Powered by Deep Web Technologies
Note: This page contains sample records for the topic "virtual temperature profiles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

ARM - Measurement - Virtual temperature  

NLE Websites -- All DOE Office Websites (Extended Search)

govMeasurementsVirtual temperature govMeasurementsVirtual temperature ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Virtual temperature The virtual temperature Tv = T(1 + rv/{epsilon}), where rv is the mixing ratio, and {epsilon} is the ratio of the gas constants of air and water vapor ( 0.622). Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments CO2FLX : Carbon Dioxide Flux Measurement Systems MWRP : Microwave Radiometer Profiler RWP : Radar Wind Profiler

2

Temperature profile detector  

DOE Patents (OSTI)

Disclosed is a temperature profile detector shown as a tubular enclosure surrounding an elongated electrical conductor having a plurality of meltable conductive segments surrounding it. Duplicative meltable segments are spaced apart from one another along the length of the enclosure. Electrical insulators surround these elements to confine molten material from the segments in bridging contact between the conductor and a second electrical conductor, which might be the confining tube. The location and rate of growth of the resulting short circuits between the two conductors can be monitored by measuring changes in electrical resistance between terminals at both ends of the two conductors. Additional conductors and separate sets of meltable segments operational at differing temperatures can be monitored simultaneously for measuring different temperature profiles. 8 figs.

Tokarz, R.D.

1983-10-11T23:59:59.000Z

3

Maine Geological Survey Borehole Temperature Profiles  

SciTech Connect

This dataset includes temperature profiles from 30 boreholes throughout Maine that were selected for their depth, location, and lithologies encountered. Depths range from about 300 feet to 2,200 feet. Most of the boreholes selected for measurement were completed in granite because this lithology can be assumed to be nearly homogeneous over the depth of the borehole. Boreholes were also selected to address gaps in existing geothermal datasets. Temperature profiles were collected in October and November, 2012.

Marvinney, Robert

2013-11-06T23:59:59.000Z

4

.Heat Generation Patterns and Temperature Profiles in_ Electroslag Welding  

E-Print Network (OSTI)

l .Heat Generation Patterns and Temperature Profiles in_ Electroslag Welding ) · T. DEBROY, J process parameters such as the voltage profiles, heat generation patterns and temperature profiles with equivalent slag, electrode and other geometrical variable; Calcu- 0 lations show that the heat generation

Eagar, Thomas W.

5

Turbulence Patch Identification in Potential Density or Temperature Profiles  

Science Journals Connector (OSTI)

The Thorpe analysis is a recognized method used to identify and characterize turbulent regions within stably stratified fluids. By comparing an observed profile of potential temperature or potential density to a reference profile obtained by ...

Richard Wilson; Hubert Luce; Francis Dalaudier; Jacques Lefrère

2010-06-01T23:59:59.000Z

6

Summer temperature profiles within supraglacial debris on Khumbu Glacier, Nepal  

E-Print Network (OSTI)

Summer temperature profiles within supraglacial debris on Khumbu Glacier, Nepal H. CONWAY, and L. A Glacier, Nepal show a strong diurnal signal that diffused downward into the debris with decreasing

Rasmussen, L.A.

7

Lithologic Descriptions and Temperature Profiles of Five Wells...  

Open Energy Info (EERE)

and Temperature Profiles of Five Wells in the Southwestern Valles Caldera Region, New Mexico Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Lithologic...

8

Probing the Temperature Profile of Energy Production in the Sun  

Science Journals Connector (OSTI)

The particle kinetic energies of thermonuclear pp fusion in the Sun (Gamow energy) produce small changes in the energies of pp solar neutrinos relative to those due only to exothermal energetics. This effect may be observable via the unique tools of the LENS solar neutrino detector. The temperature profile of energy production in the Sun may thus be directly probed for the first time.

Christian Grieb and R. S. Raghavan

2007-04-02T23:59:59.000Z

9

Probing the Temperature Profile of Energy Production in the Sun  

E-Print Network (OSTI)

The particle kinetic energies of pp fusion in the sun (Gamow Energy) produce small changes in the energies of pp solar neutrinos relative to those due only to exothermal energetics. Observation of this effect may be possible via the unique tools of the upcoming LENS solar neutrino detector. The temperature profile of energy production in the sun may thus be directly probed for the first time.

Christian Grieb; R. S. Raghavan

2006-09-04T23:59:59.000Z

10

Comparison of theoretical and observed temperature profiles in Devon Island ice cap, Canada  

Science Journals Connector (OSTI)

......theoretical temperature profiles of the Camp Century, Greenland, borehole J. geophys...theoretical temperature profiles of the Camp Century, Greenland, borehole J. geophys...Langway from the borehole at Camp Century, Greenland (Weertman 1968......

W. S. B. Paterson; G. K. C. Clarke

1978-12-01T23:59:59.000Z

11

A New Microwave Temperature Profiler Â… First Measurements in Polar Regions  

NLE Websites -- All DOE Office Websites (Extended Search)

Microwave Temperature Profiler - First Microwave Temperature Profiler - First Measurements in Polar Regions E. N. Kadygrov, A. V. Koldaev, and A. S. Viazankin Central Aerological Observatory Moscow, Russia A. Argentini, and A. Conidi Institute of Atmospheric Physics CNR, Italy Introduction Temperature inversions are a ubiquitous feature of the high latitude atmospheric boundary layer (ABL). In Polar Regions, the temperature inversion is a complicated phenomenon involving interactions between surface radiative cooling, subsidence and warm air advection. In the period 1997-2002, several microwave temperature profilers were used to measure temperature inversion parameters at one of the three sites of the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM)

12

Project Profile: High-Temperature Thermal Array for Next-Generation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermal Array for Next-Generation Solar Thermal Power Production Project Profile: High-Temperature Thermal Array for Next-Generation Solar Thermal Power Production Los Alamos...

13

Project Profile: High Operating Temperature Liquid Metal Heat Transfer Fluids  

Energy.gov (U.S. Department of Energy (DOE))

The University of California, Los Angeles (UCLA), along with partners at the University of California, Berkeley, and Yale University, under the 2012 Multidisciplinary University Research Initiative (MURI): High Operating Temperature (HOT) Fluids funding opportunity, is investigating the use of metal alloys as a heat transfer fluid (HTF) in concentrating solar power (CSP) systems operating at temperatures in excess of 800°C. By allowing higher temperature operation, CSP systems can achieve greater efficiencies and thereby reduce the overall cost of electricity production.

14

Project Profile: High-Temperature Solar Selective Coating Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

water droplets falling on a flat, dust-covered surface. The research team is exploring materials with high melting temperatures, intrinsic oxidation resistance, high thermal...

15

Cloud and Aerosol Properties, Precipitable Water, and Profiles of Temperature and Water Vapor from MODIS  

E-Print Network (OSTI)

Cloud and Aerosol Properties, Precipitable Water, and Profiles of Temperature and Water Vapor from such as cloud mask, atmos- pheric profiles, aerosol properties, total precipitable water, and cloud properties vapor amount, aerosol particles, and the subsequently formed clouds [9]. Barnes et al. [2] provide

Sheridan, Jennifer

16

Computations of temperature profiles in spheromak configurations with open field lines Carl Sovinec  

E-Print Network (OSTI)

Computations of temperature profiles in spheromak configurations with open field lines Carl Sovinec 10/27/00 The NIMROD zero- spheromak simulation results have mostly open field lines for parameters

Sovinec, Carl

17

Retrieval of cloud-cleared atmospheric temperature profiles from hyperspectral infrared and microwave observations  

E-Print Network (OSTI)

This thesis addresses the problem of retrieving the temperature profile of the Earth's atmosphere from overhead infrared and microwave observations of spectral radiance in cloudy conditions. The contributions of the thesis ...

Blackwell, William Joseph, 1971-

2002-01-01T23:59:59.000Z

18

Long-Term Evaluation of Temperature Profiles Measured by an Operational Raman Lidar  

Science Journals Connector (OSTI)

This study investigates the accuracy and calibration stability of temperature profiles derived from an operational Raman lidar over a 2-yr period from 1 January 2009 to 31 December 2010. The lidar, which uses the rotational Raman technique for ...

Rob K. Newsom; David D. Turner; John E. M. Goldsmith

2013-08-01T23:59:59.000Z

19

Project Profile: High Operating Temperature Liquid Metal Heat...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

investigating the use of metal alloys as a heat transfer fluid (HTF) in concentrating solar power (CSP) systems operating at temperatures in excess of 800C. By allowing higher...

20

Effects of air flow directions on composting process temperature profile  

SciTech Connect

In this study, chicken manure mixed with carnation wastes was composted by using three different air flow directions: R1-sucking (downward), R2-blowing (upward) and R3-mixed. The aim was to find out the most appropriate air flow direction type for composting to provide more homogenous temperature distribution in the reactors. The efficiency of each aeration method was evaluated by monitoring the evolution of parameters such as temperature, moisture content, CO{sub 2} and O{sub 2} ratio in the material and dry material losses. Aeration of the reactors was managed by radial fans. The results showed that R3 resulted in a more homogenous temperature distribution and high dry material loss throughout the composting process. The most heterogeneous temperature distribution and the lowest dry material loss were obtained in R2.

Kulcu, Recep [Akdeniz University, Faculty of Agriculture, Department of Farm Machinery, Antalya (Turkey); Yaldiz, Osman [Akdeniz University, Faculty of Agriculture, Department of Farm Machinery, Antalya (Turkey)], E-mail: yaldiz@akdeniz.edu.tr

2008-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "virtual temperature profiles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Numerical procedure for calculating temperature profiles in LMFBR coolant channels  

SciTech Connect

A new numerical procedure (which makes use of a weighted residuals procedure in space and a fully-implicit finite difference procedure in time), for calculating temperatures in an LMFBR coolant channel has been developed and incorporated into the Super System Code (SSC). This procedure is highly accurate on a nodal basis and has greatly increased computational efficiency as compared to the method formerly in SSC.

Horak, W.C.; Kennett, R.J.; Guppy, J.G.

1981-07-01T23:59:59.000Z

22

The radial temperature profile of the solar wind John D. Richardson  

E-Print Network (OSTI)

The radial temperature profile of the solar wind John D. Richardson Center for Space Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA Charles W. Smith Bartol Research Institute but do not account for the smaller scale (few AU) temperature variations. At 1 AU, the solar wind

Richardson, John

23

Temperature profile for glacial ice at the South Pole: Implications for life nearby subglacial lake  

E-Print Network (OSTI)

Temperature profile for glacial ice at the South Pole: Implications for life nearby subglacial lake deep of South of #9°C, which is 7°C below pressure­induced melting temperature freshwater produce contamination Lake Vostok. semiempirical expression strain vs. stress, estimate shear depth show Ice

Woschnagg, Kurt

24

Self-organized profile relaxation by ion temperature gradient instability in toroidal plasmas  

SciTech Connect

Toroidal effects on the ion-temperature gradient mode are found to dictate the temperature evolution and the subsequent relaxed profile realization according to our toroidal particle simulation. Both in the strongly unstable fluid regime as well as in the near-marginal kinetic regime we observe that the plasma maintains an exponential temperature profile and forces the heat flux to be radially independent. The self-organized critical relaxed state is sustained slightly above the marginal stability, where the weak wave growth balances the wave decorrelation.

Kishimoto, Y.; Tajima, T.; LeBrun, M.J.; Gray, M.G.; Kim, J.Y.; Horton, W.

1993-02-01T23:59:59.000Z

25

Electron density and temperature profile diagnostics for C-2 field reversed configuration plasmas  

SciTech Connect

The 9-point Thomson scattering diagnostic system for the C-2 field reversed configuration plasmas is improved and the measured electron temperature profiles are consistent with theoretical expectations. Rayleigh scattering revealed a finite line width of the ruby laser emission, which complicates density calibration. Taking advantage of the plasma wobble motion, density profile reconstruction accuracy from the 6-chord two-color CO{sub 2}/HeNe interferometer data is improved.

Deng, B. H.; Kinley, J. S.; Schroeder, J. [Tri Alpha Energy, Inc., Rancho Santa Margarita, California 92688 (United States)

2012-10-15T23:59:59.000Z

26

Recent Progress in Retrieving Air Temperature Profiles and Air-Sea Temperature Differences from Infrared and Microwave Scan...  

NLE Websites -- All DOE Office Websites (Extended Search)

Recent Progress in Retrieving Air Temperature Profiles Recent Progress in Retrieving Air Temperature Profiles and Air-Sea Temperature Differences from Infrared and Microwave Scanning Radiometer Data D. Cimini University of L'Aquila L'Aquila, Italy J. A. Shaw Department of Electrical and Computer Engineering Montana State University Bozeman, Montana E. R. Westwater Cooperative Institute for Research in the Environmental Sciences University of Colorado National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado Introduction A system of two scanning radiometers has been developed by National Oceanic and Atmospheric Administration (NOAA) Environmental Technology Laboratory (ETL) and deployed on the NOAA Ron H. Brown (RHB) Research Vessel (RV) during the Nauru99 cruise in the Tropical Western Pacific,

27

Pseudovertical Temperature Profiles in a Broad Valley from Lines of Temperature Sensors on Sidewalls  

Science Journals Connector (OSTI)

Pseudovertical temperature “soundings” from lines of inexpensive temperature sensors on the sidewalls of Utah’s Salt Lake valley are compared with contemporaneous radiosonde soundings from the north, open end of the valley. Morning [0415 mountain ...

C. David Whiteman; Sebastian W. Hoch

2014-11-01T23:59:59.000Z

28

Comparison of temperature and humidity profiles with elastic-backscatter lidar data  

SciTech Connect

This contribution analyzes elastic-backscatter lidar data and temperature and humidity profiles from radiosondes acquired in Barcelona in July 1992. Elastic-backscatter lidar data reveal the distribution of aerosols within the volume of atmosphere scanned. By comparing this information with temperature and humidity profiles of the atmosphere at a similar time, we are able to asses de relationship among aerosol distribution and atmospheric stability or water content, respectively. Comparisons have shown how lidar`s revealed layers of aerosols correspond to atmospheric layers with different stability condition and water content.

Soriano, C. [Universidad Politecnica de Cataluna, Barcelona (Spain)]|[Los Alamos National Lab., NM (United States); Buttler, W.T. [Los Alamos National Lab., NM (United States); Baldasano, J.M. [Universidad Politecnica de Cataluna, Barcelona (Spain)

1995-04-01T23:59:59.000Z

29

915-MHz Radar Wind Profiler (915RWP) Handbook  

SciTech Connect

The 915 MHz radar wind profiler/radio acoustic sounding system (RWP/RASS) measures wind profiles and backscattered signal strength between (nominally) 0.1 km and 5 km and virtual temperature profiles between 0.1 km and 2.5 km. It operates by transmitting electromagnetic energy into the atmosphere and measuring the strength and frequency of backscattered energy. Virtual temperatures are recovered by transmitting an acoustic signal vertically and measuring the electromagnetic energy scattered from the acoustic wavefront. Because the propagation speed of the acoustic wave is proportional to the square root of the virtual temperature of the air, the virtual temperature can be recovered by measuring the Doppler shift of the scattered electromagnetic wave.

Coulter, R

2005-01-01T23:59:59.000Z

30

Using Multispectral Imaging to Measure Temperature Profiles and Emissivity of Large Thermionic Dispenser, Cathodes  

SciTech Connect

Thermionic dispenser cathodes are widely used in modern high-power microwave tubes. Use of these cathodes has led to significant improvement in performance. In recent years these cathodes have been used in electron linear accelerators (LINACs), particularly in induction LINACs, such as the Experimental Test Accelerator at Lawrence Livermore National Laboratory and the Relativistic Test Accelerator at Lawrence Berkeley National Laboratory. For induction LINACs, the thermionic dispenser cathode provides greater reproducibility, longer pulse lengths, and lower emittance beams than does a field emission cathode. Los Alamos National Laboratory is fabricating a dual-axis X-ray radiography machine called dual-axis radiograph hydrodynamic test (DARHT). The second axis of DARHT consists of a 2-kA, 20-MeV induction LINAC that uses a 3.2-MeV electron gun with a tungsten thermionic-dispenser cathode. Typically the DARHT cathode current density is 10 A/cm{sup 2} at 1050 C. Under these conditions current density is space-charge limited, which is desirable since current density is independent of temperature. At lower temperature (the temperature-limited regime) there are variations in the local current density due to a nonuniform temperature profile. To obtain the desired uniform current density associated with space-charge limited operation, the coolest area on the cathode must be at a sufficiently high temperature so that the emission is space-charge limited. Consequently, the rest of the cathode is emitting at the same space-charge-limited current density but is at a higher temperature than necessary. Because cathode lifetime is such a strong function of cathode temperature, there is a severe penalty for nonuniformity in the cathode temperature. For example, a temperature increase of 50 C means cathode lifetime will decrease by a factor of at least four. Therefore, we are motivated to measure the temperature profiles of our large-area cathodes.

D.F. Simmons; C.M. Fortgang; D.B. Holtkamp

2001-09-01T23:59:59.000Z

31

Development of ultrasonic thermometry for high-temperature high-resolution temperature profiling applications in LMFBR safety research  

SciTech Connect

Ultrasonic thermometry has been developed as a high temperature profiling diagnostic for use in the LMFBR Debris Coolability Program at Sandia National Laboratories. These instruments have been used successfully in the dc series experiments and the D10 experiment. Temperatures approaching 3000/sup 0/C with spatial resolution of 10 mm and indicated temperature gradients of 700/sup 0/C/cm have been measured. Instruments have operated in molten sodium, molten steel, and molten UO/sub 2/ environments. Up to 14 measurement zones on a single instrument in molten sodium have been used with 12 mm and 15 mm spatial resolution. Hermetically sealed units operated at elevated temperatures have been used. Posttest examination has revealed very little systematic calibration drifts (<10/sup 0/C) with random drifts occurring with less than 40/sup 0/C standard deviation in a 10 to 12 mm measurement zone. The stability of the system varies from +-1/sup 0/C to +-15/sup 0/C depending on the sensor design constraints for a particular application. Doped tungsten sensors have been developed to permit operation of total measurement zone lengths of 30 cm at temperatures above 2500/sup 0/C. 33 refs., 13 figs.

Field, M.E.

1986-05-01T23:59:59.000Z

32

Relationships between Tropical Cyclone Intensity and Eyewall Structure as Determined by Radial Profiles of Inner-Core Infrared Brightness Temperature  

Science Journals Connector (OSTI)

Radial profiles of infrared brightness temperature for 2405 different satellite observations from 14 western North Pacific tropical cyclones (TCs) from the 2012 season were analyzed and compared to intensity and changes in intensity. Four critical ...

Elizabeth R. Sanabia; Bradford S. Barrett; Caitlin M. Fine

2014-12-01T23:59:59.000Z

33

Bi 3 + cluster primary ions in SIMS depth profiling of YBaCuO high-temperature superconductor films  

Science Journals Connector (OSTI)

SIMS depth profiling of YBa2Cu3O7 high-temperature superconductor films was performed using a TOF.SIMS-...2Cu3O7 films based on detection of cluster secondary ions.

M. N. Drozdov; Yu. N. Drozdov…

2010-08-01T23:59:59.000Z

34

Scaling Laws and Temperature Profiles for Solar and Stellar Coronal Loops with Non-uniform Heating  

E-Print Network (OSTI)

The bulk of solar coronal radiative loss consists of soft X-ray emission from quasi-static loops at the cores of Active Regions. In order to develop diagnostics for determining the heating mechanism of these loops from observations by coronal imaging instruments, I have developed analytical solutions for the temperature structure and scaling laws of loop strands for a wide range of heating functions, including footpoint heating, uniform heating, and heating concentrated at the loop apex. Key results are that the temperature profile depends only weakly on the heating distribution -- not sufficiently to be of significant diagnostic value -- and that the scaling laws survive for this wide range of heating distributions, but with the constant of proportionality in the RTV scaling law ($P_{0}L \\thicksim T_{max}^3$) depending on the specific heating function. Furthermore, quasi-static analytical solutions do not exist for an excessive concentration of heating near the loop footpoints, a result in agreement with recent numerical simulations. It is demonstrated that a generalization of the solutions to the case of a strand with a variable diameter leads to only relatively small correction factors in the scaling laws and temperature profiles for constant diameter loop strands. A quintet of leading theoretical coronal heating mechanisms is shown to be captured by the formalism of this paper, and the differences in thermal structure between them may be verified through observations. Preliminary results from full numerical simulations demonstrate that, despite the simplifying assumptions, the analytical solutions from this paper are stable and accurate.

P. C. H. Martens

2008-04-14T23:59:59.000Z

35

Temperature profile for glacial ice at the South Pole: Implications for life in a nearby subglacial lake  

E-Print Network (OSTI)

-induced melting temperature of freshwater ice. To produce the strong radar signal, the frozen lake must consistTemperature profile for glacial ice at the South Pole: Implications for life in a nearby subglacial by P. Buford Price, April 22, 2002 Airborne radar has detected 100 lakes under the Antarctic ice cap

Price, P. Buford

36

Fast scanning heterodyne receiver for the measurement of the time evolution of the electron temperature profile on TFTR  

SciTech Connect

Two fast scanning heterodyne receivers, swept between 75 to 110 GHz and 110 to 170 GHz in 2 msec every 4 msec, were developed to measure the electron cyclotron emission on the horizontal midplane of the Tokamak Fusion Test Reactor (TFTR) plasma. An absolute, in situ calibration technique enables the determination of the profile of the plasma electron temperature from the cyclotron emission intensity. The 4 msec repetition rate of the receiver allowed the resolution of sawtooth fluctuations of temperature, whose period was 10 to 100 msec, in profiles with central temperatures of 1 to 2.5 keV.

Taylor, G.; Efthimion, P.; McCarthy, M.; Arunasalam, V.; Bitzer, R.; Bryer, J.; Cutler, R.; Fredd, E.; Goldman, M.A.; Kaufman, D.

1984-06-01T23:59:59.000Z

37

DOE/SC-ARM/TR-120 Raman Lidar Profiles-Temperature  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 Raman Lidar Profiles-Temperature (RLPROFTEMP) Value-Added Product RK Newsom C Sivaraman SA McFarlane October 2012 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or

38

Using conversions of chemically reacting tracers for numerical determination of temperature profiles in flowing systems and temperature histories in batch systems  

SciTech Connect

This report presents the mathematical bases for measuring internal temperatures within batch and flowing systems using chemically reacting tracers. This approach can obtain temperature profiles of plug-flow systems and temperature histories within batch systems. The differential equations for reactant conversion can be converted into Fredholm integral equations of the first kind. The experimental variable is the tracer-reaction activation energy. When more than one tracer is used, the reactions must have different activation energies to gain information. In systems with temperature extrema, multiple solutions for the temperature profiles or histories can exist, When a single parameter in the temperature distribution is needed, a single-tracer test may furnish this information. For multi-reaction tracer tests, three Fredholm equations are developed. Effects of tracer-reaction activation energy, number of tracers used, and error in the data are evaluated. The methods can determine temperature histories and profiles for many existing systems, and can be a basis for analysis of the more complicated dispersed-flow systems. An alternative to using the Fredholm-equation approach is the use of an assumed temperature- distribution function and incorporation of this function into the basic integral equation describing tracer behavior. The function contains adjustable parameters which are optimized to give the temperature distribution. The iterative Fredholm equation method is tested to see what is required to discriminate between two models of the temperature behavior of Hot Dry Rock (HDR) geothermal reservoirs. Experimentally, ester and amide hydrolyses are valid HDR tracer reactions for measuring temperatures in the range 75-100{degrees}C. Hydrolyses of bromobenzene derivatives are valid HDR tracer reactions for measuring temperatures in the range 150-275{degrees}C.

Brown, L.F.; Chemburkar, R.M.; Robinson, B.A.; Travis, B.J.

1996-04-01T23:59:59.000Z

39

A statistically-selected Chandra sample of 20 galaxy clusters -- I. Temperature and cooling time profiles  

E-Print Network (OSTI)

We present an analysis of 20 galaxy clusters observed with the Chandra X-ray satellite, focussing on the temperature structure of the intracluster medium and the cooling time of the gas. Our sample is drawn from a flux-limited catalogue but excludes the Fornax, Coma and Centaurus clusters, owing to their large angular size compared to the Chandra field-of-view. We describe a quantitative measure of the impact of central cooling, and find that the sample comprises 9 clusters possessing cool cores and 11 without. The properties of these two types differ markedly, but there is a high degree of uniformity amongst the cool core clusters, which obey a nearly universal radial scaling in temperature of the form T \\propto r^~0.4, within the core. This uniformity persists in the gas cooling time, which varies more strongly with radius in cool core clusters (t_cool \\propto r^~1.3), reaching t_cool <1Gyr in all cases, although surprisingly low central cooling times (<5Gyr) are found in many of the non-cool core systems. The scatter between the cooling time profiles of all the clusters is found to be remarkably small, implying a universal form for the cooling time of gas at a given physical radius in virialized systems, in agreement with recent previous work. Our results favour cluster merging as the primary factor in preventing the formation of cool cores.

Alastair J. R. Sanderson; Trevor J. Ponman; Ewan O'Sullivan

2006-08-21T23:59:59.000Z

40

Deactivation models by fitting the progression of temperature profiles – Coking model for the MTG process in adiabatic reactors  

Science Journals Connector (OSTI)

Abstract A methodology for estimating deactivation models for catalysts in industrial application is proposed. The method applies the movement of the measured axial temperature profile to gain information of the deactivating phenomena. For adiabatic reactors the conditions must be obtained by controlled heat compensation in a reactor furnace. As an example a deactivation model for the industrial methanol-to-gasoline (MTG) process is developed. The deactivation model together with suitable reactor models is a system of coupled partial differential equations with time and spatial coordinate as the independent variables. The unknown model parameters are estimated via a non-linear least square method, by matching predicted axial temperature profiles with measured profiles obtained in a pilot reactor containing a gasoline synthesis test catalyst.

Martin Dan Palis Sørensen

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "virtual temperature profiles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Temperature profile for glacial ice at the South Pole: Implications for life in a nearby subglacial lake  

Science Journals Connector (OSTI)

...profiles of temperature vs. depth at Camp Century, Greenland, coincide to better...radian and 5.5–10 m/yr for Camp Century (7) and ?0.004 radian and 12.8...depth in the bottom part of the Camp Century and Byrd Station glaciers allows...

P. Buford Price; Oleg V. Nagornov; Ryan Bay; Dmitry Chirkin; Yudong He; Predrag Miocinovic; Austin Richards; Kurt Woschnagg; Bruce Koci; Victor Zagorodnov

2002-01-01T23:59:59.000Z

42

IEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGIES, VOL. 32, NO. 2, JUNE 2009 447 Temperature Profile Inside Microscale Thermoelectric  

E-Print Network (OSTI)

Temperature Profile Inside Microscale Thermoelectric Module Acquired Using Near-Infrared Thermoreflectance-scale thermoelectric modules. By determining localized sources of Joule heating, one can identify manufacturing errors and generate design rules that can improve the cooling performance of the thermoelectric device. Index Terms

43

Engineering Virtualized Services Elvira Albert  

E-Print Network (OSTI)

Engineering Virtualized Services Elvira Albert Complutense University of Madrid, Spain elvira project FP7-610582 ENVISAGE: Engineering Virtualized Services (http://www.envisage-project.eu). level of an application-level service at the expense of potentially changing its cost profile. In traditional engineering

Johnsen, Einar Broch

44

Case studies on virtual extrusion of aluminium alloys in real size  

Science Journals Connector (OSTI)

Two case studies were conducted to illustrate the capabilities of the state-of-the-art computer simulation technology applied to the aluminium extrusion process and demonstrate the usefulness of virtual extrusion in real size to the die designer and extrusion process engineer alike. A deform 3D software package was used for virtual extrusion in real size to manufacture a hollow profile through a porthole die (case I) and two precision solid profiles through a two-hole multi-step pocket die (case II). Temperature, stress and velocity distributions were revealed. In case I, the filling of the ports, welding in the welding chamber and forming of the hollow profile were visualised. The quality of the longitudinal welds along the hollow profile length was assessed. In case II, the deflection of two solid profiles from the centreline to different extents was predicted, thereby providing the guidelines for die design modification. The modified die indeed performed better.

G. Liu; J. Zhou; J. Duszczyk; G. Fang

2011-01-01T23:59:59.000Z

45

Project Profile: A Novel Storage Method for CSP Plants Allowing Operation at High Temperature  

Energy.gov (U.S. Department of Energy (DOE))

City College of New York (CCNY), under the Thermal Storage FOA, is developing and testing a novel thermal storage method that allows operation at very high temperatures.

46

Simulation and inversion of borehole temperature profiles in surrogate climates: Spatial distribution and surface coupling  

E-Print Network (OSTI)

simulations with the state-of-the-art ECHO-g model has been used to simulate underground temperature of the ECHO-g model to show that SAT-GST variations were closely related at low frequencies, suggesting-conduction forward model is driven by surface temperature time series provided with the ECHO-g integra- tions

Beltrami, Hugo

47

Origins and significance of non-linear temperature profiles in deep-sea sediments  

Science Journals Connector (OSTI)

......high-level radioactive wastes. The aim of this...water during core storage (Gerrard et al...information concerning long-term temperature changes...positive evidence for a long-term temperature stability...of its radioactive waste management research...relevance to nuclear waste disposal investigations......

Mark Noel

1984-03-01T23:59:59.000Z

48

Steady state temperature profiles in two simulated liquid metal reactor fuel assemblies with identical design specifications  

SciTech Connect

Temperature data from steady state tests in two parallel, simulated liquid metal reactor fuel assemblies with identical design specifications have been compared to determine the extent to which they agree. In general, good agreement was found in data at low flows and in bundle-center data at higher flows. Discrepancies in the data wre noted near the bundle edges at higher flows. An analysis of bundle thermal boundary conditions showed that the possible eccentric placement of one bundle within the housing could account for these discrepancies.

Levin, A.E.; Carbajo, J.J.; Lloyd, D.B.; Montgomery, B.H.; Rose, S.D.; Wantland, J.L.

1985-01-01T23:59:59.000Z

49

Project Profile: High-Temperature Thermal Array for Next-Generation Solar Thermal Power Production  

Energy.gov (U.S. Department of Energy (DOE))

The Los Alamos National Laboratory (ORNL), under the National Laboratory R&D competitive funding opportunity, is developing a megawatt-scale heat pipe–based technology designed to bridge the heliostat reflector field and the power cycle by replacing both the solar receiver and the heat transfer fluid (HTF) system used in concentrating solar power (CSP) systems. The technology, called the high-temperature thermal array, aims to achieve the SunShot Initiative's goals by addressing technical challenges, reducing capital and operating expenses, and increasing net photon-to-electricity conversion efficiency.

50

On the temperature profile of radiatively efficient geometrically thin disks in black hole binaries with the ASCA GIS  

E-Print Network (OSTI)

X-ray spectra of black hole binaries(BHBs) in the high/soft state were studied comprehensively by using ASCA GIS data, and partially RXTE PCA data. A mathematical disk model was applied to several BHBs to see if the observed accretion disk temperature profile was consistent with that expected from the standard accretion disk model. This model is called p-free disk, and assumes that the spectrum is composed of multi-temperature blackbody emission of which the local temperature T(r) at radius r is given by T(r) ~ r^-p with p being a positive free parameter. The standard disk roughly requires p~3/4, while a small deviation is expected depending on the inner boundary conditions, general relativistic effects and disk vertical structures.Our sample objects included LMC X-1, LMC X-3, XTE J2012+381, and GRO J1655-40. During the ASCA observations, these BHBs showed characteristics of the standard high/soft state. Under the standard modeling of high-state black hole binaries, the sources show Tin=0.76-1.17keV, the disk...

Kubota, A; Makishima, K; Nakazawa, K; Kubota, Aya; Ebisawa, Ken; Makishima, Kazuo; Nakazawa, Kazuhiro

2005-01-01T23:59:59.000Z

51

Reduced model prediction of electron temperature profiles in microtearing-dominated National Spherical Torus eXperiment plasmas  

SciTech Connect

A representative H-mode discharge from the National Spherical Torus eXperiment is studied in detail to utilize it as a basis for a time-evolving prediction of the electron temperature profile using an appropriate reduced transport model. The time evolution of characteristic plasma variables such as ?{sub e},??{sub e}{sup ?}, the MHD ? parameter, and the gradient scale lengths of T{sub e}, T{sub i}, and n{sub e} were examined as a prelude to performing linear gyrokinetic calculations to determine the fastest growing micro instability at various times and locations throughout the discharge. The inferences from the parameter evolutions and the linear stability calculations were consistent. Early in the discharge, when ?{sub e} and ?{sub e}{sup ?} were relatively low, ballooning parity modes were dominant. As time progressed and both ?{sub e} and ?{sub e}{sup ?} increased, microtearing became the dominant low-k{sub ?} mode, especially in the outer half of the plasma. There are instances in time and radius, however, where other modes, at higher-k{sub ?}, may, in addition to microtearing, be important for driving electron transport. Given these results, the Rebut-Lallia-Watkins (RLW) electron thermal diffusivity model, which is based on microtearing-induced transport, was used to predict the time-evolving electron temperature across most of the profile. The results indicate that RLW does a good job of predicting T{sub e} for times and locations where microtearing was determined to be important, but not as well when microtearing was predicted to be stable or subdominant.

Kaye, S. M., E-mail: skaye@pppl.gov; Guttenfelder, W.; Bell, R. E.; Gerhardt, S. P.; LeBlanc, B. P.; Maingi, R. [Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States)

2014-08-15T23:59:59.000Z

52

On the temperature profile of radiatively efficient geometrically thin disks in black hole binaries with the ASCA GIS  

E-Print Network (OSTI)

X-ray spectra of black hole binaries(BHBs) in the high/soft state were studied comprehensively by using ASCA GIS data, and partially RXTE PCA data. A mathematical disk model was applied to several BHBs to see if the observed accretion disk temperature profile was consistent with that expected from the standard accretion disk model. This model is called p-free disk, and assumes that the spectrum is composed of multi-temperature blackbody emission of which the local temperature T(r) at radius r is given by T(r) ~ r^-p with p being a positive free parameter. The standard disk roughly requires p~3/4, while a small deviation is expected depending on the inner boundary conditions, general relativistic effects and disk vertical structures.Our sample objects included LMC X-1, LMC X-3, XTE J2012+381, and GRO J1655-40. During the ASCA observations, these BHBs showed characteristics of the standard high/soft state. Under the standard modeling of high-state black hole binaries, the sources show Tin=0.76-1.17keV, the disk fraction to the total 0.7-10keV flux of 54-98%, and Nh=(0.7--12)E21/cm^2. The best-fit p-values were found in 0.6-0.8, and the standard value of p=3/4 was accepted for all the sources.The obtained p-values are also compared with those expected for the standard accretion disk in the Schwarzschild metric, and they were consistent with those expected from the standard accretion disk.

Aya Kubota; Ken Ebisawa; Kazuo Makishima; Kazuhiro Nakazawa

2005-05-17T23:59:59.000Z

53

Stratospheric and mesospheric pressure-temperature profiles from rotational analysis of CO2 lines in atmospheric trace molecule spectroscopy/ATLAS 1 infrared solar occultation spectra  

SciTech Connect

A simple, classical, and expedient method for the retrieval of atmospheric pressure-temperature profiles has been applied to the high-resolution infrared solar absorption spectra obtained with the atmospheric trace molecule spectroscopy (ATMOS) instrument. The basis for this method is a rotational analysis of retrieved apparent abundances from CO2 rovibrational absorption lines, employing existing constituent concentration retrieval software used in the analysis of data returned by ATMOS. Pressure-temperature profiles derived from spectra acquired during the ATLAS 1 space shuttle mission of March-April 1992 are quantitatively evaluated and compared with climatological and meteorological data as a means of assessing the validity of this approach.

Stiller, G.P.; Gunson, M.R.; Lowes, L.L.; Abrams, M.C.; Raper, O.F.; Farmer, C.B.; Zander, R.; Rinsland, C.P. [Kernforschungszentrum Karlsruhe, Karlsruhe (Germany)] [Kernforschungszentrum Karlsruhe, Karlsruhe (Germany); [Jet Propulsion Lab., California Inst. of Tech., Pasadena, CA (United States); [Liege Univ., Liege (Belgium); [NASA, Langley Research Center, Hampton, VA (United States)

1995-02-01T23:59:59.000Z

54

Energy conservation in high-rise buildings: Changes in air conditioning load induced by vertical temperature and humidity profile in Delhi  

Science Journals Connector (OSTI)

Temperature and humidity profiles in the upper atmosphere are different from those observed by ground level meteorological stations and used to design HVAC systems for high-rise buildings. There exist correlations among solar energy, atmospheric turbidity and pollutants in urban areas, affecting the temperature and humidity profiles with variation in height. In the present study, a theoretical model is developed considering these parameters, and the HVAC load is calculated. The results are compared with the HVAC load calculated from data obtained from the meteorological station, and the comparison showed that the results differ significantly (20%) for a hypothetical 200 m high office building.

S. Sinha; Sanjay Kumar; N. Kumar

1998-01-01T23:59:59.000Z

55

COOLING FLOW MODELS OF THE X--RAY EMISSION AND TEMPERATURE PROFILES FOR A SAMPLE OF ELLIPTICAL GALAXIES  

E-Print Network (OSTI)

A simple spherically-symmetric, steady-state, cooling-flow description with gas loss (following Sarazin \\& Ashe 1989), within galaxy models constrained by radially extended stellar dynamical data, is shown to provide generally reasonable fits to the existing data on X-ray emission profiles and temperatures for a set of bright elliptical galaxies in Virgo and Fornax. Three free parameters are needed to specify the model: the external mass flux, the external pressure, and a dimensionless factor, which regulates the mass deposition rate along the flow. Three different assumptions on the supernova rate have been considered. A moderate value for the supernova rate in elliptical galaxies is found to be preferred. Confining pressures of $p_{ext}\\sim4\\div15\\times10^3\\kelvin$ cm$^{-3}$ and significant accretion rates of external material, up to $4\\msolar/\\yr$, are suggested by our models. A possible correlation between $L_X/L_B$ and the iron abundance in the gas inside ellipticals is pointed out.

Giuseppe Bertin; Thomas Toniazzo

1995-04-04T23:59:59.000Z

56

Virtual Classroom | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Virtual Classroom Virtual Classroom Adobe Connect is as web conferencing tool that is being used as a virtual classroom in an ongoing pilot to conduct virtual Instructor Led...

57

Virtual impactor  

DOE Patents (OSTI)

A virtual impactor is described having improved efficiency and low wall losses in which a core of clean air is inserted into the aerosol flow while aerosol flow is maintained adjacent to the inner wall surfaces of the focusing portion of the impactor. The flow rate of the core and the length of the throat of the impactor's collection probe, as well as the dimensional relationships of other components of the impactor adjacent the separation region of the impactor, are selected to optimize separation efficiency. 4 figs.

Yeh, H.C.; Chen, B.T.; Cheng, Y.S.; Newton, G.J.

1988-08-30T23:59:59.000Z

58

Effect of ion orbit loss on the structure in the H-mode tokamak edge pedestal profiles of rotation velocity, radial electric field, density, and temperature  

SciTech Connect

An investigation of the effect of ion orbit loss of thermal ions and the compensating return ion current directly on the radial ion flux flowing in the plasma, and thereby indirectly on the toroidal and poloidal rotation velocity profiles, the radial electric field, density, and temperature profiles, and the interpretation of diffusive and non-diffusive transport coefficients in the plasma edge, is described. Illustrative calculations for a high-confinement H-mode DIII-D [J. Luxon, Nucl. Fusion 42, 614 (2002)] plasma are presented and compared with experimental results. Taking into account, ion orbit loss of thermal ions and the compensating return ion current is found to have a significant effect on the structure of the radial profiles of these quantities in the edge plasma, indicating the necessity of taking ion orbit loss effects into account in interpreting or predicting these quantities.

Stacey, Weston M. [Fusion Research Center, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)] [Fusion Research Center, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

2013-09-15T23:59:59.000Z

59

Measurement of Boundary-Layer Temperature Profiles by a Scanning 5-MM Radiometer During the 1999 Winter NSA/AAO Radiometer Exp  

NLE Websites -- All DOE Office Websites (Extended Search)

Boundary-Layer Temperature Profiles by Boundary-Layer Temperature Profiles by a Scanning 5-MM Radiometer During the 1999 Winter NSA/AAO Radiometer Experiment and WVIOP 2000 V. Y. Leuski and E. R. Westwater Cooperative Institute for Research in the Environmental Sciences National Oceanic and Atmospheric Administration Environmental Technology Laboratory University of Colorado Boulder, Colorado Introduction A scanning 5-mm-wavelength radiometer was deployed during two Intensive Operational Periods (IOPs) at the Atmospheric Radiation Measurement (ARM) Program's Cloud and Radiation Testbed (CART) facilities. The first was conducted at the North Slope of Alaska (NSA) and Adjacent arctic Ocean (AAO) site near Barrow, Alaska, during March 1999. One goal was to evaluate the ability of an

60

Development of a High Resolution X-Ray Imaging Crystal Spectrometer for Measurement of Ion-Temperature and Rotation-Velocity Profiles in Fusion Energy Research Plasmas  

SciTech Connect

A new imaging high resolution x-ray crystal spectrometer (XCS) has been developed to measure continuous profiles of ion temperature and rotation velocity in fusion plasmas. Following proof-of-principle tests on the Alcator C-Mod tokamak and the NSTX spherical tokamak, and successful testing of a new silicon, pixilated detector with 1 MHz count rate capability per pixel, an imaging XCS is being designed to measure full profiles of Ti and v? on C-Mod. The imaging XCS design has also been adopted for ITER. Ion-temperature uncertainty and minimum measurable rotation velocity are calculated for the C-Mod spectrometer. The affects of x-ray and uclear-radiation background on the measurement uncertainties are calculated to predict performance on ITER.

Hill, K W; Broennimann, Ch; Eikenberry, E F; Ince-Cushman, A; Lee, S G; Rice, J E; Scott, S

2008-01-29T23:59:59.000Z

Note: This page contains sample records for the topic "virtual temperature profiles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Virtual Prairie  

NLE Websites -- All DOE Office Websites (Extended Search)

Visualizing a Real Prairie: Visualizing a Real Prairie: Tools to Represent Your Data Site Index for ( Quadrat Study Project - Prairie Advocates Project - Online Prairie Data) You may use the virtual prairies you create in your presentation. You will need to save the screen or browser window to save the images you create. On the Macintosh, you type open apple-shift-3 to make a Picture file on the hard drive. You can edit these files with Adobe Photoshop or other image editing applications and put them in your report. On a PC with Windows 95, you can type the key combination of "print screen" and the alt key to save what you have displayed in the browser window to the clipboard and then paste it into an image editing application or directly into your report. Create a Quadrat Using Real Data.

62

Virtual Optical Comparator  

SciTech Connect

The Virtual Optical Comparator, VOC, was conceived as a result of the limitations of conventional optical comparators and vision systems. Piece part designs for mechanisms have started to include precision features on the face of parts that must be viewed using a reflected image rather than a profile shadow. The VOC concept uses a computer generated overlay and a digital camera to measure features on a video screen. The advantage of this system is superior edge detection compared to traditional systems. No vinyl charts are procured or inspected. The part size and expensive fixtures are no longer a concern because of the range of the X-Y table of the Virtual Optical Comparator. Product redesigns require only changes to the CAD image overlays; new vinyl charts are not required. The inspection process is more ergonomic by allowing the operator to view the part sitting at a desk rather than standing over a 30 inch screen. The procurement cost for the VOC will be less than a traditional comparator with a much smaller footprint with less maintenance and energy requirements.

Thompson, Greg

2008-10-20T23:59:59.000Z

63

Project Profile: Halide and Oxy-Halide Eutectic Systems for High-Performance, High-Temperature Heat Transfer Fluids  

Energy.gov (U.S. Department of Energy (DOE))

The University of Arizona along with partners at Arizona State University and Georgia Institute of Technology, under the 2012 Multidisciplinary University Research Initiative (MURI): High Operating Temperature (HOT) Fluids funding opportunity, is investigating the use of halide salts with oxy-halide additives as a heat transfer fluid (HTF) in concentrating solar power (CSP) systems operating at temperatures greater than 800°C. By allowing higher temperature operation, CSP systems can achieve greater efficiencies and thereby reduce the overall system cost.

64

Project Profile: Development and Performance Evaluation of High Temperature Concrete for Thermal Energy Storage for Solar Power Generation  

Energy.gov (U.S. Department of Energy (DOE))

The University of Arkansas, under the Thermal Storage FOA, is developing a novel concrete material that can withstand operating temperatures of 500°C or more and is measuring the concrete properties.

65

ADVANCES IN ATMOSPHERIC SCIENCES, VOL. 31, MAY 2014, 559569 Ensemble Retrieval of Atmospheric Temperature Profiles from AIRS  

E-Print Network (OSTI)

Satellite-based observations provide great opportunities for improving weather forecasting. Physical in global climate and weather systems. Among all observations, satellite-derived atmospheric temperatureCooperative Institute for Meteorological Satellite Studies, University of Wisconsin--Madison, Madison

Li, Jun

66

Similarity Equations for Wind and Temperature Profiles in the Radix Layer, at the Bottom of the Convective Boundary Layer  

Science Journals Connector (OSTI)

In the middle of the convective boundary layer, also known as the mixed layer, is a relatively thick region where wind speed and potential temperature are nearly uniform with height. Below this uniform layer (UL), wind speed decreases to zero at ...

Edi Santoso; Roland Stull

2001-06-01T23:59:59.000Z

67

VIRTUAL PRESENTERS: TOWARDS INTERACTIVE VIRTUAL PRESENTATIONS  

E-Print Network (OSTI)

the interesting parts of a sculpture or painting, addressing one, several or all persons in his or her audience be a painting, displayed and explained in a virtual museum environment. There are many examples of research they aim at giving the presentation task to a robot or virtual agent. In the latter case we can have one

Nijholt, Anton

68

Autonomous Virtual Mobile Nodes  

E-Print Network (OSTI)

This paper presents a new abstraction for virtual infrastructure in mobile ad hoc networks. An AutonomousVirtual Mobile Node (AVMN) is a robust and reliable entity that is designed to cope with theinherent difficulties ...

Dolev, Shlomi

2005-06-15T23:59:59.000Z

69

1 - Mapping virtual worlds  

Science Journals Connector (OSTI)

Abstract Virtual worlds are many and varied. In investigating the scope of virtual communities, it is important to understand social and theoretical issues that impact online participants. Such issues as gender, ontology, socio-technological integration, and corporeal interface all impact exploration of virtual worlds.

Woody Evans

2011-01-01T23:59:59.000Z

70

An experimental and numerical investigation of premixed syngas combustion dynamics in mesoscale channels with controlled wall temperature profiles  

Science Journals Connector (OSTI)

Abstract The dynamics in H2/CO/O2/N2 premixed combustion was investigated experimentally and numerically in a 7-mm height mesoscale channel at atmospheric pressure, fuel–lean equivalence ratios 0.25–0.42, volumetric CO:H2 ratios 1:1 to 20:1, and wall temperatures 550–1320 K. Experiments were performed in an optically-accessible channel-flow reactor and involved high-speed (up to 1 kHz) planar laser induced fluorescence (LIF) of the OH radical and thermocouple measurements of the upper and lower channel wall temperatures. Simulations were carried out with a transient 2-D code, which included an elementary syngas reaction mechanism and detailed species transport. Demarcation of the experimentally-observed parameter space separating stationary and oscillatory combustion modes indicated that the former were favored at the higher wall temperatures and higher CO:H2 volumetric ratios, while the latter predominately appeared at the lower wall temperatures and lower CO:H2 ratios. The numerical model reproduced very well all stationary combustion modes, which included V-shaped and asymmetric (upper or lower) modes, in terms of flame shapes and flame anchoring positions. Simulations of the oscillatory flames, which appeared in the form of ignition/extinction events of varying spatial extents, were very sensitive to the specific boundary conditions and reproduced qualitatively the flame topology, the ignition sequence (including the periodic reversion from upper-asymmetric to lower-asymmetric flame propagation), and the range of measured oscillation frequencies. Predicted emissions in the stationary modes ranged from 25 to 94 ppm-mass for CO and from 0.1 to 0.3 ppm-mass for H2, while in the oscillatory modes incomplete combustion of both CO and H2 was attested during their oscillation period.

Andrea Brambilla; Marco Schultze; Christos E. Frouzakis; John Mantzaras; Rolf Bombach; Konstantinos Boulouchos

2014-01-01T23:59:59.000Z

71

Gas temperature profiles at different flow rates and heating rates suffice to estimate kinetic parameters for fluidised bed combustion  

SciTech Connect

Experimental work on estimation kinetic parameters for combustion was conducted in a bench-scale fluidised bed (FB: 105x200mm). Combustion medium was obtained by using an electrical heater immersed into the bed. The ratio of heating rate (kJ/s) to molar flow rate of air (mol/s) regulated by a rheostat so that the heat of combustion (kJ/mol) can be synthetically obtained by an electrical power supply for relevant O{sub 2}-feedstock concentration (C{sub 0}). O{sub 2}-restriction ratio ({beta}) was defined by the ratio of O{sub 2}-feedstock concentration to O{sub 2}-air concentration (C{sub O{sub 2}-AIR}) at prevailing heating rates. Compressed air at further atmospheric pressure ({approx_equal}102.7kPa) entered the bed that was alumina particles (250{mu}m). Experiments were carried out at different gas flow rates and heating rates. FB was operated with a single charge of (1300g) particles for obtaining the T/T{sub 0} curves, and than C/C{sub 0} curves. The mathematical relationships between temperature (T) and conversion ratio (X) were expressed by combining total energy balance and mass balance in FB. Observed surface reaction rate constants (k{sub S}) was obtained from the combined balances and proposed model was also tested for these kinetic parameters (frequency factor: k{sub 0}, activation energy: E{sub A}, and reaction order: n) obtained from air temperature measurements. It was found that the model curves allow a good description of the experimental data. Thus, reaction rate for combustion was sufficiently expressed. (author)

Suyadal, Y. [Faculty of Engineering, Department of Chemical Engineering, Ankara University, 06100-Tandogan, Ankara (Turkey)

2006-07-15T23:59:59.000Z

72

Remotely Deployed Virtual Sensors  

E-Print Network (OSTI)

Remotely Deployed Virtual Sensors TR-UTEDGE-2007-010 Sanem Kabadayi Christine Julien © Copyright 2007 The University of Texas at Austin #12;Remotely Deployed Virtual Sensors Sanem Kabadayi that run on mobile client devices connect to the sensors of a multihop sensor network. For emerging

Julien, Christine

73

Virtual Circuits (OSCARS)  

NLE Websites -- All DOE Office Websites (Extended Search)

Virtual Circuits (OSCARS) Virtual Circuits (OSCARS) Services Overview ECS Audio/Video Conferencing Fasterdata IPv6 Network Network Performance Tools (perfSONAR) ESnet OID Registry PGP Key Service Virtual Circuits (OSCARS) OSCARS Case Study Documentation Links Hardware Requirements DOE Grids Service Transition Contact Us Technical Assistance: 1 800-33-ESnet (Inside the US) 1 800-333-7638 (Inside the US) 1 510-486-7600 (Globally) 1 510-486-7607 (Globally) Report Network Problems: trouble@es.net Provide Web Site Feedback: info@es.net Virtual Circuits (OSCARS) ESnet's On-Demand Secure Circuits and Advance Reservation System (OSCARS) provides multi-domain, high-bandwidth virtual circuits that guarantee end-to-end network data transfer performance. Originally a research concept, OSCARS has grown into a robust production service. Currently

74

Virtual Teams Demystified: An Integrative Framework for Understanding Virtual Teams  

Science Journals Connector (OSTI)

Virtual teams have been researched intensely in the last ten years and there is a growing body of literature on the topic. At this point, the authors need an integrative theory-driven framework through which they can conceptualize the notion of virtual ... Keywords: Emergent Team Processes, Emergent Team States, Information Technology, Team Design, Virtual Team Effectiveness, Virtual Teams

Olivier Caya; Mark Mortensen; Alain Pinsonneault

2013-04-01T23:59:59.000Z

75

Virtual vision: visual sensor networks in virtual reality  

Science Journals Connector (OSTI)

The virtual vision paradigm features a unique synergy of computer graphics, artificial life, and computer vision technologies. Virtual vision prescribes visually and behaviorally realistic virtual environments as a simulation tool in support of research ... Keywords: reality emulator, smart cameras, virtual vision

Faisal Z. Qureshi; Demetri Terzopoulos

2007-11-01T23:59:59.000Z

76

Virtual planetarium in cyberstage  

Science Journals Connector (OSTI)

We describe an educational application in virtual environment, intended for teaching and demonstration of basics of astronomy. The application includes 3D models of 30 objects in the Solar System, 3200 nearby stars, a large database, containing textual ...

Valery Burkin; Martin Göbel; Frank Hasenbrink; Stanislav Klimenko; Igor Nikitin; Henrik Tramberend

2000-06-01T23:59:59.000Z

77

Jefferson Lab Virtual Tour  

ScienceCinema (OSTI)

Take a virtual tour of the campus of Thomas Jefferson National Accelerator Facility. You can see inside our two accelerators, three experimental areas, accelerator component fabrication and testing areas, high-performance computing areas and laser labs.

None

2014-05-22T23:59:59.000Z

78

Analysis of mixing layer heights inferred from radiosonde, wind profiler, airborne lidar, airborne microwave temperature profiler, and in-situ aircraft data during the Texas 2000 air quality study in Houston, TX  

E-Print Network (OSTI)

by wind profilers at the Wharton (WH), Liberty (LB), Houston Southwest (HSW), Ellington (EL), and LaMarque (LM) sites.................................................................. 93 18 Skew-T of WH radiosonde data at 1100 UTC...), Houston Southwest (HSW), Ellington (EL), and LaMarque (LM) sites ....................................... 97 21 The ML height distribution at 1600 UTC around the city of Houston...

Smith, Christina Lynn

2005-08-29T23:59:59.000Z

79

Microsoft Virtualization: Master Microsoft Server, Desktop, Application, and Presentation Virtualization  

Science Journals Connector (OSTI)

Virtualization technologies help IT organizations in three ways: cost-cutting, ease of administration, and the overall effect of IT on the environment. Virtualization cuts costs by reducing the amount of capital resources (equipment), power, and cooling ...

Thomas Olzak; James Sabovik; Jason Boomer; Robert M. Keefer

2010-06-01T23:59:59.000Z

80

Multimodal astronaut virtual training prototype  

Science Journals Connector (OSTI)

A few dedicated training simulator applications exist that mix realistic interaction devices-like real cockpits in flight simulators-with virtual environment (VE) components. Dedicated virtual reality (VR) systems have been utilized also in astronaut ...

Jukka Rönkkö; Jussi Markkanen; Raimo Launonen; Marinella Ferrino; Enrico Gaia; Valter Basso; Harshada Patel; Mirabelle D'Cruz; Seppo Laukkanen

2006-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "virtual temperature profiles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Improving virtual environments analysis process  

Science Journals Connector (OSTI)

The use of Virtual Environments (VEs) is increasing rapidly and people are demanding easier and more credible ways to interact with these new sites. We define a VE as a special kind of 3D virtual environment, inhabited by avatars which represent humans ... Keywords: analysis process, software engineering, use concept, virtual environment

Maria-Isabel Sánchez-Segura; Angelica De Antonio; Antonio De Amescua

2005-08-01T23:59:59.000Z

82

The hiphop virtual machine  

Science Journals Connector (OSTI)

The HipHop Virtual Machine (HHVM) is a JIT compiler and runtime for PHP. While PHP values are dynamically typed, real programs often have latent types that are useful for optimization once discovered. Some types can be proven through static analysis, ... Keywords: dynamic languages, jit compiler, php, tracelet

Keith Adams, Jason Evans, Bertrand Maher, Guilherme Ottoni, Andrew Paroski, Brett Simmers, Edwin Smith, Owen Yamauchi

2014-10-01T23:59:59.000Z

83

Spaceborne profiling of atmospheric temperature and particle extinction with pure rotational Raman lidar and of relative humidity in combination with differential absorption lidar: performance simulations  

SciTech Connect

The performance of a spaceborne temperature lidar based on the pure rotational Raman (RR) technique in the UV has been simulated. Results show that such a system deployed onboard a low-Earth-orbit satellite would provide global-scale clear-sky temperature measurements in the troposphere and lower stratosphere with precisions that satisfy World Meteorological Organization (WMO) threshold observational requirements for numerical weather prediction and climate research applications. Furthermore, nighttime temperature measurements would still be within the WMO threshold observational requirements in the presence of several cloud structures. The performance of aerosol extinction measurements from space, which can be carried out simultaneously with temperature measurements by RR lidar, is also assessed. Furthermore, we discuss simulations of relative humidity measurements from space obtained from RR temperature measurements and water-vapor data measured with the differential absorption lidar (DIAL) technique.

Di Girolamo, Paolo; Behrendt, Andreas; Wulfmeyer, Volker

2006-04-10T23:59:59.000Z

84

Virtual nuclear weapons  

SciTech Connect

The term virtual nuclear weapons proliferation and arsenals, as opposed to actual weapons and arsenals, has entered in recent years the American lexicon of nuclear strategy, arms control, and nonproliferation. While the term seems to have an intuitive appeal, largely due to its cyberspace imagery, its current use is still vague and loose. The author believes, however, that if the term is clearly delineated, it might offer a promising approach to conceptualizing certain current problems of proliferation. The first use is in a reference to an old problem that has resurfaced recently: the problem of growing availability of weapon-usable nuclear materials in civilian nuclear programs along with materials made `excess` to defense needs by current arms reduction and dismantlement. It is argued that the availability of these vast materials, either by declared nuclear-weapon states or by technologically advanced nonweapon states, makes it possible for those states to rapidly assemble and deploy nuclear weapons. The second use has quite a different set of connotations. It is derived conceptually from the imagery of computer-generated reality. In this use, one thinks of virtual proliferation and arsenals not in terms of the physical hardware required to make the bomb but rather in terms of the knowledge/experience required to design, assemble, and deploy the arsenal. Virtual weapons are a physics reality and cannot be ignored in a world where knowledge, experience, materials, and other requirements to make nuclear weapons are widespread, and where dramatic army reductions and, in some cases, disarmament are realities. These concepts are useful in defining a continuum of virtual capabilities, ranging from those at the low end that derive from general technology diffusion and the existence of nuclear energy programs to those at the high end that involve conscious decisions to develop or maintain militarily significant nuclear-weapon capabilities.

Pilat, J.F.

1997-08-01T23:59:59.000Z

85

Virtual Leadership in Brazil - Virtual Intelligence in Multinational Companies.  

E-Print Network (OSTI)

?? As the technology develops, the communication infrastructure continues to innovate and increase competitiveness. For companies in a country such as Brazil, communicating virtually may… (more)

Wikström, Ida

2014-01-01T23:59:59.000Z

86

Downstream Heat Flux Profile vs. Midplane T Profile in Tokamaks  

SciTech Connect

The relationship between the midplane scrape-off-layer electron temperature profile and the parallel heat flux profile at the divertor in tokamaks is investigated. A model is applied which takes into account anisotropic thermal diffusion, in a rectilinear geometry with constant density. Eigenmode analysis is applied to the simplified problem with constant thermal diffusivities. A self-similar nonlinear solution is found for the more realistic problem with anisotropically temperature-dependent thermal diffusivities. Numerical solutions are developed for both cases, with spatially dependent heat flux emerging from the plasma. For both constant and temperature-dependent thermal diffusivities it is found that, below about one-half of its peak, the heat flux profile shape at the divertor, compared with the midplane temperature profile shape, is robustly described by the simplest two-point model. However the physical processes are not those assumed in the simplest two-point model, nor is the numerical coefficient relating q||div to Tmp ?||mp/L|| as predicted. For realistic parameters the peak in the heat flux, moreover, can be reduced by a factor of two or more from the two-point model scaling which fits the remaining profile. For temperature profiles in the SOL region above the x-point set by marginal stability, the heat flux profile to the divertor can be largely decoupled from the prediction of the two-point model. These results suggest caveats for data interpretation, and possibly favorable outcomes for divertor configurations with extended field lines.

Robert J. Goldston

2009-08-20T23:59:59.000Z

87

Virtual Machine in Automation Projects.  

E-Print Network (OSTI)

?? Virtual machine, as an engineering tool, has recently been introduced into automation projects in Tetra Pak Processing System AB. The goal of this paper… (more)

Xing, Xiaoyuan

2010-01-01T23:59:59.000Z

88

Stereo Panorama Personal Virtual Environment  

Science Journals Connector (OSTI)

We describe a personal panoramic virtual environment system with an autostereoscopic display. We discuss swing panoramic image capture, automatic disparity control, spatial sampling,...

Wang, Chiao; Garagate, Jui; Sawchuk, Alexander A

89

People Profiles  

NLE Websites -- All DOE Office Websites (Extended Search)

What Is NIF? How NIF Works Seven Wonders Beamline NIF Construction Who Works for NIF & PS? People Profiles Management Awards Honors Fellows Who Partners with NIF? FAQs Visit Us...

90

Virtual stationary timed automata for mobile networks  

E-Print Network (OSTI)

In this thesis, we formally define a programming abstraction for mobile networks called the Virtual Stationary Automata programming layer, consisting of real mobile clients, virtual timed I/O automata called virtual ...

Nolte, Tina Ann, 1979-

2009-01-01T23:59:59.000Z

91

Virtual Science Fair | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Virtual Science Fair Virtual Science Fair The Bioenergy Technology Office (BETO) is hosting a national virtual science fair that engages 9th-12th grade students in learning about...

92

Uncertainty and Virtual Particles  

NLE Websites -- All DOE Office Websites (Extended Search)

Incertidumbre y partículas virtuales Incertidumbre y partículas virtuales Volver Principal ESTOY PERDIDO!!! El principio de incerteza de Heisenberg: En 1927, Heisenberg enunció una propiedad fundamental de la mecánica cuántica que dice que es imposible medir EN FORMA EXACTA AMBOS, la posición de una partícula y su ímpetu. Cuanto mayor sea la precisión con que determinamos una, menos sabremos de la otra. Este es el llamado Principio de incerteza de Heisenberg. La relación matemática que lo expresa es: Significa que la incertidumbre en la posición (x), multiplicada por la incertidumbre en el momento (p), es mayor o igual que una constante (h-barra dividido por dos.) Este principio puede también ser escrito en términos de energía y tiempo: Significa que la incertidumbre en la energía de una partícula

93

Characterization of self-propagating formation reactions in Ni/Zr multilayered foils using reaction heats, velocities, and temperature-time profiles  

We report on intermetallic formation reactions in vapor-deposited multilayered foils of Ni/Zr with 70 nm bilayers and overall atomic ratios of Ni:Zr, 2 Ni:Zr, and 7 Ni:2 Zr. The sequence of alloy phase formation and the stored energy is evaluated at slow heating rates (~1 K/s) using differential scanning calorimetry (DSC) traces to 725ºC. All three chemistries initially form a Ni-Zr amorphous phase which crystallizes first to the intermetallic NiZr. The heat of reaction to the final phase is 34-36 kJ/mol atom for all chemistries. Intermetallic formation reactions are also studied at rapid heating rates (greater than 105 K/s) in high temperature, self-propagating reactions which can be ignited in these foils by an electric spark. We find that reaction velocities and maximum reaction temperatures (Tmax) are largely independent of foil chemistry at 0.6 ± 0.1 m/s and 1220 ± 50 K, respectively, and that the measured Tmax is more than 200 K lower than predicted adiabatic temperatures (Tad). The difference between Tmax and Tad is explained by the prediction that transformation to the final intermetallic phases occurs after Tmax and results in the release of 20-30 % of the total heat of reaction and a delay in rapid cooling.

Barron, S. C.; Knepper, R.; Walker, N.; Weihs, T. P.

2011-01-11T23:59:59.000Z

94

The density profiles of hot galactic halo gas  

E-Print Network (OSTI)

Extended gas haloes around galaxies are a ubiquitous prediction of galaxy formation scenarios. However, the density profiles of this hot halo gas is virtually unknown, although various profiles have been suggested on theoretical grounds. In order to quantitatively address the gas profile, we compare galaxies from direct cosmological simulations with analytical solutions of the underlying gas equations. We find remarkable agreement between simulations and theoretical predictions. We present an expression for this gas profile with a non-trivial dependence on the total mass profile. This expression is useful when setting up equilibrium galaxy models for numerical experiments.

Steen H. Hansen; Jesper Sommer-Larsen

2006-06-13T23:59:59.000Z

95

Depth profile of oxide volume fractions of Zircaloy-2 in high-temperature steam: An in-situ synchrotron radiation study  

Science Journals Connector (OSTI)

Abstract To study the steam oxidation behavior of Zircaloy-2, a high-energy synchrotron X-ray diffraction technique was applied to perform an in-situ oxidation measurement. The depth profiles of oxide volume fractions were obtained at both 600 and 800 °C. Multiple layers, including ZrO2 scale, (? + ?) Zr matrix with ZrO2 incursions, and (? + ?) Zr matrix, were mapped according to the volume fraction of each phase. The volume fractions of these phases were observed to change gradually with different distances to the surface, without a sharp edge distinguishing each of the layers. The ZrO2 consisted of tetragonal and monoclinic crystal structures, which were observed to coexist with different ratios of volume fractions in depth. The higher amount of tetragonal ZrO2 observed in the very inner region of the oxidizing Zircaloy sample indicates that the tetragonal crystal structure is the ab initio phase type, in which new oxide molecules form at the metal–oxide interface.

Walid Mohamed; Di Yun; Kun Mo; Michael J. Pellin; Michael C. Billone; Jonathan Almer; Abdellatif M. Yacout

2014-01-01T23:59:59.000Z

96

Study of the dependence of the specific output power of a copper chloride laser on the radial temperature profile of a gas plasma  

SciTech Connect

The design of a copper chloride laser is described, and the laser is optimised by studying the dependence of its output power on the buffer gas type. The voltage and current of the laser discharge at the optimum buffer gas pressure are measured. The influence of the diaphragm diameter on the specific output power is studied after optimisation of switch parameters. When an diaphragm producing the optimal temperature gradient in the laser gas-discharge tube, the record specific output power of 123 W L{sup -1} is obtained without any admixtures. (lasers)

Sadighi-Bonabi, R; Mohammadpour, R; Tavakoli, M [Physics Department, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Soltanmoradi, F [Bonab Research Center, Bonab, Azerbaijan province (Iran, Islamic Republic of); Zand, M [Laser Research Center, Tehran (Iran, Islamic Republic of)

2007-04-30T23:59:59.000Z

97

Virtual humans: back to the future  

Science Journals Connector (OSTI)

This paper essentially tries to examine all the roles that Virtual Humans can play in empowering human expression, and the research challenges we have to face to make this possible. It starts with a short history of Virtual Humans and how we contribute ... Keywords: computer animation, virtual humans, virtual reality

Nadia Magnenat Thalmann; Daniel Thalmann

2012-05-01T23:59:59.000Z

98

Virtual gap dielectric wall accelerator  

DOE Patents (OSTI)

A virtual, moving accelerating gap is formed along an insulating tube in a dielectric wall accelerator (DWA) by locally controlling the conductivity of the tube. Localized voltage concentration is thus achieved by sequential activation of a variable resistive tube or stalk down the axis of an inductive voltage adder, producing a "virtual" traveling wave along the tube. The tube conductivity can be controlled at a desired location, which can be moved at a desired rate, by light illumination, or by photoconductive switches, or by other means. As a result, an impressed voltage along the tube appears predominantly over a local region, the virtual gap. By making the length of the tube large in comparison to the virtual gap length, the effective gain of the accelerator can be made very large.

Caporaso, George James; Chen, Yu-Jiuan; Nelson, Scott; Sullivan, Jim; Hawkins, Steven A

2013-11-05T23:59:59.000Z

99

System Management Software for Virtual Environments  

SciTech Connect

Recently there has been an increased interest in the use of system-level virtualization using mature solutions such as Xen, QEMU, or VMWare. These virtualization platforms are being used in distributed and parallel environments including high performance computing. The use of virtual machines within such environments introduces new challenges to system management. These include tedious tasks such as deploying para-virtualized host operating systems to support virtual machine execution or virtual overlay networks to connect these virtual machines. Additionally, there is the problem of machine definition and deployment, which is complicated by differentiation in the underlying virtualization technology. This paper discusses tools for the deployment and management of both host operating systems and virtual machines in clusters. We begin with an overview of system-level virtualization and move on to a description of tools that we have developed to aid with these environments. These tools extend prior work in the area of cluster installation, configuration and management.

Vallee, Geoffroy R [ORNL; Naughton, III, Thomas J [ORNL; Scott, Stephen L [ORNL

2007-01-01T23:59:59.000Z

100

Mentee Profile  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mentee Profile Mentee Profile The information you provide on this form will assist us in providing you with a list of prospective mentor from which to choose the most appropriate match. Once you've completed the form, please email it to doementoringprogram@hq.doe.gov . Thank you for your interest in the DOE Mentoring Program. Name (last/first): Phone Number: Job Title/Series/Grade: Organization (indicate HQ or field - complete address): Email Address: Are you a Veteran? If yes, do want a veteran mentee? If yes, which branch of the service? Are you student or intern? Do you have a preference on mentor? For example, male, female, particular career field, specific person or other? If so, what or who? Do you want a mentor in your career field? What are your career goals?

Note: This page contains sample records for the topic "virtual temperature profiles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Mentor Profile  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mentor Profile Mentor Profile The information you provide on this form will assist us in providing you with a list of prospective mentee from which to choose the most appropriate match. Once you've completed the form, please email it to doementoringprogram@hq.doe.gov . Thank you for your interest in the DOE Mentoring Program. Name (last/first): Phone Number: Job Title/Series/Grade: Organization (indicate HQ or field - complete address): Email Address: Are you a Veteran? If yes, do want a veteran mentee? If yes, which branch of the service? Do you want a student or intern mentee? Do you have a preference on mentee? For example, male, female, particular career field or other? If so, what or state name of pre selected mentee? Do you want a mentee in your career field? What are your hobbies?

102

Reti attive di distribuzione: le applicazioni Virtual Power Plant e Virtual Utility.  

E-Print Network (OSTI)

??Il presente lavoro si occupa di nuove applicazioni per la gestione e l’ottimizzazione di risorse distribuite, così dette Virtual Power Plant (VPP) o Virtual Utility… (more)

Baroncelli, Paolo

2005-01-01T23:59:59.000Z

103

Virtual Oxygen Sensor for Innovative NOx and PM Emission Control...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Virtual Oxygen Sensor for Innovative NOx and PM Emission Control Technologies Virtual Oxygen Sensor for Innovative NOx and PM Emission Control Technologies A virtual O2 sensor for...

104

Thermohaline convection with nonlinear salt profiles N. J. Balmfortha)  

E-Print Network (OSTI)

of tem- perature and salinity; the background temperature gradient is constant, while the salt profile tangent profile is presented. It is shown that nonlinearity in the background salinity profile leads of temperature and salinity. Hence we need to jus- tify our study of the stability of this background

Julien, Keith

105

A model of virtual interference  

E-Print Network (OSTI)

We set up an experiment with two independent laser beams that cross at a small angle, spatially separate, and end at detectors in front of each beam. The setup allows us to obtain maximum path or which-way information, K=1. However, when we scan a thin wire across the beam intersection the which-way information drops to K=0.985. The thin wire serves to verify the presence of an interference pattern with visibility, V=0.833, at the beam intersection. Our results appear to be in conflict with the complementarity inequality, V^2+K^2 smaller or equal to 1. We introduce a model that describes a virtual interference pattern. We resolve our paradoxical findings by proposing that the complementarity inequality does not apply to virtual interference patterns but only to physically real ones. We find that the interference pattern in our setup is virtual.

Flores, Eduardo V; Scaturro, Jeffrey

2014-01-01T23:59:59.000Z

106

Efficient Checkpointing of Virtual Machines using Virtual Machine Introspection  

SciTech Connect

Cloud Computing environments rely heavily on system-level virtualization. This is due to the inherent benefits of virtualization including fault tolerance through checkpoint/restart (C/R) mechanisms. Because clouds are the abstraction of large data centers and large data centers have a higher potential for failure, it is imperative that a C/R mechanism for such an environment provide minimal latency as well as a small checkpoint file size. Recently, there has been much research into C/R with respect to virtual machines (VM) providing excellent solutions to reduce either checkpoint latency or checkpoint file size. However, these approaches do not provide both. This paper presents a method of checkpointing VMs by utilizing virtual machine introspection (VMI). Through the usage of VMI, we are able to determine which pages of memory within the guest are used or free and are better able to reduce the amount of pages written to disk during a checkpoint. We have validated this work by using various benchmarks to measure the latency along with the checkpoint size. With respect to checkpoint file size, our approach results in file sizes within 24% or less of the actual used memory within the guest. Additionally, the checkpoint latency of our approach is up to 52% faster than KVM s default method.

Aderholdt, Ferrol [Tennessee Technological University] [Tennessee Technological University; Han, Fang [Tennessee Technological University] [Tennessee Technological University; Scott, Stephen L [ORNL] [ORNL; Naughton, III, Thomas J [ORNL

2014-01-01T23:59:59.000Z

107

Virtual articulation and kinematic abstraction in robotics  

E-Print Network (OSTI)

This thesis presents the theory, implementation, novel applications, and experimental validation of a general-purpose framework for applying virtual modifications to an articulated robot, or virtual articulations. These ...

Vona, Marsette Arthur, 1977-

2009-01-01T23:59:59.000Z

108

Construction of Matlab Circuit Analysis Virtual Laboratory  

Science Journals Connector (OSTI)

The Matlab virtual laboratory was composed of the management ... the CGI interface to link the pilot designed project  would to complete the virtual  simulation. Practice...

Shoucheng Ding

2012-01-01T23:59:59.000Z

109

A Virtual Environment Framework For Software Engineering  

E-Print Network (OSTI)

A Virtual Environment Framework For Software Engineering Stephen E. Dossick Submitted in partial Environment Framework for Software Engineering Stephen E. Dossick The field of Software Engineering, responsible for mapping project artifacts into virtual environment furnishings, and the CHIME Theme Manager

Kaiser, Gail E.

110

Instructions for Using Virtual Private Network (VPN)  

Energy.gov (U.S. Department of Energy (DOE))

Virtual Private Network (VPN) provides access to network drives and is recommended for use only from a EITS provided laptop.

111

VIRTUAL TRAINING CENTRE FOR SHOE DESIGN: A SAMPLE VIRTUAL TRAINING ENVIRONMENT  

E-Print Network (OSTI)

VIRTUAL TRAINING CENTRE FOR SHOE DESIGN: A SAMPLE VIRTUAL TRAINING ENVIRONMENT Aura Mihai1 , Mehmet@tex.tuiasi.ro Abstract It is a fact that virtual training has become a key issue in training. There are numerous virtual learning and training environments and, in parallel with this, there are various approaches and tools

Aristomenis, Antoniadis

112

Watfactory Virtual Manufacturing Process Varying Inputs  

E-Print Network (OSTI)

with the virtual process: · Allows quick exploration (i.e. during a short course) of process improvement ideasWatfactory Virtual Manufacturing Process Machine 1 Machine 2 Machine 3 Stream 1 Machine B Stream 2 Inputs Can be Set by Stream z19, ..., z24 The Watfactory virtual process simulates a manufacturing

Zhu, Mu

113

3, 126, 2006 Virtual water highway  

E-Print Network (OSTI)

Hydrology and Earth System Sciences Virtual water highway: water use efficiency in global food trade H. Yang the efficiency of the5 resource use embodied in the global virtual water trade from the perspectives of ex virtual water. The results suggest efficiency gains in the global food trade in terms of water resource

Paris-Sud XI, Université de

114

Virtual Observatories A New Era for Astronomy  

E-Print Network (OSTI)

Virtual Observatories A New Era for Astronomy Reinaldo R. de Carvalho DAS-INPE/MCT 2010 Wednesday, April 7, 2010 #12;Virtual Observatories A New Era for Astronomy Reinaldo R. de Carvalho DAS!;#--&$G !!!$ ! ' !"#$%&'&#()*! !!!$#%& !( $ ' !%&$ $ ! (% +#&,&'- .'/0&#,& Wednesday, April 7, 2010 #12;Virtual Observatories A New Era for Astronomy Reinaldo R. de

115

The CloudNets Network Virtualization Architecture  

E-Print Network (OSTI)

Nets Network Virtualization Architecture Johannes Grassler jgrassler@inet.tu-berlin.de 05. Februar, 2014 Johannes Grassler jgrassler@inet.tu-berlin.de The CloudNets Network Virtualization Architecture #12;..... . .... . .... . ..... . .... . .... . .... . ..... . .... . .... . .... . ..... . .... . .... . .... . ..... . .... . ..... . .... . .... . Johannes Grassler jgrassler@inet.tu-berlin.de The CloudNets Network Virtualization Architecture #12

Schmid, Stefan

116

Virtualization in Automotive Embedded Systems  

E-Print Network (OSTI)

W / PSA / Freescale - 3 Mastering complexity of automotive Electrical and Electronics (E/E) Systems #12Virtualization in Automotive Embedded Systems : an Outlook Nicolas Navet, RTaW Bertrand Delord, PSA;© 2010 RTaW / PSA / Freescale - 2 Outline 1. Automotive E/E Systems: mastering complexity 2. Ecosystems

Navet, Nicolas

117

Virtual Control Systems Environment (VCSE)  

SciTech Connect

Will Atkins, a Sandia National Laboratories computer engineer discusses cybersecurity research work for process control systems. Will explains his work on the Virtual Control Systems Environment project to develop a modeling and simulation framework of the U.S. electric grid in order to study and mitigate possible cyberattacks on infrastructure.

Atkins, Will

2012-10-08T23:59:59.000Z

118

Virtual platforms: breaking new grounds  

Science Journals Connector (OSTI)

The case for developing and using virtual platforms (VPs) has now been made. If developers of complex HW/SW systems are not using VPs for their current design, complexity of next generation designs demands for their adoption. In addition, the users of ...

Rainer Leupers; Grant Martin; Roman Plyaskin; Andreas Herkersdorf; Frank Schirrmeister; Tim Kogel; Martin Vaupel

2012-03-01T23:59:59.000Z

119

Virtual Control Systems Environment (VCSE)  

ScienceCinema (OSTI)

Will Atkins, a Sandia National Laboratories computer engineer discusses cybersecurity research work for process control systems. Will explains his work on the Virtual Control Systems Environment project to develop a modeling and simulation framework of the U.S. electric grid in order to study and mitigate possible cyberattacks on infrastructure.

Atkins, Will

2014-02-26T23:59:59.000Z

120

DOE Solar Decathlon: Virtual Tours  

NLE Websites -- All DOE Office Websites (Extended Search)

News News Photos Daily Photos Gallery of Houses Virtual Tours Videos Product Directory Village Energy Balance Education Sponsors History FAQs Contacts Virtual Tours Explore the U.S. Department of Energy Solar Decathlon 2013 houses through 360° panoramic images. Select a team from the list below to take a peek inside. Then use your mouse and the controls in the bottom right corner of the tour image to rotate your view. U.S. Department of Energy Solar Decathlon Mobile Search Search Search Help More Search Options Orange County Great Park, Irvine, California, Oct. 3-13, 2013 Photo of a large group of cheering decathletes. They stand at the end of the Solar Decathlon 2013 village and hold a banner that says "U.S. Department of Energy Solar Decathlon." U.S. Department of Energy Solar Decathlon

Note: This page contains sample records for the topic "virtual temperature profiles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Project Profile: Development and Performance Evaluation of High...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Development and Performance Evaluation of High Temperature Concrete for Thermal Energy Storage for Solar Power Generation Project Profile: Development and Performance Evaluation of...

122

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Massachusetts Nuclear Profile 2010 Massachusetts profile Massachusetts total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy...

123

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Iowa Nuclear Profile 2010 Iowa profile Iowa total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw)...

124

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Nuclear Profile 2010 Illinois profile Illinois total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer...

125

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Louisiana Nuclear Profile 2010 Louisiana profile Louisiana total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer...

126

Temperature behavior in the build section of multilateral wells  

E-Print Network (OSTI)

. The model predicts the temperature profiles in the build sections connecting the laterals to one another or to a main wellbore, thus accounting for the changing well angle relative to the temperature profile in the earth. In addition, energy balance...

Romero Lugo, Analis Alejandra

2005-11-01T23:59:59.000Z

127

Worldwide R&D of Virtual Observatory  

E-Print Network (OSTI)

Virtual Observatory (VO) is a data intensive online astronomical research and education environment, taking advantages of advanced information technologies to achieve seamless and uniform access to astronomical information. The concept of VO was introduced in late of 1990s to meet challenges brought up with data avalanche in astronomy. This paper reviews current status of International Virtual Observatory Alliance, technical highlights from world wide VO projects, and a brief introduction of Chinese Virtual Observatory.

Chenzhou Cui; Yongheng Zhao

2007-11-27T23:59:59.000Z

128

User_TalentProfile  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Accessing and Modifying Talent Profile Accessing and Modifying Talent Profile © 2011 SuccessFactors, Inc. - 1 - SuccessFactors Learning Confidential. All rights reserved. Job Aid: Accessing and Modifying Talent Profile Purpose The purpose of this job aid is to guide users through the step-by-step process of accessing their talent profiles, adding information to their profiles, and editing existing talent profile information. Task A. Access Talent Profile Enter the web address (URL) of the user application into your browser Address field and press the Enter key. Enter your user ID in the User ID textbox. Enter your password in the Password textbox. Click Sign In. Access Talent Profile 4 Steps Task A Add Information to Talent Profile Sections 5 Steps Task B Edit Talent Profile Sections

129

Caterpillar, Argonne undertake cooperative virtual engine design...  

NLE Websites -- All DOE Office Websites (Extended Search)

Caterpillar, Argonne undertake cooperative virtual engine design, control project By Jared Sagoff * June 30, 2014 Tweet EmailPrint ARGONNE, Ill - Internal combustion engines are...

130

CFD Tools in Stirling Engine Virtual Design  

Science Journals Connector (OSTI)

A successful realization of Stirling engines is conditioned by its correct conceptual design ... supply engine are used for virtual prototype of Stirling engine.

V. Pistek; P. Novotny

2007-01-01T23:59:59.000Z

131

Stirling Engine Development Using Virtual Prototyping  

Science Journals Connector (OSTI)

A successful realization of Stirling engines is conditioned by its correct conceptual design ... are used for virtual prototype of 3 kW Stirling engine with Rhombic mechanism.

V. Píšt?k; P. Novotný

2012-01-01T23:59:59.000Z

132

Virtual Training Centre For CNC: a Sample Virtual Training Environment Mehmet Sahin1  

E-Print Network (OSTI)

Virtual Training Centre For CNC: a Sample Virtual Training Environment Mehmet Sahin1 , Süleyman bilalis@dpem.tuc.gr Abstract It is a fact that virtual training has been a scope of interest for vocational training for a very long time. However, it needs more time to be more common in all specific

Aristomenis, Antoniadis

133

Collaborative Virtual Training with Physical and Communicative Autonomous Agents.  

E-Print Network (OSTI)

Collaborative Virtual Training with Physical and Communicative Autonomous Agents. Thomas Lopez1, Conversational Agents, Autonomous Actors, Avatars, Virtual Reality Introduction The use of virtual reality Environments for Train- ing (CVETs) where real users and autonomous agents efficiently collaborate toward

134

Multimodal astronaut virtual training prototype  

Science Journals Connector (OSTI)

A few dedicated training simulator applications exist that mix realistic interaction devices—like real cockpits in flight simulators—with virtual environment (VE) components. Dedicated virtual reality (VR) systems have been utilized also in astronaut training. However there are no detailed descriptions of projection wall VR systems and related interaction techniques for astronaut assembly training in zero gravity conditions. Back projection technology tends to have certain advantages over head mounted displays including less simulation sickness and less restricted user movement. A prototype was built to evaluate the usefulness of projection technology \\{VEs\\} and interaction techniques for astronaut training. This was achieved by first constructing a PC cluster-based general purpose VE software and hardware platform. This platform was used to implement a testing prototype for astronaut assembly sequence training. An interaction tool battery was designed for the purposes of viewpoint control and object handling. A selected training task was implemented as a case study for further analysis based on laptop usage in the Fluid Science Laboratory (FSL) inside the Columbus module in the International Space Station (ISS). User tests were conducted on the usability of the prototype for the intended training purpose. The results seem to indicate that projection technology-based VE systems and suitably selected interaction techniques can be successfully utilized in zero gravity training operations.

Jukka Rönkkö; Jussi Markkanen; Raimo Launonen; Marinella Ferrino; Enrico Gaia; Valter Basso; Harshada Patel; Mirabelle D’Cruz; Seppo Laukkanen

2006-01-01T23:59:59.000Z

135

Rapid Prototyping of Virtual Environments  

Science Journals Connector (OSTI)

The goal of virtual reality is to fully or partially immerse a human in a visually coupled environment. By tracking the position and orientation of the user with sensors designed for this purpose and by coupling these measurements with a high?performance computer graphics system we can generate a computer?synthesized view of a virtual environment that responds to the user’s movements. Thus the user does not just see a visual display on a terminal but is immersed within the display. VR also allows natural real?time interaction with the VE. Instead of a GUI the system uses perceptual and multi?modal interfaces (such as gesture audio and speech recognition) to interact with the data. Natural locomotion devices let the user navigate through the VE. Also because of the size of the typical projection?based VR display (CAVEs and workbenches) groups of scientists and engineers can more easily work together to interpret data making full use of the 3D portrayal.

Marco Lanzagorta; Robert Rosenberg; Lawrence J. Rosenblum; Eddy Y. Kuo

2000-01-01T23:59:59.000Z

136

Virtual Machine Monitors 36.1 Introduction  

E-Print Network (OSTI)

36 Virtual Machine Monitors 36.1 Introduction Years ago, IBM sold mainframes to large organizations, and a problem arose: what if the organization wanted to run different operating systems on the machine? (some yet another level of indirection in the form of a virtual machine monitor, or VMM or just monitor

Sheridan, Jennifer

137

Green Virtual Enterprises and their Breeding Environments  

E-Print Network (OSTI)

Green Virtual Enterprises and their Breeding Environments David Romero, Arturo Molina Tecnológico. This paper introduces a Green Virtual Enterprise (GVE) model as an emerging sustainable manufacturing and logistics mode focused on offering, delivering and recovering green products to/from the market, under

Paris-Sud XI, Université de

138

Virtual Sensors: Abstracting Data from Physical Sensors  

E-Print Network (OSTI)

Virtual Sensors: Abstracting Data from Physical Sensors TR-UTEDGE-2006-001 Sanem Kabadayi Adam Pridgen Christine Julien © Copyright 2006 The University of Texas at Austin #12;Virtual Sensors: Abstracting Data from Physical Sensors Sanem Kabadayi, Adam Pridgen, and Christine Julien The Center

Julien, Christine

139

Virtualizing Operating Systems for Seamless Distributed Environments  

E-Print Network (OSTI)

Virtualizing Operating Systems for Seamless Distributed Environments 1 Tom Boyd and Partha Dasgupta. Abstract Applications and operating systems can be augmented with extra functionality by injecting bindings. This is called virtualiza- tion. We are developing a virtualizing Operating System (vOS) residing

Dasgupta, Partha

140

T-678: Red Hat Enterprise Virtualization Hypervisor VLAN Packet...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Virtualization Hypervisor VLAN Packet Processing Flaw Lets Remote Users Deny Service T-678: Red Hat Enterprise Virtualization Hypervisor VLAN Packet Processing Flaw Lets...

Note: This page contains sample records for the topic "virtual temperature profiles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Integrated Virtual Lab in Supporting Heavy Duty Engine and Vehicle...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Virtual Lab in Supporting Heavy Duty Engine and Vehicle Emission Rulemaking Integrated Virtual Lab in Supporting Heavy Duty Engine and Vehicle Emission Rulemaking Presentation...

142

Virtual Center of Excellence for Hydrogen Storage - Chemical...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Virtual Center of Excellence for Hydrogen Storage - Chemical Hydrides Virtual Center of Excellence for Hydrogen Storage - Chemical Hydrides Presentation from the Hydrogen Storage...

143

Electromagnetic Profiling Techniques | Open Energy Information  

Open Energy Info (EERE)

Electromagnetic Profiling Techniques Electromagnetic Profiling Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Electromagnetic Profiling Techniques Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Ground Electromagnetic Techniques Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature

144

Vertical Seismic Profiling | Open Energy Information  

Open Energy Info (EERE)

Vertical Seismic Profiling Vertical Seismic Profiling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Vertical Seismic Profiling Details Activities (4) Areas (3) Regions (1) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Borehole Seismic Techniques Parent Exploration Technique: Borehole Seismic Techniques Information Provided by Technique Lithology: Rock unit density influences elastic wave velocities. Stratigraphic/Structural: Structural geology- faults, folds, grabens, horst blocks, sedimentary layering, discontinuities, etc. Hydrological: Combining compressional and shear wave results can indicate the presence of fluid saturation in the formation. Thermal: High temperatures and pressure impact the compressional and shear wave velocities.

145

Electrical Profiling Configurations | Open Energy Information  

Open Energy Info (EERE)

Electrical Profiling Configurations Electrical Profiling Configurations Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Electrical Profiling Configurations Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Direct-Current Resistivity Survey Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature

146

Process for forming retrograde profiles in silicon  

DOE Patents (OSTI)

A process is disclosed for forming retrograde and oscillatory profiles in crystalline and polycrystalline silicon. The process consisting of introducing an n- or p-type dopant into the silicon, or using prior doped silicon, then exposing the silicon to multiple pulses of a high-intensity laser or other appropriate energy source that melts the silicon for short time duration. Depending on the number of laser pulses directed at the silicon, retrograde profiles with peak/surface dopant concentrations which vary are produced. The laser treatment can be performed in air or in vacuum, with the silicon at room temperature or heated to a selected temperature.

Weiner, K.H.; Sigmon, T.W.

1996-10-15T23:59:59.000Z

147

Process for forming retrograde profiles in silicon  

DOE Patents (OSTI)

A process for forming retrograde and oscillatory profiles in crystalline and polycrystalline silicon. The process consisting of introducing an n- or p-type dopant into the silicon, or using prior doped silicon, then exposing the silicon to multiple pulses of a high-intensity laser or other appropriate energy source that melts the silicon for short time duration. Depending on the number of laser pulses directed at the silicon, retrograde profiles with peak/surface dopant concentrations which vary from 1-1e4 are produced. The laser treatment can be performed in air or in vacuum, with the silicon at room temperature or heated to a selected temperature.

Weiner, Kurt H. (San Jose, CA); Sigmon, Thomas W. (Phoenix, AZ)

1996-01-01T23:59:59.000Z

148

Development of virtual-labs based on complex Modelica models using VirtualLabBuilder  

Science Journals Connector (OSTI)

The feasibility of implementing virtual-labs based on complex Modelica models is demonstrated. To this end, the design and implementation of the following three virtual-labs is discussed: 1) a virtual-lab of a double-pipe heat exchanger, which is a useful tool for control education; 2) a virtual-lab describing the thermodynamic behaviour of the solar house, which is based on a complex Modelica model developed by other authors; 3) the virtual-lab of a drum-type washing machine, which is an industrial application useful as design aid. The graphical user interface has been implemented by using the VirtualLabBuilder library, which can be freely downloaded from http:/ /www.euclides.dia.uned.es.

Carla Martin-Villalba; Felix Martinez; Alfonso Urquia; Sebastian Dormido

2010-01-01T23:59:59.000Z

149

The design space of dynamic interactive virtual environments  

Science Journals Connector (OSTI)

Virtual environments have become a key component of many fields and the critical component of virtual reality applications. Due to their virtual nature, they can accommodate an infinite number of possibilities. A theoretical work is presented, which ... Keywords: 3D user interaction, Dynamic interactive VEs, VR systems, Virtual environments

Kristopher J. Blom; Steffi Beckhaus

2014-06-01T23:59:59.000Z

150

DOE Virtual University | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services » Learning & Development » DOE Virtual University Services » Learning & Development » DOE Virtual University DOE Virtual University Learn more about DVU The Department of Energy Virtual University (DVU) is a central venue for executing, managing, partnering, and sharing corporate learning activities and programs. Read more Training Resources The Training Resources webpage has the links to the commonly used course catalogs and course schedules used by DOE employees. Course registration links can also be found here. Read more College of Science The College of Science's (CS) mission is to provide DOE employees with the information resources necessary to keep current in the field of science. Read more College of Health Safety & Security Through the National Training Center (NTC), the Office of Health, Safety

151

National Energy Literacy Virtual Town Hall  

Energy.gov (U.S. Department of Energy (DOE))

The webinar will be a dynamic, virtual conversation for educators about ongoing efforts from across the country in utilizing the Department of Energy's Energy Literacy Framework to address one of our nation's’ biggest national challenges, energy illiteracy.

152

BioenergizeME Virtual Science Fair: Bioenergy  

Energy.gov (U.S. Department of Energy (DOE))

This infographic was created by students from Sun Valley High School in Aston, PA, as part of the U.S. Department of Energy-BioenergizeME Virtual Science Fair.

153

Webcast: National Energy Literacy Virtual Town Hall  

Energy.gov (U.S. Department of Energy (DOE))

On August 5, 2014, the Department of Energy (DOE) hosted a dynamic virtual conversation of ongoing efforts from across the country in utilizing the Energy Literacy Framework to address one of our...

154

Virtual tour: INL's space battery facility  

SciTech Connect

This virtual tour shows how INL fuels and tests nuclear power systems for deep space missions. To learn more about INL's contribution to the Mars Science Laboratory, visit http://www.inl.gov/marsrover.

Johnson, Steve

2011-01-01T23:59:59.000Z

155

Virtual Design of Stirling Engine Combustion Chamber  

Science Journals Connector (OSTI)

The paper deals with the designing of a combustion chamber of the Stirling engine using the CFD approach. Virtual prototypes enabled ... . The presented results help to increase the Stirling engine efficiency tog...

Z. Kaplan; P. Novotný; V. Píšt?k

2010-01-01T23:59:59.000Z

156

Virtual tour: INL's space battery facility  

ScienceCinema (OSTI)

This virtual tour shows how INL fuels and tests nuclear power systems for deep space missions. To learn more about INL's contribution to the Mars Science Laboratory, visit http://www.inl.gov/marsrover.

Johnson, Steve

2013-05-28T23:59:59.000Z

157

Residential heating oil prices virtually unchanged  

U.S. Energy Information Administration (EIA) Indexed Site

heating oil prices virtually unchanged The average retail price for home heating oil fell 4-tenths of a penny from a week ago to 3.95 per gallon. That's down 8-tenths of a penny...

158

Residential heating oil prices virtually unchanged  

U.S. Energy Information Administration (EIA) Indexed Site

4 Residential heating oil prices virtually unchanged The average retail price for home heating oil rose 2-tenths of a cent from a week ago to 4.24 per gallon. That's up 8.2 cents...

159

Use of virtual machines in information systems  

E-Print Network (OSTI)

This paper presents a scheme using the virtual machine concept for creating: 1) An environment for increasing the effectiveness of researchers who must use analytical, modeling systems and have complex data management ...

Donovan, John J.

1975-01-01T23:59:59.000Z

160

Robotics virtual rail system and method  

DOE Patents (OSTI)

A virtual track or rail system and method is described for execution by a robot. A user, through a user interface, generates a desired path comprised of at least one segment representative of the virtual track for the robot. Start and end points are assigned to the desired path and velocities are also associated with each of the at least one segment of the desired path. A waypoint file is generated including positions along the virtual track representing the desired path with the positions beginning from the start point to the end point including the velocities of each of the at least one segment. The waypoint file is sent to the robot for traversing along the virtual track.

Bruemmer, David J. (Idaho Falls, ID); Few, Douglas A. (Idaho Falls, ID); Walton, Miles C. (Idaho Falls, ID)

2011-07-05T23:59:59.000Z

Note: This page contains sample records for the topic "virtual temperature profiles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

LANSCE | News & Media | Profiles  

NLE Websites -- All DOE Office Websites (Extended Search)

Profiles Shea Mosby: Lighting the way for nuclear science discoveries By Diana Del Mauro ADEPS Communications Photos by Richard Robinson, IRM-CAS Shea Mosby Cradling a heavy...

162

EIA - State Electricity Profiles  

NLE Websites -- All DOE Office Websites (Extended Search)

Electricity Profile 2012 Table 1. 2012 Summary statistics (Missouri) Item Value U.S. Rank NERC Region(s) SERCSPP Primary Energy Source Coal Net Summer Capacity (megawatts)...

163

Management's Discussion & Analysis Profile  

NLE Websites -- All DOE Office Websites (Extended Search)

7-26-2013. Management's Discussion & Analysis Profile The Bonneville Power Administration is a federal agency under the Department of Energy. BPA markets wholesale electrical power...

164

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Arkansas Electricity Profile 2012 Table 1. 2012 Summary Statistics (Arkansas) Item Value U.S. Rank NERC Region(s) SERCSPP Primary Energy Source Coal Net Summer Capacity...

165

Static Temperature Survey At Lassen Volcanic National Park Area...  

Open Energy Info (EERE)

in volcanic rocks (Beall, 1981). Temperature-log profiles made 10 months after drilling completion show an abrupt temperature rise at 183 m, a maximum temperature of 176 degrees...

166

An Architecture for Managing Virtual Circuit and Virtual Path Services on ATM Networks  

E-Print Network (OSTI)

1 An Architecture for Managing Virtual Circuit and Virtual Path Services on ATM Networks Abstract management architecture that provides the services and is instrumented for network management purposes service monitor- ing and control functions. The network management architecture proposes complete managed

Columbia University

167

Architectural Lighting Analysis in Virtual Lighting Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Architectural Lighting Analysis in Virtual Lighting Laboratory Architectural Lighting Analysis in Virtual Lighting Laboratory Speaker(s): Mehlika Inanici Date: July 7, 2003 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Satkartar K. Kinney Virtual Lighting Laboratory is a Radiance-based lighting analysis tool and methodology that proposes transformations in the utilization of computer visualization in lighting analysis and design decision-making. It is a computer environment, where the user has been provided with matrices of illuminance and luminance values extracted from high dynamic range images. The principal idea is to provide the laboratory to the designer and researcher to explore various lighting analysis techniques instead of imposing limited number of predetermined metrics. In addition, it introduces an analysis approach for temporal and spatial lighting

168

Ion mobility spectrometer with virtual aperture grid  

DOE Patents (OSTI)

An ion mobility spectrometer does not require a physical aperture grid to prevent premature ion detector response. The last electrodes adjacent to the ion collector (typically the last four or five) have an electrode pitch that is less than the width of the ion swarm and each of the adjacent electrodes is connected to a source of free charge, thereby providing a virtual aperture grid at the end of the drift region that shields the ion collector from the mirror current of the approaching ion swarm. The virtual aperture grid is less complex in assembly and function and is less sensitive to vibrations than the physical aperture grid.

Pfeifer, Kent B. (Los Lunas, NM); Rumpf, Arthur N. (Albuquerque, NM)

2010-11-23T23:59:59.000Z

169

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Michigan Electricity Profile 2010 Michigan profile Michigan Electricity Profile 2010 Michigan profile Table 1. 2010 Summary Statistics (Michigan) Item Value U.S. Rank NERC Region(s) MRO/RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 29,831 11 Electric Utilities 21,639 10 Independent Power Producers & Combined Heat and Power 8,192 14 Net Generation (megawatthours) 111,551,371 13 Electric Utilities 89,666,874 13 Independent Power Producers & Combined Heat and Power 21,884,497 16 Emissions (thousand metric tons) Sulfur Dioxide 254 6 Nitrogen Oxide 89 6 Carbon Dioxide 74,480 11 Sulfur Dioxide (lbs/MWh) 5.0 8 Nitrogen Oxide (lbs/MWh) 1.8 19 Carbon Dioxide (lbs/MWh) 1,472 20 Total Retail Sales (megawatthours) 103,649,219 12 Full Service Provider Sales (megawatthours) 94,565,247 11

170

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Ohio Electricity Profile 2010 Ohio profile Ohio Electricity Profile 2010 Ohio profile Table 1. 2010 Summary Statistics (Ohio) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 33,071 8 Electric Utilities 20,179 13 Independent Power Producers & Combined Heat and Power 12,892 7 Net Generation (megawatthours) 143,598,337 7 Electric Utilities 92,198,096 10 Independent Power Producers & Combined Heat and Power 51,400,241 7 Emissions (thousand metric tons) Sulfur Dioxide 610 1 Nitrogen Oxide 122 3 Carbon Dioxide 121,964 4 Sulfur Dioxide (lbs/MWh) 9.4 1 Nitrogen Oxide (lbs/MWh) 1.9 17 Carbon Dioxide (lbs/MWh) 1,872 8 Total Retail Sales (megawatthours) 154,145,418 4 Full Service Provider Sales (megawatthours) 105,329,797 9

171

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Wisconsin Electricity Profile 2010 Wisconsin profile Wisconsin Electricity Profile 2010 Wisconsin profile Table 1. 2010 Summary Statistics (Wisconsin) Item Value U.S. Rank NERC Region(s) MRO/RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 17,836 23 Electric Utilities 13,098 19 Independent Power Producers & Combined Heat and Power 4,738 20 Net Generation (megawatthours) 64,314,067 24 Electric Utilities 45,579,970 22 Independent Power Producers & Combined Heat and Power 18,734,097 18 Emissions (thousand metric tons) Sulfur Dioxide 145 12 Nitrogen Oxide 49 25 Carbon Dioxide 47,238 19 Sulfur Dioxide (lbs/MWh) 5.0 9 Nitrogen Oxide (lbs/MWh) 1.7 20 Carbon Dioxide (lbs/MWh) 1,619 16 Total Retail Sales (megawatthours) 68,752,417 22 Full Service Provider Sales (megawatthours) 68,752,417 21

172

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Florida Electricity Profile 2010 Florida profile Florida Electricity Profile 2010 Florida profile Table 1. 2010 Summary Statistics (Florida) Item Value U.S. Rank NERC Region(s) FRCC/SERC Primary Energy Source Gas Net Summer Capacity (megawatts) 59,147 3 Electric Utilities 50,853 1 Independent Power Producers & Combined Heat and Power 8,294 13 Net Generation (megawatthours) 229,095,935 3 Electric Utilities 206,062,185 1 Independent Power Producers & Combined Heat and Power 23,033,750 15 Emissions (thousand metric tons) Sulfur Dioxide 160 11 Nitrogen Oxide 101 5 Carbon Dioxide 123,811 2 Sulfur Dioxide (lbs/MWh) 1.5 37 Nitrogen Oxide (lbs/MWh) 1.0 35 Carbon Dioxide (lbs/MWh) 1,191 31 Total Retail Sales (megawatthours) 231,209,614 3 Full Service Provider Sales (megawatthours) 231,209,614 3

173

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Arizona Electricity Profile 2010 Arizona profile Arizona Electricity Profile 2010 Arizona profile Table 1. 2010 Summary Statistics (Arizona) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 26,392 15 Electric Utilities 20,115 14 Independent Power Producers & Combined Heat and Power 6,277 16 Net Generation (megawatthours) 111,750,957 12 Electric Utilities 91,232,664 11 Independent Power Producers & Combined Heat and Power 20,518,293 17 Emissions (thousand metric tons) Sulfur Dioxide 33 33 Nitrogen Oxide 57 17 Carbon Dioxide 55,683 15 Sulfur Dioxide (lbs/MWh) 0.7 43 Nitrogen Oxide (lbs/MWh) 1.1 31 Carbon Dioxide (lbs/MWh) 1,099 35 Total Retail Sales (megawatthours) 72,831,737 21 Full Service Provider Sales (megawatthours) 72,831,737 20

174

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Kentucky Electricity Profile 2010 Kentucky profile Kentucky Electricity Profile 2010 Kentucky profile Table 1. 2010 Summary Statistics (Kentucky) Item Value U.S. Rank NERC Region(s) RFC/SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 20,453 21 Electric Utilities 18,945 16 Independent Power Producers & Combined Heat and Power 1,507 38 Net Generation (megawatthours) 98,217,658 17 Electric Utilities 97,472,144 7 Independent Power Producers & Combined Heat and Power 745,514 48 Emissions (thousand metric tons) Sulfur Dioxide 249 7 Nitrogen Oxide 85 7 Carbon Dioxide 93,160 7 Sulfur Dioxide (lbs/MWh) 5.6 5 Nitrogen Oxide (lbs/MWh) 1.9 15 Carbon Dioxide (lbs/MWh) 2,091 3 Total Retail Sales (megawatthours) 93,569,426 14 Full Service Provider Sales (megawatthours) 93,569,426 12

175

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Electricity Profile 2010 Alabama profile Alabama Electricity Profile 2010 Alabama profile Table 1. 2010 Summary Statistics (Alabama) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 32,417 9 Electric Utilities 23,642 7 Independent Power Producers & Combined Heat and Power 8,775 12 Net Generation (megawatthours) 152,150,512 6 Electric Utilities 122,766,490 2 Independent Power Producers & Combined Heat and Power 29,384,022 12 Emissions (thousand metric tons) Sulfur Dioxide 218 10 Nitrogen Oxide 66 14 Carbon Dioxide 79,375 9 Sulfur Dioxide (lbs/MWh) 3.2 18 Nitrogen Oxide (lbs/MWh) 1.0 36 Carbon Dioxide (lbs/MWh) 1,150 33 Total Retail Sales (megawatthours) 90,862,645 15 Full Service Provider Sales (megawatthours) 90,862,645 13

176

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Arkansas Electricity Profile 2010 Arkansas profile Arkansas Electricity Profile 2010 Arkansas profile Table 1. 2010 Summary Statistics (Arkansas) Item Value U.S. Rank NERC Region(s) SERC/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 15,981 25 Electric Utilities 11,488 23 Independent Power Producers & Combined Heat and Power 4,493 24 Net Generation (megawatthours) 61,000,185 25 Electric Utilities 47,108,063 20 Independent Power Producers & Combined Heat and Power 13,892,122 27 Emissions (thousand metric tons) Sulfur Dioxide 74 22 Nitrogen Oxide 40 29 Carbon Dioxide 34,018 28 Sulfur Dioxide (lbs/MWh) 2.7 22 Nitrogen Oxide (lbs/MWh) 1.5 24 Carbon Dioxide (lbs/MWh) 1,229 29 Total Retail Sales (megawatthours) 48,194,285 29 Full Service Provider Sales (megawatthours) 48,194,285 27

177

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Maryland Electricity Profile 2010 Maryland profile Maryland Electricity Profile 2010 Maryland profile Table 1. 2010 Summary Statistics (Maryland) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 12,516 33 Electric Utilities 80 47 Independent Power Producers & Combined Heat and Power 12,436 9 Net Generation (megawatthours) 43,607,264 33 Electric Utilities 2,996 48 Independent Power Producers & Combined Heat and Power 43,604,268 9 Emissions (thousand metric tons) Sulfur Dioxide 45 28 Nitrogen Oxide 25 34 Carbon Dioxide 26,369 33 Sulfur Dioxide (lbs/MWh) 2.3 29 Nitrogen Oxide (lbs/MWh) 1.3 29 Carbon Dioxide (lbs/MWh) 1,333 24 Total Retail Sales (megawatthours) 65,335,498 24 Full Service Provider Sales (megawatthours) 36,082,473 31

178

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Hawaii Electricity Profile 2010 Hawaii profile Hawaii Electricity Profile 2010 Hawaii profile Table 1. 2010 Summary Statistics (Hawaii) Item Value U.S. Rank NERC Region(s) -- Primary Energy Source Petroleum Net Summer Capacity (megawatts) 2,536 47 Electric Utilities 1,828 40 Independent Power Producers & Combined Heat and Power 708 47 Net Generation (megawatthours) 10,836,036 45 Electric Utilities 6,416,068 38 Independent Power Producers & Combined Heat and Power 4,419,968 38 Emissions (thousand metric tons) Sulfur Dioxide 17 36 Nitrogen Oxide 21 36 Carbon Dioxide 8,287 42 Sulfur Dioxide (lbs/MWh) 3.4 16 Nitrogen Oxide (lbs/MWh) 4.3 2 Carbon Dioxide (lbs/MWh) 1,686 13 Total Retail Sales (megawatthours) 10,016,509 48 Full Service Provider Sales (megawatthours) 10,016,509 44

179

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Mexico Electricity Profile 2010 New Mexico profile Mexico Electricity Profile 2010 New Mexico profile Table 1. 2010 Summary Statistics (New Mexico) Item Value U.S. Rank NERC Region(s) SPP/WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 8,130 36 Electric Utilities 6,345 33 Independent Power Producers & Combined Heat and Power 1,785 36 Net Generation (megawatthours) 36,251,542 37 Electric Utilities 30,848,406 33 Independent Power Producers & Combined Heat and Power 5,403,136 37 Emissions (thousand metric tons) Sulfur Dioxide 15 38 Nitrogen Oxide 56 19 Carbon Dioxide 29,379 31 Sulfur Dioxide (lbs/MWh) 0.9 42 Nitrogen Oxide (lbs/MWh) 3.4 5 Carbon Dioxide (lbs/MWh) 1,787 11 Total Retail Sales (megawatthours) 22,428,344 39 Full Service Provider Sales (megawatthours) 22,428,344 38

180

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Hampshire Electricity Profile 2010 New Hampshire profile Hampshire Electricity Profile 2010 New Hampshire profile Table 1. 2010 Summary Statistics (New Hampshire) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 4,180 43 Electric Utilities 1,132 41 Independent Power Producers & Combined Heat and Power 3,048 32 Net Generation (megawatthours) 22,195,912 42 Electric Utilities 3,979,333 41 Independent Power Producers & Combined Heat and Power 18,216,579 19 Emissions (thousand metric tons) Sulfur Dioxide 34 32 Nitrogen Oxide 6 46 Carbon Dioxide 5,551 43 Sulfur Dioxide (lbs/MWh) 3.4 17 Nitrogen Oxide (lbs/MWh) 0.6 46 Carbon Dioxide (lbs/MWh) 551 47 Total Retail Sales (megawatthours) 10,890,074 47 Full Service Provider Sales (megawatthours) 7,712,938 45

Note: This page contains sample records for the topic "virtual temperature profiles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Oregon Electricity Profile 2010 Oregon profile Oregon Electricity Profile 2010 Oregon profile Table 1. 2010 Summary Statistics (Oregon) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 14,261 29 Electric Utilities 10,846 27 Independent Power Producers & Combined Heat and Power 3,415 28 Net Generation (megawatthours) 55,126,999 27 Electric Utilities 41,142,684 26 Independent Power Producers & Combined Heat and Power 13,984,316 26 Emissions (thousand metric tons) Sulfur Dioxide 16 37 Nitrogen Oxide 15 42 Carbon Dioxide 10,094 40 Sulfur Dioxide (lbs/MWh) 0.6 44 Nitrogen Oxide (lbs/MWh) 0.6 47 Carbon Dioxide (lbs/MWh) 404 48 Total Retail Sales (megawatthours) 46,025,945 30 Full Service Provider Sales (megawatthours) 44,525,865 29

182

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Maine Electricity Profile 2010 Maine profile Maine Electricity Profile 2010 Maine profile Table 1. 2010 Summary Statistics (Maine) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Gas Net Summer Capacity (megawatts) 4,430 42 Electric Utilities 19 49 Independent Power Producers & Combined Heat and Power 4,410 25 Net Generation (megawatthours) 17,018,660 43 Electric Utilities 1,759 49 Independent Power Producers & Combined Heat and Power 17,016,901 22 Emissions (thousand metric tons) Sulfur Dioxide 12 42 Nitrogen Oxide 8 44 Carbon Dioxide 4,948 44 Sulfur Dioxide (lbs/MWh) 1.6 36 Nitrogen Oxide (lbs/MWh) 1.1 33 Carbon Dioxide (lbs/MWh) 641 44 Total Retail Sales (megawatthours) 11,531,568 45 Full Service Provider Sales (megawatthours) 151,588 51 Energy-Only Provider Sales (megawatthours) 11,379,980 10

183

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Mississippi Electricity Profile 2010 Mississippi profile Mississippi Electricity Profile 2010 Mississippi profile Table 1. 2010 Summary Statistics (Mississippi) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Gas Net Summer Capacity (megawatts) 15,691 26 Electric Utilities 10,858 26 Independent Power Producers & Combined Heat and Power 4,833 18 Net Generation (megawatthours) 54,487,260 28 Electric Utilities 40,841,436 27 Independent Power Producers & Combined Heat and Power 13,645,824 28 Emissions (thousand metric tons) Sulfur Dioxide 59 26 Nitrogen Oxide 31 32 Carbon Dioxide 26,845 32 Sulfur Dioxide (lbs/MWh) 2.4 26 Nitrogen Oxide (lbs/MWh) 1.2 30 Carbon Dioxide (lbs/MWh) 1,086 36 Total Retail Sales (megawatthours) 49,687,166 28 Full Service Provider Sales (megawatthours) 49,687,166 26

184

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Washington Electricity Profile 2010 Washington profile Washington Electricity Profile 2010 Washington profile Table 1. 2010 Summary Statistics (Washington) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 30,478 10 Electric Utilities 26,498 5 Independent Power Producers & Combined Heat and Power 3,979 26 Net Generation (megawatthours) 103,472,729 15 Electric Utilities 88,057,219 14 Independent Power Producers & Combined Heat and Power 15,415,510 23 Emissions (thousand metric tons) Sulfur Dioxide 14 39 Nitrogen Oxide 21 37 Carbon Dioxide 13,984 39 Sulfur Dioxide (lbs/MWh) 0.3 47 Nitrogen Oxide (lbs/MWh) 0.4 50 Carbon Dioxide (lbs/MWh) 298 49 Total Retail Sales (megawatthours) 90,379,970 16 Full Service Provider Sales (megawatthours) 88,116,958 14

185

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Mexico Electricity Profile 2010 New Mexico profile Mexico Electricity Profile 2010 New Mexico profile Table 1. 2010 Summary Statistics (New Mexico) Item Value U.S. Rank NERC Region(s) SPP/WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 8,130 36 Electric Utilities 6,345 33 Independent Power Producers & Combined Heat and Power 1,785 36 Net Generation (megawatthours) 36,251,542 37 Electric Utilities 30,848,406 33 Independent Power Producers & Combined Heat and Power 5,403,136 37 Emissions (thousand metric tons) Sulfur Dioxide 15 38 Nitrogen Oxide 56 19 Carbon Dioxide 29,379 31 Sulfur Dioxide (lbs/MWh) 0.9 42 Nitrogen Oxide (lbs/MWh) 3.4 5 Carbon Dioxide (lbs/MWh) 1,787 11 Total Retail Sales (megawatthours) 22,428,344 39 Full Service Provider Sales (megawatthours) 22,428,344 38

186

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Delaware Electricity Profile 2010 Delaware profile Delaware Electricity Profile 2010 Delaware profile Table 1. 2010 Summary Statistics (Delaware) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Gas Net Summer Capacity (megawatts) 3,389 46 Electric Utilities 55 48 Independent Power Producers & Combined Heat and Power 3,334 29 Net Generation (megawatthours) 5,627,645 50 Electric Utilities 30,059 46 Independent Power Producers & Combined Heat and Power 5,597,586 36 Emissions (thousand metric tons) Sulfur Dioxide 13 41 Nitrogen Oxide 5 47 Carbon Dioxide 4,187 45 Sulfur Dioxide (lbs/MWh) 5.2 7 Nitrogen Oxide (lbs/MWh) 1.9 16 Carbon Dioxide (lbs/MWh) 1,640 15 Total Retail Sales (megawatthours) 11,605,932 44 Full Service Provider Sales (megawatthours) 7,582,539 46

187

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Ohio Electricity Profile 2010 Ohio profile Ohio Electricity Profile 2010 Ohio profile Table 1. 2010 Summary Statistics (Ohio) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 33,071 8 Electric Utilities 20,179 13 Independent Power Producers & Combined Heat and Power 12,892 7 Net Generation (megawatthours) 143,598,337 7 Electric Utilities 92,198,096 10 Independent Power Producers & Combined Heat and Power 51,400,241 7 Emissions (thousand metric tons) Sulfur Dioxide 610 1 Nitrogen Oxide 122 3 Carbon Dioxide 121,964 4 Sulfur Dioxide (lbs/MWh) 9.4 1 Nitrogen Oxide (lbs/MWh) 1.9 17 Carbon Dioxide (lbs/MWh) 1,872 8 Total Retail Sales (megawatthours) 154,145,418 4 Full Service Provider Sales (megawatthours) 105,329,797 9

188

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Arkansas Electricity Profile 2010 Arkansas profile Arkansas Electricity Profile 2010 Arkansas profile Table 1. 2010 Summary Statistics (Arkansas) Item Value U.S. Rank NERC Region(s) SERC/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 15,981 25 Electric Utilities 11,488 23 Independent Power Producers & Combined Heat and Power 4,493 24 Net Generation (megawatthours) 61,000,185 25 Electric Utilities 47,108,063 20 Independent Power Producers & Combined Heat and Power 13,892,122 27 Emissions (thousand metric tons) Sulfur Dioxide 74 22 Nitrogen Oxide 40 29 Carbon Dioxide 34,018 28 Sulfur Dioxide (lbs/MWh) 2.7 22 Nitrogen Oxide (lbs/MWh) 1.5 24 Carbon Dioxide (lbs/MWh) 1,229 29 Total Retail Sales (megawatthours) 48,194,285 29 Full Service Provider Sales (megawatthours) 48,194,285 27

189

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Oklahoma Electricity Profile 2010 Oklahoma profile Oklahoma Electricity Profile 2010 Oklahoma profile Table 1. 2010 Summary Statistics (Oklahoma) Item Value U.S. Rank NERC Region(s) SPP Primary Energy Source Gas Net Summer Capacity (megawatts) 21,022 20 Electric Utilities 16,015 18 Independent Power Producers & Combined Heat and Power 5,006 17 Net Generation (megawatthours) 72,250,733 22 Electric Utilities 57,421,195 17 Independent Power Producers & Combined Heat and Power 14,829,538 24 Emissions (thousand metric tons) Sulfur Dioxide 85 21 Nitrogen Oxide 71 12 Carbon Dioxide 49,536 17 Sulfur Dioxide (lbs/MWh) 2.6 24 Nitrogen Oxide (lbs/MWh) 2.2 11 Carbon Dioxide (lbs/MWh) 1,512 17 Total Retail Sales (megawatthours) 57,845,980 25 Full Service Provider Sales (megawatthours) 57,845,980 23

190

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Iowa Electricity Profile 2010 Iowa profile Iowa Electricity Profile 2010 Iowa profile Table 1. 2010 Summary Statistics (Iowa) Item Value U.S. Rank NERC Region(s) MRO/SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 14,592 28 Electric Utilities 11,282 24 Independent Power Producers & Combined Heat and Power 3,310 30 Net Generation (megawatthours) 57,508,721 26 Electric Utilities 46,188,988 21 Independent Power Producers & Combined Heat and Power 11,319,733 30 Emissions (thousand metric tons) Sulfur Dioxide 108 18 Nitrogen Oxide 50 22 Carbon Dioxide 47,211 20 Sulfur Dioxide (lbs/MWh) 4.1 11 Nitrogen Oxide (lbs/MWh) 1.9 14 Carbon Dioxide (lbs/MWh) 1,810 10 Total Retail Sales (megawatthours) 45,445,269 31 Full Service Provider Sales (megawatthours) 45,445,269 28

191

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

West Virginia Electricity Profile 2010 West Virginia profile West Virginia Electricity Profile 2010 West Virginia profile Table 1. 2010 Summary Statistics (West Virginia) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 16,495 24 Electric Utilities 11,719 21 Independent Power Producers & Combined Heat and Power 4,775 19 Net Generation (megawatthours) 80,788,947 20 Electric Utilities 56,719,755 18 Independent Power Producers & Combined Heat and Power 24,069,192 13 Emissions (thousand metric tons) Sulfur Dioxide 105 20 Nitrogen Oxide 49 23 Carbon Dioxide 74,283 12 Sulfur Dioxide (lbs/MWh) 2.9 20 Nitrogen Oxide (lbs/MWh) 1.3 25 Carbon Dioxide (lbs/MWh) 2,027 5 Total Retail Sales (megawatthours) 32,031,803 34 Full Service Provider Sales (megawatthours) 32,031,803 33

192

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Vermont Electricity Profile 2010 Vermont profile Vermont Electricity Profile 2010 Vermont profile Table 1. 2010 Summary Statistics (Vermont) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 1,128 50 Electric Utilities 260 45 Independent Power Producers & Combined Heat and Power 868 43 Net Generation (megawatthours) 6,619,990 49 Electric Utilities 720,853 44 Independent Power Producers & Combined Heat and Power 5,899,137 35 Emissions (thousand metric tons) Sulfur Dioxide * 51 Nitrogen Oxide 1 50 Carbon Dioxide 8 51 Sulfur Dioxide (lbs/MWh) * 51 Nitrogen Oxide (lbs/MWh) 0.2 51 Carbon Dioxide (lbs/MWh) 3 51 Total Retail Sales (megawatthours) 5,594,833 51 Full Service Provider Sales (megawatthours) 5,594,833 48 Direct Use (megawatthours) 19,806 47

193

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Mississippi Electricity Profile 2010 Mississippi profile Mississippi Electricity Profile 2010 Mississippi profile Table 1. 2010 Summary Statistics (Mississippi) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Gas Net Summer Capacity (megawatts) 15,691 26 Electric Utilities 10,858 26 Independent Power Producers & Combined Heat and Power 4,833 18 Net Generation (megawatthours) 54,487,260 28 Electric Utilities 40,841,436 27 Independent Power Producers & Combined Heat and Power 13,645,824 28 Emissions (thousand metric tons) Sulfur Dioxide 59 26 Nitrogen Oxide 31 32 Carbon Dioxide 26,845 32 Sulfur Dioxide (lbs/MWh) 2.4 26 Nitrogen Oxide (lbs/MWh) 1.2 30 Carbon Dioxide (lbs/MWh) 1,086 36 Total Retail Sales (megawatthours) 49,687,166 28 Full Service Provider Sales (megawatthours) 49,687,166 26

194

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Wisconsin Electricity Profile 2010 Wisconsin profile Wisconsin Electricity Profile 2010 Wisconsin profile Table 1. 2010 Summary Statistics (Wisconsin) Item Value U.S. Rank NERC Region(s) MRO/RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 17,836 23 Electric Utilities 13,098 19 Independent Power Producers & Combined Heat and Power 4,738 20 Net Generation (megawatthours) 64,314,067 24 Electric Utilities 45,579,970 22 Independent Power Producers & Combined Heat and Power 18,734,097 18 Emissions (thousand metric tons) Sulfur Dioxide 145 12 Nitrogen Oxide 49 25 Carbon Dioxide 47,238 19 Sulfur Dioxide (lbs/MWh) 5.0 9 Nitrogen Oxide (lbs/MWh) 1.7 20 Carbon Dioxide (lbs/MWh) 1,619 16 Total Retail Sales (megawatthours) 68,752,417 22 Full Service Provider Sales (megawatthours) 68,752,417 21

195

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Colorado Electricity Profile 2010 Colorado profile Colorado Electricity Profile 2010 Colorado profile Table 1. 2010 Summary Statistics (Colorado) Item Value U.S. Rank NERC Region(s) RFC/WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 13,777 30 Electric Utilities 9,114 28 Independent Power Producers & Combined Heat and Power 4,662 22 Net Generation (megawatthours) 50,720,792 30 Electric Utilities 39,584,166 28 Independent Power Producers & Combined Heat and Power 11,136,626 31 Emissions (thousand metric tons) Sulfur Dioxide 45 29 Nitrogen Oxide 55 20 Carbon Dioxide 40,499 24 Sulfur Dioxide (lbs/MWh) 2.0 32 Nitrogen Oxide (lbs/MWh) 2.4 10 Carbon Dioxide (lbs/MWh) 1,760 12 Total Retail Sales (megawatthours) 52,917,786 27 Full Service Provider Sales (megawatthours) 52,917,786 24

196

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Hampshire Electricity Profile 2010 New Hampshire profile Hampshire Electricity Profile 2010 New Hampshire profile Table 1. 2010 Summary Statistics (New Hampshire) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 4,180 43 Electric Utilities 1,132 41 Independent Power Producers & Combined Heat and Power 3,048 32 Net Generation (megawatthours) 22,195,912 42 Electric Utilities 3,979,333 41 Independent Power Producers & Combined Heat and Power 18,216,579 19 Emissions (thousand metric tons) Sulfur Dioxide 34 32 Nitrogen Oxide 6 46 Carbon Dioxide 5,551 43 Sulfur Dioxide (lbs/MWh) 3.4 17 Nitrogen Oxide (lbs/MWh) 0.6 46 Carbon Dioxide (lbs/MWh) 551 47 Total Retail Sales (megawatthours) 10,890,074 47 Full Service Provider Sales (megawatthours) 7,712,938 45

197

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Carolina Electricity Profile 2010 North Carolina profile Carolina Electricity Profile 2010 North Carolina profile Table 1. 2010 Summary Statistics (North Carolina) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 27,674 12 Electric Utilities 25,553 6 Independent Power Producers & Combined Heat and Power 2,121 34 Net Generation (megawatthours) 128,678,483 10 Electric Utilities 121,251,138 3 Independent Power Producers & Combined Heat and Power 7,427,345 34 Emissions (thousand metric tons) Sulfur Dioxide 131 14 Nitrogen Oxide 57 16 Carbon Dioxide 73,241 13 Sulfur Dioxide (lbs/MWh) 2.2 31 Nitrogen Oxide (lbs/MWh) 1.0 34 Carbon Dioxide (lbs/MWh) 1,255 28 Total Retail Sales (megawatthours) 136,414,947 9 Full Service Provider Sales (megawatthours) 136,414,947 5

198

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Nevada Electricity Profile 2010 Nevada profile Nevada Electricity Profile 2010 Nevada profile Table 1. 2010 Summary Statistics (Nevada) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Gas Net Summer Capacity (megawatts) 11,421 34 Electric Utilities 8,713 29 Independent Power Producers & Combined Heat and Power 2,708 33 Net Generation (megawatthours) 35,146,248 38 Electric Utilities 23,710,917 34 Independent Power Producers & Combined Heat and Power 11,435,331 29 Emissions (thousand metric tons) Sulfur Dioxide 7 44 Nitrogen Oxide 15 40 Carbon Dioxide 17,020 38 Sulfur Dioxide (lbs/MWh) 0.4 46 Nitrogen Oxide (lbs/MWh) 1.0 37 Carbon Dioxide (lbs/MWh) 1,068 37 Total Retail Sales (megawatthours) 33,772,595 33 Full Service Provider Sales (megawatthours) 32,348,879 32

199

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Kansas Electricity Profile 2010 Kansas profile Kansas Electricity Profile 2010 Kansas profile Table 1. 2010 Summary Statistics (Kansas) Item Value U.S. Rank NERC Region(s) MRO/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 12,543 32 Electric Utilities 11,732 20 Independent Power Producers & Combined Heat and Power 812 45 Net Generation (megawatthours) 47,923,762 32 Electric Utilities 45,270,047 24 Independent Power Producers & Combined Heat and Power 2,653,716 44 Emissions (thousand metric tons) Sulfur Dioxide 41 30 Nitrogen Oxide 46 26 Carbon Dioxide 36,321 26 Sulfur Dioxide (lbs/MWh) 1.9 33 Nitrogen Oxide (lbs/MWh) 2.1 13 Carbon Dioxide (lbs/MWh) 1,671 14 Total Retail Sales (megawatthours) 40,420,675 32 Full Service Provider Sales (megawatthours) 40,420,675 30

200

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Nebraska Electricity Profile 2010 Nebraska profile Nebraska Electricity Profile 2010 Nebraska profile Table 1. 2010 Summary Statistics (Nebraska) Item Value U.S. Rank NERC Region(s) MRO/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 7,857 38 Electric Utilities 7,647 30 Independent Power Producers & Combined Heat and Power 210 50 Net Generation (megawatthours) 36,630,006 36 Electric Utilities 36,242,921 30 Independent Power Producers & Combined Heat and Power 387,085 50 Emissions (thousand metric tons) Sulfur Dioxide 65 24 Nitrogen Oxide 40 30 Carbon Dioxide 24,461 34 Sulfur Dioxide (lbs/MWh) 3.9 12 Nitrogen Oxide (lbs/MWh) 2.4 9 Carbon Dioxide (lbs/MWh) 1,472 19 Total Retail Sales (megawatthours) 29,849,460 36 Full Service Provider Sales (megawatthours) 29,849,460 35

Note: This page contains sample records for the topic "virtual temperature profiles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Missouri Electricity Profile 2010 Missouri profile Missouri Electricity Profile 2010 Missouri profile Table 1. 2010 Summary Statistics (Missouri) Item Value U.S. Rank NERC Region(s) SERC/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 21,739 18 Electric Utilities 20,360 12 Independent Power Producers & Combined Heat and Power 1,378 39 Net Generation (megawatthours) 92,312,989 18 Electric Utilities 90,176,805 12 Independent Power Producers & Combined Heat and Power 2,136,184 46 Emissions (thousand metric tons) Sulfur Dioxide 233 8 Nitrogen Oxide 56 18 Carbon Dioxide 78,815 10 Sulfur Dioxide (lbs/MWh) 5.6 6 Nitrogen Oxide (lbs/MWh) 1.3 26 Carbon Dioxide (lbs/MWh) 1,882 7 Total Retail Sales (megawatthours) 86,085,117 17 Full Service Provider Sales (megawatthours) 86,085,117 15

202

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Dakota Electricity Profile 2010 North Dakota profile Dakota Electricity Profile 2010 North Dakota profile Table 1. 2010 Summary Statistics (North Dakota) Item Value U.S. Rank NERC Region(s) MRO Primary Energy Source Coal Net Summer Capacity (megawatts) 6,188 40 Electric Utilities 4,912 34 Independent Power Producers & Combined Heat and Power 1,276 40 Net Generation (megawatthours) 34,739,542 39 Electric Utilities 31,343,796 32 Independent Power Producers & Combined Heat and Power 3,395,746 41 Emissions (thousand metric tons) Sulfur Dioxide 116 17 Nitrogen Oxide 52 21 Carbon Dioxide 31,064 30 Sulfur Dioxide (lbs/MWh) 7.3 3 Nitrogen Oxide (lbs/MWh) 3.3 6 Carbon Dioxide (lbs/MWh) 1,971 6 Total Retail Sales (megawatthours) 12,956,263 42 Full Service Provider Sales (megawatthours) 12,956,263 41

203

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Minnesota Electricity Profile 2010 Minnesota profile Minnesota Electricity Profile 2010 Minnesota profile Table 1. 2010 Summary Statistics (Minnesota) Item Value U.S. Rank NERC Region(s) MRO Primary Energy Source Coal Net Summer Capacity (megawatts) 14,715 27 Electric Utilities 11,547 22 Independent Power Producers & Combined Heat and Power 3,168 31 Net Generation (megawatthours) 53,670,227 29 Electric Utilities 45,428,599 23 Independent Power Producers & Combined Heat and Power 8,241,628 32 Emissions (thousand metric tons) Sulfur Dioxide 57 27 Nitrogen Oxide 44 27 Carbon Dioxide 32,946 29 Sulfur Dioxide (lbs/MWh) 2.3 27 Nitrogen Oxide (lbs/MWh) 1.8 18 Carbon Dioxide (lbs/MWh) 1,353 21 Total Retail Sales (megawatthours) 67,799,706 23 Full Service Provider Sales (megawatthours) 67,799,706 22

204

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Louisiana Electricity Profile 2010 Louisiana profile Louisiana Electricity Profile 2010 Louisiana profile Table 1. 2010 Summary Statistics (Louisiana) Item Value U.S. Rank NERC Region(s) SERC/SPP Primary Energy Source Gas Net Summer Capacity (megawatts) 26,744 14 Electric Utilities 16,471 17 Independent Power Producers & Combined Heat and Power 10,272 10 Net Generation (megawatthours) 102,884,940 16 Electric Utilities 51,680,682 19 Independent Power Producers & Combined Heat and Power 51,204,258 8 Emissions (thousand metric tons) Sulfur Dioxide 126 15 Nitrogen Oxide 75 11 Carbon Dioxide 58,706 14 Sulfur Dioxide (lbs/MWh) 2.7 21 Nitrogen Oxide (lbs/MWh) 1.6 21 Carbon Dioxide (lbs/MWh) 1,258 27 Total Retail Sales (megawatthours) 85,079,692 18 Full Service Provider Sales (megawatthours) 85,079,692 16

205

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Utah Electricity Profile 2010 Utah profile Utah Electricity Profile 2010 Utah profile Table 1. 2010 Summary Statistics (Utah) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 7,497 39 Electric Utilities 6,648 32 Independent Power Producers & Combined Heat and Power 849 44 Net Generation (megawatthours) 42,249,355 35 Electric Utilities 39,522,124 29 Independent Power Producers & Combined Heat and Power 2,727,231 43 Emissions (thousand metric tons) Sulfur Dioxide 25 34 Nitrogen Oxide 68 13 Carbon Dioxide 35,519 27 Sulfur Dioxide (lbs/MWh) 1.3 38 Nitrogen Oxide (lbs/MWh) 3.6 4 Carbon Dioxide (lbs/MWh) 1,853 9 Total Retail Sales (megawatthours) 28,044,001 37 Full Service Provider Sales (megawatthours) 28,044,001 36

206

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Virginia Electricity Profile 2010 Virginia profile Virginia Electricity Profile 2010 Virginia profile Table 1. 2010 Summary Statistics (Virginia) Item Value U.S. Rank NERC Region(s) RFC/SERC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 24,109 16 Electric Utilities 19,434 15 Independent Power Producers & Combined Heat and Power 4,676 21 Net Generation (megawatthours) 72,966,456 21 Electric Utilities 58,902,054 16 Independent Power Producers & Combined Heat and Power 14,064,402 25 Emissions (thousand metric tons) Sulfur Dioxide 120 16 Nitrogen Oxide 49 24 Carbon Dioxide 39,719 25 Sulfur Dioxide (lbs/MWh) 3.6 15 Nitrogen Oxide (lbs/MWh) 1.5 23 Carbon Dioxide (lbs/MWh) 1,200 30 Total Retail Sales (megawatthours) 113,806,135 10 Full Service Provider Sales (megawatthours) 113,806,135 7

207

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Dakota Electricity Profile 2010 North Dakota profile Dakota Electricity Profile 2010 North Dakota profile Table 1. 2010 Summary Statistics (North Dakota) Item Value U.S. Rank NERC Region(s) MRO Primary Energy Source Coal Net Summer Capacity (megawatts) 6,188 40 Electric Utilities 4,912 34 Independent Power Producers & Combined Heat and Power 1,276 40 Net Generation (megawatthours) 34,739,542 39 Electric Utilities 31,343,796 32 Independent Power Producers & Combined Heat and Power 3,395,746 41 Emissions (thousand metric tons) Sulfur Dioxide 116 17 Nitrogen Oxide 52 21 Carbon Dioxide 31,064 30 Sulfur Dioxide (lbs/MWh) 7.3 3 Nitrogen Oxide (lbs/MWh) 3.3 6 Carbon Dioxide (lbs/MWh) 1,971 6 Total Retail Sales (megawatthours) 12,956,263 42 Full Service Provider Sales (megawatthours) 12,956,263 41

208

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Alaska Electricity Profile 2010 Alaska profile Alaska Electricity Profile 2010 Alaska profile Table 1. 2010 Summary Statistics (Alaska) Item Value U.S. Rank NERC Region(s) -- Primary Energy Source Gas Net Summer Capacity (megawatts) 2,067 48 Electric Utilities 1,889 39 Independent Power Producers & Combined Heat and Power 178 51 Net Generation (megawatthours) 6,759,576 48 Electric Utilities 6,205,050 40 Independent Power Producers & Combined Heat and Power 554,526 49 Emissions (thousand metric tons) Sulfur Dioxide 3 46 Nitrogen Oxide 16 39 Carbon Dioxide 4,125 46 Sulfur Dioxide (lbs/MWh) 1.0 41 Nitrogen Oxide (lbs/MWh) 5.2 1 Carbon Dioxide (lbs/MWh) 1,345 23 Total Retail Sales (megawatthours) 6,247,038 50 Full Service Provider Sales (megawatthours) 6,247,038 47

209

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Minnesota Electricity Profile 2010 Minnesota profile Minnesota Electricity Profile 2010 Minnesota profile Table 1. 2010 Summary Statistics (Minnesota) Item Value U.S. Rank NERC Region(s) MRO Primary Energy Source Coal Net Summer Capacity (megawatts) 14,715 27 Electric Utilities 11,547 22 Independent Power Producers & Combined Heat and Power 3,168 31 Net Generation (megawatthours) 53,670,227 29 Electric Utilities 45,428,599 23 Independent Power Producers & Combined Heat and Power 8,241,628 32 Emissions (thousand metric tons) Sulfur Dioxide 57 27 Nitrogen Oxide 44 27 Carbon Dioxide 32,946 29 Sulfur Dioxide (lbs/MWh) 2.3 27 Nitrogen Oxide (lbs/MWh) 1.8 18 Carbon Dioxide (lbs/MWh) 1,353 21 Total Retail Sales (megawatthours) 67,799,706 23 Full Service Provider Sales (megawatthours) 67,799,706 22

210

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Maryland Electricity Profile 2010 Maryland profile Maryland Electricity Profile 2010 Maryland profile Table 1. 2010 Summary Statistics (Maryland) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 12,516 33 Electric Utilities 80 47 Independent Power Producers & Combined Heat and Power 12,436 9 Net Generation (megawatthours) 43,607,264 33 Electric Utilities 2,996 48 Independent Power Producers & Combined Heat and Power 43,604,268 9 Emissions (thousand metric tons) Sulfur Dioxide 45 28 Nitrogen Oxide 25 34 Carbon Dioxide 26,369 33 Sulfur Dioxide (lbs/MWh) 2.3 29 Nitrogen Oxide (lbs/MWh) 1.3 29 Carbon Dioxide (lbs/MWh) 1,333 24 Total Retail Sales (megawatthours) 65,335,498 24 Full Service Provider Sales (megawatthours) 36,082,473 31

211

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

York Electricity Profile 2010 New York profile York Electricity Profile 2010 New York profile Table 1. 2010 Summary Statistics (New York) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Gas Net Summer Capacity (megawatts) 39,357 6 Electric Utilities 11,032 25 Independent Power Producers & Combined Heat and Power 28,325 5 Net Generation (megawatthours) 136,961,654 9 Electric Utilities 34,633,335 31 Independent Power Producers & Combined Heat and Power 102,328,319 5 Emissions (thousand metric tons) Sulfur Dioxide 62 25 Nitrogen Oxide 44 28 Carbon Dioxide 41,584 22 Sulfur Dioxide (lbs/MWh) 1.0 40 Nitrogen Oxide (lbs/MWh) 0.7 44 Carbon Dioxide (lbs/MWh) 669 42 Total Retail Sales (megawatthours) 144,623,573 7 Full Service Provider Sales (megawatthours) 79,119,769 18

212

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Carolina Electricity Profile 2010 North Carolina profile Carolina Electricity Profile 2010 North Carolina profile Table 1. 2010 Summary Statistics (North Carolina) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 27,674 12 Electric Utilities 25,553 6 Independent Power Producers & Combined Heat and Power 2,121 34 Net Generation (megawatthours) 128,678,483 10 Electric Utilities 121,251,138 3 Independent Power Producers & Combined Heat and Power 7,427,345 34 Emissions (thousand metric tons) Sulfur Dioxide 131 14 Nitrogen Oxide 57 16 Carbon Dioxide 73,241 13 Sulfur Dioxide (lbs/MWh) 2.2 31 Nitrogen Oxide (lbs/MWh) 1.0 34 Carbon Dioxide (lbs/MWh) 1,255 28 Total Retail Sales (megawatthours) 136,414,947 9 Full Service Provider Sales (megawatthours) 136,414,947 5

213

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Montana Electricity Profile 2010 Montana profile Montana Electricity Profile 2010 Montana profile Table 1. 2010 Summary Statistics (Montana) Item Value U.S. Rank NERC Region(s) MRO/WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 5,866 41 Electric Utilities 2,340 38 Independent Power Producers & Combined Heat and Power 3,526 27 Net Generation (megawatthours) 29,791,181 41 Electric Utilities 6,271,180 39 Independent Power Producers & Combined Heat and Power 23,520,001 14 Emissions (thousand metric tons) Sulfur Dioxide 22 35 Nitrogen Oxide 21 35 Carbon Dioxide 20,370 35 Sulfur Dioxide (lbs/MWh) 1.6 35 Nitrogen Oxide (lbs/MWh) 1.6 22 Carbon Dioxide (lbs/MWh) 1,507 18 Total Retail Sales (megawatthours) 13,423,138 41 Full Service Provider Sales (megawatthours) 10,803,422 43

214

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Iowa Electricity Profile 2010 Iowa profile Iowa Electricity Profile 2010 Iowa profile Table 1. 2010 Summary Statistics (Iowa) Item Value U.S. Rank NERC Region(s) MRO/SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 14,592 28 Electric Utilities 11,282 24 Independent Power Producers & Combined Heat and Power 3,310 30 Net Generation (megawatthours) 57,508,721 26 Electric Utilities 46,188,988 21 Independent Power Producers & Combined Heat and Power 11,319,733 30 Emissions (thousand metric tons) Sulfur Dioxide 108 18 Nitrogen Oxide 50 22 Carbon Dioxide 47,211 20 Sulfur Dioxide (lbs/MWh) 4.1 11 Nitrogen Oxide (lbs/MWh) 1.9 14 Carbon Dioxide (lbs/MWh) 1,810 10 Total Retail Sales (megawatthours) 45,445,269 31 Full Service Provider Sales (megawatthours) 45,445,269 28

215

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Electricity Profile 2010 Illinois profile Illinois Electricity Profile 2010 Illinois profile Table 1. 2010 Summary Statistics (Illinois) Item Value U.S. Rank NERC Region(s) MRO/RFC/SERC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 44,127 5 Electric Utilities 4,800 35 Independent Power Producers & Combined Heat and Power 39,327 3 Net Generation (megawatthours) 201,351,872 5 Electric Utilities 12,418,332 35 Independent Power Producers & Combined Heat and Power 188,933,540 3 Emissions (thousand metric tons) Sulfur Dioxide 232 9 Nitrogen Oxide 83 8 Carbon Dioxide 103,128 6 Sulfur Dioxide (lbs/MWh) 2.5 25 Nitrogen Oxide (lbs/MWh) 0.9 38 Carbon Dioxide (lbs/MWh) 1,129 34 Total Retail Sales (megawatthours) 144,760,674 6 Full Service Provider Sales (megawatthours) 77,890,532 19

216

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Louisiana Electricity Profile 2010 Louisiana profile Louisiana Electricity Profile 2010 Louisiana profile Table 1. 2010 Summary Statistics (Louisiana) Item Value U.S. Rank NERC Region(s) SERC/SPP Primary Energy Source Gas Net Summer Capacity (megawatts) 26,744 14 Electric Utilities 16,471 17 Independent Power Producers & Combined Heat and Power 10,272 10 Net Generation (megawatthours) 102,884,940 16 Electric Utilities 51,680,682 19 Independent Power Producers & Combined Heat and Power 51,204,258 8 Emissions (thousand metric tons) Sulfur Dioxide 126 15 Nitrogen Oxide 75 11 Carbon Dioxide 58,706 14 Sulfur Dioxide (lbs/MWh) 2.7 21 Nitrogen Oxide (lbs/MWh) 1.6 21 Carbon Dioxide (lbs/MWh) 1,258 27 Total Retail Sales (megawatthours) 85,079,692 18 Full Service Provider Sales (megawatthours) 85,079,692 16

217

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

California Electricity Profile 2010 California profile California Electricity Profile 2010 California profile Table 1. 2010 Summary Statistics (California) Item Value U.S. Rank NERC Region(s) SPP/WECC Primary Energy Source Gas Net Summer Capacity (megawatts) 67,328 2 Electric Utilities 28,689 2 Independent Power Producers & Combined Heat and Power 38,639 4 Net Generation (megawatthours) 204,125,596 4 Electric Utilities 96,939,535 8 Independent Power Producers & Combined Heat and Power 107,186,061 4 Emissions (thousand metric tons) Sulfur Dioxide 3 47 Nitrogen Oxide 80 9 Carbon Dioxide 55,406 16 Sulfur Dioxide (lbs/MWh) * 49 Nitrogen Oxide (lbs/MWh) 0.9 41 Carbon Dioxide (lbs/MWh) 598 46 Total Retail Sales (megawatthours) 258,525,414 2 Full Service Provider Sales (megawatthours) 240,948,673 2

218

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Dakota Electricity Profile 2010 South Dakota profile Dakota Electricity Profile 2010 South Dakota profile Table 1. 2010 Summary Statistics (South Dakota) Item Value U.S. Rank NERC Region(s) MRO/WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 3,623 45 Electric Utilities 2,994 37 Independent Power Producers & Combined Heat and Power 629 48 Net Generation (megawatthours) 10,049,636 46 Electric Utilities 8,682,448 36 Independent Power Producers & Combined Heat and Power 1,367,188 47 Emissions (thousand metric tons) Sulfur Dioxide 12 43 Nitrogen Oxide 12 43 Carbon Dioxide 3,611 47 Sulfur Dioxide (lbs/MWh) 2.6 23 Nitrogen Oxide (lbs/MWh) 2.6 8 Carbon Dioxide (lbs/MWh) 792 41 Total Retail Sales (megawatthours) 11,356,149 46 Full Service Provider Sales (megawatthours) 11,356,149 42

219

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Jersey Electricity Profile 2010 New Jersey profile Jersey Electricity Profile 2010 New Jersey profile Table 1. 2010 Summary Statistics (New Jersey) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 18,424 22 Electric Utilities 460 43 Independent Power Producers & Combined Heat and Power 17,964 6 Net Generation (megawatthours) 65,682,494 23 Electric Utilities -186,385 50 Independent Power Producers & Combined Heat and Power 65,868,878 6 Emissions (thousand metric tons) Sulfur Dioxide 14 40 Nitrogen Oxide 15 41 Carbon Dioxide 19,160 37 Sulfur Dioxide (lbs/MWh) 0.5 45 Nitrogen Oxide (lbs/MWh) 0.5 48 Carbon Dioxide (lbs/MWh) 643 43 Total Retail Sales (megawatthours) 79,179,427 20 Full Service Provider Sales (megawatthours) 50,482,035 25

220

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Massachusetts Electricity Profile 2010 Massachusetts profile Massachusetts Electricity Profile 2010 Massachusetts profile Table 1. 2010 Summary Statistics (Massachusetts) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Gas Net Summer Capacity (megawatts) 13,697 31 Electric Utilities 937 42 Independent Power Producers & Combined Heat and Power 12,760 8 Net Generation (megawatthours) 42,804,824 34 Electric Utilities 802,906 43 Independent Power Producers & Combined Heat and Power 42,001,918 10 Emissions (thousand metric tons) Sulfur Dioxide 35 31 Nitrogen Oxide 17 38 Carbon Dioxide 20,291 36 Sulfur Dioxide (lbs/MWh) 1.8 34 Nitrogen Oxide (lbs/MWh) 0.9 39 Carbon Dioxide (lbs/MWh) 1,045 38 Total Retail Sales (megawatthours) 57,123,422 26 Full Service Provider Sales (megawatthours) 31,822,942 34

Note: This page contains sample records for the topic "virtual temperature profiles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Nebraska Electricity Profile 2010 Nebraska profile Nebraska Electricity Profile 2010 Nebraska profile Table 1. 2010 Summary Statistics (Nebraska) Item Value U.S. Rank NERC Region(s) MRO/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 7,857 38 Electric Utilities 7,647 30 Independent Power Producers & Combined Heat and Power 210 50 Net Generation (megawatthours) 36,630,006 36 Electric Utilities 36,242,921 30 Independent Power Producers & Combined Heat and Power 387,085 50 Emissions (thousand metric tons) Sulfur Dioxide 65 24 Nitrogen Oxide 40 30 Carbon Dioxide 24,461 34 Sulfur Dioxide (lbs/MWh) 3.9 12 Nitrogen Oxide (lbs/MWh) 2.4 9 Carbon Dioxide (lbs/MWh) 1,472 19 Total Retail Sales (megawatthours) 29,849,460 36 Full Service Provider Sales (megawatthours) 29,849,460 35

222

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Montana Electricity Profile 2010 Montana profile Montana Electricity Profile 2010 Montana profile Table 1. 2010 Summary Statistics (Montana) Item Value U.S. Rank NERC Region(s) MRO/WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 5,866 41 Electric Utilities 2,340 38 Independent Power Producers & Combined Heat and Power 3,526 27 Net Generation (megawatthours) 29,791,181 41 Electric Utilities 6,271,180 39 Independent Power Producers & Combined Heat and Power 23,520,001 14 Emissions (thousand metric tons) Sulfur Dioxide 22 35 Nitrogen Oxide 21 35 Carbon Dioxide 20,370 35 Sulfur Dioxide (lbs/MWh) 1.6 35 Nitrogen Oxide (lbs/MWh) 1.6 22 Carbon Dioxide (lbs/MWh) 1,507 18 Total Retail Sales (megawatthours) 13,423,138 41 Full Service Provider Sales (megawatthours) 10,803,422 43

223

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Maine Electricity Profile 2010 Maine profile Maine Electricity Profile 2010 Maine profile Table 1. 2010 Summary Statistics (Maine) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Gas Net Summer Capacity (megawatts) 4,430 42 Electric Utilities 19 49 Independent Power Producers & Combined Heat and Power 4,410 25 Net Generation (megawatthours) 17,018,660 43 Electric Utilities 1,759 49 Independent Power Producers & Combined Heat and Power 17,016,901 22 Emissions (thousand metric tons) Sulfur Dioxide 12 42 Nitrogen Oxide 8 44 Carbon Dioxide 4,948 44 Sulfur Dioxide (lbs/MWh) 1.6 36 Nitrogen Oxide (lbs/MWh) 1.1 33 Carbon Dioxide (lbs/MWh) 641 44 Total Retail Sales (megawatthours) 11,531,568 45 Full Service Provider Sales (megawatthours) 151,588 51 Energy-Only Provider Sales (megawatthours) 11,379,980 10

224

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Texas Electricity Profile 2010 Texas profile Texas Electricity Profile 2010 Texas profile Table 1. 2010 Summary Statistics (Texas) Item Value U.S. Rank NERC Region(s) SERC/SPP/TRE/WECC Primary Energy Source Gas Net Summer Capacity (megawatts) 108,258 1 Electric Utilities 26,533 4 Independent Power Producers & Combined Heat and Power 81,724 1 Net Generation (megawatthours) 411,695,046 1 Electric Utilities 95,099,161 9 Independent Power Producers & Combined Heat and Power 316,595,885 1 Emissions (thousand metric tons) Sulfur Dioxide 430 2 Nitrogen Oxide 204 1 Carbon Dioxide 251,409 1 Sulfur Dioxide (lbs/MWh) 2.3 28 Nitrogen Oxide (lbs/MWh) 1.1 32 Carbon Dioxide (lbs/MWh) 1,346 22 Total Retail Sales (megawatthours) 358,457,550 1 Full Service Provider Sales (megawatthours) 358,457,550 1

225

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Florida Electricity Profile 2010 Florida profile Florida Electricity Profile 2010 Florida profile Table 1. 2010 Summary Statistics (Florida) Item Value U.S. Rank NERC Region(s) FRCC/SERC Primary Energy Source Gas Net Summer Capacity (megawatts) 59,147 3 Electric Utilities 50,853 1 Independent Power Producers & Combined Heat and Power 8,294 13 Net Generation (megawatthours) 229,095,935 3 Electric Utilities 206,062,185 1 Independent Power Producers & Combined Heat and Power 23,033,750 15 Emissions (thousand metric tons) Sulfur Dioxide 160 11 Nitrogen Oxide 101 5 Carbon Dioxide 123,811 2 Sulfur Dioxide (lbs/MWh) 1.5 37 Nitrogen Oxide (lbs/MWh) 1.0 35 Carbon Dioxide (lbs/MWh) 1,191 31 Total Retail Sales (megawatthours) 231,209,614 3 Full Service Provider Sales (megawatthours) 231,209,614 3

226

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Hawaii Electricity Profile 2010 Hawaii profile Hawaii Electricity Profile 2010 Hawaii profile Table 1. 2010 Summary Statistics (Hawaii) Item Value U.S. Rank NERC Region(s) -- Primary Energy Source Petroleum Net Summer Capacity (megawatts) 2,536 47 Electric Utilities 1,828 40 Independent Power Producers & Combined Heat and Power 708 47 Net Generation (megawatthours) 10,836,036 45 Electric Utilities 6,416,068 38 Independent Power Producers & Combined Heat and Power 4,419,968 38 Emissions (thousand metric tons) Sulfur Dioxide 17 36 Nitrogen Oxide 21 36 Carbon Dioxide 8,287 42 Sulfur Dioxide (lbs/MWh) 3.4 16 Nitrogen Oxide (lbs/MWh) 4.3 2 Carbon Dioxide (lbs/MWh) 1,686 13 Total Retail Sales (megawatthours) 10,016,509 48 Full Service Provider Sales (megawatthours) 10,016,509 44

227

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Connecticut Electricity Profile 2010 Connecticut profile Connecticut Electricity Profile 2010 Connecticut profile Table 1. 2010 Summary Statistics (Connecticut) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 8,284 35 Electric Utilities 160 46 Independent Power Producers & Combined Heat and Power 8,124 15 Net Generation (megawatthours) 33,349,623 40 Electric Utilities 65,570 45 Independent Power Producers & Combined Heat and Power 33,284,053 11 Emissions (thousand metric tons) Sulfur Dioxide 2 48 Nitrogen Oxide 7 45 Carbon Dioxide 9,201 41 Sulfur Dioxide (lbs/MWh) 0.1 48 Nitrogen Oxide (lbs/MWh) 0.5 49 Carbon Dioxide (lbs/MWh) 608 45 Total Retail Sales (megawatthours) 30,391,766 35 Full Service Provider Sales (megawatthours) 13,714,958 40

228

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Wyoming Electricity Profile 2010 Wyoming profile Wyoming Electricity Profile 2010 Wyoming profile Table 1. 2010 Summary Statistics (Wyoming) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 7,986 37 Electric Utilities 6,931 31 Independent Power Producers & Combined Heat and Power 1,056 41 Net Generation (megawatthours) 48,119,254 31 Electric Utilities 44,738,543 25 Independent Power Producers & Combined Heat and Power 3,380,711 42 Emissions (thousand metric tons) Sulfur Dioxide 67 23 Nitrogen Oxide 61 15 Carbon Dioxide 45,703 21 Sulfur Dioxide (lbs/MWh) 3.1 19 Nitrogen Oxide (lbs/MWh) 2.8 7 Carbon Dioxide (lbs/MWh) 2,094 2 Total Retail Sales (megawatthours) 17,113,458 40 Full Service Provider Sales (megawatthours) 17,113,458 39

229

profiles | OpenEI  

Open Energy Info (EERE)

profiles profiles Dataset Summary Description This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols). This dataset also includes the Residential Energy Consumption Survey (RECS) for statistical references of building types by location. Source Commercial and Residential Reference Building Models Date Released April 18th, 2013 (9 months ago) Date Updated July 02nd, 2013 (7 months ago) Keywords building building demand building load Commercial data demand Energy Consumption energy data hourly kWh load profiles Residential Data Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually

230

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Idaho Electricity Profile 2010 Idaho profile Idaho Electricity Profile 2010 Idaho profile Table 1. 2010 Summary Statistics (Idaho) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 3,990 44 Electric Utilities 3,035 36 Independent Power Producers & Combined Heat and Power 955 42 Net Generation (megawatthours) 12,024,564 44 Electric Utilities 8,589,208 37 Independent Power Producers & Combined Heat and Power 3,435,356 40 Emissions (thousand metric tons) Sulfur Dioxide 7 45 Nitrogen Oxide 4 48 Carbon Dioxide 1,213 49 Sulfur Dioxide (lbs/MWh) 1.2 39 Nitrogen Oxide (lbs/MWh) 0.8 43 Carbon Dioxide (lbs/MWh) 222 50 Total Retail Sales (megawatthours) 22,797,668 38 Full Service Provider Sales (megawatthours) 22,797,668 37

231

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

California Electricity Profile 2010 California profile California Electricity Profile 2010 California profile Table 1. 2010 Summary Statistics (California) Item Value U.S. Rank NERC Region(s) SPP/WECC Primary Energy Source Gas Net Summer Capacity (megawatts) 67,328 2 Electric Utilities 28,689 2 Independent Power Producers & Combined Heat and Power 38,639 4 Net Generation (megawatthours) 204,125,596 4 Electric Utilities 96,939,535 8 Independent Power Producers & Combined Heat and Power 107,186,061 4 Emissions (thousand metric tons) Sulfur Dioxide 3 47 Nitrogen Oxide 80 9 Carbon Dioxide 55,406 16 Sulfur Dioxide (lbs/MWh) * 49 Nitrogen Oxide (lbs/MWh) 0.9 41 Carbon Dioxide (lbs/MWh) 598 46 Total Retail Sales (megawatthours) 258,525,414 2 Full Service Provider Sales (megawatthours) 240,948,673 2

232

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Carolina Electricity Profile 2010 South Carolina profile Carolina Electricity Profile 2010 South Carolina profile Table 1. 2010 Summary Statistics (South Carolina) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 23,982 17 Electric Utilities 22,172 9 Independent Power Producers & Combined Heat and Power 1,810 35 Net Generation (megawatthours) 104,153,133 14 Electric Utilities 100,610,887 6 Independent Power Producers & Combined Heat and Power 3,542,246 39 Emissions (thousand metric tons) Sulfur Dioxide 106 19 Nitrogen Oxide 30 33 Carbon Dioxide 41,364 23 Sulfur Dioxide (lbs/MWh) 2.2 30 Nitrogen Oxide (lbs/MWh) 0.6 45 Carbon Dioxide (lbs/MWh) 876 40 Total Retail Sales (megawatthours) 82,479,293 19 Full Service Provider Sales (megawatthours) 82,479,293 17

233

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

District of Columbia Electricity Profile 2010 District of Columbia profile District of Columbia Electricity Profile 2010 District of Columbia profile Table 1. 2010 Summary Statistics (District of Columbia) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Petroleum Net Summer Capacity (megawatts) 790 51 Independent Power Producers & Combined Heat and Power 790 46 Net Generation (megawatthours) 199,858 51 Independent Power Producers & Combined Heat and Power 199,858 51 Emissions (thousand metric tons) Sulfur Dioxide 1 49 Nitrogen Oxide * 51 Carbon Dioxide 191 50 Sulfur Dioxide (lbs/MWh) 8.8 2 Nitrogen Oxide (lbs/MWh) 4.0 3 Carbon Dioxide (lbs/MWh) 2,104 1 Total Retail Sales (megawatthours) 11,876,995 43 Full Service Provider Sales (megawatthours) 3,388,490 50 Energy-Only Provider Sales (megawatthours) 8,488,505 12

234

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Virginia Electricity Profile 2010 Virginia profile Virginia Electricity Profile 2010 Virginia profile Table 1. 2010 Summary Statistics (Virginia) Item Value U.S. Rank NERC Region(s) RFC/SERC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 24,109 16 Electric Utilities 19,434 15 Independent Power Producers & Combined Heat and Power 4,676 21 Net Generation (megawatthours) 72,966,456 21 Electric Utilities 58,902,054 16 Independent Power Producers & Combined Heat and Power 14,064,402 25 Emissions (thousand metric tons) Sulfur Dioxide 120 16 Nitrogen Oxide 49 24 Carbon Dioxide 39,719 25 Sulfur Dioxide (lbs/MWh) 3.6 15 Nitrogen Oxide (lbs/MWh) 1.5 23 Carbon Dioxide (lbs/MWh) 1,200 30 Total Retail Sales (megawatthours) 113,806,135 10 Full Service Provider Sales (megawatthours) 113,806,135 7

235

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Delaware Electricity Profile 2010 Delaware profile Delaware Electricity Profile 2010 Delaware profile Table 1. 2010 Summary Statistics (Delaware) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Gas Net Summer Capacity (megawatts) 3,389 46 Electric Utilities 55 48 Independent Power Producers & Combined Heat and Power 3,334 29 Net Generation (megawatthours) 5,627,645 50 Electric Utilities 30,059 46 Independent Power Producers & Combined Heat and Power 5,597,586 36 Emissions (thousand metric tons) Sulfur Dioxide 13 41 Nitrogen Oxide 5 47 Carbon Dioxide 4,187 45 Sulfur Dioxide (lbs/MWh) 5.2 7 Nitrogen Oxide (lbs/MWh) 1.9 16 Carbon Dioxide (lbs/MWh) 1,640 15 Total Retail Sales (megawatthours) 11,605,932 44 Full Service Provider Sales (megawatthours) 7,582,539 46

236

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Colorado Electricity Profile 2010 Colorado profile Colorado Electricity Profile 2010 Colorado profile Table 1. 2010 Summary Statistics (Colorado) Item Value U.S. Rank NERC Region(s) RFC/WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 13,777 30 Electric Utilities 9,114 28 Independent Power Producers & Combined Heat and Power 4,662 22 Net Generation (megawatthours) 50,720,792 30 Electric Utilities 39,584,166 28 Independent Power Producers & Combined Heat and Power 11,136,626 31 Emissions (thousand metric tons) Sulfur Dioxide 45 29 Nitrogen Oxide 55 20 Carbon Dioxide 40,499 24 Sulfur Dioxide (lbs/MWh) 2.0 32 Nitrogen Oxide (lbs/MWh) 2.4 10 Carbon Dioxide (lbs/MWh) 1,760 12 Total Retail Sales (megawatthours) 52,917,786 27 Full Service Provider Sales (megawatthours) 52,917,786 24

237

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Kansas Electricity Profile 2010 Kansas profile Kansas Electricity Profile 2010 Kansas profile Table 1. 2010 Summary Statistics (Kansas) Item Value U.S. Rank NERC Region(s) MRO/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 12,543 32 Electric Utilities 11,732 20 Independent Power Producers & Combined Heat and Power 812 45 Net Generation (megawatthours) 47,923,762 32 Electric Utilities 45,270,047 24 Independent Power Producers & Combined Heat and Power 2,653,716 44 Emissions (thousand metric tons) Sulfur Dioxide 41 30 Nitrogen Oxide 46 26 Carbon Dioxide 36,321 26 Sulfur Dioxide (lbs/MWh) 1.9 33 Nitrogen Oxide (lbs/MWh) 2.1 13 Carbon Dioxide (lbs/MWh) 1,671 14 Total Retail Sales (megawatthours) 40,420,675 32 Full Service Provider Sales (megawatthours) 40,420,675 30

238

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Pennsylvania Electricity Profile 2010 Pennsylvania profile Pennsylvania Electricity Profile 2010 Pennsylvania profile Table 1. 2010 Summary Statistics (Pennsylvania) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 45,575 4 Electric Utilities 455 44 Independent Power Producers & Combined Heat and Power 45,120 2 Net Generation (megawatthours) 229,752,306 2 Electric Utilities 1,086,500 42 Independent Power Producers & Combined Heat and Power 228,665,806 2 Emissions (thousand metric tons) Sulfur Dioxide 387 3 Nitrogen Oxide 136 2 Carbon Dioxide 122,830 3 Sulfur Dioxide (lbs/MWh) 3.7 13 Nitrogen Oxide (lbs/MWh) 1.3 27 Carbon Dioxide (lbs/MWh) 1,179 32 Total Retail Sales (megawatthours) 148,963,968 5 Full Service Provider Sales (megawatthours) 114,787,417 6

239

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Pennsylvania Electricity Profile 2010 Pennsylvania profile Pennsylvania Electricity Profile 2010 Pennsylvania profile Table 1. 2010 Summary Statistics (Pennsylvania) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 45,575 4 Electric Utilities 455 44 Independent Power Producers & Combined Heat and Power 45,120 2 Net Generation (megawatthours) 229,752,306 2 Electric Utilities 1,086,500 42 Independent Power Producers & Combined Heat and Power 228,665,806 2 Emissions (thousand metric tons) Sulfur Dioxide 387 3 Nitrogen Oxide 136 2 Carbon Dioxide 122,830 3 Sulfur Dioxide (lbs/MWh) 3.7 13 Nitrogen Oxide (lbs/MWh) 1.3 27 Carbon Dioxide (lbs/MWh) 1,179 32 Total Retail Sales (megawatthours) 148,963,968 5 Full Service Provider Sales (megawatthours) 114,787,417 6

240

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Wyoming Electricity Profile 2010 Wyoming profile Wyoming Electricity Profile 2010 Wyoming profile Table 1. 2010 Summary Statistics (Wyoming) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 7,986 37 Electric Utilities 6,931 31 Independent Power Producers & Combined Heat and Power 1,056 41 Net Generation (megawatthours) 48,119,254 31 Electric Utilities 44,738,543 25 Independent Power Producers & Combined Heat and Power 3,380,711 42 Emissions (thousand metric tons) Sulfur Dioxide 67 23 Nitrogen Oxide 61 15 Carbon Dioxide 45,703 21 Sulfur Dioxide (lbs/MWh) 3.1 19 Nitrogen Oxide (lbs/MWh) 2.8 7 Carbon Dioxide (lbs/MWh) 2,094 2 Total Retail Sales (megawatthours) 17,113,458 40 Full Service Provider Sales (megawatthours) 17,113,458 39

Note: This page contains sample records for the topic "virtual temperature profiles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Kentucky Electricity Profile 2010 Kentucky profile Kentucky Electricity Profile 2010 Kentucky profile Table 1. 2010 Summary Statistics (Kentucky) Item Value U.S. Rank NERC Region(s) RFC/SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 20,453 21 Electric Utilities 18,945 16 Independent Power Producers & Combined Heat and Power 1,507 38 Net Generation (megawatthours) 98,217,658 17 Electric Utilities 97,472,144 7 Independent Power Producers & Combined Heat and Power 745,514 48 Emissions (thousand metric tons) Sulfur Dioxide 249 7 Nitrogen Oxide 85 7 Carbon Dioxide 93,160 7 Sulfur Dioxide (lbs/MWh) 5.6 5 Nitrogen Oxide (lbs/MWh) 1.9 15 Carbon Dioxide (lbs/MWh) 2,091 3 Total Retail Sales (megawatthours) 93,569,426 14 Full Service Provider Sales (megawatthours) 93,569,426 12

242

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Michigan Electricity Profile 2010 Michigan profile Michigan Electricity Profile 2010 Michigan profile Table 1. 2010 Summary Statistics (Michigan) Item Value U.S. Rank NERC Region(s) MRO/RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 29,831 11 Electric Utilities 21,639 10 Independent Power Producers & Combined Heat and Power 8,192 14 Net Generation (megawatthours) 111,551,371 13 Electric Utilities 89,666,874 13 Independent Power Producers & Combined Heat and Power 21,884,497 16 Emissions (thousand metric tons) Sulfur Dioxide 254 6 Nitrogen Oxide 89 6 Carbon Dioxide 74,480 11 Sulfur Dioxide (lbs/MWh) 5.0 8 Nitrogen Oxide (lbs/MWh) 1.8 19 Carbon Dioxide (lbs/MWh) 1,472 20 Total Retail Sales (megawatthours) 103,649,219 12 Full Service Provider Sales (megawatthours) 94,565,247 11

243

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Alabama Electricity Profile 2010 Alabama profile Alabama Electricity Profile 2010 Alabama profile Table 1. 2010 Summary Statistics (Alabama) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 32,417 9 Electric Utilities 23,642 7 Independent Power Producers & Combined Heat and Power 8,775 12 Net Generation (megawatthours) 152,150,512 6 Electric Utilities 122,766,490 2 Independent Power Producers & Combined Heat and Power 29,384,022 12 Emissions (thousand metric tons) Sulfur Dioxide 218 10 Nitrogen Oxide 66 14 Carbon Dioxide 79,375 9 Sulfur Dioxide (lbs/MWh) 3.2 18 Nitrogen Oxide (lbs/MWh) 1.0 36 Carbon Dioxide (lbs/MWh) 1,150 33 Total Retail Sales (megawatthours) 90,862,645 15 Full Service Provider Sales (megawatthours) 90,862,645 13

244

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Electricity Profile 2012 Table 1. 2012 Summary Statistics (Indiana) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 26,837 14...

245

EIA - State Electricity Profiles  

NLE Websites -- All DOE Office Websites (Extended Search)

Electricity Profile 2012 Table 1. 2012 Summary Statistics (Arizona) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 27,587...

246

Profiling for Performance  

Science Journals Connector (OSTI)

Performance and profiling are critical words in our everyday conversations in the office where I work, in our engagements with clients, and in our teaching. Both words apply equally well to all aspec...

Ron Crisco

2011-01-01T23:59:59.000Z

247

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Connecticut Electricity Profile 2010 Connecticut profile Connecticut Electricity Profile 2010 Connecticut profile Table 1. 2010 Summary Statistics (Connecticut) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 8,284 35 Electric Utilities 160 46 Independent Power Producers & Combined Heat and Power 8,124 15 Net Generation (megawatthours) 33,349,623 40 Electric Utilities 65,570 45 Independent Power Producers & Combined Heat and Power 33,284,053 11 Emissions (thousand metric tons) Sulfur Dioxide 2 48 Nitrogen Oxide 7 45 Carbon Dioxide 9,201 41 Sulfur Dioxide (lbs/MWh) 0.1 48 Nitrogen Oxide (lbs/MWh) 0.5 49 Carbon Dioxide (lbs/MWh) 608 45 Total Retail Sales (megawatthours) 30,391,766 35 Full Service Provider Sales (megawatthours) 13,714,958 40

248

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Utah Electricity Profile 2010 Utah profile Utah Electricity Profile 2010 Utah profile Table 1. 2010 Summary Statistics (Utah) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 7,497 39 Electric Utilities 6,648 32 Independent Power Producers & Combined Heat and Power 849 44 Net Generation (megawatthours) 42,249,355 35 Electric Utilities 39,522,124 29 Independent Power Producers & Combined Heat and Power 2,727,231 43 Emissions (thousand metric tons) Sulfur Dioxide 25 34 Nitrogen Oxide 68 13 Carbon Dioxide 35,519 27 Sulfur Dioxide (lbs/MWh) 1.3 38 Nitrogen Oxide (lbs/MWh) 3.6 4 Carbon Dioxide (lbs/MWh) 1,853 9 Total Retail Sales (megawatthours) 28,044,001 37 Full Service Provider Sales (megawatthours) 28,044,001 36

249

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Carolina Electricity Profile 2010 South Carolina profile Carolina Electricity Profile 2010 South Carolina profile Table 1. 2010 Summary Statistics (South Carolina) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 23,982 17 Electric Utilities 22,172 9 Independent Power Producers & Combined Heat and Power 1,810 35 Net Generation (megawatthours) 104,153,133 14 Electric Utilities 100,610,887 6 Independent Power Producers & Combined Heat and Power 3,542,246 39 Emissions (thousand metric tons) Sulfur Dioxide 106 19 Nitrogen Oxide 30 33 Carbon Dioxide 41,364 23 Sulfur Dioxide (lbs/MWh) 2.2 30 Nitrogen Oxide (lbs/MWh) 0.6 45 Carbon Dioxide (lbs/MWh) 876 40 Total Retail Sales (megawatthours) 82,479,293 19 Full Service Provider Sales (megawatthours) 82,479,293 17

250

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Electricity Profile 2010 Alaska profile Alaska Electricity Profile 2010 Alaska profile Table 1. 2010 Summary Statistics (Alaska) Item Value U.S. Rank NERC Region(s) -- Primary Energy Source Gas Net Summer Capacity (megawatts) 2,067 48 Electric Utilities 1,889 39 Independent Power Producers & Combined Heat and Power 178 51 Net Generation (megawatthours) 6,759,576 48 Electric Utilities 6,205,050 40 Independent Power Producers & Combined Heat and Power 554,526 49 Emissions (thousand metric tons) Sulfur Dioxide 3 46 Nitrogen Oxide 16 39 Carbon Dioxide 4,125 46 Sulfur Dioxide (lbs/MWh) 1.0 41 Nitrogen Oxide (lbs/MWh) 5.2 1 Carbon Dioxide (lbs/MWh) 1,345 23 Total Retail Sales (megawatthours) 6,247,038 50 Full Service Provider Sales (megawatthours) 6,247,038 47

251

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Nevada Electricity Profile 2010 Nevada profile Nevada Electricity Profile 2010 Nevada profile Table 1. 2010 Summary Statistics (Nevada) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Gas Net Summer Capacity (megawatts) 11,421 34 Electric Utilities 8,713 29 Independent Power Producers & Combined Heat and Power 2,708 33 Net Generation (megawatthours) 35,146,248 38 Electric Utilities 23,710,917 34 Independent Power Producers & Combined Heat and Power 11,435,331 29 Emissions (thousand metric tons) Sulfur Dioxide 7 44 Nitrogen Oxide 15 40 Carbon Dioxide 17,020 38 Sulfur Dioxide (lbs/MWh) 0.4 46 Nitrogen Oxide (lbs/MWh) 1.0 37 Carbon Dioxide (lbs/MWh) 1,068 37 Total Retail Sales (megawatthours) 33,772,595 33 Full Service Provider Sales (megawatthours) 32,348,879 32

252

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Washington Electricity Profile 2010 Washington profile Washington Electricity Profile 2010 Washington profile Table 1. 2010 Summary Statistics (Washington) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 30,478 10 Electric Utilities 26,498 5 Independent Power Producers & Combined Heat and Power 3,979 26 Net Generation (megawatthours) 103,472,729 15 Electric Utilities 88,057,219 14 Independent Power Producers & Combined Heat and Power 15,415,510 23 Emissions (thousand metric tons) Sulfur Dioxide 14 39 Nitrogen Oxide 21 37 Carbon Dioxide 13,984 39 Sulfur Dioxide (lbs/MWh) 0.3 47 Nitrogen Oxide (lbs/MWh) 0.4 50 Carbon Dioxide (lbs/MWh) 298 49 Total Retail Sales (megawatthours) 90,379,970 16 Full Service Provider Sales (megawatthours) 88,116,958 14

253

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Oregon Electricity Profile 2010 Oregon profile Oregon Electricity Profile 2010 Oregon profile Table 1. 2010 Summary Statistics (Oregon) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 14,261 29 Electric Utilities 10,846 27 Independent Power Producers & Combined Heat and Power 3,415 28 Net Generation (megawatthours) 55,126,999 27 Electric Utilities 41,142,684 26 Independent Power Producers & Combined Heat and Power 13,984,316 26 Emissions (thousand metric tons) Sulfur Dioxide 16 37 Nitrogen Oxide 15 42 Carbon Dioxide 10,094 40 Sulfur Dioxide (lbs/MWh) 0.6 44 Nitrogen Oxide (lbs/MWh) 0.6 47 Carbon Dioxide (lbs/MWh) 404 48 Total Retail Sales (megawatthours) 46,025,945 30 Full Service Provider Sales (megawatthours) 44,525,865 29

254

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Texas Electricity Profile 2010 Texas profile Texas Electricity Profile 2010 Texas profile Table 1. 2010 Summary Statistics (Texas) Item Value U.S. Rank NERC Region(s) SERC/SPP/TRE/WECC Primary Energy Source Gas Net Summer Capacity (megawatts) 108,258 1 Electric Utilities 26,533 4 Independent Power Producers & Combined Heat and Power 81,724 1 Net Generation (megawatthours) 411,695,046 1 Electric Utilities 95,099,161 9 Independent Power Producers & Combined Heat and Power 316,595,885 1 Emissions (thousand metric tons) Sulfur Dioxide 430 2 Nitrogen Oxide 204 1 Carbon Dioxide 251,409 1 Sulfur Dioxide (lbs/MWh) 2.3 28 Nitrogen Oxide (lbs/MWh) 1.1 32 Carbon Dioxide (lbs/MWh) 1,346 22 Total Retail Sales (megawatthours) 358,457,550 1 Full Service Provider Sales (megawatthours) 358,457,550 1

255

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Indiana Electricity Profile 2010 Indiana profile Indiana Electricity Profile 2010 Indiana profile Table 1. 2010 Summary Statistics (Indiana) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 27,638 13 Electric Utilities 23,008 8 Independent Power Producers & Combined Heat and Power 4,630 23 Net Generation (megawatthours) 125,180,739 11 Electric Utilities 107,852,560 5 Independent Power Producers & Combined Heat and Power 17,328,179 20 Emissions (thousand metric tons) Sulfur Dioxide 385 4 Nitrogen Oxide 120 4 Carbon Dioxide 116,283 5 Sulfur Dioxide (lbs/MWh) 6.8 4 Nitrogen Oxide (lbs/MWh) 2.1 12 Carbon Dioxide (lbs/MWh) 2,048 4 Total Retail Sales (megawatthours) 105,994,376 11 Full Service Provider Sales (megawatthours) 105,994,376 8

256

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Oklahoma Electricity Profile 2010 Oklahoma profile Oklahoma Electricity Profile 2010 Oklahoma profile Table 1. 2010 Summary Statistics (Oklahoma) Item Value U.S. Rank NERC Region(s) SPP Primary Energy Source Gas Net Summer Capacity (megawatts) 21,022 20 Electric Utilities 16,015 18 Independent Power Producers & Combined Heat and Power 5,006 17 Net Generation (megawatthours) 72,250,733 22 Electric Utilities 57,421,195 17 Independent Power Producers & Combined Heat and Power 14,829,538 24 Emissions (thousand metric tons) Sulfur Dioxide 85 21 Nitrogen Oxide 71 12 Carbon Dioxide 49,536 17 Sulfur Dioxide (lbs/MWh) 2.6 24 Nitrogen Oxide (lbs/MWh) 2.2 11 Carbon Dioxide (lbs/MWh) 1,512 17 Total Retail Sales (megawatthours) 57,845,980 25 Full Service Provider Sales (megawatthours) 57,845,980 23

257

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Jersey Electricity Profile 2010 New Jersey profile Jersey Electricity Profile 2010 New Jersey profile Table 1. 2010 Summary Statistics (New Jersey) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 18,424 22 Electric Utilities 460 43 Independent Power Producers & Combined Heat and Power 17,964 6 Net Generation (megawatthours) 65,682,494 23 Electric Utilities -186,385 50 Independent Power Producers & Combined Heat and Power 65,868,878 6 Emissions (thousand metric tons) Sulfur Dioxide 14 40 Nitrogen Oxide 15 41 Carbon Dioxide 19,160 37 Sulfur Dioxide (lbs/MWh) 0.5 45 Nitrogen Oxide (lbs/MWh) 0.5 48 Carbon Dioxide (lbs/MWh) 643 43 Total Retail Sales (megawatthours) 79,179,427 20 Full Service Provider Sales (megawatthours) 50,482,035 25

258

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Idaho Electricity Profile 2010 Idaho profile Idaho Electricity Profile 2010 Idaho profile Table 1. 2010 Summary Statistics (Idaho) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 3,990 44 Electric Utilities 3,035 36 Independent Power Producers & Combined Heat and Power 955 42 Net Generation (megawatthours) 12,024,564 44 Electric Utilities 8,589,208 37 Independent Power Producers & Combined Heat and Power 3,435,356 40 Emissions (thousand metric tons) Sulfur Dioxide 7 45 Nitrogen Oxide 4 48 Carbon Dioxide 1,213 49 Sulfur Dioxide (lbs/MWh) 1.2 39 Nitrogen Oxide (lbs/MWh) 0.8 43 Carbon Dioxide (lbs/MWh) 222 50 Total Retail Sales (megawatthours) 22,797,668 38 Full Service Provider Sales (megawatthours) 22,797,668 37

259

TEAM COLLABORATION IN VIRTUAL WORLDS: THE ROLE OF TASK COMPLEXITY.  

E-Print Network (OSTI)

??Virtual worlds are three-dimensional, computer-generated worlds where team collaboration can be facilitated through the use of shared virtual space and mediated using avatars. In this… (more)

Sattayanuwat, Parichart

2011-01-01T23:59:59.000Z

260

Relativistic formulation for the Doppler-broadened line profile  

SciTech Connect

Profiles of spectral lines due to the thermal motion of light-emitting particles are formulated based on the classical and the relativistic Doppler effects, respectively. For the classical case, the well-known Doppler-broadened line profile is reproduced. For the relativistic case, the line profile obtained is asymmetrically broadened with increasing temperature. However, the peak frequency remains unshifted, in contrast to blueshifted, as has been predicted in the current literature. Reasoning is given as to why the relativistic Doppler-broadened line profile currently accepted is probably invalid.

Huang, Young-Sea; Chiue, Juang-Han; Huang, Yi-Chi; Hsiung, Te-Chih [Department of Physics, Soochow University, Shih-Lin, Taipei, Taiwan (China); Department of Physics, National Central University, Chung-Li, Taiwan (China)

2010-07-15T23:59:59.000Z

Note: This page contains sample records for the topic "virtual temperature profiles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

The application of virtual reality in astronomy education  

Science Journals Connector (OSTI)

In this paper, we study the virtual reality technologies for developing a virtual astronomical museum, which can be applied in astronomy education. The museum contains four exhibition areas of the following topics: Astronomy Technologies, the Moon ... Keywords: astronomy education, internet, virtual reality, web-based learning

W. Tarng; H. Liou

2007-06-01T23:59:59.000Z

262

Virtual bidding: the good, the bad and the ugly  

SciTech Connect

Virtual bidding has become an integral part of major organized electricity markets in the U.S. over the last decade; in some markets, virtual bids set the price half the time. Although virtual bidding can enhance the efficiency of electricity markets, that does not come without risk. (author)

Celebi, Metin; Hajos, Attila; Hanser, Philip Q

2010-06-15T23:59:59.000Z

263

CyberWalk: Enabling unconstrained omnidirectional walking through virtual environments  

Science Journals Connector (OSTI)

Despite many recent developments in virtual reality, an effective locomotion interface which allows for normal walking through large virtual environments was until recently still lacking. Here, we describe the new CyberWalk omnidirectional treadmill ... Keywords: Virtual reality, control system, locomotion, spatial navigation, treadmill

J. L. Souman; P. Robuffo Giordano; M. Schwaiger; I. Frissen; T. Thümmel; H. Ulbrich; A. De Luca; H. H. Bülthoff; M. O. Ernst

2011-11-01T23:59:59.000Z

264

Technical Documentation for System Center 2012 Virtual Machine  

E-Print Network (OSTI)

#12; Technical Documentation for System Center 2012 ­ Virtual Machine Manager VMM Information Experience Team Summary: Virtual Machine Manager (VMM) is a management solution resources in order to create and deploy virtual machines and services to private clouds that you have

Hunt, Galen

265

System/370 Extended Architecture: Facilities for Virtual Machines  

E-Print Network (OSTI)

p. H. Gum System/370 Extended Architecture: Facilities for Virtual Machines This paper describes the evolution of facilities for virtual machines on IBM System/370 computers, and presents the elements of a new architectural facility designed for the virtual-machine environment. Assists that have been added to various

Yang, Junfeng

266

DBA-VM: Dynamic Bandwidth Allocator for Virtual Machines  

E-Print Network (OSTI)

DBA-VM: Dynamic Bandwidth Allocator for Virtual Machines Ahmed Amamou, Manel Bourguiba, Kamel for Virtual Machines with regard to the established SLAs. The proposed scheme enforces the isolation between the virtual machines through the transmission bandwidth adjustment at the network I/O channel

Paris-Sud XI, Université de

267

THE DERIVED SERIES AND VIRTUAL BETTI NUMBERS SIDDHARTHA GADGIL  

E-Print Network (OSTI)

THE DERIVED SERIES AND VIRTUAL BETTI NUMBERS SIDDHARTHA GADGIL Abstract. The virtual Betti number conjecture states that any hyperbolic three-manifold has a finite cover with positive first Betti number. We that the virtual Betti number conjecture would follow if it were known that the derived series of the fundamental

Gadgil, Siddhartha

268

Computer Games and Virtual Worlds: New Modalities of  

E-Print Network (OSTI)

Institute for Software Research and Center for Computer Games and Virtual Worlds University of California;13 "Gowning" training game, developed at UCI GameLab #12;14 Game-based tele-rehabilitation #12;15 · Virtual, collaborative product/prototype development, and more Game-based virtual worlds and tele-rehabilitation #12

Scacchi, Walt

269

Analyzing and Improving MPI Communication Performance in Overcommitted Virtualized Systems  

Science Journals Connector (OSTI)

Nowadays, it is an important trend in the system domain to use the software-based virtualization technology to build the execution environments (e.g., Clouds) and serve high performance computing (HPC) applications. However, with the extra virtualization ... Keywords: virtualization, cloud, MPI, performance

Zhiyuan Shao; Qiang Wang; Xuejiao Xie; Hai Jin; Ligang He

2011-07-01T23:59:59.000Z

270

A virtual experiment platform for mechanism motion cognitive learning  

Science Journals Connector (OSTI)

In order to give students a more intuitionistic understanding in mechanism motion system, a virtual experiment platform is designed and developed. First, experimental component models, which contain both visual information and logical information, are ... Keywords: mechanism motion experiment, modelica modeling, virtual experiment, virtual reality

Xiumin Fan; Xi Zhang; Huangchong Cheng; Yanjun Ma; Qichang He

2011-07-01T23:59:59.000Z

271

Virtual reality and hybrid technology for neurorehabilitations  

Science Journals Connector (OSTI)

Disabilities that follow Cerebrovascular accidents (CVA) and spinal cord injuries (SCI) severely impair motor functions and thereby prevent the affected individuals from full and autonomous participation in daily activities. Several studies have shown ... Keywords: brain neuro-machine interface, cerebrovascular accidents, motor-neuroprosthetics, neuro-robotics, spinal cord injury, virtual reality

Alessandro De Mauro; Aitor Ardanza; Chao Chen; Eduardo Carrasco; David Oyarzun; Diego Torricelli; Shabs Rajasekharan; Josè Luis Pons; Ángel Gil-Agudo; Julián Flórez Esnal

2007-06-01T23:59:59.000Z

272

Two Approaches to Facilitate Virtual Lab Implementation  

Science Journals Connector (OSTI)

Here two software tools are presented that facilitate virtual lab implementation: Interactive and Rand Model Designer. Interactive is a free Modelica library that's used in combination with the Dymola modeling environment. Rand Model Designer supports Model Vision Language an object-oriented modeling language based on the Unified Modeling Language (UML).

Carla Martín-Villalba; Alfonso Urquía; Yuri Senichenkov; Yuri Kolesov

2014-01-01T23:59:59.000Z

273

The `Virtual Hand' of Jihad Terrorism Monitor  

E-Print Network (OSTI)

The `Virtual Hand' of Jihad Terrorism Monitor Terrorism Focus Spotlight on Terror By Vol does Islam per se or "Muslim civilization" really have anything to do with terrorism ­ no more than massacre of 58 tourists http://www.jamestown.org/terrorism/news/article.php?articleid=2369701 (1 of 5) [5

Paris-Sud XI, Université de

274

Building Virtual Worlds: A City Planning Perspective  

E-Print Network (OSTI)

to the internet and the application of internet technologies in private company `intranets.' The obvious result.ingram@cs.nott.ac.uk Computing, networking and virtual reality technologies are gradually approaching the level of maturity where The relentless expansion of computing technology into our workplaces and homes in the past 15­20 years is plain

Bowden, Richard

275

Oorange: A Virtual Laboratory for Experimental Mathematics  

E-Print Network (OSTI)

organized as a virtual laboratory, which presents a uni ed user interface integrating all the above- jects Monitor and control: Object inspection; 2D and 3D viewers Running the experiment: Animation objects Recording the experiment: Archiving and scripting Disseminating result: Documentation A hybrid

Polthier, Konrad

276

OS Support for Virtualizing Hardware Transactional Memory  

E-Print Network (OSTI)

the problem and abort transactions on a virtualization event. This mechanism is simple, fast, and effec- tive on physical addresses. We propose an extension to LogTM-SE, called LogTM-VSE, that addresses these problems that voluntarily context switches. However, we find that abort- ing a transaction is generally faster than

Wood, David A.

277

February 13, 2008 Virtualized Environments for the Harness High Performance Computing Workbench 1/17 Virtualized Environments for the Harness  

E-Print Network (OSTI)

February 13, 2008 Virtualized Environments for the Harness High Performance Computing Workbench 1/17 Virtualized Environments for the Harness High Performance Computing Workbench Björn Könning1,2, Christian Virtualized Environments for the Harness High Performance Computing Workbench 4/17 Harness HPC Workbench

Engelmann, Christian

278

Performance profiles style sheet  

Gasoline and Diesel Fuel Update (EIA)

Performance Profiles of Major Energy Producers 2009 Performance Profiles of Major Energy Producers 2009 vii Major Findings This edition of Performance Profiles reviews financial and operating data for the calendar year 2009 and discusses important trends and emerging issues relevant to U.S. energy company operations. Major U.S.-based oil and natural gas producers and petroleum refiners submit the data in this report annually on Form EIA-28, the Financial Reporting System (FRS). FRS companies' net income declined to the lowest level since 2002.  Net income fell 66 percent (in constant 2009 dollars) to $30 billion in 2009 from $88 billion in 2008. Substantial reductions in oil and natural gas prices in 2009 slowed revenue growth. FRS companies cut operating costs but by less than the decline in revenue, resulting in a 69-percent drop in operating income.

279

State Nuclear Profiles 2010  

U.S. Energy Information Administration (EIA) Indexed Site

State Nuclear Profiles 2010 State Nuclear Profiles 2010 April 2012 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies. U.S. Energy Information Administration | State Nuclear Profiles 2010 i Contacts This report was prepared by the staff of the Renewables and Uranium Statistics Team, Office of Electricity,

280

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Florida Nuclear Profile 2010 Florida profile Florida Nuclear Profile 2010 Florida profile Florida total electric power industry, summer capacity and net generation, by energy source, 2010 Primary Energy Source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 3,924 6.6 23,936 10.4 Coal 9,975 16.9 59,897 26.1 Hydro and Pumped Storage 55 0.1 177 0.1 Natural Gas 31,563 53.4 128,634 56.1 Other1 544 0.9 2,842 1.2 Other Renewable1 1,053 1.8 4,487 2.0 Petroleum 12,033 20.3 9,122 4.0 Total 59,147 100.0 229,096 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

Note: This page contains sample records for the topic "virtual temperature profiles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

North Carolina Nuclear Profile 2010 North Carolina profile North Carolina Nuclear Profile 2010 North Carolina profile North Carolina total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,958 17.9 40,740 31.7 Coal 12,766 46.1 71,951 55.9 Hydro and Pumped Storage 2,042 7.4 4,757 3.7 Natural Gas 6,742 24.4 8,447 6.6 Other 1 50 0.2 407 0.3 Other Renewable1 543 2.0 2,083 1.6 Petroleum 573 2.1 293 0.2 Total 27,674 100.0 128,678 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

282

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

California Nuclear Profile 2010 California profile California Nuclear Profile 2010 California profile California total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,390 6.5 32,201 15.8 Coal 374 0.6 2,100 1.0 Hydro and Pumped Storage 13,954 20.7 33,260 16.3 Natural Gas 41,370 61.4 107,522 52.7 Other 1 220 0.3 2,534 1.2 Other Renewable1 6,319 9.4 25,450 12.5 Petroleum 701 1.0 1,059 0.5 Total 63,328 100.0 204,126 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

283

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Georgia Nuclear Profile 2010 Georgia profile Georgia Nuclear Profile 2010 Georgia profile Georgia total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,061 11.1 33,512 24.6 Coal 13,230 36.1 73,298 54.0 Hydro and Pumped Storage 3,851 10.5 3,044 2.7 Natural Gas 12,668 34.6 23,884 15.9 Other 1 - - 18 * Other Renewable1 637 1.7 3,181 2.2 Petroleum 2,189 6.0 641 0.5 Total 36,636 100.0 128,698 100 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05.

284

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Mississippi Nuclear Profile 2010 Mississippi profile Mississippi Nuclear Profile 2010 Mississippi profile Mississippi total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,251 8.0 9,643 17.7 Coal 2,526 16.1 13,629 25.0 Natural Gas 11,640 74.2 29,619 54.4 Other 1 4 * 10 * Other Renewable1 235 1.5 1,504 2.8 Petroleum 35 0.2 18 0.1 Total 15,691 100.0 54,487 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05. Notes: Totals may not equal sum of components due to independent rounding.

285

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Connecticut Nuclear Profile 2010 Connecticut profile Connecticut Nuclear Profile 2010 Connecticut profile Connecticut total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 2,103 25.4 16,750 50.2 Coal 564 6.8 2,604 7.8 Hydro and Pumped Storage 151 1.8 400 1.2 Natural Gas 2,292 27.7 11,716 35.1 Other 1 27 0.3 730 2.2 Other Renewable1 159 1.9 740 2.2 Petroleum 2,989 36.1 409 1.2 Total 8,284 100.0 33,350 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

286

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Massachusetts Nuclear Profile 2010 Massachusetts profile Massachusetts Nuclear Profile 2010 Massachusetts profile Massachusetts total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 685 5.0 5,918 13.8 Coal 1,669 12.2 8,306 19.4 Hydro and Pumped Storage 1,942 14.2 659 1.5 Natural Gas 6,063 44.3 25,582 59.8 Other 1 3 * 771 1.8 Other Renewable1 304 2.2 1,274 3.0 Petroleum 3,031 22.1 296 0.7 Total 13,697 100.0 42,805 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

287

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Michigan Nuclear Profile 2010 Michigan profile Michigan Nuclear Profile 2010 Michigan profile Michigan total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 3,947 13.2 29,625 26.6 Coal 11,531 38.7 65,604 58.8 Hydro and Pumped Storage 2,109 7.1 228 0.2 Natural Gas 11,033 37.0 12,249 11.0 Other 1 - - 631 0.6 Other Renewable1 571 1.9 2,832 2.5 Petroleum 640 2.1 382 0.3 Total 29,831 100.0 111,551 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

288

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Florida Nuclear Profile 2010 Florida profile Florida Nuclear Profile 2010 Florida profile Florida total electric power industry, summer capacity and net generation, by energy source, 2010 Primary Energy Source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 3,924 6.6 23,936 10.4 Coal 9,975 16.9 59,897 26.1 Hydro and Pumped Storage 55 0.1 177 0.1 Natural Gas 31,563 53.4 128,634 56.1 Other1 544 0.9 2,842 1.2 Other Renewable1 1,053 1.8 4,487 2.0 Petroleum 12,033 20.3 9,122 4.0 Total 59,147 100.0 229,096 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

289

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Missouri Nuclear Profile 2010 Missouri profile Missouri Nuclear Profile 2010 Missouri profile Missouri total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,190 5.5 8,996 9.7 Coal 12,070 55.5 75,047 81.3 Hydro and Pumped Storage 1,221 5.6 2,427 2.6 Natural Gas 5,579 25.7 4,690 5.1 Other 1 - - 39 * Other Renewable1 466 2.1 988 1.1 Petroleum 1,212 5.6 126 0.1 Total 21,739 100.0 92,313 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05.

290

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Alabama Nuclear Profile 2010 Alabama profile Alabama Nuclear Profile 2010 Alabama profile Alabama total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 5,043 15.6 37,941 24.9 Coal 11,441 35.3 63,050 41.4 Hydro and Pumped Storage 3,272 10.1 8,704 5.7 Natural Gas 11,936 36.8 39,235 25.8 Other1 100 0.3 643 0.4 Other Renewable1 583 1.8 2,377 1.6 Petroleum 43 0.1 200 0.1 Total 32,417 100.0 152,151 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

291

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Arizona Nuclear Profile 2010 Arizona profile Arizona Nuclear Profile 2010 Arizona profile Arizona total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,937 14.9 31,200 27.9 Coal 6,233 23.6 43,644 39.1 Hydro and Pumped Storage 2,937 11.1 6,831 6.1 Natural Gas 13,012 49.3 29,676 26.6 Other 1 - - 15 * Other Renewable1 181 0.7 319 0.3 Petroleum 93 0.4 66 0.1 Total 26,392 100.0 111,751 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05.

292

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Minnesota Nuclear Profile 2010 Minnesota profile Minnesota Nuclear Profile 2010 Minnesota profile Minnesota total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,549 10.8 13,478 25.1 Coal 4,789 32.5 28,083 52.3 Hydro and Pumped Storage 193 1.3 840 1.6 Natural Gas 4,936 33.5 4,341 8.1 Other 1 13 0.1 258 0.5 Other Renewable1 2,395 16.3 6,640 12.4 Petroleum 795 5.4 31 0.1 Total 14,715 100.0 53,670 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

293

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Pennsylvania Nuclear Profile 2010 Pennsylvania profile Pennsylvania Nuclear Profile 2010 Pennsylvania profile Pennsylvania total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 9,540 20.9 77,828 33.9 Coal 18,481 40.6 110,369 48.0 Hydro and Pumped Storage 2,268 5.0 1,624 0.7 Natural Gas 9,415 20.7 33,718 14.7 Other 1 100 0.2 1,396 0.6 Other Renewable1 1,237 2.7 4,245 1.8 Petroleum 4,534 9.9 571 0.2 Total 45,575 100.0 229,752 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

294

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Hampshire Nuclear Profile 2010 New Hampshire profile Hampshire Nuclear Profile 2010 New Hampshire profile New Hampshire total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,247 29.8 10,910 49.2 Coal 546 13.1 3,083 13.9 Hydro and Pumped Storage 489 11.7 1,478 6.7 Natural Gas 1,215 29.1 5,365 24.2 Other 1 - - 57 0.3 Other Renewable1 182 4.4 1,232 5.6 Petroleum 501 12.0 72 0.3 Total 4,180 100.0 22,196 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

295

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

North Carolina Nuclear Profile 2010 North Carolina profile North Carolina Nuclear Profile 2010 North Carolina profile North Carolina total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,958 17.9 40,740 31.7 Coal 12,766 46.1 71,951 55.9 Hydro and Pumped Storage 2,042 7.4 4,757 3.7 Natural Gas 6,742 24.4 8,447 6.6 Other 1 50 0.2 407 0.3 Other Renewable1 543 2.0 2,083 1.6 Petroleum 573 2.1 293 0.2 Total 27,674 100.0 128,678 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

296

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Hampshire Nuclear Profile 2010 New Hampshire profile Hampshire Nuclear Profile 2010 New Hampshire profile New Hampshire total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,247 29.8 10,910 49.2 Coal 546 13.1 3,083 13.9 Hydro and Pumped Storage 489 11.7 1,478 6.7 Natural Gas 1,215 29.1 5,365 24.2 Other 1 - - 57 0.3 Other Renewable1 182 4.4 1,232 5.6 Petroleum 501 12.0 72 0.3 Total 4,180 100.0 22,196 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

297

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Georgia Nuclear Profile 2010 Georgia profile Georgia Nuclear Profile 2010 Georgia profile Georgia total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,061 11.1 33,512 24.6 Coal 13,230 36.1 73,298 54.0 Hydro and Pumped Storage 3,851 10.5 3,044 2.7 Natural Gas 12,668 34.6 23,884 15.9 Other 1 - - 18 * Other Renewable1 637 1.7 3,181 2.2 Petroleum 2,189 6.0 641 0.5 Total 36,636 100.0 128,698 100 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05.

298

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Michigan Nuclear Profile 2010 Michigan profile Michigan Nuclear Profile 2010 Michigan profile Michigan total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 3,947 13.2 29,625 26.6 Coal 11,531 38.7 65,604 58.8 Hydro and Pumped Storage 2,109 7.1 228 0.2 Natural Gas 11,033 37.0 12,249 11.0 Other 1 - - 631 0.6 Other Renewable1 571 1.9 2,832 2.5 Petroleum 640 2.1 382 0.3 Total 29,831 100.0 111,551 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

299

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Louisiana Nuclear Profile 2010 Louisiana profile Louisiana Nuclear Profile 2010 Louisiana profile Louisiana total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (nw) Share of State total (percent) Net generation (thousand nwh) Share of State total (percent) Nuclear 2,142 8.0 18,639 18.1 Coal 3,417 12.8 23,924 23.3 Hydro and Pumped Storage 192 0.7 1,109 1.1 Natural Gas 19,574 73.2 51,344 49.9 Other 1 213 0.8 2,120 2.1 Other Renewable1 325 1.2 2,468 2.4 Petroleum 881 3.3 3,281 3.2 Total 26,744 100.0 102,885 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

300

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Illinois Nuclear Profile 2010 Illinois profile Illinois Nuclear Profile 2010 Illinois profile Illinois total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 11,441 25.9 96,190 47.8 Coal 15,551 35.2 93,611 46.5 Hydro and Pumped Storage 34 0.1 119 0.1 Natural Gas 13,771 31.2 5,724 2.8 Other 1 145 0.3 461 0.2 Other Renewable1 2,078 4.7 5,138 2.6 Petroleum 1,106 2.5 110 0.1 Total 44,127 100.0 201,352 100 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

Note: This page contains sample records for the topic "virtual temperature profiles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Jersey Nuclear Profile 2010 New Jersey profile Jersey Nuclear Profile 2010 New Jersey profile New Jersey total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,108 22.3 32,771 49.9 Coal 2,036 11.1 6,418 9.8 Hydro and Pumped Storage 404 2.2 -176 -0.3 Natural Gas 10,244 55.6 24,902 37.9 Other 1 56 0.3 682 1.0 Other Renewable1 226 1.2 850 1.3 Petroleum 1,351 7.3 235 0.4 Total 18,424 100.0 65,682 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

302

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Iowa Nuclear Profile 2010 Iowa profile Iowa Nuclear Profile 2010 Iowa profile Iowa total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 601 4.1 4,451 7.7 Coal 6,956 47.7 41,283 71.8 Hydro and Pumped Storage 144 1.0 948 1.6 Natural Gas 2,299 15.8 1,312 2.3 Other Renewable1 3,584 24.6 9,360 16.3 Petroleum 1,007 6.9 154 .0.3 Total 14,592 100.0 57,509 100 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. Notes: Totals may not equal sum of components due to independent rounding.

303

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Minnesota Nuclear Profile 2010 Minnesota profile Minnesota Nuclear Profile 2010 Minnesota profile Minnesota total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,549 10.8 13,478 25.1 Coal 4,789 32.5 28,083 52.3 Hydro and Pumped Storage 193 1.3 840 1.6 Natural Gas 4,936 33.5 4,341 8.1 Other 1 13 0.1 258 0.5 Other Renewable1 2,395 16.3 6,640 12.4 Petroleum 795 5.4 31 0.1 Total 14,715 100.0 53,670 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

304

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Arkansas Nuclear Profile 2010 Arkansas profile Arkansas Nuclear Profile 2010 Arkansas profile Arkansas total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State ttal (percent) Nuclear 1,835 11.5 15,023 24.6 Coal 4,535 28.4 28,152 46.2 Hydro and Pumped Storage 1,369 8.6 3,658 6.0 Natural Gas 7,894 49.4 12,469 20.4 Other 1 - - 28 * Other Renewable1 326 2.0 1,624 2.7 Petroleum 22 0.1 45 0.1 Total 15,981 100.0 61,000 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable * = Absolute percentage less than 0.05.

305

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Nebraska Nuclear Profile 2010 Nebraska profile Nebraska Nuclear Profile 2010 Nebraska profile Nebraska total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,245 15.8 11,054 30.2 Coal 3,932 50.0 23,368 63.8 Hydro and Pumped Storage 278 3.5 1,314 3.6 Natural Gas 1,864 23.5 375 1.0 Other Renewable1 165 2.1 493 1.3 Petroleum 387 4.9 31 0.1 Total 7,857 100.0 36,630 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. Notes: Totals may not equal sum of components due to independent rounding.

306

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Mississippi Nuclear Profile 2010 Mississippi profile Mississippi Nuclear Profile 2010 Mississippi profile Mississippi total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,251 8.0 9,643 17.7 Coal 2,526 16.1 13,629 25.0 Natural Gas 11,640 74.2 29,619 54.4 Other 1 4 * 10 * Other Renewable1 235 1.5 1,504 2.8 Petroleum 35 0.2 18 0.1 Total 15,691 100.0 54,487 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05. Notes: Totals may not equal sum of components due to independent rounding.

307

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Arkansas Nuclear Profile 2010 Arkansas profile Arkansas Nuclear Profile 2010 Arkansas profile Arkansas total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State ttal (percent) Nuclear 1,835 11.5 15,023 24.6 Coal 4,535 28.4 28,152 46.2 Hydro and Pumped Storage 1,369 8.6 3,658 6.0 Natural Gas 7,894 49.4 12,469 20.4 Other 1 - - 28 * Other Renewable1 326 2.0 1,624 2.7 Petroleum 22 0.1 45 0.1 Total 15,981 100.0 61,000 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable * = Absolute percentage less than 0.05.

308

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Kansas Nuclear Profile 2010 Kansas profile Kansas Nuclear Profile 2010 Kansas profile Kansas total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,160 9.2 9,556 19.9 Coal 5,179 41.3 32,505 67.8 Hydro and Pumped Storage 3 * 13 * Natural Gas 4,573 36.5 2,287 4.8 Other Renewable1 1,079 8.6 3,459 7.2 Petroleum 550 4.4 103 0.2 Total 12,543 100.0 47,924 100 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05. Notes: Totals may not equal sum of components due to independent rounding.

309

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Pennsylvania Nuclear Profile 2010 Pennsylvania profile Pennsylvania Nuclear Profile 2010 Pennsylvania profile Pennsylvania total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 9,540 20.9 77,828 33.9 Coal 18,481 40.6 110,369 48.0 Hydro and Pumped Storage 2,268 5.0 1,624 0.7 Natural Gas 9,415 20.7 33,718 14.7 Other 1 100 0.2 1,396 0.6 Other Renewable1 1,237 2.7 4,245 1.8 Petroleum 4,534 9.9 571 0.2 Total 45,575 100.0 229,752 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

310

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Ohio Nuclear Profile 2010 Ohio profile Ohio Nuclear Profile 2010 Ohio profile Ohio total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 2,134 6.5 15,805 11.0 Coal 21,360 64.6 117,828 82.1 Hydro and Pumped Storage 101 0.3 429 0.3 Natural Gas 8,203 24.8 7,128 5.0 Other 1 123 0.4 266 0.2 Other Renewable1 130 0.4 700 0.5 Petroleum 1,019 3.1 1,442 1.0 Total 33,071 100.0 143,598 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. Notes: Totals may not equal sum of components due to independent rounding.

311

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Arizona Nuclear Profile 2010 Arizona profile Arizona Nuclear Profile 2010 Arizona profile Arizona total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,937 14.9 31,200 27.9 Coal 6,233 23.6 43,644 39.1 Hydro and Pumped Storage 2,937 11.1 6,831 6.1 Natural Gas 13,012 49.3 29,676 26.6 Other 1 - - 15 * Other Renewable1 181 0.7 319 0.3 Petroleum 93 0.4 66 0.1 Total 26,392 100.0 111,751 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05.

312

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Kansas Nuclear Profile 2010 Kansas profile Kansas Nuclear Profile 2010 Kansas profile Kansas total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,160 9.2 9,556 19.9 Coal 5,179 41.3 32,505 67.8 Hydro and Pumped Storage 3 * 13 * Natural Gas 4,573 36.5 2,287 4.8 Other Renewable1 1,079 8.6 3,459 7.2 Petroleum 550 4.4 103 0.2 Total 12,543 100.0 47,924 100 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05. Notes: Totals may not equal sum of components due to independent rounding.

313

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Jersey Nuclear Profile 2010 New Jersey profile Jersey Nuclear Profile 2010 New Jersey profile New Jersey total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,108 22.3 32,771 49.9 Coal 2,036 11.1 6,418 9.8 Hydro and Pumped Storage 404 2.2 -176 -0.3 Natural Gas 10,244 55.6 24,902 37.9 Other 1 56 0.3 682 1.0 Other Renewable1 226 1.2 850 1.3 Petroleum 1,351 7.3 235 0.4 Total 18,424 100.0 65,682 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

314

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Maryland Nuclear Profile 2010 Maryland profile Maryland Nuclear Profile 2010 Maryland profile Maryland total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (Percent) Nuclear 1,705 13.6 13,994 32.1 Coal 4,886 39.0 23,668 54.3 Hydro and Pumped Storage 590 4.7 1,667 3.8 Natural Gas 2,041 16.3 2,897 6.6 Other 1 152 1.2 485 1.1 Other Renewable1 209 1.7 574 1.3 Petroleum 2,933 23.4 322 0.7 Total 12,516 100.0 43,607 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

315

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Nuclear Profile 2010 Alabama profile Alabama Nuclear Profile 2010 Alabama profile Alabama total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 5,043 15.6 37,941 24.9 Coal 11,441 35.3 63,050 41.4 Hydro and Pumped Storage 3,272 10.1 8,704 5.7 Natural Gas 11,936 36.8 39,235 25.8 Other1 100 0.3 643 0.4 Other Renewable1 583 1.8 2,377 1.6 Petroleum 43 0.1 200 0.1 Total 32,417 100.0 152,151 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

316

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Missouri Nuclear Profile 2010 Missouri profile Missouri Nuclear Profile 2010 Missouri profile Missouri total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,190 5.5 8,996 9.7 Coal 12,070 55.5 75,047 81.3 Hydro and Pumped Storage 1,221 5.6 2,427 2.6 Natural Gas 5,579 25.7 4,690 5.1 Other 1 - - 39 * Other Renewable1 466 2.1 988 1.1 Petroleum 1,212 5.6 126 0.1 Total 21,739 100.0 92,313 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05.

317

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

California Nuclear Profile 2010 California profile California Nuclear Profile 2010 California profile California total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,390 6.5 32,201 15.8 Coal 374 0.6 2,100 1.0 Hydro and Pumped Storage 13,954 20.7 33,260 16.3 Natural Gas 41,370 61.4 107,522 52.7 Other 1 220 0.3 2,534 1.2 Other Renewable1 6,319 9.4 25,450 12.5 Petroleum 701 1.0 1,059 0.5 Total 63,328 100.0 204,126 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

318

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Maryland Nuclear Profile 2010 Maryland profile Maryland Nuclear Profile 2010 Maryland profile Maryland total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (Percent) Nuclear 1,705 13.6 13,994 32.1 Coal 4,886 39.0 23,668 54.3 Hydro and Pumped Storage 590 4.7 1,667 3.8 Natural Gas 2,041 16.3 2,897 6.6 Other 1 152 1.2 485 1.1 Other Renewable1 209 1.7 574 1.3 Petroleum 2,933 23.4 322 0.7 Total 12,516 100.0 43,607 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

319

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Connecticut Nuclear Profile 2010 Connecticut profile Connecticut Nuclear Profile 2010 Connecticut profile Connecticut total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 2,103 25.4 16,750 50.2 Coal 564 6.8 2,604 7.8 Hydro and Pumped Storage 151 1.8 400 1.2 Natural Gas 2,292 27.7 11,716 35.1 Other 1 27 0.3 730 2.2 Other Renewable1 159 1.9 740 2.2 Petroleum 2,989 36.1 409 1.2 Total 8,284 100.0 33,350 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

320

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

York Nuclear Profile 2010 New York profile York Nuclear Profile 2010 New York profile New York total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 5,271 13.4 41,870 30.6 Coal 2,781 7.1 13,583 9.9 Hydro and Pumped Storage 5,714 14.5 24,942 18.2 Natural Gas 17,407 44.2 48,916 35.7 Other 1 45 0.1 832 0.6 Other Renewable1 1,719 4.4 4,815 3.5 Petroleum 6,421 16.3 2,005 1.5 Total 39,357 100.0 136,962 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

Note: This page contains sample records for the topic "virtual temperature profiles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Nebraska Nuclear Profile 2010 Nebraska profile Nebraska Nuclear Profile 2010 Nebraska profile Nebraska total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,245 15.8 11,054 30.2 Coal 3,932 50.0 23,368 63.8 Hydro and Pumped Storage 278 3.5 1,314 3.6 Natural Gas 1,864 23.5 375 1.0 Other Renewable1 165 2.1 493 1.3 Petroleum 387 4.9 31 0.1 Total 7,857 100.0 36,630 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. Notes: Totals may not equal sum of components due to independent rounding.

322

Pressure &Pressure & TemperatureTemperature  

E-Print Network (OSTI)

to measure atmospheric pressure, and thermometer toprobe to measure atmospheric pressure, and thermometer toprobe to measure atmospheric pressure, and thermometer toprobe to measure atmospheric pressure, and thermometer to measure air temperature.measure air temperature.measure air temperature.measure air temperature

California at Santa Cruz, University of

323

Controlled entanglement routing between two virtual pathways  

E-Print Network (OSTI)

We demonstrate controlled entanglement routing between bunching and antibunching path-entangled two-photon states in an unbalanced Mach-Zehnder interferometer (UMZI), in which the routing process is controlled by the relative phase difference in the UMZI. Regarding bunching and antibunching path-entangled two-photon states as two virtual ports, we can consider the UMZI as a controlled entanglement router, which bases on the coherent manipulation of entanglement. Half of the entanglement within the input two-photon state is coherently routed between the two virtual ports, while the other is lost due to the time distinguishability introduced by the UMZI. Pure bunching or antibunching path entangled two-photon states are obtained based on this controlled entanglement router. The results show that we can employ the UMZI as general entanglement router for practical quantum information application.

Qiang Zhou; Shuai Dong; Wei Zhang; Lixing You; Yuhao He; Weijun Zhang; Yidong Huang; Jiangde Peng

2014-07-16T23:59:59.000Z

324

Exploiting Virtualization and Cloud Computing in ATLAS  

E-Print Network (OSTI)

The ATLAS Computing Model was designed around the concept of grid computing; since the start of data-taking, this model has proven very successful in the federated operation of more than one hundred Worldwide LHC Computing Grid (WLCG) sites for offline data distribution, storage, processing and analysis. However, new paradigms in computing, namely virtualization and cloud computing, present improved strategies for managing and provisioning IT resources that could allow ATLAS to more flexibly adapt and scale its storage and processing workloads on varied underlying resources. In particular, ATLAS is developing a "grid-of-clouds" infrastructure in order to utilize WLCG sites that make resources available via a cloud API. This work will present the current status of the Virtualization and Cloud Computing R&D project in ATLAS Distributed Computing. First, strategies for deploying PanDA queues on cloud sites will be discussed, including the introduction of a "cloud factory" for managing cloud VM instances. Nex...

Barreiro Megino, FH; The ATLAS collaboration; De, K; Gable, I; Hendrix, V; Panitkin, S; Paterson, M; De Silva, A; van der Ster, D; Taylor, R; Vitillo, RA; Walker, R

2012-01-01T23:59:59.000Z

325

Detecting insider activity using enhanced directory virtualization.  

SciTech Connect

Insider threats often target authentication and access control systems, which are frequently based on directory services. Detecting these threats is challenging, because malicious users with the technical ability to modify these structures often have sufficient knowledge and expertise to conceal unauthorized activity. The use of directory virtualization to monitor various systems across an enterprise can be a valuable tool for detecting insider activity. The addition of a policy engine to directory virtualization services enhances monitoring capabilities by allowing greater flexibility in analyzing changes for malicious intent. The resulting architecture is a system-based approach, where the relationships and dependencies between data sources and directory services are used to detect an insider threat, rather than simply relying on point solutions. This paper presents such an architecture in detail, including a description of implementation results.

Shin, Dongwan (New Mexico Tech, Socorro, NM); Claycomb, William R.

2010-07-01T23:59:59.000Z

326

3D Spectroscopy and the Virtual Observatory  

E-Print Network (OSTI)

Integral field, or 3D, spectroscopy is the technique of obtaining spectral information over a two-dimensional, hopefully contiguous, field of view. While there is some form of astronomical 3D spectroscopy at all wavelengths, there has been a rapid increase in interest in optical and near-infrared 3D spectroscopy. This has resulted in the deployment of a large variety of integral-field spectrographs on most of the large optical/infrared telescopes. The amount of IFU data available in observatory archives is large and growing rapidly. The complications of treating IFU data as both imaging and spectroscopy make it a special challenge for the virtual observatory. This article describes the various techniques of optical and near-infrared spectroscopy and some of the general needs and issues related to the handling of 3D data by the virtual observatory.

Bryan W. Miller

2007-08-15T23:59:59.000Z

327

Wire Scanner Beam Profile Measurements: LANSCE Facility Beam Development  

SciTech Connect

The Los Alamos Neutron Science Center (LANSCE) is replacing Wire Scanner (WS) beam profile measurement systems. Three beam development tests have taken place to test the new wire scanners under beam conditions. These beam development tests have integrated the WS actuator, cable plant, electronics processors and associated software and have used H{sup -} beams of different beam energy and current conditions. In addition, the WS measurement-system beam tests verified actuator control systems for minimum profile bin repeatability and speed, checked for actuator backlash and positional stability, tested the replacement of simple broadband potentiometers with narrow band resolvers, and tested resolver use with National Instruments Compact Reconfigurable Input and Output (cRIO) Virtual Instrumentation. These beam tests also have verified how trans-impedance amplifiers react with various types of beam line background noise and how noise currents were not generated. This paper will describe these beam development tests and show some resulting data.

Gilpatrick, John D. [Los Alamos National Laboratory; Batygin, Yuri K. [Los Alamos National Laboratory; Gonzales, Fermin [Los Alamos National Laboratory; Gruchalla, Michael E. [Los Alamos National Laboratory; Kutac, Vincent G. [Los Alamos National Laboratory; Martinez, Derwin [Los Alamos National Laboratory; Sedillo, James Daniel [Los Alamos National Laboratory; Pillai, Chandra [Los Alamos National Laboratory; Rodriguez Esparza, Sergio [Los Alamos National Laboratory; Smith, Brian G. [Los Alamos National Laboratory

2012-05-15T23:59:59.000Z

328

Virtual Hydropower Prospector | Open Energy Information  

Open Energy Info (EERE)

Virtual Hydropower Prospector Virtual Hydropower Prospector Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Virtual Hydropower Prospector Agency/Company /Organization: Idaho National Laboratory Sector: Energy Topics: Resource assessment Resource Type: Software/modeling tools User Interface: Website Website: hydropower.inl.gov/prospector/index.shtml Country: United States Cost: Free Northern America Coordinates: 37.09024°, -95.712891° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.09024,"lon":-95.712891,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

329

Virtual and super - virtual refraction method: Application to synthetic data and 2012 of Karangsambung survey data  

SciTech Connect

Seismic refraction survey is one of geophysical method useful for imaging earth interior, definitely for imaging near surface. One of the common problems in seismic refraction survey is weak amplitude due to attenuations at far offset. This phenomenon will make it difficult to pick first refraction arrival, hence make it challenging to produce the near surface image. Seismic interferometry is a new technique to manipulate seismic trace for obtaining Green's function from a pair of receiver. One of its uses is for improving first refraction arrival quality at far offset. This research shows that we could estimate physical properties such as seismic velocity and thickness from virtual refraction processing. Also, virtual refraction could enhance the far offset signal amplitude since there is stacking procedure involved in it. Our results show super - virtual refraction processing produces seismic image which has higher signal-to-noise ratio than its raw seismic image. In the end, the numbers of reliable first arrival picks are also increased.

Nugraha, Andri Dian [Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Bandung, 40132 (Indonesia)] [Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Bandung, 40132 (Indonesia); Adisatrio, Philipus Ronnie [Geophysical Engineering Department, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jl. Ganesha No. 10 Bandung, 40132 (Indonesia)] [Geophysical Engineering Department, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jl. Ganesha No. 10 Bandung, 40132 (Indonesia)

2013-09-09T23:59:59.000Z

330

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Tennessee Electricity Profile 2010 Tennessee full report Tennessee Electricity Profile 2010 Tennessee full report Table 1. 2010 Summary Statistics (Tennessee) Item Value U.S. Rank NERC Region(s) RFC/SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 21,417 19 Electric Utilities 20,968 11 Independent Power Producers & Combined Heat and Power 450 49 Net Generation (megawatthours) 82,348,625 19 Electric Utilities 79,816,049 15 Independent Power Producers & Combined Heat and Power 2,532,576 45 Emissions (thousand metric tons) Sulfur Dioxide 138 13 Nitrogen Oxide 33 31 Carbon Dioxide 48,196 18 Sulfur Dioxide (lbs/MWh) 3.7 14 Nitrogen Oxide (lbs/MWh) 0.9 40 Carbon Dioxide (lbs/MWh) 1,290 26 Total Retail Sales (megawatthours) 103,521,537 13 Full Service Provider Sales (megawatthours) 103,521,537 10

331

Performance profiles style sheet  

Gasoline and Diesel Fuel Update (EIA)

06) 06) Distribution Category UC-950 Performance Profiles of Major Energy Producers 2006 December 2007 Energy Information Administration Office of Energy Markets and End Use U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Contacts Performance Profiles of Major Energy Producers 2006 is prepared by the Energy Information Administration, Office of Energy Markets and End Use, Energy Markets and Contingency Information Division, Financial

332

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Tennessee Electricity Profile 2010 Tennessee full report Tennessee Electricity Profile 2010 Tennessee full report Table 1. 2010 Summary Statistics (Tennessee) Item Value U.S. Rank NERC Region(s) RFC/SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 21,417 19 Electric Utilities 20,968 11 Independent Power Producers & Combined Heat and Power 450 49 Net Generation (megawatthours) 82,348,625 19 Electric Utilities 79,816,049 15 Independent Power Producers & Combined Heat and Power 2,532,576 45 Emissions (thousand metric tons) Sulfur Dioxide 138 13 Nitrogen Oxide 33 31 Carbon Dioxide 48,196 18 Sulfur Dioxide (lbs/MWh) 3.7 14 Nitrogen Oxide (lbs/MWh) 0.9 40 Carbon Dioxide (lbs/MWh) 1,290 26 Total Retail Sales (megawatthours) 103,521,537 13 Full Service Provider Sales (megawatthours) 103,521,537 10

333

Chemical profiles of switchgrass  

NLE Websites -- All DOE Office Websites (Extended Search)

profiles profiles of switchgrass Zhoujian Hu a,b , Robert Sykes a,c , Mark F. Davis a,c , E. Charles Brummer a,d , Arthur J. Ragauskas a,b,e, * a BioEnergy Science Center, USA b School of Chemistry and Biochemistry, Institute of Paper Science and Technology, Georgia Institute of Technology, Atlanta, GA 30332, USA c National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80401, USA d Institute for Plant Breeding, Genetics, and Genomics, Department of Crop and Soil Sciences, University of Georgia, Athens, GA 30602, USA e Forest Products and Chemical Engineering Department, Chemical and Biological Engineering, Chalmers University of Technology, SE-412 96 Göteborg, Sweden a r t i c l e i n f o Article history: Received 15 April 2009 Received in revised form 10 December 2009 Accepted 10 December 2009 Available online 13 January 2010 Keywords: Switchgrass Morphological components Chemical

334

T-678: Red Hat Enterprise Virtualization Hypervisor VLAN Packet Processing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8: Red Hat Enterprise Virtualization Hypervisor VLAN Packet 8: Red Hat Enterprise Virtualization Hypervisor VLAN Packet Processing Flaw Lets Remote Users Deny Service T-678: Red Hat Enterprise Virtualization Hypervisor VLAN Packet Processing Flaw Lets Remote Users Deny Service July 28, 2011 - 3:47pm Addthis PROBLEM: A vulnerability was reported in Red Hat Enterprise Virtualization Hypervisor. A remote user can cause denial of service conditions. PLATFORM: Red Hat Enterprise Virtualization-hypervisor package. ABSTRACT: Red Hat Enterprise Virtualization Hypervisor VLAN Packet Processing Flaw Lets Remote Users Deny Service. reference LINKS: RHSA-2011:1090-1 SecurityTracker Alert ID: 1025853 CVE-2011-1576 RHBA-2011:1068-1,Hypervisor is based on KVM - Bug Fix Advisory IMPACT ASSESSMENT: Medium Discussion: A flaw was found that allowed napi_reuse_skb() to be called on VLAN

335

Best Practices for Engaging Virtual Training | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Best Practices for Engaging Virtual Training Best Practices for Engaging Virtual Training Course Title: CCBP-Best Practices for Engaging Virtual Training Date: Online course Time: At your discretion Registration link: Best Practices for Engaging Virtual Training / http://www.trainingindustry.com/webinars/best-practices-for-engaging-virtual-training.aspx Course type: Recorded Webinar Course Location: N/A Course Description: Ensuring that virtual training is engaging and grabs the attention of the audience is crucial to the success of the program. Join us for this TrainingIndustry.com webinar, presented on the Adobe Connect platform, to hear Jacqueline Beck, a Master Trainer for Adobe, share her expertise and tips on best practices for engaging learners in the

336

christy-99.PDF  

NLE Websites -- All DOE Office Websites (Extended Search)

profilers (RWP) outfitted with radio acoustic sounding systems (RASS), which return vertical profiles of virtual temperature. These instruments transmit an acoustic signal...

337

ARM - Evaluation Product - Broadband Heating Rate Profile Project (BBHRP)  

NLE Websites -- All DOE Office Websites (Extended Search)

ProductsBroadband Heating Rate Profile Project ProductsBroadband Heating Rate Profile Project (BBHRP) Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : Broadband Heating Rate Profile Project (BBHRP) 2000.03.01 - 2006.02.28 Site(s) SGP General Description The objective of the ARM Broadband Heating Rate Profile (BBHRP) Project is to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Required inputs to BBHRP include surface albedo and profiles of atmospheric state (temperature, humidity), gas concentrations, aerosol properties, and cloud properties. In the past year, the Radiatively Important Parameters Best Estimate (RIPBE) VAP was developed to combine all of the input properties

338

Project Profile: Advanced High Temperature Trough Collector Developmen...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

collector was selected for the Andasol 1 and 2 plants in Spain, the Kuraymat plant in Egypt, and early Solar Millennium commercial projects in the United States. The NTPro design...

339

Project Profile: High-Temperature Falling-Particle Receiver ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

to the particles. This graphic illustrates a large cylinder-shaped unit with tanks and tubes inside that towers over smaller building and electrical lines nearby. The...

340

COSMIC GPS Radio Occultation Temperature Profiles in Clouds  

Science Journals Connector (OSTI)

Thermodynamic states in clouds are closely related to physical processes such as phase changes of water and longwave and shortwave radiation. Global Positioning System (GPS) radio occultation (RO) data are not affected by clouds and have high ...

L. Lin; X. Zou; R. Anthes; Y-H. Kuo

2010-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "virtual temperature profiles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Project Profile: High-Temperature Thermochemical Storage with...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TCES Design and assemble a sub-scale (5-10 kWt) prototype particle receiver in NREL's solar furnace and update TCES subsystem model to show pathway to 75+% exergetic efficiency...

342

Virtual Power Plant Simulation and Control Scheme Design.  

E-Print Network (OSTI)

?? Virtual Power Plant (VPP) is a concept that aggregate Distributed Energy Resources (DER) together, aims to overcome the capacity limits of single DER and… (more)

Chen, Zhenwei

2012-01-01T23:59:59.000Z

343

Virtual building environments (VBE) - Applying information modeling tobuildings  

E-Print Network (OSTI)

and valuation of Virtual Building Modeling (VBM). CIFE SEEDinformation models Building information modeling (BIM), usedto promote building information modeling as the way to

Bazjanac, Vladimir

2004-01-01T23:59:59.000Z

344

I/O Performance of Virtualized Cloud Environments  

E-Print Network (OSTI)

Technologies in High Performance Computing. In 2nd IEEEon UnConventional high performance computing workshop plususing virtual high-performance computing: a case study using

Ghoshal, Devarshi

2013-01-01T23:59:59.000Z

345

Virtual Aluminum Castings An Industrial Application of Integrated...  

NLE Websites -- All DOE Office Websites (Extended Search)

Virtual Aluminum Castings An Industrial Application of Integrated Computational Materials Engineering Home Author: J. Allison, M. Li, C. Wolverton, X. Su Year: 2006 Abstract: The...

346

Proposed Virtual Center for Excellence for Metal Hydride Development...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Virtual Center for Excellence for Metal Hydride Development Presentation from the Hydrogen Storage Pre-Solicitation Meeting held June 19, 2003 in Washington, DC....

347

Virtual Center of Excellence for Hydrogen Storage - Chemical...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Engineering and Environmental Laboratory Virtual Center of Excellence for Hydrogen Storage - Chemical Hydrides Pre-Solicitation Presentation James Lake, PhD Associate Laboratory...

348

Virtual Worlds: A Performative Perspective on Globally Distributed, Immersive Work  

E-Print Network (OSTI)

Virtual worlds are immersive, simulated, persistent, and dynamic environments that include rich graphical three dimensional spaces, high fidelity audio, motion, viewpoint, and interactivity. Initially dismissed as environments ...

Schultze, Ulrike

349

Perception-Action Loop in the Experience of Virtual Environments  

E-Print Network (OSTI)

the screen, the (white) teapot moves to the right at highclosest object, the (white) teapot is farthest one, and thecylinder, cone, box and teapot) hidden behind virtual walls,

Kim, Seung Wook

2009-01-01T23:59:59.000Z

350

Virtual Oxygen Sensor for Innovative NOx and PM Emission Control...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2009 - Poster Session August 3 rd , Hyatt Regency Dearborn Hotel Virtual Oxygen Sensor Innovative NOx and PM Emission Control Technologies J. Seebode, E. Stlting,...

351

A Stochastic Reactor Based Virtual Engine Model Employing Detailed...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

A Stochastic Reactor Based Virtual Engine Model Employing Detailed Chemistry for Kinetic Studies of In-Cylinder Combustion and Exhaust Aftertreatment A Stochastic Reactor Based...

352

NOTES ON NEUTRON DEPTH PROFILING  

E-Print Network (OSTI)

NOTES ON NEUTRON DEPTH PROFILING by J.K. Shultis Department of Mechanical and Nuclear Engineering College of Engineering Kansas State University Manhattan, Kansas 66506 Dec. 2003 #12;Notes on Neutron Depth Profiling J. Kenneth Shultis December 2003 1 Introduction The purpose of neutron depth profiling

Shultis, J. Kenneth

353

Implementing virtual reality interfaces for the geosciences  

SciTech Connect

For the past few years, a multidisciplinary team of computer and earth scientists at Lawrence Berkeley National Laboratory has been exploring the use of advanced user interfaces, commonly called {open_quotes}Virtual Reality{close_quotes} (VR), coupled with visualization and scientific computing software. Working closely with industry, these efforts have resulted in an environment in which VR technology is coupled with existing visualization and computational tools. VR technology may be thought of as a user interface. It is useful to think of a spectrum, ranging the gamut from command-line interfaces to completely immersive environments. In the former, one uses the keyboard to enter three or six-dimensional parameters. In the latter, three or six-dimensional information is provided by trackers contained either in hand-held devices or attached to the user in some fashion, e.g. attached to a head-mounted display. Rich, extensible and often complex languages are a vehicle whereby the user controls parameters to manipulate object position and location in a virtual world, but the keyboard is the obstacle in that typing is cumbersome, error-prone and typically slow. In the latter, the user can interact with these parameters by means of motor skills which are highly developed. Two specific geoscience application areas will be highlighted. In the first, we have used VR technology to manipulate three-dimensional input parameters, such as the spatial location of injection or production wells in a reservoir simulator. In the second, we demonstrate how VR technology has been used to manipulate visualization tools, such as a tool for computing streamlines via manipulation of a {open_quotes}rake.{close_quotes} The rake is presented to the user in the form of a {open_quotes}virtual well{close_quotes} icon, and provides parameters used by the streamlines algorithm.

Bethel, W.; Jacobsen, J. [Lawrence Berkeley National Laboratory, CA (United States); Austin, A.; Lederer, M. [BP Exploration, Houston, TX (United States); Little, T. [Landmark Graphics Corp., Houston, TX (United States)

1996-06-01T23:59:59.000Z

354

Temperature Data Evaluation  

SciTech Connect

Groundwater temperature is sensitive to the competing processes of heat flow from below the advective transport of heat by groundwater flow. Because groundwater temperature is sensitive to conductive and advective processes, groundwater temperature may be utilized as a tracer to further constrain the uncertainty of predictions of advective radionuclide transport models constructed for the Nevada Test Site (NTS). Since heat transport, geochemical, and hydrologic models for a given area must all be consistent, uncertainty can be reduced by devaluing the weight of those models that do not match estimated heat flow. The objective of this study was to identify the quantity and quality of available heat flow data at the NTS. One-hundred-forty-five temperature logs from 63 boreholes were examined. Thirteen were found to have temperature profiles suitable for the determination of heat flow values from one or more intervals within the boreholes. If sufficient spatially distributed heat flow values are obtained, a heat transport model coupled to a hydrologic model may be used to reduce the uncertainty of a nonisothermal hydrologic model of the NTS.

Gillespie, David

2003-03-01T23:59:59.000Z

355

Validating agent based models through virtual worlds.  

SciTech Connect

As the US continues its vigilance against distributed, embedded threats, understanding the political and social structure of these groups becomes paramount for predicting and dis- rupting their attacks. Agent-based models (ABMs) serve as a powerful tool to study these groups. While the popularity of social network tools (e.g., Facebook, Twitter) has provided extensive communication data, there is a lack of ne-grained behavioral data with which to inform and validate existing ABMs. Virtual worlds, in particular massively multiplayer online games (MMOG), where large numbers of people interact within a complex environ- ment for long periods of time provide an alternative source of data. These environments provide a rich social environment where players engage in a variety of activities observed between real-world groups: collaborating and/or competing with other groups, conducting battles for scarce resources, and trading in a market economy. Strategies employed by player groups surprisingly re ect those seen in present-day con icts, where players use diplomacy or espionage as their means for accomplishing their goals. In this project, we propose to address the need for ne-grained behavioral data by acquiring and analyzing game data a commercial MMOG, referred to within this report as Game X. The goals of this research were: (1) devising toolsets for analyzing virtual world data to better inform the rules that govern a social ABM and (2) exploring how virtual worlds could serve as a source of data to validate ABMs established for analogous real-world phenomena. During this research, we studied certain patterns of group behavior to compliment social modeling e orts where a signi cant lack of detailed examples of observed phenomena exists. This report outlines our work examining group behaviors that underly what we have termed the Expression-To-Action (E2A) problem: determining the changes in social contact that lead individuals/groups to engage in a particular behavior. Results from our work indicate that virtual worlds have the potential for serving as a proxy in allocating and populating behaviors that would be used within further agent-based modeling studies.

Lakkaraju, Kiran; Whetzel, Jonathan H.; Lee, Jina [Sandia National Laboratories, Livermore, CA] [Sandia National Laboratories, Livermore, CA; Bier, Asmeret Brooke; Cardona-Rivera, Rogelio E. [North Carolina State University, Raleigh, NC] [North Carolina State University, Raleigh, NC; Bernstein, Jeremy Ray Rhythm [Gaikai, Inc., Aliso Viejo, CA] [Gaikai, Inc., Aliso Viejo, CA

2014-01-01T23:59:59.000Z

356

Deeply Virtual Compton Scattering off the neutron  

E-Print Network (OSTI)

The present experiment exploits the interference between the Deeply Virtual Compton Scattering (DVCS) and the Bethe-Heitler processes to extract the imaginary part of DVCS amplitudes on the neutron and on the deuteron from the helicity-dependent D$({\\vec e},e'\\gamma)X$ cross section measured at $Q^2$=1.9 GeV$^2$ and $x_B$=0.36. We extract a linear combination of generalized parton distributions (GPDs) particularly sensitive to $E_q$, the least constrained GPD. A model dependent constraint on the contribution of the up and down quarks to the nucleon spin is deduced.

M. Mazouz; A. Camsonne; C. Muñoz Camacho; for the Jefferson Lab Hall A collaboration

2007-09-04T23:59:59.000Z

357

Electromagnetic wormholes and virtual magnetic monopoles  

E-Print Network (OSTI)

We describe new configurations of electromagnetic (EM) material parameters, the electric permittivity $\\epsilon$ and magnetic permeability $\\mu$, that allow one to construct from metamaterials objects that function as invisible tunnels. These allow EM wave propagation between two points, but the tunnels and the regions they enclose are not detectable to EM observations. Such devices function as wormholes with respect to Maxwell's equations and effectively change the topology of space vis-a-vis EM wave propagation. We suggest several applications, including devices behaving as virtual magnetic monopoles.

Allan Greenleaf; Yaroslav Kurylev; Matti Lassas; Gunther Uhlmann

2007-03-20T23:59:59.000Z

358

Virtual doctor's office telemedicine delivery system  

E-Print Network (OSTI)

Approved a s and nte t by: Charles S. L a Chair of Committee) Hsin-I Wu (Member) Jon F. Hunter (Member) William J. Hy n (Head of Department) December 2002 Major Subject: Biomedical Engineering ABSTRACT Virtual Doctor's Office Telemedicine... the course of my education at Texas AItM University. He has been a source of constant encouragement and guidance during my stay at the university. I would also like to acknowledge the help extended by Dr. don F. Hunter in obtaining the test data...

Sainath, Paavana

2012-06-07T23:59:59.000Z

359

Energy efficient mapping of virtualEnergy efficient mapping of virtual machinesmachines  

E-Print Network (OSTI)

for energy savings in cloud 2 Violaine Villebonnet GreenDays@Lille 28th November 2013 Problematic algorithms that best fit with reality Energy efficient mapping of virtual machines Violaine Villebonnet Green Conditioning Reduce the energy consumption of the whole datacenter Violaine Villebonnet GreenDays@Lille 28th

Lefèvre, Laurent

360

Project Cost Profile Spreadsheet | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project Cost Profile Spreadsheet Project Cost Profile Spreadsheet Project Cost Profile Spreadsheet.xlsx More Documents & Publications Statement of Work (SOW) Template (Combined...

Note: This page contains sample records for the topic "virtual temperature profiles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Texas Crop Profile: Potatoes  

E-Print Network (OSTI)

175 pounds of nitrogen, 80 pounds of phosphorus, and 80 pounds of potassium. Potassium is generally not needed in the High Plains, although many growers apply it. Texas Crop Profile P O T A T O E S E-19 3-00 Prepared by Kent D. Hall, Rodney L. Holloway..., following drag-off or after potato plants have fully emerged. Controls weeds by disrupting growth process during germination. Does not control established weeds. State Contacts Rodney L. Holloway Extension Specialist 2488 TAMU College Station, Texas 77843...

Hall, Kent D.; Holloway, Rodney L.; Smith, Dudley

2000-04-12T23:59:59.000Z

362

Virtual Divestitures, Will They Make A Difference?: Cournot Competition, Options Markets and Efficiency  

E-Print Network (OSTI)

of such a divestiture of Virtual Power Plants (VPPs), andand physical Virtual Power Plants. The second goal (sectionFabra (2004). Virtual Power Plants In this new philosophy of

Willems, Bert

2006-01-01T23:59:59.000Z

363

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Virginia profile Virginia profile Virginia total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 3,501 14.5 26,572 36.4 Coal 5,868 24.3 25,459 34.9 Hydro and Pumped Storage 4,107 17.0 10 * Natural Gas 7,581 31.4 16,999 23.3 Other 1 - - 414 0.6 Other Renewable1 621 2.6 2,220 3.0 Petroleum 2,432 10.1 1,293 1.8 Total 24,109 100.0 72,966 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05.

364

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Wisconsin profile Wisconsin profile Wisconsin total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,584 8.9 13,281 20.7 Coal 8,063 45.2 40,169 62.5 Hydro and Pumped Storage 492 2.8 2,112 3.3 Natural Gas 6,110 34.3 5,497 8.5 Other 1 21 0.1 63 0.1 Other Renewable1 775 4.3 2,474 3.8 Petroleum 790 4.4 718 1.1 Total 17,836 100.0 64,314 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. Notes: Totals may not equal sum of components due to independent rounding.

365

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Texas profile Texas profile Texas total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,966 4.6 41,335 10.0 Coal 22,335 20.6 150,173 36.5 Hydro and Pumped Storage 689 0.6 1,262 0.3 Natural Gas 69,291 64.0 186,882 45.4 Other 1 477 0.4 3,630 0.9 Other Renewable1 10,295 9.5 27,705 6.7 Petroleum 204 0.2 708 0.2 Total 108,258 100.0 411,695 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. Notes: Totals may not equal sum of components due to independent rounding.

366

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Vermont profile Vermont profile Vermont total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 620 55.0 4,782 72.2 Hydro and Pumped Storage 324 28.7 1,347 20.3 Natural Gas - - 4 0.1 Other Renewable1 84 7.5 482 7.3 Petroleum 100 8.9 5 0.1 Total 1,128 100.0 6,620 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. - = No data reported. Notes: Totals may not equal sum of components due to independent rounding. Other Renewable: Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind.

367

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Vermont profile Vermont profile Vermont total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 620 55.0 4,782 72.2 Hydro and Pumped Storage 324 28.7 1,347 20.3 Natural Gas - - 4 0.1 Other Renewable1 84 7.5 482 7.3 Petroleum 100 8.9 5 0.1 Total 1,128 100.0 6,620 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. - = No data reported. Notes: Totals may not equal sum of components due to independent rounding. Other Renewable: Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind.

368

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Tennessee profile Tennessee profile Tennessee total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 3,401 15.9 27,739 33.7 Coal 8,805 41.1 43,670 53.0 Hydro and Pumped Storage 4,277 20.0 7,416 9.0 Natural Gas 4,655 21.7 2,302 2.8 Other 1 - - 16 * Other Renewable1 222 1.0 988 1.2 Petroleum 58 0.3 217 0.3 Total 21,417 100.0 82,349 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05.

369

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Virginia profile Virginia profile Virginia total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 3,501 14.5 26,572 36.4 Coal 5,868 24.3 25,459 34.9 Hydro and Pumped Storage 4,107 17.0 10 * Natural Gas 7,581 31.4 16,999 23.3 Other 1 - - 414 0.6 Other Renewable1 621 2.6 2,220 3.0 Petroleum 2,432 10.1 1,293 1.8 Total 24,109 100.0 72,966 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05.

370

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

South Carolina profile South Carolina profile South Carolina total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 6,486 27.0 51,988 49.9 Coal 7,230 30.1 37,671 36.2 Hydro and Pumped Storage 4,006 16.7 1,442 1.4 Natural Gas 5,308 22.1 10,927 10.5 Other 1 - - 61 0.1 Other Renewable1 284 1.2 1,873 1.8 Petroleum 670 2.8 191 0.2 Total 23,982 100.0 104,153 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. - = No data reported.

371

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Washington profile Washington profile Washington total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,097 3.6 9,241 8.9 Coal 1,340 4.4 8,527 8.2 Hydro and Pumped Storage 21,495 70.5 68,342 66.0 Natural Gas 3,828 12.6 10,359 10.0 Other 1 - - 354 0.3 Other Renewable1 2,703 8.9 6,617 6.4 Petroleum 15 * 32 * Total 30,478 100.0 103,473 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05.

372

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Washington profile Washington profile Washington total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,097 3.6 9,241 8.9 Coal 1,340 4.4 8,527 8.2 Hydro and Pumped Storage 21,495 70.5 68,342 66.0 Natural Gas 3,828 12.6 10,359 10.0 Other 1 - - 354 0.3 Other Renewable1 2,703 8.9 6,617 6.4 Petroleum 15 * 32 * Total 30,478 100.0 103,473 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05.

373

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

South Carolina profile South Carolina profile South Carolina total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 6,486 27.0 51,988 49.9 Coal 7,230 30.1 37,671 36.2 Hydro and Pumped Storage 4,006 16.7 1,442 1.4 Natural Gas 5,308 22.1 10,927 10.5 Other 1 - - 61 0.1 Other Renewable1 284 1.2 1,873 1.8 Petroleum 670 2.8 191 0.2 Total 23,982 100.0 104,153 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. - = No data reported.

374

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Wisconsin profile Wisconsin profile Wisconsin total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,584 8.9 13,281 20.7 Coal 8,063 45.2 40,169 62.5 Hydro and Pumped Storage 492 2.8 2,112 3.3 Natural Gas 6,110 34.3 5,497 8.5 Other 1 21 0.1 63 0.1 Other Renewable1 775 4.3 2,474 3.8 Petroleum 790 4.4 718 1.1 Total 17,836 100.0 64,314 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. Notes: Totals may not equal sum of components due to independent rounding.

375

Soil Water and Temperature System (SWATS) Handbook  

SciTech Connect

The soil water and temperature system (SWATS) provides vertical profiles of soil temperature, soil-water potential, and soil moisture as a function of depth below the ground surface at hourly intervals. The temperature profiles are measured directly by in situ sensors at the Central Facility and many of the extended facilities of the SGP climate research site. The soil-water potential and soil moisture profiles are derived from measurements of soil temperature rise in response to small inputs of heat. Atmospheric scientists use the data in climate models to determine boundary conditions and to estimate the surface energy flux. The data are also useful to hydrologists, soil scientists, and agricultural scientists for determining the state of the soil.

Bond, D

2005-01-01T23:59:59.000Z

376

Virtual Reviewers for Collaborative Exploration of Movie Reviews  

E-Print Network (OSTI)

items well. Collaborative information exploration virtualizes this process by using rating data. We haveVirtual Reviewers for Collaborative Exploration of Movie Reviews Junichi Tatemura Institute tatemura@iis.u-tokyo.ac.jp ABSTRACT We propose a collaborative exploration system that helps users

377

Exploring Humanoid Robots Locomotion Capabilities in Virtual Disaster Response Scenarios  

E-Print Network (OSTI)

since the Fukushima Daiichi nuclear power plant accident that followed the 2011 Great East JapanExploring Humanoid Robots Locomotion Capabilities in Virtual Disaster Response Scenarios Karim-like motor skills to be achieved. We use virtual scenes under the fully- 3D-modeled-environment assumption

Paris-Sud XI, Université de

378

The role of socialization in Knowledge management in virtual teams  

Science Journals Connector (OSTI)

The literature shows that new Knowledge creation methods underline the importance of team networks as a pillar of Knowledge creation in modern Organizations. Sharing tacit Knowledge is one of the difficulties of virtual teams (VTs). This is due to knowledge ... Keywords: cultural facilitator factors, knowledge management, learning socialization content, socialization tactics, virtual teams

Artemis Akhgar; Aryan Gholipour

2011-07-01T23:59:59.000Z

379

Collaborative learning in multi-user virtual environments  

Science Journals Connector (OSTI)

Multi-user virtual environments (MUVEs) have captured the attention and interest of educators as remote collaborative learning environments due to their immersion, interaction and communication capabilities. However, productive learning interactions ... Keywords: 3D virtual worlds, Collaborative learning techniques and platforms, Collaborative workflows and applications, Collaborative workspaces and applications

María Blanca Ibáñez; José J. García Rueda; David Maroto; Carlos Delgado Kloos

2013-11-01T23:59:59.000Z

380

SMART CAMERA NETWORKS IN VIRTUAL REALITY Faisal Qureshi  

E-Print Network (OSTI)

(right). (The yel- low rectangles indicate pedestrian portals.) An example camera net- work-animating virtual pedestrians (Fig. 1). Figure 1: Plan view of the (roofless) virtual Penn Station envi- ronment simulated video surveillance cameras 1, 7, and 8 (from [1]). Once a pedestrian of interest is selected

Qureshi, Faisal Z.

Note: This page contains sample records for the topic "virtual temperature profiles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Virtual Vision and Smart Camera Networks Faisal Qureshi  

E-Print Network (OSTI)

shopping arcade (right). (The yellow rectangles indicate station pedestrian portals.) An example camera-animating virtual pedestrians. The readily re- configurable virtual cameras generate synthetic video feeds to collaborate in performing various visual surveillance tasks, such as closely monitoring a pedestrian as (s

Toronto, University of

382

Towards an Algebraic Speci cation of the Java Virtual Machine  

E-Print Network (OSTI)

Towards an Algebraic Speci cation of the Java Virtual Machine K Stephenson Department of Computer of the architecture of an abstract and simpli ed version of the Java Virtual Machine JVM. This concentration on the implementation-independent features of the machine allows us to build a clean and easily comprehensible model

Grant, P. W.

383

this version: May 13, 2011 A semantic virtual machine  

E-Print Network (OSTI)

this version: May 13, 2011 A semantic virtual machine Arnold Neumaier Peter Schodl Fakult¨at f://www.mat.univie.ac.at/neum/FMathL Abstract A semantic virtual machine (SVM) is a variant of a programable register machine that combines the transparency and simplicity of the action of a Turing machine with a clearly arranged assembler

Neumaier, Arnold

384

Towards an Algebraic Specification of the Java Virtual Machine  

E-Print Network (OSTI)

Towards an Algebraic Specification of the Java Virtual Machine K Stephenson Department of Computer of the architecture of an abstract and simplified version of the Java Virtual Machine (JVM). This concentration on the implementation­independent features of the machine allows us to build a clean and easily comprehensible model

Grant, P. W.

385

Supporting Decentralized, Security focused Dynamic Virtual Organizations across the Grid  

E-Print Network (OSTI)

Supporting Decentralized, Security focused Dynamic Virtual Organizations across the Grid R and subsequently manage secure virtual organisations (VO) is one of the key challenges facing the Grid community in the education domain. We believe that this federated VO security model for fine grained access to Grid services

Kent, University of

386

A modeling framework for agile and interoperable virtual enterprises  

Science Journals Connector (OSTI)

The virtual enterprise (VE), in general collaborations among business partners in value chains, has become a prime candidate model for competitiveness under the increasingly turbulent business environment. In order to quickly respond to the rapidly changing ... Keywords: Enterprise architecture, Enterprise engineering, Meta-modeling, Modeling framework, Virtual enterprise

Tae-Young Kim; Sunjae Lee; Kwangsoo Kim; Cheol-Han Kim

2006-04-01T23:59:59.000Z

387

Virtual Engineering in Industry www.iit.tu-Berlin.de  

E-Print Network (OSTI)

Virtual Engineering in Industry E-Bike www.iit.tu-Berlin.de in coorporation with Audi E-Bike Please.: +49 (0) 30 / 3 90 06-111 Realistic product development The lecture course Virtual Engineering high motivation, creativity, ability to work in a team working in small groups with different roles

Berlin,Technische Universität

388

LEGITIMATE BY DESIGN: TOWARDS TRUSTED VIRTUAL COMMUNITY ENVIRONMENTS  

E-Print Network (OSTI)

over the next decade. Virtual community. A virtual community (VC) is a self-sustaining group, with persisting social practices, acting in a common computer-mediated space. Groups are self-sustaining when and go. A community is also a form of self-sustaining group interaction that endures. The formation

Whitworth, Brian

389

Surface Light Field Rendering for Virtual Product Design  

E-Print Network (OSTI)

of existing or virtual objects left: photograph, right: SLF Wood et al. 2000 real and virtual objects Chen et ­ Fixed geometry ( ) ( ) ( ) ( )( ) i iSLF x,v x,l,v L x,l n x l dl = material incoming light orientation #12;Test Setup Leather BTF yellowish area light source mirror car seat #12;SLF Computation · About

Behnke, Sven

390

P2P grid technology for virtual classrooms and laboratories  

Science Journals Connector (OSTI)

Computing technologies can play important role in Virtual Classrooms and Laboratories (VCL) and e-learning settings. In these systems, the underlying computing platforms enable large number of students across the globe to collaborate and interact with ... Keywords: P2P grid, cloud computing, distributed network computing, grid computing, virtual classrooms

Hassan Rajaei; Nada Hakami

2013-04-01T23:59:59.000Z

391

Small Group Collaboration and Presence in a Virtual Environment  

E-Print Network (OSTI)

Small Group Collaboration and Presence in a Virtual Environment J Casanueva E Blake Collaborative, South Africa. jcasanue,edwin @cs.uct.ac.za Abstract Presence in Collaborative Virtual Environments (CVEs as the other participants, and that one is collaborating with real people. In this paper we describe

Blake, Edwin

392

Approximate Stokes Drift Profiles in Deep Water  

Science Journals Connector (OSTI)

A deep-water approximation of the Stokes drift velocity profile is explored as an alternative to the monochromatic profile. The alternative profile investigated relies on the same two quantities required for the monochromatic profile, namely, the ...

Øyvind Breivik; Peter A. E. M. Janssen; Jean-Raymond Bidlot

2014-09-01T23:59:59.000Z

393

5 Year Financial Profile -Charts 5 Year Financial Profile Charts  

E-Print Network (OSTI)

. Income Expenditure Assets Liabilities http://www.fin.mmu.ac.uk/f18_001b.htm06/07/2004 13:02:41 #12;5 Year Financial Profile - Charts - Income 5 Year Financial Profile Charts Income Back http://www.fin.mmu.ac.uk/f18 Profile Charts Expenditure Back http://www.fin.mmu.ac.uk/f18_001d.htm06/07/2004 13:02:52 #12;5 Year

394

5 Year Financial Profile -Charts 5 Year Financial Profile Charts  

E-Print Network (OSTI)

. Income Expenditure Assets Liabilities http://www.fin.mmu.ac.uk/f18_0029.htm06/07/2004 13:01:23 #12;5 Year Financial Profile - Charts - Income 5 Year Financial Profile Charts Income Back http://www.fin.mmu.ac.uk/f18 Profile Charts Expenditure Back http://www.fin.mmu.ac.uk/f18_002d.htm06/07/2004 13:01:34 #12;5 Year

395

5 Year Financial Profile -Charts 5 Year Financial Profile Charts  

E-Print Network (OSTI)

. Income Expenditure Assets Liabilities & Reserves http://www.fin.mmu.ac.uk/f18_0067.htm06/07/2004 13 Profile Charts Expenditure Back http://www.fin.mmu.ac.uk/f18_006b.htm06/07/2004 13:04:46 #12;5 Year Financial Profile - Charts - Assets 5 Year Financial Profile Charts Assets Back http://www.fin.mmu.ac.uk/f18

396

5 Year Financial Profile -Charts 5 Year Financial Profile Charts  

E-Print Network (OSTI)

. Income Expenditure Assets Liabilities & Reserves http://www.fin.mmu.ac.uk/f18_0079.htm06/07/2004 13 Profile Charts Expenditure Back http://www.fin.mmu.ac.uk/f18_007b.htm06/07/2004 13:05:59 #12;5 Year Financial Profile - Charts - Assets 5 Year Financial Profile Charts Assets Back http://www.fin.mmu.ac.uk/f18

397

Methods and systems relating to an augmented virtuality environment  

DOE Patents (OSTI)

Systems and methods relating to an augmented virtuality system are disclosed. A method of operating an augmented virtuality system may comprise displaying imagery of a real-world environment in an operating picture. The method may further include displaying a plurality of virtual icons in the operating picture representing at least some assets of a plurality of assets positioned in the real-world environment. Additionally, the method may include displaying at least one virtual item in the operating picture representing data sensed by one or more of the assets of the plurality of assets and remotely controlling at least one asset of the plurality of assets by interacting with a virtual icon associated with the at least one asset.

Nielsen, Curtis W; Anderson, Matthew O; McKay, Mark D; Wadsworth, Derek C; Boyce, Jodie R; Hruska, Ryan C; Koudelka, John A; Whetten, Jonathan; Bruemmer, David J

2014-05-20T23:59:59.000Z

398

An object-oriented extension for debugging the virtual machine  

SciTech Connect

A computer is nothing more then a virtual machine programmed by source code to perform a task. The program`s source code expresses abstract constructs which are compiled into some lower level target language. When a virtual machine breaks, it can be very difficult to debug because typical debuggers provide only low-level target implementation information to the software engineer. We believe that the debugging task can be simplified by introducing aspects of the abstract design and data into the source code. We introduce OODIE, an object-oriented extension to programming languages that allows programmers to specify a virtual environment by describing the meaning of the design and data of a virtual machine. This specification is translated into symbolic information such that an augmented debugger can present engineers with a programmable debugging environment specifically tailored for the virtual machine that is to be debugged.

Pizzi, R.G. Jr. [California Univ., Davis, CA (United States)

1994-12-01T23:59:59.000Z

399

E-Print Network 3.0 - augmented virtual experiences Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

for: augmented virtual experiences Page: << < 1 2 3 4 5 > >> 1 Outdoor Virtual Reality Bruce H. Thomas and Wayne Piekarski Summary: This paper presents our novel concept Outdoor...

400

LANL/PNNL Virtual Center for Chemical Hydrides and New Concepts...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LANLPNNL Virtual Center for Chemical Hydrides and New Concepts for Hydrogen Storage LANLPNNL Virtual Center for Chemical Hydrides and New Concepts for Hydrogen Storage...

Note: This page contains sample records for the topic "virtual temperature profiles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Beam Profile Monitor With Accurate Horizontal And Vertical Beam Profiles  

DOE Patents (OSTI)

A widely used scanner device that rotates a single helically shaped wire probe in and out of a particle beam at different beamline positions to give a pair of mutually perpendicular beam profiles is modified by the addition of a second wire probe. As a result, a pair of mutually perpendicular beam profiles is obtained at a first beamline position, and a second pair of mutually perpendicular beam profiles is obtained at a second beamline position. The simple modification not only provides more accurate beam profiles, but also provides a measurement of the beam divergence and quality in a single compact device.

Havener, Charles C [Knoxville, TN; Al-Rejoub, Riad [Oak Ridge, TN

2005-12-26T23:59:59.000Z

402

Case histories of temperature surveys in Kuwait  

SciTech Connect

Most crude produced in Kuwait is from naturally flowing wells. Casing, tubing, and cement in these wells remain unchanged after completion. This study discusses the major application of temperature surveys in indicating fluid movement both inside and behind the production string, hence locating any holes in the casing. Some significant cases of temperature anomalies are examined qualitatively, and suggestions are made for a more quantitative interpretation of temperature profiles. 9 refs.

Gupta, B.S.

1981-12-01T23:59:59.000Z

403

Scholarship Search Profile Personal Information  

E-Print Network (OSTI)

Scholarship Search Profile Personal Information Name: ____________________________________ Address) ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ Work Experience: List most recent job first Employer/Company Name _______________________________________________________________ Reference: Name and telephone _____________________________________________ Employer/Company Name

Mather, Patrick T.

404

Evaluate Greenhouse Gas Emissions Profile  

Energy.gov (U.S. Department of Energy (DOE))

Evaluating a Federal agency's greenhouse gas (GHG) emissions profile means getting a solid understanding of the organization's largest emission categories, largest emission sources, and its potential for improvement.

405

Integrated Temperature and Humidity Control: A Unique Approach  

E-Print Network (OSTI)

as in Singapore. The results presented herein are from one of these sites, consisting of two adjacent unoccupied guest rooms in a hotel, each equipped with chilled- water fan coil units. The two, virtually identical adja- cent rooms were selected primarily... for comparing the operation and performance of the ITHC with that of a dry-bulb temperature controller (DBTC) under the exact same conditions (solar, outdoor temperature and humidity, internal loads, etc.). To obtain com- parative results, the fan coil unit...

Shah, D. J.

2000-01-01T23:59:59.000Z

406

Temperature dependence of vortex charges in high-temperature superconductors  

Science Journals Connector (OSTI)

Using a model Hamiltonian with d-wave superconductivity and competing antiferromagnetic (AF) interactions, the temperature (T) dependence of the vortex charge in high-Tc superconductors is investigated by numerically solving the Bogoliubov–de Gennes equations. The strength of the induced AF order inside the vortex core is T dependent. The vortex charge could be negative when the AF order with sufficient strength is present at low temperatures. At higher temperatures, the AF order may be completely suppressed and the vortex charge becomes positive. A first-order-like transition in the T-dependent vortex charge is seen near the critical temperature TAF. For an underdoped sample, the spatial profiles of the induced spin-density wave and the charge-density wave orders could have stripelike structures at TTs. As a result, a vortex charge discontinuity occurs at Ts.

Yan Chen; Z. D. Wang; C. S. Ting

2003-06-03T23:59:59.000Z

407

Towards a system of estates in virtual property  

Science Journals Connector (OSTI)

Virtual worlds such as Second Life have received a lot of press in the USA recently. As individuals and businesses participate in these virtual worlds, questions arise regarding the application of existing laws to their virtual world transactions. Many questions have arisen regarding the property rights of participants in virtual worlds, and a Second Life member recently sued Linden Research, the company that developed Second Life, alleging that Second Life converted his virtual property. The questions regarding the legal nature of virtual world assets tend to mirror the questions regarding intangible rights generally, as courts have tended to struggle over whether these rights are property rights or contract rights. In this paper, I propose that the principle of numerus clausus be applied to virtual property, so that courts faced with disputes over such assets will have mandatory property forms to which to resort. Such an approach would limit the ability of vendors of such rights to customise them through their contracts, which are commonly embodied in electronically presented standard forms.

Juliet M. Moringiello

2008-01-01T23:59:59.000Z

408

Electron profile stiffness and critical gradient studies  

SciTech Connect

Electron profile stiffness was studied in DIII-D L-mode discharges by systematically varying the heat flux in a narrow region with electron cyclotron heating and measuring the local change produced in {nabla}T{sub e}. Electron stiffness was found to slowly increase with toroidal rotation velocity. A critical inverse temperature gradient scale length 1/L{sub C} {approx} 3 m{sup -1} was identified at {rho}=0.6 and found to be independent of rotation. Both the heat pulse diffusivity and the power balance diffusivity, the latter determined by integrating the measured dependence of the heat pulse diffusivity on -{nabla}T{sub e}, were fit reasonably well by a model containing a critical inverse temperature gradient scale length and varying linearly with 1/L{sub T} above the threshold.

DeBoo, J. C.; Petty, C. C.; Burrell, K. H.; Smith, S. P. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); White, A. E. [Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Doyle, E. J.; Hillesheim, J. C.; Rhodes, T. L.; Schmitz, L.; Wang, G.; Zeng, L. [University of California-Los Angeles, Los Angeles, California 90095-7099 (United States); Holland, C. [University of California-San Diego, La Jolla, California 92093-0417 (United States); McKee, G. R. [University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

2012-08-15T23:59:59.000Z

409

Daonity – Grid security from two levels of virtualization  

Science Journals Connector (OSTI)

The service oriented architecture of grid computing has been thoughtfully engineered to achieve a service level virtualization: not only should a grid be a virtual machine (also known as a virtual organization, VO) of unbounded computational power and storage capacity, but also should the virtual machine be serviceable in all circumstances independent from serviceability of any of its component. At present, a grid VO as a result of service level virtualization only is more or less confined to participants from scientific computing communities, i.e., can have a limited scale. It is widely agreed that for a grid to pool resources of truly unbounded scale, commercial enterprises and in particular server-abundant financial institutions, should also “go for the grid,” i.e., open up their servers for being used by grid VO constructions. We believed that it is today's inadequate strength of the grid security practice that is the major hurdle to prevent commercial organizations from serving and participating the grid. This article presents the work of Daonity which is our attempt to strengthening grid security. We identify that a security service which we name behavior conformity be desirable for grid computing. Behavior conformity for grid computing is an assurance that ad hoc related principals (users, platforms or instruments) forming a grid VO must each act in conformity with the rules for the VO constitution. We apply trusted computing technologies to achieve two levels of virtualization: resource virtualization and platform virtualization. The former is about behavior conformity in a grid VO and the latter, that in an operating system. With these two levels of virtualization working together it is possible to build a grid of truly unbounded scale by VO including servers from commercial organizations.

Haibo Chen; Jieyun Chen; Wenbo Mao; Fei Yan

2007-01-01T23:59:59.000Z

410

TRENDS: TEMPERATURE  

NLE Websites -- All DOE Office Websites (Extended Search)

Historical Isotopic Temperature Record from the Vostok Ice Core Historical Isotopic Temperature Record from the Vostok Ice Core Graphics Digital Data J.R. Petit, D. Raynaud, and C. Lorius Laboratoire de Glaciogie et Géophysique de l'Environnement, CNRS, Saint Martin d'Hères Cedex, France J. Jouzel and G. Delaygue Laboratoire des Sciences du Climat et de l'Environnement (LSCE), CEA/CNRS, L'Orme des Merisiers, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France N.I. Barkov Arctic and Antarctic Research Institute, Beringa Street 38, 199397 St. Petersburg, Russia V.M. Kotlyakov Institute of Geography, Staromonetny, per 29, Moscow 109017, Russia DOI: 10.3334/CDIAC/cli.006 Period of Record 420,000 years BP-present Methods Because isotopic fractions of the heavier oxygen-18 (18O) and deuterium (D) in snowfall are temperature-dependent and a strong spatial correlation

411

Applied Environmental Microbiology | VIMSS - Virtual Institute for  

NLE Websites -- All DOE Office Websites (Extended Search)

Profiling of Microbial Population Profiling of Microbial Population T-RFLP offers a reproducible way to rapidly describe population structures based upon sequence length polymorphisms in rapidly evolving regions of small subunit rRNAs (30). In a typical experiment, one or both primers in a PCR amplification are derivatized with a fluorescent ligand at the 5' terminus. Only the terminal fragments are labeled in a restriction digest of the PCR products, and these can be re-solved on a DNA sequencing gel. This method has been used recently to characterize the microbial population structure in sediments (4, 54). We will use T-RFLP mapping to refine our understanding of the variability of micro-bial populations at relatively high spatial resolution along gradients of varying contaminant and site

412

VONEX: A Novel Approach to Establishing Open Virtual Money Exchange Regime  

E-Print Network (OSTI)

VONEX: A Novel Approach to Establishing Open Virtual Money Exchange Regime Angelina Chow Department Establishing an open virtual money exchange regime is a novel idea but rarely discussed. This paper provides a pioneer research on virtual money exchange (VONEX) approach, aiming to facilitate the exchange of virtual

Guo, Jingzhi

413

Bilateral Teleoperation of Wheeled Mobile Robot with Time Delay using Virtual Image Robot  

E-Print Network (OSTI)

Bilateral Teleoperation of Wheeled Mobile Robot with Time Delay using Virtual Image Robot Yasunori of wheeled mobile robot with time delay using the virtual image robot. In this paper, we introduce the virtual image robot as a master robot. The human operator commands the virtual image robot, the slave

414

Visualization of folding in marble outcrops, Connemara, western Ireland: An application of virtual outcrop technology  

Science Journals Connector (OSTI)

...to have remote access (via intranet or Internet) to course content...Benefits of Virtual Outcrop Technology Virtual outcrops offer students...shows how virtual outcrop technology could provide good structural...possible from virtual outcrop technology. During the project, the...

415

Categorisation of data management solutions for heterogeneous data in collaborative virtual engineering  

Science Journals Connector (OSTI)

Computer based virtual development is the basis of product engineering, called virtual engineering. The increasing demand of virtual engineering solutions for new domains and companies leads to a huge width of approaches in this area. To enhance the ... Keywords: PDM, PLM, collaboration, data management, exchange, integration, virtual engineering

Stephan Vornholt; Ingolf Geist; Yuexiao Li

2010-06-01T23:59:59.000Z

416

5 Year Financial Profile -Charts 5 Year Financial Profile Charts  

E-Print Network (OSTI)

Charts Income Back http://www.fin.mmu.ac.uk/f18_004b.htm06/07/2004 12:57:08 #12;5 Year Financial Profile - Charts - zoom 5 Year Financial Profile Charts Expenditure Back http://www.fin.mmu.ac.uk/f18_004c.htm06 http://www.fin.mmu.ac.uk/f18_004d.htm06/07/2004 12:57:19 #12;5 Year Financial Profile - Charts - zoom 5

417

5 Year Financial Profile -Charts 5 Year Financial Profile Charts  

E-Print Network (OSTI)

Charts Income Back http://www.fin.mmu.ac.uk/f18_008b.htm06/07/2004 12:51:21 #12;5 Year Financial Profile - Charts - zoom 5 Year Financial Profile Charts Expenditure Back http://www.fin.mmu.ac.uk/f18_008c.htm06 http://www.fin.mmu.ac.uk/f18_008d.htm06/07/2004 12:51:31 #12;5 Year Financial Profile - Charts - zoom 5

418

5 Year Financial Profile -Charts 5 Year Financial Profile Charts  

E-Print Network (OSTI)

Charts Income Back http://www.fin.mmu.ac.uk/f18_010b.htm06/07/2004 10:57:23 #12;5 Year Financial Profile - Charts - zoom 5 Year Financial Profile Charts Expenditure Back http://www.fin.mmu.ac.uk/f18_010c.htm06 http://www.fin.mmu.ac.uk/f18_010d.htm06/07/2004 12:40:15 #12;5 Year Financial Profile - Charts - zoom 5

419

Six parameter water temperature model W. Nicholas Beer  

E-Print Network (OSTI)

and allow comparison of different temperature profiles. A six parameter model is developed as an extension. The example uses 10 years of flow and temperature data from the Snake River near Anatone, Washington with the dashed line in Figure 1. Day of year DegreesC 0 100 200 300 0510152025 Snake River Temperatures

Washington at Seattle, University of

420

NETL: Gasification Systems - Advanced Virtual Energy Simulation Training  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Virtual Energy Simulation Training And Research (AVESTAR(tm)) Facility Advanced Virtual Energy Simulation Training And Research (AVESTAR(tm)) Facility Project No: Adv Gas-FY131415 Task 6 Developed as a part of NETL's initiative to advance new clean coal technology, the Advanced Virtual Energy Simulation Training And Research (AVESTARTM) Center is focused on training engineers and energy plant operators in the efficient, productive, and safe operation of highly efficient power generation systems that also protect the environment. Comprehensive dynamic simulator-based instruction better prepares operators and engineers to manage advanced energy plants according to economic constraints while minimizing or avoiding the impact of any potentially harmful, wasteful, or inefficient events. Advanced Virtual Energy Simulation Training and Research Center - AVESTAR

Note: This page contains sample records for the topic "virtual temperature profiles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Building Energy Software Tools Directory: IES Virtual Environment  

NLE Websites -- All DOE Office Websites (Extended Search)

IES Virtual Environment IES Virtual Environment IES Virtual Environment Logo The IES Virtual Environment (IESVE) is a powerful, in-depth suite of building performance analysis tools. It allows the design and operation of comfortable buildings that consume significantly less energy. Whether working on a new build or renovation project, the VE allows designers to test different options, identify best passive solutions, compare low-carbon & renewable technologies, and draw conclusions on energy use, CO2 emissions, occupant comfort, and much more. There are various tools in the suite; each designed to provide sustainable analysis at levels suitable for different design team members and design stages. All utilise our Apache dynamic thermal simulation engine, and an integrated central data model, which has direct links to SketchUp™,

422

Virtual Reality as a Support Tool for Ergonomic Style Convergence  

E-Print Network (OSTI)

Virtual Reality as a Support Tool for Ergonomic ­ Style Convergence Multidisciplinary Interaction and this paper presents a case study: the design of a support tool for ergonomic-style convergence. Categories

423

Power in Collaboration: National Energy Literacy Virtual Meet-Up  

Energy.gov (U.S. Department of Energy (DOE))

The webinar will be a dynamic virtual conversation of ongoing efforts from across the country in utilizing the Department of Energy's Energy Literacy Framework to address one of our nation's...

424

Knowledge integration in virtual teams: the potential role of KMS  

Science Journals Connector (OSTI)

Virtual teams are becoming a preferred mechanism for harnessing, integrating, and applying knowledge that is distributed across organizations and in pockets of collaborative networks. In this article we recognize that knowledge application, among the ...

Maryam Alavi; Amrit Tiwana

2002-10-01T23:59:59.000Z

425

Introduction to the Virtual Issue of Energy & Fuels on Biofuels  

Science Journals Connector (OSTI)

Introduction to the Virtual Issue of Energy & Fuels on Biofuels ... A general modeling framework conceived to drive the decision-making process for the strategic design of biofuel supply networks is presented. ...

Robert S. Weber

2010-11-11T23:59:59.000Z

426

BioenergizeME Virtual Science Fair: Environmental benefit of Bioenergy  

Energy.gov (U.S. Department of Energy (DOE))

This infographic was created by students from Sun Valley High School in Aston, PA, as part of the U.S. Department of Energy-BioenergizeME Virtual Science Fair.

427

BioenergizeME Virtual Science Fair: Bioenergy Careers  

Energy.gov (U.S. Department of Energy (DOE))

This infographic was created by students from Sun Valley High School in Aston, PA, as part of the U.S. Department of Energy-BioenergizeME Virtual Science Fair.

428

BioenergizeME Virtual Science Fair: Microbiology and Bioenergy  

Energy.gov (U.S. Department of Energy (DOE))

This infographic was created by students from Toledo High School in Toledo, OR, as part of the U.S. Department of Energy-BioenergizeME Virtual Science Fair.

429

BioenergizeME Virtual Science Fair: History of Biomass  

Energy.gov (U.S. Department of Energy (DOE))

This infographic was created by students from Daniel Boone Area High School in Birdsboro, PA, as part of the U.S. Department of Energy-BioenergizeME Virtual Science Fair.

430

BioenergizeME Virtual Science Fair: Environmental Impacts  

Energy.gov (U.S. Department of Energy (DOE))

This infographic was created by students from Sun Valley High School in Aston, PA, as part of the U.S. Department of Energy-BioenergizeME Virtual Science Fair.

431

BioenergizeME Virtual Science Fair: Bioenegy Benefits Environmental Forestry  

Energy.gov (U.S. Department of Energy (DOE))

This infographic was created by students from Sun Valley High School in Aston, PA, as part of the U.S. Department of Energy-BioenergizeME Virtual Science Fair.

432

BioenergizeME Virtual Science Fair: Biomass History A timeline  

Energy.gov (U.S. Department of Energy (DOE))

This infographic was created by students from Sun Valley High School in Aston, PA, as part of the U.S. Department of Energy-BioenergizeME Virtual Science Fair.

433

BioenergizeME Virtual Science Fair: History of Bioenergy  

Energy.gov (U.S. Department of Energy (DOE))

This infographic was created by students from Sun Valley High School in Aston, PA, as part of the U.S. Department of Energy-BioenergizeME Virtual Science Fair.

434

BioenergizeME Virtual Science Fair: Environmental Impacts of Bioenergy  

Energy.gov (U.S. Department of Energy (DOE))

This infographic was created by students from Sun Valley High School in Aston, PA, as part of the U.S. Department of Energy-BioenergizeME Virtual Science Fair.

435

Promoting Sustainability Awareness through Energy Engaged Virtual Communities of Construction  

E-Print Network (OSTI)

Promoting Sustainability Awareness through Energy Engaged Virtual Communities of Construction to demolition. Sustainability knowledge is #12;Promoting Sustainability Awareness through Energy EngagedH@cf.ac.uk Abstract. Sustainability requires the engagement of every single constituent of the "building" product

Paris-Sud XI, Université de

436

Populating reconstructed archaeological sites with autonomous virtual humans  

Science Journals Connector (OSTI)

Significant multidisciplinary efforts combining archaeology and computer science have yielded virtual reconstructions of archaeological sites for visualization. Yet comparatively little attention has been paid to the difficult problem of populating these ...

Wei Shao; Demetri Terzopoulos

2006-08-01T23:59:59.000Z

437

The (human) science of medical virtual learning environments  

Science Journals Connector (OSTI)

...federal grant from the Department of the Navy's Office of Naval Research, the Pulse!! Virtual Learning...populations (p. 343). Simulation design must become a science, a human-centred science, driven by the publication of good, peer-reviewed...

2011-01-01T23:59:59.000Z

438

VIMS2002 International Symposium on Virtual and Intelligent Measurement Systems  

E-Print Network (OSTI)

VIMS2002 International Symposium on Virtual and Intelligent Measurement Systems Mt. Alyeska Resort be used to propagate the uncertainty. Smith et al. [14] have developed the equations for a propagation

Payeur, Pierre

439

Technology adaptation and boundary management in bona fide virtual groups.  

E-Print Network (OSTI)

In this research project composed of multiple case studies, I focused on how bona fide virtual groups appropriated multiple media to facilitate group boundary construction and boundary management, which are preconditions of group identity formation...

Zhang, Huiyan

2006-04-12T23:59:59.000Z

440

Context-based Distributed Regression in Virtual Organizations  

E-Print Network (OSTI)

, Ireland {yan.xing, michael.madden, jim.duggan, gerard.lyons}@nuigalway.ie Abstract. The characteristics of Internet and Intranet, there are virtual organizations in different domains such as a loosely coupled

Madden, Michael

Note: This page contains sample records for the topic "virtual temperature profiles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Virtual cathode microwave generator having annular anode slit  

DOE Patents (OSTI)

A microwave generator is provided for generating microwaves substantially from virtual cathode oscillation. Electrons are emitted from a cathode and accelerated to an anode which is spaced apart from the cathode. The anode has an annular slit therethrough effective to form the virtual cathode. The anode is at least one range thickness relative to electrons reflecting from the virtual cathode. A magnet is provided to produce an optimum magnetic field having the field strength effective to form an annular beam from the emitted electrons in substantial alignment with the annular anode slit. The magnetic field, however, does permit the reflected electrons to axially diverge from the annular beam. The reflected electrons are absorbed by the anode in returning to the real cathode, such that substantially no reflexing electrons occur. The resulting microwaves are produced with a single dominant mode and are substantially monochromatic relative to conventional virtual cathode microwave generators.

Kwan, Thomas J. T. (Los Alamos, NM); Snell, Charles M. (Los Alamos, NM)

1988-01-01T23:59:59.000Z

442

Virtual Reality-Based Simulation of Endoscopic Surgery  

Science Journals Connector (OSTI)

Virtual reality (VR)-based surgical simulator systems offer a very elegant approach to enriching and enhancing traditional training in endoscopic surgery. However, while a number of VR simulator systems have been proposed and realized in the past few ...

G. Székely; Ch. Brechbühler; J. Dual; R. Enzler; J. Hug; R. Hutter; N. Ironmonger; M. Kauer; V. Meier; P. Niederer; A. Rhomberg; P. Schmid; G. Schweitzer; M. Thaler; V. Vuskovic; G. Tröster; U. Haller; M. Bajka

2000-06-01T23:59:59.000Z

443

Hadley Cell Dynamics in a Virtually Dry Snowball Earth Atmosphere  

Science Journals Connector (OSTI)

The Hadley cell of a virtually dry snowball Earth atmosphere under equinox insolation is studied in a comprehensive atmospheric general circulation model. In contrast to the Hadley cell of modern Earth, momentum transport by dry convection, which ...

Aiko Voigt; Isaac M. Held; Jochem Marotzke

2012-01-01T23:59:59.000Z

444

Software Enabled Virtually Variable Displacement Pumps -Theoretical and Experimental Studies  

E-Print Network (OSTI)

Software Enabled Virtually Variable Displacement Pumps - Theoretical and Experimental Studies the functional equivalent of a variable displacement pump. This approach combines a fixed displacement pump valve control, without many of the shortcomings of commercially available variable displacement pumps

Li, Perry Y.

445

The Large Hadron Collider - At Discover's Horizon | Virtual LHC...  

NLE Websites -- All DOE Office Websites (Extended Search)

Virtual LHC Lectures These past lectures might give you a better idea of how to plan your upcoming LHC presentation. After you give your lecture, if a video of your presentation or...

446

Experiments at The Virtual National Laboratory for Heavy Ion Fusion  

E-Print Network (OSTI)

Heavy Ion Beam Driven Fusion Reactor Study", KfK 3840,between the reactor chamber wall and the fusion target. Thereactor chambers. INTRODUCTION The USA Virtual National Laboratory for Heavy Ion Fusion

2000-01-01T23:59:59.000Z

447

U.S.-U.K. Collaboration on Virtual Plant Simulation  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S.-U.K. Collaboration on U.S.-U.K. Collaboration on Virtual Plant Simulation Background Under the auspices of the U.S.-U.K. Memorandum of Understanding and Implementing Agreement for Fossil Energy Research and Technology Development, the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) participated in a three-year collaboration on virtual plant simulation with a project team supported by the Department for Business, Enterprise & Regulatory Reform in

448

Virtual environmental applications for buried waste characterization technology evaluation report  

SciTech Connect

The project, Virtual Environment Applications for Buried Waste Characterization, was initiated in the Buried Waste Integrated Demonstration Program in fiscal year 1994. This project is a research and development effort that supports the remediation of buried waste by identifying and examining the issues, needs, and feasibility of creating virtual environments using available characterization and other data. This document describes the progress and results from this project during the past year.

NONE

1995-05-01T23:59:59.000Z

449

5 Year Financial Profile -Charts 5 Year Financial Profile Charts  

E-Print Network (OSTI)

. Income Expenditure Assets Liabilities Income Breakdown Expenditure Breakdown http://www.fin.mmu.ac.uk/f18 Charts Income Back http://www.fin.mmu.ac.uk/f18_005b.htm06/07/2004 13:00:29 #12;5 Year Financial Profile - Charts - zoom 5 Year Financial Profile Charts Expenditure Back http://www.fin.mmu.ac.uk/f18_005c.htm06

450

Applied Environmental Microbiology | VIMSS - Virtual Institute for  

NLE Websites -- All DOE Office Websites (Extended Search)

Collection of Soil Samples Collection of Soil Samples Identification of Natural Stressors Profiling of Microbial Population Field and Simulated Conceptual Model Facilities The Applied Environmental Microbiology (AEM) Core is the source of environmental data and samples that determine the stressors that will be studied, pro-vides the environments for growing the organisms to be tested, simulates stressed environments, and verifies the conceptual models to determine how these stress regulatory pathways control the biogeochemistry of contaminated sites. The specific goals of the AEM Core are to: Survey and map DOE sites contaminated by metals and radionuclides using chemical and molecular/ microbiological parameters to determine major microbial populations and potential stressors for Desulfovibrio vulgaris,

451

Generation IV Nuclear Energy Systems Construction Cost Reductions through the Use of Virtual Environments - Task 5 Report: Generation IV Reactor Virtual Mockup Proof-of-Principle Study  

SciTech Connect

Task 5 report is part of a 3 year DOE NERI-sponsored effort evaluating immersive virtual reality (CAVE) technology for design review, construction planning, and maintenance planning and training for next generation nuclear power plants. Program covers development of full-scale virtual mockups generated from 3D CAD data presented in a CAVE visualization facility. Created a virtual mockup of PBMR reactor cavity and discussed applications of virtual mockup technology to improve Gen IV design review, construction planning, and maintenance planning.

Timothy Shaw; Anthony Baratta; Vaughn Whisker

2005-02-28T23:59:59.000Z

452

SPEAK UP, EPPING! COMMUNITY PROFILE  

E-Print Network (OSTI)

SPEAK UP, EPPING! COMMUNITY PROFILE REPORT Epping, New Hampshire April 14, 2007 #12;TABLE ............................................................................................. 21 6. Community Services, Facilities and Utilities........................................................................................................................... 38 1. Natural Resources & Environment 2. Communication 3. Infrastructure & Public Safety 4

New Hampshire, University of

453

Profile of Alec J. Jeffreys  

Science Journals Connector (OSTI)

Profile of Alec J. Jeffreys 10.1073/pnas.0603953103 Nick Zagorski As one of the great contributors to modern genetics...the forensic sciences. That achievement alone is worthy of merit, contributing to Jeffreys' receiving three high distinctions...

Nick Zagorski

2006-01-01T23:59:59.000Z

454

Neuropsychological Profile of Stuttering Children  

Science Journals Connector (OSTI)

The purpose of this study was to analyze the cognitive profile of stuttering children. A sample of 290 children was ... classified as stutterers. In general, performance in stuttering children was similar to the ...

Alfredo Ardila; Mónica Rosselli…

2000-06-01T23:59:59.000Z

455

Energy Consumption Profile for Energy  

E-Print Network (OSTI)

317 Chapter 12 Energy Consumption Profile for Energy Harvested WSNs T. V. Prabhakar, R Venkatesha.............................................................................................318 12.2 Energy Harvesting ...................................................................................318 12.2.1 Motivations for Energy Harvesting...............................................319 12

Langendoen, Koen

456

Vibration of Tethered Microstructure Profilers  

Science Journals Connector (OSTI)

Although loosely tethered turbulence profilers have many advantages, they are prone to resonant vibrations at frequencies in the dissipation range when they are falling rapidly or when the tether is strummed. Using the Advanced Microstructure ...

Jack B. Miller; M. C. Gregg; Vernon W. Miller; Gordon L. Welsh

1989-12-01T23:59:59.000Z

457

JOBAID-ACCESSING AND MODIFYING TALENT PROFILE  

Energy.gov (U.S. Department of Energy (DOE))

The purpose of this job aid is to guide users through the step-by-step process of accessing their talent profiles, adding information to their profiles, and editing existing talent profile...

458

Probing the Universal Critical-Adsorption Profile by Neutron Reflectometry  

Science Journals Connector (OSTI)

We present the results of a neutron-reflectivity study of the universal critical-adsorption profile near the liquid-vapor interface of a binary-liquid mixture (methanol + deuterated cyclohexane) near criticality. As the critical temperature is approached from the one-phase region, we observed an abrupt decrease in the intensity of the specularly reflected neutron beam near the total-reflection edge. By interpreting the observation as the expected neutron-reflectivity discontinuity associated with a slowly decaying power-law profile, we evaluated the power-law exponent ( ?/?=0.50±0.05).

Hong Zhao; Anne Penninckx-Sans; Lay-Theng Lee; Daniel Beysens; Gérard Jannink

1995-09-04T23:59:59.000Z

459

Serious Games & Virtual Environments for Educational and Entertainment Speaker: Dr Daniela M Romano, 3D Graphics and Virtual Reality Group, Computer Science, University  

E-Print Network (OSTI)

be sustained while experiencing them. In this presentation serious games and virtual environments applicationSerious Games & Virtual Environments for Educational and Entertainment Speaker: Dr Daniela M Romano learning to ensure that the learning is integrated within `gameplay'. Virtual Environments are 3D graphical

Romano, Daniela

460

Virtual Simulation of Vision 21 Energy Plants  

SciTech Connect

The Vision 21 Energy plants will be designed by combining several individual power, chemical, and fuel-conversion technologies. These independently developed technologies or technology modules can be interchanged and combined to form the complete Vision 21 plant that achieves the needed level of efficiency and environmental performance at affordable costs. The knowledge about each technology module must be captured in computer models so that the models can be linked together to simulate the entire Vision 21 power plant in a Virtual Simulation environment. Eventually the Virtual Simulation will find application in conceptual design, final design, plant operation and control, and operator training. In this project we take the first step towards developing such a Vision 21 Simulator. There are two main knowledge domains of a plant--the process domain (what is in the pipes), and the physical domain (the pipes and equipment that make up the plant). Over the past few decades, commercial software tools have been developed for each of these functions. However, there are three main problems that inhibit the design and operation of power plants: (1) Many of these tools, largely developed for chemicals and refining, have not been widely adopted in the power industry. (2) Tools are not integrated across functions. For example, the knowledge represented by computational fluid dynamics (CFD) models of equipment is not used in process-level simulations. (3) No tool exists for readily integrating the design and behavioral knowledge about components. These problems must be overcome to develop the Vision 21 Simulator. In this project our major objective is to achieve a seamless integration of equipment-level and process-level models and apply the integrated software to power plant simulations. Specifically we are developing user-friendly tools for linking process models (Aspen Plus) with detailed equipment models (FLUENT CFD and other proprietary models). Such integration will ensure that consistent and complete knowledge about the process is used for design and optimization. The technical objectives of the current project are the following: Develop a software integration tool called the V21-Controller to mediate the information exchange between FLUENT, other detailed equipment models, and Aspen Plus. Define and publish software interfaces so that software and equipment vendors may integrate their computer models into the software developed in this project. Demonstrate the application of the integrated software with two power plant simulations, one for a conventional steam plant and another for an advanced power cycle. The project was started in October 2000. Highlights of the accomplishments during the first year of the project are the following: Formed a multi-disciplinary project team consisting of chemical and mechanical engineers; computer scientists; CFD, process simulation, and plant design software developers; and power plant designers. Developed a prototype of CFD and process model integration: a stirred tank reactor model based on FLUENT was inserted into a flow sheet model based on Aspen Plus. The prototype was used to show the effect of shaft speed (a parameter in the CFD model) on the product yield and purity (results of process simulation). This demonstrated the optimization of an equipment item in the context of the entire plant rather than in isolation. Conducted a user survey and wrote the User Requirements, Software Requirements and Software Design documents for the V21-Controller. Adopted CAPE-OPEN standard interfaces for communications between equipment and process models. Developed a preliminary version of the V21-Controller based on CAPE-OPEN interfaces. Selected one unit of an existing conventional steam plant (Richmond Power & Light) as the first demonstration case and developed an Aspen Plus model of the steam-side of the unit. A model for the gas-side of the unit, based on ALSTOM's proprietary model INDVU, was integrated with the Aspen Plus model. An industrial Advisory Board was formed to guide the software deve

Syamlal, Madhava; Felix, Paul E.; Osawe, Maxwell O. (Fluent Inc.); Fiveland, Woodrow A.; Sloan, David G. (ALSTOM Power); Zitney, Stephen E. (Aspen Technology, Inc.); Joop, Frank (Intergraph Corporation); Cleetus, Joseph; Lapshin, Igor B. (Concurrent Engineering Research Center, West Virginia University)

2001-11-06T23:59:59.000Z

Note: This page contains sample records for the topic "virtual temperature profiles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Beamline Temperatures  

NLE Websites -- All DOE Office Websites (Extended Search)

Temperatures Temperatures Energy: 3.0000 GeV Current: 493.2242 mA Date: 11-Jan-2014 21:40:00 Beamline Temperatures Energy 3.0000 GeV Current 493.2 mA 11-Jan-2014 21:40:00 LN:MainTankLevel 124.4 in LN:MainTankPress 56.9 psi SPEAR-BL:B120HeFlow 15.4 l/min SPEAR-BL:B131HeFlow 22.2 l/min BL 4 BL02:LCW 0.0 ℃ BL02:M0_LCW 31.5 ℃ BL 4-1 BL04-1:BasePlate -14.0 ℃ BL04-1:Bottom1 46.0 ℃ BL04-1:Bottom2 47.0 ℃ BL04-1:Lower 32.0 ℃ BL04-1:Moly 46.0 ℃ BL04-1:ChinGuard1 31.0 ℃ BL04-1:ChinGuard2 31.0 ℃ BL04-1:FirstXtalA -167.0 ℃ BL04-1:FirstXtalB -172.0 ℃ BL04-1:Pad1 31.0 ℃ BL04-1:Pad2 31.0 ℃ BL04-1:SecondXtalA -177.0 ℃ BL04-1:SecondXtalB -175.0 ℃ BL 4-2 BL04-2:BasePlate -14.0 ℃ BL04-2:Bottom1 24.0 ℃ BL04-2:Bottom2 25.0 ℃

462

Density Profiles of Liquid/Vapor Interfaces Away from Their Critical Point  

E-Print Network (OSTI)

We examine the applicability of various model profiles for the liquid/vapor interface by X-ray reflectivities on water and ethanol and their mixtures at room temperature. Analysis of the X-ray reflecivities using various density profiles shows an error-function like profile is the most adequate within experimental error. Our finding, together with recent observations from simulation studies on liquid surfaces, strongly suggest that the capillary-wave dynamics shapes the interfacial density profile in terms of the error function.

Wei Bu; Doseok Kim; David Vaknin

2014-03-06T23:59:59.000Z

463

Raman lidar profiling of water vapor and aerosols over the ARM SGP Site  

SciTech Connect

The authors have developed and implemented automated algorithms to retrieve profiles of water vapor mixing ratio, aerosol backscattering, and aerosol extinction from Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) Raman Lidar data acquired during both daytime and nighttime operations. The Raman lidar sytem is unique in that it is turnkey, automated system designed for unattended, around-the-clock profiling of water vapor and aerosols. These Raman lidar profiles are important for determining the clear-sky radiative flux, as well as for validating the retrieval algorithms associated with satellite sensors. Accurate, high spatial and temporal resolution profiles of water vapor are also required for assimilation into mesoscale models to improve weather forecasts. The authors have also developed and implemented routines to simultaneously retrieve profiles of relative humidity. These routines utilize the water vapor mixing ratio profiles derived from the Raman lidar measurements together with temperature profiles derived from a physical retrieval algorithm that uses data from a collocated Atmospheric Emitted Radiance Interferometer (AERI) and the Geostationary Operational Environmental Satellite (GOES). These aerosol and water vapor profiles (Raman lidar) and temperature profiles (AERI+GOES) have been combined into a single product that takes advantage of both active and passive remote sensors to characterize the clear sky atmospheric state above the CART site.

Ferrare, R.A.

2000-01-09T23:59:59.000Z

464

RAMAN LIDAR PROFILING OF WATER VAPOR AND AEROSOLS OVER THE ARM SGP SITE.  

SciTech Connect

We have developed and implemented automated algorithms to retrieve profiles of water vapor mixing ratio, aerosol backscattering, and aerosol extinction from Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) Raman Lidar data acquired during both daytime and nighttime operations. This Raman lidar system is unique in that it is turnkey, automated system designed for unattended, around-the-clock profiling of water vapor and aerosols (Goldsmith et al., 1998). These Raman lidar profiles are important for determining the clear-sky radiative flux, as well as for validating the retrieval algorithms associated with satellite sensors. Accurate, high spatial and temporal resolution profiles of water vapor are also required for assimilation into mesoscale models to improve weather forecasts. We have also developed and implemented routines to simultaneously retrieve profiles of relative humidity. These routines utilize the water vapor mixing ratio profiles derived from the Raman lidar measurements together with temperature profiles derived from a physical retrieval algorithm that uses data from a collocated Atmospheric Emitted Radiance Interferometer (AERI) and the Geostationary Operational Environmental Satellite (GOES) (Feltz et al., 1998; Turner et al., 1999). These aerosol and water vapor profiles (Raman lidar) and temperature profiles (AERI+GOES) have been combined into a single product that takes advantage of both active and passive remote sensors to characterize the clear sky atmospheric state above the CART site.

FERRARE,R.A.

2000-01-09T23:59:59.000Z

465

Virtual university-oriented cooperative mobile agent middleware  

Science Journals Connector (OSTI)

The autonomy, cooperativity, intelligence and mobility of mobile agents make them overcome the weakness of the traditional distributed computation mode of C/S and B/S, and bring new innovative solutions to the collaborative teaching, collaborative learning and collaborative management in virtual universities. However, nowadays most of the research in mobile agent technology in terms of the Virtual University is mostly focused on a certain application for some particular users. As a result, these researches do not provide an effective control mechanism for the universal management of multiapplication agents that work for the multiusers with multicharacters. This has prevented the implementation and promulgation of agent technology in virtual universities. As far as such insufficiency is concerned, this paper demonstrates its own solution. In this paper, a Virtual University-Oriented cooperative Mobile Agent Middleware (VUMAM) and a Virtual University framework based on VUMAM are designed. In addition, the paper discusses the assignment of agent characters and function, agent naming, the control mechanism of cooperative agents and the extendability of VUMAM.

Wenqing Peng; Yuanming Luo

2006-01-01T23:59:59.000Z

466

Temperature Change in the Southern Sarah Gille  

E-Print Network (OSTI)

on Impact #12;Southern Ocean data (900 m depth) #12;Autonomous Floats: ALACE and PALACE in the 1990s #12 in the coordinates of the flow #12;Profiling Autonomous Floats: PALACE, and ARGO #12;Stratification changes (from of ACC. Temperature change at 900 m in 50 years: > 2 C. Gille, JPO, 2003 #12;Mechanisms: Changes in wind

Gille, Sarah T.

467

Edge profile measurements using Thomson scattering on the KSTAR tokamak  

SciTech Connect

In the KSTAR Tokamak, a “Tangential Thomson Scattering” (TTS) diagnostic system has been designed and installed to measure electron density and temperature profiles. In the edge system, TTS has 12 optical fiber bundles to measure the edge profiles with 10–15 mm spatial resolution. These 12 optical fibers and their spatial resolution are not enough to measure the pedestal width with a high accuracy but allow observations of L-H transition or H-L transitions at the edge. For these measurements, the prototype ITER edge Thomson Nd:YAG laser system manufactured by JAEA in Japan is installed. In this paper, the KSTAR TTS system is briefly described and some TTS edge profiles are presented and compared against the KSTAR Charge Exchange Spectroscopy and other diagnostics. The future upgrade plan of the system is also discussed in this paper.

Lee, J. H., E-mail: jhleel@nfri.re.kr; Ko, W. H. [National Fusion Research Institute, Daejeon (Korea, Republic of); Department of Nuclear Fusion and Plasma Science, University of Science and Technology (UST), Daejeon (Korea, Republic of); Oh, S.; Lee, W. R.; Kim, K. P.; Lee, K. D.; Jeon, Y. M.; Yoon, S. W.; Cho, K. W. [National Fusion Research Institute, Daejeon (Korea, Republic of); Narihara, K.; Yamada, I.; Yasuhara, R. [National Institute for Fusion Science, Nagoya (Japan); Hatae, T.; Yatsuka, E.; Ono, T. [Japan Atomic Energy Agency, Naka (Japan); Hong, J. H. [Department of Physics, KAIST (Korea, Republic of)

2014-11-15T23:59:59.000Z

468

Phenotype MicroArray Profiling  

NLE Websites -- All DOE Office Websites (Extended Search)

MicroArray MicroArray Profiling of Zymomonas mobilis ZM4 Barry Bochner & Vanessa Gomez & Michael Ziman & Shihui Yang & Steven D. Brown Received: 22 May 2009 / Accepted: 26 October 2009 # The Author(s) 2009. This article is published with open access at Springerlink.com Abstract In this study, we developed a Phenotype MicroArray(tm) (PM) protocol to profile cellular phenotypes in Zymomonas mobilis, which included a standard set of nearly 2,000 assays for carbon, nitrogen, phosphorus and sulfur source utilization, nutrient stimulation, pH and osmotic stresses, and chemical sensitivities with 240 inhibitory chemicals. We observed two positive assays for C-source utilization (fructose and glucose) using the PM screen, which uses redox chemistry and cell respiration as a universal reporter to profile growth phenotypes in a high-throughput 96-well plate-based format.

469

Industry Profile | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industry Profile Industry Profile Industry Profile November 1, 2013 - 11:40am Addthis The largest energy consuming industrial sectors account for the largest share of CHP capacity; namely: Chemicals (30%), Petroleum Refining (17%), and Paper Products (14%). Other industrial sectors include: Commercial/Institutional (12%), Food (8%), Primary Metals (5%), Other Manufacturing (8%), and Other Industrial (6%). Combined heat and power (CHP)-sometimes referred to as cogeneration-involves the sequential process of producing and utilizing electricity and thermal energy from a single fuel. CHP is widely recognized to save energy and costs, while reducing carbon dioxide (CO2) and other pollutants. CHP is a realistic, near-term option for large energy efficiency improvements and significant CO2 reductions.

470

Unlocking Customer Value: The Virtual Power Plant | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Unlocking Customer Value: The Virtual Power Plant Unlocking Customer Value: The Virtual Power Plant Unlocking Customer Value: The Virtual Power Plant The utility world has changed drastically in the last 10 years. New technologies like Smart Meters and fully functional Smart Grid concepts have made large inroads into the utility space and no one should want to be left behind. Utilities also face additional pressures from regulatory bodies who are continuing to encourage carbon reduction and greater customer flexibility. Utilities need to balance these new requirements with the financial obligations of providing reliable power (at a reasonable price) while attempting to meet shareholder expectations. Each of these goals are not necessarily complimentary, thus utilities need to determine how to address each one.

471

Virtual Reading Room prior to 2000 | National Nuclear Security  

National Nuclear Security Administration (NNSA)

prior to 2000 | National Nuclear Security prior to 2000 | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Virtual Reading Room prior to 2000 Home > About Us > Our Operations > NNSA Office of General Counsel > Freedom of Information Act (FOIA) > Virtual Reading Room prior to 2000 Virtual Reading Room prior to 2000 Printer-friendly version Printer-friendly version

472

Unlocking Customer Value: The Virtual Power Plant | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Unlocking Customer Value: The Virtual Power Plant Unlocking Customer Value: The Virtual Power Plant Unlocking Customer Value: The Virtual Power Plant The utility world has changed drastically in the last 10 years. New technologies like Smart Meters and fully functional Smart Grid concepts have made large inroads into the utility space and no one should want to be left behind. Utilities also face additional pressures from regulatory bodies who are continuing to encourage carbon reduction and greater customer flexibility. Utilities need to balance these new requirements with the financial obligations of providing reliable power (at a reasonable price) while attempting to meet shareholder expectations. Each of these goals are not necessarily complimentary, thus utilities need to determine how to address each one.

473

Los Alamos' New Virtualized Data Center Saves Energy and Cash |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alamos' New Virtualized Data Center Saves Energy and Cash Alamos' New Virtualized Data Center Saves Energy and Cash Los Alamos' New Virtualized Data Center Saves Energy and Cash March 7, 2011 - 3:15pm Addthis It takes 8,900 kilowatt hours to provide electricity to one U.S. house for a year. With the energy saved annually through Infrastructure on Demand, LANL can power 216 homes. | Photo Courtesy of LANL It takes 8,900 kilowatt hours to provide electricity to one U.S. house for a year. With the energy saved annually through Infrastructure on Demand, LANL can power 216 homes. | Photo Courtesy of LANL Sarah LaMonaca Communications Specialist, Office of Energy Efficiency & Renewable Energy What are the key facts? Data centers are responsible for nearly 2% of U.S. electricity consumption -- a price tag of $4.5 billion.

474

Virtual Library on Genetics from Oak Ridge National Laboratory  

DOE Data Explorer (OSTI)

The World Wide Web (WWW) Virtual Library is a collaborative effort to provide topic indices that break down into many subtopics guiding users to vast resources of information around the world. ORNL hosts the Virtual Library on Genetics as part of the WWWVL's Biosciences topic area. The VL on Genetics is also a collection of links to information resources that supported the DOE Human Genome Project. That project has now evolved into Genomics: GTL. GTL is DOE's next step in genomics--builds on data and resources from the Human Genome Project, the Microbial Genome Program, and systems biology. GTL will accelerate understanding of dynamic living systems for solutions to DOE mission challenges in energy and the environment. The section of the Virtual Library on Genetics that is titled Organisms guides users to genetic information resources and gene sequences for animals, insects, microbes, and plant life.

475

Virtual Reading Room after to 2000 | National Nuclear Security  

National Nuclear Security Administration (NNSA)

after to 2000 | National Nuclear Security after to 2000 | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Virtual Reading Room after to 2000 Home > About Us > Our Operations > NNSA Office of General Counsel > Freedom of Information Act (FOIA) > Virtual Reading Room after to 2000 Virtual Reading Room after to 2000 Printer-friendly version Printer-friendly version

476

gprof Profiling Tools | Argonne Leadership Computing Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Tuning MPI on BG/Q Tuning and Analysis Utilities (TAU) HPCToolkit HPCTW mpiP gprof Profiling Tools Darshan PAPI BG/Q Performance Counters BGPM Openspeedshop Scalasca BG/Q DGEMM Performance Software & Libraries IBM References Intrepid/Challenger/Surveyor Tukey Eureka / Gadzooks Policies Documentation Feedback Please provide feedback to help guide us as we continue to build documentation for our new computing resource. [Feedback Form] gprof Profiling Tools Contents Introduction Profiling on the Blue Gene Enabling Profiling Collecting Profile Information Profiling Threaded Applications Using gprof Routine Level Flat Profile Line Level Flat Profile Call Graph Analysis Routine Execution Count List Annotated Source Listing Issues in Interpreting Profile Data Profiling Concepts Programs in Memory

477

Automatic Testing Tool for OSCAR Using System-level Virtualization  

SciTech Connect

To ensure quality, software development has to include testing mechanisms. OSCAR today supports several Linux distributions and several architectures. In such a context, the release cycle suffers of a important overhead created by the testing and stabilization phase. To address this issue, an approach is to implement a tool for automatic testing. This paper presents such a tool which is based on the OSCAR command line interface. This tool, based on system-level virtualization techniques, creates a virtual cluster to perform the test. This approach has the benefit of not corrupting the system of the physical machine and guarantee that the environment used for testing has not been corrupted before testing.

Vallee, Geoffroy R [ORNL; Naughton, III, Thomas J [ORNL; Bland, Wesley B [ORNL; Scott, Stephen L [ORNL

2007-01-01T23:59:59.000Z

478

High-Efficiency, Magnetized, Virtual-Cathode Microwave Generator  

Science Journals Connector (OSTI)

Microwave generation by electron beams in virtual-cathode configurations can achieve significant power levels. However, most designs inherently have two competing mechanisms generating microwaves: the oscillating virtual cathode and the reflexing electrons. These mechanisms interfere destructively with each other. This paper reports investigation of a novel idea of using an external axial magnetic field and a thick anode with an appropriate collimating slot to extract the electron beam and to suppress the reflexing electrons. It was found that high-power, narrow-band, monochromatic microwaves could be generated with efficiency of 10% to 20%.

Thomas J. T. Kwan

1986-10-13T23:59:59.000Z

479

Equation of State of Supercooled Water from the Sedimentation Profile  

E-Print Network (OSTI)

To study the coexistence of two liquid states of water within one simulation box, we implement an equilibrium sedimentation method--which involves applying a gravitational field to the system and measuring/calculating the resulting density profile in equilibrium. We simulate a system of particles interacting via the ST2 potential, a model for water. We detect the coexistence of two liquid phases at low temperature.

M. Yamada; H. E. Stanley; F. Sciortino

2002-08-23T23:59:59.000Z

480

An Integrated Approach to Automatic Management of Virtualized Resources in Cloud Environments  

Science Journals Connector (OSTI)

......Integrated Approach to Automatic Management of Virtualized...of Computer Science and Engineering...resource management|cloud computing...Integrated Approach to Automatic Management of Virtualized...of Computer Science and Engineering......

Qiang Li; Qin-fen Hao; Li-min Xiao; Zhou-jun Li

2011-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "virtual temperature profiles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Comparing Perception of Real and Virtual Architectural Space Using Video Game Technology  

E-Print Network (OSTI)

questions in a virtual and real version of the same building and the results were compared. It was found that in the virtual environment people tended to underestimate and to perceive distance less accurately than in real space. Findings show...

Spross, Matthew

2011-04-25T23:59:59.000Z

482

Students Share Experiences from First Run of BioenergizeME Virtual...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Students Share Experiences from First Run of BioenergizeME Virtual Science Fair Students Share Experiences from First Run of BioenergizeME Virtual Science Fair December 18, 2014 -...

483

Extraction of Contextual Knowledge and Ambiguity Handling for Ontology in Virtual Environment  

E-Print Network (OSTI)

This dissertation investigates the extraction of knowledge from a known environment. Virtual ontology – the extracted knowledge – is defined as a structure of a virtual environment with semantics. While many existing 3D reconstruction approaches can...

Lee, Hyun Soo

2011-10-21T23:59:59.000Z

484

The Study on Building of Virtual Reality System in Large Surface Coal Mine  

Science Journals Connector (OSTI)

The building of virtual reality system for the opencast mine is a complicated and systemic project. The building process of virtual system includes data collection, GIS geodabase, model designing and raster te...

Baoying Ye; Nisha Bao; Zhongke Bai

2011-01-01T23:59:59.000Z

485

Project PEAC : a Personal, Expressive Avatar Controller for the operation of virtual characters  

E-Print Network (OSTI)

The purpose of this thesis was to design and construct a prototype for the control of virtual avatars in a virtual space. It was designed with the intent to feature multiple interfaces such that the user would have many ...

Santos, Kristopher B. dos

2010-01-01T23:59:59.000Z

486

Header for SPIE use The use of collaborative virtual environments in the  

E-Print Network (OSTI)

slices, volume visualization, wind/trajectory vectors, and various image projection formats. Virtual 'real-time' observations collected by autonomous sensors or swimmer scouts. Keywords: Virtual radar (SAR), towed undulating vehicles (SCANFISH or SEASOAR), and autonomous underwater vehicles (AUVs

Johnson, Andrew

487

Scenario Planning as the Development of Leadership Capability and Capacity; and Virtual Human Resource Development  

E-Print Network (OSTI)

with the development of leadership capability and capacity. Findings from the second stream of inquiry into sophisticated virtual environments included formal and informal learning in the 3D virtual world of Second Life (SL). Respondents in the study completed forty...

McWhorter, Rochell 1963-

2011-08-03T23:59:59.000Z

488

Method of virtual trajectories for the design of gravity assisted missions  

Science Journals Connector (OSTI)

A novel method of virtual trajectories is proposed for the design of multiple gravity assist trajectories. The database of virtual trajectories can be tabulated for any planetary sequence and used in subsequen...

M. Yu. Ovchinnikov; S. P. Trofimov; M. G. Shirobokov

2013-11-01T23:59:59.000Z

489

Modeling and Simulation of the Virtualized Scenes Base on the Open Modelica  

Science Journals Connector (OSTI)

Experimental teaching plays a very important role in modern education. For the Distance Education via Computer Networks, this paper gives a system architecture of virtual experiment as the basis of virtual ins...

Jiang YuXiang; Zhou Xiaolong; Li JinPing…

2011-01-01T23:59:59.000Z

490

Central Appalachia: Coal industry profile  

SciTech Connect

Central Appalachia, the most complex and diverse coal-producing region in the United States, is also the principal source of very low sulfur coal in the East. This report provides detailed profiles of companies and facilities responsible for about 90% of the area's production, conveying a unique view of the aggregate industry as well as its many parts.

McMahan, R.L.; Kendall, L.K. (Resource Data International, Inc., Boulder, CO (USA))

1991-05-01T23:59:59.000Z

491

Microfluidics and Nanoscale Research Profile  

E-Print Network (OSTI)

Microfluidics and Nanoscale Science Research Profile Our research group is engaged in a broad range of activities in the general area of microfluidics and nanoscale science. At a primary level, our interest that when compared to macroscale tech- nology, microfluidic systems engender a number of distinct advantages

492

Turfgrass Disease Profiles Brown Patch  

E-Print Network (OSTI)

Turfgrass Disease Profiles Brown Patch Richard Latin, Professor of Plant Pathology Brown patch to algae and moss infestation. Even mild brown patch outbreaks can spoil the appearance of golf greens and perennial ryegrass) also may sustain damage from brown patch infection. Disease Characteristics and Symptom

493

MODELING OF CHANGING ELECTRODE PROFILES  

SciTech Connect

A model for simulating the transient behavior of solid electrodes undergoing deposition or dissolution has been developed. The model accounts for ohmic drop, charge transfer overpotential, and mass transport limitations. The finite difference method, coupled with successive overrelaxation, was used as the basis of the solution technique. An algorithm was devised to overcome the computational instabilities associated with the calculations of the secondary and tertiary current distributions. Simulations were performed on several model electrode profiles: the sinusoid, the rounded corner, and the notch. Quantitative copper deposition data were obtained in a contoured rotating cylinder system, Sinusoidal cross-sections, machined on stainless steel cylinders, were used as model geometries, Kinetic parameters for use in the simulation were determined from polarization curves obtained on copper rotating cylinders, These parameters, along with other physical property and geometric data, were incorporated in simulations of growing sinusoidal profiles. The copper distributions on the sinusoidal cross-sections were measured and found to compare favorably with the simulated results. At low Wagner numbers the formation of a slight depression at the profile peak was predicted by the simulation and observed on the profile. At higher Wagner numbers, the simulated and experimental results showed that the formation of a depression was suppressed. This phenomenon was shown to result from the competition between ohmic drop and electrode curvature.

Prentice, Geoffrey Allen

1980-12-01T23:59:59.000Z

494

Emission line profiles as a probe of physical conditions in planetary nebulae  

E-Print Network (OSTI)

We present an analysis of physical conditions in planetary nebulae (PNe) in terms of collisionally-excited line (CEL) and optical-recombination line (ORL) profiles. We aim to investigate whether line profiles could be used to study the long-standing CEL/ORL abundance-discrepancy problem in nebular astrophysics. Using 1D photoionization models and their assumed velocity fields, we simulate the line profiles of various ionic species. We attempt to use our model to account for the observed CEL and ORL profiles. As a case study we present a detailed study of line profiles of the low-excitation planetary nebula (PN) IC 418. Our results show that the profiles of classical temperature and density diagnostic lines, such as [O III] 4363,5007, [S II] 6716,6731, and [Ar IV] 4711,4740, provide a powerful tool to study nebular temperature and density variations. The method enables the CEL/ORL abundance-discrepancy problem to be studied more rigorously than before. A pure photoionization model of a chemically-homogeneous nebula seems to explain the observed disagreements in the profiles for the [O III] 4363 and the 5007 lines, but cannot account for the differences between the [O III] CELs and the O II ORLs. We also investigate the temperature and density variations in the velocity space of a sample of PNe, which are found to be insignificant.

Yong Zhang

2008-05-15T23:59:59.000Z

495

NOAA Technical Memorandum ERL GLERL-58 LAKE SUPERIOR COOLING SEASON TEMPERATURE CLIMATOLOGY  

E-Print Network (OSTI)

and extreme temperatures over period of record. Table 51. Summary of Lake Superior, area 8, temperature period of record. Table 51. Summary of Lake Superior, area 11, temperature climatology and extreme profiles. Survey route and lake area locations. Mean survey temperature climatology and stages in cooling

496

Modeling and life prediction methodology for titanium matrix composites subjected to mission profiles  

SciTech Connect

Titanium matrix composites (TMCs) are being evaluated as structural materials for elevated temperature applications in future generation hypersonic vehicles. In such applications, TMC components are subjected to complex thermomechanical loading profiles at various elevated temperatures. Therefore, thermomechanical fatigue (TMF) testing, using a simulated mission profile, is essential for evaluation and development of life prediction methodologies. The objective of the research presented in this paper was to evaluate the TMF response of the [0/90]{sub 2s} SCS-6/TIMETAL-21S subjected to a generic hypersonic flight profile and its portions with a temperature ranging from {minus}130 to 816 C. It was found that the composite modulus, prior to rapid degradation, had consistent values for all the profiles tested. The accumulated minimum strain was also found to be the same for all the profiles tested. A micromechanics-based analysis was used to predict the stress-strain response of the laminate and of the constituents in each ply during thermomechanical loading conditions by using only constituent properties as input. The fiber was modeled as elastic with transverse orthotropic and temperature-dependent properties. The matrix was modeled using a thermoviscoplastic constitutive relationship. In the analysis, the composite modulus degradation was assumed to result from matrix cracking and was modeled by reducing the matrix modulus. Fatigue lives of the composite subjected to the complex generic hypersonic flight profiles were well correlated using the predicted stress in 0{degree} fibers.

Mirdamadi, M. [Analytical Services and Materials Inc., Hampton, VA (United States); Johnson, W.S. [Georgia Inst. of Tech., Atlanta, GA (United States). School of Materials Science and Engineering

1996-12-31T23:59:59.000Z

497

Virtual Money Systems: a Phenomenal Analysis Jingzhi Guo and Angelina Chow  

E-Print Network (OSTI)

Virtual Money Systems: a Phenomenal Analysis Jingzhi Guo and Angelina Chow Department of Computer of virtual money is observed and presented high importance to both e-commerce and e-society fields. This paper, as a pioneer research, has attempted to make a phenomenal analysis on the existing virtual money

Guo, Jingzhi

498

Towards the Use of Collaborative Virtual Environments to Crew Unmanned Oil Platforms  

E-Print Network (OSTI)

462 Towards the Use of Collaborative Virtual Environments to Crew Unmanned Oil Platforms Hugo Fuks, Oil & Gas. 1. Introduction The use of Computer Graphics and Virtual Reality has revolutionised several the task. We instantiate our vision appointing the results of some initial experiments using Virtual

Barbosa, Alberto

499

VPMN: virtual private mobile network towards mobility-as-a-service  

Science Journals Connector (OSTI)

In this paper we present our vision for a mobile network infrastructure that embraces advances in virtualization to dynamically create private, resource isolated, customizable, end-to-end mobile networks. We describe an architecture for such a virtual ... Keywords: virtual private mobile network

Arati Baliga; Xu Chen; Baris Coskun; Gustavo de los Reyes; Seungjoon Lee; Suhas Mathur; Jacobus E. Van der Merwe

2011-06-01T23:59:59.000Z

500

Recreating living experiences from past memories through virtual worlds for people with dementia  

Science Journals Connector (OSTI)

This paper describes a study aimed to understand the use of 3D virtual world (VW) technology to support life engagement for people with dementia in long-term care. Three versions of VW prototypes (reminiscence room, virtual tour and gardening) utilising ... Keywords: 3d virtual worlds, care home, dementia, gesture-based interaction, older people

Panote Siriaraya; Chee Siang Ang

2014-04-01T23:59:59.000Z