated detachment close to final pinch off observed previously (Bonnoit et al 2012)

  3. Non-electrolyte viscous liquid mixtures

    E-Print Network [OSTI]

    Wakefield, Dawn Lee

    1982-01-01T23:59:59.000Z

    . Equations Proposed for the Dependence of Viscosity of Liquid Mixtures on Chemical Composition at Constant Temperature, 36 TABLE III. TABLE IV. Compar1son of Errors in Determining Mixture Viscosit1es Using the Congruence-Viscos1ty Equat1on 86... states theory simplif1ed the more complex initial equations into the reasonably simple eq 3 lg. For ideal systems there is no "interaction viscosity, ny2 and the equation reduces to 2 + 2 nM Xl"1 X2n2 or nM = ZX 0 2 o o o (3. 20) R1ce compared...

  4. Spreading of Viscous Liquids at High Temperature: Silicate Glasseson Molybdenum

    SciTech Connect (OSTI)

    Lopez-Esteban, Sonia; Saiz, Eduardo; Moya, Jose S.; Tomsia,Antoni P.

    2004-12-15T23:59:59.000Z

    The spreading of Si-Ca-Al-Ti-O glasses on molybdenum has been investigated. By controlling the oxygen activity in the furnace, spreading can take place under reactive or non-reactive conditions. As the nucleation of the reaction product under reactive conditions is slow in comparison to the spreading kinetics, in both cases the glass front moves on the metal surface with similar spreading velocities. Spreading can be described using a molecular dynamics model where the main contribution to the wetting activation energy comes from the viscous interactions in the liquid. Enhanced interfacial diffusions in low-oxygen activities (reactive cases) form triple-line ridges that can pin the wetting front and cause a stick-slip motion.

  5. Experimental study of the atomization process for viscous liquids by meniscus perturbation and micro air jet

    E-Print Network [OSTI]

    Lee, Heejin, 1976-

    2004-01-01T23:59:59.000Z

    An experimental study was performed to understand the atomization process in the specialized printing method which consists of the high frequency oscillating motion of a needle and a micro air jet. Highly viscous liquids, ...

  6. Field-driven dynamics of dilute gases, viscous liquids and polymer chains

    E-Print Network [OSTI]

    Mohan, Aruna, 1981-

    2007-01-01T23:59:59.000Z

    This thesis is concerned with the exploration of field-induced dynamical phenomena arising in dilute gases, viscous liquids and polymer chains. The problems considered herein pertain to the slip-induced motion of a rigid, ...

  7. Computation of Weakly-Compressible Highly-Viscous Polymeric Liquid Flows

    E-Print Network [OSTI]

    Grant, P. W.

    such circumstances, the speed of sound is much larger than the velocity of the liquid, resulting in fast pressure, the ratio of fluid velocity to the speed of sound ( cuMa /= ), characterises the influence1 Computation of Weakly-Compressible Highly-Viscous Polymeric Liquid Flows M. F. Webster 1*, I. J

  8. Performance of hydroclones for removing particles from viscous liquids

    SciTech Connect (OSTI)

    Talbot, J.B.

    1980-08-01T23:59:59.000Z

    The performance of a 1-cm diam, Dorr-Oliver hydroclone with slurries containing approx. 5 wt % solids in water-glycerin solutions was studied to evaluate the effects of fluid viscosity. Micron-sized particles of low-density solids (aluminum oxide, test dust, fly ash, or kaolin) were removed from solutions with viscosities ranging from 1 to 85 cP. Pressure drop across the hydroclone increased with increasing feed rate and viscosity. Gross and centrifugal efficiencies were found to increase with flow rate and decrease with viscosity. Liquid viscosities >10 cP had deleterious effects on the pressure drop and efficiency; thus useful separations were not attained. The particle diameter, corresponding to a point efficiency of 50%, decreased as the product of the inlet Reynolds number and the solid-to-liquid density ratio increased. The reduced efficiency curve was found to characterize the hydroclone performance.

  9. An elastic, plastic, viscous model for slow shear of a liquid foam

    E-Print Network [OSTI]

    Philippe Marmottant; François Graner

    2007-07-06T23:59:59.000Z

    We suggest a scalar model for deformation and flow of an amorphous material such as a foam or an emulsion. To describe elastic, plastic and viscous behaviours, we use three scalar variables: elastic deformation, plastic deformation rate and total deformation rate; and three material specific parameters: shear modulus, yield deformation and viscosity. We obtain equations valid for different types of deformations and flows slower than the relaxation rate towards mechanical equilibrium. In particular, they are valid both in transient or steady flow regimes, even at large elastic deformation. We discuss why viscosity can be relevant even in this slow shear (often called "quasi-static") limit. Predictions of the storage and loss moduli agree with the experimental literature, and explain with simple arguments the non-linear large amplitude trends.

  10. Technology available for license: Charging of liquid energy storage...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology available for license: Charging of liquid energy storage media through radiolysis (ANL-IN-14-036) January 23, 2015 Tweet EmailPrint This technology utilizes radiolysis...

  11. Hazardous Liquid Pipelines and Storage Facilities (Iowa)

    Broader source: Energy.gov [DOE]

    This statute regulates the permitting, construction, monitoring, and operation of pipelines transporting hazardous liquids, including petroleum products and coal slurries. The definition used in...

  12. Advanced Liquid Natural Gas Onboard Storage System

    SciTech Connect (OSTI)

    Greg Harper; Charles Powars

    2003-10-31T23:59:59.000Z

    Cummins Westport Incorporated (CWI) has designed and developed a liquefied natural gas (LNG) vehicle fuel system that includes a reciprocating pump with the cold end submerged in LNG contained in a vacuum-jacketed tank. This system was tested and analyzed under the U.S. Department of Energy (DOE) Advanced LNG Onboard Storage System (ALOSS) program. The pumped LNG fuel system developed by CWI and tested under the ALOSS program is a high-pressure system designed for application on Class 8 trucks powered by CWI's ISX G engine, which employs high-pressure direct injection (HPDI) technology. A general ALOSS program objective was to demonstrate the feasibility and advantages of a pumped LNG fuel system relative to on-vehicle fuel systems that require the LNG to be ''conditioned'' to saturation pressures that exceeds the engine fuel pressure requirements. These advantages include the capability to store more fuel mass in given-size vehicle and station tanks, and simpler lower-cost LNG refueling stations that do not require conditioning equipment. Pumped LNG vehicle fuel systems are an alternative to conditioned LNG systems for spark-ignition natural gas and port-injection dual-fuel engines (which typically require about 100 psi), and they are required for HPDI engines (which require over 3,000 psi). The ALOSS program demonstrated the feasibility of a pumped LNG vehicle fuel system and the advantages of this design relative to systems that require conditioning the LNG to a saturation pressure exceeding the engine fuel pressure requirement. LNG tanks mounted on test carts and the CWI engineering truck were repeatedly filled with LNG saturated at 20 to 30 psig. More fuel mass was stored in the vehicle tanks as well as the station tank, and no conditioning equipment was required at the fueling station. The ALOSS program also demonstrated the general viability and specific performance of the CWI pumped LNG fuel system design. The system tested as part of this program is designed to be used on Class 8 trucks with CWI ISX G HPDI engines. Extensive test cart and engineering truck tests of the pump demonstrated good durability and the high-pressure performance needed for HPDI application. The LNG tanks manufactured by Taylor-Wharton passed SAE J2343 Recommended Practice drop tests and accelerated road-load vibration tests. NER and hold-time tests produced highly consistent results. Additional tests confirmed the design adequacy of the liquid level sensor, vaporizer, ullage volume, and other fuel system components. While the testing work performed under this program focused on a high-pressure pumped LNG fuel system design, the results also validate the feasibility of a low-pressure pumped fuel system. A low-pressure pumped fuel system could incorporate various design refinements including a simpler and lighter-weight pump, which would decrease costs somewhat relative to a high-pressure system.

  13. Earthen Liquid Manure Storage/Lagoon

    E-Print Network [OSTI]

    for the storage to function as intended. Best Environmental Management Practices Farm Animal Production Inspecting Water Diversions Is the surface water diversion adequate? Diverting excess clean water away is key to carry storm flows. Are diversions and diversion outlets properly vegetated and maintained to minimize

  14. A multiscale variational approach to the kinetics of viscous classical liquids: The coarse-grained mean field approximation

    SciTech Connect (OSTI)

    Sereda, Yuriy V.; Ortoleva, Peter J., E-mail: ortoleva@indiana.edu [Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, Indiana 47405 (United States)

    2014-04-07T23:59:59.000Z

    A closed kinetic equation for the single-particle density of a viscous simple liquid is derived using a variational method for the Liouville equation and a coarse-grained mean-field (CGMF) ansatz. The CGMF ansatz is based on the notion that during the characteristic time of deformation a given particle interacts with many others so that it experiences an average interaction. A trial function for the N-particle probability density is constructed using a multiscale perturbation method and the CGMF ansatz is applied to it. The multiscale perturbation scheme is based on the ratio of the average nearest-neighbor atom distance to the total size of the assembly. A constraint on the initial condition is discovered which guarantees that the kinetic equation is mass-conserving and closed in the single-particle density. The kinetic equation has much of the character of the Vlasov equation except that true viscous, and not Landau, damping is accounted for. The theory captures condensation kinetics and takes much of the character of the Gross-Pitaevskii equation in the weak-gradient short-range force limit.

  15. LIQUID PROPANE GAS (LPG) STORAGE AREA BOILING LIQUID EXPANDING VAPOR EXPLOSION (BLEVE) ANALYSIS

    SciTech Connect (OSTI)

    PACE, M.E.

    2004-01-13T23:59:59.000Z

    The PHA and the FHAs for the SWOC MDSA (HNF-14741) identified multiple accident scenarios in which vehicles powered by flammable gases (e.g., propane), or combustible or flammable liquids (e.g., gasoline, LPG) are involved in accidents that result in an unconfined vapor cloud explosion (UVCE) or in a boiling liquid expanding vapor explosion (BLEVE), respectively. These accident scenarios are binned in the Bridge document as FIR-9 scenarios. They are postulated to occur in any of the MDSA facilities. The LPG storage area will be in the southeast corner of CWC that is relatively remote from store distaged MAR. The location is approximately 30 feet south of MO-289 and 250 feet east of 2401-W by CWC Gate 10 in a large staging area for unused pallets and equipment.

  16. Experimental investigation of onboard storage and refueling systems for liquid-hydrogen-fueled vehicles

    SciTech Connect (OSTI)

    Stewart, W.F.

    1982-09-01T23:59:59.000Z

    A 2-1/2-year baseline experimental hydrogen-fueled automotive vehicle project was conducted to evaluate and document state-of-the-art capabilities in engine conversion for hydrogen operation, liquid-hydrogen onboard storage, and liquid-hydrogen refueling. The engine conversion, onboard liquid-hydrogen storage tank, and liquid-hydrogen refueling system used in the project represented readily available equipment or technology when the project began. The project information documented herein can serve as a basis of comparison with which to evaluate future vehicles that are powered by hydrogen or other alternative fuels, with different engines, and different fuel-storage methods. The results of the project indicate that liquid-hydrogen storage observed an operating vehicle and routine refueling of the vehicle can be accomplished over an extended period without any major difficulty. Two different liquid-hydrogen vehicle onboard storage tanks designed for vehicular applications were tested in actual road operation: the first was an aluminum dewar with a liquid-hydrogen capacity of 110 l; the second was a Dewar with an aluminum outer vessel, two copper, vapor-cooled thermal-radiation shields, and a stainless-steel inner vessel with a liquid-hydrogen capacity of 155 l. The car was refueled with liquid hydrogen at least 65 times involving more than 8.1 kl of liquid hydrogen during the 17 months that the car was operated on liquid hydrogen. The vehicle, a 1979 Buick Century sedan with a 3.8-l-displacement turbocharged V6 engine, was driven for 3633 km over the road on hydrogen. The vehicle had a range without refueling of about 274 km with the first liquid-hydrogen tank and about 362 km with the second tank. The vehicle achieved 2.4 km/l of liquid hydrogen which corresponds to 9.4 km/l gasoline on an equivalent energy basis.

  17. Technical Assessment of Organic Liquid Carrier Hydrogen Storage Systems for Automotive Applications

    Fuel Cell Technologies Publication and Product Library (EERE)

    In 2007-2009, the DOE Hydrogen Program conducted a technical assessment of organic liquid carrier based hydrogen storage systems for automotive applications, consistent with the Program’s Multiyear Re

  18. Underground storage of natural gas, liquid hydrocarbons, and carbon dioxide (Louisiana)

    Broader source: Energy.gov [DOE]

    The Louisiana Department of Environmental Quality regulates the underground storage of natural gas or liquid hydrocarbons and carbon dioxide. Prior to the use of any underground reservoir for the...

  19. Theoretical Investigations on Nanoporpus Materials and Ionic Liquids for Energy Storage 

    E-Print Network [OSTI]

    Mani Biswas, Mousumi

    2012-02-14T23:59:59.000Z

    . Hydrogen storage in carbon nanotube scaffold. 2. Mechanical property and stability of various nanoporous Metal Organic Frameworks. 3. Thermodynamic and transport properties of [BMIM][BF4] ionic liquid in bulk, in Li Salt mixture, on graphite surface...

  20. Decommissioning and Dismantling of Liquid Waste Storage and Liquid Waste Treatment Facility from Paldiski Nuclear Site, Estonia

    SciTech Connect (OSTI)

    Varvas, M. [AS ALARA, Leetse tee 21, Paldiski, 76806 (Estonia); Putnik, H. [Delegation of the European Commission to Russia, Kadashevskaja nab. 14/1 119017 Moscow (Russian Federation); Nirvin, B.; Pettersson, S. [SKB, Box 5864, Stockholm, SE-102 40 (Sweden); Johnsson, B. [Studsvik RadWaste, Nykoping, SE-611 82 (Sweden)

    2006-07-01T23:59:59.000Z

    The Paldiski Nuclear Facility in Estonia, with two nuclear reactors was owned by the Soviet Navy and was used for training the navy personnel to operate submarine nuclear reactors. After collapse of Soviet Union the Facility was shut down and handed over to the Estonian government in 1995. In co-operation with the Paldiski International Expert Reference Group (PIERG) decommission strategy was worked out and started to implement. Conditioning of solid and liquid operational waste and dismantling of contaminated installations and buildings were among the key issues of the Strategy. Most of the liquid waste volume, remained at the Facility, was processed in the frames of an Estonian-Finnish co-operation project using a mobile wastewater purification unit NURES (IVO International OY) and water was discharged prior to the site take-over. In 1999-2002 ca 120 m{sup 3} of semi-liquid tank sediments (a mixture of ion exchange resins, sand filters, evaporator and flocculation slurry), remained after treatment of liquid waste were solidified in steel containers and stored into interim storage. The project was carried out under the Swedish - Estonian co-operation program on radiation protection and nuclear safety. Contaminated installations in buildings, used for treatment and storage of liquid waste (Liquid Waste Treatment Facility and Liquid Waste Storage) were then dismantled and the buildings demolished in 2001-2004. (authors)

  1. Ion transport and storage of ionic liquids in ionic polymer conductor network composites

    E-Print Network [OSTI]

    Heflin, Randy

    , have shown a great promise for ap- plications in energy storage, conversion devices, and otherIon transport and storage of ionic liquids in ionic polymer conductor network composites Yang Liu,1, USA 6 Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA Received 24 February

  2. A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage

    E-Print Network [OSTI]

    Cui, Yi

    A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage Yuan Yang,a Guangyuan Zhengb and Yi Cui*ac Large-scale energy storage represents a key challenge for renewable energy develop a new lithium/ polysulfide (Li/PS) semi-liquid battery for large-scale energy storage

  3. Technical Assessment of Organic Liquid Carrier Hydrogen Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    usable hydrogen. The results were compared to DOE's 2010, 2017, and ultimate full fleet hydrogen storage targets. The off-board performance including the Well-to-Tank and...

  4. Robotic Inspection System for Bulk Liquid Storage Tanks

    E-Print Network [OSTI]

    Hartsell, D. R.; Hakes, K. J.

    for aboveground storage tanks (ASTs) requires: drainage of the product; cleaning of the vessel with water or solvents; physical removal, collection and containment of petroleum and chemical waste residues, including the waste streams created by the cleaning...

  5. Cooling of superconducting devices by liquid storage and refrigeration unit

    DOE Patents [OSTI]

    Laskaris, Evangelos Trifon; Urbahn, John Arthur; Steinbach, Albert Eugene

    2013-08-20T23:59:59.000Z

    A system is disclosed for cooling superconducting devices. The system includes a cryogen cooling system configured to be coupled to the superconducting device and to supply cryogen to the device. The system also includes a cryogen storage system configured to supply cryogen to the device. The system further includes flow control valving configured to selectively isolate the cryogen cooling system from the device, thereby directing a flow of cryogen to the device from the cryogen storage system.

  6. A distribution of the temperature in a ring of the incompressible, viscous liquid with two free boundaries. Exact solutions

    E-Print Network [OSTI]

    N. F. Belmetsev; V. O. Bytev

    2009-11-13T23:59:59.000Z

    It has been found the exact solutions for nonstationary distribution of the temperature in the liquid ring with two viscosities and two free boundaries of the ring.

  7. Waste-Lithium-Liquid (WLL) Flow Battery for Stationary Energy Storage Applications Youngsik Kim* and Nina MahootcheianAsl

    E-Print Network [OSTI]

    Zhou, Yaoqi

    Waste-Lithium-Liquid (WLL) Flow Battery for Stationary Energy Storage Applications Youngsik Kim in a Waste-Lithium-Liquid (WLL) flow battery that can be used in a stationary energy storage application. Li* and Nina MahootcheianAsl Richard Lugar Center for Renewable Energy, Department of Mechanical Engineering

  8. A design study for the isolation of the 281-3H retention basin at the Savannah River Site using the viscous liquid barrier technology

    SciTech Connect (OSTI)

    Moridis, G.J.; Persoff, P.; Apps, J.; James, A.; Oldenburg, C.; McGrath, A.; Myer, L.; Pellerin, L.; Pruess, K. [Lawrence Berkeley National Lab., CA (United States). Earth Sciences Div.

    1996-11-01T23:59:59.000Z

    This report is a description of the design study for a pilot-scale field demonstration of the Viscous Liquid Barrier (VLB) technology, a new subsurface containment technology for waste isolation using a new generation of barrier liquids. The demonstration site was Retention Basin 281-3H, a shallow catchment basin at the Savannah River Site, which is contaminated mainly by radionuclides ({sup 137}Cs, {sup 90}Sr, and {sup 238}Pu). The goals of the field demonstration were (a) to demonstrate the ability to create a continuous subsurface barrier in order to isolate the contaminants, and (b) to demonstrate the continuity, performance, and integrity of the barrier. The site was characterized, and preliminary hydraulic conductivity data were obtained from core samples. Based on the site characteristics and the functional requirements, a conceptual model was developed, the barrier specifications were defined, and lance injection was selected as the emplacement method. The injection strategy for the subsurface conditions at the site was determined using numerical simulations. An appropriate variant of Colloidal Silica (CS) was selected as the barrier liquid based on its relative insensitivity to interactions with the site soils, and the formulation for optimum site performance was determined. A barrier verification strategy, including hydraulic, pneumatic, tracer, and geophysical methods, was developed. A lance water injection test was conducted in order to obtain representative estimates of the hydraulic conductivity and its distribution for the design of the barrier emplacement. The water injection test demonstrated the lack of permeable zones for CS injection, and a decision not to proceed with the barrier emplacement was reached.

  9. Potential radiation damage: Storage tanks for liquid radioactive waste

    SciTech Connect (OSTI)

    Caskey, G.R. Jr.

    1992-08-21T23:59:59.000Z

    High level waste at SRS is stored in carbon steel tanks constructed during the period 1951 to 1981. This waste contains radionuclides that decay by alpha, beta, or gamma emission or are spontaneous neutronsources. Thus, a low intensity radiation field is generated that is capable of causing displacement damage to the carbon steel. The potential for degradation of mechanical properties was evaluated by comparing the estimated displacement damage with published data relating changes in Charpy V-notch (CVN) impact energy to neutron exposure. Experimental radiation data was available for three of the four grades of carbonsteel from which the tanks were constructed and is applicable to all four steels. Estimates of displacement damage arising from gamma and neutron radiation have been made based on the radionuclide contents for high level waste that are cited in the Safety Analysis Report (SAR) for the Liquid Waste Handling Facilities in the 200-Area. Alpha and beta emissions do not penetrate carbon steel to a sufficient depth to affect the bulk properties of the tank walls but may aggravate corrosion processes. The damage estimates take into account the source of the waste (F- or H-Area), the several types of tank service, and assume wateras an attenuating medium. Estimates of displacement damage are conservative because they are based on the highest levels of radionuclide contents reported in the SAR and continuous replenishment of the radionuclides.

  10. FINAL REPORT: Room Temperature Hydrogen Storage in Nano-Confined Liquids

    SciTech Connect (OSTI)

    VAJO, JOHN

    2014-06-12T23:59:59.000Z

    DOE continues to seek solid-state hydrogen storage materials with hydrogen densities of ?6 wt% and ?50 g/L that can deliver hydrogen and be recharged at room temperature and moderate pressures enabling widespread use in transportation applications. Meanwhile, development including vehicle engineering and delivery infrastructure continues for compressed-gas hydrogen storage systems. Although compressed gas storage avoids the materials-based issues associated with solid-state storage, achieving acceptable volumetric densities has been a persistent challenge. This project examined the possibility of developing storage materials that would be compatible with compressed gas storage technology based on enhanced hydrogen solubility in nano-confined liquid solvents. These materials would store hydrogen in molecular form eliminating many limitations of current solid-state materials while increasing the volumetric capacity of compressed hydrogen storage vessels. Experimental methods were developed to study hydrogen solubility in nano-confined liquids. These methods included 1) fabrication of composites comprised of volatile liquid solvents for hydrogen confined within the nano-sized pore volume of nanoporous scaffolds and 2) measuring the hydrogen uptake capacity of these composites without altering the composite composition. The hydrogen storage capacities of these nano-confined solvent/scaffold composites were compared with bulk solvents and with empty scaffolds. The solvents and scaffolds were varied to optimize the enhancement in hydrogen solubility that accompanies confinement of the solvent. In addition, computational simulations were performed to study the molecular-scale structure of liquid solvent when confined within an atomically realistic nano-sized pore of a model scaffold. Confined solvent was compared with similar simulations of bulk solvent. The results from the simulations were used to formulate a mechanism for the enhanced solubility and to guide the experiments. Overall, the combined experimental measurements and simulations indicate that hydrogen storage based on enhanced solubility in nano-confined liquids is unlikely to meet the storage densities required for practical use. Only low gravimetric capacities of < 0.5 wt% were achieved. More importantly, solvent filled scaffolds had lower volumetric capacities than corresponding empty scaffolds. Nevertheless, several of the composites measured did show significant (>~ 5x) enhanced hydrogen solubility relative to bulk solvent solubility, when the hydrogen capacity was attributed only to dissolution in the confined solvent. However, when the hydrogen capacity was compared to an empty scaffold that is known to store hydrogen by surface adsorption on the scaffold walls, including the solvent always reduced the hydrogen capacity. For the best composites, this reduction relative to an empty scaffold was ~30%; for the worst it was ~90%. The highest capacities were obtained with the largest solvent molecules and with scaffolds containing 3- dimensionally confined pore geometries. The simulations suggested that the capacity of the composites originated from hydrogen adsorption on the scaffold pore walls at sites not occupied by solvent molecules. Although liquid solvent filled the pores, not all of the adsorption sites on the pore walls were occupied due to restricted motion of the solvent molecules within the confined pore space.

  11. Phase change material storage heater

    DOE Patents [OSTI]

    Goswami, D. Yogi (Gainesville, FL); Hsieh, Chung K. (Gainesville, FL); Jotshi, Chand K. (Gainesville, FL); Klausner, James F. (Gainesville, FL)

    1997-01-01T23:59:59.000Z

    A storage heater for storing heat and for heating a fluid, such as water, has an enclosure defining a chamber therein. The chamber has a lower portion and an upper portion with a heating element being disposed within the enclosure. A tube through which the fluid flows has an inlet and an outlet, both being disposed outside of the enclosure, and has a portion interconnecting the inlet and the outlet that passes through the enclosure. A densely packed bed of phase change material pellets is disposed within the enclosure and is surrounded by a viscous liquid, such as propylene glycol. The viscous liquid is in thermal communication with the heating element, the phase change material pellets, and the tube and transfers heat from the heating element to the pellets and from the pellets to the tube. The viscous fluid has a viscosity so that the frictional pressure drop of the fluid in contact with the phase change material pellets substantially reduces vertical thermal convection in the fluid. As the fluid flows through the tube heat is transferred from the viscous liquid to the fluid flowing through the tube, thereby heating the fluid.

  12. Viscous sludge sample collector

    DOE Patents [OSTI]

    Beitel, George A [Richland, WA

    1983-01-01T23:59:59.000Z

    A vertical core sample collection system for viscous sludge. A sample tube's upper end has a flange and is attached to a piston. The tube and piston are located in the upper end of a bore in a housing. The bore's lower end leads outside the housing and has an inwardly extending rim. Compressed gas, from a storage cylinder, is quickly introduced into the bore's upper end to rapidly accelerate the piston and tube down the bore. The lower end of the tube has a high sludge entering velocity to obtain a full-length sludge sample without disturbing strata detail. The tube's downward motion is stopped when its upper end flange impacts against the bore's lower end inwardly extending rim.

  13. Sampling and Analysis Plan for canister liquid and gas sampling at 105-KW fuel storage basin

    SciTech Connect (OSTI)

    Harris, R.A.; Green, M.A.; Makenas, B.J.; Trimble, D.J.

    1995-03-01T23:59:59.000Z

    This Sampling and Analysis Plan (SAP) details the sampling and analyses to be performed on fuel canisters transferred to the Weasel Pit of the 105-KW fuel storage basin. The radionuclide content of the liquid and gas in the canisters must be evaluated to support the shipment of fuel elements to the 300 Area in support of the fuel characterization studies (Abrefah, et al. 1994, Trimble 1995). The following sections provide background information and a description of the facility under investigation, discuss the existing site conditions, present the constituents of concern, outline the purpose and scope of the investigation, outline the data quality objectives (DQO), provide analytical detection limit, precision, and accuracy requirements, and address other quality assurance (QA) issues.

  14. Zero Energy Communities with Central Solar Plants using Liquid Desiccants and Local Storage: Preprint

    SciTech Connect (OSTI)

    Burch, J.; Woods, J.; Kozubal, E.; Boranian, A.

    2012-08-01T23:59:59.000Z

    The zero energy community considered here consists of tens to tens-of-thousands of residences coupled to a central solar plant that produces all the community's electrical and thermal needs. A distribution network carries fluids to meet the heating and cooling loads. Large central solar systems can significantly reduce cost of energy vs. single family systems, and they enable economical seasonal heat storage. However, the thermal distribution system is costly. Conventional district heating/cooling systems use a water/glycol solution to deliver sensible energy. Piping is sized to meet the peak instantaneous load. A new district system introduced here differs in two key ways: (i) it continuously distributes a hot liquid desiccant (LD) solution to LD-based heating and cooling equipment in each home; and (ii) it uses central and local storage of both LD and heat to reduce flow rates to meet average loads. Results for piping sizes in conventional and LD thermal communities show that the LD zero energy community reduces distribution piping diameters meeting heating loads by {approx}5X and meeting cooling loads by {approx}8X for cooling, depending on climate.

  15. Safety Issues Chemical Storage

    E-Print Network [OSTI]

    Cohen, Robert E.

    Safety Issues · Chemical Storage ·Store in compatible containers that are in good condition to store separately. #12;Safety Issues · Flammable liquid storage -Store bulk quantities in flammable storage cabinets -UL approved Flammable Storage Refrigerators are required for cold storage · Provide

  16. DEVELOPMENT OF METHODOLOGY AND FIELD DEPLOYABLE SAMPLING TOOLS FOR SPENT NUCLEAR FUEL INTERROGATION IN LIQUID STORAGE

    SciTech Connect (OSTI)

    Berry, T.; Milliken, C.; Martinez-Rodriguez, M.; Hathcock, D.; Heitkamp, M.

    2012-06-04T23:59:59.000Z

    This project developed methodology and field deployable tools (test kits) to analyze the chemical and microbiological condition of the fuel storage medium and determine the oxide thickness on the spent fuel basin materials. The overall objective of this project was to determine the amount of time fuel has spent in a storage basin to determine if the operation of the reactor and storage basin is consistent with safeguard declarations or expectations. This project developed and validated forensic tools that can be used to predict the age and condition of spent nuclear fuels stored in liquid basins based on key physical, chemical and microbiological basin characteristics. Key parameters were identified based on a literature review, the parameters were used to design test cells for corrosion analyses, tools were purchased to analyze the key parameters, and these were used to characterize an active spent fuel basin, the Savannah River Site (SRS) L-Area basin. The key parameters identified in the literature review included chloride concentration, conductivity, and total organic carbon level. Focus was also placed on aluminum based cladding because of their application to weapons production. The literature review was helpful in identifying important parameters, but relationships between these parameters and corrosion rates were not available. Bench scale test systems were designed, operated, harvested, and analyzed to determine corrosion relationships between water parameters and water conditions, chemistry and microbiological conditions. The data from the bench scale system indicated that corrosion rates were dependent on total organic carbon levels and chloride concentrations. The highest corrosion rates were observed in test cells amended with sediment, a large microbial inoculum and an organic carbon source. A complete characterization test kit was field tested to characterize the SRS L-Area spent fuel basin. The sampling kit consisted of a TOC analyzer, a YSI multiprobe, and a thickness probe. The tools were field tested to determine their ease of use, reliability, and determine the quality of data that each tool could provide. Characterization was done over a two day period in June 2011, and confirmed that the L Area basin is a well operated facility with low corrosion potential.

  17. Sampling and analysis of radioactive liquid wastes and sludges in the Melton Valley and evaporator facility storage tanks at ORNL

    SciTech Connect (OSTI)

    Sears, M.B.; Botts, J.L.; Ceo, R.N.; Ferrada, J.J.; Griest, W.H.; Keller, J.M.; Schenley, R.L.

    1990-09-01T23:59:59.000Z

    The sampling and analysis of the radioactive liquid wastes and sludges in the Melton Valley Storage Tanks (MVSTs), as well as two of the evaporator service facility storage tanks at ORNL, are described. Aqueous samples of the supernatant liquid and composite samples of the sludges were analyzed for major constituents, radionuclides, total organic carbon, and metals listed as hazardous under the Resource Conservation and Recovery Act (RCRA). Liquid samples from five tanks and sludge samples from three tanks were analyzed for organic compounds on the Environmental Protection Agency (EPA) Target Compound List. Estimates were made of the inventory of liquid and sludge phases in the tanks. Descriptions of the sampling and analytical activities and tabulations of the results are included. The report provides data in support of the design of the proposed Waste Handling and Packaging Plant, the Liquid Low-Level Waste Solidification Project, and research and development activities (R D) activities in developing waste management alternatives. 7 refs., 8 figs., 16 tabs.

  18. Forming liquid sprays in compressed-gas energy storage systems for effective heat exchange

    DOE Patents [OSTI]

    McBride, Troy O; Bell, Alexander; Bollinger, Benjamin R; Shang, Andrew; Chmiel, David; Richter, Horst; Magari, Patrick; Cameron, Benjamin

    2013-07-02T23:59:59.000Z

    In various embodiments, efficiency of energy storage and recovery systems compressing and expanding gas is improved via heat exchange between the gas and a heat-transfer fluid.

  19. Forming liquid sprays in compressed-gas energy storage systems for effective heat exchange

    DOE Patents [OSTI]

    McBride, Troy O.; Bell, Alexander; Bollinger, Benjamin R.

    2012-08-07T23:59:59.000Z

    In various embodiments, efficiency of energy storage and recovery systems compressing and expanding gas is improved via heat exchange between the gas and a heat-transfer fluid.

  20. Viscous fluid sheets

    E-Print Network [OSTI]

    Savva, Nikos

    2007-01-01T23:59:59.000Z

    We present a general theory for the dynamics of thin viscous sheets. Employing concepts from differential geometry and tensor calculus we derive the governing equations in terms of a coordinate system that moves with the ...

  1. SAVANNAH RIVER SITE INCIPIENT SLUDGE MIXING IN RADIOACTIVE LIQUID WASTE STORAGE TANKS DURING SALT SOLUTION BLENDING

    SciTech Connect (OSTI)

    Leishear, R.; Poirier, M.; Lee, S.; Steeper, T.; Fowley, M.; Parkinson, K.

    2011-01-12T23:59:59.000Z

    This paper is the second in a series of four publications to document ongoing pilot scale testing and computational fluid dynamics (CFD) modeling of mixing processes in 85 foot diameter, 1.3 million gallon, radioactive liquid waste, storage tanks at Savannah River Site (SRS). Homogeneous blending of salt solutions is required in waste tanks. Settled solids (i.e., sludge) are required to remain undisturbed on the bottom of waste tanks during blending. Suspension of sludge during blending may potentially release radiolytically generated hydrogen trapped in the sludge, which is a safety concern. The first paper (Leishear, et. al. [1]) presented pilot scale blending experiments of miscible fluids to provide initial design requirements for a full scale blending pump. Scaling techniques for an 8 foot diameter pilot scale tank were also justified in that work. This second paper describes the overall reasons to perform tests, and documents pilot scale experiments performed to investigate disturbance of sludge, using non-radioactive sludge simulants. A third paper will document pilot scale CFD modeling for comparison to experimental pilot scale test results for both blending tests and sludge disturbance tests. That paper will also describe full scale CFD results. The final paper will document additional blending test results for stratified layers in salt solutions, scale up techniques, final full scale pump design recommendations, and operational recommendations. Specifically, this paper documents a series of pilot scale tests, where sludge simulant disturbance due to a blending pump or transfer pump are investigated. A principle design requirement for a blending pump is UoD, where Uo is the pump discharge nozzle velocity, and D is the nozzle diameter. Pilot scale test results showed that sludge was undisturbed below UoD = 0.47 ft{sup 2}/s, and that below UoD = 0.58 ft{sup 2}/s minimal sludge disturbance was observed. If sludge is minimally disturbed, hydrogen will not be released. Installation requirements were also determined for a transfer pump which will remove tank contents, and which is also required to not disturb sludge. Testing techniques and test results for both types of pumps are presented.

  2. Lessons Learned: Using Low Cost, Uncooled Infrared Cameras for the Rapid Liquid Level Assessment of Chemical UXO and Storage Vessels

    SciTech Connect (OSTI)

    Young, Kevin Larry

    2002-09-01T23:59:59.000Z

    During the fall of 2001, the U.S. Army used low-cost infrared cameras provided by the INEEL to image 3190 aging ton shipping containers to determine if any contained liquid, possibly trace amounts of hazardous mustard agent. The purpose of the scan was to provide quick, "hands-off" assessment of the water-heater-sized containers before moving them with a crane. If the thermal images indicated a possible liquid level, extra safety precautions would be taken prior to moving the container. The technique of using infrared cameras to determine liquid levels in large storage tanks is well documented, but the application of this technique to ton shipping containers (45 to 1036 liters) and even smaller individual chemical munitions (2 to 4 liters) is unique and presents some interesting challenges. This paper describes the lessons learned, problems encountered and success rates associated with using low-cost infrared cameras to look for liquid levels within ton shipping containers and individual chemical munitions.

  3. Beta relaxation in the shear mechanics of equilibrium viscous liquids: Phenomenology and network modeling of the alpha-beta merging region

    E-Print Network [OSTI]

    Bo Jakobsen; Kristine Niss; Claudio Maggi; Niels Boye Olsen; Tage Christensen; Jeppe C. Dyre

    2010-05-26T23:59:59.000Z

    The phenomenology of the beta relaxation process in the shear-mechanical response of glass-forming liquids is summarized and compared to that of the dielectric beta process. Furthermore, we discuss how to model the observations by means of standard viscoelastic modeling elements. Necessary physical requirements to such a model are outlined, and it is argued that physically relevant models must be additive in the shear compliance of the alpha and beta parts. A model based on these considerations is proposed and fitted to data for Polyisobutylene 680.

  4. HWMA/RCRA Closure Plan for the CPP-648 Radioactive Solid and Liquid Waste Storage Tank System (VES-SFE-106)

    SciTech Connect (OSTI)

    S. K. Evans

    2006-08-15T23:59:59.000Z

    This Hazardous Waste Management Act/Resource Conservation and Recovery Act closure plan for the Radioactive Solid and Liquid Waste Storage Tank System located in the adjacent to the Sludge Tank Control House (CPP-648), Idaho Nuclear Technology and Engineering Center, Idaho National Laboratory, was developed to meet the interim status closure requirements for a tank system. The system to be closed includes a tank and associated ancillary equipment that were determined to have managed hazardous waste. The CPP-648 Radioactive Solid and Liquid Waste Storage Tank System will be "cleaned closed" in accordance with the requirements of the Hazardous Waste Management Act/Resource Conservation and Recovery Act as implemented by the Idaho Administrative Procedures Act and 40 Code of Federal Regulations 265. This closure plan presents the closure performance standards and methods of acheiving those standards for the CPP-648 Radioactive Solid and Liquid Waste Storage Tank System.

  5. A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage

    SciTech Connect (OSTI)

    Yang, Yuan; Zheng, Guangyuan; Cui, Yi

    2013-01-01T23:59:59.000Z

    Large-scale energy storage represents a key challenge for renewable energy and new systems with low cost, high energy density and long cycle life are desired. In this article, we develop a new lithium/polysulfide (Li/PS) semi-liquid battery for large-scale energy storage, with lithium polysulfide (Li{sub 2}S{sub 8}) in ether solvent as a catholyte and metallic lithium as an anode. Unlike previous work on Li/S batteries with discharge products such as solid state Li{sub 2}S{sub 2} and Li{sub 2}S, the catholyte is designed to cycle only in the range between sulfur and Li{sub 2}S{sub 4}. Consequently all detrimental effects due to the formation and volume expansion of solid Li{sub 2}S{sub 2}/Li{sub 2}S are avoided. This novel strategy results in excellent cycle life and compatibility with flow battery design. The proof-of-concept Li/PS battery could reach a high energy density of 170 W h kg{sup -1} and 190 W h L{sup -1} for large scale storage at the solubility limit, while keeping the advantages of hybrid flow batteries. We demonstrated that, with a 5 M Li{sub 2}S{sub 8} catholyte, energy densities of 97 W h kg{sup -1} and 108 W h L{sup -1} can be achieved. As the lithium surface is well passivated by LiNO{sub 3} additive in ether solvent, internal shuttle effect is largely eliminated and thus excellent performance over 2000 cycles is achieved with a constant capacity of 200 mA h g{sup -1}. This new system can operate without the expensive ion-selective membrane, and it is attractive for large-scale energy storage.

  6. Viscous Hydraulic Jumps Submitted by

    E-Print Network [OSTI]

    Bush, John W.M.

    Viscous Hydraulic Jumps Submitted by Jeffrey M. Aristoff, Jeffrey D. Leblanc, Annette E. Hosoi, and John W. M. Bush, Massachusetts Institute of Technology We examine the form of the viscous hydraulic of height 2­10 mm. Elegaard et al.1 first demonstrated that the axial symme- try of the viscous hydraulic

  7. FIELD-DEPLOYABLE SAMPLING TOOLS FOR SPENT NUCLEAR FUEL INTERROGATION IN LIQUID STORAGE

    SciTech Connect (OSTI)

    Berry, T.; Milliken, C.; Martinez-Rodriguez, M.; Hathcock, D.; Heitkamp, M.

    2012-09-12T23:59:59.000Z

    Methodology and field deployable tools (test kits) to analyze the chemical and microbiological condition of aqueous spent fuel storage basins and determine the oxide thickness on the spent fuel basin materials were developed to assess the corrosion potential of a basin. this assessment can then be used to determine the amount of time fuel has spent in a storage basin to ascertain if the operation of the reactor and storage basin is consistent with safeguard declarations or expectations and assist in evaluating general storage basin operations. The test kit was developed based on the identification of key physical, chemical and microbiological parameters identified using a review of the scientific and basin operations literature. The parameters were used to design bench scale test cells for additional corrosion analyses, and then tools were purchased to analyze the key parameters. The tools were used to characterize an active spent fuel basin, the Savannah River Site (SRS) L-Area basin. The sampling kit consisted of a total organic carbon analyzer, an YSI multiprobe, and a thickness probe. The tools were field tested to determine their ease of use, reliability, and determine the quality of data that each tool could provide. Characterization confirmed that the L Area basin is a well operated facility with low corrosion potential.

  8. Liquid-Metal Electrode to Enable Ultra-Low Temperature Sodium-Beta Alumina Batteries for Renewable Energy Storage

    SciTech Connect (OSTI)

    Lu, Xiaochuan; Li, Guosheng; Kim, Jin Yong; Mei, Donghai; Lemmon, John P.; Sprenkle, Vincent L.; Liu, Jun

    2014-08-01T23:59:59.000Z

    Metal electrodes have a high capacity for energy storage but have found limited applications in batteries because of dendrite formation and other problems. In this paper, we report a new alloying strategy that can significantly reduce the melting temperature and improve wetting with the electrolyte to allow the use of liquid metal as anode in sodium-beta alumina batteries (NBBs) at much lower temperatures (e.g., 95 to 175°C). Commercial NBBs such as sodium-sulfur (Na-S) battery and sodium-metal halide (ZEBRA) batteries typically operate at relatively high temperatures (e.g., 300-350°C) due to poor wettability of sodium on the surface of ?"-Al2O3. Our combined experimental and computational studies suggest that Na-Cs alloy can replace pure sodium as the anode material, which provides a significant improvement in wettability, particularly at lower temperatures (i.e., <200°C). Single cells with the Na-Cs alloy anode exhibit excellent cycling life over those with pure sodium anode at 175 and 150°C. The cells can even operate at 95°C, which is below the melting temperature of pure sodium. These results demonstrate that NBB can be operated at ultra lower temperatures with successfully solving the wetting issue. This work also suggests a new strategy to use liquid metal as the electrode materials for advanced batteries that can avoid the intrinsic safety issues associated with dendrite formation on the anode.

  9. Preventing Buckling of Slender Cylindrical Structures by Internal Viscous Flows

    E-Print Network [OSTI]

    Max Linshits; Amir D. Gat

    2015-02-10T23:59:59.000Z

    Viscous flows within an elastic structure apply stress on the solid-liquid interface. The stress-field created by the viscous flow can be utilized to counter stress created by external forces and thus may be applied as a tool for delaying the onset of structural failure. To illustrate this concept we study viscous flow within an elastic cylinder under compressive axial force. We obtain a closed-form expression showing an approximately linear relation between the critical buckling load and the liquid inlet pressure. Our results are validated by numerical computations. We discuss future research directions of fluid-solid composite materials which create flow under external stress, yielding enhanced resistance to structural failure.

  10. Particle Manipulation in Viscous Streaming

    E-Print Network [OSTI]

    Chong, Kwitae

    2013-01-01T23:59:59.000Z

    for which the oscillatory boundary layer is absent. Raney,of the oscillatory (Stokes) boundary layer, ? AC = (?/?)Stuart. Double boundary layers in oscillatory viscous ?ow.

  11. METHODS FOR THE SAFE STORAGE, HANDLING, AND DISPOSAL OF PYROPHORIC LIQUIDS AND SOLIDS IN THE LABORATORY

    SciTech Connect (OSTI)

    Simmons, F.; Kuntamukkula, M.; Alnajjar, M.; Quigley, D.; Freshwater, D.; Bigger, S.

    2010-02-02T23:59:59.000Z

    Pyrophoric reagents represent an important class of reactants because they can participate in many different types of reactions. They are very useful in organic synthesis and in industrial applications. The Occupational Safety and Health Administration (OSHA) and the National Fire Protection Association (NFPA) define Pyrophorics as substances that will self-ignite in air at temperatures of 130 F (54.4 C) or less. However, the U.S. Department of Transportation (DOT) uses criteria different from the auto-ignition temperature criterion. The DOT defines a pyrophoric material as a liquid or solid that, even in small quantities and without an external ignition source, can ignite within five minutes after coming in contact with air when tested according to the United Nations Manual of Tests and Criteria. The Environmental Protection Agency has adopted the DOT definition. Regardless of which definition is used, oxidation of the pyrophoric reagents by oxygen or exothermic reactions with moisture in the air (resulting in the generation of a flammable gas such as hydrogen) is so rapid that ignition occurs spontaneously. Due to the inherent nature of pyrophoric substances to ignite spontaneously upon exposure to air, special precautions must be taken to ensure their safe handling and use. Pyrophoric gases (such as diborane, dichloroborane, phosphine, etc.) are typically the easiest class of pyrophoric substances to handle since the gas can be plumbed directly to the application and used remotely. Pyrophoric solids and liquids, however, require the user to physically manipulate them when transferring them from one container to another. Failure to follow proper safety precautions could result in serious injury or unintended consequences to laboratory personnel. Because of this danger, pyrophorics should be handled only by experienced personnel. Users with limited experience must be trained on how to handle pyrophoric reagents and consult with a knowledgeable staff member prior to performing the experimental task. The purpose of this article is three fold: (1) to provide guidelines and general safety precautions to avoid accidents, (2) describe proper techniques on how to successfully handle, store, and dispose of pyrophoric liquids and solids, and (3) illustrate best practices for working with this class of reactants in a laboratory environment.

  12. Rational analysis of mass, momentum, and heat transfer phenomena in liquid storage tanks under realistic operating conditions: 2. Application to a feasibility study

    SciTech Connect (OSTI)

    Parrini, F.; Vitale, S. (ENEL-Italian National Electricity Board-CRTN, Milan (Italy)); Castellano, L. (MATEC S.r.l., Milan (Italy))

    1992-08-01T23:59:59.000Z

    This is the second part of a two-part paper that deals with modeling the thermal performances of storage tanks of liquid water coupled with solar-assisted heatpump systems. The computer code THESTA, described in detail in the first part, has been applied to compare configurations which differ from one another in the distribution and thickness of the insulating panels. These numerical experiments show very clearly the capability of the code in simulating realistic operating conditions. The validity of the present release is also discussed. The results obtained have been assumed to be a reliable theoretical support to the definition of the features of the storage device of a pilot plant.

  13. Structural Integrity Program for the 300,000-Gallon Radioactive Liquid Waste Storage Tanks at the Idaho Nuclear Technology and Engineering Center

    SciTech Connect (OSTI)

    Bryant, J.W.; Nenni, J.A.; Yoder, T.S.

    2003-04-22T23:59:59.000Z

    This report provides a record of the Structural Integrity Program for the 300,000-gal liquid waste storage tanks and associated equipment at the Idaho Nuclear Technology and Engineering Center, as required by U.S. Department of Energy M 435.1-1, ''Radioactive Waste Management Manual.'' This equipment is known collectively as the Tank Farm Facility. The conclusion of this report is that the Tank Farm Facility tanks, vaults, and transfer systems that remain in service for storage are structurally adequate, and are expected to remain structurally adequate over the remainder of their planned service life through 2012. Recommendations are provided for continued monitoring of the Tank Farm Facility.

  14. Viscous dark fluid universe

    SciTech Connect (OSTI)

    Hipolito-Ricaldi, W. S. [Universidade Federal do Espirito Santo, Departamento de Ciencias Matematicas e Naturais, CEUNES, Rodovia BR 101 Norte, km. 60, CEP 29932-540, Sao Mateus, Espirito Santo (Brazil); Velten, H. E. S.; Zimdahl, W. [Universidade Federal do Espirito Santo, Departamento de Fisica, Av. Fernando Ferrari, 514, Campus de Goiabeiras, CEP 29075-910, Vitoria, Espirito Santo (Brazil)

    2010-09-15T23:59:59.000Z

    We investigate the cosmological perturbation dynamics for a universe consisting of pressureless baryonic matter and a viscous fluid, the latter representing a unified model of the dark sector. In the homogeneous and isotropic background the total energy density of this mixture behaves as a generalized Chaplygin gas. The perturbations of this energy density are intrinsically nonadiabatic and source relative entropy perturbations. The resulting baryonic matter power spectrum is shown to be compatible with the 2dFGRS and SDSS (DR7) data. A joint statistical analysis, using also Hubble-function and supernovae Ia data, shows that, different from other studies, there exists a maximum in the probability distribution for a negative present value q{sub 0{approx_equal}}-0.53 of the deceleration parameter. Moreover, while previous descriptions on the basis of generalized Chaplygin-gas models were incompatible with the matter power-spectrum data since they required a much too large amount of pressureless matter, the unified model presented here favors a matter content that is of the order of the baryonic matter abundance suggested by big-bang nucleosynthesis.

  15. Targeting adequate thermal stability and fire safety in selecting ionic liquid-based electrolytes for energy storage

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    for energy storage L. Chancelier,a,b A.O. Diallo,c,d C.C. Santini,*a G. Marlair,*c T. Gutel,b S. Mailley,b C Abstract The energy storage market relating to lithium based systems regularly grows in size and expands for the promotion of a new generation of energy storage systems. These systems must be capable of addressing

  16. Liquid Fuels and Natural Gas in the Americas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    materials) D 6751. Biofuels: Liquid fuels and blending components produced from biomass feedstocks, used primarily for transportation. Bitumen: A naturally occurring viscous...

  17. Structural Integrity Program for the 300,000-Gallon Radioactive Liquid Waste Storage Tanks at the Idaho Nuclear Technology and Engineering Center

    SciTech Connect (OSTI)

    Bryant, Jeffrey W.

    2010-08-12T23:59:59.000Z

    This report provides a record of the Structural Integrity Program for the 300,000-gal liquid waste storage tanks and associated equipment at the Idaho Nuclear Technology and Engineering Center, as required by U.S. Department of Energy M 435.1-1, “Radioactive Waste Management Manual.” This equipment is known collectively as the Tank Farm Facility. This report is an update, and replaces the previous report by the same title issued April 2003. The conclusion of this report is that the Tank Farm Facility tanks, vaults, and transfer systems that remain in service for storage are structurally adequate, and are expected to remain structurally adequate over the remainder of their planned service life through 2012. Recommendations are provided for continued monitoring of the Tank Farm Facility.

  18. Iterative Optimal and Adaptive Control of a Near Isothermal Liquid Piston Air Compressor in a Compressed Air Energy Storage System

    E-Print Network [OSTI]

    Li, Perry Y.

    Gas compression and expansion has many applications in pneumatic and hydraulic systems, including in the Com- pressed Air Energy Storage (CAES) system for offshore wind turbine that has recently been

  19. Method for producing viscous hydrocarbons

    DOE Patents [OSTI]

    Poston, Robert S. (Winter Park, FL)

    1982-01-01T23:59:59.000Z

    A method for recovering viscous hydrocarbons and synthetic fuels from a subterranean formation by drilling a well bore through the formation and completing the well by cementing a casing means in the upper part of the pay zone. The well is completed as an open hole completion and a superheated thermal vapor stream comprised of steam and combustion gases is injected into the lower part of the pay zone. The combustion gases migrate to the top of the pay zone and form a gas cap which provides formation pressure to produce the viscous hydrocarbons and synthetic fuels.

  20. Integrated modeling of CO2 storage and leakage scenarios including transitions between super- and sub-critical conditions, and phase change between liquid and gaseous CO2

    SciTech Connect (OSTI)

    Pruess, K.

    2011-05-15T23:59:59.000Z

    Storage of CO{sub 2} in saline aquifers is intended to be at supercritical pressure and temperature conditions, but CO{sub 2} leaking from a geologic storage reservoir and migrating toward the land surface (through faults, fractures, or improperly abandoned wells) would reach subcritical conditions at depths shallower than 500-750 m. At these and shallower depths, subcritical CO{sub 2} can form two-phase mixtures of liquid and gaseous CO{sub 2}, with significant latent heat effects during boiling and condensation. Additional strongly non-isothermal effects can arise from decompression of gas-like subcritical CO{sub 2}, the so-called Joule-Thomson effect. Integrated modeling of CO{sub 2} storage and leakage requires the ability to model non-isothermal flows of brine and CO{sub 2} at conditions that range from supercritical to subcritical, including three-phase flow of aqueous phase, and both liquid and gaseous CO{sub 2}. In this paper, we describe and demonstrate comprehensive simulation capabilities that can cope with all possible phase conditions in brine-CO{sub 2} systems. Our model formulation includes: (1) an accurate description of thermophysical properties of aqueous and CO{sub 2}-rich phases as functions of temperature, pressure, salinity and CO{sub 2} content, including the mutual dissolution of CO{sub 2} and H{sub 2}O; (2) transitions between super- and subcritical conditions, including phase change between liquid and gaseous CO{sub 2}; (3) one-, two-, and three-phase flow of brine-CO{sub 2} mixtures, including heat flow; (4) non-isothermal effects associated with phase change, mutual dissolution of CO{sub 2} and water, and (de-) compression effects; and (5) the effects of dissolved NaCl, and the possibility of precipitating solid halite, with associated porosity and permeability change. Applications to specific leakage scenarios demonstrate that the peculiar thermophysical properties of CO{sub 2} provide a potential for positive as well as negative feedbacks on leakage rates, with a combination of self-enhancing and self-limiting effects. Lower viscosity and density of CO{sub 2} as compared to aqueous fluids provides a potential for self-enhancing effects during leakage, while strong cooling effects from liquid CO{sub 2} boiling into gas, and from expansion of gas rising towards the land surface, act to self-limit discharges. Strong interference between fluid phases under three-phase conditions (aqueous - liquid CO{sub 2} - gaseous CO{sub 2}) also tends to reduce CO{sub 2} fluxes. Feedback on different space and time scales can induce non-monotonic behavior of CO{sub 2} flow rates.

  1. Effects of NaCl, sucrose, and storage on rheological parameters of heat induced gels of liquid egg products

    E-Print Network [OSTI]

    Brough, Joan

    1988-01-01T23:59:59.000Z

    . 27 H t~tt t The samples were heated either for 2, 5, 10, 15, or 30 minutes in an 80 C water bath and then immediately tested on an Instron Universal Testing Machine (model 1122). Rheological Measurements M~th ohio The heat treated samples were... products heated at 80 C for 2 to 30 minutes. Addition of sucrose had a protective effect on albumen and yolk against the deleterious effects of frozen storage and on blended whole egg samples against the deleterious effects of refrigeration. Addition...

  2. Flexographically Printed Rechargeable Zinc-based Battery for Grid Energy Storage

    E-Print Network [OSTI]

    Wang, Zuoqian

    2013-01-01T23:59:59.000Z

    Ionic liquids for hybrid supercapacitors,” Electrochemistryionic liquids in flexible supercapacitors,” Electrochemistry5) direct electricity storage: supercapacitors. Based on the

  3. Integrated modeling of CO2 storage and leakage scenarios including transitions between super- and sub-critical conditions, and phase change between liquid and gaseous CO2

    E-Print Network [OSTI]

    Pruess, K.

    2012-01-01T23:59:59.000Z

    Storage of Carbon Dioxide: Comparison of Non-hysteretic and Hysteretic Characteristic Curves, Energy

  4. activity waste storage: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of distributed storage systems Engelmann, Christian 13 Waste-Lithium-Liquid (WLL) Flow Battery for Stationary Energy Storage Applications Youngsik Kim* and Nina MahootcheianAsl...

  5. CLEANING OF VISCOUS DROPS ON A FLAT INCLINED SURFACE USING GRAVITY-DRIVEN FILM FLOWS

    E-Print Network [OSTI]

    Landel, Julien R.; McEvoy, Harry; Dalziel, Stuart B.

    2014-10-07T23:59:59.000Z

    waves. Meas. Sc. Tech. 18, 533–547. Decré, M. M. J. and Baret, J.-C. (2003) Gravity-driven flows of viscous liquids over two- dimensional topographies, J. Fluid Mech. 487, 147–166. Dussan V., E. B. (1987) On the ability of drops to stick to surfaces... 63 64 65 Submitted to the IChemE Journal, Food and Bioproducts Processing. CLEANING OF VISCOUS DROPS ON A FLAT INCLINED SURFACE USING GRAVITY-DRIVEN FILM FLOWS Julien R. Landel*1, Harry McEvoy2 and Stuart B. Dalziel1 1Department of Applied...

  6. A High Temperature (400 to 650oC) Secondary Storage Battery Based on Liquid Sodium and Potassium Anodes

    SciTech Connect (OSTI)

    Tao, Greg; Weber, Neill

    2007-06-08T23:59:59.000Z

    This STTR Phase I research program was on the development of high temperature (400 to 650 C), secondary batteries with roundtrip efficiency > 90% for integration with a 3 to 10 kW solid oxide fuel cell (SOFC) system. In fulfillment of this objective, advanced planar high temperature rechargeable batteries, comprised of an alkali metal ion conducting, highly refractory, beta'' alumina solid electrolyte (BASE) sandwiched between liquid sodium (or potassium) anode and liquid metal salt cathode, were developed at MSRI. The batteries have been successfully demonstrated at a working temperature as high as 600 C. To our knowledge, so far no work has been reported in the literature on planar rechargeable batteries based on BASE, and results obtained in Phase I for the very first time demonstrated the viability of planar batteries, though relatively low temperature tubular-based sodium-sulfur batteries and ZEBRA batteries have been actively developed by very limited non U.S. companies. The results of this Phase I work have fulfilled all the goals and stated objectives, and the achievements showed much promise for further, substantial improvements in battery design and performance. The important results of Phase I are briefly described in what follows: (1) Both Na-BASE and K-BASE discs and tubes have been successfully fabricated using MSRI's patented vapor phase process. Ionic conductivity measurements showed that Na-BASE had higher ionic conductivity than K-BASE, consistence with the literature. At 500 C, Na-BASE conductivity is 0.36 S/cm, which is more than 20 times higher than 8YSZ electrolyte used for SOFC at 800 C. The activation energy is 22.58 kJ/mol. (2) CuCl{sub 2}, FeCl{sub 2}, ZnCl{sub 2}, and AgCl were identified as suitable salts for Na/metal salt or K/metal salt electrochemical couples based on thermochemical data. Further open circuit voltage measurements matched those deduced from the thermochemical data. (3) Tubular cells with CuCl{sub 2} as the cathode and Na as the anode were constructed. However, it was discovered that CuCl{sub 2} was somewhat corrosive and dissolved iron, an element of the cathode compartment. Since protective coating technology was beyond this Phase I work scope, no further work on the CuCl{sub 2} cathode was pursued in Phase I. Notwithstanding, due to its very high OCV and high specific energy, CuCl{sub 2} cathode is a very attractive possibility for a battery capable of delivering higher specific energy with higher voltage. Further investigation of the Na-CuCl{sub 2} battery can be done by using suitable metal coating technologies developed at MSRI for high temperature applications. (4) In Phase I, FeCl{sub 2} and ZnCl{sub 2} were finalized as the potential cathodes for Na-metal salt batteries for delivering high specific energies. Planar Na-FeCl{sub 2} and Na-ZnCl{sub 2} cells were designed, constructed, and tested between 350 and 600 C. Investigation of charge/discharge characteristics showed they were the most promising batteries. Charge/discharge cycles were performed as many as 27 times, and charge/discharge current was as high as 500 mA. No failure was detected after 50 hours testing. (5) Three-cell planar stacks were designed, constructed, and evaluated. Preliminary tests showed further investigation was needed for optimization. (6) Freeze-thaw survival was remarkably good for planar BASE discs fabricated by MSRI's patented vapor phase process.

  7. Hydrogen Storage Systems Analysis Working Group Meeting Held in Conjunction with the

    E-Print Network [OSTI]

    an autothermal hydrogen storage and delivery concept using an organic liquid carrier for hydrogen. Joe Reiter

  8. Bulk viscous cosmology: statefinder and entropy

    E-Print Network [OSTI]

    M. Hu; Xin He Meng

    2005-11-23T23:59:59.000Z

    The statefinder diagnostic pair is adopted to differentiate viscous cosmology models and it is found that the trajectories of these viscous cosmology models on the statefinder pair $s-r$ plane are quite different from those of the corresponding non-viscous cases. Particularly for the quiessence model, the singular properties of state parameter $w=-1$ are obviously demonstrated on the statefinder diagnostic pair planes. We then discuss the entropy of the viscous / dissipative cosmology system which may be more practical to describe the present cosmic observations as the perfect fluid is just a global approximation to the complicated cosmic media in current universe evolution. When the bulk viscosity takes the form of $\\zeta=\\zeta_{1}\\dot{a}/a$($\\zeta_{1}$ is constant), the relationship between the entropy $S$ and the redshift $z$ is explicitly given out. We find that the entropy of the viscous cosmology is always increasing and consistent with the thermodynamics arrow of time for the universe evolution. With the parameter constraints from fitting to the 157 gold data of supernova observations, it is demonstrated that this viscous cosmology model is rather well consistent to the observational data at the lower redshifts, and together with the diagnostic statefinder pair analysis it is concluded that the viscous cosmic models tend to the favored $\\Lambda$CDM model in the later cosmic evolution, agreeable to lots of cosmological simulation results, especially to the fact of confidently observed current accelerating cosmic expansion.

  9. Direct photon production from viscous QGP

    E-Print Network [OSTI]

    Chaudhuri, A K

    2011-01-01T23:59:59.000Z

    We simulate direct photon production in evolution of viscous QGP medium. Photons from Compton and annihilation processes are considered. Viscous effect on photon production is very strong and reliable simulation is possible only in a limited $p_T$ range. For minimally viscous fluid $\\eta/s$=0.08), direct photons can be reliably computed only up to $p_T \\leq$ 1.3 GeV. With reduced viscosity ($\\eta/s$=0.04), the limit increases to $p_T \\leq $2GeV.

  10. Viscosity of a nanoconfined liquid during compression

    SciTech Connect (OSTI)

    Khan, Shah H. [Institute of Physics and Electronics, University of Peshawar, Peshawar 25120 (Pakistan); Kramkowski, Edward L.; Ochs, Peter J.; Wilson, David M.; Hoffmann, Peter M., E-mail: hoffmann@wayne.edu [Department of Physics and Astronomy, Wayne State University, Detroit, Michigan 48201 (United States)

    2014-01-13T23:59:59.000Z

    The viscous behavior of liquids under nanoconfinement is not well understood. Using a small-amplitude atomic force microscope, we found bulk-like viscosity in a nanoconfined, weakly interacting liquid. A further decrease in viscosity was observed at confinement sizes of a just few molecular layers. Overlaid over the continuum viscous behavior, we measured non-continuum stiffness and damping oscillations. The average stiffness of the confined liquid was found to scale linearly with the size of the confining tip, while the damping scales with the radius of curvature of the tip end.

  11. NGLW RCRA Storage Study

    SciTech Connect (OSTI)

    R. J. Waters; R. Ochoa; K. D. Fritz; D. W. Craig

    2000-06-01T23:59:59.000Z

    The Idaho Nuclear Technology and Engineering Center (INTEC) at the Idaho National Engineering and Environmental Laboratory contains radioactive liquid waste in underground storage tanks at the INTEC Tank Farm Facility (TFF). INTEC is currently treating the waste by evaporation to reduce the liquid volume for continued storage, and by calcination to reduce and convert the liquid to a dry waste form for long-term storage in calcine bins. Both treatment methods and activities in support of those treatment operations result in Newly Generated Liquid Waste (NGLW) being sent to TFF. The storage tanks in the TFF are underground, contained in concrete vaults with instrumentation, piping, transfer jets, and managed sumps in case of any liquid accumulation in the vault. The configuration of these tanks is such that Resource Conservation and Recovery Act (RCRA) regulations apply. The TFF tanks were assessed several years ago with respect to the RCRA regulations and they were found to be deficient. This study considers the configuration of the current tanks and the RCRA deficiencies identified for each. The study identifies four potential methods and proposes a means of correcting the deficiencies. The cost estimates included in the study account for construction cost; construction methods to minimize work exposure to chemical hazards, radioactive contamination, and ionizing radiation hazards; project logistics; and project schedule. The study also estimates the tank volumes benefit associated with each corrective action to support TFF liquid waste management planning.

  12. Dilepton production in schematic causal viscous hydrodynamics

    E-Print Network [OSTI]

    Song, Taesoo; Han, Kyong Chol; Ko, Che Ming.

    2011-01-01T23:59:59.000Z

    to entropy density ratio of 1/4 pi for the initial quark-gluon plasma (QGP) phase and of 10 times this value for the later hadron-gas (HG) phase. Using the production rate evaluated with particle distributions that take into account the viscous effect, we...

  13. Supported liquid membrane electrochemical separators

    DOE Patents [OSTI]

    Pemsler, J. Paul (Lexington, MA); Dempsey, Michael D. (Revere, MA)

    1986-01-01T23:59:59.000Z

    Supported liquid membrane separators improve the flexibility, efficiency and service life of electrochemical cells for a variety of applications. In the field of electrochemical storage, an alkaline secondary battery with improved service life is described in which a supported liquid membrane is interposed between the positive and negative electrodes. The supported liquid membranes of this invention can be used in energy production and storage systems, electrosynthesis systems, and in systems for the electrowinning and electrorefining of metals.

  14. Underground caverns for hydrocarbon storage

    SciTech Connect (OSTI)

    Barron, T.F. [Exeter Energy Services, Houston, TX (United States)

    1998-12-31T23:59:59.000Z

    Large, international gas processing projects and growing LPG imports in developing countries are driving the need to store large quantities of hydrocarbon liquids. Even though underground storage is common in the US, many people outside the domestic industry are not familiar with the technology and the benefits underground storage can offer. The latter include lower construction and operating costs than surface storage, added safety, security and greater environmental acceptance.

  15. Aerosols generated by spills of viscous solutions and slurries

    SciTech Connect (OSTI)

    Ballinger, M Y; Hodgson, W H

    1986-12-01T23:59:59.000Z

    Safety assessments and environmental impact statements for nuclear fuel cycle facilities require an estimate of potential airborne releases caused by accidents. Aerosols generated by accidents are being investigated by Pacific Northwest Laboratory to develop methods for estimating source terms from these accidents. Experiments were run by spilling viscous solutions and slurries to determine the mass and particle-size distribution of the material made airborne. In all cases, 1 L of solution was spilled from a height of 3 m. Aqueous solutions of sucrose (0 to 56%) gave a range of viscosities from 1.3 to 46 cp. The percent of spill mass made airborne from the spills of these solutions ranged from 0.001 to 0.0001. The mass of particles made airborne decreased as solution viscosity increased. Slurry loading ranged from 25 to 51% total solids. The maximum source airborne (0.0046 wt %) occurred with the slurry that had the lightest loading of soluble solids. The viscosity of the carrying solution also had an impact on the source term from spilling slurries. The effect of surface tension on the source term was examined in two experiments. Surface tension was halved in these spills by adding a surfactant. The maximum weight percent airborne from these spills was 0.0045, compared to 0.003 for spills with twice the surface tension. The aerodynamic mass medium diameters for the aerosols produced by spills of the viscous solutions, slurries, and low surface tension liquids ranged from 0.6 to 8.4 ..mu..m, and the geometric standard deviation ranged from 3.8 to 28.0.

  16. Effect of gas velocity on the weakly nonlinear instability of a planar viscous sheet

    SciTech Connect (OSTI)

    Yang, Li-Jun, E-mail: yanglijun@buaa.edu.cn; Chen, Pi-Min; Wang, Chen [School of Astronautics, Beijing University of Aeronautics and Astronautics, Beijing 100191 (China)

    2014-07-15T23:59:59.000Z

    A weakly nonlinear spatial instability of a two-dimensional planar viscous sheet for sinuous disturbances in a co-flowing inviscid gas stream is investigated theoretically, with an emphasis on the effect of the surrounding gas velocity. The solutions of the second-order interface disturbances are derived and the wave deformation has been computed. The results indicate that the second-order surface disturbance of the fundamental sinuous mode is varicose, which causes the thinning and the subsequent breakup of the liquid sheet. The nonlinear behaviors of the planar sheet are quite sensitive to variations in gas-to-liquid velocity ratio. The deviation of the velocity ratio from the value of unity leads to a larger growth rate, a larger second-order initial amplitude, and a shorter breakup length, and therefore enhances the instability. The growth rates predicted by the present nonlinear analysis according to the shortest breakup length are generally smaller than the linear predictions and can better conform to the experimental measures of Barreras et al. [“Linear instability analysis of the viscous longitudinal perturbation on an air-blasted liquid sheets,” Atomization Sprays 11, 139 (2001)]. Furthermore, the wave deformations of the most unstable disturbances are presented. The nonlinear instability of the planar sheet for a fixed velocity difference is performed. An equal increase of the gas and liquid velocity reduces the spatial growth rate and increases the breakup length, but generally has no influences on the second-order initial amplitude and the wavelength of the disturbance.

  17. Mixing in a liquid metal electrode

    E-Print Network [OSTI]

    Kelley, Douglas H.

    Fluid mixing has first-order importance for many engineering problems in mass transport, including design and optimization of liquid-phase energy storage devices. Liquid metal batteries are currently being commercialized ...

  18. Viscous Glass Sealants for SOFC Applications

    SciTech Connect (OSTI)

    Scott Misture

    2012-09-30T23:59:59.000Z

    Two series of silicate glasses that contain gallium as the primary critical component have been identified and optimized for viscous sealing of solid oxide fuel cells operating from 650 to 850°C. Both series of glass sealants crystallize partially upon heat treatment and yield multiphase microstructures that allow viscous flow at temperatures as low as 650°C. A fully amorphous sealant was also developed by isolating, synthesizing and testing a silicate glass of the same composition as the remnant glassy phase in one of the two glass series. Of ~40 glasses tested for longer than 500 hours, a set of 5 glasses has been further tested for up to 1000h in air, wet hydrogen, and against both yttria-stabilized zirconia and aluminized stainless steel. In some cases the testing times reached 2000h. The reactivity testing has provided new insight into the effects of Y, Zr, and Al on bulk and surface crystallization in boro-gallio-silicate glasses, and demonstrated that at least 5 of the newly-developed glasses are viable viscous sealants.

  19. Visualization of Solution Gas Drive in Viscous Oil, SUPRI TR-126

    SciTech Connect (OSTI)

    George, D.S.; Kovscek, A.R.

    2001-07-23T23:59:59.000Z

    Several experimental studies of solution gas drive are available in this report. Almost all of the studies have used light oil. Solution gas drive behavior, especially in heavy oil reservoirs, is poorly understood. Experiments were performed in which pore-scale solution gas drive phenomena were viewed in water/carbon dioxide and viscous oil/carbon dioxide systems. A new pressure vessel was designed and constructed to house silicon-wafer micromodels that previously operated at low (<3 atm) pressure. The new apparatus is used for the visual studies. Several interesting phenomena were viewed. The repeated nucleation of gas bubbles was observed at a gas-wet site occupied by dirt. Interestingly, the dissolution of a gas bubble into the liquid phase was previously recorded at the same nucleation site. Gas bubbles in both systems grew to span one ore more pore bodies before mobilization. Liquid viscosity affected the ease with which gas bubbles coalesced. More viscous solutions result in slower rates of coalescence. The transport of solid particles on gas-liquid interfaces was also observed.

  20. Experimental study of crossover from capillary to viscous fingering...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    viscous fingering for supercritical CO2 - water displacement in a homogeneous Abstract: Carbon sequestration in saline aquifers involves displacing resident brine from the pore...

  1. Interim storage study report

    SciTech Connect (OSTI)

    Rawlins, J.K.

    1998-02-01T23:59:59.000Z

    High-level radioactive waste (HLW) stored at the Idaho Chemical Processing Plant (ICPP) in the form of calcine and liquid and liquid sodium-bearing waste (SBW) will be processed to provide a stable waste form and prepare the waste to be transported to a permanent repository. Because a permanent repository will not be available when the waste is processed, the waste must be stored at ICPP in an Interim Storage Facility (ISF). This report documents consideration of an ISF for each of the waste processing options under consideration.

  2. Systems analysis of thermal storage

    SciTech Connect (OSTI)

    Copeland, R.J.

    1981-08-01T23:59:59.000Z

    During FY 1981, analyses were conducted on thermal storage concepts for solar thermal applications. These studies include estimates of both the obtainable costs of thermal storage concepts and their worth to a user (i.e., value). Based on obtainable costs and performance, an in-depth study evaluated thermal storage concepts for water/steam, organic fluid, and gas/Brayton solar thermal receivers. Promising and nonpromising concepts were identified. A study to evaluate thermal storage concepts for a liquid metal receiver was initiated. The value of thermal storage in a solar thermal industrial process heat application was analyzed. Several advanced concepts are being studied, including ground-mounted thermal storage for parabolic dishes with Stirling engines.

  3. Solving the viscous hydrodynamics order by order

    E-Print Network [OSTI]

    Jian-Hua Gao; Shi Pu

    2014-09-02T23:59:59.000Z

    In this paper, we propose a method of solving the viscous hydrodynamics order by order in a derivative expansion. In such method, the zero order solution is just the one of the ideal hydrodynamics. All the other higher order corrections satisfy the same first-order partial differential equations but with different inhomogeneous terms. We therefore argue that our method could be easily extended to any orders. The problem of causality and stability will be released if the gradient expansion is guaranteed. This method might be of great help to both theoretical and numerical calculations of relativistic hydrodynamics.

  4. Toward new solid and liquid phase systems for the containment, transport and delivery of hydrogen

    Broader source: Energy.gov [DOE]

    Toward new solid and liquid phase systems for the containment, transport and delivery of hydrogen.Solid and liquid hydrogen carriers for use in hydrogen storage and delivery.

  5. Hydrogen Storage R&D Activities | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    liquid hydrogen storage, improved insulated-pressure vessels are being investigated. Materials research is focused on developing and evaluating advanced solid-state materials. In...

  6. Viscous lock-exchange in rectangular channels

    E-Print Network [OSTI]

    Jerome Martin; Nicole Rakotomalala; Laurent Talon; Dominique Salin

    2010-11-29T23:59:59.000Z

    In a viscous lock-exchange gravity current, which describes the reciprocal exchange of two fluids of different densities in a horizontal channel, the front between two Newtonian fluids spreads as the square root of time. The resulting diffusion coefficient reflects the competition between the buoyancy driving effect and the viscous damping, and depends on the geometry of the channel. This lock-exchange diffusion coefficient has already been computed for a porous medium, a 2D Stokes flow between two parallel horizontal boundaries separated by a vertical height, H, and, recently, for a cylindrical tube. In the present paper, we calculate it, analytically, for a rectangular channel (horizontal thickness b, vertical height, H) of any aspect ratio (H/b) and compare our results with experiments in horizontal rectangular channels for a wide range of aspect ratios (1/10-10). We also discuss the 2D Stokes-Darcy model for flows in Hele-Shaw cells and show that it leads to a rather good approximation, when an appropriate Brinkman correction is used.

  7. university-logo Convex entropy, Hopf bifurcation, and viscous and

    E-Print Network [OSTI]

    Zumbrun, Kevin

    university-logo Convex entropy, Hopf bifurcation, and viscous and inviscid shock stability KevinXiv) Zumbrun Convex Entropy #12;university-logo I. Introduction: Viscous and inviscid shock waves Quasilinear, Stationary solutions of ut - ux + f (u)x = (b(u)ux )x . Zumbrun Convex Entropy #12;university-logo Stability

  8. Metal-Air Electric Vehicle Battery: Sustainable, High-Energy Density, Low-Cost Electrochemical Energy Storage – Metal-Air Ionic Liquid (MAIL) Batteries

    SciTech Connect (OSTI)

    None

    2009-12-21T23:59:59.000Z

    Broad Funding Opportunity Announcement Project: ASU is developing a new class of metal-air batteries. Metal-air batteries are promising for future generations of EVs because they use oxygen from the air as one of the battery’s main reactants, reducing the weight of the battery and freeing up more space to devote to energy storage than Li-Ion batteries. ASU technology uses Zinc as the active metal in the battery because it is more abundant and affordable than imported lithium. Metal-air batteries have long been considered impractical for EV applications because the water-based electrolytes inside would decompose the battery interior after just a few uses. Overcoming this traditional limitation, ASU’s new battery system could be both cheaper and safer than today’s Li-Ion batteries, store from 4-5 times more energy, and be recharged over 2,500 times.

  9. Comparison of electrical capacitance tomography and gamma densitometer measurement in viscous oil-gas flows

    SciTech Connect (OSTI)

    Archibong Eso, A.; Zhao, Yabin; Yeung, Hoi [Department of Offshore Process and Energy Systems Engineering, Cranfield University, Cranfield (United Kingdom)

    2014-04-11T23:59:59.000Z

    Multiphase flow is a common occurrence in industries such as nuclear, process, oil and gas, food and chemical. A prior knowledge of its features and characteristics is essential in the design, control and management of such processes due to its complex nature. Electrical Capacitance Tomography (ECT) and Gamma Densitometer (Gamma) are two promising approaches for multiphase visualization and characterization in process industries. In two phase oil and gas flow, ECT and Gamma are used in multiphase flow monitoring techniques due to their inherent simplicity, robustness, and an ability to withstand wide range of operational temperatures and pressures. High viscous oil (viscosity > 100 cP) is of interest because of its huge reserves, technological advances in its production and unlike conventional oil (oil viscosity < 100 cP) and gas flows where ECT and Gamma have been previously used, high viscous oil and gas flows comes with certain associated concerns which include; increased entrainment of gas bubbles dispersed in oil, shorter and more frequent slugs as well as oil film coatings on the walls of flowing conduits. This study aims to determine the suitability of both devices in the visualization and characterization of high-viscous oil and gas flow. Static tests are performed with both devices and liquid holdup measurements are obtained. Dynamic experiments were also conducted in a 1 and 3 inch facility at Cranfield University with a range of nominal viscosities (1000, 3000 and 7500 cP). Plug, slug and wavy annular flow patterns were identified by means of Probability Mass Function and time series analysis of the data acquired from Gamma and ECT devices with high speed camera used to validate the results. Measured Liquid holdups for both devices were also compared.

  10. Liquid-Liquid Extraction Processes

    E-Print Network [OSTI]

    Fair, J. R.; Humphrey, J. L.

    1983-01-01T23:59:59.000Z

    Liquid-liquid extraction is the separation of one or more components of a liquid solution by contact with a second immiscible liquid called the solvent. If the components in the original liquid solution distribute themselves differently between...

  11. Energy Storage

    SciTech Connect (OSTI)

    Paranthaman, Parans

    2014-06-03T23:59:59.000Z

    ORNL Distinguished Scientist Parans Paranthaman is discovering new materials with potential for greatly increasing batteries' energy storage capacity and bring manufacturing back to the US.

  12. Energy Storage

    ScienceCinema (OSTI)

    Paranthaman, Parans

    2014-06-23T23:59:59.000Z

    ORNL Distinguished Scientist Parans Paranthaman is discovering new materials with potential for greatly increasing batteries' energy storage capacity and bring manufacturing back to the US.

  13. Viscous Dark Energy in $f(T)$ Gravity

    E-Print Network [OSTI]

    M. Sharif; Shamaila Rani

    2014-05-18T23:59:59.000Z

    We study the bulk viscosity taking dust matter in the generalized teleparallel gravity. We consider different dark energy models in this scenario along with a time dependent viscous model to construct the viscous equation of state parameter for these dark energy models. We discuss the graphical representation of this parameter to investigate the viscosity effects on the accelerating expansion of the universe. It is mentioned here that the behavior of the universe depends upon the viscous coefficients showing the transition from decelerating to accelerating phase. It leads to the crossing of phantom divide line and becomes phantom dominated for specific ranges of these coefficients.

  14. Rayleigh-Taylor instability in quantum magnetized viscous plasma

    SciTech Connect (OSTI)

    Hoshoudy, G. A., E-mail: g_hoshoudy@yahoo.com [South Valley University, Department of Applied Mathematics, Faculty of Science (Egypt)

    2011-09-15T23:59:59.000Z

    Quantum effects on Rayleigh-Taylor instability of stratified viscous plasmas layer under the influence of vertical magnetic field are investigated. By linearly solving the viscous QMHD equations into normal mode, a forth-order ordinary differential equation is obtained to describe the velocity perturbation. Then the growth rate is derived for the case where a plasma with exponential density distribution is confined between two rigid planes. The results show that, the presence of vertical magnetic field beside the quantum effect will bring about more stability on the growth rate of unstable configuration for viscous plasma, which is greater than that of inviscous plasma.

  15. Terrestrial Water Storage

    E-Print Network [OSTI]

    Rodell, M; Chambers, D P; Famiglietti, Jay

    2013-01-01T23:59:59.000Z

    T. E. Reilly, 2002: Flow and storage in groundwater systems.storage ..2013: Global ocean storage of anthropogenic carbon.

  16. Stasis: Flexible Transactional Storage

    E-Print Network [OSTI]

    Sears, Russell C.

    2009-01-01T23:59:59.000Z

    storage . . . . . . . . . . . . . . . . . . . . . .example system based on log-structured storage 10.1 SystemA storage bottleneck. . . . . . . . . . . . . . . .

  17. Analysis of Viscous Micropumps and Microturbines David DeCourtye

    E-Print Network [OSTI]

    Gad-el-Hak, Mohamed

    Analysis of Viscous Micropumps and Microturbines David DeCourtye Mihir Sen Mohamed Gad pumping is still observed with extremely narrow channels. The utility of the device as a microturbine

  18. Understanding the evolution of miscible viscous fingering patterns

    E-Print Network [OSTI]

    Chui, Jane (Jane Yuen Yung)

    2012-01-01T23:59:59.000Z

    Viscous fingering, the hydrodynamic instability that occurs when a lower viscosity fluid displaces a higher viscosity fluid, creates complex patterns in porous media flows. Fundamental facets of the displacement process, ...

  19. Interaction of vortices in weakly viscous planar flows Thierry Gallay

    E-Print Network [OSTI]

    Gallay, Thierry

    Interaction of vortices in weakly viscous planar flows Thierry Gallay Universit´e de Grenoble I Institut Fourier, UMR CNRS 5582 B.P. 74 F-38402 Saint-Martin-d'H`eres, France Thierry.Gallay

  20. Interaction of vortices in weakly viscous planar flows Thierry Gallay

    E-Print Network [OSTI]

    Gallay, Thierry

    Interaction of vortices in weakly viscous planar flows Thierry Gallay Universitâ??e de Grenoble I Institut Fourier, UMR CNRS 5582 B.P. 74 F­38402 Saint­Martin­d'Hâ??eres, France Thierry.Gallay

  1. axisymmetric viscous gravity: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    largely by the coefficient Wesley N. Colley; Linda S. Sparke 1995-12-19 4 Viscous Dark Energy in f(T) Gravity General Relativity & Quantum Cosmology (arXiv) Summary: We...

  2. Solar energy thermalization and storage device

    DOE Patents [OSTI]

    McClelland, John F. (Ames, IA)

    1981-09-01T23:59:59.000Z

    A passive solar thermalization and thermal energy storage assembly which is visually transparent. The assembly consists of two substantial parallel, transparent wall members mounted in a rectangular support frame to form a liquid-tight chamber. A semitransparent thermalization plate is located in the chamber, substantially paralled to and about equidistant from the transparent wall members to thermalize solar radiation which is stored in a transparent thermal energy storage liquid which fills the chamber. A number of the devices, as modules, can be stacked together to construct a visually transparent, thermal storage wall for passive solar-heated buildings.

  3. New imaging tool directly measures liquid surfaces | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    directly measures liquid surfaces Released: May 30, 2013 Basic scientific insights of interest for energy storage, environmental cleanup The schematic of a vacuum compatible...

  4. Polarization energy loss in hot viscous quark-gluon plasma

    E-Print Network [OSTI]

    Bing-Feng Jiang; Defu Hou; Jia-Rong Li

    2014-05-19T23:59:59.000Z

    The gluon polarization tensor for the quark-gluon plasma with shear viscosity is derived with the viscous chromohydrodynamics. The longitudinal and transverse dielectric functions are evaluated from the gluon polarization tensor, through which the polarization energy loss suffered by a fast quark traveling through the viscous quark-gluon plasma is investigated. The numerical analysis indicates that shear viscosity significantly reduces the polarization energy loss.

  5. Viscous fluid dynamics in Au+Au collisions at RHIC

    E-Print Network [OSTI]

    A. K. Chaudhuri

    2008-06-18T23:59:59.000Z

    We have studied the space-time evolution of minimally viscous ($\\frac{\\eta}{s}$=0.08) QGP fluid, undergoing boost-invariant longitudinal motion and arbitrary transverse expansion. Relaxation equations for the shear stress tensor components, derived from the phenomenological Israel-Stewart's theory of dissipative relativistic fluid, are solved simultaneously with the energy-momentum conservation equations. Comparison of evolution of ideal and viscous fluid, both initialized under the similar conditions, e.g. same equilibration time, energy density and velocity profile, indicate that in viscous fluid, energy density or temperature of the fluid evolve slowly than in an ideal fluid. Transverse expansion is also more in viscous evolution. We have also studied particle production in viscous dynamics. Compared to ideal dynamics, in viscous dynamics, particle yield at high $p_T$ is increased. Elliptic flow on the other hand decreases. Minimally viscous QGP fluid, initialized at entropy density $s_{ini}$=110 $fm^{-3}$ at the initial time $\\tau_i$=0.6 fm, if freeze-out at temperature $T_F$=130 MeV, explains the centrality dependence of $p_T$ spectra of identified particles. Experimental $p_T$ spectra of $\\pi^-$, $K^+$ and protons in 0-5%, 5-10%, 10-20%, 20-30%, 30-40% and 40-50% Au+Au collisions are well reproduced through out the experimental $p_T$ range. This is in contrast to ideal dynamics, where, the spectra are reproduced only up to $p_T\\approx$1.5 GeV. Minimally viscous QGP fluid, also explain the elliptic flow in mid-central (10-20%, 16-23%, 20-30%) collisions. The minimum bias elliptic flow is also explained. However, the model under-predict/over-predict the elliptic flow in very central/peripheral collisions.

  6. EXERGETIC ANALYSIS OF A STEAM-FLASHING THERMAL STORAGE SYSTEM

    E-Print Network [OSTI]

    Abstract Thermal energy storage is attractive in the design of concentrator solar thermal systems because-scale thermal energy storage via hot compressed liquid water. Such a cycle is potentially interesting becauseEXERGETIC ANALYSIS OF A STEAM-FLASHING THERMAL STORAGE SYSTEM Paul T. O'Brien 1 , and John Pye 2 1

  7. area liquid lithium: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    liquid lithium plasma-facing surface will be used 11 Waste-Lithium-Liquid (WLL) Flow Battery for Stationary Energy Storage Applications Youngsik Kim* and Nina MahootcheianAsl...

  8. Chemical Methods for Ugnu Viscous Oils

    SciTech Connect (OSTI)

    Kishore Mohanty

    2012-03-31T23:59:59.000Z

    The North Slope of Alaska has large (about 20 billion barrels) deposits of viscous oil in Ugnu, West Sak and Shraeder Bluff reservoirs. These shallow reservoirs overlie existing productive reservoirs such as Kuparuk and Milne Point. The viscosity of the Ugnu reservoir on top of Milne Point varies from 200 cp to 10,000 cp and the depth is about 3300 ft. The same reservoir extends to the west on the top of the Kuparuk River Unit and onto the Beaufort Sea. The depth of the reservoir decreases and the viscosity increases towards the west. Currently, the operators are testing cold heavy oil production with sand (CHOPS) in Ugnu, but oil recovery is expected to be low (< 10%). Improved oil recovery techniques must be developed for these reservoirs. The proximity to the permafrost is an issue for thermal methods; thus nonthermal methods must be considered. The objective of this project is to develop chemical methods for the Ugnu reservoir on the top of Milne Point. An alkaline-surfactant-polymer (ASP) formulation was developed for a viscous oil (330 cp) where as an alkaline-surfactant formulation was developed for a heavy oil (10,000 cp). These formulations were tested in one-dimensional and quarter five-spot Ugnu sand packs. Micromodel studies were conducted to determine the mechanisms of high viscosity ratio displacements. Laboratory displacements were modeled and transport parameters (such as relative permeability) were determined that can be used in reservoir simulations. Ugnu oil is suitable for chemical flooding because it is biodegraded and contains some organic acids. The acids react with injected alkali to produce soap. This soap helps in lowering interfacial tension between water and oil which in turn helps in the formation of macro and micro emulsions. A lower amount of synthetic surfactant is needed because of the presence of organic acids in the oil. Tertiary ASP flooding is very effective for the 330 cp viscous oil in 1D sand pack. This chemical formulation includes 1.5% of an alkali, 0.4% of a nonionic surfactant, and 0.48% of a polymer. The secondary waterflood in a 1D sand pack had a cumulative recovery of 0.61 PV in about 3 PV injection. The residual oil saturation to waterflood was 0.26. Injection of tertiary alkaline-surfactant-polymer slug followed by tapered polymer slugs could recover almost 100% of the remaining oil. The tertiary alkali-surfactant-polymer flood of the 330 cp oil is stable in three-dimensions; it was verified by a flood in a transparent 5-spot model. A secondary polymer flood is also effective for the 330 cp viscous oil in 1D sand pack. The secondary polymer flood recovered about 0.78 PV of oil in about 1 PV injection. The remaining oil saturation was 0.09. The pressure drops were reasonable (<2 psi/ft) and depended mainly on the viscosity of the polymer slug injected. For the heavy crude oil (of viscosity 10,000 cp), low viscosity (10-100 cp) oil-in-water emulsions can be obtained at salinity up to 20,000 ppm by using a hydrophilic surfactant along with an alkali at a high water-to-oil ratio of 9:1. Very dilute surfactant concentrations (~0.1 wt%) of the synthetic surfactant are required to generate the emulsions. It is much easier to flow the low viscosity emulsion than the original oil of viscosity 10,000 cp. Decreasing the WOR reverses the type of emulsion to water-in-oil type. For a low salinity of 0 ppm NaCl, the emulsion remained O/W even when the WOR was decreased. Hence a low salinity injection water is preferred if an oil-in-water emulsion is to be formed. Secondary waterflood of the 10,000 cp heavy oil followed by tertiary injection of alkaline-surfactants is very effective. Waterflood has early water breakthrough, but recovers a substantial amount of oil beyond breakthrough. Waterflood recovers 20-37% PV of the oil in 1D sand pack in about 3 PV injection. Tertiary alkali-surfactant injection increases the heavy oil recovery to 50-70% PV in 1D sand packs. As the salinity increased, the oil recovery due to alkaline surfactant flood increased, but water-in-oil emulsion was p

  9. Formation of magnetic discontinuities through viscous relaxation

    SciTech Connect (OSTI)

    Kumar, Sanjay; Bhattacharyya, R. [Udaipur Solar Observatory, Physical Research Laboratory, Dewali, Bari Road, Udaipur-313001 (India); Smolarkiewicz, P. K. [European Centre for Medium-Range Weather Forecasts, Reading RG2 9AX (United Kingdom)

    2014-05-15T23:59:59.000Z

    According to Parker's magnetostatic theorem, tangential discontinuities in magnetic field, or current sheets (CSs), are generally unavoidable in an equilibrium magnetofluid with infinite electrical conductivity and complex magnetic topology. These CSs are due to a failure of a magnetic field in achieving force-balance everywhere and preserving its topology while remaining in a spatially continuous state. A recent work [Kumar, Bhattacharyya, and Smolarkiewicz, Phys. Plasmas 20, 112903 (2013)] demonstrated this CS formation utilizing numerical simulations in terms of the vector magnetic field. The magnetohydrodynamic simulations presented here complement the above work by demonstrating CS formation by employing a novel approach of describing the magnetofluid evolution in terms of magnetic flux surfaces instead of the vector magnetic field. The magnetic flux surfaces being the possible sites on which CSs develop, this approach provides a direct visualization of the CS formation, helpful in understanding the governing dynamics. The simulations confirm development of tangential discontinuities through a favorable contortion of magnetic flux surfaces, as the magnetofluid undergoes a topology-preserving viscous relaxation from an initial non-equilibrium state with twisted magnetic field. A crucial finding of this work is in its demonstration of CS formation at spatial locations away from the magnetic nulls.

  10. Synchronized molecular-dynamics simulation for the thermal lubrication of a polymeric liquid between parallel plates

    E-Print Network [OSTI]

    Yasuda, Shugo

    2015-01-01T23:59:59.000Z

    The Synchronized Molecular-Dynamics simulation which was recently proposed by authors [Phys. Rev. X {\\bf 4}, 041011 (2014)] is applied to the analysis of polymer lubrication between parallel plates. The rheological properties, conformational change of polymer chains, and temperature rise due to the viscous heating are investigated with changing the values of thermal conductivity of the polymeric liquid. It is found that at a small applied shear stress on the plate, the temperature of polymeric liquid only slightly increases in inverse proportion to the thermal conductivity and the apparent viscosity of polymeric liquid is not much affected by changing the thermal conductivity. However, at a large shear stress, the transitional behaviors of the polymeric liquid occur due to the interplay of the shear deformation and viscous heating by changing the thermal conductivity. This transition is characterized by the Nahme-Griffith number $Na$ which is defined as the ratio of the viscous heating to the thermal conducti...

  11. HYDROGEN USAGE AND STORAGE

    E-Print Network [OSTI]

    It is thought that it will be useful to inform society and people who are interested in hydrogen energy. The study below has been prepared due to this aim can be accepted as an article to exchange of information between people working on this subject. This study has been presented to reader to be utilized as a “technical note”. Main Energy sources coal, petroleum and natural gas are the fossil fuels we use today. They are going to be exhausted since careless usage in last decades through out the world, and human being is going to face the lack of energy sources in the near future. On the other hand as the fossil fuels pollute the environment makes the hydrogen important for an alternative energy source against to the fossil fuels. Due to the slow progress in hydrogen’s production, storage and converting into electrical energy experience, extensive usage of Hydrogen can not find chance for applications in wide technological practices. Hydrogen storage stands on an important point in the development of Hydrogen energy Technologies. Hydrogen is volumetrically low energy concentration fuel. Hydrogen energy, to meet the energy quantity necessary for the nowadays technologies and to be accepted economically and physically against fossil fuels, Hydrogen storage technologies have to be developed in this manner. Today the most common method in hydrogen storage may be accepted as the high pressurized composite tanks. Hydrogen is stored as liquid or gaseous phases. Liquid hydrogen phase can be stored by using composite tanks under very high pressure conditions. High technology composite material products which are durable to high pressures, which should not be affected by hydrogen embrittlement and chemical conditions.[1

  12. Hydrogen Storage

    Fuel Cell Technologies Publication and Product Library (EERE)

    This 2-page fact sheet provides a brief introduction to hydrogen storage technologies. Intended for a non-technical audience, it explains the different ways in which hydrogen can be stored, as well a

  13. Liquid Wall Science in other Scientific Pursuits and Applications

    E-Print Network [OSTI]

    Abdou, Mohamed

    /sheet/ribbon/sphere casting, flood/jet soldering, ocean waves, hull design, ocean/river hydraulic engineering, surfing, liquid, wetted-wall absorbers/chemical reactor, condensers, vertical tube evaporator, film cooling of turbine vortices; ·Low Joule and Viscous dissipation; ·Insignificant effect on the hydraulic drag. 2-D turbulence

  14. Fail-safe storage rack for irradiated fuel rod assemblies

    DOE Patents [OSTI]

    Lewis, D.R.

    1993-03-23T23:59:59.000Z

    A fail-safe storage rack is provided for interim storage of spent but radioactive nuclear fuel rod assemblies. The rack consists of a checkerboard array of substantially square, elongate receiving tubes fully enclosed by a double walled container, the outer wall of which is imperforate for liquid containment and the inner wall of which is provided with perforations for admitting moderator liquid flow to the elongate receiving tubes, the liquid serving to take up waste heat from the stored nuclear assemblies and dissipate same to the ambient liquid reservoir. A perforated cover sealing the rack facilitates cooling liquid entry and dissipation.

  15. Fail-safe storage rack for irradiated fuel rod assemblies

    DOE Patents [OSTI]

    Lewis, Donald R. (Pocatello, ID)

    1993-01-01T23:59:59.000Z

    A fail-safe storage rack is provided for interim storage of spent but radioactive nuclear fuel rod assemblies. The rack consists of a checkerboard array of substantially square, elongate receiving tubes fully enclosed by a double walled container, the outer wall of which is imperforate for liquid containment and the inner wall of which is provided with perforations for admitting moderator liquid flow to the elongate receiving tubes, the liquid serving to take up waste heat from the stored nuclear assemblies and dissipate same to the ambient liquid reservoir. A perforated cover sealing the rack facilitates cooling liquid entry and dissipation.

  16. Viscous Flow Over a Chemically Patterned Surface

    E-Print Network [OSTI]

    J. E. Sprittles; Y. D. Shikhmurzaev

    2009-04-07T23:59:59.000Z

    The classical fluid dynamics boundary condition of no-slip suggests that variation in the wettability of a solid should not affect the flow of an adjacent liquid. However experiments and molecular dynamics simulations indicate that this is not the case. In this paper we show how flow over a solid substrate with variations of wettability can be described in a continuum framework using the interface formation theory developed earlier. Results demonstrate that a shear flow over a perfectly flat solid surface is disturbed by a change in its wettability, i.e. by a change in the chemistry of the solid substrate. The magnitude of the effect is shown to be proportional to cos(t1)-cos(t2) where t1 and t2 are the equilibrium contact angles that a liquid-gas free surface would form with the two chemically different parts of the solid surface.

  17. Recombination device for storage batteries

    DOE Patents [OSTI]

    Kraft, Helmut (Liederbach, DE); Ledjeff, Konstantin (Bad Krozingen, DE)

    1985-01-01T23:59:59.000Z

    A recombination device including a gas-tight enclosure connected to receive he discharge gases from a rechargeable storage battery. Catalytic material for the recombination of hydrogen and oxygen to form water is supported within the enclosure. The enclosure is sealed from the atmosphere by a liquid seal including two vertical chambers interconnected with an inverted U-shaped overflow tube. The first chamber is connected at its upper portion to the enclosure and the second chamber communicates at its upper portion with the atmosphere. If the pressure within the enclosure differs as overpressure or vacuum by more than the liquid level, the liquid is forced into one of the two chambers and the overpressure is vented or the vacuum is relieved. The recombination device also includes means for returning recombined liquid to the battery and for absorbing metal hydrides.

  18. Recombination device for storage batteries

    DOE Patents [OSTI]

    Kraft, H.; Ledjeff, K.

    1984-01-01T23:59:59.000Z

    A recombination device including a gas-tight enclosure connected to receive the discharge gases from a rechargeable storage battery. Catalytic material for the recombination of hydrogen and oxygen to form water is supported within the enclosure. The enclosure is sealed from the atmosphere by a liquid seal including two vertical chambers interconnected with an inverted U-shaped overflow tube. The first chamber is connected at its upper portion to the enclosure and the second chamber communicates at its upper portion with the atmosphere. If the pressure within the enclosure differs as overpressure or vacuum by more than the liquid level, the liquid is forced into one of the two chambers and the overpressure is vented or the vacuum is relieved. The recombination device also includes means for returning recombined liquid to the battery and for absorbing metal hydrides.

  19. Method for charging and discharging a latent-heat storage medium and heat storage

    SciTech Connect (OSTI)

    Kreikenbohm, R.; Reusch, H.

    1982-12-28T23:59:59.000Z

    A heat storage unit is disclosed having a vertically cylindrical container accommodating a latent-heat storage medium and a conduit introducing a heat carrier liquid not miscible with the medium at the bottom of the container. The conduit has an exit nozzle which is located outside the axial center of the cylinder and nearly perpendicular to the radius of the cylinder so that the heat carrier liquid enters the cylinder at the bottom in a direction to cause the heat storage melt to be set into a rotary motion.

  20. Method for charging and discharging a latent-heat storage medium and heat storage

    SciTech Connect (OSTI)

    Kreikenbohm, R.; Reusch, H.

    1981-10-13T23:59:59.000Z

    A heat storage unit is disclosed having a vertically cylindrical container accommodating a latent-heat storage medium and a conduit introducing a heat carrier liquid not miscible with the medium at the bottom of the container. The conduit has an exit nozzle which is located outside the axial center of the cylinder and nearly perpendicular to the radius of the cylinder so that the heat carrier liquid enters the cylinder at the bottom in a direction to cause the heat storage melt to be set into a rotary motion.

  1. Semi-transparent solar energy thermal storage device

    DOE Patents [OSTI]

    McClelland, John F. (Ames, IA)

    1985-06-18T23:59:59.000Z

    A visually transmitting solar energy absorbing thermal storage module includes a thermal storage liquid containment chamber defined by an interior solar absorber panel, an exterior transparent panel having a heat mirror surface substantially covering the exterior surface thereof and associated top, bottom and side walls, Evaporation of the thermal storage liquid is controlled by a low vapor pressure liquid layer that floats on and seals the top surface of the liquid. Porous filter plugs are placed in filler holes of the module. An algicide and a chelating compound are added to the liquid to control biological and chemical activity while retaining visual clarity. A plurality of modules may be supported in stacked relation by a support frame to form a thermal storage wall structure.

  2. Semi-transparent solar energy thermal storage device

    DOE Patents [OSTI]

    McClelland, John F. (Ames, IA)

    1986-04-08T23:59:59.000Z

    A visually transmitting solar energy absorbing thermal storage module includes a thermal storage liquid containment chamber defined by an interior solar absorber panel, an exterior transparent panel having a heat mirror surface substantially covering the exterior surface thereof and associated top, bottom and side walls. Evaporation of the thermal storage liquid is controlled by a low vapor pressure liquid layer that floats on and seals the top surface of the liquid. Porous filter plugs are placed in filler holes of the module. An algicide and a chelating compound are added to the liquid to control biological and chemical activity while retaining visual clarity. A plurality of modules may be supported in stacked relation by a support frame to form a thermal storage wall structure.

  3. Thermal Attacks on Storage Systems Nathanael Paul Sudhanva Gurumurthi David Evans

    E-Print Network [OSTI]

    Gurumurthi, Sudhanva

    temperature, known as the thermal envelope. Exceeding the thermal envelope decreases the drive's reliability relationship between disk RPM and viscous heating. If the drive exceeds the thermal envelope, the drive canThermal Attacks on Storage Systems Nathanael Paul Sudhanva Gurumurthi David Evans University

  4. Warm inflationary universe model with viscous pressure on the brane

    E-Print Network [OSTI]

    Setare, M R

    2013-01-01T23:59:59.000Z

    In the present work warm inflationary universe model with viscous pressure on the brane in high-dissipation regime is studied. We derive a condition which is required for this model to be realizable in slow-roll approximation. We also present analytic expressions for density perturbation and amplitude of tensor perturbation in longitudinal gauge. General expressions of tensor-to-scalar ratio, scalar spectral index and its running are obtained. We develop our model by using chaotic potential, the characteristics of this model are calculated for two specific cases: 1- Dissipative parameter $\\Gamma$ and bulk viscous parameter $\\zeta$ are constant parameters. 2- Dissipative parameter as a function of scalar field $\\phi$ and bulk viscous parameter as a function of radiation-matter mixture energy density $\\rho$. The parameters of the model are restricted by the nine-year Wilkinson microwave anisotropy probe (WMAP9) and Planck observational data.

  5. Cryocompressed Hydrogen Storage and Liquid Delivery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJuly 30,Crafty Gifts for theof EnergyRev.

  6. Viscous quark-gluon plasma model through fluid QCD approach

    SciTech Connect (OSTI)

    Djun, T. P., E-mail: tpdjun@teori.fisika.lipi.go.id [Graduate Study in Material Science, University of Indonesia, Kampus UI Salemba, Jakarta 10430, Indonesia and Group for Theoretical and Computational Physics, Research Center for Physics, Indonesian Institute of Sciences, Kompleks Puspiptek Serpong, T (Indonesia); Soegijono, B.; Mart, T. [Graduate Study in Material Science, University of Indonesia, Kampus UI Salemba, Jakarta 10430, Indonesia and Department of Physics, University of Indonesia, Kampus UI Depok, Depok 16424 (Indonesia); Handoko, L. T., E-mail: Handoko@teorifisika.lipi.go.id, E-mail: Laksana.tri.handoko@lipi.go.id [Group for Theoretical and Computational Physics, Research Center for Physics, Indonesian Institute of Sciences, Kompleks Puspiptek Serpong, Tangerang 15310, Indonesia and Research Center for Informatics, Indonesia Institute of Sciences, Kompleks LIPI (Indonesia)

    2014-09-25T23:59:59.000Z

    A Lagrangian density for viscous quark-gluon plasma has been constructed within the fluid-like QCD framework. Gauge symmetry is preserved for all terms inside the Lagrangian, except for the viscous term. The transition mechanism from point particle field to fluid field, and vice versa, are discussed. The energy momentum tensor that is relevant to the gluonic plasma having the nature of fluid bulk of gluon sea is derived within the model. By imposing conservation law in the energy momentum tensor, shear viscosity appears as extractable from the equation.

  7. Dynamics of filaments and membranes in a viscous fluid

    E-Print Network [OSTI]

    Thomas R. Powers

    2009-12-08T23:59:59.000Z

    Motivated by the motion of biopolymers and membranes in solution, this article presents a formulation of the equations of motion for curves and surfaces in a viscous fluid. We focus on geometrical aspects and simple variational methods for calculating internal stresses and forces, and we derive the full nonlinear equations of motion. In the case of membranes, we pay particular attention to the formulation of the equations of hydrodynamics on a curved, deforming surface. The formalism is illustrated by two simple case studies: (1) the twirling instability of straight elastic rod rotating in a viscous fluid, and (2) the pearling and buckling instabilities of a tubular liposome or polymersome.

  8. Grid embedment as applied to viscous transonic airfoil flowfield analysis

    E-Print Network [OSTI]

    Reed, Christopher L.

    1981-01-01T23:59:59.000Z

    Journal, Vol. 18, No. 1, January, 1980, pp, 103-109. 6. Carlson, L. A. , "Inverse Transonic Airfoil Design Including Viscous Interaction, " NASA CP-2001, Vol. 4, 1976, pp. 1387-1395. 7. Steger, J. L. , and Lomax, H. , "Transonic Flow about Two... Mechanics, 1975, pp. 384-414. 9. Carlson, L. A. , "Transonic Airfoil Analysis and Design Using Cartesian Coordinates, " AIAA Journal of Aircraft, Vol. 13, No. 5, May, 1976, pp. 349-356. 10. White, Frank M. , Viscous Fluid Flow, McGraw-Hill, New York...

  9. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01T23:59:59.000Z

    aquifers for thermal energy storage. Problems outlined aboveModeling of Thermal Energy Storage in Aquifers," Proceed-ings of Aquifer Thermal Energy Storage Workshop, Lawrence

  10. SUPERCONDUCTING MAGNETIC ENERGY STORAGE

    E-Print Network [OSTI]

    Hassenzahl, W.

    2011-01-01T23:59:59.000Z

    Superconducting 30-MJ Energy Storage Coil", Proc. 19 80 ASC,Superconducting Magnetic Energy Storage Plant", IEEE Trans.SlIperconducting Magnetic Energy Storage Unit", in Advances

  11. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01T23:59:59.000Z

    aquifers for thermal energy storage. Problems outlined abovean Aquifer Used for Hot Water Storage: Digital Simulation ofof Aquifer Systems for Cyclic Storage of Water," of the Fall

  12. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01T23:59:59.000Z

    using aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"ings of Aquifer Thermal Energy Storage Workshop, Lawrence

  13. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01T23:59:59.000Z

    using aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"Proceed- ings of Aquifer Thermal Energy Storage Workshop,

  14. Stasis: Flexible Transactional Storage

    E-Print Network [OSTI]

    Sears, Russell C.

    2009-01-01T23:59:59.000Z

    Stasis: Flexible Transactional Storage by Russell C. Sears AR. Larson Fall 2009 Stasis: Flexible Transactional StorageC. Sears Abstract Stasis: Flexible Transactional Storage by

  15. Storage Rings

    SciTech Connect (OSTI)

    Fischer, W.

    2011-01-01T23:59:59.000Z

    Storage rings are circular machines that store particle beams at a constant energy. Beams are stored in rings without acceleration for a number of reasons (Tab. 1). Storage rings are used in high-energy, nuclear, atomic, and molecular physics, as well as for experiments in chemistry, material and life sciences. Parameters for storage rings such as particle species, energy, beam intensity, beam size, and store time vary widely depending on the application. The beam must be injected into a storage ring but may not be extracted (Fig. 1). Accelerator rings such as synchrotrons are used as storage rings before and after acceleration. Particles stored in rings include electrons and positrons; muons; protons and anti-protons; neutrons; light and heavy, positive and negative, atomic ions of various charge states; molecular and cluster ions, and neutral polar molecules. Spin polarized beams of electrons, positrons, and protons were stored. The kinetic energy of the stored particles ranges from 10{sup -6} eV to 3.5 x 10{sup 12} eV (LHC, 7 x 10{sup 12} eV planned), the number of stored particles from one (ESR) to 1015 (ISR). To store beam in rings requires bending (dipoles) and transverse focusing (quadrupoles). Higher order multipoles are used to correct chromatic aberrations, to suppress instabilities, and to compensate for nonlinear field errors of dipoles and quadrupoles. Magnetic multipole functions can be combined in magnets. Beams are stored bunched with radio frequency systems, and unbunched. The magnetic lattice and radio frequency system are designed to ensure the stability of transverse and longitudinal motion. New technologies allow for better storage rings. With strong focusing the beam pipe dimensions became much smaller than previously possible. For a given circumference superconducting magnets make higher energies possible, and superconducting radio frequency systems allow for efficient replenishment of synchrotron radiation losses of large current electron or positron beams. Storage rings have instrumentation to monitor the electrical and mechanical systems, and the beam quality. Computers are used to control the operation. Large storage rings have millions of control points from all systems. The time dependent beam intensity I(t) can often be approximated by an exponential function I(t) = I(0) exp(-t/{tau}) (1) where the decay time {tau} and, correspondingly, the store time ranges from a few turns to 10 days (ISR). {tau} can be dominated by a variety of effects including lattice nonlinearities, beam-beam, space charge, intrabeam and Touschek scattering, interaction with the residual gas or target, or the lifetime of the stored particle. In this case, the beam lifetime measurement itself can be the purpose of a storage ring experiment. The main consideration in the design of a storage ring is the preservation of the beam quality over the store length. The beam size and momentum spread can be reduced through cooling, often leading to an increase in the store time. For long store times vacuum considerations are important since the interaction rate of the stored particles with the residual gas molecules is proportional to the pressure, and an ultra-high vacuum system may be needed. Distributed pumping with warm activated NEG surfaces or cold surfaces in machines with superconducting magnets are ways to provide large pumping speeds and achieve low pressures even under conditions with dynamic gas loads. The largest application of storage rings today are synchrotron light sources, of which about 50 exist world wide. In experiments where the beam collides with an internal target or another beam, a storage ring allows to re-use the accelerated beam many times if the interaction with the target is sufficiently small. In hadron collider and ion storage rings store times of many hours or even days are realized, corresponding to up to 1011 turns and thereby target passages. Ref. [3] is the first proposal for a collider storage ring. A number of storage rings exist where the beam itself or its decay products are the object of s

  16. Cool Storage Performance

    E-Print Network [OSTI]

    Eppelheimer, D. M.

    1985-01-01T23:59:59.000Z

    . This article covers three thermal storage topics. The first section catalogs various thermal storage systems and applications. Included are: load shifting and load leveling, chilled water storage systems, and ice storage systems using Refrigerant 22 or ethylene...

  17. Europhysics Letters PREPRINT Influence of pore-scale disorder on viscous fingering during

    E-Print Network [OSTI]

    Toussaint, Renaud

    Europhysics Letters PREPRINT Influence of pore-scale disorder on viscous fingering during drainage formation. PACS. 47.55.Mh ­ Flows through porous media. Abstract. ­ We study viscous fingering during, an effective law v ( P)2 relates the average interface growth rate and the local pressure gradient. Viscous

  18. Design rules for pumping and metering of highly viscous fluids in microfluidics

    E-Print Network [OSTI]

    Kenis, Paul J. A.

    Design rules for pumping and metering of highly viscous fluids in microfluidics Sarah L. Perry.1039/c0lc00035c The use of fluids that are significantly more viscous than water in microfluidics has a theoretical treatment for the flow of highly viscous fluids in deforming microfluidic channels, particularly

  19. Secular evolution of viscous and self-gravitating circumstellar discs

    E-Print Network [OSTI]

    E. I. Vorobyov; Shantanu Basu

    2008-12-06T23:59:59.000Z

    We add the effect of turbulent viscosity via the \\alpha-prescription to models of the self-consistent formation and evolution of protostellar discs. Our models are non-axisymmetric and carried out using the thin-disc approximation. Self-gravity plays an important role in the early evolution of a disc, and the later evolution is determined by the relative importance of gravitational and viscous torques. In the absence of viscous torques, a protostellar disc evolves into a self-regulated state with disk-averaged Toomre parameter Q \\sim 1.5-2.0, non-axisymmetric structure diminishing with time, and maximum disc-to-star mass ratio \\xi = 0.14. We estimate an effective viscosity parameter \\alpha_eff associated with gravitational torques at the inner boundary of our simulation to be in the range 10^{-4}-10^{-3} during the late evolution. Addition of viscous torques with a low value \\alpha = 10^{-4} has little effect on the evolution, structure, and accretion properties of the disc, and the self-regulated state is largely preserved. A sequence of increasing values of \\alpha results in the discs becoming more axisymmetric in structure, being more gravitationally stable, having greater accretion rates, larger sizes, shorter lifetimes, and lower disc-to-star mass ratios. For \\alpha=10^{-2}, the model is viscous-dominated and the self-regulated state largely disappears by late times. (Abridged)

  20. Viscous exchange flows Gary P. Matson and Andrew J. Hogg

    E-Print Network [OSTI]

    Hogg, Andrew

    -based expressions for the gas mass flow rate and pressure profile in a microscale tube Phys. Fluids 24, 012005 (2012 viscosities, counter-flow within a horizontal channel, are found in many industrial and environmental settingsViscous exchange flows Gary P. Matson and Andrew J. Hogg Citation: Phys. Fluids 24, 023102 (2012

  1. Cluster Heating by Viscous Dissipation of Sound Waves

    E-Print Network [OSTI]

    Mateusz Ruszkowski; Marcus Bruggen; Mitchell C. Begelman

    2004-04-23T23:59:59.000Z

    We simulate the effects of viscous dissipation of waves that are generated by AGN activity in clusters of galaxies. We demonstrate that the amount of viscous heating associated with the dissipation of these waves can offset radiative cooling rates in cooling flow clusters of galaxies. This heating mechanism leads to spatially distributed and approximately symmetrical dissipation. The heating waves reach a given distance from the cluster center on a timescale shorter than the cooling time. This means that this heating mechanism has the potential of quenching cooling flows in a quasi-stable fashion. Moreover, the heating is gentle as no strong shocks are present in the simulations. We first investigated whether a single continuous episode of AGN activity can lead to adequate dissipation to balance cooling rates. These simulations demonstrated that, whereas secondary waves generated by the interaction of the rising bubble with the intracluster medium are clearly present, viscous heating associated with the dissipation of these waves is insufficient to balance radiative cooling. It is only when the central source is intermittent that the viscous dissipation of waves associated with subsequent episodes of activity can offset cooling. This suggests that the ripples observed in the Perseus cluster can be interpreted as being due to the AGN duty cycle, i.e., they trace AGN activity history. The simulations were performed using the PPM adaptive mesh refinement code FLASH in two dimensions.

  2. A phase space analysis for nonlinear bulk viscous cosmology

    E-Print Network [OSTI]

    Acquaviva, Giovanni

    2015-01-01T23:59:59.000Z

    We consider a Friedmann-Robertson-Walker spacetime filled with both viscous radiation and nonviscous dust. The former has a bulk viscosity which is proportional to an arbitrary power of the energy density, i.e. $\\zeta \\propto \\rho_v^{\

  3. A phase space analysis for nonlinear bulk viscous cosmology

    E-Print Network [OSTI]

    Giovanni Acquaviva; Aroonkumar Beesham

    2015-05-08T23:59:59.000Z

    We consider a Friedmann-Robertson-Walker spacetime filled with both viscous radiation and nonviscous dust. The former has a bulk viscosity which is proportional to an arbitrary power of the energy density, i.e. $\\zeta \\propto \\rho_v^{\

  4. Viscous Undular Hydraulic Jumps of Moderate Reynolds number

    E-Print Network [OSTI]

    Shyamasundar, R.K.

    Viscous Undular Hydraulic Jumps of Moderate Reynolds number Ratul Dasgupta I will present some results on undular hydraulic jumps occurring in a two bores (in rivers), where the interface remains horizontal, the moderate Reynolds hydraulic jump shows a linear increase in height due to viscosity

  5. Interaction of vortices in viscous planar flows Thierry Gallay

    E-Print Network [OSTI]

    Interaction of vortices in viscous planar flows Thierry Gallay Universit´e de Grenoble I Institut Fourier, UMR CNRS 5582 B.P. 74 F-38402 Saint-Martin-d'H`eres, France Thierry.Gallay@ujf-grenoble.fr August

  6. Model Characterization of Magnetic Microrobot Navigating in Viscous Environment

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    . Indeed most untethered microrobot propulsion schemes based on magnetic pulling have to face importantModel Characterization of Magnetic Microrobot Navigating in Viscous Environment Karim Belharet1.folio@ensi-bourges.fr,antoine.ferreira@ensi-bourges.fr Abstract. In this paper we aim to characterize and validate the system's dynamic model of a magnetic

  7. Viscous Resuspension of a sediment caused by oscillating stratified flows

    E-Print Network [OSTI]

    Wallner, Johannes

    Viscous Resuspension of a sediment caused by oscillating stratified flows J. Wallner U. Schaflinger resuspension of a sediment in a Couette channel with harmonically oscillating walls. Numerical experiments reveal that the resuspension height and the particle volume concentration at the bottom of the channel

  8. Olivine refractory bricks for heat storage applications

    SciTech Connect (OSTI)

    Cochrane, R.L.; Gay, B.M.; Palmour, H.I.

    1981-12-01T23:59:59.000Z

    This invention relates to an olivine refractory brick having thermal and physical properties suitable for use as a thermal energy storage unit in an electric thermal storage furnace and characterized by having excellent thermal shock properties and resistance to spalling. The brick consists essentially of densely compacted grains of olivine and a plastic refractory kaolin binder which effects a sintered, liquid assisted but substantially solid state grain-to-grain bonding of the olivine grains.

  9. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01T23:59:59.000Z

    of Discharge Using Ground- Water Storage," Transactions1971. "Storage of Solar Energy in a Sandy-Gravel Ground,"

  10. An experimental investigation of viscous fingering in heterogeneous porous media

    SciTech Connect (OSTI)

    Brock, D.C.

    1991-01-01T23:59:59.000Z

    The growth of viscous fingers in heterogeneous porous media was examined using flow visualization experiments in four different glass bead packs with different permeability heterogeneities: a uniform permeability model, one with two equal-width layers in the flow direction, one with a thin, high permeability streak in the flow direction, and one with blocks of different permeabilities. The experiments were compared with numerical simulations, paying particular attention to finger growth mechanisms, finger sizes and locations, and number of fingers. In near-homogeneous model displacements, fingers were observed to grow through the mechanisms of spreading, splitting, shielding, and coalescence. In all experiments, shielding and coalescence acted to reduce the number of fingers as flow progressed. Analysis of pressure distributions in and around fingers indicates that viscous crossflow was the driving force for the finger growth mechanisms. Simulations of the experiments yielded finger patterns similar to those observed in the experiments. The general agreement over a variety of mobility ratios and rates indicates that the simulator used captures the essential features of the physics of finger growth. In heterogeneous permeability fields, locations of fingers were largely determined by the pattern of heterogeneity. In the model with two thick layers and the model with blocks of different permeabilities, a pattern of viscous fingers was superimposed on the fronts. The model with a thin, high permeability streak showed very little viscous fingering because the width of the layer was small. In the heterogeneous cases, simulations yielded finger patterns remarkably similar to those observed in experiments. In particular, simulations reproduced the concept of viscous fingers overlain on flow affected by permeability heterogeneity.

  11. VISCOUS ENERGY DISSIPATION IN FROZEN CRYOGENS

    SciTech Connect (OSTI)

    Meitner, S. J.; Pfotenhauer, J. M.; Andraschko, M. R. [Cryogenics Engineering Laboratory, University of Wisconsin-Madison Madison, WI 53706 (United States)

    2008-03-16T23:59:59.000Z

    ITER is an international research and development project with the goal of demonstrating the feasibility of fusion power. The fuel for the ITER plasma is injected in the form of frozen deuterium pellets; the current injector design includes a batch extruder, cooled by liquid helium. A more advanced fuel system will produce deuterium pellets continuously using a twin-screw extruder, cooled by a cryocooler. One of the critical design parameters for the advanced system is the friction associated with the shearing planes of the frozen deuterium in the extruder; the friction determines the required screw torque as well as the cryocooler heat load.An experiment has been designed to measure the energy dissipation associated with shearing frozen deuterium. Deuterium gas is cooled to its freezing point in the gap between a stationary outer canister and a rotating inner cylinder. The dissipation is measured mechanically and through calorimetric means. The experiment has also been used to measure dissipation in other cryogens, such as neon, as a function of rotational velocity and temperature. This paper describes the design and construction of the experiment and presents measurements over a range of cryogens and test conditions.

  12. Joint Center for Energy Storage Research Beyond Lithium-Ion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Joint Center for Energy Storage Research Beyond Lithium-Ion 2012 2017 USE MULTIPLY-CHARGED IONS STORE ENERGY IN CHEMICAL BONDS STORE ENERGY IN LIQUIDS IN THE NEXT FIVE YEARS AT...

  13. Storage System and IBM System Storage

    E-Print Network [OSTI]

    IBM® XIV® Storage System and IBM System Storage® SAN Volume Controller deliver high performance and smart management for SAP® landscapes IBM SAP International Competence Center #12;"The combination of the XIV Storage System and SAN Volume Controller gives us a smarter way to manage our storage. If we need

  14. Gas storage materials, including hydrogen storage materials

    DOE Patents [OSTI]

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2014-11-25T23:59:59.000Z

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material, such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  15. Gas storage materials, including hydrogen storage materials

    DOE Patents [OSTI]

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2013-02-19T23:59:59.000Z

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  16. Toward new solid and liquid phase systems for the containment, transport and delivery of

    E-Print Network [OSTI]

    Storage Tube Trailer Liquid H2 Truck H2 Pipeline Multi-vehicle filling stations Feedstock: N. gas, Coal, Biomass Pet. Coke, Resids. Future: Carbon sequestration Storage: Underground well? Output: Depends

  17. Solid-State Hydrogen Storage: Storage Capacity,Thermodynamics...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Storage: Storage Capacity,Thermodynamics and Kinetics. Solid-State Hydrogen Storage: Storage Capacity,Thermodynamics and Kinetics. Abstract: Solid-state reversible...

  18. USE OF POLYMERS TO RECOVER VISCOUS OIL FROM UNCONVENTIONAL RESERVOIRS

    SciTech Connect (OSTI)

    Randall Seright

    2011-09-30T23:59:59.000Z

    This final technical progress report summarizes work performed the project, 'Use of Polymers to Recover Viscous Oil from Unconventional Reservoirs.' The objective of this three-year research project was to develop methods using water soluble polymers to recover viscous oil from unconventional reservoirs (i.e., on Alaska's North Slope). The project had three technical tasks. First, limits were re-examined and redefined for where polymer flooding technology can be applied with respect to unfavorable displacements. Second, we tested existing and new polymers for effective polymer flooding of viscous oil, and we tested newly proposed mechanisms for oil displacement by polymer solutions. Third, we examined novel methods of using polymer gels to improve sweep efficiency during recovery of unconventional viscous oil. This report details work performed during the project. First, using fractional flow calculations, we examined the potential of polymer flooding for recovering viscous oils when the polymer is able to reduce the residual oil saturation to a value less than that of a waterflood. Second, we extensively investigated the rheology in porous media for a new hydrophobic associative polymer. Third, using simulation and analytical studies, we compared oil recovery efficiency for polymer flooding versus in-depth profile modification (i.e., 'Bright Water') as a function of (1) permeability contrast, (2) relative zone thickness, (3) oil viscosity, (4) polymer solution viscosity, (5) polymer or blocking-agent bank size, and (6) relative costs for polymer versus blocking agent. Fourth, we experimentally established how much polymer flooding can reduce the residual oil saturation in an oil-wet core that is saturated with viscous North Slope crude. Finally, an experimental study compared mechanical degradation of an associative polymer with that of a partially hydrolyzed polyacrylamide. Detailed results from the first two years of the project may be found in our first and second annual reports. Our latest research results, along with detailed documentation of our past work, can be found on our web site at http://baervan.nmt.edu/randy/. As an overall summary of important findings for the project, polymer flooding has tremendous potential for enhanced recovery of viscous oil. Fear of substantial injectivity reduction was a primary hurdle that limited application of polymer flooding. However, that concern is largely mitigated by (1) use of horizontal wells and (2) judicious injection above the formation parting pressure. Field cases now exist where 200-300-cp polymer solutions are injected without significant reductions in injectivity. Concern about costs associated with injection of viscous polymer solutions was a second major hurdle. However, that concern is reduced substantially by realization that polymer viscosity increases approximately with the square of polymer concentration. Viscosity can be doubled with only a 40% increase in polymer concentration. Up to a readily definable point, increases in viscosity of the injected polymer solution are directly related to increases in sweep efficiency and oil recovery. Previously published simulation results - suggesting that shear-thinning polymer solutions were detrimental to sweep efficiency - were shown to be unfounded (both theoretically and experimentally).

  19. Giant Planet Migration in Viscous Power-Law Discs

    E-Print Network [OSTI]

    R. G. Edgar

    2007-04-03T23:59:59.000Z

    Many extra-solar planets discovered over the past decade are gas giants in tight orbits around their host stars. Due to the difficulties of forming these `hot Jupiters' in situ, they are generally assumed to have migrated to their present orbits through interactions with their nascent discs. In this paper, we present a systematic study of giant planet migration in power law discs. We find that the planetary migration rate is proportional to the disc surface density. This is inconsistent with the assumption that the migration rate is simply the viscous drift speed of the disc. However, this result can be obtained by balancing the angular momentum of the planet with the viscous torque in the disc. We have verified that this result is not affected by adjusting the resolution of the grid, the smoothing length used, or the time at which the planet is released to migrate.

  20. An electrochemical investigation of the chemical diffusivity in liquid metal alloys

    E-Print Network [OSTI]

    Barriga, Salvador A. (Salvador Aguilar)

    2013-01-01T23:59:59.000Z

    The liquid metal battery has been shown to be a viable candidate for grid-scale energy storage, due to its fast kinetics and ability to be constructed from economically feasible materials. Various of the liquid metal couples ...

  1. Sandia National Laboratories: Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage Sandian Spoke at the New York Energy Storage Expo On December 12, 2014, in Energy, Energy Storage, Energy Storage Systems, Grid Integration, Infrastructure Security, News,...

  2. Sandia National Laboratories: hydrogen storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    storage Energy Department Awards 7M to Advance Hydrogen Storage Systems On June 12, 2014, in CRF, Energy, Energy Storage, Energy Storage Systems, Facilities, Infrastructure...

  3. Photon Storage Cavities

    E-Print Network [OSTI]

    Kim, K.-J.

    2008-01-01T23:59:59.000Z

    Sessler, "Analysis of Photon Storage Cavities for a Free-configuration of coupled storage cavity and PEL cavity. TheFig. 2. A ring resonator storage cavity coupled through a

  4. Seasonal thermal energy storage

    SciTech Connect (OSTI)

    Allen, R.D.; Kannberg, L.D.; Raymond, J.R.

    1984-05-01T23:59:59.000Z

    This report describes the following: (1) the US Department of Energy Seasonal Thermal Energy Storage Program, (2) aquifer thermal energy storage technology, (3) alternative STES technology, (4) foreign studies in seasonal thermal energy storage, and (5) economic assessment.

  5. Exergetic analysis of a steam-flashing thermal storage Paul T. O'Brien

    E-Print Network [OSTI]

    @vipac.com.au 2 PhD, Australian National University ABSTRACT Thermal energy storage is attractive in the design of the performance of a cycle that uses large-scale thermal energy storage via hot compressed liquid waterExergetic analysis of a steam-flashing thermal storage system Paul T. O'Brien 1 and John Pye 2 1

  6. Storage and IO Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Burst Buffer User Defined Images Archive Home R & D Storage and IO Technologies Storage and IO Technologies Burst Buffer NVRAM and Burst Buffer Use Cases In collaboration...

  7. NERSC HPSS Storage Statistics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage Trends and Summaries Storage by Scientific Discipline Troubleshooting IO Resources for Scientific Applications at NERSC Optimizing IO performance on the Lustre file...

  8. SUPERCONDUCTING MAGNETIC ENERGY STORAGE

    E-Print Network [OSTI]

    Hassenzahl, W.

    2011-01-01T23:59:59.000Z

    to MW/40 MWI-IR Battery Energy Storage Facility", proc. 23rdcompressed air, and battery energy storage are all only 65

  9. Viscous corrections to anisotropic flow and transverse momentum spectra from transport theory

    E-Print Network [OSTI]

    Plumari, Salvatore; Greco, Vincenzo; Ollitrault, Jean-Yves

    2015-01-01T23:59:59.000Z

    Viscous hydrodynamics is commonly used to model the evolution of the matter created in an ultra-relativistic heavy-ion collision. It provides a good description of transverse momentum spectra and anisotropic flow. These observables, however, cannot be consistently derived using viscous hydrodynamics alone, because they depend on the microscopic interactions at freeze-out. We derive the ideal hydrodynamic limit and the first-order viscous correction to anisotropic flow ($v_2$, $v_3$ and $v_4$) and momentum spectrum using a transport calculation. The linear response coefficient to the initial anisotropy, $v_n(p_T)/\\varepsilon_n$, depends little on $n$ in the ideal hydrodynamic limit. The viscous correction to the spectrum depends not only on the differential cross section, but also on the initial momentum distribution. This dependence is not captured by standard second-order viscous hydrodynamics. The viscous correction to anisotropic flow increases with $p_T$, but this increase is slower than usually assumed i...

  10. Advanced Thermal Energy Storage: Novel Tuning of Critical Fluctuations for Advanced Thermal Energy Storage

    SciTech Connect (OSTI)

    None

    2011-12-01T23:59:59.000Z

    HEATS Project: NAVITASMAX is developing a novel thermal energy storage solution. This innovative technology is based on simple and complex supercritical fluids— substances where distinct liquid and gas phases do not exist, and tuning the properties of these fluid systems to increase their ability to store more heat. In solar thermal storage systems, heat can be stored in NAVITASMAX’s system during the day and released at night—when the sun is not shining—to drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in NAVITASMAX’s system at night and released to produce electricity during daytime peak-demand hours.

  11. A computational model for viscous fluid flow, heat transfer, and melting in in situ vitrification melt pools

    SciTech Connect (OSTI)

    McHugh, P.R.; Ramshaw, J.D.

    1991-11-01T23:59:59.000Z

    MAGMA is a FORTRAN computer code designed to viscous flow in in situ vitrification melt pools. It models three-dimensional, incompressible, viscous flow and heat transfer. The momentum equation is coupled to the temperature field through the buoyancy force terms arising from the Boussinesq approximation. All fluid properties, except density, are assumed variable. Density is assumed constant except in the buoyancy force terms in the momentum equation. A simple melting model based on the enthalpy method allows the study of the melt front progression and latent heat effects. An indirect addressing scheme used in the numerical solution of the momentum equation voids unnecessary calculations in cells devoid of liquid. Two-dimensional calculations can be performed using either rectangular or cylindrical coordinates, while three-dimensional calculations use rectangular coordinates. All derivatives are approximated by finite differences. The incompressible Navier-Stokes equations are solved using a new fully implicit iterative technique, while the energy equation is differenced explicitly in time. Spatial derivatives are written in conservative form using a uniform, rectangular, staggered mesh based on the marker and cell placement of variables. Convective terms are differenced using a weighted average of centered and donor cell differencing to ensure numerical stability. Complete descriptions of MAGMA governing equations, numerics, code structure, and code verification are provided. 14 refs.

  12. Modeling of Taylor bubble rising in a vertical mini noncircular channel filled with a stagnant liquid

    E-Print Network [OSTI]

    Zhao, Tianshou

    of the liquid phase coupled with the equations of the force balance at the bubble interface. The predicted drift by the interfacial curvature variations along bubble length, gravity, and viscous force. The interfacial profiles gas reservoir during gas production, in chemical and nuclear reactors, and numerous heat transport

  13. Damping of liquid sloshing by foams

    E-Print Network [OSTI]

    Alban Sauret; François Boulogne; Jean Cappello; Emilie Dressaire; Howard A. Stone

    2015-02-01T23:59:59.000Z

    When a container is set in motion, the free surface of the liquid starts to oscillate or slosh. Such effects can be observed when a glass of water is handled carelessly and the fluid sloshes or even spills over the rims of the container. However, beer does not slosh as readily as water, which suggests that foam could be used to damp sloshing. In this work, we study experimentally the effect on sloshing of a liquid foam placed on top of a liquid bath. We generate a monodisperse two-dimensional liquid foam in a rectangular container and track the motion of the foam. The influence of the foam on the sloshing dynamics is experimentally characterized: only a few layers of bubbles are sufficient to significantly damp the oscillations. We rationalize our experimental findings with a model that describes the foam contribution to the damping coefficient through viscous dissipation on the walls of the container. Then we extend our study to confined three-dimensional liquid foam and observe that the behavior of 2D and confined 3D systems are very similar. Thus we conclude that only the bubbles close to the walls have a significant impact on the dissipation of energy. The possibility to damp liquid sloshing using foam is promising in numerous industrial applications such as the transport of liquefied gas in tankers or for propellants in rocket engines.

  14. Shear cell rupture of nematic liquid crystal droplets in viscous ?uids.

    E-Print Network [OSTI]

    2011-01-18T23:59:59.000Z

    Moving interface problems are ubiquitous in the study of mixtures of fluids, solids ... When the fluid is non-Newtonian, observations are often dramatically altered.

  15. Numerical simulation of bubble rising in viscous liquid Jinsong Hua *, Jing Lou

    E-Print Network [OSTI]

    Frey, Pascal

    natural and industrial processes such as combustion/ chemical reaction, petroleum refining and boiling, ranging from the rise of steam bubble in boiler tubes to gas bubbles in oil well. However, a comprehensive

  16. Numerical Simulation of 3D Bubbles Rising in Viscous Liquids using a Front Tracking Method

    E-Print Network [OSTI]

    Lin, Ping

    Hua a , Jan F. Stene b and Ping Lin b a Institute of High Performance Computing, 1 Science Park Road of High Performance Computing 1 Science Park Road, #01-01 The Capricorn Singapore 117528 Email address. Stene b and Ping Lin b a Institute of High Performance Computing, 1 Science Park Road, #01

  17. Relativistic Viscous Fluid Description of Microscopic Black Hole Wind

    E-Print Network [OSTI]

    J. I. Kapusta

    2001-05-25T23:59:59.000Z

    Microscopic black holes explode with their temperature varying inversely as their mass. Such explosions would lead to the highest temperatures in the present universe, all the way to the Planck energy. Whether or not a quasi-stationary shell of matter undergoing radial hydrodynamic expansion surrounds such black holes is been controversial. In this paper relativistic viscous fluid equations are applied to the problem. It is shown that a self-consistent picture emerges of a fluid just marginally kept in local thermal equilibrium; viscosity is a crucial element of the dynamics.

  18. Liquid metal batteries : ambipolar electrolysis and alkaline earth electroalloying cells

    E-Print Network [OSTI]

    Bradwell, David (David Johnathon)

    2011-01-01T23:59:59.000Z

    Three novel forms of liquid metal batteries were conceived, studied, and operated, and their suitability for grid-scale energy storage applications was evaluated. A ZnlITe ambipolar electrolysis cell comprising ZnTe dissolved ...

  19. Finite viscous disks with time-independent viscosity

    E-Print Network [OSTI]

    Lipunova, Galina V

    2015-01-01T23:59:59.000Z

    We find the Green's functions for the accretion disk with the fixed outer radius and time-independent viscosity. With the Green's functions, a viscous evolution of the disk with any initial conditions can be described. Two types of the inner boundary conditions are considered: the zero stress tensor and the zero accretion rate. The variable mass inflow at the outer radius can also be included. The well-known exponential decline of the accretion rate is a part of the solution with the inner zero stress tensor. The solution with the zero central accretion rate is applicable to the disks around stars with the magnetosphere's boundary exceeding the corotation radius. Using the solution, the viscous evolution of disks in some binary systems can be studied. We apply the solution with zero inner stress tensor to outbursts of short-period X-ray transients during the time around the peak. It is found that for the Kramers' regime of opacity and the initial surface density proportional to the radius, the rise time to th...

  20. Interface scaling in a two-dimensional porous medium under combined viscous, gravity, and capillary effects

    E-Print Network [OSTI]

    Schmittbuhl, Jean

    of the model. Viscous forces tend to destabilize the displacement front into narrow fingers against the stabilizing effect of gravity. Subsequently, a viscous instability is observed for sufficiently large in geological engineering, including ground water flow modeling and oil recovery, where an increase

  1. A Multi-solver Scheme for Viscous Flows Using Adaptive Cartesian Grids and Meshless Grid

    E-Print Network [OSTI]

    Jameson, Antony

    A Multi-solver Scheme for Viscous Flows Using Adaptive Cartesian Grids and Meshless Grid of an adaptive multi-solver approach for CFD sim- ulation of viscous flows. Curvilinear grids are used near solid bodies to capture boundary layers, and stuctured adaptive Cartesian grids are used away from the body

  2. university-logo Stability of large-amplitude viscous shock profiles

    E-Print Network [OSTI]

    Zumbrun, Kevin

    university-logo Stability of large-amplitude viscous shock profiles in gas dynamics, MHD-0801745 Paris XIII, June 2010 Zumbrun Stability of viscous shock profiles #12;university-logo I shock profiles #12;university-logo Entropy and symmetrizability Typically associated to ut + f (u

  3. Thermal Expansion Models of Viscous Fluids Based on Limits of Free Energy

    E-Print Network [OSTI]

    Aluffi, Paolo

    Thermal Expansion Models of Viscous Fluids Based on Limits of Free Energy S.E. Bechtel Department March 25, 2002 Abstract Many viscous uid ows are mechanically incompressible, yet thermally expand associated with sound waves. The Boussi- nesq model for laboratory-scale, buoyancy-driven thermal convection

  4. Air Entrainment by Viscous Contact Lines Antonin Marchand1

    E-Print Network [OSTI]

    an unexpectedly weak dependence of entrainment speed on liquid viscosity, pointing towards a crucial role the breakup of the air film strongly resembles the dewetting of a liquid film, the wetting speeds are larger only affects the gas density, and thus the speed of sound and the mean free path in the gas. A similar

  5. Energy Conversion and Storage Program

    SciTech Connect (OSTI)

    Cairns, E.J.

    1992-03-01T23:59:59.000Z

    The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes, and (5) application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Topics include identification of new electrochemical couples for advanced rechargeable batteries, improvements in battery and fuel-cell materials, and the establishment of engineering principles applicable to electrochemical energy storage and conversion. Chemical Applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing waste streams from synfuel plants and coal gasifiers. Other research projects seek to identify and characterize the constituents of liquid fuel-system streams and to devise energy-efficient means for their separation. Materials Applications research includes the evaluation of the properties of advanced materials, as well as the development of novel preparation techniques. For example, the use of advanced techniques, such as sputtering and laser ablation, are being used to produce high-temperature superconducting films.

  6. Synchronized molecular-dynamics simulation for the thermal lubrication of a polymeric liquid between parallel plates

    E-Print Network [OSTI]

    Shugo Yasuda; Ryoichi Yamamoto

    2015-03-25T23:59:59.000Z

    The Synchronized Molecular-Dynamics simulation which was recently proposed by authors [Phys. Rev. X {\\bf 4}, 041011 (2014)] is applied to the analysis of polymer lubrication between parallel plates. The rheological properties, conformational change of polymer chains, and temperature rise due to the viscous heating are investigated with changing the values of thermal conductivity of the polymeric liquid. It is found that at a small applied shear stress on the plate, the temperature of polymeric liquid only slightly increases in inverse proportion to the thermal conductivity and the apparent viscosity of polymeric liquid is not much affected by changing the thermal conductivity. However, at a large shear stress, the transitional behaviors of the polymeric liquid occur due to the interplay of the shear deformation and viscous heating by changing the thermal conductivity. This transition is characterized by the Nahme-Griffith number $Na$ which is defined as the ratio of the viscous heating to the thermal conduction at a characteristic temperature. When the Nahme-Griffith number exceeds the unity, the temperature of polymeric liquid increases rapidly and the apparent viscosity also exponentially decreases as the thermal conductivity decreases. The conformation of polymer chains is stretched and aligned by the shear flow for $Na1$.

  7. Distributed storage with communication costs

    E-Print Network [OSTI]

    Armstrong, Craig Kenneth

    2011-01-01T23:59:59.000Z

    5 Introduction to Coding for Distributed Storage The Repairflow graph for 1 repair with varying storage capac- itythe Capacity of Storage Nodes . . . 4.1 Characterizing

  8. Storage Space Request Aurora Facility

    E-Print Network [OSTI]

    Ickert-Bond, Steffi

    Storage Space Request Aurora Facility (1855 Marika) Department and Division: _______________________________________________________ Storage Contact: ____________________________________________________________ Name Phone and fax Fiscal Footage required: ______________ Brief Description of storage items

  9. Energy Storage | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Energy Storage The challenge of creating new advanced batteries and energy storage technologies is one of Argonne's key initiatives. By creating a multidisciplinary...

  10. Sandia National Laboratories: Energy Storage Multimedia Gallery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    StorageEnergy Storage Multimedia Gallery Energy Storage Multimedia Gallery Images Videos Energy Storage Image Gallery Energy Storage B-Roll Videos Battery Abuse Testing Laboratory...

  11. Thermal acidization and recovery process for recovering viscous petroleum

    DOE Patents [OSTI]

    Poston, Robert S. (Winter Park, FL)

    1984-01-01T23:59:59.000Z

    A thermal acidization and recovery process for increasing production of heavy viscous petroleum crude oil and synthetic fuels from subterranean hydrocarbon formations containing clay particles creating adverse permeability effects is described. The method comprises injecting a thermal vapor stream through a well bore penetrating such formations to clean the formation face of hydrocarbonaceous materials which restrict the flow of fluids into the petroleum-bearing formation. Vaporized hydrogen chloride is then injected simultaneously to react with calcium and magnesium salts in the formation surrounding the bore hole to form water soluble chloride salts. Vaporized hydrogen fluoride is then injected simultaneously with its thermal vapor to dissolve water-sensitive clay particles thus increasing permeability. Thereafter, the thermal vapors are injected until the formation is sufficiently heated to permit increased recovery rates of the petroleum.

  12. Viscous FRW model with particle creation in the early universe

    E-Print Network [OSTI]

    C. P. Singh

    2012-04-09T23:59:59.000Z

    We discuss the dynamical effects of bulk viscosity and particle creation on the early evolution of the Friedmann -Robertson -Walker model in the framework of open thermodynamical systems. We consider bulk viscosity and Particle creation as separate irreversible processes. Exact solutions of the Einstein field equations are obtained by using the "gamma-law" equation of state $p=(\\gamma -1)\\rho$, where the adiabatic parameter $\\gamma$ varies with scale factor of the metric. We consider the cosmological model to study the early phases of the evolution of the universe as it goes from an inflationary phase to a radiation -dominated era in the presence of bulk viscosity and particle creation. Analytical solutions are obtained for particle number density and entropy for all models. It is seen that, by choosing appropriate functions for particle creation rate and bulk viscous coefficient, the models exhibit singular and non-singular beginnings.

  13. Thermodynamics of viscous dark energy in an RSII braneworld

    E-Print Network [OSTI]

    M. R. Setare; A. Sheykhi

    2011-03-05T23:59:59.000Z

    We show that for an RSII braneworld filled with interacting viscous dark energy and dark matter, one can always rewrite the Friedmann equation in the form of the first law of thermodynamics, $dE=T_hdS_h+WdV$, at apparent horizon. In addition, the generalized second law of thermodynamics can fulfilled in a region enclosed by the apparent horizon on the brane for both constant and time variable 5-dynamical Newton's constant $G_5$. These results hold regardless of the specific form of the dark energy. Our study further support that in an accelerating universe with spatial curvature, the apparent horizon is a physical boundary from the thermodynamical point of view.

  14. Cooling Flows of Self-Gravitating, Rotating, Viscous Systems

    E-Print Network [OSTI]

    Mohsen Shadmehri; Jamshid Ghanbari

    2002-04-06T23:59:59.000Z

    We obtain self-similar solutions that describe the dynamics of a self-gravitating, rotating, viscous system. We use simplifying assumptions; but explicitly include viscosity and the cooling due to the dissipation of energy. By assuming that the turbulent dissipation of energy is as power law of the density and the speed v_{rms} and for a power-law dependence of viscosity on the density, pressure, and rotational velocity, we investigate turbulent cooling flows. It has been shown that for the cylindrically and the spherically cooling flows the similarity indices are the same, and they depend only on the exponents of the dissipation rate and the viscosity model. Depending on the values of the exponents, which the mechanisms of the dissipation and viscosity determine them, we may have solutions with different general physical properties. The conservation of the total mass and the angular momentum of the system strongly depends on the mechanisms of energy dissipation and the viscosity model.

  15. Dark Energy Coupled with Dark Matter in Viscous Fluid Cosmology

    E-Print Network [OSTI]

    I. Brevik; V. V. Obukhov; A. V. Timoshkin

    2014-10-10T23:59:59.000Z

    We investigate cosmological models with two interacting fluids: dark energy and dark matter in flat Friedmann-Robertson-Walker universe. The interaction between dark energy and dark matter is described in terms of the parameters present in the inhomogeneous equation of state when allowance is made for bulk viscosity, for the Little Rip, the Pseudo Rip, and the bounce universes. We obtain analytic representation for characteristic properties in these cosmological models, in particular the bulk viscosity $\\zeta=\\zeta(H,t)$ as function of Hubble parameter and time. We discuss the corrections of thermodynamical parameters in the equations of state due coupling between the viscous fluid and dark matter. Some common properties of these corrections are elucidated.

  16. Enhancement of gluonic dissociation of $J/?$ in viscous QGP

    E-Print Network [OSTI]

    A. K. Chaudhuri

    2001-04-24T23:59:59.000Z

    We have investigated the effect of viscosity on the gluonic dissociation of $J/\\psi$ in an equilibrating plasma. Suppression of $J/\\psi$ due to gluonic dissociation depend on the temperature and also on the chemical equilibration rate. In an equilibrating plasma, viscosity affects the temperature evolution and also the chemical equilibration rate, requiring both of them to evolve slowly compared to their ideal counter part. For Au+Au collisions at RHIC and LHC energies, gluonic dissociation of $J/\\psi$ increases for a viscous plasma. Low $P_T$ $J/\\psi$'s are found to be more suppressed due to viscosity than the high $P_T$ ones. Also the effect is more at LHC energy than at RHIC energy.

  17. Model NOx storage systems: Storage capacity and thermal aging...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Model NOx storage systems: Storage capacity and thermal aging of BaOtheta- Al2O3NiAl(100). Model NOx storage systems: Storage capacity and thermal aging of BaOtheta- Al2O3...

  18. Storage Ring Operation Modes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Longitudinal bunch profile and Up: APS Storage Ring Parameters Previous: Source Parameter Table Storage Ring Operation Modes Standard Operating Mode, top-up Fill pattern: 102 mA in...

  19. Underground Storage Tank Regulations

    Broader source: Energy.gov [DOE]

    The Underground Storage Tank Regulations is relevant to all energy projects that will require the use and building of pipelines, underground storage of any sorts, and/or electrical equipment. The...

  20. Cool Storage Performance 

    E-Print Network [OSTI]

    Eppelheimer, D. M.

    1985-01-01T23:59:59.000Z

    Utilities have promoted the use of electric heat and thermal storage to increase off peak usage of power. High daytime demand charges and enticing discounts for off peak power have been used as economic incentives to promote thermal storage systems...

  1. Safe Home Food Storage

    E-Print Network [OSTI]

    Van Laanen, Peggy

    2002-08-22T23:59:59.000Z

    Proper food storage can preserve food quality and prevent spoilage and food/borne illness. The specifics of pantry, refrigerator and freezer storage are given, along with helpful information on new packaging, label dates, etc. A comprehensive table...

  2. Drop impact of shear thickening liquids Francois Boyer, Jacco H. Snoeijer, J. Frits Dijksman, and Detlef Lohse

    E-Print Network [OSTI]

    Snoeijer, Jacco

    pop- ular 3D-inkjet-printing [17], most drop impact studies have focused on Newtonian liquids. However, as is theoretically explained from a balance between the kinetic energy and the viscously-dissipated en- ergy, from) [2]. Impact is relevant for a large number of industrial processes (e.g. inkjet-printing [3], spray

  3. Abstract--A novel compressed air energy storage system for wind turbine is proposed. It captures excess power prior to

    E-Print Network [OSTI]

    Li, Perry Y.

    Abstract-- A novel compressed air energy storage system for wind turbine is proposed. It captures instead of supply. Energy is stored in a high pressure dual chamber liquid-compressed air storage vessel a challenge. An energy storage system can provide steady and predictable power by storing excess energy

  4. Energy Storage Systems

    SciTech Connect (OSTI)

    Conover, David R.

    2013-12-01T23:59:59.000Z

    Energy Storage Systems – An Old Idea Doing New Things with New Technology article for the International Assoication of ELectrical Inspectors

  5. FOREST CENTRE STORAGE BUILDING

    E-Print Network [OSTI]

    deYoung, Brad

    FOREST CENTRE STORAGE BUILDING 3 4 5 6 7 8 UniversityDr. 2 1 G r e n f e l l D r i v e MULTI PURPOSE COURT STUDENT RESIDENCES GREEN HOUSE STUDENT RESIDENCES STUDENT RESIDENCES RECPLEX STORAGE BUILDING STORAGE BUILDING LIBRARY & COMPUTING FINE ARTS FOREST CENTRE ARTS &SCIENCE BUILDING ARTS &SCIENCE

  6. Viscous corrections to anisotropic flow and transverse momentum spectra from transport theory

    E-Print Network [OSTI]

    Salvatore Plumari; Giovanni Luca Guardo; Vincenzo Greco; Jean-Yves Ollitrault

    2015-02-13T23:59:59.000Z

    Viscous hydrodynamics is commonly used to model the evolution of the matter created in an ultra-relativistic heavy-ion collision. It provides a good description of transverse momentum spectra and anisotropic flow. These observables, however, cannot be consistently derived using viscous hydrodynamics alone, because they depend on the microscopic interactions at freeze-out. We derive the ideal hydrodynamic limit and the first-order viscous correction to anisotropic flow ($v_2$, $v_3$ and $v_4$) and momentum spectrum using a transport calculation. The linear response coefficient to the initial anisotropy, $v_n(p_T)/\\varepsilon_n$, depends little on $n$ in the ideal hydrodynamic limit. The viscous correction to the spectrum depends not only on the differential cross section, but also on the initial momentum distribution. This dependence is not captured by standard second-order viscous hydrodynamics. The viscous correction to anisotropic flow increases with $p_T$, but this increase is slower than usually assumed in viscous hydrodynamic calculations. In particular, it is too slow to explain the observed maximum of $v_n$ at $p_T\\sim 3$~GeV/c.

  7. Sandia National Laboratories: Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Infrastructure Research and Innovation (CIRI), Concentrating Solar Power, Energy, Energy Storage, Energy Storage Systems, Facilities, Infrastructure Security, Materials...

  8. Groundwater and Terrestrial Water Storage

    E-Print Network [OSTI]

    Rodell, M; Chambers, D P; Famiglietti, J S

    2011-01-01T23:59:59.000Z

    T. E. Reilly, 2002: Flow and storage in groundwater systems.Estimating ground water storage changes in the Mississippistorage..

  9. Storage : DAS / SAN / NAS Dploiement

    E-Print Network [OSTI]

    Collette. Sébastien

    CH8 Divers Agenda · Storage : DAS / SAN / NAS · Déploiement · VLAN ­ 802.1Q · Gestion d · Sécurisation de Windows · Sécurisation de UNIX · Qu'est-ce que... ­ Firewall, VPN, IDS/IPS, PKI Storage : DAS, NAS, SAN #12;Storage : DAS, NAS, SAN · Direct Attached Storage · Network Attached Storage · Storage

  10. Storage Ring Revised March 1994

    E-Print Network [OSTI]

    Brookhaven National Laboratory - Experiment 821

    Chapter 8. Storage Ring Revised March 1994 8.1. Introduction -- 107 -- #12; 108 Storage Ring 8.2. Magnetic Design and Field Calculations 8.2.1. Conceptual Approach #12; Storage Ring 109 #12; 110 Storage Ring 8.2.2. Computer Aided Refined Pole Designs #12; Storage Ring 111 #12; 112 Storage Ring #12

  11. Criteria for safe storage of plutonium metals and oxides

    SciTech Connect (OSTI)

    Not Available

    1994-12-01T23:59:59.000Z

    This standard establishes safety criteria for safe storage of plutonium metals and plutonium oxides at DOE facilities; materials packaged to meet these criteria should not need subsequent repackaging to ensure safe storage for at least 50 years or until final disposition. The standard applied to Pu metals, selected alloys (eg., Ga and Al alloys), and stabilized oxides containing at least 50 wt % Pu; it does not apply to Pu-bearing liquids, process residues, waste, sealed weapon components, or material containing more than 3 wt % {sup 238}Pu. Requirements for a Pu storage facility and safeguards and security considerations are not stressed as they are addressed in detail by other DOE orders.

  12. Evaluation of coastal wave attenuation due to viscous fluid sediment at Jefferson County, Texas

    E-Print Network [OSTI]

    Tuttle, Meghan I

    2000-01-01T23:59:59.000Z

    . The paper also investigates a natural 'fluid mud' phenomenon. A viscous seabed exists at the eastern survey area, causing water wave attenuation. The interdependent effects of seafloor mud on progressive surface waves are discussed. The reduction in wave...

  13. Asymptotic behavior for a viscous Hamilton-Jacobi equation with critical exponent

    E-Print Network [OSTI]

    Boyer, Edmond

    Asymptotic behavior for a viscous Hamilton-Jacobi equation with critical exponent Thierry Gallay Thierry.Gallay@ujf-grenoble.fr Philippe Lauren¸cot Institut de Math´ematiques de Toulouse CNRS UMR 5219

  14. Asymptotic behavior for a viscous Hamilton-Jacobi equation with critical exponent

    E-Print Network [OSTI]

    Gallay, Thierry

    Asymptotic behavior for a viscous Hamilton-Jacobi equation with critical exponent Thierry Gallay Thierry.Gallay@ujf-grenoble.fr Philippe Lauren¸cot Institut de Math´ematiques de Toulouse CNRS UMR 5219

  15. Interacting vortex pairs in inviscid and viscous planar flows Thierry Gallay

    E-Print Network [OSTI]

    Gallay, Thierry

    Interacting vortex pairs in inviscid and viscous planar flows Thierry Gallay Universitâ??e de Grenoble I Institut Fourier, UMR CNRS 5582 B.P. 74 F­38402 Saint­Martin­d'Hâ??eres, France Thierry.Gallay

  16. Asymptotic behavior for a viscous HamiltonJacobi equation with critical exponent

    E-Print Network [OSTI]

    Gallay, Thierry

    Asymptotic behavior for a viscous Hamilton­Jacobi equation with critical exponent Thierry Gallay Thierry.Gallay@ujf­grenoble.fr Philippe Laurenâ?ºcot Institut de Mathâ??ematiques de Toulouse CNRS UMR 5219

  17. Interacting vortex pairs in inviscid and viscous planar flows Thierry Gallay

    E-Print Network [OSTI]

    Gallay, Thierry

    Interacting vortex pairs in inviscid and viscous planar flows Thierry Gallay Universit´e de Grenoble I Institut Fourier, UMR CNRS 5582 B.P. 74 F-38402 Saint-Martin-d'H`eres, France Thierry.Gallay

  18. VISHNU hybrid model for viscous QCD matter at RHIC and LHC energies

    E-Print Network [OSTI]

    Huichao Song

    2012-01-24T23:59:59.000Z

    In this proceeding, we briefly describe the viscous hydrodynamics + hadron cascade hybrid model VISHNU for relativistic heavy ion collisions and report the current status on extracting the QGP viscosity from elliptic flow data.

  19. Design and installation manual for thermal energy storage

    SciTech Connect (OSTI)

    Cole, R L; Nield, K J; Rohde, R R; Wolosewicz, R M

    1980-01-01T23:59:59.000Z

    The purpose of this manual is to provide information on the design and installation of thermal energy storage in active solar systems. It is intended for contractors, installers, solar system designers, engineers, architects, and manufacturers who intend to enter the solar energy business. The reader should have general knowledge of how solar heating and cooling systems operate and knowledge of construction methods and building codes. Knowledge of solar analysis methods such as f-Chart, SOLCOST, DOE-1, or TRNSYS would be helpful. The information contained in the manual includes sizing storage, choosing a location for the storage device, and insulation requirements. Both air-based and liquid-based systems are covered with topics on designing rock beds, tank types, pump and fan selection, installation, costs, and operation and maintenance. Topics relevant to latent heat storage include properties of phase-change materials, sizing the storage unit, insulating the storage unit, available systems, and cost. Topics relevant to heating domestic water include safety, single- and dual-tank systems, domestic water heating with air- and liquid-based space heating systems, and stand alone domestics hot water systems. Several appendices present common problems with storage systems and their solutions, heat transfer fluid properties, economic insulation thickness, heat exchanger sizing, and sample specifications for heat exchangers, wooden rock bins, steel tanks, concrete tanks, and fiberglass-reinforced plastic tanks.

  20. A finite element viscous flow analysis in a radial turbine scroll

    E-Print Network [OSTI]

    Hill, Donald Lee

    1987-01-01T23:59:59.000Z

    A FINITE ELEMENT VISCOUS FLOW ANALYSIS IN A RADIAL TURBINE SCROLL A Thesis DONALD LEE HILL JR. Submitted to the Graduate College. of Texas ASM University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE December... 1987 Major Subject: Mechanical Engineering A FINITE ELEMENT VISCOUS FLOW ANALYSIS IN A RADIAL TURBINE SCROLL A Thesis by DONALD LEE HILL JR. Approved as to style snd content by: Dr. Erian A. Baskharone (Chairman of Conunittee) Dr. Alan B azzolo...

  1. DEVELOPMENT OF SHALLOW VISCOUS OIL RESERVES IN NORTH SLOPE

    SciTech Connect (OSTI)

    Kishore K. Mohanty

    2003-07-01T23:59:59.000Z

    North Slope of Alaska has huge oil deposits in heavy oil reservoirs such as Ugnu, West Sak and Shrader Bluff etc. The viscosity of the last two reservoir oils vary from {approx}30 cp to {approx}3000 cp and the amount in the range of 10-20 billion barrels. High oil viscosity and low formation strength impose problems to high recovery and well productivity. Water-alternate-gas injection processes can be effective for the lower viscosity end of these deposits in West Sak and Shrader Bluff. Several gas streams are available in the North Slope containing NGL and CO{sub 2} (a greenhouse gas). The goal of this research is to develop tools to find optimum solvent, injection schedule and well-architecture for a WAG process in North Slope shallow sand viscous oil reservoirs. In the last quarter, we have developed streamline generation and convection subroutines for miscible gas injection. The WAG injection algorithms are being developed. We formulated a four-phase relative permeability model based on two-phase relative permeabilities. The new relative permeability formulations are being incorporated into the simulator. Wettabilities and relative permeabilities are being measured. Plans for the next quarter includes modeling of WAG injection in streamline based simulation, relative permeability studies with cores, incorporation of complex well-architecture.

  2. Beam energy scan using a viscous hydro+cascade model

    E-Print Network [OSTI]

    Karpenko, Iu A; Huovinen, P; Petersen, H

    2013-01-01T23:59:59.000Z

    Following the experimental program at BNL RHIC, we perform a similar "energy scan" using 3+1D viscous hydrodynamics coupled to the UrQMD hadron cascade, and study the collision energy dependence of pion and kaon rapidity distributions and $m_T$-spectra, as well as charged hadron elliptic flow. To this aim the equation of state for finite baryon density from a Chiral model coupled to the Polyakov loop is employed for hydrodynamic stage. 3D initial conditions from UrQMD are used to study gradual deviation from boost-invariant scaling flow. We find that the inclusion of shear viscosity in the hydrodynamic stage of evolution consistently improves the description of the data for Pb-Pb collisions at CERN SPS, as well as of the elliptic flow measurements for Au-Au collisions in the Beam Energy Scan (BES) program at BNL RHIC. The suggested value of shear viscosity is $\\eta/s\\ge0.2$ for $\\sqrt{s_{NN}}=6.3\\dots39$ GeV.

  3. Slow Waves in Fractures Filled with Viscous Fluid

    SciTech Connect (OSTI)

    Korneev, Valeri

    2008-01-08T23:59:59.000Z

    Stoneley guided waves in a fluid-filled fracture generally have larger amplitudes than other waves, and therefore, their properties need to be incorporated in more realistic models. In this study, a fracture is modeled as an infinite layer of viscous fluid bounded by two elastic half-spaces with identical parameters. For small fracture thickness, I obtain a simple dispersion equation for wave-propagation velocity. This velocity is much smaller than the velocity of a fluid wave in a Biot-type solution, in which fracture walls are assumed to be rigid. At seismic prospecting frequencies and realistic fracture thicknesses, the Stoneley guided wave has wavelengths on the order of several meters and an attenuation Q factor exceeding 10, which indicates the possibility of resonance excitation in fluid-bearing rocks. The velocity and attenuation of Stoneley guided waves are distinctly different at low frequencies for water and oil. The predominant role of fractures in fluid flow at field scales is supported by permeability data showing an increase of several orders of magnitude when compared to values obtained at laboratory scales. These data suggest that Stoneley guided waves should be taken into account in theories describing seismic wave propagation in fluid-saturated rocks.

  4. The stochastic dynamics of tethered microcantilevers in a viscous fluid

    SciTech Connect (OSTI)

    Robbins, Brian A.; Paul, Mark R. [Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061 (United States); Radiom, Milad; Ducker, William A. [Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061 (United States); Walz, John Y. [Department of Chemical Engineering, University of Kentucky, Lexington, Kentucky 40506 (United States)

    2014-10-28T23:59:59.000Z

    We explore and quantify the coupled dynamics of a pair of micron scale cantilevers immersed in a viscous fluid that are also directly tethered to one another at their tips by a spring force. The spring force, for example, could represent the molecular stiffness or elasticity of a biomolecule or material tethered between the cantilevers. We use deterministic numerical simulations with the fluctuation-dissipation theorem to compute the stochastic dynamics of the cantilever pair for the conditions of experiment when driven only by Brownian motion. We validate our approach by comparing directly with experimental measurements in the absence of the tether which shows excellent agreement. Using numerical simulations, we quantify the correlated dynamics of the cantilever pair over a range of tether stiffness. Our results quantify the sensitivity of the auto- and cross-correlations of equilibrium fluctuations in cantilever displacement to the stiffness of the tether. We show that the tether affects the magnitude of the correlations which can be used in a measurement to probe the properties of an attached tethering substance. For the configurations of current interest using micron scale cantilevers in water, we show that the magnitude of the fluid coupling between the cantilevers is sufficiently small such that the influence of the tether can be significant. Our results show that the cross-correlation is more sensitive to tether stiffness than the auto-correlation indicating that a two-cantilever measurement has improved sensitivity when compared with a measurement using a single cantilever.

  5. Bulk viscous matter-dominated Universes: asymptotic properties

    SciTech Connect (OSTI)

    Avelino, Arturo [Departamento de Física, Campus León, Universidad de Guanajuato, León, Guanajuato (Mexico); García-Salcedo, Ricardo [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada - Legaria del IPN, México D.F. (Mexico); Gonzalez, Tame [Departamento de Ingeniería Civil, División de Ingeniería, Universidad de Guanajuato, Guanajuato (Mexico); Nucamendi, Ulises [Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio C-3, Ciudad Universitaria, CP. 58040 Morelia, Michoacán (Mexico); Quiros, Israel, E-mail: avelino@fisica.ugto.mx, E-mail: rigarcias@ipn.mx, E-mail: tamegc72@gmail.com, E-mail: ulises@ifm.umich.mx, E-mail: iquiros6403@gmail.com [Departamento de Matemáticas, Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), Corregidora 500 S.R., Universidad de Guadalajara, 44420 Guadalajara, Jalisco (Mexico)

    2013-08-01T23:59:59.000Z

    By means of a combined use of the type Ia supernovae and H(z) data tests, together with the study of the asymptotic properties in the equivalent phase space — through the use of the dynamical systems tools — we demonstrate that the bulk viscous matter-dominated scenario is not a good model to explain the accepted cosmological paradigm, at least, under the parametrization of bulk viscosity considered in this paper. The main objection against such scenarios is the absence of conventional radiation and matter-dominated critical points in the phase space of the model. This entails that radiation and matter dominance are not generic solutions of the cosmological equations, so that these stages can be implemented only by means of unique and very specific initial conditions, i. e., of very unstable particular solutions. Such a behavior is in marked contradiction with the accepted cosmological paradigm which requires of an earlier stage dominated by relativistic species, followed by a period of conventional non-relativistic matter domination, during which the cosmic structure we see was formed. Also, we found that the bulk viscosity is positive just until very late times in the cosmic evolution, around z < 1. For earlier epochs it is negative, been in tension with the local second law of thermodynamics.

  6. Pore-scale difference between miscible and immiscible viscous fingering in porous media

    SciTech Connect (OSTI)

    Chen, J.D.

    1987-02-01T23:59:59.000Z

    When one fluid displaces another in a porous medium, the displacement can be stable or unstable. Viscous fingering is an unstable phenomenon that occurs when a less viscous fluid displaces a more viscous one. During oil recovery viscous fingering results in a poor recovery due to the bypass of the resident oil by the displacing fluid. In an oil reservoir there is randomness of many different length scales, ranging from pore size to reservoir size. Viscous fingering can have many different length scales due to the randomness. It is important to understand how the randomness on different scales affects the development of fingering. In this note the authors report experiments on the displacement stability in two-dimensional network models of porous media. The purpose of this work is to better understand the pore-scale phenomena of displacement. Immiscible viscous fingering in a two-dimensional network model, with negligible effects of the interfacial tension, has been studied. Although qualitative agreement was found between simulations and experiments for the immiscible case, some fundamental difference was found for the miscible case. The cause of difference and other relevant experimental observations are discussed.

  7. Efficient Heat Storage Materials: Metallic Composites Phase-Change Materials for High-Temperature Thermal Energy Storage

    SciTech Connect (OSTI)

    None

    2011-11-21T23:59:59.000Z

    HEATS Project: MIT is developing efficient heat storage materials for use in solar and nuclear power plants. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at night—when the sun’s not out—to drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. MIT is designing nanostructured heat storage materials that can store a large amount of heat per unit mass and volume. To do this, MIT is using phase change materials, which absorb a large amount of latent heat to melt from solid to liquid. MIT’s heat storage materials are designed to melt at high temperatures and conduct heat well—this makes them efficient at storing and releasing heat and enhances the overall efficiency of the thermal storage and energy-generation process. MIT’s low-cost heat storage materials also have a long life cycle, which further enhances their efficiency.

  8. Heat storage duration

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1981-01-01T23:59:59.000Z

    Both the amount and duration of heat storage in massive elements of a passive building are investigated. Data taken for one full winter in the Balcomb solar home are analyzed with the aid of sub-system simulation models. Heat storage duration is tallied into one-day intervals. Heat storage location is discussed and related to overall energy flows. The results are interpreted and conclusions drawn.

  9. Liquid electrode

    DOE Patents [OSTI]

    Ekechukwu, Amy A. (Augusta, GA)

    1994-01-01T23:59:59.000Z

    A dropping electrolyte electrode for use in electrochemical analysis of non-polar sample solutions, such as benzene or cyclohexane. The liquid electrode, preferably an aqueous salt solution immiscible in the sample solution, is introduced into the solution in dropwise fashion from a capillary. The electrolyte is introduced at a known rate, thus, the droplets each have the same volume and surface area. The electrode is used in making standard electrochemical measurements in order to determine properties of non-polar sample solutions.

  10. Baseload Solar Power for California? Ammonia-based Solar Energy Storage Using Trough Concentrators

    E-Print Network [OSTI]

    Baseload Solar Power for California? Ammonia-based Solar Energy Storage Using Trough Concentrators to eventually optimise the reactor geometry for ammonia-based solar energy storage with troughs, which.1. Storing Solar Energy with Ammonia H2 / N2 gas liquid NH3 Heat Exchangers Power Generation (Steam Cycle

  11. Energy Storage Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Barriers HEV & PHEV Technology Roadmaps R&D Timeline Overview 3 Develop electrochemical energy storage technologies which support the commercialization of hybrid and electric...

  12. Hydrogen Storage Related Links

    Broader source: Energy.gov [DOE]

    The following resources provide details about DOE-funded hydrogen storage activities, research plans and roadmaps, models and tools, and additional related links.

  13. Culex quinquefasciatus Storage Proteins

    E-Print Network [OSTI]

    2013-01-01T23:59:59.000Z

    and hemolymph proteins of Cx. quinquefasciatus . A and B:of typical storage proteins in Cx. quinquefasciatus.Fourth-instar Cx. quinquefasciatus larvae and early pupae

  14. HEATS: Thermal Energy Storage

    SciTech Connect (OSTI)

    None

    2012-01-01T23:59:59.000Z

    HEATS Project: The 15 projects that make up ARPA-E’s HEATS program, short for “High Energy Advanced Thermal Storage,” seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

  15. SUPERCONDUCTING MAGNETIC ENERGY STORAGE

    E-Print Network [OSTI]

    Hassenzahl, W.

    2011-01-01T23:59:59.000Z

    and R. W . BOOIll, "Superconductive Energy Storage Inducand H. A. Peterson, "Superconductive E nergy S torage forMeeting, Janua ry N. Mohan, "Superconductive Energy S torage

  16. SUPERCONDUCTING MAGNETIC ENERGY STORAGE

    E-Print Network [OSTI]

    Hassenzahl, W.

    2011-01-01T23:59:59.000Z

    Design of the BPA Superconducting 30-MJ Energy Storagefor a Utility Scale Superconducting Magnetic Energy Storagefor a Lnrge Scale Superconducting Magnetic Energy Storage

  17. On-site storage of low and intermediate level radwaste at INER, R.O.C.

    SciTech Connect (OSTI)

    Pen, B.L. [Inst. of Nuclear Energy Research, Lung-Tan (Taiwan, Province of China). Chemical Engineering Div.

    1993-12-31T23:59:59.000Z

    The radwaste on-site storage at INER has operated since 1977. In this paper the storage facilities including liquid ILW tanks, solid ILW vaults, silos and LLW warehouses were reported. For the sake of complying with the new radiation protection regulations, a facility upgrading plan which contains three programs is on schedule. The main upgrading program is storage buildings construction. This paper also briefly describes the contents of the plan.

  18. Energy Storage Annual Review 2014 FINAL.pptx

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    h igh e fficiency liquid a lkali m etal s torage c ells Towards Economical and Safe Storage of Solar and Wind E nergy C. A usten A ngell a nd S teve W . M ar3n TALK O UTLINE 1....

  19. Method and apparatus for operating an improved thermocline storage unit

    DOE Patents [OSTI]

    Copeland, Robert J. (Lakewood, CO)

    1985-01-01T23:59:59.000Z

    A method and apparatus for operating a thermocline storage unit in which an insulated barrier member is provided substantially at the interface region between the hot and cold liquids in the storage tank. The barrier member physically and thermally separates the hot and cold liquids substantially preventing any diffusing or mixing between them and substantially preventing any heat transfer therebetween. The barrier member follows the rise and fall of the interface region between the liquids as the tank is charged and discharged. Two methods of maintaining it in the interface region are disclosed. With the structure and operation of the present invention and in particular the significant reduction in diffusing or mixing between the hot and cold liquids as well as the significant reduction in the thermal heat transfer between them, the performance of the storage tank is improved. More specifically, the stability of the interface region or thermocline is enhanced and the thickness of the thermocline is reduced producing a corresponding increase in the steepness of the temperature gradient across the thermocline and a more efficiently operating thermocline storage unit.

  20. Method and apparatus for operating an improved thermocline storage unit

    DOE Patents [OSTI]

    Copeland, R.J.

    1982-09-30T23:59:59.000Z

    A method and apparatus for operating a thermocline storage unit in which an insulated barrier member is provided substantially at the interface region between the hot and cold liquids in the storage tank. The barrier member physically and thermally separates the hot and cold liquids substantially preventing any diffusing or mixing between them and substantially preventing any heat transfer there between. The barrier member follows the rise and fall of the interface region between the liquids as the tank is charged and discharged. Two methods of maintaining it in the interface region are disclosed. With the structure and operation of the present invention and in particular the significant reduction in diffusing or mixing between the hot and cold liquids as well as the significant reduction in the thermal heat transfer between them, the performance of the storage tank is improved. More specifically, the stability of the interface region or thermocline is enhanced and the thickness of the thermocline is reduced producing a corresponding increase in the steepness of the temperature gradient across the thermocline and a more efficiently operating thermocline storage unit.

  1. Secondary Storage Management Himanshu Gupta

    E-Print Network [OSTI]

    Gupta, Himanshu

    Secondary Storage Management Himanshu Gupta Storage­1 #12;Outline · Memory Hierarchy · Disk Records/Fields · Deletions and Insertions of Records Himanshu Gupta Storage­2 #12;Himanshu Gupta Storage­3 Memory Hierarchy Cache (1 MB; 1-5 nsec) Main Memory (GBs; 10-100 nsec) Secondary Storage

  2. Optimal Storage Allocation for Serial

    E-Print Network [OSTI]

    Yechiali, Uri

    Optimal Storage Allocation for Serial Haim Mendelson, Joseph S. Pliskin, and Uri Yechiali Tel Aviv reside on a direct-access storage device in which storage space is limited. Records are added allocating storage space to the files. Key Words and Phrases: serial files, storage allocation

  3. Nonaqueous electrolyte for electrical storage devices

    DOE Patents [OSTI]

    McEwen, Alan B. (Melrose, MA); Yair, Ein-Eli (Waltham, MA)

    1999-01-01T23:59:59.000Z

    Improved nonaqueous electrolytes for application in electrical storage devices such as electrochemical capacitors or batteries are disclosed. The electrolytes of the invention contain salts consisting of alkyl substituted, cyclic delocalized aromatic cations, and their perfluoro derivatives, and certain polyatomic anions having a van der Waals volume less than or equal to 100 .ANG..sup.3, preferably inorganic perfluoride anions and most preferably PF.sub.6.sup.-, the salts being dissolved in organic liquids, and preferably alkyl carbonate solvents, or liquid sulfur dioxide or combinations thereof, at a concentration of greater than 0.5M and preferably greater than 1.0M. Exemplary electrolytes comprise 1-ethyl-3-methylimidazolium hexafluorophosphate dissolved in a cyclic or acylic alkyl carbonate, or methyl formate, or a combination therof. These improved electrolytes have useful characteristics such as higher conductivity, higher concentration, higher energy storage capabilities, and higher power characteristics compared to prior art electrolytes. Stacked capacitor cells using electrolytes of the invention permit high energy, high voltage storage.

  4. Sandia National Laboratories: implement energy storage projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    implement energy storage projects Sandian Spoke at the New York Energy Storage Expo On December 12, 2014, in Energy, Energy Storage, Energy Storage Systems, Grid Integration,...

  5. Sandia National Laboratories: Stationary Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    StorageStationary Energy Storage Stationary Energy Storage The 1 MW Energy Storage Test Pad integrated with renewable energy generation at Sandia's Distributed Energy Technology...

  6. Sandia National Laboratories: Batteries & Energy Storage Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    StorageBatteries & Energy Storage Publications Batteries & Energy Storage Publications Batteries & Energy Storage Fact Sheets Achieving Higher Energy Density in Flow Batteries at...

  7. Sandia National Laboratories: evaluate energy storage opportunity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy storage opportunity Sandian Spoke at the New York Energy Storage Expo On December 12, 2014, in Energy, Energy Storage, Energy Storage Systems, Grid Integration,...

  8. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01T23:59:59.000Z

    The Legalization of Ground Water Storage," Water Resourcesprocedure to above ground storage of heat in huge insulatedthis project is heat storage in ground-water regions storage

  9. Sandia Energy - Energy Storage Test Pad (ESTP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage Test Pad (ESTP) Home Energy Permalink Gallery Evaluating Powerful Batteries for Modular Electric Grid Energy Storage Energy, Energy Storage, Energy Storage Systems, Energy...

  10. DRAFT: NONLINEAR CONTROLLER DESIGN WITH BANDWIDTH CONSIDERATION FOR A NOVEL COMPRESSED AIR ENERGY STORAGE SYSTEM

    E-Print Network [OSTI]

    Li, Perry Y.

    are the pump/motor displacements inside the hydraulic transformer and the liquid piston air compressor regulation and gen- erator power tracking for a Compressed Air Energy Storage (CAES) system, a nonlinear/expander. While the pump/motor inside the liquid piston has a low band- width, the other pump/motor inside

  11. Energy storage capacitors

    SciTech Connect (OSTI)

    Sarjeant, W.J.

    1984-01-01T23:59:59.000Z

    The properties of capacitors are reviewed in general, including dielectrics, induced polarization, and permanent polarization. Then capacitance characteristics are discussed and modelled. These include temperature range, voltage, equivalent series resistance, capacitive reactance, impedance, dissipation factor, humidity and frequency effects, storage temperature and time, and lifetime. Applications of energy storage capacitors are then discussed. (LEW)

  12. Liquid electrode

    DOE Patents [OSTI]

    Ekechukwu, A.A.

    1994-07-05T23:59:59.000Z

    A dropping electrolyte electrode is described for use in electrochemical analysis of non-polar sample solutions, such as benzene or cyclohexane. The liquid electrode, preferably an aqueous salt solution immiscible in the sample solution, is introduced into the solution in dropwise fashion from a capillary. The electrolyte is introduced at a known rate, thus, the droplets each have the same volume and surface area. The electrode is used in making standard electrochemical measurements in order to determine properties of non-polar sample solutions. 2 figures.

  13. Similarity and generalized analysis of efficiencies of thermal energy storage systems

    SciTech Connect (OSTI)

    Peiwen Li; Jon Van Lew; Cholik Chan; Wafaa Karaki; Jake Stephens; J. E. O'Brien

    2012-03-01T23:59:59.000Z

    This paper examined the features of three typical thermal storage systems including: (1) direct storage of heat transfer fluid in containers, (2) storage of thermal energy in a packed bed of solid filler material, with energy being carried in/out by a flowing heat transfer fluid which directly contacts the packed bed, and (3) a system in which heat transfer fluid flows through tubes that are imbedded into a thermal storage material which may be solid, liquid, or a mixture of the two. The similarity of the three types of thermal storage systems was discussed, and generalized energy storage governing equations were introduced in both dimensional and dimensionless forms. The temperatures of the heat transfer fluid during energy charge and discharge processes and the overall energy storage efficiencies were studied through solution of the energy storage governing equations. Finally, provided in the paper are a series of generalized charts bearing curves for energy storage effectiveness against four dimensionless parameters grouped up from many of the thermal storage system properties including dimensions, fluid and thermal storage material properties, as well as the operational conditions including mass flow rate of the fluid, and the ratio of energy charge and discharge time periods. Engineers can conveniently look up the charts to design and calibrate the size of thermal storage tanks and operational conditions without doing complicated individual modeling and computations. It is expected that the charts will serve as standard tools for thermal storage system design and calibration.

  14. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel L. Morrison; Sharon L. Elder

    2006-07-06T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission & distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1 to June 30, 2006. Key activities during this time period include: (1) Develop and process subcontract agreements for the eight projects selected for cofunding at the February 2006 GSTC Meeting; (2) Compiling and distributing the three 2004 project final reports to the GSTC Full members; (3) Develop template, compile listserv, and draft first GSTC Insider online newsletter; (4) Continue membership recruitment; (5) Identify projects and finalize agenda for the fall GSTC/AGA Underground Storage Committee Technology Transfer Workshop in San Francisco, CA; and (6) Identify projects and prepare draft agenda for the fall GSTC Technology Transfer Workshop in Pittsburgh, PA.

  15. High Average Power Laser Gain Medium With Low Optical Distortion Using A Transverse Flowing Liquid Host

    DOE Patents [OSTI]

    Comaskey, Brian J. (Walnut Creek, CA); Ault, Earl R. (Livermore, CA); Kuklo, Thomas C. (Oakdale, CA)

    2005-07-05T23:59:59.000Z

    A high average power, low optical distortion laser gain media is based on a flowing liquid media. A diode laser pumping device with tailored irradiance excites the laser active atom, ion or molecule within the liquid media. A laser active component of the liquid media exhibits energy storage times longer than or comparable to the thermal optical response time of the liquid. A circulation system that provides a closed loop for mixing and circulating the lasing liquid into and out of the optical cavity includes a pump, a diffuser, and a heat exchanger. A liquid flow gain cell includes flow straighteners and flow channel compression.

  16. Sandia National Laboratories: Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Electric Car Challenge Sparks Students' STEM Interest On January 9, 2015, in Energy, Energy Storage, News, News & Events, Partnership, Transportation Energy Aspiring...

  17. Improving energy storage devices | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy storage devices Improving energy storage devices Released: April 15, 2014 Lithium-sulfur batteries last longer with nanomaterial-packed cathode A new PNNL-developed...

  18. Sandia National Laboratories: Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capture & Storage, Center for Infrastructure Research and Innovation (CIRI), Energy, Energy Storage, Facilities, Livermore Valley Open Campus (LVOC), Materials Science, News,...

  19. Sandia National Laboratories: Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Collaboration On May 28, 2014, in Biofuels, CRF, Distribution Grid Integration, Energy, Energy Storage, Energy Storage Systems, Energy Surety, Facilities, Grid Integration,...

  20. Demonstration of Promising Energy Storage Technologies

    SciTech Connect (OSTI)

    Bollinger, Benjamin

    2014-12-31T23:59:59.000Z

    This project develops and demonstrates a megawatt (MW)-scale Energy Storage System that employs compressed air as the storage medium. An isothermal compressed air energy storage (ICAESTM) system rated for 1 MW or more will be demonstrated in a full-scale prototype unit. Breakthrough cost-effectiveness will be achieved through the use of proprietary methods for isothermal gas cycling and staged gas expansion implemented using industrially mature, readily-available components. The ICAES approach uses an electrically driven mechanical system to raise air to high pressure for storage in low-cost pressure vessels, pipeline, or lined-rock cavern (LRC). This air is later expanded through the same mechanical system to drive the electric motor as a generator. The approach incorporates two key efficiency-enhancing innovations: (1) isothermal (constant temperature) gas cycling, which is achieved by mixing liquid with air (via spray or foam) to exchange heat with air undergoing compression or expansion; and (2) a novel, staged gas-expansion scheme that allows the drivetrain to operate at constant power while still allowing the stored gas to work over its entire pressure range. The ICAES system will be scalable, non-toxic, and cost-effective, making it suitable for firming renewables and for other grid applications.

  1. French gas-storage project nearing completion

    SciTech Connect (OSTI)

    Laguerie, P. de (Geostock, Rueil-Malmaison (France)); Durup, J.G. (Gaz de France, La Pluine St. Denis (France))

    1994-12-12T23:59:59.000Z

    Geomethane, jointly formed by Gaz de France and Geostock, is currently converting 7 of 36 solution-mined salt cavities at Manosque in southeast France from liquid hydrocarbon storage to natural-gas storage. In view of the large diameter (13 3/8 in.) of the original production wells and safety requirements, a unique high-capacity well completion has been developed for this project. It will have two fail-safe valves and a flow crossover 30 m below ground to isolate the production well in the event of problems at the surface. The project lies in the wooded Luberon Nature Reserve and due consideration has been given to locating the surface plant and blending it with the surroundings. The production wellheads are extra-low designs, the main plant was located outside the sensitive area, and the pipeline routes were landscaped. The paper discusses the history of salt cavern storage of natural gas; site characteristics; Manosque salt geology; salt mining and early storage; siting; engineering and construction; completion and monitoring; nature reserve protection; and fire and earthquake hazard mitigation.

  2. Ultrafine hydrogen storage powders

    DOE Patents [OSTI]

    Anderson, Iver E. (Ames, IA); Ellis, Timothy W. (Doylestown, PA); Pecharsky, Vitalij K. (Ames, IA); Ting, Jason (Ames, IA); Terpstra, Robert (Ames, IA); Bowman, Robert C. (La Mesa, CA); Witham, Charles K. (Pasadena, CA); Fultz, Brent T. (Pasadena, CA); Bugga, Ratnakumar V. (Arcadia, CA)

    2000-06-13T23:59:59.000Z

    A method of making hydrogen storage powder resistant to fracture in service involves forming a melt having the appropriate composition for the hydrogen storage material, such, for example, LaNi.sub.5 and other AB.sub.5 type materials and AB.sub.5+x materials, where x is from about -2.5 to about +2.5, including x=0, and the melt is gas atomized under conditions of melt temperature and atomizing gas pressure to form generally spherical powder particles. The hydrogen storage powder exhibits improved chemcial homogeneity as a result of rapid solidfication from the melt and small particle size that is more resistant to microcracking during hydrogen absorption/desorption cycling. A hydrogen storage component, such as an electrode for a battery or electrochemical fuel cell, made from the gas atomized hydrogen storage material is resistant to hydrogen degradation upon hydrogen absorption/desorption that occurs for example, during charging/discharging of a battery. Such hydrogen storage components can be made by consolidating and optionally sintering the gas atomized hydrogen storage powder or alternately by shaping the gas atomized powder and a suitable binder to a desired configuration in a mold or die.

  3. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel L. Morrison; Sharon L. Elder

    2007-06-30T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2007 through June 30, 2007. Key activities during this time period included: (1) Organizing and hosting the 2007 GSTC Spring Meeting; (2) Identifying the 2007 GSTC projects, issuing award or declination letters, and begin drafting subcontracts; (3) 2007 project mentoring teams identified; (4) New NETL Project Manager; (5) Preliminary planning for the 2007 GSTC Fall Meeting; (6) Collecting and compiling the 2005 GSTC project final reports; and (7) Outreach and communications.

  4. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel L. Morrison; Sharon L. Elder

    2006-05-10T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of January 1, 2006 through March 31, 2006. Activities during this time period were: (1) Organize and host the 2006 Spring Meeting in San Diego, CA on February 21-22, 2006; (2) Award 8 projects for co-funding by GSTC for 2006; (3) New members recruitment; and (4) Improving communications.

  5. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel L. Morrison; Sharon L. Elder

    2007-03-31T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created - the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of January1, 2007 through March 31, 2007. Key activities during this time period included: {lg_bullet} Drafting and distributing the 2007 RFP; {lg_bullet} Identifying and securing a meeting site for the GSTC 2007 Spring Proposal Meeting; {lg_bullet} Scheduling and participating in two (2) project mentoring conference calls; {lg_bullet} Conducting elections for four Executive Council seats; {lg_bullet} Collecting and compiling the 2005 GSTC Final Project Reports; and {lg_bullet} Outreach and communications.

  6. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel Morrison

    2005-09-14T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2005 through June 30, 2005. During this time period efforts were directed toward (1) GSTC administration changes, (2) participating in the American Gas Association Operations Conference and Biennial Exhibition, (3) issuing a Request for Proposals (RFP) for proposal solicitation for funding, and (4) organizing the proposal selection meeting.

  7. A grid-level alkali liquid metal battery recycling process : design, implementation, and characterization

    E-Print Network [OSTI]

    Thomas, Dale Arlington, III

    2014-01-01T23:59:59.000Z

    The application of liquid metal batteries for large scale grid-level energy storage is being enabled through the development of research conducted at the Massachusetts Institute of Technology (MIT) in 2006. A recycling ...

  8. Autothermal hydrogen storage and delivery systems

    DOE Patents [OSTI]

    Pez, Guido Peter (Allentown, PA); Cooper, Alan Charles (Macungie, PA); Scott, Aaron Raymond (Allentown, PA)

    2011-08-23T23:59:59.000Z

    Processes are provided for the storage and release of hydrogen by means of dehydrogenation of hydrogen carrier compositions where at least part of the heat of dehydrogenation is provided by a hydrogen-reversible selective oxidation of the carrier. Autothermal generation of hydrogen is achieved wherein sufficient heat is provided to sustain the at least partial endothermic dehydrogenation of the carrier at reaction temperature. The at least partially dehydrogenated and at least partially selectively oxidized liquid carrier is regenerated in a catalytic hydrogenation process where apart from an incidental employment of process heat, gaseous hydrogen is the primary source of reversibly contained hydrogen and the necessary reaction energy.

  9. Method for using salt deposits for storage

    SciTech Connect (OSTI)

    Hooper, M. W.; Voorhees, E. J.

    1984-12-18T23:59:59.000Z

    A method for developing, evacuating, using, sealing, and re-entering multiple stacked cavities which are created from a single well in salt deposits. The cavities are created in a salt deposit by circulating raw water through concentric casing strings in the well. Each of the cavities is evacuated of liquids prior to use. After storage material is injected into a cavity, the cavity is sealed by setting a plug in the well bore above the top of the cavity. The cavities may be re-entered by drilling out the plug or by drilling a directional well directly into the cavity.

  10. Reference value developed for mechanical integrity of storage caverns

    SciTech Connect (OSTI)

    Crotogino, F. [Kavernen Bau- and Betriebs-GmbH, Hannover (Germany)

    1996-10-28T23:59:59.000Z

    A reference value to verify the mechanical integrity of salt-cavern wells used in hydrocarbon storage has been developed. Salt caverns play important roles in large-scale storage of hydrocarbon gases and liquids. Required for safe and economical operation of these storage caverns is verification of the external mechanical integrity of the access (injection and withdrawal) wells. This study had the following goals: Provision of an overview of current practice; and Development of a reference for external well mechanical-integrity testing with respect to performance, data evaluation, and assessment. The storage cavern operators expected to gain the following: Comparability between method and assessments; Aid in influencing the movement towards standardization by regulators; and A firm technical base for use in litigation between the operator and other parties.

  11. Liquid foams of graphene

    E-Print Network [OSTI]

    Alcazar Jorba, Daniel

    2012-01-01T23:59:59.000Z

    Liquid foams are dispersions of bubbles in a liquid. Bubbles are stabilized by foaming agents that position at the interface between the gas and the liquid. Most foaming agents, such as the commonly used sodium dodecylsulfate, ...

  12. Study of the Rheology of Thin Liquid Films - Novel Flexible Molds for Nanoimprinting

    E-Print Network [OSTI]

    Barbero, David

    2014-05-27T23:59:59.000Z

    of much research in the field of thin polymer films and in microfluidics. In his “Lectures on Physics”, Feynman writes that the frictional drag exerted on an object moving slowly through a viscous liquid is proportional to its velocity ? [10]. However... at the atomic length scale. A better understanding of the flow properties of liquids into micro- and nano-channels is also necessary for many technological applications (e.g. microfluidics) as well as for medicine. As an example, the flow of blood in arteries...

  13. Cosmological perturbations in warm-tachyon inflationary universe model with viscous pressure on the brane

    E-Print Network [OSTI]

    M. R. Setare; V. Kamali

    2013-02-22T23:59:59.000Z

    We study warm-viscous inflationary universe model on the brane, in a tachyon field theory. We obtain the general conditions which are required for this model to be realizable. In longitudinal gauge, the primoradial perturbation parameters are found in great details, using slow-roll and quasi-stable approximations. The general expressions of the tensor-to-scalar ratio, scalar spectral index and its running are found. We derive the characteristics of the inflationary universe model by using an effective exponential potential in two cases: 1- Dissipative parameter $\\Gamma$ and bulk viscous parameter $\\zeta$ are constant parameters. 2- Dissipative parameter as a function of tachyon field $\\phi$ and bulk viscous parameter as a function of radiation-matter mixture energy density $\\rho$. The parameters of the model are restricted by recent observational data from the seven-year Wilkinson microwave anisotropy probe (WMAP7).

  14. Warm-viscous inflation model on the brane in the light of BICEP2

    E-Print Network [OSTI]

    M. R. Setare; V. Kamali

    2014-10-06T23:59:59.000Z

    In the present work warm inflationary universe model with viscous pressure on the brane in high-dissipation regime is studied. We derive a condition which is required for this model to be realizable in slow-roll approximation. We also present analytic expressions for density perturbation and amplitude of tensor perturbation in longitudinal gauge. General expressions of tensor-to-scalar ratio, scalar spectral index and its running are obtained. We develop our model by using chaotic potential, the characteristics of this model are calculated for two specific cases: 1- Dissipative parameter $\\Gamma$ and bulk viscous parameter $\\zeta$ are constant parameters. 2- Dissipative parameter as a function of scalar field $\\phi$ and bulk viscous parameter as a function of radiation-matter mixture energy density $\\rho$. The parameters of the model are restricted by WMAP9, Planck and BICEP2 observational data.

  15. Cosmological perturbations in warm-tachyon inflationary universe model with viscous pressure

    E-Print Network [OSTI]

    Setare, M R

    2014-01-01T23:59:59.000Z

    We study the warm-tachyon inflationary universe model with viscous pressure in high-dissipation regime. General conditions which are required for this model to be realizable are derived in the slow-roll approximation. We present analytic expressions for density perturbation and amplitude of tensor perturbation in longitudinal gauge. Expressions of tensor-to-scalar ratio, scalar spectral index and its running are obtained. We develop our model by using exponential potential, the characteristics of this model are calculated for two specific cases in great details: 1- Dissipative parameter $\\Gamma$ and bulk viscous parameter $\\zeta$ are constant parameters. 2- Dissipative parameter is a function of tachyon field $\\phi$ and bulk viscous parameter is a function of matter-radiation mixture energy density $\\rho$. The parameters of the model are restricted by recent observational data from the nine-year Wilkinson microwave anisotropy probe (WMAP9), Planck and BICEP2 data.

  16. Cosmological perturbations in warm-tachyon inflationary universe model with viscous pressure

    E-Print Network [OSTI]

    M. R. Setare; V. Kamali

    2014-07-09T23:59:59.000Z

    We study the warm-tachyon inflationary universe model with viscous pressure in high-dissipation regime. General conditions which are required for this model to be realizable are derived in the slow-roll approximation. We present analytic expressions for density perturbation and amplitude of tensor perturbation in longitudinal gauge. Expressions of tensor-to-scalar ratio, scalar spectral index and its running are obtained. We develop our model by using exponential potential, the characteristics of this model are calculated for two specific cases in great details: 1- Dissipative parameter $\\Gamma$ and bulk viscous parameter $\\zeta$ are constant parameters. 2- Dissipative parameter is a function of tachyon field $\\phi$ and bulk viscous parameter is a function of matter-radiation mixture energy density $\\rho$. The parameters of the model are restricted by recent observational data from the nine-year Wilkinson microwave anisotropy probe (WMAP9), Planck and BICEP2 data.

  17. Cosmological perturbations in warm-tachyon inflationary universe model with viscous pressure on the brane

    E-Print Network [OSTI]

    Setare, M R

    2013-01-01T23:59:59.000Z

    We study warm-viscous inflationary universe model on the brane, in a tachyon field theory. We obtain the general conditions which are required for this model to be realizable. In longitudinal gauge, the primoradial perturbation parameters are found in great details, using slow-roll and quasi-stable approximations. The general expressions of the tensor-to-scalar ratio, scalar spectral index and its running are found. We derive the characteristics of the inflationary universe model by using an effective exponential potential in two cases: 1- Dissipative parameter $\\Gamma$ and bulk viscous parameter $\\zeta$ are constant parameters. 2- Dissipative parameter as a function of tachyon field $\\phi$ and bulk viscous parameter as a function of radiation-matter mixture energy density $\\rho$. The parameters of the model are restricted by recent observational data from the seven-year Wilkinson microwave anisotropy probe (WMAP7).

  18. Storage Exchange: A Global Trading Platform for Storage Services

    E-Print Network [OSTI]

    Melbourne, University of

    Storage Exchange: A Global Trading Platform for Storage Services Martin Placek and Rajkumar Buyya,raj}@csse.unimelb.edu.au Abstract. The Storage Exchange (SX) is a new platform allowing stor- age to be treated as a tradeable resource. Organisations with varying storage requirements can use the SX platform to trade and exchange

  19. Building Trust in Storage Outsourcing: Secure Accounting of Utility Storage

    E-Print Network [OSTI]

    Minnesota, University of

    Building Trust in Storage Outsourcing: Secure Accounting of Utility Storage Vishal Kher Yongdae Kim are witnessing a revival of Storage Service Providers (SSP) in the form of new vendors as well as traditional players. While storage outsourcing is cost-effective, many companies are hesitating to outsource

  20. Standard for Inert Cryogenic Liquid Usage in the Laboratory Page 1 of 4 Standard for Inert Cryogenic Liquid Usage in the Laboratory

    E-Print Network [OSTI]

    Chan, Hue Sun

    in the Laboratory In University workplaces, the storage, handling and dispensing of cryogenic liquids (e.g. liquid to oxygen deficiency, contact with extremely cold materials, oxygen condensation, or pressure build safety precautions to be taken when working with inert cryogenics, and is based on standard industry

  1. SUPERCONDUCTING MAGNETIC ENERGY STORAGE

    E-Print Network [OSTI]

    Hassenzahl, W.

    2011-01-01T23:59:59.000Z

    Encrgy Storage Plant" , EPRI Report EM-3457, April 1984. [4521st century. REFERENCES The EPRI Regional Systems preparedby J. J. Mulvaney, EPRI Report EPRI P-19S0SR, (1981). [2J O.

  2. Marketing Cool Storage Technology 

    E-Print Network [OSTI]

    McCannon, L.

    1987-01-01T23:59:59.000Z

    in the field. The International Thermal Storage Advisory Council was formed to help meet this perceived need. This paper will review activities of EPRI and ITSAC to achieve widespread acceptance of the technology....

  3. Hydrogen storage compositions

    SciTech Connect (OSTI)

    Li, Wen; Vajo, John J.; Cumberland, Robert W.; Liu, Ping

    2011-04-19T23:59:59.000Z

    Compositions for hydrogen storage and methods of making such compositions employ an alloy that exhibits reversible formation/deformation of BH4- anions. The composition includes a ternary alloy including magnesium, boron and a metal and a metal hydride. The ternary alloy and the metal hydride are present in an amount sufficient to render the composition capable of hydrogen storage. The molar ratio of the metal to magnesium and boron in the alloy is such that the alloy exhibits reversible formation/deformation of BH4- anions. The hydrogen storage composition is prepared by combining magnesium, boron and a metal to prepare a ternary alloy and combining the ternary alloy with a metal hydride to form the hydrogen storage composition.

  4. Hydrogen storage compositions

    DOE Patents [OSTI]

    Li, Wen; Vajo, John J.; Cumberland, Robert W.; Liu, Ping

    2011-04-19T23:59:59.000Z

    Compositions for hydrogen storage and methods of making such compositions employ an alloy that exhibits reversible formation/deformation of BH.sub.4.sup.- anions. The composition includes a ternary alloy including magnesium, boron and a metal and a metal hydride. The ternary alloy and the metal hydride are present in an amount sufficient to render the composition capable of hydrogen storage. The molar ratio of the metal to magnesium and boron in the alloy is such that the alloy exhibits reversible formation/deformation of BH.sub.4.sup.- anions. The hydrogen storage composition is prepared by combining magnesium, boron and a metal to prepare a ternary alloy and combining the ternary alloy with a metal hydride to form the hydrogen storage composition.

  5. APS Storage Ring Parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Main Parameters APS Storage Ring Parameters M. Borland, G. Decker, L. Emery, W. Guo, K. Harkay, V. Sajaev, C.-Y. Yao Advanced Photon Source September 8, 2010 This document list the...

  6. Stasis: Flexible Transactional Storage

    E-Print Network [OSTI]

    Sears, Russell C.

    2009-01-01T23:59:59.000Z

    He and Bowei Du implemented Oasys, and helped with my firstwas built on top of a C++ object persistence library, Oasys.Oasys uses plug-in storage modules that implement persistent

  7. Gas Storage Act (Illinois)

    Broader source: Energy.gov [DOE]

    Any corporation which is engaged in or desires to engage in, the distribution, transportation or storage of natural gas or manufactured gas, which gas, in whole or in part, is intended for ultimate...

  8. SUPERCONDUCTING MAGNETIC ENERGY STORAGE

    E-Print Network [OSTI]

    Hassenzahl, W.

    2011-01-01T23:59:59.000Z

    World's First 290 MW Gas Turbine Air Storage Peaking Plant",hydro e lectric plants and gas turbines, are less effectedelectricity. For a gas turbine the conversion efficiency may

  9. Storage Tanks (Arkansas)

    Broader source: Energy.gov [DOE]

    The Storage Tanks regulations is a set of rules and permit requirements mandated by the Arkansas Pollution and Ecology Commission in order to protect the public health and the lands and the waters...

  10. Thermal Energy Storage

    SciTech Connect (OSTI)

    Rutberg, Michael; Hastbacka, Mildred; Cooperman, Alissa; Bouza, Antonio

    2013-06-05T23:59:59.000Z

    The article discusses thermal energy storage technologies. This article addresses benefits of TES at both the building site and the electricity generation source. The energy savings and market potential of thermal energy store are reviewed as well.

  11. Energy Storage 101

    Broader source: Energy.gov (indexed) [DOE]

    the storage of heat or cold between opposing seasons in deep aquifers or bedrock. A wind-up clock stores potential energy, in this case mechanical, in the spring tension. ...

  12. Warm-Intermediate Inflationary Universe Model with Viscous Pressure in High Dissipative Regime

    E-Print Network [OSTI]

    M. R. Setare; V. Kamali

    2014-03-02T23:59:59.000Z

    Warm inflation model with bulk viscous pressure in the context of "intermediate inflation" where the cosmological scale factor expands as $a(t)=a_0\\exp(At^f)$, is studied. The characteristics of this model in slow-roll approximation and in high dissipative regime are presented in two cases: 1- Dissipative parameter $\\Gamma$ as a function of scalar field $\\phi$ and bulk viscous coefficient $\\zeta$ as a function of energy density $\\rho$. 2- $\\Gamma$ and $\\zeta$ are constant parameters. Scalar, tensor perturbations and spectral indices for this scenario are obtained. The cosmological parameters appearing in the present model are constrained by recent observational data (WMAP7).

  13. Warm-Intermediate Inflationary Universe Model with Viscous Pressure in High Dissipative Regime

    E-Print Network [OSTI]

    Setare, M R

    2014-01-01T23:59:59.000Z

    Warm inflation model with bulk viscous pressure in the context of "intermediate inflation" where the cosmological scale factor expands as $a(t)=a_0\\exp(At^f)$, is studied. The characteristics of this model in slow-roll approximation and in high dissipative regime are presented in two cases: 1- Dissipative parameter $\\Gamma$ as a function of scalar field $\\phi$ and bulk viscous coefficient $\\zeta$ as a function of energy density $\\rho$. 2- $\\Gamma$ and $\\zeta$ are constant parameters. Scalar, tensor perturbations and spectral indices for this scenario are obtained. The cosmological parameters appearing in the present model are constrained by recent observational data (WMAP7).

  14. Storage management solutions Buyer's guide: purchasing criteria

    E-Print Network [OSTI]

    Storage management solutions Buyer's guide: purchasing criteria Manage your storage to meet service storage environment cohesively As new guidelines or regulations surface, storage administrators receive increasing numbers of requests for change (RFCs) in storage provisioning. Simultaneously, routine changes

  15. Storage In C Matt Bishop

    E-Print Network [OSTI]

    Bishop, Matt

    Storage In C Matt Bishop Research Institute for Advanced Computer Science NASA Ames Research Center. Intimately bound with the idea of scope is that of storage. When a program defines a variable, the compiler storage (such as on a stack) or as more permanent storage (in data space.) Recall that the format of a C

  16. Storage In C Matt Bishop

    E-Print Network [OSTI]

    Bishop, Matt

    Storage In C Matt Bishop Research Institute for Advanced Computer Science NASA Ames Research Center. Intimately bound with the idea of scope is that of storage. When a program deÞnes a variable, the compiler storage (such as on a stack) or as more permanent storage (in data space.) Recall that the format of a C

  17. U.S. Department of Energy Hydrogen Storage Cost Analysis

    SciTech Connect (OSTI)

    Law, Karen; Rosenfeld, Jeffrey; Han, Vickie; Chan, Michael; Chiang, Helena; Leonard, Jon

    2013-03-11T23:59:59.000Z

    The overall objective of this project is to conduct cost analyses and estimate costs for on- and off-board hydrogen storage technologies under development by the U.S. Department of Energy (DOE) on a consistent, independent basis. This can help guide DOE and stakeholders toward the most-promising research, development and commercialization pathways for hydrogen-fueled vehicles. A specific focus of the project is to estimate hydrogen storage system cost in high-volume production scenarios relative to the DOE target that was in place when this cost analysis was initiated. This report and its results reflect work conducted by TIAX between 2004 and 2012, including recent refinements and updates. The report provides a system-level evaluation of costs and performance for four broad categories of on-board hydrogen storage: (1) reversible on-board metal hydrides (e.g., magnesium hydride, sodium alanate); (2) regenerable off-board chemical hydrogen storage materials(e.g., hydrolysis of sodium borohydride, ammonia borane); (3) high surface area sorbents (e.g., carbon-based materials); and 4) advanced physical storage (e.g., 700-bar compressed, cryo-compressed and liquid hydrogen). Additionally, the off-board efficiency and processing costs of several hydrogen storage systems were evaluated and reported, including: (1) liquid carrier, (2) sodium borohydride, (3) ammonia borane, and (4) magnesium hydride. TIAX applied a â��bottom-upâ� costing methodology customized to analyze and quantify the processes used in the manufacture of hydrogen storage systems. This methodology, used in conjunction with DFMA�® software and other tools, developed costs for all major tank components, balance-of-tank, tank assembly, and system assembly. Based on this methodology, the figure below shows the projected on-board high-volume factory costs of the various analyzed hydrogen storage systems, as designed. Reductions in the key cost drivers may bring hydrogen storage system costs closer to this DOE target. In general, tank costs are the largest component of system cost, responsible for at least 30 percent of total system cost, in all but two of the 12 systems. Purchased BOP cost also drives system cost, accounting for 10 to 50 percent of total system cost across the various storage systems. Potential improvements in these cost drivers for all storage systems may come from new manufacturing processes and higher production volumes for BOP components. In addition, advances in the production of storage media may help drive down overall costs for the sodium alanate, SBH, LCH2, MOF, and AX-21 systems.

  18. Electron Charged Graphite-based Hydrogen Storage Material

    SciTech Connect (OSTI)

    Dr. Chinbay Q. Fan; D Manager

    2012-03-14T23:59:59.000Z

    The electron-charge effects have been demonstrated to enhance hydrogen storage capacity using materials which have inherent hydrogen storage capacities. A charge control agent (CCA) or a charge transfer agent (CTA) was applied to the hydrogen storage material to reduce internal discharge between particles in a Sievert volumetric test device. GTI has tested the device under (1) electrostatic charge mode; (2) ultra-capacitor mode; and (3) metal-hydride mode. GTI has also analyzed the charge distribution on storage materials. The charge control agent and charge transfer agent are needed to prevent internal charge leaks so that the hydrogen atoms can stay on the storage material. GTI has analyzed the hydrogen fueling tank structure, which contains an air or liquid heat exchange framework. The cooling structure is needed for hydrogen fueling/releasing. We found that the cooling structure could be used as electron-charged electrodes, which will exhibit a very uniform charge distribution (because the cooling system needs to remove heat uniformly). Therefore, the electron-charge concept does not have any burden of cost and weight for the hydrogen storage tank system. The energy consumption for the electron-charge enhancement method is quite low or omitted for electrostatic mode and ultra-capacitor mode in comparison of other hydrogen storage methods; however, it could be high for the battery mode.

  19. DOE Global Energy Storage Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The DOE International Energy Storage Database has more than 400 documented energy storage projects from 34 countries around the world. The database provides free, up-to-date information on grid-connected energy storage projects and relevant state and federal policies. More than 50 energy storage technologies are represented worldwide, including multiple battery technologies, compressed air energy storage, flywheels, gravel energy storage, hydrogen energy storage, pumped hydroelectric, superconducting magnetic energy storage, and thermal energy storage. The policy section of the database shows 18 federal and state policies addressing grid-connected energy storage, from rules and regulations to tariffs and other financial incentives. It is funded through DOE’s Sandia National Laboratories, and has been operating since January 2012.

  20. DEVELOPMENT OF SHALLOW VISCOUS OIL RESERVES IN NORTH SLOPE

    SciTech Connect (OSTI)

    Kishore K. Mohanty

    2004-12-01T23:59:59.000Z

    North Slope of Alaska has huge oil deposits in heavy oil reservoirs such as Ugnu, West Sak and Shrader Bluff etc. The viscosity of the last two reservoir oils vary from {approx}30 cp to {approx}3000 cp and the amount in the range of 10-20 billion barrels. High oil viscosity and low formation strength impose problems to high recovery and well productivity. Water-alternate-gas injection processes can be effective for the lower viscosity end of these deposits in West Sak and Shrader Bluff. Several gas streams are available in the North Slope containing NGL and CO{sub 2} (a greenhouse gas). The goal of this research is to develop tools to find optimum solvent, injection schedule and well-architecture for a WAG process in North Slope shallow sand viscous oil reservoirs. Coreflood, quarter 5-spot study, compositional simulation, wettability, relative permeability study and streamline-based simulation were conducted in this project. 1D compositional simulation results agree reasonably well with those of the slim tube experiments. Injection of CO{sub 2}-NGL is preferable over that of PBG-NGL. MME is sensitive to pressure (in the range of 1300-1800 psi) for the injection of PBG-NGL, but not for CO{sub 2}-NGL. Three hydrocarbon phases form in this pressure range. As the mean thickness of the adsorbed organic layer on minerals increases, the oil-water contact angle increases. The adsorbed organic films left behind after extraction of oil by common aromatic solvents used in core studies, such as toluene and decalin, are thinner than those left behind by non-aromatic solvents, such as cyclohexane. The force of adhesion for minerals aged with just the asphaltene fraction is similar to that of the whole oil implying that asphaltenes are responsible for the mixed-wettability in this reservoir. A new relative permeability model for a four-phase, mixed-wet system has been proposed. A streamline module is developed which can be incorporated in an existing finite-difference based compositional simulator to model water flood, gas flood and WAG flood. Horizontal wells increase well deliverability over vertical wells, but sweep efficiency can decrease. The well performance depends on the well length, position, heterogeneity, and viscosity ratio. The productivity increase due to electromagnetic heating is a function of power intensity, flow rate, and frequency etc. The productivity of a well can be doubled by electromagnetic heating. A high-pressure quarter 5-spot model has been constructed to evaluate the sweep efficiency of miscible WAG floods. WAG displacement reduces bypassing compared to gas floods and improves oil recovery in cores. As the WAG ratio decreased and slug size increased, oil recovery increased. Oil was recovered faster with increased slug size and decreased WAG ratio in the simulations for field cases studied.

  1. Extraordinarily Efficient Conduction in a Redox-Active Ionic Liquid

    E-Print Network [OSTI]

    Verner K. Thorsmølle; Guido Rothenberger; Daniel Topgaard; Jan C. Brauer; Dai-Bin Kuang; Shaik M. Zakeeruddin; Björn Lindman; Michael Grätzel; Jacques-E. Moser

    2010-11-09T23:59:59.000Z

    Iodine added to iodide-based ionic liquids leads to extraordinarily efficient charge transport, vastly exceeding that expected for such viscous systems. Using terahertz time-domain spectroscopy, in conjunction with dc conductivity, diffusivity and viscosity measurements we unravel the conductivity pathways in 1-methyl-3-propylimidazolium iodide melts. This study presents evidence of the Grotthuss mechanism as a significant contributor to the conductivity, and provides new insights into ion pairing processes as well as the formation of polyiodides. The terahertz and transport results are reunited in a model providing a quantitative description of the conduction by physical diffusion and the Grotthuss bond-exchange process. These novel results are important for the fundamental understanding of conduction in molten salts and for applications where ionic liquids are used as charge-transporting media such as in batteries and dye-sensitized solar cells.

  2. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel L. Morrison; Sharon L. Elder

    2006-09-30T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created-the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of July 1, 2006 to September 30, 2006. Key activities during this time period include: {lg_bullet} Subaward contracts for all 2006 GSTC projects completed; {lg_bullet} Implement a formal project mentoring process by a mentor team; {lg_bullet} Upcoming Technology Transfer meetings: {sm_bullet} Finalize agenda for the American Gas Association Fall Underground Storage Committee/GSTC Technology Transfer Meeting in San Francisco, CA. on October 4, 2006; {sm_bullet} Identify projects and finalize agenda for the Fall GSTC Technology Transfer Meeting, Pittsburgh, PA on November 8, 2006; {lg_bullet} Draft and compile an electronic newsletter, the GSTC Insider; and {lg_bullet} New members update.

  3. GAS STORAGE TECHNOLOGY CONSORTIUM

    SciTech Connect (OSTI)

    Robert W. Watson

    2004-04-17T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and is scheduled for completion on March 31, 2004. Phase 1A of the project includes the creation of the GSTC structure, development of constitution (by-laws) for the consortium, and development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with the second 3-months of the project and encompasses the period December 31, 2003, through March 31, 2003. During this 3-month, the dialogue of individuals representing the storage industry, universities and the Department of energy was continued and resulted in a constitution for the operation of the consortium and a draft of the initial Request for Proposals (RFP).

  4. Liquid contact resonance atomic force microscopy via experimental reconstruction of the hydrodynamic function

    SciTech Connect (OSTI)

    Tung, Ryan C., E-mail: ryan.tung@nist.gov; Killgore, Jason P.; Hurley, Donna C. [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States)

    2014-06-14T23:59:59.000Z

    We present a method to correct for surface-coupled inertial and viscous fluid loading forces in contact resonance (CR) atomic force microscopy (AFM) experiments performed in liquid. Based on analytical hydrodynamic theory, the method relies on experimental measurements of the AFM cantilever's free resonance peaks near the sample surface. The free resonance frequencies and quality factors in both air and liquid allow reconstruction of a continuous hydrodynamic function that can be used to adjust the CR data in liquid. Validation experiments utilizing thermally excited free and in-contact spectra were performed to assess the accuracy of our approach. Results show that the method recovers the air frequency values within approximately 6%. Knowledge of fluid loading forces allows current CR analysis techniques formulated for use in air and vacuum environments to be applied to liquid environments. Our technique greatly extends the range of measurement environments available to CR-AFM.

  5. Process for stabilization of coal liquid fractions

    DOE Patents [OSTI]

    Davies, Geoffrey (Boston, MA); El-Toukhy, Ahmed (Alexandria, EG)

    1987-01-01T23:59:59.000Z

    Coal liquid fractions to be used as fuels are stabilized against gum formation and viscosity increases during storage, permitting the fuel to be burned as is, without further expensive treatments to remove gums or gum-forming materials. Stabilization is accomplished by addition of cyclohexanol or other simple inexpensive secondary and tertiary alcohols, secondary and tertiary amines, and ketones to such coal liquids at levels of 5-25% by weight with respect to the coal liquid being treated. Cyclohexanol is a particularly effective and cost-efficient stabilizer. Other stabilizers are isopropanol, diphenylmethanol, tertiary butanol, dipropylamine, triethylamine, diphenylamine, ethylmethylketone, cyclohexanone, methylphenylketone, and benzophenone. Experimental data indicate that stabilization is achieved by breaking hydrogen bonds between phenols in the coal liquid, thereby preventing or retarding oxidative coupling. In addition, it has been found that coal liquid fractions stabilized according to the invention can be mixed with petroleum-derived liquid fuels to produce mixtures in which gum deposition is prevented or reduced relative to similar mixtures not containing stabilizer.

  6. Cryogenic, compressed, and liquid hydrogen fuel storage in vehicles

    E-Print Network [OSTI]

    Reyes, Allan B

    2007-01-01T23:59:59.000Z

    Hydrogen is the viable energy carrier of future energy and transportation systems due to its clean emissions, light weight, and abundance. Its extremely low volumetric density, however, presents significant challenges to ...

  7. Technical Assessment of Organic Liquid Carrier Hydrogen Storage...

    Broader source: Energy.gov (indexed) [DOE]

    On-board Assessment Analysis Purchased Components 0.5X Modine OEM 37 not including tooling and capital cost markup 1.2 18 5 2.0 H 2 Blower 0.4X McMaster-Carr catalog price...

  8. Gaseous and Liquid Hydrogen Storage | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdf Flash2006-52.pdf0.pdfDepartment ofEnergyGE-ProlecGTO 2013Gas-FiredHydrogen

  9. Technical Assessment of Organic Liquid Carrier Hydrogen Storage Systems for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic| Department ofGeneralWind » TaxDepartmentAutomotive

  10. Safetygram #9- Liquid Hydrogen

    Broader source: Energy.gov [DOE]

    Hydrogen is colorless as a liquid. Its vapors are colorless, odorless, tasteless, and highly flammable.

  11. Two liquid states of matter: A new dynamic line on a phase diagram

    E-Print Network [OSTI]

    V. V. Brazhkin; Yu. D. Fomin; A. G. Lyapin; V. N. Ryzhov; Kostya Trachenko

    2011-07-29T23:59:59.000Z

    It is generally agreed that the supercritical region of a liquid consists of one single state (supercritical fluid). On the other hand, we show here that liquids in this region exist in two qualitatively different states: "rigid" and "non-rigid" liquid. Rigid to non-rigid transition corresponds to the condition {\\tau} ~ {\\tau}0, where {\\tau}is liquid relaxation time and {\\tau}0 is the minimal period of transverse quasi-harmonic waves. This condition defines a new dynamic line on the phase diagram, and corresponds to the loss of shear stiffness of a liquid at all available frequencies, and consequently to the qualitative change of many important liquid properties. We analyze the dynamic line theoretically as well as in real and model liquids, and show that the transition corresponds to the disappearance of high-frequency sound, qualitative changes of diffusion and viscous flow, increase of particle thermal speed to half of the speed of sound and reduction of the constant volume specific heat to 2kB per particle. In contrast to the Widom line that exists near the critical point only, the new dynamic line is universal: it separates two liquid states at arbitrarily high pressure and temperature, and exists in systems where liquid - gas transition and the critical point are absent overall.

  12. GAS STORAGE TECHNOLOGY CONSORTIUM

    SciTech Connect (OSTI)

    Robert W. Watson

    2004-10-18T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. The first phase, Phase 1A, was initiated on September 30, 2003, and was completed on March 31, 2004. Phase 1A of the project included the creation of the GSTC structure, development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with Phase 1B and encompasses the period July 1, 2004, through September 30, 2004. During this time period there were three main activities. First was the ongoing negotiations of the four sub-awards working toward signed contracts with the various organizations involved. Second, an Executive Council meeting was held at Penn State September 9, 2004. And third, the GSTC participated in the SPE Eastern Regional Meeting in Charleston, West Virginia, on September 16th and 17th. We hosted a display booth with the Stripper Well Consortium.

  13. GAS STORAGE TECHNOLOGY CONSORTIUM

    SciTech Connect (OSTI)

    Robert W. Watson

    2004-07-15T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and was completed on March 31, 2004. Phase 1A of the project included the creation of the GSTC structure, development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with Phase 1B and encompasses the period April 1, 2004, through June 30, 2004. During this 3-month period, a Request for Proposals (RFP) was made. A total of 17 proposals were submitted to the GSTC. A proposal selection meeting was held June 9-10, 2004 in Morgantown, West Virginia. Of the 17 proposals, 6 were selected for funding.

  14. Fractal dimension and unscreened angles measured for radial viscous fingering Olivier Praud and Harry L. Swinney

    E-Print Network [OSTI]

    Texas at Austin. University of

    Fractal dimension and unscreened angles measured for radial viscous fingering Olivier Praud fractal patterns formed by the injection of air into oil in a thin 0.127 mm layer contained between two reaches r/b=900, are far larger than in past experiments. The fractal dimension D0 of the pattern

  15. Fractal dimension unscreened angles measured for radial viscous fingering Olivier Praud Harry Swinney

    E-Print Network [OSTI]

    Texas at Austin. University of

    Fractal dimension unscreened angles measured for radial viscous fingering Olivier Praud Harry, USA #Received November 2004; published July 2005# have examined fractal patterns formed injection experiments. fractal dimension D 0 of pattern large r / 1.70±0.02. Further, generalized dimensions D pattern

  16. Application of a simple viscous model to the cyclic behavior of clays at small strains

    E-Print Network [OSTI]

    Application of a simple viscous model to the cyclic behavior of clays at small strains Gilberto F development of the cyclic behavior of clays at small strains using the model proposed by Martins (1992 tests carried out by Mortezaie (2012) in a fabricated clay. It is shown that satisfactory predictions

  17. A gas-solid free boundary problem for compressible viscous gas

    E-Print Network [OSTI]

    and Chemical, Beijing,100029,China Abstract In this paper we propose a gas-solid free boundary problem is physically natural because the density of the gas transited in phase from the solid is usually much less thanA gas-solid free boundary problem for compressible viscous gas Feimin Huang y Akitaka Matsumura y

  18. Plastic and viscous dissipations in foams: cross-over from low to high shear rates

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    by the thin dotted arrow. The geometry of the bubble walls at three points of the curve is shown as insets display elastic, plastic and viscous behaviours. Bubble deformation is elastic until the material plastically yields and bubbles swap neighbours, then bubbles relax dissipatively towards a new energy minimum

  19. Uniform Directional Alignment of Single-Walled Carbon Nanotubes in Viscous Polymer Flow

    E-Print Network [OSTI]

    Garmestani, Hamid

    of the carbon nanotubes on their ability to enhance the mechanical properties of the composites that they form of carbon nanotube dispersion on composite properties, their degree of alignment in the respective matrixUniform Directional Alignment of Single-Walled Carbon Nanotubes in Viscous Polymer Flow Erin

  20. hal-00192143,version1-26Nov2007 Viscous fingering of miscible slices

    E-Print Network [OSTI]

    Boyer, Edmond

    displaced by a lower viscosity fluid is studied in porous media by direct numerical simulations of Darcy's law coupled to the evolution equation for the concentration of a solute controlling the viscosity usually presented for this instability is that of oil recovery for which viscous fingering takes place

  1. Stability and Interaction of Vortices in Two-Dimensional Viscous Flows

    E-Print Network [OSTI]

    Gallay, Thierry

    Stability and Interaction of Vortices in Two-Dimensional Viscous Flows Thierry Gallay Universit´e de Grenoble I Institut Fourier, UMR CNRS 5582 B.P. 74 F-38402 Saint-Martin-d'H`eres, France Thierry.Gallay

  2. Stability and Interaction of Vortices in TwoDimensional Viscous Flows

    E-Print Network [OSTI]

    Gallay, Thierry

    Stability and Interaction of Vortices in Two­Dimensional Viscous Flows Thierry Gallay Universitâ??e de Grenoble I Institut Fourier, UMR CNRS 5582 B.P. 74 F­38402 Saint­Martin­d'Hâ??eres, France Thierry.Gallay

  3. A Viscous Compressible Model for Stress Generation/Relaxation in SiO 2

    E-Print Network [OSTI]

    Dunham, Scott

    , and the transport equation along with appropriate bound­ ary conditions have been formulated. The material law used for the oxide is that of a compressible viscous material applied via mass and momentum balance (Navier behavior of silicon dioxide and its effect on oxidation kinetics. Conservation of mass, momentum balance

  4. Coulomb and viscous friction fault detection with application to a pneumatic actuator

    E-Print Network [OSTI]

    Dunbar, William

    Coulomb and viscous friction fault detection with application to a pneumatic actuator W.B. Dunbar of friction (fault) presented in this paper could facilitate the compensation of dry friction in high precision position- ing mechanisms. Moreover, a fault detection technique for monitoring dry friction would

  5. The viscous potential free surface flows in a moving domain of infinite depth without surface tension

    E-Print Network [OSTI]

    Yorke, James

    . It turns out that the new system is the viscous version of the water wave equations and the dissipation@cscamm.umd.edu. 1 #12;(1) The kinematic condition: We represent the free boundary by z - (x, y, t) = 0. Since (t + v

  6. Initial eccentricity and constituent quark number scaling of elliptic flow in ideal and viscous dynamics

    E-Print Network [OSTI]

    A. K. Chaudhuri

    2010-03-23T23:59:59.000Z

    In the Israel-Stewart's theory of dissipative hydrodynamics, we study the scaling properties elliptic flow in Au+Au collisions. Initial energy density of the fluid was fixed to reproduce STAR data on $\\phi$ meson multiplicity in 0-5% Au+Au collisions, such that irrespective of fluid viscosity, entropy at the freeze-out is similar in ideal or in viscous evolution. Initial eccentricity or constituent quark number scaling is only approximate in ideal or minimally viscous ($\\eta/s=1/4\\pi$) fluid. Eccentricity scaling become nearly exact in more viscous fluid ($\\eta/s \\geq$0.12). However, in more viscous fluid, constituent quark number scaled elliptic flow for mesons and baryons split into separate scaling functions. Simulated flows also do not exhibit 'universal scaling' i.e. elliptic flow scaled by the constituent quark number and charged particles $v_2$ is not a single function of transverse kinetic energy scaled by the quark number. From a study of violation of universal scaling, we obtain an estimate of QGP viscosity, $\\eta/s=0.12 \\pm 0.03$.

  7. Viscous flow lobes in central Taylor Valley, Antarctica: Origin as remnant buried glacial ice

    E-Print Network [OSTI]

    Marchant, David R.

    its terminus, the ESL flows at a rate of 2.4 to 6.7 mm a-1 . The loose drift that caps the buried ice temperatures show that intermittent melting is most likely possible during summer months where buried ice is 35Viscous flow lobes in central Taylor Valley, Antarctica: Origin as remnant buried glacial ice Kate

  8. Stationary free surface viscous ows without surface tension in three dimensions

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Stationary free surface viscous ows without surface tension in three dimensions Frederic Abergel owing down a three dimensional channel. In the absence of surface tension, we prove the existence is not elliptic when surface tension is neglected. Hence, analysis such as that made in [4] or [17] fails

  9. Stationary free surface viscous flows without surface tension in three dimensions

    E-Print Network [OSTI]

    Boyer, Edmond

    Stationary free surface viscous flows without surface tension in three dimensions Frederic Abergel dimensional channel. In the absence of surface tension, we prove the existence of a unique stationary solution is not elliptic when surface tension is neglected. Hence, analysis such as that made in [4] or [17] fails

  10. Fjords viscous fingering: Selection width and opening angle 1 Matthew Thrasher,

    E-Print Network [OSTI]

    Texas at Austin. University of

    blocks of solutions of zero­surface­tension Laplacian growth equation.# Experiments in rectangular capillary number = , where is viscosity of V is the local interfacial velocity, surface tension air penetrating viscous fluid interfacial tension# #2#. exact solutions interface free finite­time singularities

  11. CLEANING OF VISCOUS DROPS ON A FLAT INCLINED SURFACE USING GRAVITY-DRIVEN FILM FLOWS

    E-Print Network [OSTI]

    Dalziel, Stuart

    then transports it away. To assess the impact of the drop on the velocity of the cleaning fluid, we have developed it is perturbed by a solid obstacle representing a very viscous drop. We find that at intermediate Reynolds number as in our daily life (Yeckel and Middleman, 1987), such as in a household dishwasher. In a full dishwasher

  12. Energy storage connection system

    DOE Patents [OSTI]

    Benedict, Eric L.; Borland, Nicholas P.; Dale, Magdelena; Freeman, Belvin; Kite, Kim A.; Petter, Jeffrey K.; Taylor, Brendan F.

    2012-07-03T23:59:59.000Z

    A power system for connecting a variable voltage power source, such as a power controller, with a plurality of energy storage devices, at least two of which have a different initial voltage than the output voltage of the variable voltage power source. The power system includes a controller that increases the output voltage of the variable voltage power source. When such output voltage is substantially equal to the initial voltage of a first one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the first one of the energy storage devices. The controller then causes the output voltage of the variable voltage power source to continue increasing. When the output voltage is substantially equal to the initial voltage of a second one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the second one of the energy storage devices.

  13. CHEMICAL STORAGE: MYTHS VERSUS REALITY

    SciTech Connect (OSTI)

    Simmons, F

    2007-03-19T23:59:59.000Z

    A large number of resources explaining proper chemical storage are available. These resources include books, databases/tables, and articles that explain various aspects of chemical storage including compatible chemical storage, signage, and regulatory requirements. Another source is the chemical manufacturer or distributor who provides storage information in the form of icons or color coding schemes on container labels. Despite the availability of these resources, chemical accidents stemming from improper storage, according to recent reports (1) (2), make up almost 25% of all chemical accidents. This relatively high percentage of chemical storage accidents suggests that these publications and color coding schemes although helpful, still provide incomplete information that may not completely mitigate storage risks. This manuscript will explore some ways published storage information may be incomplete, examine the associated risks, and suggest methods to help further eliminate chemical storage risks.

  14. Storage Ring Parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebookScholarshipSpiralingSecurity217,354 217,814 218,494StorageStorage

  15. Spent-fuel-storage alternatives

    SciTech Connect (OSTI)

    Not Available

    1980-01-01T23:59:59.000Z

    The Spent Fuel Storage Alternatives meeting was a technical forum in which 37 experts from 12 states discussed storage alternatives that are available or are under development. The subject matter was divided into the following five areas: techniques for increasing fuel storage density; dry storage of spent fuel; fuel characterization and conditioning; fuel storage operating experience; and storage and transport economics. Nineteen of the 21 papers which were presented at this meeting are included in this Proceedings. These have been abstracted and indexed. (ATT)

  16. Sandia National Laboratories: Energy Storage Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandian Spoke at the New York Energy Storage Expo On December 12, 2014, in Energy, Energy Storage, Energy Storage Systems, Grid Integration, Infrastructure Security, News, News &...

  17. AQUIFER THERMAL ENERGY STORAGE-A SURVEY

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2012-01-01T23:59:59.000Z

    High temperature underground thermal energy storage, inProceedings, Thermal Energy Storage in Aquifers Workshop:underground thermal energy storage, in ATES newsletter:

  18. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01T23:59:59.000Z

    Survey of Thermal Energy Storage in Aquifers Coupled withconcept of thermal energy storage in aquifers was suggestedLow Temperature Thermal Energy Storage Program of Oak Ridge

  19. Sandia National Laboratories: DOE International Energy Storage...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    International Energy Storage Database Has Logged 420 Energy Storage Projects Worldwide with 123 GW of Installed Capacity DOE International Energy Storage Database Has Logged 420...

  20. Distributed Generation with Heat Recovery and Storage

    E-Print Network [OSTI]

    Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

    2008-01-01T23:59:59.000Z

    tiles for thermal energy storage,” working paper, Colorado1991). Wallboard with latent heat storage for passive solarR. (2000). Thermal energy storage for space cooling, Pacific

  1. Sandia National Laboratories: Electricity Storage Handbook

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electricity Storage Handbook Published On July 31, 2013, in Energy, Energy Assurance, Energy Storage, Energy Storage Systems, Energy Surety, Grid Integration, Infrastructure...

  2. Nanostructured Materials for Energy Generation and Storage

    E-Print Network [OSTI]

    Khan, Javed Miller

    2012-01-01T23:59:59.000Z

    for Electrochemical Energy Storage Nanostructured ElectrodesCells for Energy Storage and Generation . . . . . . . . . .batteries and their energy storage efficiency. vii Contents

  3. NERSC Frontiers in Advanced Storage Technology Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage R&D Frontiers in Advanced Storage Technologies (FAST) project Working with vendors to develop new functionality in storage technologies generally not yet available to...

  4. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01T23:59:59.000Z

    Survey of Thermal Energy Storage in Aquifers Coupled withAnnual Thermal Energy Storage Contractors' InformationLarge-Scale Thermal Energy Storage for Cogeneration and

  5. Nanostructured Materials for Energy Generation and Storage

    E-Print Network [OSTI]

    Khan, Javed Miller

    2012-01-01T23:59:59.000Z

    of new energy generation and storage technologies arenew energy generation and storage technologies is importantBased Energy Storage and Generation Technologies The world

  6. Water Heaters (Storage Oil) | Department of Energy

    Energy Savers [EERE]

    Oil) Water Heaters (Storage Oil) Water Heater, Storage Oil - v1.0.xlsx More Documents & Publications Water Heaters (Tankless Electric) Water Heaters (Storage Electric)...

  7. AQUIFER THERMAL ENERGY STORAGE-A SURVEY

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2012-01-01T23:59:59.000Z

    1978, High temperature underground thermal energy storage,in Proceedings, Thermal Energy Storage in Aquifers Workshop:High temperature underground thermal energy storage, in ATES

  8. NV Energy Electricity Storage Valuation

    SciTech Connect (OSTI)

    Ellison, James F.; Bhatnagar, Dhruv; Samaan, Nader A.; Jin, Chunlian

    2013-06-30T23:59:59.000Z

    This study examines how grid-level electricity storage may benet the operations of NV Energy in 2020, and assesses whether those benets justify the cost of the storage system. In order to determine how grid-level storage might impact NV Energy, an hourly production cost model of the Nevada Balancing Authority (\\BA") as projected for 2020 was built and used for the study. Storage facilities were found to add value primarily by providing reserve. Value provided by the provision of time-of-day shifting was found to be limited. If regulating reserve from storage is valued the same as that from slower ramp rate resources, then it appears that a reciprocating engine generator could provide additional capacity at a lower cost than a pumped storage hydro plant or large storage capacity battery system. In addition, a 25-MW battery storage facility would need to cost $650/kW or less in order to produce a positive Net Present Value (NPV). However, if regulating reserve provided by storage is considered to be more useful to the grid than that from slower ramp rate resources, then a grid-level storage facility may have a positive NPV even at today's storage system capital costs. The value of having storage provide services beyond reserve and time-of-day shifting was not assessed in this study, and was therefore not included in storage cost-benefit calculations.

  9. Underground pumped hydroelectric storage

    SciTech Connect (OSTI)

    Allen, R.D.; Doherty, T.J.; Kannberg, L.D.

    1984-07-01T23:59:59.000Z

    Underground pumped hydroelectric energy storage was conceived as a modification of surface pumped storage to eliminate dependence upon fortuitous topography, provide higher hydraulic heads, and reduce environmental concerns. A UPHS plant offers substantial savings in investment cost over coal-fired cycling plants and savings in system production costs over gas turbines. Potential location near load centers lowers transmission costs and line losses. Environmental impact is less than that for a coal-fired cycling plant. The inherent benefits include those of all pumped storage (i.e., rapid load response, emergency capacity, improvement in efficiency as pumps improve, and capacity for voltage regulation). A UPHS plant would be powered by either a coal-fired or nuclear baseload plant. The economic capacity of a UPHS plant would be in the range of 1000 to 3000 MW. This storage level is compatible with the load-leveling requirements of a greater metropolitan area with population of 1 million or more. The technical feasibility of UPHS depends upon excavation of a subterranean powerhouse cavern and reservoir caverns within a competent, impervious rock formation, and upon selection of reliable and efficient turbomachinery - pump-turbines and motor-generators - all remotely operable.

  10. Hydrogen Storage CODES & STANDARDS

    E-Print Network [OSTI]

    automotive start-up. · Air/Thermal/Water Management ­ improved air systems, high temperature membranes, heat to pump Hydrogen Fuel/ Storage/ Infrastructure $45/kW (2010) $30kW (2015) 325 W/kg 220 W/L 60% (hydrogen system Component Air management, sensors, MEA's, membranes, Bipolar Plates, fuel processor reactor zones

  11. Influence of Controlled Viscous Dissipation on the Propagation of Strongly Nonlinear Waves in Stainless Steel Based Phononic Crystals

    E-Print Network [OSTI]

    E. B. Herbold; V. F. Nesterenko; C. Daraio

    2005-12-22T23:59:59.000Z

    Strongly nonlinear phononic crystals were assembled from stainless steel spheres. Single solitary waves and splitting of an initial pulse into a train of solitary waves were investigated in different viscous media using motor oil and non-aqueous glycerol to introduce a controlled viscous dissipation. Experimental results indicate that the presence of a viscous fluid dramatically altered the splitting of the initial pulse into a train of solitary waves. Numerical simulations qualitatively describe the observed phenomena only when a dissipative term based on the relative velocity between particles is introduced.

  12. Storage Ring | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Electron Storage Ring The 7-GeV electrons are injected into the 1104-m-circumference storage ring, a circle of more than 1,000 electromagnets and associated equipment, located...

  13. Chit-based Remote Storage

    E-Print Network [OSTI]

    Paluska, Justin Mazzola

    We propose a model for reliable remote storage founded on contract law. Consumers submit their bits to storage providers in exchange for a chit. A chit is a cryptographically secure, verifiable contract between a consumer ...

  14. Process for synthesis of ammonia borane for bulk hydrogen storage

    DOE Patents [OSTI]

    Autrey, S Thomas [West Richland, WA; Heldebrant, David J [Richland, WA; Linehan, John C [Richland, WA; Karkamkar, Abhijeet J [Richland, WA; Zheng, Feng [Richland, WA

    2011-03-01T23:59:59.000Z

    The present invention discloses new methods for synthesizing ammonia borane (NH.sub.3BH.sub.3, or AB). Ammonium borohydride (NH.sub.4BH.sub.4) is formed from the reaction of borohydride salts and ammonium salts in liquid ammonia. Ammonium borohydride is decomposed in an ether-based solvent that yields AB at a near quantitative yield. The AB product shows promise as a chemical hydrogen storage material for fuel cell powered applications.

  15. Silo Storage Preconceptual Design

    SciTech Connect (OSTI)

    Stephanie L. Austad; Patrick W. Bragassa; Kevin M Croft; David S Ferguson; Scott C Gladson; Annette L Shafer; John H Weathersby

    2012-09-01T23:59:59.000Z

    The National Nuclear Security Administration (NNSA) has a need to develop and field a low-cost option for the long-term storage of a variety of radiological material. The storage option’s primary requirement is to provide both environmental and physical protection of the materials. Design criteria for this effort require a low initial cost and minimum maintenance over a 50-year design life. In 1999, Argonne National Laboratory-West was tasked with developing a dry silo storage option for the BN-350 Spent Fuel in Aktau Kazakhstan. Argon’s design consisted of a carbon steel cylinder approximately 16 ft long, 18 in. outside diameter and 0.375 in. wall thickness. The carbon steel silo was protected from corrosion by a duplex coating system consisting of zinc and epoxy. Although the study indicated that the duplex coating design would provide a design life well in excess of the required 50 years, the review board was concerned because of the novelty of the design and the lack of historical use. In 2012, NNSA tasked Idaho National Laboratory (INL) with reinvestigating the silo storage concept and development of alternative corrosion protection strategies. The 2012 study, “Silo Storage Concepts, Cathodic Protection Options Study” (INL/EST-12-26627), concludes that the option which best fits the design criterion is a passive cathotic protection scheme, consisting of a carbon steel tube coated with zinc or a zinc-aluminum alloy encapsulated in either concrete or a cement grout. The hot dipped zinc coating option was considered most efficient, but the flame-sprayed option could be used if a thicker zinc coating was determined to be necessary.

  16. Liquid Hydrogen Absorber for MICE

    E-Print Network [OSTI]

    Ishimoto, S.

    2010-01-01T23:59:59.000Z

    REFERENCES Figure 5: Liquid hydrogen absorber and test6: Cooling time of liquid hydrogen absorber. Eight CernoxLIQUID HYDROGEN ABSORBER FOR MICE S. Ishimoto, S. Suzuki, M.

  17. Webinar: Hydrogen Storage Materials Requirements

    Broader source: Energy.gov [DOE]

    Video recording and text version of the webinar titled, Hydrogen Storage Materials Requirements, originally presented on June 25, 2013.

  18. The Power of Energy Storage

    E-Print Network [OSTI]

    Sadoulet, Elisabeth

    The Power of Energy Storage How to Increase Deployment in California to Reduce Greenhouse Gas;1Berkeley Law \\ UCLA Law The Power of Energy Storage: How to Increase Deployment in California to Reduce Greenhouse Gas Emissions Executive Summary: Expanding Energy Storage in California Sunshine and wind, even

  19. HIERARCHICAL STORAGE SYSTEMS FOR INTERACTIVE

    E-Print Network [OSTI]

    Tobagi, Fouad

    HIERARCHICAL STORAGE SYSTEMS FOR INTERACTIVE VIDEO­ON­DEMAND Shueng­Han Gary Chan and Fouad A; Hierarchical Storage Systems for Interactive Video­On­Demand Shueng­Han Gary Chan and Fouad A. Tobagi Technical­9040 pubs@shasta.stanford.edu Abstract On­demand video servers based on hierarchical storage systems

  20. GETTING CARBON CAPTURE AND STORAGE

    E-Print Network [OSTI]

    Haszeldine, Stuart

    GETTING CARBON CAPTURE AND STORAGE TECHNOLOGIES TO MARKET BREAKING THE DEADLOCK Report of a Science: Carbon Capture and Storage © OECD/IEA 2009, fig. 1, p. 6 Figures 2 and 3 reprinted with permission from `UK Carbon storage and capture, where is it?' by Stuart Haszeldine, Professor of Carbon Capture

  1. Normal matter storage of antiprotons

    SciTech Connect (OSTI)

    Campbell, L.J.

    1987-01-01T23:59:59.000Z

    Various simple issues connected with the possible storage of anti p in relative proximity to normal matter are discussed. Although equilibrium storage looks to be impossible, condensed matter systems are sufficiently rich and controllable that nonequilibrium storage is well worth pursuing. Experiments to elucidate the anti p interactions with normal matter are suggested. 32 refs.

  2. Storage stability studies of fuels derived from shale and petroleum

    SciTech Connect (OSTI)

    Jones, L.; Hazlett, R.N.; Li, N.C.; Ge, J.

    1983-01-01T23:59:59.000Z

    Results of studies on the characterization and mechanisms of formation of deposits in containers used for storage of jet and diesel fuels are reported. The studies were aimed at storage times of weeks or months. Development of the amount of sediments depends on stress temperature, and the rate of sediment formation can be determined by traditional gravimetric procedures. Early stages of fuel storage degradation can be monitored by laser light scattering methods. The effects of certain heteroaromatic compounds on the formation of sediments were studied by light scattering techniques, liquid state NMR, solid state NMR, ESCA, and Fourier Transform Infrared Spectroscopy. Oxygen was found to be necessary for the formation of sediments, and 2,5-dimethylpyrrole was the most powerful promoter of deposit formation. (BLM)

  3. Amineborane Based Chemical Hydrogen Storage - Final Report

    SciTech Connect (OSTI)

    Sneddon, Larry G.

    2011-04-21T23:59:59.000Z

    The development of efficient and safe methods for hydrogen storage is a major hurdle that must be overcome to enable the use of hydrogen as an alternative energy carrier. The objectives of this project in the DOE Center of Excellence in Chemical Hydride Storage were both to develop new methods for on-demand, low temperature hydrogen release from chemical hydrides and to design high-conversion off-board methods for chemical hydride regeneration. Because of their reactive protic (N-H) and hydridic (B-H) hydrogens and high hydrogen contents, amineboranes such as ammonia borane, NH3BH3 (AB), 19.6-wt% H2, and ammonia triborane NH3B3H7 (AT), 17.7-wt% H2, were initially identified by the Center as promising, high-capacity chemical hydrogen storage materials with the potential to store and deliver molecular hydrogen through dehydrogenation and hydrolysis reactions. In collaboration with other Center partners, the Penn project focused both on new methods to induce amineborane H2-release and on new strategies for the regeneration the amineborane spent-fuel materials. The Penn approach to improving amineborane H2-release focused on the use of ionic liquids, base additives and metal catalysts to activate AB dehydrogenation and these studies successfully demonstrated that in ionic liquids the AB induction period that had been observed in the solid-state was eliminated and both the rate and extent of AB H2-release were significantly increased. These results have clearly shown that, while improvements are still necessary, many of these systems have the potential to achieve DOE hydrogen-storage goals. The high extent of their H2­-release, the tunability of both their H2 materials weight-percents and release rates, and their product control that is attained by either trapping or suppressing unwanted volatile side products, such as borazine, continue to make AB/ionic­-liquid based systems attractive candidates for chemical hydrogen storage applications. These studies also demonstrated that H2-­release from chemical hydrides can occur by a number of different mechanistic pathways and strongly suggest that optimal chemical ­hydride based H2­release systems may require the use of synergistic dehydrogenation methods to induce H2­-loss from chemically different intermediates formed during release reactions. The efficient regeneration of ammonia borane from BNHx spent fuel is one of the most challenging problems that will have to be overcome in order to utilize AB-based hydrogen storage. Three Center partners, LANL, PNNL and Penn, each took different complimentary approaches to AB regeneration. The Penn approach focused on a strategy involving spent-fuel digestion with superacidic acids to produce boron-halides (BX3) that could then be converted to AB by coordination/reduction/displacement processes. While the Penn boron-halide reduction studies successfully demonstrated that a dialkylsulfide-based coordination/reduction/displacement process gave quantitative conversions of BBr3 to ammonia borane with efficient and safe product separations, the fact that AB spent-fuels could not be digested in good yields to BX3 halides led to a No-Go decision on this overall AB-regeneration strategy.

  4. Above Ground Storage Tank (AST) Inspection Form

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Above Ground Storage Tank (AST) Inspection Form Petroleum Bulk Storage Form Facility Name.ehs.cornell.edu/env/bulk-material-storage/petroleum-bulk-storage/Documents/AST_Inspection_Form.pdf #12;

  5. Panel 4, Hydrogen Energy Storage Policy Considerations

    Broader source: Energy.gov (indexed) [DOE]

    Energy Storage Policy Considerations Hydrogen Storage Workshop Jeffrey Reed Southern California Gas Company May 15, 2014 0 Methane is a Great Storage Medium 1 SoCalGas' storage...

  6. Central Storage for Unsealed Radioactive Materials

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Central Storage for Unsealed Radioactive Materials Radiation Safety Form PERMIT HOLDER NAME:______________________________ PHONE #: ____________________________ ADDRESS/DEPT.: _______________________________ Storage Location: Refrigerator Freezer Dry Storage List each item being transferred to storage separately: EH&S LAB WIPE SURVEY

  7. Unusual mechanism for the short-range electron transfer within gold-alkanethiol-ionic-liquid films of subnanometer thickness

    SciTech Connect (OSTI)

    Khoshtariya, Dimitri E. [Department of Physics and Institute for Biophysics and Bionanosciences, I. Javakhishvili Tbilisi State University, I. Chavchavadze Avenue 3, 0128 Tbilisi, Georgia (United States); Department of Chemistry and Pharmacy, University of Erlangen-Nuernberg, Egerlandstrasse 1, 91058 Erlangen (Germany); Institute of Molecular Biology and Biophysics and Institute of Inorganic Chemistry and Electrochemistry, Gotua 12, 0160 Tbilisi, Georgia (United States); Dolidze, Tina D. [Department of Chemistry and Pharmacy, University of Erlangen-Nuernberg, Egerlandstrasse 1, 91058 Erlangen (Germany); Institute of Molecular Biology and Biophysics and Institute of Inorganic Chemistry and Electrochemistry, Gotua 12, 0160 Tbilisi, Georgia (United States); Eldik, Rudi van [Department of Chemistry and Pharmacy, University of Erlangen-Nuernberg, Egerlandstrasse 1, 91058 Erlangen (Germany)

    2009-12-15T23:59:59.000Z

    Exploiting nanoscopically tunable composite gold-alkanethiol-ionic-liquid/ferrocene self-assembled systems with tunable electron transfer distance, we discovered in the case of thinner alkanethiol films a thermally activated electron transfer pattern totally controlled by the viscosity-related slow relaxation mode(s) of the ionic liquid acting as the reactant's fluctuating environment. This pattern manifested through the activation enthalpy and volume parameters that are identical to those for viscous flow was explained in terms of the extreme adiabatic mechanism with a vanishing Marcus barrier (via the exponential Franck-Condon-like term approaching unity).

  8. Sandia National Laboratories: Energy Storage Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reserve University On January 28, 2014, in Computational Modeling & Simulation, Energy, Energy Storage, Energy Storage Systems, Infrastructure Security, Materials Science,...

  9. Sandia National Laboratories: Energy Storage Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Center for Infrastructure Research and Innovation (CIRI), Energy, Energy Assurance, Energy Storage, Energy Storage Systems, Facilities, Infrastructure Security, Materials...

  10. Project Profile: Thermochemical Storage with Anhydrous Ammonia...

    Office of Environmental Management (EM)

    Storage with Anhydrous Ammonia: Optimizing the Synthesis Reactor for Direct Production of Supercritical Steam Project Profile: Thermochemical Storage with Anhydrous...

  11. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01T23:59:59.000Z

    1975. Underground Storage of Treated Water: A Field Test.1975. "Underground Storage of Treated Water: A Field Test,"

  12. Hydrogen Compression, Storage, and Dispensing Cost Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Compression, Storage, and Dispensing Cost Reduction Workshop Addendum Hydrogen Compression, Storage, and Dispensing Cost Reduction Workshop Addendum Document states additional...

  13. Combinatorial Approaches for Hydrogen Storage Materials (presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Approaches for Hydrogen Storage Materials (presentation) Combinatorial Approaches for Hydrogen Storage Materials (presentation) Presentation on NIST Combinatorial Methods at the...

  14. Equation for liquid density

    SciTech Connect (OSTI)

    Yaws, C.L.; Yang, H.C.; Hopper, J.R.; Cawley, W.A. (Lamar Univ., Beaumont, TX (US))

    1991-01-01T23:59:59.000Z

    Saturated liquid densities for organic chemicals are given as functions of temperature using a modified Rackett equation.

  15. Relaxation-time approximation and relativistic third-order viscous hydrodynamics from kinetic theory

    E-Print Network [OSTI]

    Amaresh Jaiswal

    2014-12-08T23:59:59.000Z

    Using the iterative solution of Boltzmann equation in the relaxation-time approximation, the derivation of a third-order evolution equation for shear stress tensor is presented. To this end we first derive the expression for viscous corrections to the phase-space distribution function, $f(x,p)$, up to second-order in derivative expansion. The expression for $\\delta f(x,p)$ obtained in this method does not lead to violation of the experimentally observed $1/\\sqrt{m_T}$ scaling of the femtoscopic radii, as opposed to the widely used Grad's 14-moment approximation. Subsequently, we present the derivation of a third-order viscous evolution equation and demonstrate the significance of this derivation within one-dimensional scaling expansion. We show that results obtained using third-order evolution equations are in excellent accordance with the exact solution of Boltzmann equation as well as with transport results.

  16. Comparisons of empirical viscous-fingering models and their calibration for heterogeneous problems

    SciTech Connect (OSTI)

    Fayers, F.J.; Blunt, M.J.; Christie, M.A. (BP Research Center (GB))

    1992-05-01T23:59:59.000Z

    This paper reviews the formulation and parameters for three principal empirical viscous-fingering models: the Kovl, Todd and Longstaff, and Fayers methods. All three methods give similar levels of accuracy when compared with linear homogeneous experiments, but they differ in performance in 2D applications. This arises from differences in the formulation of the total mobility terms. The superiority of the Todd and Longstaff and Fayers methods is demonstrated for 2D and gravity-influenced flows by comparison with experiments and high-resolution simulation. The use of high-resolution simulation to calibrate empirical models in a systematic manner is described. Results from detailed simulation demonstrate the sensitivity of empirical model parameters to viscous/gravity ratio, recovery process (secondary, tertiary, or water-alternating-gas (WAG)), and geological heterogeneity. For large amplitude heterogeneities with short correlation lengths, the accuracy of the empirical models is shown to be less satisfactory, but improved by the addition of a diffusive term.

  17. Viscous boundary layers of radiation-dominated, relativistic jets. II. The free-streaming jet model

    E-Print Network [OSTI]

    Coughlin, Eric R

    2015-01-01T23:59:59.000Z

    We analyze the interaction of a radiation-dominated jet and its surroundings using the equations of radiation hydrodynamics in the viscous limit. In a previous paper we considered the two-stream scenario, which treats the jet and its surroundings as distinct media interacting through radiation viscous forces. Here we present an alternative boundary layer model, known as the free-streaming jet model -- where a narrow stream of fluid is injected into a static medium -- and present solutions where the flow is ultrarelativistic and the boundary layer is dominated by radiation. It is shown that these jets entrain material from their surroundings and that their cores have a lower density of scatterers and a harder spectrum of photons, leading to observational consequences for lines of sight that look "down the barrel of the jet." These jetted outflow models may be applicable to the jets produced during long gamma-ray bursts and super-Eddington phases of tidal disruption events.

  18. Chemical equilibration in viscous quark-gluon plasma and electromagnetic signals

    E-Print Network [OSTI]

    A. K. Chaudhuri

    1998-08-28T23:59:59.000Z

    We investigate the chemical equilibration of the parton distributions in collisions of two heavy nuclei, assuming the partonic fluid to be ideal as well as viscous. The initial conditions are taken from HIJING calculations for Au+Au collisions at RHIC and LHC energies. It was seen that when the viscous drag is taken into account in the fluid flow, the life time of the plasma is increased by nearly a factor of 2. The temperature as well as fugacities evolve slowly than their ideal counterpart. The photon and lepton pair production was also investigated. There is a two fold increase in the photon and lepton pair numbers with viscosity on. The increase in the large $p_T$ photons and the large invariant mass lepton pairs are due to slower rate of temperature evolution.

  19. Frequency-dependent viscous flow in channels with fractal rough surfaces

    SciTech Connect (OSTI)

    Cortis, A.; Berryman, J.G.

    2010-05-01T23:59:59.000Z

    The viscous dynamic permeability of some fractal-like channels is studied. For our particular class of geometries, the ratio of the pore surface area-to-volume tends to {infinity} (but has a finite cutoff), and the universal scaling of the dynamic permeability, k({omega}), needs modification. We performed accurate numerical computations of k({omega}) for channels characterized by deterministic fractal wall surfaces, for a broad range of fractal dimensions. The pertinent scaling model for k({omega}) introduces explicitly the fractal dimension of the wall surface for a range of frequencies across the transition between viscous and inertia dominated regimes. The new model provides excellent agreement with our numerical simulations.

  20. Anomalous absorption of bulk shear sagittal acoustic waves in a layered structure with viscous fluid

    E-Print Network [OSTI]

    Dmitri K. Gramotnev; Melissa L. Mather; Timo A. Nieminen

    2005-09-05T23:59:59.000Z

    It is demonstrated theoretically that the absorptivity of bulk shear sagittal waves by an ultra-thin layer of viscous fluid between two different elastic media has a strong maximum (in some cases as good as 100%) at an optimal layer thickness. This thickness is usually much smaller than the penetration depths and lengths of transverse and longitudinal waves in the fluid. The angular dependencies of the absorptivity are demonstrated to have significant and unusual structure near critical angles of incidence. The effect of non-Newtonian properties and non-uniformities of the fluid layer on the absorptivity is also investigated. In particular, it is shown that the absorption in a thin layer of viscous fluid is much more sensitive to non-zero relaxation time(s) in the fluid layer than the absorption at an isolated solid-fluid interface.

  1. Phase-Changing Ionic Liquids: CO2 Capture with Ionic Liquids Involving Phase Change

    SciTech Connect (OSTI)

    None

    2010-07-01T23:59:59.000Z

    IMPACCT Project: Notre Dame is developing a new CO2 capture process that uses special ionic liquids (ILs) to remove CO2 from the gas exhaust of coal-fired power plants. ILs are salts that are normally liquid at room temperature, but Notre Dame has discovered a new class of ILs that are solid at room temperature and change to liquid when they bind to CO2. Upon heating, the CO2 is released for storage, and the ILs re-solidify and donate some of the heat generated in the process to facilitate further CO2 release. These new ILs can reduce the energy required to capture CO2 from the exhaust stream of a coal-fired power plant when compared to state-ofthe- art technology.

  2. Liquid detection circuit

    DOE Patents [OSTI]

    Regan, Thomas O. (North Aurora, IL)

    1987-01-01T23:59:59.000Z

    Herein is a circuit which is capable of detecting the presence of liquids, especially cryogenic liquids, and whose sensor will not overheat in a vacuum. The circuit parameters, however, can be adjusted to work with any liquid over a wide range of temperatures.

  3. Hydrogen storage for vehicular applications: Technology status and key development areas

    SciTech Connect (OSTI)

    Robinson, S.L.; Handrock, J.L.

    1994-04-01T23:59:59.000Z

    The state-of-the-art of hydrogen storage technology is reviewed, including gaseous, liquid, hydride, surface adsorbed media, glass microsphere, chemical reaction, and liquid chemical technologies. The review of each technology includes a discussion of advantages, disadvantages, likelihood of success, and key research and development activities. A preferred technological path for the development of effective near-term hydrogen storage includes both cur-rent DOT qualified and advanced compressed storage for down-sized highly efficient but moderate range vehicles, and liquid storage for fleet vehicle applications. Adsorbate media are also suitable for fleet applications but not for intermittent uses. Volume-optimized transition metal hydride beds are also viable for short range applications. Long-term development of coated nanoparticulate or metal matrix high conductivity magnesium alloy, is recommended. In addition, a room temperature adsorbate medium should be developed to avoid cryogenic storage requirements. Chemical storage and oxidative schemes present serious obstacles which must be addressed for these technologies to have a future role.

  4. Invariant Gibbs measures of the energy for shell models of turbulence; the inviscid and viscous cases

    E-Print Network [OSTI]

    Hakima Bessaih; Benedetta Ferrario

    2011-03-10T23:59:59.000Z

    Gaussian measures of Gibbsian type are associated with some shell models of 3D turbulence; they are constructed by means of the energy, a conserved quantity for the 3D inviscid and unforced shell model. We prove the existence of a unique global flow for a stochastic viscous shell model and a global flow for the deterministic inviscid shell model, with the property that these Gibbs measures are invariant for these flows.

  5. MECHANICS OF RELAXING SiGe ISLANDS ON A VISCOUS GLASS , J. Liang1

    E-Print Network [OSTI]

    Suo, Zhigang

    MECHANICS OF RELAXING SiGe ISLANDS ON A VISCOUS GLASS R. Huang1 , H. Yin2 , J. Liang1 , J.C. Sturm2, a SiGe thin film, a glass layer, and a Si wafer. The SiGe film is a perfect crystal, and is under biaxial compression. Pattern the SiGe film into islands. On annealing, the glass flows and the islands

  6. Thermally Fluctuating Second-Order Viscous Hydrodynamics and Heavy-Ion Collisions

    E-Print Network [OSTI]

    C. Young; J. I. Kapusta; C. Gale; S. Jeon; B. Schenke

    2014-07-03T23:59:59.000Z

    The fluctuation-dissipation theorem requires the presence of thermal noise in viscous fluids. The time and length scales of heavy ion collisions are small enough so that the thermal noise can have a measurable effect on observables. Thermal noise is included in numerical simulations of high energy lead-lead collisions, increasing average values of the momentum eccentricity and contributing to its event by event fluctuations.

  7. Nanoscale data storage

    E-Print Network [OSTI]

    J. C. Li

    2007-01-29T23:59:59.000Z

    The object of this article is to review the development of ultrahigh-density, nanoscale data storage, i.e., nanostorage. As a fundamentally new type of storage system, the recording mechanisms of nanostorage may be completely different to those of the traditional devices. Currently, two types of molecules are being studied for potential application in nanostorage. One is molecular electronic elements including molecular wires, rectifiers, switches, and transistors. The other approach employs nanostructured materials such as nanotubes, nanowires, and nanoparticles. The challenges for nanostorage are not only the materials, ultrahigh data-densities, fabrication-costs, device operating temperatures and large-scale integration, but also the development of the physical principles and models. There are already some breakthroughs obtained, but it is still unclear what kind of nanostorage systems can ultimately replace the current silicon based transistors. A promising candidate may be a molecular-nanostructure hybrid device with sub-5 nm dimensions.

  8. Superconducting magnetic energy storage

    SciTech Connect (OSTI)

    Hassenzahl, W.

    1988-08-01T23:59:59.000Z

    Recent programmatic developments in Superconducting Magnetic Energy Storage (SMES) have prompted renewed and widespread interest in this field. In mid 1987 the Defense Nuclear Agency, acting for the Strategic Defense Initiative Office, issued a request for proposals for the design and construction of SMES Engineering Test Model (ETM). Two teams, one led by Bechtel and the other by Ebasco, are now engaged in the first phase of the development of a 10 to 20 MWhr ETM. This report presents the rationale for energy storage on utility systems, describes the general technology of SMES, and explains the chronological development of the technology. The present ETM program is outlined; details of the two projects for ETM development are described in other papers in these proceedings. The impact of high T/sub c/ materials on SMES is discussed. 69 refs., 3 figs., 3 tabs.

  9. How does confinement affect the dynamics of viscous vesicles and red blood cells?

    E-Print Network [OSTI]

    Badr Kaoui; Timm Krüger; Jens Harting

    2012-07-16T23:59:59.000Z

    Despite its significance in microfluidics, the effect of confinement on the transition from the tank-treading (steady motion) to the tumbling (unsteady motion) dynamical state of deformable micro-particles has not been studied in detail. In this paper, we investigate the dynamics of a single viscous vesicle under confining shear as a general model system for red blood cells, capsules, or viscous droplets. The transition from tank-treading to tumbling motion can be triggered by the ratio between internal and external fluid viscosities. Here, we show that the transition can be induced solely by reducing the confinement, keeping the viscosity contrast constant. The observed dynamics results from the variation of the relative importance of viscous-, pressure-, and lubrication-induced torques exerted upon the vesicle. Our findings are of interest for designing future experiments or microfluidic devices: the possibility to trigger the tumbling-to-tank-treading transition either by geometry or viscosity contrast alone opens attractive possibilities for microrheological measurements as well as the detection and diagnosis of diseased red blood cells in confined flow.

  10. Maui energy storage study.

    SciTech Connect (OSTI)

    Ellison, James; Bhatnagar, Dhruv; Karlson, Benjamin

    2012-12-01T23:59:59.000Z

    This report investigates strategies to mitigate anticipated wind energy curtailment on Maui, with a focus on grid-level energy storage technology. The study team developed an hourly production cost model of the Maui Electric Company (MECO) system, with an expected 72 MW of wind generation and 15 MW of distributed photovoltaic (PV) generation in 2015, and used this model to investigate strategies that mitigate wind energy curtailment. It was found that storage projects can reduce both wind curtailment and the annual cost of producing power, and can do so in a cost-effective manner. Most of the savings achieved in these scenarios are not from replacing constant-cost diesel-fired generation with wind generation. Instead, the savings are achieved by the more efficient operation of the conventional units of the system. Using additional storage for spinning reserve enables the system to decrease the amount of spinning reserve provided by single-cycle units. This decreases the amount of generation from these units, which are often operated at their least efficient point (at minimum load). At the same time, the amount of spinning reserve from the efficient combined-cycle units also decreases, allowing these units to operate at higher, more efficient levels.

  11. Radiation monitor for liquids

    DOE Patents [OSTI]

    Koster, J.E.; Bolton, R.D.

    1999-03-02T23:59:59.000Z

    A radiation monitor for use with liquids that utilizes air ions created by alpha radiation emitted by the liquids as its detectable element. A signal plane, held at an electrical potential with respect to ground, collects these air ions. A guard plane or guard rings is used to limit leakage currents. In one embodiment, the monitor is used for monitoring liquids retained in a tank. Other embodiments monitor liquids flowing through a tank, and bodies of liquids, such as ponds, lakes, rivers and oceans. 4 figs.

  12. Radiation monitor for liquids

    DOE Patents [OSTI]

    Koster, James E. (Los Alamos, NM); Bolton, Richard D. (Los Alamos, NM)

    1999-01-01T23:59:59.000Z

    A radiation monitor for use with liquids that utilizes air ions created by alpha radiation emitted by the liquids as its detectable element. A signal plane, held at an electrical potential with respect to ground, collects these air ions. A guard plane or guard rings is used to limit leakage currents. In one embodiment, the monitor is used for monitoring liquids retained in a tank. Other embodiments monitor liquids flowing through a tank, and bodies of liquids, such as ponds, lakes, rivers and oceans.

  13. Liquid Wall Chambers

    SciTech Connect (OSTI)

    Meier, W R

    2011-02-24T23:59:59.000Z

    The key feature of liquid wall chambers is the use of a renewable liquid layer to protect chamber structures from target emissions. Two primary options have been proposed and studied: wetted wall chambers and thick liquid wall (TLW) chambers. With wetted wall designs, a thin layer of liquid shields the structural first wall from short ranged target emissions (x-rays, ions and debris) but not neutrons. Various schemes have been proposed to establish and renew the liquid layer between shots including flow-guiding porous fabrics (e.g., Osiris, HIBALL), porous rigid structures (Prometheus) and thin film flows (KOYO). The thin liquid layer can be the tritium breeding material (e.g., flibe, PbLi, or Li) or another liquid metal such as Pb. TLWs use liquid jets injected by stationary or oscillating nozzles to form a neutronically thick layer (typically with an effective thickness of {approx}50 cm) of liquid between the target and first structural wall. In addition to absorbing short ranged emissions, the thick liquid layer degrades the neutron flux and energy reaching the first wall, typically by {approx}10 x x, so that steel walls can survive for the life of the plant ({approx}30-60 yrs). The thick liquid serves as the primary coolant and tritium breeding material (most recent designs use flibe, but the earliest concepts used Li). In essence, the TLW places the fusion blanket inside the first wall instead of behind the first wall.

  14. Liquid Metal Transformers

    E-Print Network [OSTI]

    Sheng, Lei; Liu, Jing

    2014-01-01T23:59:59.000Z

    The room temperature liquid metal is quickly emerging as an important functional material in a variety of areas like chip cooling, 3D printing or printed electronics etc. With diverse capabilities in electrical, thermal and flowing behaviors, such fluid owns many intriguing properties that had never been anticipated before. Here, we show a group of unconventional phenomena occurring on the liquid metal objects. Through applying electrical field on the liquid metals immersed in water, a series of complex transformation behaviors such as self-assembling of a sheet of liquid metal film into a single sphere, quick mergences of separate metal droplets, controlled self-rotation and planar locomotion of liquid metal objects can be realized. Meanwhile, it was also found that two accompanying water vortexes were induced and reliably swirled near the rotating liquid metal sphere. Further, effects of the shape, size, voltage, orientation and geometries of the electrodes to control the liquid metal transformers were clar...

  15. Two liquid states of matter: A new dynamic line on a phase diagram

    E-Print Network [OSTI]

    Brazhkin, V V; Lyapin, A G; Ryzhov, V N; Trachenko, Kostya

    2011-01-01T23:59:59.000Z

    It is generally agreed that the supercritical region of a liquid consists of one single state (supercritical fluid). On the other hand, we show here that liquids in this region exist in two qualitatively different states: "rigid" and "non-rigid" liquid. Rigid to non-rigid transition corresponds to the condition {\\tau} ~ {\\tau}0, where {\\tau} is liquid relaxation time and {\\tau}0 is the minimal period of transverse waves. This condition defines a new dynamic line on the phase diagram, and corresponds to the loss of shear stiffness of a liquid at all available frequencies, and consequently to the qualitative change of many important liquid properties. We analyze the dynamic line theoretically as well as in real and model liquids, and show that the transition corresponds to the disappearance of high-frequency sound, qualitative changes of diffusion and viscous flow increase of particle thermal speed to half of the speed of sound and reduction of the constant volume specific heat to 2kB per particle. In contrast ...

  16. Electrowetting on liquid-infused film (EWOLF): Complete reversibility and controlled droplet oscillation suppression for fast optical imaging

    E-Print Network [OSTI]

    Hao, Chonglei; Chen, Xuemei; He, Yuncheng; Li, Qiusheng; Li, K Y; Wang, Zuankai

    2014-01-01T23:59:59.000Z

    Electrowetting on dielectric (EWOD) has emerged as a powerful tool to electrically manipulate tiny individual droplets in a controlled manner. Despite tremendous progress over the past two decades, current EWOD operating in ambient conditions has limited functionalities posing challenges for its applications, including electronic display, energy generation, and microfluidic systems. Here, we demonstrate a new paradigm of electrowetting on liquid-infused film (EWOLF) that allows for complete reversibility and tunable transient response simultaneously. We determine that these functionalities in EWOLF are attributed to its novel configuration, which allows for the formation of viscous liquid-liquid interfaces as well as additional wetting ridges, thereby suppressing the contact line pinning and severe droplet oscillation encountered in the conventional EWOD. Finally, by harnessing these functionalities demonstrated in EWOLF, we also explore its application as liquid lens for fast optical focusing.

  17. Stability of captopril in powder papers under three storage conditions

    SciTech Connect (OSTI)

    Taketomo, C.K.; Chu, S.A.; Cheng, M.H.; Corpuz, R.P. (Childrens Hospital, Los Angeles, CA (USA))

    1990-08-01T23:59:59.000Z

    The stability of captopril in powder papers under three different storage conditions was determined. Captopril 12.5-mg tablets were triturated with lactose to a final concentration of 2 mg of captopril in 100 mg of powder. A total of 240 powder papers were prepared and stored in class A prescription vials (80 papers), 002G plastic zip-lock bags (80 papers), and Moisture Proof Barrier Bags (80 papers). Immediately after preparation and at 1, 2, 3, 4, 8, 12, and 24 weeks of storage at room temperature, powder papers under each storage condition were reweighed and the contents were assayed for captopril concentration by a stability-indicating high-performance liquid chromatographic method. More than 90% of the initial captopril concentration was retained under all storage conditions during the first 12 weeks of the study. Captopril disulfide, a degradation product, was detected in one sample stored in a plastic zip-lock bag at 24 weeks. Captopril was stable for the entire 24-week period in powder papers stored in either the class A prescription vial or the Moisture Proof Barrier Bag. Captopril in powder papers is stable for at least 12 weeks when stored at room temperature under all three storage conditions.

  18. Hydrogen Storage in Metal-Organic Frameworks

    SciTech Connect (OSTI)

    Omar M. Yaghi

    2012-04-26T23:59:59.000Z

    Conventional storage of large amounts of hydrogen in its molecular form is difficult and expensive because it requires employing either extremely high pressure gas or very low temperature liquid. Because of the importance of hydrogen as a fuel, the DOE has set system targets for hydrogen storage of gravimetric (5.5 wt%) and volumetric (40 g L-1) densities to be achieved by 2015. Given that these are system goals, a practical material will need to have higher capacity when the weight of the tank and associated cooling or regeneration system is considered. The size and weight of these components will vary substantially depending on whether the material operates by a chemisorption or physisorption mechanism. In the latter case, metal-organic frameworks (MOFs) have recently been identified as promising adsorbents for hydrogen storage, although little data is available for their sorption behavior. This grant was focused on the study of MOFs with these specific objectives. (1) To examine the effects of functionalization, catenation, and variation of the metal oxide and organic linkers on the low-pressure hydrogen adsorption properties of MOFs. (2) To develop a strategy for producing MOFs with high surface area and porosity to reduce the dead space and increase the hydrogen storage capacity per unit volume. (3) To functionalize MOFs by post synthetic functionalization with metals to improve the adsorption enthalpy of hydrogen for the room temperature hydrogen storage. This effort demonstrated the importance of open metal sites to improve the adsorption enthalpy by the systematic study, and this is also the origin of the new strategy, which termed isoreticular functionalization and metalation. However, a large pore volume is still a prerequisite feature. Based on our principle to design highly porous MOFs, guest-free MOFs with ultrahigh porosity have been experimentally synthesized. MOF-210, whose BET surface area is 6240 m2 g-1 (the highest among porous solids), takes up 15 wt% of total H2 uptake at 80 bar and 77 K. More importantly, the total H2 uptake by MOF-210 was 2.7 wt% at 80 bar and 298 K, which is the highest number reported for physisorptive materials.

  19. Neutrino signals in electron-capture storage-ring experiments

    E-Print Network [OSTI]

    Avraham Gal

    2015-05-26T23:59:59.000Z

    Neutrino signals in electron-capture storage-ring experiments at GSI are reconsidered, with special emphasis placed on the quasi-circular motion of the daughter ions in two-body decays. Whereas parent-ion decay rates cannot exhibit modulation with the several-second period reported in these experiments, the time evolution of the detected daughter ions is shown to produce oscillations that under certain conditions may provide resolution of the `GSI Oscillations' puzzle. New dedicated storage-ring or trap experiments could look up for these oscillations.

  20. Composite materials for thermal energy storage

    DOE Patents [OSTI]

    Benson, D.K.; Burrows, R.W.; Shinton, Y.D.

    1985-01-04T23:59:59.000Z

    A composite material for thermal energy storage based upon polyhydric alcohols, such as pentaerythritol, trimethylol ethane (also known as pentaglycerine), neopentyl glycol and related compounds including trimethylol propane, monoaminopentaerythritol, diamino-pentaerythritol and tris(hydroxymethyl)acetic acid, separately or in combinations, which provide reversible heat storage through crystalline phase transformations. These PCM's do not become liquid during use and are in contact with at least one material selected from the group consisting of metals, carbon, siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, porous rock, and mixtures thereof. Particulate additions such as aluminum or graphite powders, as well as metal and carbon fibers can also be incorporated therein. Particulate and/or fibrous additions can be introduced into molten phase change materials which can then be cast into various shapes. After the phase change materials have solidified, the additions will remain dispersed throughout the matrix of the cast solid. The polyol is in contact with at least one material selected from the group consisting of metals, carbon, siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, and mixtures thereof.

  1. Composite materials for thermal energy storage

    DOE Patents [OSTI]

    Benson, David K. (Golden, CO); Burrows, Richard W. (Conifer, CO); Shinton, Yvonne D. (Northglenn, CO)

    1986-01-01T23:59:59.000Z

    The present invention discloses composite material for thermal energy storage based upon polyhydric alcohols, such as pentaerythritol, trimethylol ethane (also known as pentaglycerine), neopentyl glycol and related compounds including trimethylol propane, monoaminopentaerythritol, diamino-pentaerythritol and tris(hydroxymethyl)acetic acid, separately or in combinations, which provide reversible heat storage through crystalline phase transformations. These phase change materials do not become liquid during use and are in contact with at least one material selected from the group consisting of metals, carbon siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, porous rock, and mixtures thereof. Particulate additions, such as aluminum or graphite powders, as well as metal and carbon fibers can also be incorporated therein. Particulate and/or fibrous additions can be introduced into molten phase change materials which can then be cast into various shapes. After the phase change materials have solidified, the additions will remain dispersed throughout the matrix of the cast solid. The polyol is in contact with at least one material selected from the group consisting of metals, carbon siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, and mixtures thereof.

  2. Entanglement Storage Units

    E-Print Network [OSTI]

    T. Caneva; T. Calarco; S. Montangero

    2012-09-27T23:59:59.000Z

    We introduce a protocol based on optimal control to drive many body quantum systems into long-lived entangled states, protected from decoherence by big energy gaps, without requiring any apriori knowledge of the system. With this approach it is possible to implement scalable entanglement-storage units. We test the protocol in the Lipkin-Meshkov-Glick model, a prototype many-body quantum system that describes different experimental setups, and in the ordered Ising chain, a model representing a possible implementation of a quantum bus.

  3. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel Morrison; Elizabeth Wood; Barbara Robuck

    2010-09-30T23:59:59.000Z

    The EMS Energy Institute at The Pennsylvania State University (Penn State) has managed the Gas Storage Technology Consortium (GSTC) since its inception in 2003. The GSTC infrastructure provided a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. The GSTC received base funding from the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) Oil & Natural Gas Supply Program. The GSTC base funds were highly leveraged with industry funding for individual projects. Since its inception, the GSTC has engaged 67 members. The GSTC membership base was diverse, coming from 19 states, the District of Columbia, and Canada. The membership was comprised of natural gas storage field operators, service companies, industry consultants, industry trade organizations, and academia. The GSTC organized and hosted a total of 18 meetings since 2003. Of these, 8 meetings were held to review, discuss, and select proposals submitted for funding consideration. The GSTC reviewed a total of 75 proposals and committed co-funding to support 31 industry-driven projects. The GSTC committed co-funding to 41.3% of the proposals that it received and reviewed. The 31 projects had a total project value of $6,203,071 of which the GSTC committed $3,205,978 in co-funding. The committed GSTC project funding represented an average program cost share of 51.7%. Project applicants provided an average program cost share of 48.3%. In addition to the GSTC co-funding, the consortium provided the domestic natural gas storage industry with a technology transfer and outreach infrastructure. The technology transfer and outreach were conducted by having project mentoring teams and a GSTC website, and by working closely with the Pipeline Research Council International (PRCI) to jointly host technology transfer meetings and occasional field excursions. A total of 15 technology transfer/strategic planning workshops were held.

  4. Multiported storage devices

    E-Print Network [OSTI]

    Grande, Marcus Bryan

    2000-01-01T23:59:59.000Z

    of niultiported storage device 3 Linux file I/O subsystem 4 Windows NT layered I/O driver model 10 15 5 Location of multiported module in I/O stack 17 6 The bulfer cache . . . 20 7 Queuing of I/O requests 8 Processing of I/O requests by smart blkfiltcr 9... Registering of filter applet via Linux stacked module mechanism . 21 22 . . 26 10 Table of registered filter applets (functions) . . 27 11 Overhead due to presence of smart blkfilter alone . 12 Overhead of smart blkfilter using rot13 filter port 31 33...

  5. Storage | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPower 2010 1 TNews & Solar Solar How much doStorage

  6. Warehouse and Storage Buildings

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (Million Cubic58 810 0 0349,980Warehouse and Storage

  7. Storage Ring Parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary900Steep SlopeStochastic Weekly DownloadRegionalStorage Ring

  8. Sandia Energy - Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-Voltage SiliconEnergy Council ExecutivegeochemStorage

  9. Storage Ring Parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebookScholarshipSpiralingSecurity217,354 217,814 218,494Storage Ring

  10. Storage Ring Parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebookScholarshipSpiralingSecurity217,354 217,814 218,494Storage

  11. NERSC HPSS Storage Statistics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1AllocationsNOVA Portal: Submit2014ftp ftp Storage Trends

  12. 2401-W Waste storage building closure plan

    SciTech Connect (OSTI)

    LUKE, S.M.

    1999-07-15T23:59:59.000Z

    This plan describes the performance standards met and closure activities conducted to achieve clean closure of the 2401-W Waste Storage Building (2401-W) (Figure I). In August 1998, after the last waste container was removed from 2401-W, the U.S. Department of Energy, Richland Operations Office (DOE-RL) notified Washington State Department of Ecology (Ecology) in writing that the 2401-W would no longer receive waste and would be closed as a Resource Conservation and Recovery Act (RCRA) of 1976 treatment, storage, and/or disposal (TSD) unit (98-EAP-475). Pursuant to this notification, closure activities were conducted, as described in this plan, in accordance with Washington Administrative Code (WAC) 173-303-610 and completed on February 9, 1999. Ecology witnessed the closure activities. Consistent with clean closure, no postclosure activities will be necessary. Because 2401-W is a portion of the Central Waste Complex (CWC), these closure activities become the basis for removing this building from the CWC TSD unit boundary. The 2401-W is a pre-engineered steel building with a sealed concrete floor and a 15.2-centimeter concrete curb around the perimeter of the floor. This building operated from April 1988 until August 1998 storing non-liquid containerized mixed waste. All waste storage occurred indoors. No potential existed for 2401-W operations to have impacted soil. A review of operating records and interviews with cognizant operations personnel indicated that no waste spills occurred in this building (Appendix A). After all waste containers were removed, a radiation survey of the 2401-W floor for radiological release of the building was performed December 17, 1998, which identified no radiological contamination (Appendix B).

  13. Dehydrogenation of liquid fuel in microchannel catalytic reactor

    DOE Patents [OSTI]

    Toseland, Bernard Allen (Coopersburg, PA); Pez, Guido Peter (Allentown, PA); Puri, Pushpinder Singh (Emmaus, PA)

    2010-08-03T23:59:59.000Z

    The present invention is an improved process for the storage and delivery of hydrogen by the reversible hydrogenation/dehydrogenation of an organic compound wherein the organic compound is initially in its hydrogenated state. The improvement in the route to generating hydrogen is in the dehydrogenation step and recovery of the dehydrogenated organic compound resides in the following steps: introducing a hydrogenated organic compound to a microchannel reactor incorporating a dehydrogenation catalyst; effecting dehydrogenation of said hydrogenated organic compound under conditions whereby said hydrogenated organic compound is present as a liquid phase; generating a reaction product comprised of a liquid phase dehydrogenated organic compound and gaseous hydrogen; separating the liquid phase dehydrogenated organic compound from gaseous hydrogen; and, recovering the hydrogen and liquid phase dehydrogenated organic compound.

  14. Article for thermal energy storage

    DOE Patents [OSTI]

    Salyer, Ival O. (Dayton, OH)

    2000-06-27T23:59:59.000Z

    A thermal energy storage composition is provided which is in the form of a gel. The composition includes a phase change material and silica particles, where the phase change material may comprise a linear alkyl hydrocarbon, water/urea, or water. The thermal energy storage composition has a high thermal conductivity, high thermal energy storage, and may be used in a variety of applications such as in thermal shipping containers and gel packs.

  15. Gas hydrate cool storage system

    DOE Patents [OSTI]

    Ternes, M.P.; Kedl, R.J.

    1984-09-12T23:59:59.000Z

    The invention presented relates to the development of a process utilizing a gas hydrate as a cool storage medium for alleviating electric load demands during peak usage periods. Several objectives of the invention are mentioned concerning the formation of the gas hydrate as storage material in a thermal energy storage system within a heat pump cycle system. The gas hydrate was formed using a refrigerant in water and an example with R-12 refrigerant is included. (BCS)

  16. Parameter exploration of optically trapped liquid aerosols

    E-Print Network [OSTI]

    D. R. Burnham; P. J. Reece; D. McGloin

    2010-06-24T23:59:59.000Z

    When studying the motion of optically trapped particles on the $\\mu s$ time scale, in low viscous media such as air, inertia cannot be neglected. Resolution of unusual and interesting behaviour not seen in colloidal trapping experiments is possible. In attempt to explain the phenomena we use power spectral methods to perform a parameter study of the Brownian motion of optically trapped liquid aerosol droplets concentrated around the critically damped regime. We present evidence that the system is suitably described by a simple harmonic oscillator model which must include a description of Fax\\'{e}n's correction, but not necessarily frequency dependent hydrodynamic corrections to Stokes' law. We also provide results describing how the system behaves under several variables and discuss the difficulty in decoupling the parameters responsible for the observed behaviour. We show that due to the relatively low dynamic viscosity and high trap stiffness it is easy to transfer between over- and under-damped motion by experimentally altering either trap stiffness or damping. Our results suggest stable aerosol trapping may be achieved in under-damped conditions, but the onset of deleterious optical forces at high trapping powers prevents the probing of the upper stability limits due to Brownian motion.

  17. Blast Load Response of Steel Sandwich Panels with Liquid Encasement

    SciTech Connect (OSTI)

    Dale Karr; Marc Perlin; Benjamin Langhorst; Henry Chu

    2009-10-01T23:59:59.000Z

    We describe an experimental investigation of the response of hybrid blast panels for protection from explosive and impact forces. The fundamental notion is to dissipate, absorb, and redirect energy through plastic collapse, viscous dissipation, and inter-particle forces of liquid placed in sub-structural compartments. The panels are designed to absorb energy from an impact or air blast by elastic-plastic collapse of the panel substructure that includes fluid-filled cavities. The fluid contributes to blast effects mitigation by providing increased initial mass and resistance, by dissipation of energy through viscosity and fluid flow, and by redirecting the momentum that is imparted to the system from the impact and blast impulse pressures. Failure and deformation mechanisms of the panels are described.

  18. Energy Storage Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Energy Storage Laboratory at the Energy Systems Integration Facility. At NREL's Energy Storage Laboratory in the Energy Systems Integration Facility (ESIF), research focuses on the integration of energy storage systems (both stationary and vehicle-mounted) and interconnection with the utility grid. Focusing on battery technologies, but also hosting ultra-capacitors and other electrical energy storage technologies, the laboratory will provide all resources necessary to develop, test, and prove energy storage system performance and compatibility with distributed energy systems. The laboratory will also provide robust vehicle testing capability, including a drive-in environmental chamber, which can accommodate commercial-sized hybrid, electric, biodiesel, ethanol, compressed natural gas, and hydrogen fueled vehicles. The Energy Storage Laboratory is designed to ensure personnel and equipment safety when testing hazardous battery systems or other energy storage technologies. Closely coupled with the research electrical distribution bus at ESIF, the Energy Storage Laboratory will offer megawatt-scale power testing capability as well as advanced hardware-in-the-loop and model-in-the-loop simulation capabilities. Some application scenarios are: The following types of tests - Performance, Efficiency, Safety, Model validation, and Long duration reliability. (2) Performed on the following equipment types - (a) Vehicle batteries (both charging and discharging V2G); (b) Stationary batteries; (c) power conversion equipment for energy storage; (d) ultra- and super-capacitor systems; and (e) DC systems, such as commercial microgrids.

  19. Sandia National Laboratories: Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Simulations Reveal Ion Dynamics in Polymer Electrolyte On November 13, 2012, in Energy Storage, News, News & Events Improving battery electrolytes is highly desirable, particularly...

  20. Holographic Storage of Biphoton Entanglement

    E-Print Network [OSTI]

    Han-Ning Dai; Han Zhang; Sheng-Jun Yang; Tian-Ming Zhao; Jun Rui; You-Jin Deng; Li Li; Nai-Le Liu; Shuai Chen; Xiao-Hui Bao; Xian-Min Jin; Bo Zhao; Jian-Wei Pan

    2012-04-06T23:59:59.000Z

    Coherent and reversible storage of multi-photon entanglement with a multimode quantum memory is essential for scalable all-optical quantum information processing. Although single photon has been successfully stored in different quantum systems, storage of multi-photon entanglement remains challenging because of the critical requirement for coherent control of photonic entanglement source, multimode quantum memory, and quantum interface between them. Here we demonstrate a coherent and reversible storage of biphoton Bell-type entanglement with a holographic multimode atomic-ensemble-based quantum memory. The retrieved biphoton entanglement violates Bell's inequality for 1 microsecond storage time and a memory-process fidelity of 98% is demonstrated by quantum state tomography.

  1. Sandia National Laboratories: Carbon Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from improved climate models to performance models for underground waste storage to 3D printing and digital rock physics. Marianne Walck (Director ... Joint SandiaUniversity of...

  2. Sandia National Laboratories: Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from improved climate models to performance models for underground waste storage to 3D printing and digital rock physics. Marianne Walck (Director ... Recent Sandia Secure,...

  3. Underground Storage Tanks (West Virginia)

    Broader source: Energy.gov [DOE]

    This rule governs the construction, installation, upgrading, use, maintenance, testing, and closure of underground storage tanks, including certification requirements for individuals who install,...

  4. The Petascale Data Storage Institute

    SciTech Connect (OSTI)

    Gibson, Garth [Carnegie Mellon University; Long, Darrell [The Regents of the University of California, Santa Cruz; Honeyman, Peter [University of Michigan at Ann Arbor; Grider, Gary [Los Alamos National Laboratory; Kramer, William [National Energy Research Scientific Computing Center; Shalf, John [National Energy Research Scientific Computing Center; Roth, Philip [Oak Ridge National Laboratory; Felix, Evan [Pacific Northwest National Laboratory; Ward, Lee [Sandia National Laboratory

    2013-07-01T23:59:59.000Z

    Petascale computing infrastructures for scientific discovery make petascale demands on information storage capacity, performance, concurrency, reliability, availability, and manageability. The Petascale Data Storage Institute focuses on the data storage problems found in petascale scientific computing environments, with special attention to community issues such as interoperability, community buy-in, and shared tools. The Petascale Data Storage Institute is a collaboration between researchers at Carnegie Mellon University, National Energy Research Scientific Computing Center, Pacific Northwest National Laboratory, Oak Ridge National Laboratory, Sandia National Laboratory, Los Alamos National Laboratory, University of Michigan, and the University of California at Santa Cruz.

  5. CO2 Geologic Storage (Kentucky)

    Broader source: Energy.gov [DOE]

    Division staff, in partnership with the Kentucky Geological Survey (KGS), continued to support projects to investigate and demonstrate the technical feasibility of geologic storage of carbon...

  6. Underground Storage Tanks (New Jersey)

    Broader source: Energy.gov [DOE]

    This chapter constitutes rules for all underground storage tank facilities- including registration, reporting, permitting, certification, financial responsibility and to protect human health and...

  7. Underground Storage Tank Program (Vermont)

    Broader source: Energy.gov [DOE]

    These rules are intended to protect public health and the environment by establishing standards for the design, installation, operation, maintenance, monitoring, and closure of underground storage...

  8. Liquid level detector

    DOE Patents [OSTI]

    Tshishiku, Eugene M. (Augusta, GA)

    2011-08-09T23:59:59.000Z

    A liquid level detector for conductive liquids for vertical installation in a tank, the detector having a probe positioned within a sheath and insulated therefrom by a seal so that the tip of the probe extends proximate to but not below the lower end of the sheath, the lower end terminating in a rim that is provided with notches, said lower end being tapered, the taper and notches preventing debris collection and bubble formation, said lower end when contacting liquid as it rises will form an airtight cavity defined by the liquid, the interior sheath wall, and the seal, the compression of air in the cavity preventing liquid from further entry into the sheath and contact with the seal. As a result, the liquid cannot deposit a film to form an electrical bridge across the seal.

  9. Flywheel energy storage workshop

    SciTech Connect (OSTI)

    O`Kain, D.; Carmack, J. [comps.

    1995-12-31T23:59:59.000Z

    Since the November 1993 Flywheel Workshop, there has been a major surge of interest in Flywheel Energy Storage. Numerous flywheel programs have been funded by the Advanced Research Projects Agency (ARPA), by the Department of Energy (DOE) through the Hybrid Vehicle Program, and by private investment. Several new prototype systems have been built and are being tested. The operational performance characteristics of flywheel energy storage are being recognized as attractive for a number of potential applications. Programs are underway to develop flywheels for cars, buses, boats, trains, satellites, and for electric utility applications such as power quality, uninterruptible power supplies, and load leveling. With the tremendous amount of flywheel activity during the last two years, this workshop should again provide an excellent opportunity for presentation of new information. This workshop is jointly sponsored by ARPA and DOE to provide a review of the status of current flywheel programs and to provide a forum for presentation of new flywheel technology. Technology areas of interest include flywheel applications, flywheel systems, design, materials, fabrication, assembly, safety & containment, ball bearings, magnetic bearings, motor/generators, power electronics, mounting systems, test procedures, and systems integration. Information from the workshop will help guide ARPA & DOE planning for future flywheel programs. This document is comprised of detailed viewgraphs.

  10. Electrochemical hydrogen Storage Systems

    SciTech Connect (OSTI)

    Dr. Digby Macdonald

    2010-08-09T23:59:59.000Z

    As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not described in the previous literature for electrochemical reduction of spent fuels, have been attempted. A quantitative analytical method for measuring the concentration of sodium borohydride in alkaline aqueous solution has been developed as part of this work and is described herein. Finally, findings from stability tests for sodium borohydride in aqueous solutions of several different compositions are reported. For aminoborane, other research institutes have developed regeneration schemes involving tributyltin hydride. In this report, electrochemical reduction experiments attempting to regenerate tributyltin hydride from tributyltin chloride (a representative by-product of the regeneration scheme) are described. These experiments were performed in the non-aqueous solvents acetonitrile and 1,2-dimethoxyethane. A non-aqueous reference electrode for electrolysis experiments in acetonitrile was developed and is described. One class of boron hydrides, called polyhedral boranes, became of interest to the DOE due to their ability to contain a sufficient amount of hydrogen to meet program goals and because of their physical and chemical safety attributes. Unfortunately, the research performed here has shown that polyhedral boranes do not react in such a way as to allow enough hydrogen to be released, nor do they appear to undergo hydrogenation from the spent fuel form back to the original hydride. After the polyhedral boranes were investigated, the project goals remained the same but the hydrogen storage material was switched by the DOE to ammonia borane. Ammonia borane was found to undergo an irreversible hydrogen release process, so a direct hydrogenation was not able to occur. To achieve the hydrogenation of the spent ammonia borane fuel, an indirect hydrogenation reaction is possible by using compounds called organotin hydrides. In this process, the organotin hydrides will hydrogenate the spent ammonia borane fuel at the cost of their own oxidation, which forms organotin halides. To enable a closed-loop cycle, our task was then to be able to hydrogenate the organotin halides back to th

  11. (Ionization in liquids)

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    This document describes charge transport following ionization of model liquids and how this process may be important in carcinogenesis. 15 refs., 2 figs., 4 tabs. (MHB)

  12. Ultrasonic liquid level detector

    DOE Patents [OSTI]

    Kotz, Dennis M. (North Augusta, SC); Hinz, William R. (Augusta, GA)

    2010-09-28T23:59:59.000Z

    An ultrasonic liquid level detector for use within a shielded container, the detector being tubular in shape with a chamber at its lower end into which liquid from in the container may enter and exit, the chamber having an ultrasonic transmitter and receiver in its top wall and a reflector plate or target as its bottom wall whereby when liquid fills the chamber a complete medium is then present through which an ultrasonic wave may be transmitted and reflected from the target thus signaling that the liquid is at chamber level.

  13. Liquid Metal Transformers

    E-Print Network [OSTI]

    Lei Sheng; Jie Zhang; Jing Liu

    2014-01-30T23:59:59.000Z

    The room temperature liquid metal is quickly emerging as an important functional material in a variety of areas like chip cooling, 3D printing or printed electronics etc. With diverse capabilities in electrical, thermal and flowing behaviors, such fluid owns many intriguing properties that had never been anticipated before. Here, we show a group of unconventional phenomena occurring on the liquid metal objects. Through applying electrical field on the liquid metals immersed in water, a series of complex transformation behaviors such as self-assembling of a sheet of liquid metal film into a single sphere, quick mergences of separate metal droplets, controlled self-rotation and planar locomotion of liquid metal objects can be realized. Meanwhile, it was also found that two accompanying water vortexes were induced and reliably swirled near the rotating liquid metal sphere. Further, effects of the shape, size, voltage, orientation and geometries of the electrodes to control the liquid metal transformers were clarified. Such events are hard to achieve otherwise on rigid metal or conventional liquid spheres. This finding has both fundamental and practical significances which suggest a generalized way of making smart soft machine, collecting discrete metal fluids, as well as flexibly manipulating liquid metal objects including accompanying devices.

  14. Liquid Crystal Optofluidics

    SciTech Connect (OSTI)

    Vasdekis, Andreas E.; Cuennet, J. G.; Psaltis, D.

    2012-10-11T23:59:59.000Z

    By employing anisotropic fluids and namely liquid crystals, fluid flow becomes an additional degree of freedom in designing optofluidic devices. In this paper, we demonstrate optofluidic liquid crystal devices based on the direct flow of nematic liquid crystals in microfluidic channels. Contrary to previous reports, in the present embodiment we employ the effective phase delay acquired by light travelling through flowing liquid crystal, without analysing the polarisation state of the transmitted light. With this method, we demonstrate the variation in the diffraction pattern of an array of microfluidic channels acting as a grating. We also discuss our recent activities in integrating mechanical oscillators for on-chip peristaltic pumping.

  15. Calcined Waste Storage at the Idaho Nuclear Technology and Engineering Center

    SciTech Connect (OSTI)

    M. D. Staiger

    2007-06-01T23:59:59.000Z

    This report provides a quantitative inventory and composition (chemical and radioactivity) of calcined waste stored at the Idaho Nuclear Technology and Engineering Center. From December 1963 through May 2000, liquid radioactive wastes generated by spent nuclear fuel reprocessing were converted into a solid, granular form called calcine. This report also contains a description of the calcine storage bins.

  16. Biohazardous Waste Disposal GuidelinesDescriptionStorage& LabelingTreatmentDisposal

    E-Print Network [OSTI]

    Wikswo, John

    Waste Sharps Waste Solid Lab Waste Liquid Waste Any of these devices if contaminated with biohazardousBiohazardous Waste Disposal GuidelinesDescriptionStorage& packaging LabelingTreatmentDisposal Mixed container. Container must be leakproof, ridgid, puncture resistant, clearly marked for biohazardous waste

  17. Chemical Hydrogen Storage Center Center of Excellence

    E-Print Network [OSTI]

    Carver, Jeffrey C.

    Chemical Hydrogen Storage Center Center of Excellence for Chemical Hydrogen Storage William Tumas proprietary or confidential information #12;2 Chemical Hydrogen Storage Center Overview Project Start Date: FY Barriers Addressed #12;3 Chemical Hydrogen Storage Center Chemical Hydrogen Storage Center National

  18. Bike Storage on McMaster University BIKE STORAGE ON CAMPUS

    E-Print Network [OSTI]

    Hitchcock, Adam P.

    Bike Storage on Campus McMaster University BIKE STORAGE ON CAMPUS Secure Bike Storage on Campus Located on the west side of Chester New Hall, the Secure Bike Storage facility features video surveillance

  19. Wettability and Oil Recovery by Imbibition and Viscous Displacement from Fractured and Heterogeneous Carbonates

    SciTech Connect (OSTI)

    Norman R. Morrow; Jill Buckley

    2006-04-01T23:59:59.000Z

    About one-half of U.S. oil reserves are held in carbonate formations. The remaining oil in carbonate reservoirs is regarded as the major domestic target for improved oil recovery. Carbonate reservoirs are often fractured and have great complexity even at the core scale. Formation evaluation and prediction is often subject to great uncertainty. This study addresses quantification of crude oil/brine/rock interactions and the impact of reservoir heterogeneity on oil recovery by spontaneous imbibition and viscous displacement from pore to field scale. Wettability-alteration characteristics of crude oils were measured at calcite and dolomite surfaces and related to the properties of the crude oils through asphaltene content, acid and base numbers, and refractive index. Oil recovery was investigated for a selection of limestones and dolomites that cover over three orders of magnitude in permeability and a factor of four variation in porosity. Wettability control was achieved by adsorption from crude oils obtained from producing carbonate reservoirs. The induced wettability states were compared with those measured for reservoir cores. The prepared cores were used to investigate oil recovery by spontaneous imbibition and viscous displacement. The results of imbibition tests were used in wettability characterization and to develop mass transfer functions for application in reservoir simulation of fractured carbonates. Studies of viscous displacement in carbonates focused on the unexpected but repeatedly observed sensitivity of oil recovery to injection rate. The main variables were pore structure, mobility ratio, and wettability. The potential for improved oil recovery from rate-sensitive carbonate reservoirs by increased injection pressure, increased injectivity, decreased well spacing or reduction of interfacial tension was evaluated.

  20. Sandia National Laboratories: Energy Storage Test Pad (ESTP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Test Pad (ESTP) Evaluating Powerful Batteries for Modular Electric Grid Energy Storage On December 12, 2014, in Energy, Energy Storage, Energy Storage Systems,...

  1. Sandia National Laboratories: DOE Energy Storage Systems program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE Energy Storage Systems program 2013 Electricity Storage Handbook Published On July 31, 2013, in Energy, Energy Assurance, Energy Storage, Energy Storage Systems, Energy Surety,...

  2. Sandia National Laboratories: NM Renewable Energy Storage Task...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Energy Storage Task Force New Mexico Renewable Energy Storage Task Force On January 28, 2014, in Energy, Energy Storage, Energy Storage Systems, Infrastructure Security,...

  3. Sandia National Laboratories: incentivize renewable-energy storage...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    incentivize renewable-energy storage infrastructure development New Mexico Renewable Energy Storage Task Force On January 28, 2014, in Energy, Energy Storage, Energy Storage...

  4. Thermal Energy Storage for Cooling of Commercial Buildings

    E-Print Network [OSTI]

    Akbari, H.

    2010-01-01T23:59:59.000Z

    trates a design load profile for a partial storage system.load management / full storage / ice storage / partialfor partial storage) because part of the cooling load is

  5. Detailed validation of an empirical model for viscous fingering with gravity effects

    SciTech Connect (OSTI)

    Fayers, F.J.; Newley, T.M.J.

    1988-05-01T23:59:59.000Z

    This paper extends to two-dimensional (2D) flows the derivation and validation of an empirical model for viscous fingering previously developed. Fine-scale numerical simulations are used to provide basic data for validating the approximations, and these fingering results are also checked against a range of experiments. The flow rate dependence of gravity segregation in vertical section experiments conducted by van der Poel is examined, where the broadly acceptable agreement of the empirical model is limited by some identified additional features.

  6. On the forces acting on a small particle in an acoustical field in a viscous fluid

    E-Print Network [OSTI]

    Settnes, Mikkel

    2011-01-01T23:59:59.000Z

    We calculate the acoustic radiation force from an ultrasound wave on a compressible, spherical particle suspended in a viscous fluid. Using Prandtl--Schlichting boundary-layer theory, we include the kinematic viscosity of the solvent and derive an analytical expression for the resulting radiation force, which is valid for any particle radius and boundary-layer thickness provided that both of these length scales are much smaller than the wavelength of the ultrasound wave (mm in water at MHz frequencies). The acoustophoretic response of suspended microparticles is predicted and analyzed using parameter values typically employed in microchannel acoustophoresis.

  7. The flow and heat transfer in a viscous fluid over an unsteady stretching surface

    E-Print Network [OSTI]

    Ene, Remus-Daniel; Marinca, Bogdan

    2015-01-01T23:59:59.000Z

    In this paper we have studied the flow and heat transfer in a viscous fluid by a horizontal sheet. The stretching rate and temperature of the sheet vary with time. The governing equations for momentum and thermal energy are reduced to ordinary differential equations by means of similarity transformation. These equations are solved approximately by means of the Optimal Homotopy Asymptotic Method (OHAM) which provides us with a convenient way to control the convergence of approximation solutions and adjust convergence rigorous when necessary. Some examples are given and the results obtained reveal that the proposed method is effective and easy to use.

  8. A viscous-convective instability in laminar Keplerian thin discs. II. Anelastic approximation

    E-Print Network [OSTI]

    Shakura, N

    2015-01-01T23:59:59.000Z

    Using the anelastic approximation of linearised hydrodynamic equations, we investigate the development of axially symmetric small perturbations in thin Keplerian discs. The sixth-order dispersion equation is derived and numerically solved for different values of relevant physical parameters (viscosity, heat conductivity, disc semi-thickness and vertical structure). The analysis reveals the appearance of two overstable modes which split out from the classical Rayleigh inertial modes in a wide range of the parameters in both ionized and neutral gases. These modes have a viscous-convective nature and can serve as a seed for turbulence in astrophysical discs even in the absence of magnetic fields.

  9. Nanostructured materials for hydrogen storage

    DOE Patents [OSTI]

    Williamson, Andrew J. (Pleasanton, CA); Reboredo, Fernando A. (Pleasanton, CA)

    2007-12-04T23:59:59.000Z

    A system for hydrogen storage comprising a porous nano-structured material with hydrogen absorbed on the surfaces of the porous nano-structured material. The system of hydrogen storage comprises absorbing hydrogen on the surfaces of a porous nano-structured semiconductor material.

  10. COLD STORAGE DESIGN REFRIGERATION EQUIPMENT

    E-Print Network [OSTI]

    COLD STORAGE DESIGN AND REFRIGERATION EQUIPMENT REFRIGERATION OF FISH - PART 1 \\ "..\\- ,,, T I Fishery Leaflet 427 Washington 25, D. C. June 1956 REFRIGERATION OF FISH - PART em; COlD STORAGE DESIGN AND REFRIGERATION EQUIPMENT By Charles Butler (Section 1), Joseph W. Slavin (Sections 1, 2, and 3), Max Patashnik

  11. Catalytically Enhanced Hydrogen Storage Systems

    E-Print Network [OSTI]

    with the Freedom CAR hydrogen storage system targets (Key parameters: cost, specific energy, and energy density). #12;Objectives I. Determination of the chemical nature of the titanium species responsible that are compatible with the Freedom CAR hydrogen storage system targets. Key parameters: cost, specific energy

  12. MATERIAL HANDLING, STORAGE, AND DISPOSAL

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Materials shall be stored in a manner that allows easy identification and access to labels, identification entering storage areas. All persons shall be in a safe position while materials are being loadedEM 385-1-1 XX Jun 13 14-1 SECTION 14 MATERIAL HANDLING, STORAGE, AND DISPOSAL 14.A MATERIAL

  13. Scalability of mass transfer in liquid-liquid flow

    E-Print Network [OSTI]

    Woitalka, A.

    We address liquid–liquid mass transfer between immiscible liquids using the system 1-butanol and water, with succinic acid as the mass transfer component. Using this system we evaluate the influence of two-phase flow ...

  14. Development of a Front Tracking Method for Two-Phase Micromixing of Incompressible Viscous Fluids with Interfacial Tension in Solvent Extraction

    SciTech Connect (OSTI)

    Zhou, Yijie [ORNL; Lim, Hyun-Kyung [ORNL; de Almeida, Valmor F [ORNL; Navamita, Ray [State University of New York, Stony Brook; Wang, Shuqiang [State University of New York, Stony Brook; Glimm, James G [ORNL; Li, Xiao-lin [State University of New York, Stony Brook; Jiao, Xiangmin [ORNL

    2012-06-01T23:59:59.000Z

    This progress report describes the development of a front tracking method for the solution of the governing equations of motion for two-phase micromixing of incompressible, viscous, liquid-liquid solvent extraction processes. The ability to compute the detailed local interfacial structure of the mixture allows characterization of the statistical properties of the two-phase mixture in terms of droplets, filaments, and other structures which emerge as a dispersed phase embedded into a continuous phase. Such a statistical picture provides the information needed for building a consistent coarsened model applicable to the entire mixing device. Coarsening is an undertaking for a future mathematical development and is outside the scope of the present work. We present here a method for accurate simulation of the micromixing dynamics of an aqueous and an organic phase exposed to intense centrifugal force and shearing stress. The onset of mixing is the result of the combination of the classical Rayleigh- Taylor and Kelvin-Helmholtz instabilities. A mixing environment that emulates a sector of the annular mixing zone of a centrifugal contactor is used for the mathematical domain. The domain is small enough to allow for resolution of the individual interfacial structures and large enough to allow for an analysis of their statistical distribution of sizes and shapes. A set of accurate algorithms for this application requires an advanced front tracking approach constrained by the incompressibility condition. This research is aimed at designing and implementing these algorithms. We demonstrate verification and convergence results for one-phase and unmixed, two-phase flows. In addition we report on preliminary results for mixed, two-phase flow for realistic operating flow parameters.

  15. Reversible hydrogen storage materials

    DOE Patents [OSTI]

    Ritter, James A. (Lexington, SC); Wang, Tao (Columbia, SC); Ebner, Armin D. (Lexington, SC); Holland, Charles E. (Cayce, SC)

    2012-04-10T23:59:59.000Z

    In accordance with the present disclosure, a process for synthesis of a complex hydride material for hydrogen storage is provided. The process includes mixing a borohydride with at least one additive agent and at least one catalyst and heating the mixture at a temperature of less than about 600.degree. C. and a pressure of H.sub.2 gas to form a complex hydride material. The complex hydride material comprises MAl.sub.xB.sub.yH.sub.z, wherein M is an alkali metal or group IIA metal, Al is the element aluminum, x is any number from 0 to 1, B is the element boron, y is a number from 0 to 13, and z is a number from 4 to 57 with the additive agent and catalyst still being present. The complex hydride material is capable of cyclic dehydrogenation and rehydrogenation and has a hydrogen capacity of at least about 4 weight percent.

  16. Superconducting energy storage

    SciTech Connect (OSTI)

    Giese, R.F.

    1993-10-01T23:59:59.000Z

    This report describes the status of energy storage involving superconductors and assesses what impact the recently discovered ceramic superconductors may have on the design of these devices. Our description is intended for R&D managers in government, electric utilities, firms, and national laboratories who wish an overview of what has been done and what remains to be done. It is assumed that the reader is acquainted with superconductivity, but not an expert on the topics discussed here. Indeed, it is the author`s aim to enable the reader to better understand the experts who may ask for the reader`s attention, support, or funding. This report may also inform scientists and engineers who, though expert in related areas, wish to have an introduction to our topic.

  17. March 29, 2008 OS: Mass Storage Structure 1 Mass-Storage Structure

    E-Print Network [OSTI]

    Adam, Salah

    March 29, 2008 OS: Mass Storage Structure 1 Mass-Storage Structure Chapter 12 #12;March 29, 2008 OS: Mass Storage Structure 2 Objectives Describe the physical structure of secondary and tertiary storage of mass-storage devices Discuss operating-system services provided for mass storage, including RAID

  18. Cooperative Repair with Minimum-Storage Regenerating Codes for Distributed Storage

    E-Print Network [OSTI]

    Li, Baochun

    Cooperative Repair with Minimum-Storage Regenerating Codes for Distributed Storage Jun Li, Baochun--Distributed storage systems store redundant data to tolerate failures of storage nodes and lost data should be repaired when storage nodes fail. A class of MDS codes, called minimum- storage regenerating (MSR) codes

  19. March 24, 2008 ADBS: Storage 1 Disk Storage, Basic File Structures, and

    E-Print Network [OSTI]

    Adam, Salah

    March 24, 2008 ADBS: Storage 1 Disk Storage, Basic File Structures, and Hashing. #12;March 24, 2008 ADBS: Storage 2 Chapter Outline The Storage Hierarchy How Far is Your Data Disk Storage Devices Records Blocking Files of Records Unordered Files Ordered Files Hashed Files RAID Technology Storage Area Network

  20. Systems analysis of thermal storage

    SciTech Connect (OSTI)

    Copeland, R. J.

    1980-08-01T23:59:59.000Z

    During FY80 analyses were conducted on thermal storage concepts for solar thermal applications. These studies include both estimates of the obtainable costs of thermal storage concepts and their worth to a user (i.e., value). Based on obtainable costs and performance, promising thermal storage concepts are being identified. A preliminary screening was completed in FY80 and a more in-depth study was initiated. Value studies are being conducted to establish cost goals. A ranking of storage concepts based on value in solar thermal electric plants was conducted for both diurnal and long duration applications. Ground mounted thermal storage concepts for a parabolic dish/Stirling systtem are also being evaluated.

  1. Making the case for direct hydrogen storage in fuel cell vehicles

    SciTech Connect (OSTI)

    James, B.D.; Thomas, C.E.; Baum, G.N.; Lomas, F.D. Jr.; Kuhn, I.F. Jr. [Directed Technologies, Inc., Arlington, VA (United States)

    1997-12-31T23:59:59.000Z

    Three obstacles to the introduction of direct hydrogen fuel cell vehicles are often states: (1) inadequate onboard hydrogen storage leading to limited vehicle range; (2) lack of an hydrogen infrastructure, and (3) cost of the entire fuel cell system. This paper will address the first point with analysis of the problem/proposed solutions for the remaining two obstacles addressed in other papers. Results of a recent study conducted by Directed Technologies Inc. will be briefly presented. The study, as part of Ford Motor Company/DOE PEM Fuel Cell Program, examines multiple pure hydrogen onboard storage systems on the basis of weight, volume, cost, and complexity. Compressed gas, liquid, carbon adsorption, and metal hydride storage are all examined with compressed hydrogen storage at 5,000 psia being judged the lowest-risk, highest benefit, near-term option. These results are combined with recent fuel cell vehicle drive cycle simulations to estimate the onboard hydrogen storage requirement for full vehicle range (380 miles on the combined Federal driving schedule). The results indicate that a PNGV-like vehicle using powertrain weights and performance realistically available by the 2004 PNGV target data can achieve approximate fuel economy equivalent to 100 mpg on gasoline (100 mpg{sub eq}) and requires storage of approximately 3.6 kg hydrogen for full vehicle storage quantity allows 5,000 psia onboard storage without altering the vehicle exterior lines or appreciably encroaching on the passenger or trunk compartments.

  2. AQUIFER THERMAL ENERGY STORAGE-A SURVEY

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2012-01-01T23:59:59.000Z

    solid-fluid heat storage systems in the ground; extractions0 Thermal storage of cold water in ground water aquifers forA. 8 1971, Storage of solar energy in a sandy-gravel ground:

  3. On Storage Rings for Short Wavelength FELs

    E-Print Network [OSTI]

    Chattopadhyay, S.

    2010-01-01T23:59:59.000Z

    for a hypothetical 144 m long storage ring optimized for FELin the Proceedings On Storage Rings for Short WavelengthLBL-28483 ESG Note-92 ON STORAGE RINGS FOR SHORT WAVELENGTH

  4. Storage Viability and Optimization Web Service

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01T23:59:59.000Z

    of Heat and Electricity Storage and Reliability on MicrogridEPRI-DOE Handbook of Energy Storage for Transmission andLong- vs. Short-Term Energy Storage Technologies Analysis, A

  5. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01T23:59:59.000Z

    and J. Schwarz, Survey of Thermal Energy Storage in AquifersLow Temperature Thermal Energy Storage Program of Oak RidgeAquifers for Seasonal Thermal Energy Storage: An Overview of

  6. Distributed Generation with Heat Recovery and Storage

    E-Print Network [OSTI]

    Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

    2008-01-01T23:59:59.000Z

    in floor tiles for thermal energy storage,” working paper,D. R. (2000). Thermal energy storage for space cooling,A simple model of thermal energy storage is developed as a

  7. Nanostructured Materials for Energy Generation and Storage

    E-Print Network [OSTI]

    Khan, Javed Miller

    2012-01-01T23:59:59.000Z

    energy generation and battery storage via the use ofenergy generation and battery storage via the use of nanos-and storage (e.g lithium-ion rechargeable battery)

  8. NATURAL GAS STORAGE ENGINEERING Kashy Aminian

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    NATURAL GAS STORAGE ENGINEERING Kashy Aminian Petroleum & Natural Gas Engineering, West Virginia University, Morgantown, WV, USA. Shahab D. Mohaghegh Petroleum & Natural Gas Engineering, West Virginia University, Morgantown, WV, USA. Keywords: Gas Storage, Natural Gas, Storage, Deliverability, Inventory

  9. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01T23:59:59.000Z

    must be if mal energy storage technologies as means for con-Robert Thorne. Energy Storage is more technology-orientedEnergy with Heat Storage Wells," Environmental Science and Technology,

  10. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01T23:59:59.000Z

    and J. Schwarz, Survey of Thermal Energy Storage in AquifersB. Quale. Seasonal storage of thermal energy in water in theSecond Annual Thermal Energy Storage Contractors'

  11. INEEL Liquid Effluent Inventory

    SciTech Connect (OSTI)

    Major, C.A.

    1997-06-01T23:59:59.000Z

    The INEEL contractors and their associated facilities are required to identify all liquid effluent discharges that may impact the environment at the INEEL. This liquid effluent information is then placed in the Liquid Effluent Inventory (LEI) database, which is maintained by the INEEL prime contractor. The purpose of the LEI is to identify and maintain a current listing of all liquid effluent discharge points and to identify which discharges are subject to federal, state, or local permitting or reporting requirements and DOE order requirements. Initial characterization, which represents most of the INEEL liquid effluents, has been performed, and additional characterization may be required in the future to meet regulations. LEI information is made available to persons responsible for or concerned with INEEL compliance with liquid effluent permitting or reporting requirements, such as the National Pollutant Discharge Elimination System, Wastewater Land Application, Storm Water Pollution Prevention, Spill Prevention Control and Countermeasures, and Industrial Wastewater Pretreatment. The State of Idaho Environmental Oversight and Monitoring Program also needs the information for tracking liquid effluent discharges at the INEEL. The information provides a baseline from which future liquid discharges can be identified, characterized, and regulated, if appropriate. The review covered new and removed buildings/structures, buildings/structures which most likely had new, relocated, or removed LEI discharge points, and at least 10% of the remaining discharge points.

  12. Synthesis of ionic liquids

    DOE Patents [OSTI]

    Dai, Sheng [Knoxville, TN; Luo, Huimin [Knoxville, TN

    2008-09-09T23:59:59.000Z

    Ionic compounds which are liquids at room temperature are formed by the method of mixing a neutral organic liqand with the salt of a metal cation and its conjugate anion. The liquids are hydrophobic, conductive and stable and have uses as solvents and in electrochemical devices.

  13. Synthesis of ionic liquids

    DOE Patents [OSTI]

    Dai, Sheng (Knoxville, TN); Luo, Huimin (Knoxville, TN)

    2011-11-01T23:59:59.000Z

    Ionic compounds which are liquids at room temperature are formed by the method of mixing a neutral organic ligand with the salt of a metal cation and its conjugate anion. The liquids are hydrophobic, conductive and stable and have uses as solvents and in electrochemical devices.

  14. Liquid heat capacity lasers

    DOE Patents [OSTI]

    Comaskey, Brian J. (Walnut Creek, CA); Scheibner, Karl F. (Tracy, CA); Ault, Earl R. (Livermore, CA)

    2007-05-01T23:59:59.000Z

    The heat capacity laser concept is extended to systems in which the heat capacity lasing media is a liquid. The laser active liquid is circulated from a reservoir (where the bulk of the media and hence waste heat resides) through a channel so configured for both optical pumping of the media for gain and for light amplification from the resulting gain.

  15. Simple program calculates partial liquid volumes in vessels

    SciTech Connect (OSTI)

    Koch, P.

    1992-04-13T23:59:59.000Z

    This paper reports on a simple calculator program which solves problems of partial liquid volumes for a variety of storage and process vessels, including inclined cylindrical vessels and those with conical heads. Engineers in the oil refining and chemical industries are often confronted with the problem of estimating partial liquid volumes in storage tanks or process vessels. Cistern, the calculator program presented here, allows fast and accurate resolution of problems for a wide range of vessels without user intervention, other than inputting the problem data. Running the program requires no mathematical skills. Cistern is written for Hewlett-Packard HP 41CV or HP 41CX programmable calculators (or HP 41C with extended memory modules).

  16. On a three-layer Hele-Shaw model of enhanced oil recovery with a linear viscous profile

    E-Print Network [OSTI]

    Daripa, Prabir; Meneses, Rodrigo

    2015-01-01T23:59:59.000Z

    We present a non-standard eigenvalue problem that arises in the linear stability of a three-layer Hele-Shaw model of enhanced oil recovery. A nonlinear transformation is introduced which allows reformulation of the non-standard eigenvalue problem as a boundary value problem for Kummer's equation when the viscous profile of the middle layer is linear. Using the existing body of works on Kummer's equation, we construct an exact solution of the eigenvalue problem and provide the dispersion relation implicitly through the existence criterion for the non-trivial solution. We also discuss the convergence of the series solution. It is shown that this solution reduces to the physically relevant solutions in two asymptotic limits: (i) when the linear viscous profile approaches a constant viscous profile; or (ii) when the length of the middle layer approaches zero.

  17. Fire protection guide for solid waste metal drum storage

    SciTech Connect (OSTI)

    Bucci, H.M.

    1996-09-16T23:59:59.000Z

    This guide provides a method to assess potential fire development in drum storage facilities. The mechanism of fire propagation/spread through stored drum arrays is a complex process. It involves flame heat transfer, transient conduction,convection, and radiation between drums (stored in an array configuration). There are several phenomena which may occur when drums are exposed to fire. The most dramatic is violent lid failure which results in total lid removal. When a drum loses its lid due to fire exposure, some or all of the contents may be ejected from the drum, and both the ejected combustible material and the combustible contents remaining within the container will burn. The scope of this guide is limited to storage arrays of steel drums containing combustible (primarily Class A) and noncombustible contents. Class B combustibles may be included in small amounts as free liquid within the solid waste contents.Storage arrays, which are anticipated in this guide, include single or multi-tier palletized (steel or wood pallets) drums,high rack storage of drums, and stacked arrays of drums where plywood sheets are used between tiers. The purpose of this guide is to describe a simple methodology that estimates the consequences of a fire in drum storage arrays. The extent of fire development and the resulting heat release rates can be estimated. Release fractions applicable to this type of storage are not addressed, and the transport of contaminants away from the source is not addressed. However, such assessments require the amount of combustible material consumed and the surface area of this burning material. The methods included in this guide do provide this information.

  18. Magnetized accretion-ejection structures IV. Magnetically-driven jets from resistive, viscous, Keplerian discs

    E-Print Network [OSTI]

    Fabien Casse; Jonathan Ferreira

    1999-11-25T23:59:59.000Z

    We present steady-state calculations of self-similar magnetized accretion discs driving cold, adiabatic, non-relativistic jets. For the first time, both the magnetic torque due to the jets and a turbulent "viscous" torque are taken into account. This latter torque allows a dissipation of the accretion power as radiation at the disc surfaces, while the former predominantly provides jets with power. The parameter space of these structures has been explored. It is characterized by four free parameters, namely the disc aspect ratio and three MHD turbulence parameters, related to the anomalous magnetic diffusivities and viscosity. It turns out that launching cold jets from thin, dissipative discs implies anisotropic turbulent dissipation. Jets that asymptotically reach a high Alfvenic Mach number are only produced by weakly dissipative discs. We obtained general analytical relations between disc and jet quantities that must be fulfilled by any steady-state model of cold jets, launched from a large radial extension of thin discs. We also show that such discs cannot have a dominant viscous torque. This is because of the chosen geometry, imposing the locus of the Alfven surface. Some observational consequences of these cold magnetized accretion-ejection structures are also briefly discussed.

  19. Dual harmonic Kelvin probe force microscopy at the graphene–liquid interface

    SciTech Connect (OSTI)

    Collins, Liam; Rodriguez, Brian J., E-mail: brian.rodriguez@ucd.ie [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4 (Ireland); Kilpatrick, Jason I.; Weber, Stefan A. L. [Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4 (Ireland); Vlassiouk, Ivan V. [Energy and Transportation Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Tselev, Alexander; Jesse, Stephen; Kalinin, Sergei V. [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2014-03-31T23:59:59.000Z

    Kelvin probe force microscopy (KPFM) is a powerful technique for the determination of the contact potential difference (CPD) between an atomic force microscope tip and a sample under ambient and vacuum conditions. However, for many energy storage and conversion systems, including graphene-based electrochemical capacitors, understanding electrochemical phenomena at the solid–liquid interface is paramount. Despite the vast potential to provide fundamental insight for energy storage materials at the nanoscale, KPFM has found limited applicability in liquid environments to date. Here, using dual harmonic (DH)-KPFM, we demonstrate CPD imaging of graphene in liquid. We find good agreement with measurements performed in air, highlighting the potential of DH-KPFM to probe electrochemistry at the graphene–liquid interface.

  20. Fact Sheet: Energy Storage Technology Advancement Partnership...

    Energy Savers [EERE]

    flywheels, electrochemical capacitors, superconducting magnetic energy storage (SMES), power electronics, and control systems, visit the Energy Storage page. Fact Sheet: Energy...

  1. DRAFT "Energy Advisory Committee" - Energy Storage Subcommittee...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report: Revision 2 DRAFT "Energy Advisory Committee" - Energy Storage Subcommittee Report: Revision 2 Energy storage plays a vital role in all forms of business and affects the...

  2. Sandia National Laboratories: energy storage resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power Outages With New 'Smart Grid' System On June 20, 2013, in Energy, Energy Assurance, Energy Storage, Energy Storage Systems, Energy Surety, Grid Integration, Infrastructure...

  3. Sandia National Laboratories: energy storage requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accomplishments On March 3, 2015, in Capabilities, Distribution Grid Integration, Energy, Energy Storage, Energy Storage Systems, Energy Surety, Grid Integration, Infrastructure...

  4. JCESR | Joint Center for Energy Storage Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    want. More Sandia: High Density Storage JCESR Partner Sandia discusses high density energy storage for electric vehicles and the grid More JCESR and NASA team up JCESR and...

  5. Sandia National Laboratories: solar thermal energy storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy storage Sandia Solar Energy Test System Cited in National Engineering Competition On May 16, 2013, in Concentrating Solar Power, Energy, Energy Storage, Facilities, National...

  6. Sandia National Laboratories: Energy Storage Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Address Flooding, Water, and Power Systems On June 11, 2013, in Energy, Energy Assurance, Energy Storage, Energy Storage Systems, Energy Surety, Infrastructure Security, Microgrid,...

  7. Webinar Presentation: Energy Storage Solutions for Microgrids...

    Office of Environmental Management (EM)

    Presentation: Energy Storage Solutions for Microgrids (November 2012) Webinar Presentation: Energy Storage Solutions for Microgrids (November 2012) On November 7, 2012, Clean...

  8. Carbon Storage Atlas, Employee Newsletter Earn International...

    Broader source: Energy.gov (indexed) [DOE]

    NETL's Carbon Storage Atlas IV and FE's internal employee newsletter, inTouch, earned 2013 National Association of Government Communicators awards. NETL's Carbon Storage Atlas IV...

  9. Panel 3, Electrolysis for Grid Energy Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrolysis for Grid Energy Storage DOE-Industry Canada Workshop May 15, 2014 INTRODUCTION HYDROGEN ENERGY SYSTEMS FOR ENERGY STORAGE AND CLEAN FUEL PRODUCTION ITM POWER INC. ITM...

  10. Energy Storage Systems 2010 Update Conference Presentations ...

    Energy Savers [EERE]

    Systems 2010 Update Conference Presentations - Day 1, Session 1 Energy Storage Systems 2010 Update Conference Presentations - Day 1, Session 1 The U.S. DOE Energy Storage Systems...

  11. Energy Storage Systems 2010 Update Conference Presentations ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    : Poster Session Energy Storage Systems 2010 Update Conference Presentations - Day 3: Poster Session The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking...

  12. Hydrogen Storage Materials Workshop Proceedings Workshop, October...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Proceedings Workshop, October 16th, 2002 Hydrogen Storage Materials Workshop Proceedings Workshop, October 16th, 2002 A workshop on compressed and liquefied hydrogen storage was a...

  13. Station Footprint: Separation Distances, Storage Options, and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Station Footprint: Separation Distances, Storage Options, and Pre-Cooling Station Footprint: Separation Distances, Storage Options, and Pre-Cooling This presentation by Aaron...

  14. Combinatorial Approach for Hydrogen Storage Materials (presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Center of Excellence Recommended Best Practices for the Characterization of Storage Properties of Hydrogen Storage Materials High ThroughputCombinatorial Screening of...

  15. BNL Gas Storage Achievements, Research Capabilities, Interests...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Metal Hydride Center of Excellence Recommended Best Practices for the Characterization of Storage Properties of Hydrogen Storage Materials EA-1321: Final Environmental Assessment...

  16. Hydrogen Storage Materials Requirements (Text Version) | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Requirements (Text Version) Hydrogen Storage Materials Requirements (Text Version) Below is the text version of the webinar titled "Hydrogen Storage Materials Requirements,"...

  17. Underground Storage Tank Act (West Virginia)

    Broader source: Energy.gov [DOE]

    New underground storage tank construction standards must include at least the following requirements: (1) That an underground storage tank will prevent releases of regulated substances stored...

  18. Georgia Underground Storage Tank Act (Georgia)

    Broader source: Energy.gov [DOE]

    The Georgia Underground Storage Act (GUST) provides a comprehensive program to prevent, detect, and correct releases from underground storage tanks (“USTs”) of “regulated substances” other than...

  19. Agenda: Natural Gas: Transmission, Storage and Distribution ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Natural Gas: Transmission, Storage and Distribution Agenda: Natural Gas: Transmission, Storage and Distribution A Public Meeting on the Quadrennial Energy Review, Hosted by the...

  20. Migrating enterprise storage applications to the cloud

    E-Print Network [OSTI]

    Vrable, Michael Daniel

    2011-01-01T23:59:59.000Z

    2.1 Cloud Providers . . . . . . . . . . . .2.1.1 Cloud Storage . . . . . . . . .2.1.2 Cloud Computation . . . . . . 2.2 Enterprise Storage