National Library of Energy BETA

Sample records for virtual temperature profiles

  1. ARM - Measurement - Virtual temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsVirtual temperature ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Virtual temperature The virtual temperature Tv = T(1 + rv/{epsilon}), where rv is the mixing ratio, and {epsilon} is the ratio of the gas constants of air and water vapor ( 0.622). Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to

  2. Temperature-profile detector

    DOE Patents [OSTI]

    Not Available

    1981-01-29

    Temperature profiles at elevated temperature conditions are monitored by use of an elongated device having two conductors spaced by the minimum distance required to normally maintain an open circuit between them. The melting point of one conductor is selected at the elevated temperature being detected, while the melting point of the other is higher. As the preselected temperature is reached, liquid metal will flow between the conductors creating short circuits which are detectable as to location.

  3. Temperature profile detector

    DOE Patents [OSTI]

    Tokarz, Richard D.

    1983-01-01

    Temperature profiles at elevated temperature conditions are monitored by use of an elongated device having two conductors spaced by the minimum distance required to normally maintain an open circuit between them. The melting point of one conductor is selected at the elevated temperature being detected, while the melting point of the other is higher. As the preselected temperature is reached, liquid metal will flow between the conductors, creating short circuits which are detectable as to location.

  4. Temperature profile detector

    DOE Patents [OSTI]

    Tokarz, R.D.

    1983-10-11

    Disclosed is a temperature profile detector shown as a tubular enclosure surrounding an elongated electrical conductor having a plurality of meltable conductive segments surrounding it. Duplicative meltable segments are spaced apart from one another along the length of the enclosure. Electrical insulators surround these elements to confine molten material from the segments in bridging contact between the conductor and a second electrical conductor, which might be the confining tube. The location and rate of growth of the resulting short circuits between the two conductors can be monitored by measuring changes in electrical resistance between terminals at both ends of the two conductors. Additional conductors and separate sets of meltable segments operational at differing temperatures can be monitored simultaneously for measuring different temperature profiles. 8 figs.

  5. Erratum: "Reduced model prediction of electron temperature profiles...

    Office of Scientific and Technical Information (OSTI)

    Erratum: "Reduced model prediction of electron temperature profiles in ... Title: Erratum: "Reduced model prediction of electron temperature profiles in ...

  6. Maine Geological Survey Borehole Temperature Profiles

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Marvinney, Robert

    This dataset includes temperature profiles from 30 boreholes throughout Maine that were selected for their depth, location, and lithologies encountered. Depths range from about 300 feet to 2,200 feet. Most of the boreholes selected for measurement were completed in granite because this lithology can be assumed to be nearly homogeneous over the depth of the borehole. Boreholes were also selected to address gaps in existing geothermal datasets. Temperature profiles were collected in October and November, 2012.

  7. Maine Geological Survey Borehole Temperature Profiles

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Marvinney, Robert

    2013-11-06

    This dataset includes temperature profiles from 30 boreholes throughout Maine that were selected for their depth, location, and lithologies encountered. Depths range from about 300 feet to 2,200 feet. Most of the boreholes selected for measurement were completed in granite because this lithology can be assumed to be nearly homogeneous over the depth of the borehole. Boreholes were also selected to address gaps in existing geothermal datasets. Temperature profiles were collected in October and November, 2012.

  8. Project Profile: Engineering a Novel High Temperature Metal Hydride...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Profile: Engineering a Novel High Temperature Metal Hydride Thermochemical Storage Project Profile: Engineering a Novel High Temperature Metal Hydride Thermochemical Storage ...

  9. Project Profile: High-Temperature Thermochemical Storage with...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Profile: High-Temperature Thermochemical Storage with Redox-Stable Perovskites for Concentrating Solar Power Project Profile: High-Temperature Thermochemical Storage with ...

  10. Project Profile: High-Temperature Solar Selective Coating Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tower Receivers Project Profile: High-Temperature Solar Selective Coating Development for ... Characterize the optical performance, material properties, and temperature stability. ...

  11. Project Profile: High Operating Temperature Liquid Metal Heat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Operating Temperature Liquid Metal Heat Transfer Fluids Project Profile: High Operating Temperature Liquid Metal Heat Transfer Fluids Logos for The University of California, ...

  12. Project Profile: Fundamental Corrosion Studies in High-Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fundamental Corrosion Studies in High-Temperature Molten Salt Systems for Next-Generation CSP Systems Project Profile: Fundamental Corrosion Studies in High-Temperature Molten Salt ...

  13. Project Profile: Engineering a Novel High Temperature Metal Hydride

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermochemical Storage | Department of Energy Project Profile: Engineering a Novel High Temperature Metal Hydride Thermochemical Storage Project Profile: Engineering a Novel High Temperature Metal Hydride Thermochemical Storage PNNL Logo Pacific Northwest National Lab (PNNL), through the Concentrating Solar Power: Efficiently Leveraging Equilibrium Mechanisms for Engineering New Thermochemical Storage (CSP: ELEMENTS) funding program, is developing a concept for high energy density

  14. Project Profile: High Operating Temperature Liquid Metal Heat Transfer

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fluids | Department of Energy High Operating Temperature Liquid Metal Heat Transfer Fluids Project Profile: High Operating Temperature Liquid Metal Heat Transfer Fluids Logos for The University of California, Los Angeles, the University of California, Berkeley, and Yale University, and Four graphics in a grid that represent the sputtering technique being used in this project. The University of California, Los Angeles (UCLA), along with partners at the University of California, Berkeley, and

  15. Project Profile: Advanced High Temperature Trough Collector Development |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy High Temperature Trough Collector Development Project Profile: Advanced High Temperature Trough Collector Development Solar Millennium logo The Solar Millennium Group and its subsidiary Flagsol, under the CSP R&D FOA, are completing work on an advanced parabolic trough collector that uses molten salt as a heat transfer fluid. Approach Solar Millenium's Flagsol SKAL-ET heliotrough. Solar Millennium has developed a preliminary design of an advanced geometry parabolic

  16. Water-level sensor and temperature-profile detector

    DOE Patents [OSTI]

    Not Available

    1981-01-29

    A temperature profile detector is described which comprises a surrounding length of metal tubing and an interior electrical conductor both constructed of high temperature high electrical resistance materials. A plurality of gas-filled expandable bellows made of electrically conductive material are positioned at spaced locations along a length of the conductors. The bellows are sealed and contain a predetermined volume of a gas designed to effect movement of the bellows from an open circuit condition to a closed circuit condition in response to monitored temperature changes sensed by each bellows.

  17. Project Profile: High-Temperature Solar Selective Coating Development for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Tower Receivers | Department of Energy Solar Selective Coating Development for Power Tower Receivers Project Profile: High-Temperature Solar Selective Coating Development for Power Tower Receivers Sandia National Laboratories logo Sandia National Laboratories (SNL), under the National Laboratory R&D competitive funding opportunity, is developing, characterizing, and refining advanced solar-selective coatings with high solar-weighted absorptivity (a > 0.95) and low emittance (e

  18. Evaluation of temperature profiles in packed beds by simulation

    SciTech Connect (OSTI)

    Serrano, M.T.C.; Hernandez Suarez, R.

    1996-12-31

    The packed bed reactors with cocurrent upflow or downflow of gas and liquid are widely used in chemical and petrochemical industries for solid-catalysed heterogeneous reactions. It`s well known that a preferential-flow exists, thus the estimation of heat transfer parameters such as thermal conductivity of the bed and wall transfer resistance are important in order to predict the temperature profiles inside the reactor. This paper let us simulate the influence of these preferential zones of flow on the heat transfer parameters on this type of reactor. 6 refs., 1 fig., 2 tabs.

  19. Project Profile: High-Temperature Thermal Array for Next-Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Profile: High-Temperature Thermal Array for Next-Generation Solar Thermal Power ... The technology, called the high-temperature thermal array, aims to achieve the SunShot ...

  20. A New Microwave Temperature Profiler … First Measurements in...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Institute of Atmospheric Physics CNR, Italy Introduction Temperature inversions are a ... the Figure 4. MTP-5P have been tested in Italy by Rome IFA-CNR and compared with Vaisala ...

  1. Erratum: "Reduced model prediction of electron temperature profiles in

    Office of Scientific and Technical Information (OSTI)

    microtearing-dominated National Spherical Torus eXperiment plasmas" [Phys. Plasmas 21, 082510 (2014)] (Journal Article) | SciTech Connect Erratum: "Reduced model prediction of electron temperature profiles in microtearing-dominated National Spherical Torus eXperiment plasmas" [Phys. Plasmas 21, 082510 (2014)] Citation Details In-Document Search Title: Erratum: "Reduced model prediction of electron temperature profiles in microtearing-dominated National Spherical Torus

  2. Improved Retrievals of Temperature and Water Vapor Profiles Using a Twelve-Channel Microwave Radiometer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Retrievals of Temperature and Water Vapor Profiles Using a Twelve-Channel Microwave Radiometer J. C. Liljegren Environmental Research Division Argonne National Laboratory Argonne, Illinois Introduction Radiometrics Corporation has developed a twelve-channel microwave radiometer capable of providing continuous, real-time vertical profiles of temperature, water vapor, and limited-resolution cloud liquid water from the surface to 10 km in nearly all weather conditions (Solheim et al. 1998a). Since

  3. Project Profile: High-Temperature Falling-Particle Receiver | Department of

    Energy Savers [EERE]

    Energy Concentrating Solar Power » Project Profile: High-Temperature Falling-Particle Receiver Project Profile: High-Temperature Falling-Particle Receiver SNL logo Sandia National Laboratories with partners Georgia Tech, Bucknell University, King Saud University, and DLR, are developing a falling-particle receiver and heat-exchanger system to increase efficiency and lower costs under the 2012 Concentrating Solar Power (CSP) SunShot R&D funding opportunity announcement (FOA). Approach

  4. 915-MHz Radar Wind Profiler (915RWP) Handbook

    SciTech Connect (OSTI)

    Coulter, R

    2005-01-01

    The 915 MHz radar wind profiler/radio acoustic sounding system (RWP/RASS) measures wind profiles and backscattered signal strength between (nominally) 0.1 km and 5 km and virtual temperature profiles between 0.1 km and 2.5 km. It operates by transmitting electromagnetic energy into the atmosphere and measuring the strength and frequency of backscattered energy. Virtual temperatures are recovered by transmitting an acoustic signal vertically and measuring the electromagnetic energy scattered from the acoustic wavefront. Because the propagation speed of the acoustic wave is proportional to the square root of the virtual temperature of the air, the virtual temperature can be recovered by measuring the Doppler shift of the scattered electromagnetic wave.

  5. Temperature Profile in Fuel and Tie-Tubes for Nuclear Thermal Propulsion Systems

    SciTech Connect (OSTI)

    Vishal Patel

    2015-02-01

    A finite element method to calculate temperature profiles in heterogeneous geometries of tie-tube moderated LEU nuclear thermal propulsion systems and HEU designs with tie-tubes is developed and implemented in MATLAB. This new method is compared to previous methods to demonstrate shortcomings in those methods. Typical methods to analyze peak fuel centerline temperature in hexagonal geometries rely on spatial homogenization to derive an analytical expression. These methods are not applicable to cores with tie-tube elements because conduction to tie-tubes cannot be accurately modeled with the homogenized models. The fuel centerline temperature directly impacts safety and performance so it must be predicted carefully. The temperature profile in tie-tubes is also important when high temperatures are expected in the fuel because conduction to the tie-tubes may cause melting in tie-tubes, which may set maximum allowable performance. Estimations of maximum tie-tube temperature can be found from equivalent tube methods, however this method tends to be approximate and overly conservative. A finite element model of heat conduction on a unit cell can model spatial dependence and non-linear conductivity for fuel and tie-tube systems allowing for higher design fidelity of Nuclear Thermal Propulsion.

  6. An algorithm to predict pressure and temperature profiles through a coiled tubing

    SciTech Connect (OSTI)

    Pilo, S.; Intevep, S.A.

    1995-12-31

    The scope of this work is to develop an algorithm to predict the temperature and pressure profiles in a compressible flow through a coiled tubing, taking into account both friction losses and heat transfer simultaneously. The algorithm combines the theory of gas dynamics (heat transfer process) and thermodynamics (energy balance) to predict pressure, temperature, density, velocity and Mach number profiles for either horizontal, inclined or vertical strings. The results of the algorithm were compared with the Cullender & Smith method, which is the standard correlation used for downward gas flow calculations. A strong agreement between them was obtained. The algorithm presented allows more reliable results because it only needs for start-up, gas data that is usually very precisely known in real conditions.

  7. DOE/SC-ARM/TR-120 Raman Lidar Profiles-Temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 Raman Lidar Profiles-Temperature (RLPROFTEMP) Value-Added Product RK Newsom C Sivaraman SA McFarlane October 2012 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents

  8. Project Profile: High-Temperature Thermal Array for Next-Generation Solar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermal Power Production | Department of Energy Thermal Array for Next-Generation Solar Thermal Power Production Project Profile: High-Temperature Thermal Array for Next-Generation Solar Thermal Power Production Los Alamos National Laboratory logo The Los Alamos National Laboratory (LANL), under the National Laboratory R&D competitive funding opportunity, is developing a megawatt-scale heat pipe-based technology designed to bridge the heliostat reflector field and the power cycle by

  9. Project Profile: A Small-Particle Solar Receiver for High-Temperature

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Brayton Power Cycles | Department of Energy A Small-Particle Solar Receiver for High-Temperature Brayton Power Cycles Project Profile: A Small-Particle Solar Receiver for High-Temperature Brayton Power Cycles SDSU logo San Diego State University (SDSU), under the 2012 SunShot Concentrating Solar Power (CSP) R&D funding opportunity announcement (FOA), is demonstrating a new receiver design that uses air as the heat-transfer fluid. The university's innovative small-particle heat-exchange

  10. Differential absorption lidar measurements of atmospheric temperature profiles - Theory and experiment

    SciTech Connect (OSTI)

    Theopold, F.A.; Boesenberg, J. )

    1993-04-01

    The method of measuring atmospheric temperature profiles with differential absorption lidar (DIAL), based on the temperature dependence of oxygen absorption lines in the near-IR, is investigated in detail. Particularly, the influence of Doppler broadening on the Rayleigh-backscattered signal is evaluated, and a correction method for this effect is presented which requires an accurate estimate of the molecular and particle backscatter contributions; this is noted not to be achievable by the usual lidar inversion techniques. Under realistic conditions, resulting errors may be as high as 10 K. First range-resolved measurements using this technique are presented, using a slightly modified DIAL system originally constructed for water vapor measurements. While much better resolution can certainly be achieved by technical improvements, the errors introduced by the uncertainty of the backscatter contributions will remain and determine the accuracy that can be obtained with this method. 35 refs.

  11. Lithologic descriptions and temperature profiles of five wells in the southwestern Valles caldera region, New Mexico

    SciTech Connect (OSTI)

    Shevenell, L.; Goff, F.; Miles, D.; Waibel, A.; Swanberg, C.

    1988-01-01

    The subsurface stratigraphy and temperature profiles of the southern and western Valles caldera region have been well constrained with the use of data from the VC-1, AET-4, WC 23-4, PC-1 and PC-2 wells. Data from these wells indicate that thermal gradients west of the caldera margin are between 110 and 140)degrees)C/km, with a maximum gradient occurring in the bottom of PC-1 equal to 240)degrees)C/km as a result of thermal fluid flow. Gradients within the caldera reach a maximum of 350)degrees)C/km, while the maximum thermal gradient measured southwest of the caldera in the thermal outflow plume is 140)degrees)C/km. The five wells exhibit high thermal gradients (>60)deghrees)C/km) resulting from high conductive heat flow associated with the Rio Grande rift and volcanism in the Valles caldera, as well as high convective heat flow associated with circulating geothermal fluids. Gamma logs run in four of the five wells appear to be of limited use for stratigraphic correlations in the caldera region. However, stratigraphic and temperature data from the five wells provide information about the structure and thermal regime of the southern and western Valles caldera region. 29 refs., 9 figs. 2 tabs.

  12. The redshift evolution of the mean temperature, pressure, and entropy profiles in 80 SPT-selected galaxy clusters

    SciTech Connect (OSTI)

    McDonald, M.; Bautz, M.; Benson, B. A.; Vikhlinin, A.; Bayliss, M.; Forman, W. R.; Aird, K. A.; Allen, S. W.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Crawford, T. M.; Crites, A. T.; Bocquet, S.; Brodwin, M.; Cho, H. M.; Clocchiatti, A.; De Haan, T.; Dobbs, M. A.; Foley, R. J.; and others

    2014-10-10

    We present the results of an X-ray analysis of 80 galaxy clusters selected in the 2500 deg{sup 2} South Pole Telescope survey and observed with the Chandra X-ray Observatory. We divide the full sample into subsamples of ?20 clusters based on redshift and central density, performing a joint X-ray spectral fit to all clusters in a subsample simultaneously, assuming self-similarity of the temperature profile. This approach allows us to constrain the shape of the temperature profile over 0 < r < 1.5R {sub 500}, which would be impossible on a per-cluster basis, since the observations of individual clusters have, on average, 2000 X-ray counts. The results presented here represent the first constraints on the evolution of the average temperature profile from z = 0 to z = 1.2. We find that high-z (0.6 < z < 1.2) clusters are slightly (?30%) cooler both in the inner (r < 0.1R {sub 500}) and outer (r > R {sub 500}) regions than their low-z (0.3 < z < 0.6) counterparts. Combining the average temperature profile with measured gas density profiles from our earlier work, we infer the average pressure and entropy profiles for each subsample. Confirming earlier results from this data set, we find an absence of strong cool cores at high z, manifested in this analysis as a significantly lower observed pressure in the central 0.1R {sub 500} of the high-z cool-core subset of clusters compared to the low-z cool-core subset. Overall, our observed pressure profiles agree well with earlier lower-redshift measurements, suggesting minimal redshift evolution in the pressure profile outside of the core. We find no measurable redshift evolution in the entropy profile at r ? 0.7R {sub 500}this may reflect a long-standing balance between cooling and feedback over long timescales and large physical scales. We observe a slight flattening of the entropy profile at r ? R {sub 500} in our high-z subsample. This flattening is consistent with a temperature bias due to the enhanced (?3) rate at which group-mass (?2 keV) halos, which would go undetected at our survey depth, are accreting onto the cluster at z ? 1. This work demonstrates a powerful method for inferring spatially resolved cluster properties in the case where individual cluster signal-to-noise is low, but the number of observed clusters is high.

  13. ARM - Publications: Science Team Meeting Documents: 50 MHz RASS Temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    profiles: past, present and future 50 MHz RASS Temperature profiles: past, present and future Coulter, Richard DOE/Argonne National Laboratory The history and usefulness of virtual temperature profiles derived from 50 MHz Radio Acoustic Sounding System (RASS) data has been variable, at best. The reasons for this performance are explored using available data obtained at the SGP central facility between 1997 and the present. A conceptual model of the controlling meteorological and system

  14. ARM: G-band (183 GHz) Vapor Radiometer profiler: 15 microwave brightness temperatures from 170.0 to 183.3 GHz

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Maria Cadeddu

    2008-04-01

    G-band (183 GHz) Vapor Radiometer profiler: 15 microwave brightness temperatures from 170.0 to 183.3 GHz

  15. Measured and predicted temperature profiles along MEMS bridges at pressures from 0.05 to 625 torr.

    SciTech Connect (OSTI)

    Gallis, Michail A.; Torczynski, John Robert; Piekos, Edward Stanley; Serrano, Justin Raymond; Gorby, Allen D.; Phinney, Leslie Mary

    2010-10-01

    We will present experimental and computational investigations of the thermal performance of microelectromechanical systems (MEMS) as a function of the surrounding gas pressure. Lowering the pressure in MEMS packages reduces gas damping, providing increased sensitivity for certain MEMS sensors; however, such packaging also dramatically affects their thermal performance since energy transfer to the environment is substantially reduced. High-spatial-resolution Raman thermometry was used to measure the temperature profiles on electrically heated, polycrystalline silicon bridges that are nominally 10 microns wide, 2.25 microns thick, 12 microns above the substrate, and either 200 or 400 microns long in nitrogen atmospheres with pressures ranging from 0.05 to 625 Torr. Finite element modeling of the thermal behavior of the MEMS bridges is performed and compared to the experimental results. Noncontinuum gas effects are incorporated into the continuum finite element model by imposing temperature discontinuities at gas-solid interfaces that are determined from noncontinuum simulations. The experimental and simulation results indicate that at pressures below 0.5 Torr the gas-phase heat transfer is negligible compared to heat conduction through the thermal actuator legs. As the pressure increases above 0.5 Torr, the gas-phase heat transfer becomes more significant. At ambient pressures, gas-phase heat transfer drastically impacts the thermal performance. The measured and simulated temperature profiles are in qualitative agreement in the present study. Quantitative agreement between experimental and simulated temperature profiles requires accurate knowledge of temperature-dependent thermophysical properties, the device geometry, and the thermal accommodation coefficient.

  16. Project Profile: A Novel Storage Method for CSP Plants Allowing Operation at High Temperature

    Broader source: Energy.gov [DOE]

    City College of New York (CCNY), under the Thermal Storage FOA, is developing and testing a novel thermal storage method that allows operation at very high temperatures.

  17. In-Situ Acoustic Measurements of Temperature Profile in Extreme Environments

    SciTech Connect (OSTI)

    Skliar, Mikhail

    2015-03-31

    A gasifier’s temperature is the primary characteristic that must be monitored to ensure its performance and the longevity of its refractory. One of the key technological challenges impacting the reliability and economics of coal and biomass gasification is the lack of temperature sensors that are capable of providing accurate, reliable, and long-life performance in an extreme gasification environment. This research has proposed, demonstrated, and validated a novel approach that uses a noninvasive ultrasound method that provides real-time temperature distribution monitoring across the refractory, especially the hot face temperature of the refractory. The essential idea of the ultrasound measurements of segmental temperature distribution is to use an ultrasound propagation waveguide across a refractory that has been engineered to contain multiple internal partial reflectors at known locations. When an ultrasound excitation pulse is introduced on the cold side of the refractory, it will be partially reflected from each scatterer in the US propagation path in the refractory wall and returned to the receiver as a train of partial echoes. The temperature in the corresponding segment can be determined based on recorded ultrasonic waveform and experimentally defined relationship between the speed of sound and temperature. The ultrasound measurement method offers a powerful solution to provide continuous real time temperature monitoring for the occasions that conventional thermal, optical and other sensors are infeasible, such as the impossibility of insertion of temperature sensor, harsh environment, unavailable optical path, and more. Our developed ultrasound system consists of an ultrasound engineered waveguide, ultrasound transducer/receiver, and data acquisition, logging, interpretation, and online display system, which is simple to install on the existing units with minimal modification on the gasifier or use with new units. This system has been successfully tested with a 100 kW pilot scale down flow oxyfuel combustor, capturing in real time temperature changes during all relevant combustion process changes. The ultrasound measurements have excellent agreement with thermo- couple measurements, and appear to be more sensitive to temperature changes before the thermocouples response, which is believed to be the first demonstration of ultrasound measurements segmental temperature distribution across refractories.

  18. First measurement of time evolution of electron temperature profiles with Nd:YAG Thomson scattering system on Heliotron J

    SciTech Connect (OSTI)

    Kenmochi, N. Tei, S.; Zang, L.; Ohtani, Y.; Kasajima, K.; Minami, T.; Takahashi, C.; Mizuuchi, T.; Kobayashi, S.; Nagasaki, K.; Nakamura, Y.; Okada, H.; Kado, S.; Yamamoto, S.; Ohshima, S.; Konoshima, S.; Shi, N.; Sano, F.

    2014-11-15

    A Nd:YAG Thomson scattering system has been developed for Heliotron J. The system consists of two 550 mJ 50 Hz lasers, large collection optics, and 25 radial channel (?1 cm spatial resolution) interference polychromators. This measurement system achieves a S/N ratio of ?50 for low-density plasma (n{sub e} ? 0.5 10{sup 19} m{sup ?3}). A time evolution of electron temperature profiles was measured with this system for a high-intensity gas-puff (HIGP) fueling neutral-beam-injection plasma. The peripheral temperature of the higher-density phase after HIGP recovers to the low-density pre-HIGP level, suggesting that improving particle transport in the HIGP plasma may be possible.

  19. Virtual impactor

    DOE Patents [OSTI]

    Yeh, Hsu-Chi (Albuquerque, NM); Chen, Bean T. (Albuquerque, NM); Cheng, Yung-Sung (Albuquerque, NM); Newton, George J. (Albuquerque, NM)

    1988-08-30

    A virtual impactor having improved efficiency and low wall losses in which a core of clean air is inserted into the aerosol flow while aerosol flow is maintained adjacent inner wall surfaces of the focusing portion of the impactor. The flow rate of the core and the length of the throat of the impactor's collection probe, as well as the dimensional relationships of other components of the impactor adjacent the separation region of the impactor, are selected to optimize separation efficiency.

  20. Virtual impactor

    DOE Patents [OSTI]

    Yeh, H.C.; Chen, B.T.; Cheng, Y.S.; Newton, G.J.

    1988-08-30

    A virtual impactor is described having improved efficiency and low wall losses in which a core of clean air is inserted into the aerosol flow while aerosol flow is maintained adjacent to the inner wall surfaces of the focusing portion of the impactor. The flow rate of the core and the length of the throat of the impactor's collection probe, as well as the dimensional relationships of other components of the impactor adjacent the separation region of the impactor, are selected to optimize separation efficiency. 4 figs.

  1. A NOVEL X-RAY IMAGING CRYSTAL SPECTROMETER FOR DOPPLER MEASUREMENTS OF ION TEMPERATURE AND PLASMA ROTATION VELOCITY PROFILES

    SciTech Connect (OSTI)

    Bitter, M; Hill, K W; Scott, S; Ince-Cushman, A; Reinke, M; Rice, J E; Beiersdorfer, P; Gu, M F; Lee, S G; Broennimann, C; Eikenberry, E F

    2008-06-06

    A new type of X-ray imaging crystal spectrometer has been implemented on Alcator CMod for Doppler measurements of ion temperature and plasma rotation velocity profiles. The instrument consists of two spherically bent (102)-quartz crystals with radii of curvature of 1444 and 1385 mm and four 'PILATUS II' detector modules. It records spectra of He-like argon from the entire, 72 cm high, elongated plasma cross-section and spectra of H-like argon from a 20 cm high, central region of the plasma, with a spatial resolution of 1.3 cm and a time resolution of less than 20 ms. The new spectrometer concept is also of interest for the diagnosis of burning plasmas on future machines. This paper presents recent experimental results from Aclator C-Mod and discusses challenges in X-ray spectroscopy for the diagnosis of fusion plasmas on future machines.

  2. Virtual button interface

    DOE Patents [OSTI]

    Jones, Jake S. (Albuquerque, NM)

    1999-01-01

    An apparatus and method of issuing commands to a computer by a user interfacing with a virtual reality environment. To issue a command, the user directs gaze at a virtual button within the virtual reality environment, causing a perceptible change in the virtual button, which then sends a command corresponding to the virtual button to the computer, optionally after a confirming action is performed by the user, such as depressing a thumb switch.

  3. Virtual button interface

    DOE Patents [OSTI]

    Jones, J.S.

    1999-01-12

    An apparatus and method of issuing commands to a computer by a user interfacing with a virtual reality environment are disclosed. To issue a command, the user directs gaze at a virtual button within the virtual reality environment, causing a perceptible change in the virtual button, which then sends a command corresponding to the virtual button to the computer, optionally after a confirming action is performed by the user, such as depressing a thumb switch. 4 figs.

  4. Measurement of Boundary-Layer Temperature Profiles by a Scanning 5-MM Radiometer During the 1999 Winter NSA/AAO Radiometer Exp

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Boundary-Layer Temperature Profiles by a Scanning 5-MM Radiometer During the 1999 Winter NSA/AAO Radiometer Experiment and WVIOP 2000 V. Y. Leuski and E. R. Westwater Cooperative Institute for Research in the Environmental Sciences National Oceanic and Atmospheric Administration Environmental Technology Laboratory University of Colorado Boulder, Colorado Introduction A scanning 5-mm-wavelength radiometer was deployed during two Intensive Operational Periods (IOPs) at the Atmospheric Radiation

  5. Performance optimization of apodized FBG-based temperature sensors in single and quasi-distributed DWDM systems with new and different apodization profiles

    SciTech Connect (OSTI)

    Mohammed, Nazmi A.; Ali, Taha A. Aly, Moustafa H.

    2013-12-15

    In this work, different FBG temperature sensors are designed and evaluated with various apodization profiles. Evaluation is done under a wide range of controlling design parameters like sensor length and refractive index modulation amplitude, targeting a remarkable temperature sensing performance. New judgment techniques are introduced such as apodization window roll-off rate, asymptotic sidelobe (SL) decay level, number of SLs, and average SL level (SLav). Evaluation techniques like reflectivity, Full width at Half Maximum (FWHM), and Sidelobe Suppression Ratio (SLSR) are also used. A New apodization function is proposed, which achieves better performance like asymptotic decay of 18.4 dB/nm, high SLSR of 60 dB, high channel isolation of 57.9 dB, and narrow FWHM less than 0.15 nm. For a single accurate temperature sensor measurement in extensive noisy environment, optimum results are obtained by the Nuttall apodization profile and the new apodization function, which have remarkable SLSR. For a quasi-distributed FBG temperature sensor the Barthann and the new apodization profiles obtain optimum results. Barthann achieves a high asymptotic decay of 40 dB/nm, a narrow FWHM (less than 25 GHZ), a very low SLav of ?45.3 dB, high isolation of 44.6 dB, and a high SLSR of 35 dB. The new apodization function achieves narrow FWHM of 0.177 nm, very low SL of ?60.1, very low SLav of ?63.6 dB, and very high SLSR of ?57.7 dB. A study is performed on including an unapodized sensor among apodized sensors in a quasi-distributed sensing system. Finally, an isolation examination is performed on all the discussed apodizations and a linear relation between temperature and the Bragg wavelength shift is observed experimentally and matched with the simulated results.

  6. A spatially resolving x-ray crystal spectrometer for measurement of ion-temperature and rotation-velocity profiles on the Alcator C-Mod tokamak

    SciTech Connect (OSTI)

    Hill, K. W.; Bitter, M. L.; Scott, S. D.; Ince-Cushman, A.; Reinke, M.; Rice, J. E.; Beiersdorfer, P.; Gu, M.-F.; Lee, S. G.; Broennimann, Ch.; Eikenberry, E. F.

    2008-10-15

    A new spatially resolving x-ray crystal spectrometer capable of measuring continuous spatial profiles of high resolution spectra ({lambda}/d{lambda}>6000) of He-like and H-like Ar K{alpha} lines with good spatial ({approx}1 cm) and temporal ({approx}10 ms) resolutions has been installed on the Alcator C-Mod tokamak. Two spherically bent crystals image the spectra onto four two-dimensional Pilatus II pixel detectors. Tomographic inversion enables inference of local line emissivity, ion temperature (T{sub i}), and toroidal plasma rotation velocity (v{sub {phi}}) from the line Doppler widths and shifts. The data analysis techniques, T{sub i} and v{sub {phi}} profiles, analysis of fusion-neutron background, and predictions of performance on other tokamaks, including ITER, will be presented.

  7. PNNL: About - Virtual Tour

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tour PNNL Virtually Virtual Tour Virtual Tours at PNNL Take a 360-degree inside peak at where science happens Our campus has specialized facilities with delicate instruments that allow us to analyze the miniscule and compute the enormous. Start the tour to visit: Environmental Molecular Sciences Laboratory is DOE's premier molecular sciences laboratory with state-of-the-art powerful microscopes, spectrometers, and a supercomputer. As a user facility, these instruments are available to

  8. Project Profile: Development and Performance Evaluation of High Temperature Concrete for Thermal Energy Storage for Solar Power Generation

    Broader source: Energy.gov [DOE]

    The University of Arkansas, under the Thermal Storage FOA, is developing a novel concrete material that can withstand operating temperatures of 500°C or more and is measuring the concrete properties.

  9. Project Profile: Fundamental Corrosion Studies in High-Temperature Molten Salt Systems for Next-Generation CSP Systems

    Broader source: Energy.gov [DOE]

    The Savannah River National Laboratory (SRNL), under the National Laboratory R&D competitive funding opportunity, is working with United Technology Research Center and the University of Alabama to understand corrosion when operating concentrating solar power (CSP) systems at high temperatures with advanced power cycles and to develop corrosion mitigation strategies to lengthen system lifetimes. By improving high-temperature operation, CSP systems can achieve greater efficiencies and thereby reduce the overall system cost.

  10. Drying rate and temperature profile for superheated steam vacuum drying and moist air drying of softwood lumber

    SciTech Connect (OSTI)

    Pang, S.; Dakin, M. [New Zealand Forest Research Inst., Ltd., Rotorua (New Zealand). Mfg. Technologies Portfolio

    1999-07-01

    Two charges of green radiata pine sapwood lumber were dried, ether using superheated steam under vacuum (90 C, 0.2 bar abs.) or conventionally using hot moist air (90/60 C). Due to low density of the drying medium under vacuum, the circulation velocity used was 10 m/s for superheated steam drying and 5.0 m/s for moist air drying, and in both cases, the flow was unidirectional. In drying, stack drying rate and wood temperatures were measured to examine the differences between the superheated steam drying and drying using hot moist air. The experimental results have shown that the stack edge board in superheated steam drying dried faster than in the hot moist air drying. Once again due to the low density of the steam under vacuum, a prolonged maximum temperature drop across load (TDAL) was observed in the superheated steam drying, however, the whole stack dried slower and the final moisture content distribution was more variable than for conventional hot moist air drying.

  11. Jefferson Lab Virtual Tour

    SciTech Connect (OSTI)

    None

    2013-07-13

    Take a virtual tour of the campus of Thomas Jefferson National Accelerator Facility. You can see inside our two accelerators, three experimental areas, accelerator component fabrication and testing areas, high-performance computing areas and laser labs.

  12. Jefferson Lab Virtual Tour

    ScienceCinema (OSTI)

    None

    2014-05-22

    Take a virtual tour of the campus of Thomas Jefferson National Accelerator Facility. You can see inside our two accelerators, three experimental areas, accelerator component fabrication and testing areas, high-performance computing areas and laser labs.

  13. Virtual Advanced Power Training Environments | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Virtual Advanced Power Training Environments

  14. High efficiency virtual impactor

    DOE Patents [OSTI]

    Loo, B.W.

    1980-03-27

    Environmental monitoring of atmospheric air is facilitated by a single stage virtual impactor for separating an inlet flow (Q/sub 0/) having particulate contaminants into a coarse particle flow (Q/sub 1/) and a fine particle flow (Q/sub 2/) to enable collection of such particles on different filters for separate analysis. An inlet particle acceleration nozzle and coarse particle collection probe member having a virtual impaction opening are aligned along a single axis and spaced apart to define a flow separation region at which the fine particle flow (Q/sub 2/) is drawn radially outward into a chamber while the coarse particle flow (Q/sub 1/) enters the virtual impaction opening.

  15. Design, Construction, and Initial Test of High Spatial Resolution Thermometry Arrays for Detection of Surface Temperature Profiles on SRF Cavities in Super Fluid Helium

    SciTech Connect (OSTI)

    Ari Palczewski, Rongli Geng, Grigory Eremeev

    2011-07-01

    We designed and built two high resolution (0.6-0.55mm special resolution [1.1-1.2mm separation]) thermometry arrays prototypes out of the Allen Bradley 90-120 ohm 1/8 watt resistor to measure surface temperature profiles on SRF cavities. One array was designed to be physically flexible and conform to any location on a SRF cavity; the other was modeled after the common G-10/stycast 2850 thermometer and designed to fit on the equator of an ILC (Tesla 1.3GHz) SRF cavity. We will discuss the advantages and disadvantages of each array and their construction. In addition we will present a case study of the arrays performance on a real SRF cavity TB9NR001. TB9NR001 presented a unique opportunity to test the performance of each array as it contained a dual (4mm separation) cat eye defect which conventional methods such as OST (Oscillating Superleak second-sound Transducers) and full coverage thermometry mapping were unable to distinguish between. We will discuss the new arrays ability to distinguish between the two defects and their preheating performance.

  16. Virtual nuclear weapons

    SciTech Connect (OSTI)

    Pilat, J.F.

    1997-08-01

    The term virtual nuclear weapons proliferation and arsenals, as opposed to actual weapons and arsenals, has entered in recent years the American lexicon of nuclear strategy, arms control, and nonproliferation. While the term seems to have an intuitive appeal, largely due to its cyberspace imagery, its current use is still vague and loose. The author believes, however, that if the term is clearly delineated, it might offer a promising approach to conceptualizing certain current problems of proliferation. The first use is in a reference to an old problem that has resurfaced recently: the problem of growing availability of weapon-usable nuclear materials in civilian nuclear programs along with materials made `excess` to defense needs by current arms reduction and dismantlement. It is argued that the availability of these vast materials, either by declared nuclear-weapon states or by technologically advanced nonweapon states, makes it possible for those states to rapidly assemble and deploy nuclear weapons. The second use has quite a different set of connotations. It is derived conceptually from the imagery of computer-generated reality. In this use, one thinks of virtual proliferation and arsenals not in terms of the physical hardware required to make the bomb but rather in terms of the knowledge/experience required to design, assemble, and deploy the arsenal. Virtual weapons are a physics reality and cannot be ignored in a world where knowledge, experience, materials, and other requirements to make nuclear weapons are widespread, and where dramatic army reductions and, in some cases, disarmament are realities. These concepts are useful in defining a continuum of virtual capabilities, ranging from those at the low end that derive from general technology diffusion and the existence of nuclear energy programs to those at the high end that involve conscious decisions to develop or maintain militarily significant nuclear-weapon capabilities.

  17. High efficiency virtual impactor

    DOE Patents [OSTI]

    Loo, Billy W. (Oakland, CA)

    1981-01-01

    Environmental monitoring of atmospheric air is facilitated by a single stage virtual impactor (11) for separating an inlet flow (Q.sub.O) having particulate contaminants into a coarse particle flow (Q.sub.1) and a fine particle flow (Q.sub.2) to enable collection of such particles on different filters (19a, 19b) for separate analysis. An inlet particle acceleration nozzle (28) and coarse particle collection probe member (37) having a virtual impaction opening (41) are aligned along a single axis (13) and spaced apart to define a flow separation region (14) at which the fine particle flow (Q.sub.2) is drawn radially outward into a chamber (21) while the coarse particle flow (Q.sub.1) enters the virtual impaction opening (41). Symmetrical outlet means (47) for the chamber (21) provide flow symmetry at the separation region (14) to assure precise separation of particles about a cutpoint size and to minimize losses by wall impaction and gravitational settling. Impulse defocusing means (42) in the probe member (37) provides uniform coarse particle deposition on the filter (19a) to aid analysis. Particle losses of less than 1% for particles in the 0 to 20 micron range may be realized.

  18. Development of a spatially resolving x-ray crystal spectrometer for measurement of ion-temperature (T{sub i}) and rotation-velocity (v) profiles in ITER

    SciTech Connect (OSTI)

    Hill, K. W.; Bitter, M.; Delgado-Aparicio, L.; Johnson, D.; Feder, R.; Beiersdorfer, P.; Dunn, J.; Morris, K.; Wang, E.; Reinke, M.; Podpaly, Y.; Rice, J. E.; Barnsley, R.; O'Mullane, M.; Lee, S. G.

    2010-10-15

    Imaging x-ray crystal spectrometer (XCS) arrays are being developed as a US-ITER activity for Doppler measurement of T{sub i} and v profiles of impurities (W, Kr, and Fe) with {approx}7 cm (a/30) and 10-100 ms resolution in ITER. The imaging XCS, modeled after a prototype instrument on Alcator C-Mod, uses a spherically bent crystal and 2D x-ray detectors to achieve high spectral resolving power (E/dE>6000) horizontally and spatial imaging vertically. Two arrays will measure T{sub i} and both poloidal and toroidal rotation velocity profiles. The measurement of many spatial chords permits tomographic inversion for the inference of local parameters. The instrument design, predictions of performance, and results from C-Mod are presented.

  19. Development of a Spatially Resolving X-Ray Crystal Spectrometer (XCS) for Measurement of Ion-Temperature (Ti) and Rotation-Velocity (v) Profiles in ITER

    SciTech Connect (OSTI)

    Hill, K W; Delgado-Aprico, L; Johnson, D; Feder, R; Beiersdorfer,; Dunn, J; Morris, K; Wang, E; Reinke, M; Podpaly, Y; Rice, J E; Barnsley, R; O'Mullane, M; Lee, S G

    2010-05-21

    Imaging XCS arrays are being developed as a US-ITER activity for Doppler measurement of Ti and v profiles of impurities (W, Kr, Fe) with ~7 cm (a/30) and 10-100 ms resolution in ITER. The imaging XCS, modeled after a PPPL-MIT instrument on Alcator C-Mod, uses a spherically bent crystal and 2d x-ray detectors to achieve high spectral resolving power (E/dE>6000) horizontally and spatial imaging vertically. Two arrays will measure Ti and both poloidal and toroidal rotation velocity profiles. Measurement of many spatial chords permits tomographic inversion for inference of local parameters. The instrument design, predictions of performance, and results from C-Mod will be presented.

  20. Virtual environment tactile system

    DOE Patents [OSTI]

    Renzi, R.

    1996-12-10

    A method for providing a realistic sense of touch in virtual reality by means of programmable actuator assemblies is disclosed. Each tactile actuator assembly consists of a number of individual actuators whose movement is controlled by a computer and associated drive electronics. When an actuator is energized, the rare earth magnet and the associated contactor, incorporated within the actuator, are set in motion by the opposing electromagnetic field of a surrounding coil. The magnet pushes the contactor forward to contact the skin resulting in the sensation of touch. When the electromagnetic field is turned off, the rare earth magnet and the contactor return to their neutral positions due to the magnetic equilibrium caused by the interaction with the ferrous outer sleeve. The small size and flexible nature of the actuator assemblies permit incorporation into a glove, boot or body suit. The actuator has additional applications, such as, for example, as an accelerometer, an actuator for precisely controlled actuations or to simulate the sensation of braille letters. 28 figs.

  1. Virtual environment tactile system

    DOE Patents [OSTI]

    Renzi, Ronald

    1996-01-01

    A method for providing a realistic sense of touch in virtual reality by means of programmable actuator assemblies is disclosed. Each tactile actuator assembly consists of a number of individual actuators whose movement is controlled by a computer and associated drive electronics. When an actuator is energized, the rare earth magnet and the associated contactor, incorporated within the actuator, are set in motion by the opposing electromagnetic field of a surrounding coil. The magnet pushes the contactor forward to contact the skin resulting in the sensation of touch. When the electromagnetic field is turned off, the rare earth magnet and the contactor return to their neutral positions due to the magnetic equilibrium caused by the interaction with the ferrous outer sleeve. The small size and flexible nature of the actuator assemblies permit incorporation into a glove, boot or body suit. The actuator has additional applications, such as, for example, as an accelerometer, an actuator for precisely controlled actuations or to simulate the sensation of braille letters.

  2. Virtual gap dielectric wall accelerator

    DOE Patents [OSTI]

    Caporaso, George James; Chen, Yu-Jiuan; Nelson, Scott; Sullivan, Jim; Hawkins, Steven A

    2013-11-05

    A virtual, moving accelerating gap is formed along an insulating tube in a dielectric wall accelerator (DWA) by locally controlling the conductivity of the tube. Localized voltage concentration is thus achieved by sequential activation of a variable resistive tube or stalk down the axis of an inductive voltage adder, producing a "virtual" traveling wave along the tube. The tube conductivity can be controlled at a desired location, which can be moved at a desired rate, by light illumination, or by photoconductive switches, or by other means. As a result, an impressed voltage along the tube appears predominantly over a local region, the virtual gap. By making the length of the tube large in comparison to the virtual gap length, the effective gain of the accelerator can be made very large.

  3. 2016 IC Virtual Career Fair

    Broader source: Energy.gov [DOE]

    Meet the Intelligence Community Online at the IC Virtual Career Fair on Thursday, March 3, 2016 from 2pm to 8pm. To register, please go to www.ICVirtualFair.com.

  4. Characterization of self-propagating formation reactions in Ni/Zr multilayered foils using reaction heats, velocities, and temperature-time profiles

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Barron, S. C.; Knepper, R.; Walker, N.; Weihs, T. P.

    2011-01-11

    We report on intermetallic formation reactions in vapor-deposited multilayered foils of Ni/Zr with 70 nm bilayers and overall atomic ratios of Ni:Zr, 2 Ni:Zr, and 7 Ni:2 Zr. The sequence of alloy phase formation and the stored energy is evaluated at slow heating rates (~1 K/s) using differential scanning calorimetry (DSC) traces to 725ºC. All three chemistries initially form a Ni-Zr amorphous phase which crystallizes first to the intermetallic NiZr. The heat of reaction to the final phase is 34-36 kJ/mol atom for all chemistries. Intermetallic formation reactions are also studied at rapid heating rates (greater than 105 K/s) inmore » high temperature, self-propagating reactions which can be ignited in these foils by an electric spark. We find that reaction velocities and maximum reaction temperatures (Tmax) are largely independent of foil chemistry at 0.6 ± 0.1 m/s and 1220 ± 50 K, respectively, and that the measured Tmax is more than 200 K lower than predicted adiabatic temperatures (Tad). The difference between Tmax and Tad is explained by the prediction that transformation to the final intermetallic phases occurs after Tmax and results in the release of 20-30 % of the total heat of reaction and a delay in rapid cooling.« less

  5. People Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    People Profiles Featured Profile Hye-Sook Park Pursuing a challenging-and rewarding-career Read More » Tanza Lewis Tanza Lewis Jamie King Jamie King Lisa Burrows Lisa Burrows Jeremy Huckins Jeremy Huckins Ibo Matthews Ibo Matthews Peter Thelin Peter Thelin Susanna Reyes Susana Reyes Jerry Britten Jerry Britten Reggie Drachenberg Reggie Drachenberg Beth Dzenitis Beth Dzenitis Rebecca Dylla-Spears Rebecca Dylla-Spears John Heebner John Heebner Terry Land Terry Land Zhi Liao Zhi Liao Roark Marsh

  6. Virtual Control Systems Environment (VCSE)

    SciTech Connect (OSTI)

    Atkins, Will

    2012-10-08

    Will Atkins, a Sandia National Laboratories computer engineer discusses cybersecurity research work for process control systems. Will explains his work on the Virtual Control Systems Environment project to develop a modeling and simulation framework of the U.S. electric grid in order to study and mitigate possible cyberattacks on infrastructure.

  7. Virtual Control Systems Environment (VCSE)

    ScienceCinema (OSTI)

    Atkins, Will

    2014-02-26

    Will Atkins, a Sandia National Laboratories computer engineer discusses cybersecurity research work for process control systems. Will explains his work on the Virtual Control Systems Environment project to develop a modeling and simulation framework of the U.S. electric grid in order to study and mitigate possible cyberattacks on infrastructure.

  8. Instructions for Using Virtual Private Network (VPN)

    Broader source: Energy.gov [DOE]

    Virtual Private Network (VPN) provides access to network drives and is recommended for use only from a EITS provided laptop.

  9. Computer Assisted Virtual Environment - CAVE

    ScienceCinema (OSTI)

    Erickson, Phillip; Podgorney, Robert; Weingartner, Shawn; Whiting, Eric

    2014-06-09

    Research at the Center for Advanced Energy Studies is taking on another dimension with a 3-D device known as a Computer Assisted Virtual Environment. The CAVE uses projection to display high-end computer graphics on three walls and the floor. By wearing 3-D glasses to create depth perception and holding a wand to move and rotate images, users can delve into data.

  10. Extension of a Virtual Refrigerant Charge Sensor

    SciTech Connect (OSTI)

    Kim, Woohyun; Braun, J.

    2015-07-01

    The primary goal of the work described in this paper was to evaluate and extend a virtual refrigerant charge sensor (VRC) for determining refrigerant charge for equipment having variable-speed compressors and fans. To evaluate the accuracy of the VRC, data were first collected from previous laboratory tests for different systems and over a wide range of operating conditions. In addition, new laboratory tests were performed to consider conditions not available within the existing data set. The systems for the new laboratory tests were two residential ductless split heat pump systems that employ a variable-speed compressor and R-410a as the refrigerant. Based on the evaluations, the original virtual charge sensor (termed model I) was found to work well in estimating the refrigerant charge for systems with a variable-speed compressor under many operating conditions. However, for extreme test conditions such as low outdoor temperatures and low compressor speed, the VRC needed to be improved. To overcome the limitations, the model associated with the VRC sensor was modified to include a term involving the inlet quality to the evaporator estimated from the condenser outlet condition (termed model II). Both model I and II showed good performance in terms of predicting charge levels for systems with a constant speed compressor, but model II gave better performance for systems with a variable-speed compressor. However, when the superheat of the compressor was zero, neither model I nor II could accurately predict charge level. Therefore, a third approach (Model III) was developed that includes the discharge superheat of the compressor. This model improved performance for a laboratory-tested system that included a number of points with no superheat entering the compressor.

  11. ARM - Field Campaign - Microwave Radiometer Profiler Evaluation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsMicrowave Radiometer Profiler Evaluation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Microwave Radiometer Profiler Evaluation 2000.09.01 - 2001.03.31 Lead Scientist : James Liljegren For data sets, see below. Abstract The microwave radiometer profiler (MWRP) is a new 12-channel radiometer developed by Radiometrics Corporation for measuring vertical profiles of temperature, water vapor, and

  12. Booster Neutrino Experiment - Virtual Tour

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Virtual Tour This series of pages about MiniBooNE will help you understand more about the what, why, and how of our experiment. When you begin the tour, a new window will open and you can use the next and back buttons to navigate. You may exit at any time by clicking on the "X" button in the upper right hand corner of the window. Start the tour here... This tour was created by Jessica Falco in 2000 and updated by Kelly O'Hear in 2002. Jessica and Kelly were high school students who

  13. Virtualized Network Control. Final Report

    SciTech Connect (OSTI)

    Ghani, Nasir

    2013-02-01

    This document is the final report for the Virtualized Network Control (VNC) project, which was funded by the United States Department of Energy (DOE) Office of Science. This project was also informally referred to as Advanced Resource Computation for Hybrid Service and TOpology NEtworks (ARCHSTONE). This report provides a summary of the project's activities, tasks, deliverable, and accomplishments. It also provides a summary of the documents, software, and presentations generated as part of this projects activities. Namely, the Appendix contains an archive of the deliverables, documents, and presentations generated a part of this project.

  14. Virtual Reality for Nuclear Material Handling

    Broader source: Energy.gov [DOE]

    AIKEN, S.C. – EM’s Savannah River National Laboratory (SRNL) is applying a high-tech solution to complex and dangerous workforce training: virtual reality.

  15. Ultrafast Laser Facility - Virtual Tour | Photosynthetic Antenna...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a virtual tour of the Ultrafast Laser Facility for St. Louis University High School students. Special thanks to teacher Nhan Pham for joining us An error occurred. Try...

  16. Alabama Profile

    Gasoline and Diesel Fuel Update (EIA)

    Alabama State Energy Profile Alabama Quick Facts In 2013, Alabama ranked 17th in the nation in the number of producing natural gas wells. Mobile, Alabama was the fourth-largest seaport for exporting U.S. coal in 2013. Coking coal used in the steelmaking process accounted for 82% of total exported coal. The three reactors at the Browns Ferry Nuclear Plant in Limestone County, Alabama have a combined generating capacity of 3,310 megawatts, second in capacity only to Arizona's Palo Verde plant.

  17. 2015 IC Virtual Career Fair | Department of Energy

    Office of Environmental Management (EM)

    2015 IC Virtual Career Fair 2015 IC Virtual Career Fair Instructions for Applicants Please use the following process to submit an application and resume for DOE's 2015 IC Virtual...

  18. Building Controls Virtual Test Bed

    Energy Science and Technology Software Center (OSTI)

    2008-04-01

    The Building Controls Virtual Test Bed (BCVTB) is a modular software environment that is based on the Ptolemy II software environment. The BCVTB can be used for design and analysis of heterogenous systems, such as building energy and controls systems. Our additions to Ptolemy II allow users to Couple to Ptolemy II simulation software such as EnergyPlus, MATLAB/Simulink or Dymola for data exchange during run-time. Future versions of the BCVTS will also contain an interfacemore » to BACnet which is a communication protocol for building Control systems, and interfaces to digital/analog converters that allow communication with controls hardware. Through Ptolemy II, the BCVTB provides a graphical model building environment, synchronizes the exchanged data and visualizes the system evolution during run- time.« less

  19. BioenergizeME Virtual Science Fair: Science & Technology Sustainable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science & Technology Sustainable Transportation Fuels BioenergizeME Virtual Science Fair: Science & Technology Sustainable Transportation Fuels BioenergizeME Virtual Science Fair: ...

  20. SMART Wind Consortium Composites Subgroup Virtual Meeting: Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SMART Wind Consortium Composites Subgroup Virtual Meeting: Advanced Manufacturing of Wind Turbine Blades SMART Wind Consortium Composites Subgroup Virtual Meeting: Advanced...

  1. Integrated Virtual Lab in Supporting Heavy Duty Engine and Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Virtual Lab in Supporting Heavy Duty Engine and Vehicle Emission Rulemaking Integrated Virtual Lab in Supporting Heavy Duty Engine and Vehicle Emission Rulemaking Presentation ...

  2. T-678: Red Hat Enterprise Virtualization Hypervisor VLAN Packet...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8: Red Hat Enterprise Virtualization Hypervisor VLAN Packet Processing Flaw Lets Remote Users Deny Service T-678: Red Hat Enterprise Virtualization Hypervisor VLAN Packet...

  3. CBEI: Virtual Refrigerant Charge Sensing and Load Metering -...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Virtual Refrigerant Charge Sensing and Load Metering - 2015 Peer Review Presenter: James Braun, Purdue University View the Presentation PDF icon CBEI: Virtual Refrigerant...

  4. DRAFT Microwave Radiometer Profiler Handbook

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Microwave Radiometer Profiler Handbook Evaluation of a New Multi-Frequency Microwave Radiometer for Measuring the Vertical Distribution of Temperature, Water Vapor, and Cloud Liquid Water Prepared by James C. Liljegren Environmental Research Division Argonne National Laboratory December 4, 2002 For the DOE Atmospheric Radiation Measurement (ARM) Program 2 Table of Contents Abstract

  5. Two implementations of shared virtual space environments.

    SciTech Connect (OSTI)

    Disz, T. L.

    1998-01-13

    While many issues in the area of virtual reality (VR) research have been addressed in recent years, the constant leaps forward in technology continue to push the field forward. VR research no longer is focused only on computer graphics, but instead has become even more interdisciplinary, combining the fields of networking, distributed computing, and even artificial intelligence. In this article we discuss some of the issues associated with distributed, collaborative virtual reality, as well as lessons learned during the development of two distributed virtual reality applications.

  6. Virtual tour: INL's space battery facility

    ScienceCinema (OSTI)

    Johnson, Steve

    2013-05-28

    This virtual tour shows how INL fuels and tests nuclear power systems for deep space missions. To learn more about INL's contribution to the Mars Science Laboratory, visit http://www.inl.gov/marsrover.

  7. National Energy Literacy Virtual Town Hall

    Broader source: Energy.gov [DOE]

    The webinar will be a dynamic, virtual conversation for educators about ongoing efforts from across the country in utilizing the Department of Energy's Energy Literacy Framework to address one of our nation's’ biggest national challenges, energy illiteracy.

  8. BioenergizeME Virtual Science Fair: Bioenergy

    Broader source: Energy.gov [DOE]

    This infographic was created by students from Sun Valley High School in Aston, PA, as part of the U.S. Department of Energy-BioenergizeME Virtual Science Fair.

  9. Robotics virtual rail system and method

    DOE Patents [OSTI]

    Bruemmer, David J. (Idaho Falls, ID); Few, Douglas A. (Idaho Falls, ID); Walton, Miles C. (Idaho Falls, ID)

    2011-07-05

    A virtual track or rail system and method is described for execution by a robot. A user, through a user interface, generates a desired path comprised of at least one segment representative of the virtual track for the robot. Start and end points are assigned to the desired path and velocities are also associated with each of the at least one segment of the desired path. A waypoint file is generated including positions along the virtual track representing the desired path with the positions beginning from the start point to the end point including the velocities of each of the at least one segment. The waypoint file is sent to the robot for traversing along the virtual track.

  10. Residential heating oil prices virtually unchanged

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Residential heating oil prices virtually unchanged The average retail price for home heating oil rose 2-tenths of a cent from a week ago to 4.24 per gallon. That's up 8.2 cents...

  11. Residential heating oil prices virtually unchanged

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil prices virtually unchanged The average retail price for home heating oil fell 4-tenths of a penny from a week ago to 3.95 per gallon. That's down 8-tenths of a penny...

  12. Deflagration Wave Profiles

    SciTech Connect (OSTI)

    Menikoff, Ralph

    2012-04-03

    Shock initiation in a plastic-bonded explosives (PBX) is due to hot spots. Current reactive burn models are based, at least heuristically, on the ignition and growth concept. The ignition phase occurs when a small localized region of high temperature (or hot spot) burns on a fast time scale. This is followed by a growth phase in which a reactive front spreads out from the hot spot. Propagating reactive fronts are deflagration waves. A key question is the deflagration speed in a PBX compressed and heated by a shock wave that generated the hot spot. Here, the ODEs for a steady deflagration wave profile in a compressible fluid are derived, along with the needed thermodynamic quantities of realistic equations of state corresponding to the reactants and products of a PBX. The properties of the wave profile equations are analyzed and an algorithm is derived for computing the deflagration speed. As an illustrative example, the algorithm is applied to compute the deflagration speed in shock compressed PBX 9501 as a function of shock pressure. The calculated deflagration speed, even at the CJ pressure, is low compared to the detonation speed. The implication of this are briefly discussed.

  13. Ion mobility spectrometer with virtual aperture grid

    DOE Patents [OSTI]

    Pfeifer, Kent B. (Los Lunas, NM); Rumpf, Arthur N. (Albuquerque, NM)

    2010-11-23

    An ion mobility spectrometer does not require a physical aperture grid to prevent premature ion detector response. The last electrodes adjacent to the ion collector (typically the last four or five) have an electrode pitch that is less than the width of the ion swarm and each of the adjacent electrodes is connected to a source of free charge, thereby providing a virtual aperture grid at the end of the drift region that shields the ion collector from the mirror current of the approaching ion swarm. The virtual aperture grid is less complex in assembly and function and is less sensitive to vibrations than the physical aperture grid.

  14. Ames Lab 101: C6: Virtual Engineering

    ScienceCinema (OSTI)

    None

    2012-08-29

    Ames Laboratory scientist Doug McCorkle explains the importance of virtual engineering and talks about the C6. The C6 is a three-dimensional, fully-immersive synthetic environment residing in the center atrium of Iowa State University's Howe Hall.

  15. DOE Sustainability Awards Best Practices Virtual Workshop

    Broader source: Energy.gov [DOE]

    The Sustainability Performance Office (SPO) will host a virtual best practices workshop on April 23, 2014 (2:00-3:30 PM EDT) to recognize the winners of the 2013 DOE Sustainability Awards. Award winners will present on their accomplishments and answer brief questions on their programs and projects. Please join us in celebrating the 2013 DOE Sustainability Awards winners.

  16. Webcast: National Energy Literacy Virtual Town Hall | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Webcast: National Energy Literacy Virtual Town Hall Webcast: National Energy Literacy Virtual Town Hall Webcast: National Energy Literacy Virtual Town Hall On August 5, 2014, the Department of Energy (DOE) hosted a dynamic virtual conversation of ongoing efforts from across the country in utilizing the Energy Literacy Framework to address one of our nations' biggest national challenges, "Energy Illiteracy." The goal of this webinar was to share resources in energy education and provide

  17. How ORISE is Making a Difference: Virtual Community Reception Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Virtual Community Reception Center 3-D virtual training equips health departments for mass casualty radiation emergencies Virtual Community Reception Center The Virtual Community Reception Center. Click Image to launch video. Following a mass casualty radiation emergency, public health professionals will play a crucial role in assessing radiation exposures, screening for radioactive contamination, and prioritizing people for further care. This process-population monitoring-will be conducted in

  18. Virtual Oxygen Sensor for Innovative NOx and PM Emission Control

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies | Department of Energy Virtual Oxygen Sensor for Innovative NOx and PM Emission Control Technologies Virtual Oxygen Sensor for Innovative NOx and PM Emission Control Technologies A virtual O2 sensor for the intake manifold of a diesel engine equipped with EGR, along with a virtual intake manifold O2 sensor, show good accuracy with stationary measurements PDF icon deer09_traver.pdf More Documents & Publications Simulation and Analysis of HP/LP EGR for Heavy-Duty Applications

  19. Profiling Your Application

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Profiling Your Application Profiling Your Application Introduction By quantifying the performance of your application on present-day architectures, you will be better able to prioritize, plan, and implement code changes that will enable good performance on Cori. Here, we provide general background on application profiling, as well as links to resources and tools available at NERSC to assist you in this effort. Background Of the platforms available at NERSC, we recommend profiling on Edison and

  20. Process for forming retrograde profiles in silicon

    DOE Patents [OSTI]

    Weiner, Kurt H. (San Jose, CA); Sigmon, Thomas W. (Phoenix, AZ)

    1996-01-01

    A process for forming retrograde and oscillatory profiles in crystalline and polycrystalline silicon. The process consisting of introducing an n- or p-type dopant into the silicon, or using prior doped silicon, then exposing the silicon to multiple pulses of a high-intensity laser or other appropriate energy source that melts the silicon for short time duration. Depending on the number of laser pulses directed at the silicon, retrograde profiles with peak/surface dopant concentrations which vary from 1-1e4 are produced. The laser treatment can be performed in air or in vacuum, with the silicon at room temperature or heated to a selected temperature.

  1. Process for forming retrograde profiles in silicon

    DOE Patents [OSTI]

    Weiner, K.H.; Sigmon, T.W.

    1996-10-15

    A process is disclosed for forming retrograde and oscillatory profiles in crystalline and polycrystalline silicon. The process consisting of introducing an n- or p-type dopant into the silicon, or using prior doped silicon, then exposing the silicon to multiple pulses of a high-intensity laser or other appropriate energy source that melts the silicon for short time duration. Depending on the number of laser pulses directed at the silicon, retrograde profiles with peak/surface dopant concentrations which vary are produced. The laser treatment can be performed in air or in vacuum, with the silicon at room temperature or heated to a selected temperature.

  2. Comparison of Virtualization and Containerization Techniques for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High-Performance Computing | Argonne Leadership Computing Facility Comparison of Virtualization and Containerization Techniques for High-Performance Computing Event Sponsor: Mathematics and Computer Science Division Seminar Start Date: Feb 9 2016 - 12:00pm Building/Room: Building 240/Room 4301 Location: Argonne National Laboratory Speaker(s): Balaji Subramaniam Host: Kate Keahey High Performance Computing (HPC) users have traditionally used dedicated clusters hosted in national laboratories

  3. Fermilab Today | University Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    University Profiles Archive Subscribe | Contact Fermilab Today | Archive | Classifieds Search GO More than 2,000 scientists worldwide work with Fermilab. In the United States, about 1,300 scientists from institutions in 36 states rely on Fermilab for their research, with support from the U.S. Department of Energy and the National Science Foundation. These profiles, published in Fermilab Today, spotlight the critical role of universities in particle physics research. We'd love to profile your

  4. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Nevada Electricity Profile 2013 Table 1. 2013 Summary statistics (Nevada) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 10,652 34 Electric...

  5. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota Electricity Profile 2013 Table 1. 2013 Summary statistics (Minnesota) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 15,758 26 Electric...

  6. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi Electricity Profile 2013 Table 1. 2013 Summary statistics (Mississippi) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 15,561 28...

  7. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    York Electricity Profile 2013 Table 1. 2013 Summary statistics (New York) Item Value Rank Primary energy source Natural Gas Net summer capacity (megawatts) 39,918 6 Electric...

  8. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Vermont Electricity Profile 2013 Table 1. 2013 Summary statistics (Vermont) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 1,255 50 Electric...

  9. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Hampshire Electricity Profile 2013 Table 1. 2013 Summary statistics (New Hampshire) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 4,413 44 Electric...

  10. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Montana Electricity Profile 2013 Table 1. 2013 Summary statistics (Montana) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 6,329 41 Electric utilities...

  11. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Massachusetts Electricity Profile 2013 Table 1. 2013 Summary statistics (Massachusetts) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 13,678 32...

  12. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Virginia Electricity Profile 2013 Table 1. 2013 Summary statistics (Virginia) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 24,828 16 Electric...

  13. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Missouri Electricity Profile 2013 Table 1. 2013 Summary statistics (Missouri) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 21,801 19 Electric...

  14. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut Electricity Profile 2013 Table 1. 2013 Summary statistics (Connecticut) Item Value U.S. Rank Primary energy source Nuclear Net summer capacity (megawatts) 8,769 35...

  15. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    North Carolina Electricity Profile 2013 Table 1. 2013 Summary statistics (North Carolina) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 30,048 12...

  16. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Texas Electricity Profile 2013 Table 1. 2013 Summary statistics (Texas) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 109,584 1 Electric...

  17. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Rhode Island Electricity Profile 2013 Table 1. 2013 Summary statistics (Rhode Island) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 1,809 49...

  18. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Wisconsin Electricity Profile 2013 Table 1. 2013 Summary statistics (Wisconsin) Item Value Rank Primary Energy Source Coal Net summer capacity (megawatts) 17,342 23 Electric...

  19. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Michigan Electricity Profile 2013 Table 1. 2013 Summary statistics (Michigan) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 30,128 11 Electric...

  20. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Jersey Electricity Profile 2013 Table 1. 2013 Summary statistics (New Jersey) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 18,997 22 Electric...

  1. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania Electricity Profile 2013 Table 1. 2013 Summary statistics (Pennsylvania) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 43,040 5 Electric...

  2. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Nebraska Electricity Profile 2013 Table 1. 2013 Summary statistics (Nebraska) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 8,449 36 Electric utilities...

  3. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska Electricity Profile 2013 Table 1. 2013 Summary statistics (Alaska) Item Value Rank Primary energy source Natural Gas Net summer capacity (megawatts) 2,384 48 Electric...

  4. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma Electricity Profile 2013 Table 1. 2013 Summary statistics (Oklahoma) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 23,300 17 Electric...

  5. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota Electricity Profile 2013 Table 1. 2013 Summary statistics (North Dakota) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 6,566 40 Electric...

  6. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    West Virginia Electricity Profile 2013 Table 1. 2013 Summary statistics (West Virginia) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 16,282 24...

  7. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Maryland Electricity Profile 2013 Table 1. 2013 Summary statistics (Maryland) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 12,339 33 Electric...

  8. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    District of Columbia Electricity Profile 2013 Table 1. 2013 Summary statistics (District of Columbia) Item Value U.S. Rank Primary energy source Natural gas Net summer capacity...

  9. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina Electricity Profile 2013 Table 1. 2013 Summary statistics (South Carolina) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 23,017 18 Electric...

  10. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Tennessee Electricity Profile 2013 Table 1. 2013 Summary statistics (Tennessee) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 21,326 20 Electric...

  11. CBEI: Virtual Refrigerant Charge Sensing and Load Metering - 2015 Peer

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review | Department of Energy Virtual Refrigerant Charge Sensing and Load Metering - 2015 Peer Review CBEI: Virtual Refrigerant Charge Sensing and Load Metering - 2015 Peer Review Presenter: James Braun, Purdue University View the Presentation PDF icon CBEI: Virtual Refrigerant Charge Sensing and Load Metering - 2015 Peer Review More Documents & Publications CBEI: FDD for Advanced RTUs - 2015 Peer Review Control and Diagnostics for Rooftop Units - 2014 BTO Peer Review CBEI: Coordinating

  12. The Heavy Ion Fusion Science Virtual National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Heavy Ion Fusion Science Virtual National Laboratory Python in a Parallel Environment Dave Grote - LLNL & LBNL NUG2013 User Day Wednesday, February 15, 2013 Slide 2 The Heavy Ion Fusion Science Virtual National Laboratory Outline * Why we use Python * How we use Python * Parallel Python with pyMPI * Our graphics model with Pygist * Parallel Python drawbacks and resolutions - Start up time - Static building * Conclusions Slide 3 The Heavy Ion Fusion Science Virtual National Laboratory 3

  13. Implementing virtual reality interfaces for the geosciences

    SciTech Connect (OSTI)

    Bethel, W.; Jacobsen, J.; Austin, A.; Lederer, M.; Little, T.

    1996-06-01

    For the past few years, a multidisciplinary team of computer and earth scientists at Lawrence Berkeley National Laboratory has been exploring the use of advanced user interfaces, commonly called {open_quotes}Virtual Reality{close_quotes} (VR), coupled with visualization and scientific computing software. Working closely with industry, these efforts have resulted in an environment in which VR technology is coupled with existing visualization and computational tools. VR technology may be thought of as a user interface. It is useful to think of a spectrum, ranging the gamut from command-line interfaces to completely immersive environments. In the former, one uses the keyboard to enter three or six-dimensional parameters. In the latter, three or six-dimensional information is provided by trackers contained either in hand-held devices or attached to the user in some fashion, e.g. attached to a head-mounted display. Rich, extensible and often complex languages are a vehicle whereby the user controls parameters to manipulate object position and location in a virtual world, but the keyboard is the obstacle in that typing is cumbersome, error-prone and typically slow. In the latter, the user can interact with these parameters by means of motor skills which are highly developed. Two specific geoscience application areas will be highlighted. In the first, we have used VR technology to manipulate three-dimensional input parameters, such as the spatial location of injection or production wells in a reservoir simulator. In the second, we demonstrate how VR technology has been used to manipulate visualization tools, such as a tool for computing streamlines via manipulation of a {open_quotes}rake.{close_quotes} The rake is presented to the user in the form of a {open_quotes}virtual well{close_quotes} icon, and provides parameters used by the streamlines algorithm.

  14. Upcoming Release of the University of Minnesota's Virtual Wind...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab Photovoltaic Systems Evaluation Laboratory PV Regional ... Facility Geomechanics and Drilling Labs National ... and prepare UMN's offshore version of the Virtual ...

  15. A Stochastic Reactor Based Virtual Engine Model Employing Detailed...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Detailed Chemistry for Kinetic Studies of In-Cylinder Combustion and Exhaust Aftertreatment A Stochastic Reactor Based Virtual Engine Model Employing Detailed Chemistry for ...

  16. Manipulative Virtual Tools for Tool Mark Characterization | The...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manipulative Virtual Tools for Tool Mark Characterization DESCRIPTION: The goal of this project is to develop a methodology whereby a three-dimensional (3-D) computer simulation of...

  17. Manipulative Virtual Tools for Tool Mark Characterization | The Ames

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Manipulative Virtual Tools for Tool Mark Characterization FWP/Project Description: The goal of this project is to develop a methodology whereby a three-dimensional (3-D) computer simulation of a tool tip is generated. Quantitative 3-D data from the suspected tool and evidence toolmark will be acquired and a virtual reality program developed that takes this data and reconstructs a "virtual tool" for computer manipulation to create "virtual tool marks." Duplicate

  18. T-588: HP Virtual SAN Appliance Stack Overflow

    Broader source: Energy.gov [DOE]

    A vulnerability has been reported in HP StorageWorks P4000 Virtual SAN Appliance Software, which can be exploited by malicious people to compromise a vulnerable system.

  19. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Georgia Electricity Profile 2013 Table 1. 2013 Summary statistics (Georgia) Item Value U.S. Rank Primary energy source Natural gas Net summer capacity (megawatts) 38,210 7 Electric...

  20. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona Electricity Profile 2013 Table 1. 2013 Summary statistics (Arizona) Item Value U.S. Rank Primary energy source Coal Net summer capacity (megawatts) 27,910 13 Electric...

  1. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Maine Electricity Profile 2013 Table 1. 2013 Summary statistics (Maine) Item Value U.S. Rank Primary energy source Natural gas Net summer capacity (megawatts) 4,499 43 Electric...

  2. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Utah Electricity Profile 2013 Table 1. 2013 Summary statistics (Utah) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 7,698 39 Electric utilities 6,669...

  3. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Hawaii Electricity Profile 2013 Table 1. 2013 Summary statistics (Hawaii) Item Value U.S. Rank Primary energy source Petroleum Net summer capacity (megawatts) 2,757 47 Electric...

  4. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Kentucky Electricity Profile 2013 Table 1. 2013 Summary statistics (Kentucky) Item Value U.S. Rank Primary energy source Coal Net summer capacity (megawatts) 21,004 21 Electric...

  5. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Indiana Electricity Profile 2013 Table 1. 2013 Summary statistics (Indiana) Item Value U.S. Rank Primary energy source Coal Net summer capacity (megawatts) 27,196 14 Electric...

  6. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Colorado Electricity Profile 2013 Table 1. 2013 Summary statistics (Colorado) Item Value U.S. Rank Primary energy source Coal Net summer capacity (megawatts) 14,769 30 Electric...

  7. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana Electricity Profile 2013 Table 1. 2013 Summary statistics (Louisiana) Item Value U.S. Rank Primary energy source Natural gas Net summer capacity (megawatts) 26,228 15...

  8. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio Electricity Profile 2013 Table 1. 2013 Summary statistics (Ohio) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 32,482 8 Electric utilities 20,779...

  9. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Iowa Electricity Profile 2013 Table 1. 2013 Summary statistics (Iowa) Item Value U.S. Rank Primary energy source Coal Net summer capacity (megawatts) 15,929 25 Electric utilities...

  10. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois Electricity Profile 2013 Table 1. 2013 Summary statistics (Illinois) Item Value U.S. Rank Primary energy source Nuclear Net summer capacity (megawatts) 44,950 4 Electric...

  11. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware Electricity Profile 2013 Table 1. 2013 Summary statistics (Delaware) Item Value U.S. Rank Primary energy source Natural gas Net summer capacity (megawatts) 3,246 46...

  12. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    California Electricity Profile 2013 Table 1. 2013 Summary statistics (California) Item Value U.S. Rank Primary energy source Natural Gas Net summer capacity (megawatts) 73,772 2...

  13. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Mexico Electricity Profile 2013 Table 1. 2013 Summary statistics (New Mexico) Item Value U.S. Rank Primary energy source Coal Net summer capacity (megawatts) 7,938 38 Electric...

  14. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Kansas Electricity Profile 2013 Table 1. 2013 Summary statistics (Kansas) Item Value U.S. Rank Primary energy source Coal Net summer capacity (megawatts) 14,093 32 Electric...

  15. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida Electricity Profile 2013 Table 1. 2013 Summary statistics (Florida) Item Value U.S. Rank Primary energy source Natural gas Net summer capacity (megawatts) 58,781 3 Electric...

  16. Carbon nanotube oscillator surface profiling device and method of use

    DOE Patents [OSTI]

    Popescu, Adrian (Tampa, FL); Woods, Lilia M. (Tampa, FL); Bondarev, Igor V. (Fuquay Varina, NC)

    2011-11-15

    The proposed device is based on a carbon nanotube oscillator consisting of a finite length outer stationary nanotube and a finite length inner oscillating nanotube. Its main function is to measure changes in the characteristics of the motion of the carbon nanotube oscillating near a sample surface, and profile the roughness of this surface. The device operates in a non-contact mode, thus it can be virtually non-wear and non-fatigued system. It is an alternative to the existing atomic force microscope (AFM) tips used to scan surfaces to determine their roughness.

  17. Towards secure virtual directories : a risk analysis framework.

    SciTech Connect (OSTI)

    Claycomb, William R.

    2010-07-01

    Directory services are used by almost every enterprise computing environment to provide data concerning users, computers, contacts, and other objects. Virtual directories are components that provide directory services in a highly customized manner. Unfortunately, though the use of virtual directory services are widespread, an analysis of risks posed by their unique position and architecture has not been completed. We present a detailed analysis of six attacks to virtual directory services, including steps for detection and prevention. We also describe various categories of attack risks, and discuss what is necessary to launch an attack on virtual directories. Finally, we present a framework to use in analyzing risks to individual enterprise computing virtual directory instances. We show how to apply this framework to an example implementation, and discuss the benefits of doing so.

  18. Methods and systems relating to an augmented virtuality environment

    DOE Patents [OSTI]

    Nielsen, Curtis W; Anderson, Matthew O; McKay, Mark D; Wadsworth, Derek C; Boyce, Jodie R; Hruska, Ryan C; Koudelka, John A; Whetten, Jonathan; Bruemmer, David J

    2014-05-20

    Systems and methods relating to an augmented virtuality system are disclosed. A method of operating an augmented virtuality system may comprise displaying imagery of a real-world environment in an operating picture. The method may further include displaying a plurality of virtual icons in the operating picture representing at least some assets of a plurality of assets positioned in the real-world environment. Additionally, the method may include displaying at least one virtual item in the operating picture representing data sensed by one or more of the assets of the plurality of assets and remotely controlling at least one asset of the plurality of assets by interacting with a virtual icon associated with the at least one asset.

  19. An object-oriented extension for debugging the virtual machine

    SciTech Connect (OSTI)

    Pizzi, R.G. Jr.

    1994-12-01

    A computer is nothing more then a virtual machine programmed by source code to perform a task. The program`s source code expresses abstract constructs which are compiled into some lower level target language. When a virtual machine breaks, it can be very difficult to debug because typical debuggers provide only low-level target implementation information to the software engineer. We believe that the debugging task can be simplified by introducing aspects of the abstract design and data into the source code. We introduce OODIE, an object-oriented extension to programming languages that allows programmers to specify a virtual environment by describing the meaning of the design and data of a virtual machine. This specification is translated into symbolic information such that an augmented debugger can present engineers with a programmable debugging environment specifically tailored for the virtual machine that is to be debugged.

  20. Virtuality Distributions and Pion Transition Form Factor

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Radyushkin, Anatoly V.

    2015-03-01

    Using the example of hard exclusive transition process γ*γ → π0 at the handbag level, we outline basics of a new approach to transverse momentum dependence in hard processes. In coordinate representation, matrix elements of operators (in the simplest case, bilocal O(0,z)) describing a hadron with momentum p, are functions of (pz) and z2 parametrized through virtuality distribution amplitudes (VDA) Φ(x, σ), with x being Fourier-conjugate to (pz) and σ Laplace-conjugate to z2. For intervals with z+=0, we introduce the transverse momentum distribution amplitude (TMDA) Ψ(x, k_perp), and write it in terms of VDA Φ(x,σ). We propose models for softmore » VDAs/TMDAs, and use them for comparison of handbag results with experimental (BaBar and BELLE) data. We also discuss the generation of hard tails of TMDAs from initially soft forms.« less

  1. Temperature System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Soil Water and Temperature System  SWATS In the realm of global climate modeling, numerous variables affect the state of the atmosphere and climate. One important area is soil moisture and temperature. The ARM Program uses several types of instruments to gather soil moisture information. An example is the soil water and temperature system (SWATS) (Figure 1). A SWATS is located at each of 21 extended facility sites within the CART site boundary. Each system is configured to measure soil

  2. Detonation Wave Profile

    SciTech Connect (OSTI)

    Menikoff, Ralph

    2015-12-14

    The Zel’dovich-von Neumann-Doering (ZND) profile of a detonation wave is derived. Two basic assumptions are required: i. An equation of state (EOS) for a partly burned explosive; P(V, e, λ). ii. A burn rate for the reaction progress variable; d/dt λ = R(V, e, λ). For a steady planar detonation wave the reactive flow PDEs can be reduced to ODEs. The detonation wave profile can be determined from an ODE plus algebraic equations for points on the partly burned detonation loci with a specified wave speed. Furthermore, for the CJ detonation speed the end of the reaction zone is sonic. A solution to the reactive flow equations can be constructed with a rarefaction wave following the detonation wave profile. This corresponds to an underdriven detonation wave, and the rarefaction is know as a Taylor wave.

  3. Confinement and the safety factor profile

    SciTech Connect (OSTI)

    Batha, S.H.; Levinton, F.M.; Scott, S.D.

    1995-12-01

    The conjecture that the safety factor profile, q(r), controls the improvement in tokamak plasmas from poor confinement in the Low (L-) mode regime to improved confinement in the supershot regime has been tested in two experiments on the Tokamak Fusion Test Reactor (TFTR). First, helium was puffed into the beam-heated phase of a supershot discharge which induced a degradation from supershot to L-mode confinement in about 100 msec, far less than the current relaxation time. The q and shear profiles measured by a motional Stark effect polarimeter showed little change during the confinement degradation. Second, rapid current ramps in supershot plasmas altered the q profile, but were observed not to change significantly the energy confinement. Thus, enhanced confinement in supershot plasmas is not due to a particular q profile which has enhanced stability or transport properties. The discharges making a continuous transition between supershot and L-mode confinement were also used to test the critical-electron-temperature-gradient transport model. It was found that this model could not reproduce the large changes in electron and ion temperature caused by the change in confinement.

  4. Designing user models in a virtual cave environment

    SciTech Connect (OSTI)

    Brown-VanHoozer, S.; Hudson, R.; Gokhale, N.

    1995-12-31

    In this paper, the results of a first study into the use of virtual reality for human factor studies and design of simple and complex models of control systems, components, and processes are described. The objective was to design a model in a virtual environment that would reflect more characteristics of the user`s mental model of a system and fewer of the designer`s. The technology of a CAVE{trademark} virtual environment and the methodology of Neuro Linguistic Programming were employed in this study.

  5. CBEI - Virtual Refrigerant Charge Sensing and Load Metering

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Virtual Refrigerant Charge Sensing and Load Metering 2015 Building Technologies Office Peer Review Jim Braun, jbraun@purdue.edu CBEI/Purdue University Project Summary Timeline: Start date: 5/1/2014 Planned end date: 4/30/2016 Key Milestones 1. Accuracy of virtual charge sensor, 4/30/15 2. Accuracy of virtual BTU meter, 4/30/15 Budget: Total DOE $ to date: $400,000 Total future DOE $: $140,000 Target Market/Audience: Commercial buildings with either rooftop units (RTUs) or built-up air-handling

  6. SunShot Incubator Virtual Company Showcase Webinar - Text Version |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy SunShot Incubator Virtual Company Showcase Webinar - Text Version SunShot Incubator Virtual Company Showcase Webinar - Text Version Below is the text version of the SunShot Incubator Virtual Company Showcase webinar, presented in March 2015. Monica Andrews: Good afternoon and welcome to the SunShot Incubator Awardee Showcase, where you'll hear one-minute quick pitches from 35 solar companies today. My name is Monica Andrews, and with me is Garrett Nilsen. We're

  7. Beamline Temperatures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Temperatures Energy: 3.0000 GeV Current: 495.5347 mA Date: 09-Jan-2016 04:18:38 Beamline Temperatures Energy 3.0000 GeV Current 495.5 mA 09-Jan-2016 04:18:38 LN:MainTankLevel 112.0...

  8. Method to determine thermal profiles of nanoscale circuitry

    DOE Patents [OSTI]

    Zettl, Alexander K; Begtrup, Gavi E

    2013-04-30

    A platform that can measure the thermal profiles of devices with nanoscale resolution has been developed. The system measures the local temperature by using an array of nanoscale thermometers. This process can be observed in real time using a high resolution imagining technique such as electron microscopy. The platform can operate at extremely high temperatures.

  9. DIAGNOSIS OF EQUILIBRIUM MAGNETIC PROFILES, CURRENT TRANSPORT,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DIAGNOSIS OF EQUILIBRIUM MAGNETIC PROFILES, CURRENT TRANSPORT, AND INTERNAL STRUCTURES IN A REVERSED-FIELD PINCH USING ELECTRON TEMPERATURE FLUCTUATIONS by Eli Parke A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Physics) at the UNIVERSITY OF WISCONSIN-MADISON 2014 Date of final oral examination: 08/01/14 The dissertation is approved by the following members of the Final Oral Committee: Daniel J. Den Hartog, Research Professor, Physics

  10. Low profile thermite igniter

    SciTech Connect (OSTI)

    Halcomb, Danny L.; Mohler, Jonathan H.

    1991-03-05

    A thermite igniter/heat source comprising a housing, high-density thermite, and low-density thermite. The housing has a relatively low profile and can focus energy by means of a torch-like ejection of hot reaction products and is externally ignitable.

  11. Recent Progress in Retrieving Air Temperature Profiles and Air...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cimini University of L'Aquila L'Aquila, Italy J. A. Shaw Department of Electrical and ... Ph.D. student at University of L'Aquila, Italy, under the European Social Funding Program. ...

  12. Reduced model prediction of electron temperature profiles in...

    Office of Scientific and Technical Information (OSTI)

    FUSION TECHNOLOGY Confinement; H-mode Plasma Confinement; Spherical Torus; Spherical Tokamak; Stability, Microinstability; Tokamaks, NSTX; Transport Phenomena Word Cloud More...

  13. Lithologic Descriptions and Temperature Profiles of Five Wells...

    Open Energy Info (EERE)

    of the southern and western Valles caldera region. Authors Lisa Shevenell, Fraser E. Goff, Dan Miles, Al Waibel and Chandler Swanberg Published Los Alamos National Laboratory,...

  14. Project Profile: Advanced High Temperature Trough Collector Developmen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The NTPro design has three primary goals: higher performance, lower cost, and the potential ... Implement a prototype loop test of the NTPro-MS (molten salt HTF) collector. Innovation ...

  15. Management's Discussion & Analysis Profile

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    which took effect beginning October 1, 2013, and higher preference utility peak loads stemming from colder than average temperatures in October, December and February, offset by...

  16. Virtual cathode microwave generator having annular anode slit

    DOE Patents [OSTI]

    Kwan, Thomas J. T.; Snell, Charles M.

    1988-01-01

    A microwave generator is provided for generating microwaves substantially from virtual cathode oscillation. Electrons are emitted from a cathode and accelerated to an anode which is spaced apart from the cathode. The anode has an annular slit therethrough effective to form the virtual cathode. The anode is at least one range thickness relative to electrons reflecting from the virtual cathode. A magnet is provided to produce an optimum magnetic field having the field strength effective to form an annular beam from the emitted electrons in substantial alignment with the annular anode slit. The magnetic field, however, does permit the reflected electrons to axially diverge from the annular beam. The reflected electrons are absorbed by the anode in returning to the real cathode, such that substantially no reflexing electrons occur. The resulting microwaves are produced with a single dominant mode and are substantially monochromatic relative to conventional virtual cathode microwave generators.

  17. Virtual Oxygen Sensor for Innovative NOx and PM Emission Control...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    along with a virtual intake manifold O2 sensor, show good accuracy with stationary measurements PDF icon deer09traver.pdf More Documents & Publications Simulation and Analysis of...

  18. BioenergizeME Virtual Science Fair: Microbiology and Bioenergy

    Broader source: Energy.gov [DOE]

    This infographic was created by students from Toledo High School in Toledo, OR, as part of the U.S. Department of Energy-BioenergizeME Virtual Science Fair.

  19. BioenergizeME Virtual Science Fair: Environmental benefit of Bioenergy

    Broader source: Energy.gov [DOE]

    This infographic was created by students from Sun Valley High School in Aston, PA, as part of the U.S. Department of Energy-BioenergizeME Virtual Science Fair.

  20. DOE ZERH Virtual Office Hours (1 of 4)

    Broader source: Energy.gov [DOE]

    TitleZERH Virtual Office Hours: Get the Answers You Need Quickly & EfficientlyDescriptionWhether you’re new to DOE Zero Energy Ready Home or have been involved for a few years, our partners...

  1. BioenergizeME Virtual Science Fair: Environmental Impacts of Bioenergy

    Broader source: Energy.gov [DOE]

    This infographic was created by students from Sun Valley High School in Aston, PA, as part of the U.S. Department of Energy-BioenergizeME Virtual Science Fair.

  2. BioenergizeME Virtual Science Fair: Bioenergy Careers

    Broader source: Energy.gov [DOE]

    This infographic was created by students from Sun Valley High School in Aston, PA, as part of the U.S. Department of Energy-BioenergizeME Virtual Science Fair.

  3. Power in Collaboration: National Energy Literacy Virtual Meet-Up

    Broader source: Energy.gov [DOE]

    The webinar will be a dynamic virtual conversation of ongoing efforts from across the country in utilizing the Department of Energy's Energy Literacy Framework to address one of our nation's...

  4. BioenergizeME Virtual Science Fair: History of Bioenergy

    Broader source: Energy.gov [DOE]

    This infographic was created by students from Sun Valley High School in Aston, PA, as part of the U.S. Department of Energy-BioenergizeME Virtual Science Fair.

  5. DOE ZERH Virtual Office Hours (3 of 4)

    Broader source: Energy.gov [DOE]

    TitleZERH Virtual Office Hours: Get the Answers You Need Quickly & EfficientlyDescriptionWhether you’re new to DOE Zero Energy Ready Home or have been involved for a few years, our partners...

  6. BioenergizeME Virtual Science Fair: Bioenegy Benefits Environmental Forestry

    Broader source: Energy.gov [DOE]

    This infographic was created by students from Sun Valley High School in Aston, PA, as part of the U.S. Department of Energy-BioenergizeME Virtual Science Fair.

  7. BioenergizeME Virtual Science Fair: Environmental Impacts

    Broader source: Energy.gov [DOE]

    This infographic was created by students from Sun Valley High School in Aston, PA, as part of the U.S. Department of Energy-BioenergizeME Virtual Science Fair.

  8. DOE ZERH Virtual Office Hours (4 of 4)

    Broader source: Energy.gov [DOE]

    TitleZERH Virtual Office Hours: Get the Answers You Need Quickly & EfficientlyDescriptionWhether you’re new to DOE Zero Energy Ready Home or have been involved for a few years, our partners...

  9. DOE ZERH Virtual Office Hours (2 of 4)

    Broader source: Energy.gov [DOE]

    TitleZERH Virtual Office Hours: Get the Answers You Need Quickly & EfficientlyDescriptionWhether you’re new to DOE Zero Energy Ready Home or have been involved for a few years, our partners...

  10. BioenergizeME Virtual Science Fair: History of Biomass

    Broader source: Energy.gov [DOE]

    This infographic was created by students from Daniel Boone Area High School in Birdsboro, PA, as part of the U.S. Department of Energy-BioenergizeME Virtual Science Fair.

  11. BioenergizeME Virtual Science Fair: Biomass History A timeline

    Broader source: Energy.gov [DOE]

    This infographic was created by students from Sun Valley High School in Aston, PA, as part of the U.S. Department of Energy-BioenergizeME Virtual Science Fair.

  12. T-678: Red Hat Enterprise Virtualization Hypervisor VLAN Packet Processing Flaw Lets Remote Users Deny Service

    Broader source: Energy.gov [DOE]

    Red Hat Enterprise Virtualization Hypervisor VLAN Packet Processing Flaw Lets Remote Users Deny Service.

  13. A Stochastic Reactor Based Virtual Engine Model Employing Detailed

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chemistry for Kinetic Studies of In-Cylinder Combustion and Exhaust Aftertreatment | Department of Energy A Stochastic Reactor Based Virtual Engine Model Employing Detailed Chemistry for Kinetic Studies of In-Cylinder Combustion and Exhaust Aftertreatment A Stochastic Reactor Based Virtual Engine Model Employing Detailed Chemistry for Kinetic Studies of In-Cylinder Combustion and Exhaust Aftertreatment The model consists of an in-cylinder combustion engine model, an interconnecting exhaust

  14. Unlocking Customer Value: The Virtual Power Plant | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Unlocking Customer Value: The Virtual Power Plant Unlocking Customer Value: The Virtual Power Plant The utility world has changed drastically in the last 10 years. New technologies like Smart Meters and fully functional Smart Grid concepts have made large inroads into the utility space and no one should want to be left behind. Utilities also face additional pressures from regulatory bodies who are continuing to encourage carbon reduction and greater customer flexibility. Utilities need to

  15. Virtual Vehicle - Component-in-the-Loop | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Virtual Vehicle - Component-in-the-Loop Preparing a plug-in hybrid electric vehicle (PHEV) battery for testing on Argonne's Battery-in-the-Loop system Preparing a plug-in hybrid electric vehicle (PHEV) battery for testing on Argonne's Battery-in-the-Loop system How do you evaluate unique vehicle configurations without building each vehicle from the ground up? Argonne researchers have developed sophisticated tools that enable creation of "virtual" vehicles using a technique called

  16. A Virtual Visit to Bioenergy Research at the National Laboratories |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy A Virtual Visit to Bioenergy Research at the National Laboratories A Virtual Visit to Bioenergy Research at the National Laboratories October 22, 2014 - 10:34am Addthis Watch researchers at Pacific Northwest National Laboratory describe their bioenergy research funded by the Energy Department. Alicia Moulton Communications Specialist, Bioenergy Technologies Office For National Bioenergy Day on October 22, bioenergy facilities across the country are holding open houses to

  17. Project Profile: Halide and Oxy-Halide Eutectic Systems for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Performance, High-Temperature Heat Transfer Fluids | Department of Energy Halide and Oxy-Halide Eutectic Systems for High-Performance, High-Temperature Heat Transfer Fluids Project Profile: Halide and Oxy-Halide Eutectic Systems for High-Performance, High-Temperature Heat Transfer Fluids Logos from The University of Arizona, Arizona State University, and Georgia Institute of Technology, and Three side-by-side graphics showing the experimental design, a photomultiplier tube, and a graph

  18. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama Nuclear Profile 2010 Alabama profile Alabama total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 5,043 15.6 37,941 24.9 Coal 11,441 35.3 63,050 41.4 Hydro and Pumped Storage 3,272 10.1 8,704 5.7 Natural Gas 11,936 36.8 39,235 25.8 Other1 100 0.3 643 0.4 Other Renewable1 583 1.8 2,377 1.6 Petroleum 43 0.1 200

  19. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona Nuclear Profile 2010 Arizona profile Arizona total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,937 14.9 31,200 27.9 Coal 6,233 23.6 43,644 39.1 Hydro and Pumped Storage 2,937 11.1 6,831 6.1 Natural Gas 13,012 49.3 29,676 26.6 Other 1 - - 15 * Other Renewable1 181 0.7 319 0.3 Petroleum 93 0.4 66 0.1 Total

  20. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Arkansas Nuclear Profile 2010 Arkansas profile Arkansas total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State ttal (percent) Nuclear 1,835 11.5 15,023 24.6 Coal 4,535 28.4 28,152 46.2 Hydro and Pumped Storage 1,369 8.6 3,658 6.0 Natural Gas 7,894 49.4 12,469 20.4 Other 1 - - 28 * Other Renewable1 326 2.0 1,624 2.7 Petroleum 22 0.1 45 0.1 Total

  1. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    California Nuclear Profile 2010 California profile California total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,390 6.5 32,201 15.8 Coal 374 0.6 2,100 1.0 Hydro and Pumped Storage 13,954 20.7 33,260 16.3 Natural Gas 41,370 61.4 107,522 52.7 Other 1 220 0.3 2,534 1.2 Other Renewable1 6,319 9.4 25,450 12.5 Petroleum

  2. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut Nuclear Profile 2010 Connecticut profile Connecticut total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 2,103 25.4 16,750 50.2 Coal 564 6.8 2,604 7.8 Hydro and Pumped Storage 151 1.8 400 1.2 Natural Gas 2,292 27.7 11,716 35.1 Other 1 27 0.3 730 2.2 Other Renewable1 159 1.9 740 2.2 Petroleum 2,989 36.1 409

  3. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida Nuclear Profile 2010 Florida profile Florida total electric power industry, summer capacity and net generation, by energy source, 2010 Primary Energy Source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 3,924 6.6 23,936 10.4 Coal 9,975 16.9 59,897 26.1 Hydro and Pumped Storage 55 0.1 177 0.1 Natural Gas 31,563 53.4 128,634 56.1 Other1 544 0.9 2,842 1.2 Other Renewable1 1,053 1.8 4,487 2.0 Petroleum 12,033 20.3

  4. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Georgia Nuclear Profile 2010 Georgia profile Georgia total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,061 11.1 33,512 24.6 Coal 13,230 36.1 73,298 54.0 Hydro and Pumped Storage 3,851 10.5 3,044 2.7 Natural Gas 12,668 34.6 23,884 15.9 Other 1 - - 18 * Other Renewable1 637 1.7 3,181 2.2 Petroleum 2,189 6.0 641 0.5

  5. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois Nuclear Profile 2010 Illinois profile Illinois total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 11,441 25.9 96,190 47.8 Coal 15,551 35.2 93,611 46.5 Hydro and Pumped Storage 34 0.1 119 0.1 Natural Gas 13,771 31.2 5,724 2.8 Other 1 145 0.3 461 0.2 Other Renewable1 2,078 4.7 5,138 2.6 Petroleum 1,106 2.5 110

  6. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Iowa Nuclear Profile 2010 Iowa profile Iowa total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 601 4.1 4,451 7.7 Coal 6,956 47.7 41,283 71.8 Hydro and Pumped Storage 144 1.0 948 1.6 Natural Gas 2,299 15.8 1,312 2.3 Other Renewable1 3,584 24.6 9,360 16.3 Petroleum 1,007 6.9 154 .0.3 Total 14,592 100.0 57,509 100

  7. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Kansas Nuclear Profile 2010 Kansas profile Kansas total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,160 9.2 9,556 19.9 Coal 5,179 41.3 32,505 67.8 Hydro and Pumped Storage 3 * 13 * Natural Gas 4,573 36.5 2,287 4.8 Other Renewable1 1,079 8.6 3,459 7.2 Petroleum 550 4.4 103 0.2 Total 12,543 100.0 47,924 100

  8. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana Nuclear Profile 2010 Louisiana profile Louisiana total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (nw) Share of State total (percent) Net generation (thousand nwh) Share of State total (percent) Nuclear 2,142 8.0 18,639 18.1 Coal 3,417 12.8 23,924 23.3 Hydro and Pumped Storage 192 0.7 1,109 1.1 Natural Gas 19,574 73.2 51,344 49.9 Other 1 213 0.8 2,120 2.1 Other Renewable1 325 1.2 2,468 2.4 Petroleum 881 3.3

  9. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Maryland Nuclear Profile 2010 Maryland profile Maryland total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (Percent) Nuclear 1,705 13.6 13,994 32.1 Coal 4,886 39.0 23,668 54.3 Hydro and Pumped Storage 590 4.7 1,667 3.8 Natural Gas 2,041 16.3 2,897 6.6 Other 1 152 1.2 485 1.1 Other Renewable1 209 1.7 574 1.3 Petroleum 2,933 23.4 322

  10. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Massachusetts Nuclear Profile 2010 Massachusetts profile Massachusetts total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 685 5.0 5,918 13.8 Coal 1,669 12.2 8,306 19.4 Hydro and Pumped Storage 1,942 14.2 659 1.5 Natural Gas 6,063 44.3 25,582 59.8 Other 1 3 * 771 1.8 Other Renewable1 304 2.2 1,274 3.0 Petroleum 3,031

  11. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Michigan Nuclear Profile 2010 Michigan profile Michigan total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 3,947 13.2 29,625 26.6 Coal 11,531 38.7 65,604 58.8 Hydro and Pumped Storage 2,109 7.1 228 0.2 Natural Gas 11,033 37.0 12,249 11.0 Other 1 - - 631 0.6 Other Renewable1 571 1.9 2,832 2.5 Petroleum 640 2.1 382 0.3

  12. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota Nuclear Profile 2010 Minnesota profile Minnesota total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,549 10.8 13,478 25.1 Coal 4,789 32.5 28,083 52.3 Hydro and Pumped Storage 193 1.3 840 1.6 Natural Gas 4,936 33.5 4,341 8.1 Other 1 13 0.1 258 0.5 Other Renewable1 2,395 16.3 6,640 12.4 Petroleum 795 5.4 31

  13. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi Nuclear Profile 2010 Mississippi profile Mississippi total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,251 8.0 9,643 17.7 Coal 2,526 16.1 13,629 25.0 Natural Gas 11,640 74.2 29,619 54.4 Other 1 4 * 10 * Other Renewable1 235 1.5 1,504 2.8 Petroleum 35 0.2 18 0.1 Total 15,691 100.0 54,487 100.0

  14. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Missouri Nuclear Profile 2010 Missouri profile Missouri total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,190 5.5 8,996 9.7 Coal 12,070 55.5 75,047 81.3 Hydro and Pumped Storage 1,221 5.6 2,427 2.6 Natural Gas 5,579 25.7 4,690 5.1 Other 1 - - 39 * Other Renewable1 466 2.1 988 1.1 Petroleum 1,212 5.6 126 0.1 Total

  15. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Nebraska Nuclear Profile 2010 Nebraska profile Nebraska total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,245 15.8 11,054 30.2 Coal 3,932 50.0 23,368 63.8 Hydro and Pumped Storage 278 3.5 1,314 3.6 Natural Gas 1,864 23.5 375 1.0 Other Renewable1 165 2.1 493 1.3 Petroleum 387 4.9 31 0.1 Total 7,857 100.0 36,630

  16. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Hampshire Nuclear Profile 2010 New Hampshire profile New Hampshire total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,247 29.8 10,910 49.2 Coal 546 13.1 3,083 13.9 Hydro and Pumped Storage 489 11.7 1,478 6.7 Natural Gas 1,215 29.1 5,365 24.2 Other 1 - - 57 0.3 Other Renewable1 182 4.4 1,232 5.6 Petroleum 501 12.0

  17. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Jersey Nuclear Profile 2010 New Jersey profile New Jersey total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,108 22.3 32,771 49.9 Coal 2,036 11.1 6,418 9.8 Hydro and Pumped Storage 404 2.2 -176 -0.3 Natural Gas 10,244 55.6 24,902 37.9 Other 1 56 0.3 682 1.0 Other Renewable1 226 1.2 850 1.3 Petroleum 1,351 7.3 235

  18. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    York Nuclear Profile 2010 New York profile New York total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 5,271 13.4 41,870 30.6 Coal 2,781 7.1 13,583 9.9 Hydro and Pumped Storage 5,714 14.5 24,942 18.2 Natural Gas 17,407 44.2 48,916 35.7 Other 1 45 0.1 832 0.6 Other Renewable1 1,719 4.4 4,815 3.5 Petroleum 6,421 16.3

  19. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    North Carolina Nuclear Profile 2010 North Carolina profile North Carolina total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,958 17.9 40,740 31.7 Coal 12,766 46.1 71,951 55.9 Hydro and Pumped Storage 2,042 7.4 4,757 3.7 Natural Gas 6,742 24.4 8,447 6.6 Other 1 50 0.2 407 0.3 Other Renewable1 543 2.0 2,083 1.6

  20. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania Nuclear Profile 2010 Pennsylvania profile Pennsylvania total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 9,540 20.9 77,828 33.9 Coal 18,481 40.6 110,369 48.0 Hydro and Pumped Storage 2,268 5.0 1,624 0.7 Natural Gas 9,415 20.7 33,718 14.7 Other 1 100 0.2 1,396 0.6 Other Renewable1 1,237 2.7 4,245 1.8

  1. EIA - State Nuclear Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alabama Nuclear Profile 2010 Alabama profile Alabama total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 5,043 15.6 37,941 24.9 Coal 11,441 35.3 63,050 41.4 Hydro and Pumped Storage 3,272 10.1 8,704 5.7 Natural Gas 11,936 36.8 39,235 25.8 Other1 100 0.3 643 0.4 Other Renewable1 583 1.8 2,377 1.6 Petroleum 43 0.1 200

  2. EIA - State Nuclear Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Arizona Nuclear Profile 2010 Arizona profile Arizona total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,937 14.9 31,200 27.9 Coal 6,233 23.6 43,644 39.1 Hydro and Pumped Storage 2,937 11.1 6,831 6.1 Natural Gas 13,012 49.3 29,676 26.6 Other 1 - - 15 * Other Renewable1 181 0.7 319 0.3 Petroleum 93 0.4 66 0.1 Total

  3. EIA - State Nuclear Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Arkansas Nuclear Profile 2010 Arkansas profile Arkansas total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State ttal (percent) Nuclear 1,835 11.5 15,023 24.6 Coal 4,535 28.4 28,152 46.2 Hydro and Pumped Storage 1,369 8.6 3,658 6.0 Natural Gas 7,894 49.4 12,469 20.4 Other 1 - - 28 * Other Renewable1 326 2.0 1,624 2.7 Petroleum 22 0.1 45 0.1 Total

  4. EIA - State Nuclear Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    California Nuclear Profile 2010 California profile California total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,390 6.5 32,201 15.8 Coal 374 0.6 2,100 1.0 Hydro and Pumped Storage 13,954 20.7 33,260 16.3 Natural Gas 41,370 61.4 107,522 52.7 Other 1 220 0.3 2,534 1.2 Other Renewable1 6,319 9.4 25,450 12.5 Petroleum

  5. EIA - State Nuclear Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Connecticut Nuclear Profile 2010 Connecticut profile Connecticut total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 2,103 25.4 16,750 50.2 Coal 564 6.8 2,604 7.8 Hydro and Pumped Storage 151 1.8 400 1.2 Natural Gas 2,292 27.7 11,716 35.1 Other 1 27 0.3 730 2.2 Other Renewable1 159 1.9 740 2.2 Petroleum 2,989 36.1 409

  6. EIA - State Nuclear Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Florida Nuclear Profile 2010 Florida profile Florida total electric power industry, summer capacity and net generation, by energy source, 2010 Primary Energy Source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 3,924 6.6 23,936 10.4 Coal 9,975 16.9 59,897 26.1 Hydro and Pumped Storage 55 0.1 177 0.1 Natural Gas 31,563 53.4 128,634 56.1 Other1 544 0.9 2,842 1.2 Other Renewable1 1,053 1.8 4,487 2.0 Petroleum 12,033 20.3

  7. EIA - State Nuclear Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Georgia Nuclear Profile 2010 Georgia profile Georgia total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,061 11.1 33,512 24.6 Coal 13,230 36.1 73,298 54.0 Hydro and Pumped Storage 3,851 10.5 3,044 2.7 Natural Gas 12,668 34.6 23,884 15.9 Other 1 - - 18 * Other Renewable1 637 1.7 3,181 2.2 Petroleum 2,189 6.0 641 0.5

  8. EIA - State Nuclear Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Illinois Nuclear Profile 2010 Illinois profile Illinois total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 11,441 25.9 96,190 47.8 Coal 15,551 35.2 93,611 46.5 Hydro and Pumped Storage 34 0.1 119 0.1 Natural Gas 13,771 31.2 5,724 2.8 Other 1 145 0.3 461 0.2 Other Renewable1 2,078 4.7 5,138 2.6 Petroleum 1,106 2.5 110

  9. EIA - State Nuclear Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Iowa Nuclear Profile 2010 Iowa profile Iowa total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 601 4.1 4,451 7.7 Coal 6,956 47.7 41,283 71.8 Hydro and Pumped Storage 144 1.0 948 1.6 Natural Gas 2,299 15.8 1,312 2.3 Other Renewable1 3,584 24.6 9,360 16.3 Petroleum 1,007 6.9 154 .0.3 Total 14,592 100.0 57,509 100

  10. EIA - State Nuclear Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kansas Nuclear Profile 2010 Kansas profile Kansas total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,160 9.2 9,556 19.9 Coal 5,179 41.3 32,505 67.8 Hydro and Pumped Storage 3 * 13 * Natural Gas 4,573 36.5 2,287 4.8 Other Renewable1 1,079 8.6 3,459 7.2 Petroleum 550 4.4 103 0.2 Total 12,543 100.0 47,924 100

  11. EIA - State Nuclear Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Louisiana Nuclear Profile 2010 Louisiana profile Louisiana total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (nw) Share of State total (percent) Net generation (thousand nwh) Share of State total (percent) Nuclear 2,142 8.0 18,639 18.1 Coal 3,417 12.8 23,924 23.3 Hydro and Pumped Storage 192 0.7 1,109 1.1 Natural Gas 19,574 73.2 51,344 49.9 Other 1 213 0.8 2,120 2.1 Other Renewable1 325 1.2 2,468 2.4 Petroleum 881 3.3

  12. EIA - State Nuclear Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Maryland Nuclear Profile 2010 Maryland profile Maryland total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (Percent) Nuclear 1,705 13.6 13,994 32.1 Coal 4,886 39.0 23,668 54.3 Hydro and Pumped Storage 590 4.7 1,667 3.8 Natural Gas 2,041 16.3 2,897 6.6 Other 1 152 1.2 485 1.1 Other Renewable1 209 1.7 574 1.3 Petroleum 2,933 23.4 322

  13. EIA - State Nuclear Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Massachusetts Nuclear Profile 2010 Massachusetts profile Massachusetts total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 685 5.0 5,918 13.8 Coal 1,669 12.2 8,306 19.4 Hydro and Pumped Storage 1,942 14.2 659 1.5 Natural Gas 6,063 44.3 25,582 59.8 Other 1 3 * 771 1.8 Other Renewable1 304 2.2 1,274 3.0 Petroleum 3,031

  14. EIA - State Nuclear Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Michigan Nuclear Profile 2010 Michigan profile Michigan total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 3,947 13.2 29,625 26.6 Coal 11,531 38.7 65,604 58.8 Hydro and Pumped Storage 2,109 7.1 228 0.2 Natural Gas 11,033 37.0 12,249 11.0 Other 1 - - 631 0.6 Other Renewable1 571 1.9 2,832 2.5 Petroleum 640 2.1 382 0.3

  15. EIA - State Nuclear Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Minnesota Nuclear Profile 2010 Minnesota profile Minnesota total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,549 10.8 13,478 25.1 Coal 4,789 32.5 28,083 52.3 Hydro and Pumped Storage 193 1.3 840 1.6 Natural Gas 4,936 33.5 4,341 8.1 Other 1 13 0.1 258 0.5 Other Renewable1 2,395 16.3 6,640 12.4 Petroleum 795 5.4 31

  16. EIA - State Nuclear Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mississippi Nuclear Profile 2010 Mississippi profile Mississippi total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,251 8.0 9,643 17.7 Coal 2,526 16.1 13,629 25.0 Natural Gas 11,640 74.2 29,619 54.4 Other 1 4 * 10 * Other Renewable1 235 1.5 1,504 2.8 Petroleum 35 0.2 18 0.1 Total 15,691 100.0 54,487 100.0

  17. EIA - State Nuclear Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Missouri Nuclear Profile 2010 Missouri profile Missouri total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,190 5.5 8,996 9.7 Coal 12,070 55.5 75,047 81.3 Hydro and Pumped Storage 1,221 5.6 2,427 2.6 Natural Gas 5,579 25.7 4,690 5.1 Other 1 - - 39 * Other Renewable1 466 2.1 988 1.1 Petroleum 1,212 5.6 126 0.1 Total

  18. EIA - State Nuclear Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nebraska Nuclear Profile 2010 Nebraska profile Nebraska total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,245 15.8 11,054 30.2 Coal 3,932 50.0 23,368 63.8 Hydro and Pumped Storage 278 3.5 1,314 3.6 Natural Gas 1,864 23.5 375 1.0 Other Renewable1 165 2.1 493 1.3 Petroleum 387 4.9 31 0.1 Total 7,857 100.0 36,630

  19. EIA - State Nuclear Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hampshire Nuclear Profile 2010 New Hampshire profile New Hampshire total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,247 29.8 10,910 49.2 Coal 546 13.1 3,083 13.9 Hydro and Pumped Storage 489 11.7 1,478 6.7 Natural Gas 1,215 29.1 5,365 24.2 Other 1 - - 57 0.3 Other Renewable1 182 4.4 1,232 5.6 Petroleum 501 12.0

  20. EIA - State Nuclear Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jersey Nuclear Profile 2010 New Jersey profile New Jersey total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,108 22.3 32,771 49.9 Coal 2,036 11.1 6,418 9.8 Hydro and Pumped Storage 404 2.2 -176 -0.3 Natural Gas 10,244 55.6 24,902 37.9 Other 1 56 0.3 682 1.0 Other Renewable1 226 1.2 850 1.3 Petroleum 1,351 7.3 235

  1. EIA - State Nuclear Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    York Nuclear Profile 2010 New York profile New York total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 5,271 13.4 41,870 30.6 Coal 2,781 7.1 13,583 9.9 Hydro and Pumped Storage 5,714 14.5 24,942 18.2 Natural Gas 17,407 44.2 48,916 35.7 Other 1 45 0.1 832 0.6 Other Renewable1 1,719 4.4 4,815 3.5 Petroleum 6,421 16.3

  2. EIA - State Nuclear Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    North Carolina Nuclear Profile 2010 North Carolina profile North Carolina total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,958 17.9 40,740 31.7 Coal 12,766 46.1 71,951 55.9 Hydro and Pumped Storage 2,042 7.4 4,757 3.7 Natural Gas 6,742 24.4 8,447 6.6 Other 1 50 0.2 407 0.3 Other Renewable1 543 2.0 2,083 1.6

  3. EIA - State Nuclear Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ohio Nuclear Profile 2010 Ohio profile Ohio total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 2,134 6.5 15,805 11.0 Coal 21,360 64.6 117,828 82.1 Hydro and Pumped Storage 101 0.3 429 0.3 Natural Gas 8,203 24.8 7,128 5.0 Other 1 123 0.4 266 0.2 Other Renewable1 130 0.4 700 0.5 Petroleum 1,019 3.1 1,442 1.0 Total

  4. EIA - State Nuclear Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pennsylvania Nuclear Profile 2010 Pennsylvania profile Pennsylvania total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 9,540 20.9 77,828 33.9 Coal 18,481 40.6 110,369 48.0 Hydro and Pumped Storage 2,268 5.0 1,624 0.7 Natural Gas 9,415 20.7 33,718 14.7 Other 1 100 0.2 1,396 0.6 Other Renewable1 1,237 2.7 4,245 1.8

  5. Aerosol Extinction Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Thermodynamic Responses to Uncertainty in Aerosol Extinction Profiles For original submission and image(s), see ARM Research Highlights http://www.arm.gov/science/highlights/ Research Highlight Aerosol radiative effects are of great importance for climate simulations over South Asia. For quantifying aerosol direct radiative effect, aerosol optical depth (AOD) and single scattering albedo (SSA) are often compared with observations. These comparisons have revealed large AOD underestimation and

  6. State Nuclear Profiles 2010

    Gasoline and Diesel Fuel Update (EIA)

    State Nuclear Profiles 2010 April 2012 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as

  7. LANL Data Profile

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data Profile 2012-2013 Total: 10,407 Quick Facts FY2013 Operating Budget ..... $1.95 billion Operating costs 54% NNSA Weapons Programs 12% Work for other agencies 10% Nonproliferation programs 9% Environmental management 6% Safeguards and security 5% DOE Office of Science 4% Energy and related programs Workforce Demographics Average Age: 46 67% male, 33% female 45% ethnic minorities 67% university degrees -28% undergraduate degrees -17% graduate degrees -22% PhD degrees Capital/Construction

  8. Surface profiling interferometer

    DOE Patents [OSTI]

    Takacs, Peter Z. (P.O. Box 385, Upton, NY 11973); Qian, Shi-Nan (Hefei Synchrotron Radiation Laboratory, University of Science and, Hefei, Anhui, CN)

    1989-01-01

    The design of a long-trace surface profiler for the non-contact measurement of surface profile, slope error and curvature on cylindrical synchrotron radiation (SR) mirrors. The optical system is based upon the concept of a pencil-beam interferometer with an inherent large depth-of-field. The key feature of the optical system is the zero-path-difference beam splitter, which separates the laser beam into two colinear, variable-separation probe beams. A linear array detector is used to record the interference fringe in the image, and analysis of the fringe location as a function of scan position allows one to reconstruct the surface profile. The optical head is mounted on an air bearing slide with the capability to measure long aspheric optics, typical of those encountered in SR applications. A novel feature of the optical system is the use of a transverse "outrigger" beam which provides information on the relative alignment of the scan axis to the cylinder optic symmetry axis.

  9. Thermal Profiling of Residential Energy Use

    SciTech Connect (OSTI)

    Albert, A; Rajagopal, R

    2015-03-01

    This work describes a methodology for informing targeted demand-response (DR) and marketing programs that focus on the temperature-sensitive part of residential electricity demand. Our methodology uses data that is becoming readily available at utility companies-hourly energy consumption readings collected from "smart" electricity meters, as well as hourly temperature readings. To decompose individual consumption into a thermal-sensitive part and a base load (non-thermally-sensitive), we propose a model of temperature response that is based on thermal regimes, i.e., unobserved decisions of consumers to use their heating or cooling appliances. We use this model to extract useful benchmarks that compose thermal profiles of individual users, i.e., terse characterizations of the statistics of these users' temperature-sensitive consumption. We present example profiles generated using our model on real consumers, and show its performance on a large sample of residential users. This knowledge may, in turn, inform the DR program by allowing scarce operational and marketing budgets to be spent on the right users-those whose influencing will yield highest energy reductions-at the right time. We show that such segmentation and targeting of users may offer savings exceeding 100% of a random strategy.

  10. PROJECT PROFILE: Purdue University

    Broader source: Energy.gov [DOE]

    This project will create millichanneled heat exchangers made up of mechanically-, thermally-, and chemically-robust, high-temperature composite materials. It will demonstrate the capability of such heat exchangers for operation in high-temperature heat transfer fluids and supercritical carbon dioxide (sCO2) at a temperatures of up to 800°C. The proposed composites have demonstrated to be highly-resistant to thermal shock and are able to operate in a sCO2 environment at 800°C.

  11. Laser heterodyne surface profiler

    DOE Patents [OSTI]

    Sommargren, Gary E. (Livermore, CA)

    1982-01-01

    A method and apparatus is disclosed for testing the deviation of the face of an object from a flat smooth surface using a beam of coherent light of two plane-polarized components, one of a frequency constantly greater than the other by a fixed amount to produce a difference frequency with a constant phase to be used as a reference. The beam also is split into its two components with the separate components directed onto spaced apart points onthe face of the object to be tested for smoothness. The object is rotated on an axis coincident with one component which is directed to the face of the object at the center which constitutes a virtual fixed point. This component also is used as a reference. The other component follows a circular track on the face of the object as the object is rotated. The two components are recombined after reflection to produce a reflected frequency difference of a phase proportional to the difference in path length which is compared with the reference phase to produce a signal proportional to the deviation of the height of the surface along the circular track with respect to the fixed point at the center.

  12. Profile Interface Generator

    Energy Science and Technology Software Center (OSTI)

    2013-11-09

    The Profile Interface Generator (PIG) is a tool for loosely coupling applications and performance tools. It enables applications to write code that looks like standard C and Fortran functions calls, without requiring that applications link to specific implementations of those function calls. Performance tools can register with PIG in order to listen to only the calls that give information they care about. This interface reduces the build and configuration burden on application developers and allowsmore » semantic instrumentation to live in production codes without interfering with production runs.« less

  13. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska Electricity Profile 2013 Table 1. 2013 Summary statistics (Alaska) Item Value Rank Primary energy source Natural Gas Net summer capacity (megawatts) 2,384 48 Electric utilities 2,205 39 IPP & CHP 179 50 Net generation (megawatthours) 6,496,822 49 Electric utilities 5,851,727 39 IPP & CHP 645,095 49 Emissions Sulfur dioxide (short tons) 4,202 43 Nitrogen oxide (short tons) 18,043 37 Carbon dioxide (thousand metric tons) 3,768 44 Sulfur dioxide (lbs/MWh) 1.3 29 Nitrogen oxide

  14. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona Electricity Profile 2013 Table 1. 2013 Summary statistics (Arizona) Item Value U.S. Rank Primary energy source Coal Net summer capacity (megawatts) 27,910 13 Electric utilities 20,668 12 IPP & CHP 7,242 16 Net generation (megawatthours) 113,325,986 12 Electric utilities 92,740,582 8 IPP & CHP 20,585,405 15 Emissions Sulfur dioxide (short tons) 23,716 31 Nitrogen oxide (short tons) 59,416 15 Carbon dioxide (thousand metric tons) 55,342 16 Sulfur dioxide (lbs/MWh) 0.4 42 Nitrogen

  15. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    California Electricity Profile 2013 Table 1. 2013 Summary statistics (California) Item Value U.S. Rank Primary energy source Natural Gas Net summer capacity (megawatts) 73,772 2 Electric utilities 28,165 4 IPP & CHP 45,607 2 Net generation (megawatthours) 200,077,115 5 Electric utilities 78,407,643 14 IPP & CHP 121,669,472 4 Emissions Sulfur dioxide (short tons) 2,109 48 Nitrogen oxide (short tons) 96,842 5 Carbon dioxide (thousand metric tons) 57,323 13 Sulfur dioxide (lbs/MWh) 0.0 49

  16. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Colorado Electricity Profile 2013 Table 1. 2013 Summary statistics (Colorado) Item Value U.S. Rank Primary energy source Coal Net summer capacity (megawatts) 14,769 30 Electric utilities 10,238 28 IPP & CHP 4,531 20 Net generation (megawatthours) 52,937,436 28 Electric utilities 42,508,826 25 IPP & CHP 10,428,610 29 Emissions Sulfur dioxide (short tons) 40,012 27 Nitrogen oxide (short tons) 49,623 21 Carbon dioxide (thousand metric tons) 39,387 20 Sulfur dioxide (lbs/MWh) 1.5 27 Nitrogen

  17. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut Electricity Profile 2013 Table 1. 2013 Summary statistics (Connecticut) Item Value U.S. Rank Primary energy source Nuclear Net summer capacity (megawatts) 8,769 35 Electric utilities 152 46 IPP & CHP 8,617 13 Net generation (megawatthours) 35,610,789 38 Electric utilities 50,273 45 IPP & CHP 35,560,516 10 Emissions Sulfur dioxide (short tons) 3,512 45 Nitrogen oxide (short tons) 9,372 45 Carbon dioxide (thousand metric tons) 8,726 41 Sulfur dioxide (lbs/MWh) 0.2 47 Nitrogen

  18. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware Electricity Profile 2013 Table 1. 2013 Summary statistics (Delaware) Item Value U.S. Rank Primary energy source Natural gas Net summer capacity (megawatts) 3,246 46 Electric utilities 102 47 IPP & CHP 3,144 32 Net generation (megawatthours) 7,760,861 47 Electric utilities 25,986 47 IPP & CHP 7,734,875 34 Emissions Sulfur dioxide (short tons) 2,241 47 Nitrogen oxide (short tons) 2,585 48 Carbon dioxide (thousand metric tons) 4,722 43 Sulfur dioxide (lbs/MWh) 0.6 40 Nitrogen oxide

  19. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    District of Columbia Electricity Profile 2013 Table 1. 2013 Summary statistics (District of Columbia) Item Value U.S. Rank Primary energy source Natural gas Net summer capacity (megawatts) 9 51 Electric utilities IPP & CHP 9 51 Net generation (megawatthours) 65,852 51 Electric utilities IPP & CHP 65,852 51 Emissions Sulfur dioxide (short tons) 0 51 Nitrogen oxide (short tons) 148 51 Carbon dioxide (thousand metric tons) 49 50 Sulfur dioxide (lbs/MWh) 0.0 51 Nitrogen oxide (lbs/MWh) 4.5 3

  20. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida Electricity Profile 2013 Table 1. 2013 Summary statistics (Florida) Item Value U.S. Rank Primary energy source Natural gas Net summer capacity (megawatts) 58,781 3 Electric utilities 50,967 1 IPP & CHP 7,813 15 Net generation (megawatthours) 222,398,924 3 Electric utilities 202,527,297 1 IPP & CHP 19,871,627 18 Emissions Sulfur dioxide (short tons) 117,797 12 Nitrogen oxide (short tons) 88,345 6 Carbon dioxide (thousand metric tons) 108,431 3 Sulfur dioxide (lbs/MWh) 1.1 34

  1. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Georgia Electricity Profile 2013 Table 1. 2013 Summary statistics (Georgia) Item Value U.S. Rank Primary energy source Natural gas Net summer capacity (megawatts) 38,210 7 Electric utilities 28,875 2 IPP & CHP 9,335 10 Net generation (megawatthours) 120,953,734 10 Electric utilities 107,082,884 4 IPP & CHP 13,870,850 26 Emissions Sulfur dioxide (short tons) 123,735 10 Nitrogen oxide (short tons) 55,462 20 Carbon dioxide (thousand metric tons) 56,812 15 Sulfur dioxide (lbs/MWh) 2.0 20

  2. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Hawaii Electricity Profile 2013 Table 1. 2013 Summary statistics (Hawaii) Item Value U.S. Rank Primary energy source Petroleum Net summer capacity (megawatts) 2,757 47 Electric utilities 1,821 40 IPP & CHP 937 45 Net generation (megawatthours) 10,267,052 45 Electric utilities 5,748,256 40 IPP & CHP 4,518,796 40 Emissions Sulfur dioxide (short tons) 20,710 33 Nitrogen oxide (short tons) 25,416 31 Carbon dioxide (thousand metric tons) 7,428 42 Sulfur dioxide (lbs/MWh) 4.0 5 Nitrogen oxide

  3. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Idaho Electricity Profile 2013 Table 1. 2013 Summary statistics (Idaho) Item Value U.S. Rank Primary energy source Hydroelectric Net summer capacity (megawatts) 4,924 42 Electric utilities 3,394 37 IPP & CHP 1,530 39 Net generation (megawatthours) 15,186,128 43 Electric utilities 9,600,216 36 IPP & CHP 5,585,912 39 Emissions Sulfur dioxide (short tons) 6,565 42 Nitrogen oxide (short tons) 7,627 46 Carbon dioxide (thousand metric tons) 1,942 49 Sulfur dioxide (lbs/MWh) 0.9 37 Nitrogen

  4. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois Electricity Profile 2013 Table 1. 2013 Summary statistics (Illinois) Item Value U.S. Rank Primary energy source Nuclear Net summer capacity (megawatts) 44,950 4 Electric utilities 5,269 35 IPP & CHP 39,681 4 Net generation (megawatthours) 203,004,919 4 Electric utilities 11,571,734 35 IPP & CHP 191,433,185 3 Emissions Sulfur dioxide (short tons) 203,951 6 Nitrogen oxide (short tons) 63,358 11 Carbon dioxide (thousand metric tons) 97,812 6 Sulfur dioxide (lbs/MWh) 2.0 21 Nitrogen

  5. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Indiana Electricity Profile 2013 Table 1. 2013 Summary statistics (Indiana) Item Value U.S. Rank Primary energy source Coal Net summer capacity (megawatts) 27,196 14 Electric utilities 23,309 8 IPP & CHP 3,888 24 Net generation (megawatthours) 110,403,477 13 Electric utilities 96,047,678 7 IPP & CHP 14,355,799 23 Emissions Sulfur dioxide (short tons) 273,718 4 Nitrogen oxide (short tons) 121,681 3 Carbon dioxide (thousand metric tons) 98,895 5 Sulfur dioxide (lbs/MWh) 5.0 2 Nitrogen

  6. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Iowa Electricity Profile 2013 Table 1. 2013 Summary statistics (Iowa) Item Value U.S. Rank Primary energy source Coal Net summer capacity (megawatts) 15,929 25 Electric utilities 12,092 21 IPP & CHP 3,837 26 Net generation (megawatthours) 56,670,757 27 Electric utilities 41,932,708 26 IPP & CHP 14,738,048 22 Emissions Sulfur dioxide (short tons) 106,879 14 Nitrogen oxide (short tons) 44,657 25 Carbon dioxide (thousand metric tons) 39,175 21 Sulfur dioxide (lbs/MWh) 3.8 6 Nitrogen oxide

  7. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Kansas Electricity Profile 2013 Table 1. 2013 Summary statistics (Kansas) Item Value U.S. Rank Primary energy source Coal Net summer capacity (megawatts) 14,093 32 Electric utilities 11,593 24 IPP & CHP 2,501 35 Net generation (megawatthours) 48,472,581 32 Electric utilities 39,808,763 28 IPP & CHP 8,663,819 32 Emissions Sulfur dioxide (short tons) 30,027 30 Nitrogen oxide (short tons) 30,860 30 Carbon dioxide (thousand metric tons) 33,125 27 Sulfur dioxide (lbs/MWh) 1.2 30 Nitrogen

  8. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Kentucky Electricity Profile 2013 Table 1. 2013 Summary statistics (Kentucky) Item Value U.S. Rank Primary energy source Coal Net summer capacity (megawatts) 21,004 21 Electric utilities 19,599 16 IPP & CHP 1,405 40 Net generation (megawatthours) 89,741,021 18 Electric utilities 89,098,127 11 IPP & CHP 642,894 50 Emissions Sulfur dioxide (short tons) 190,782 7 Nitrogen oxide (short tons) 87,201 7 Carbon dioxide (thousand metric tons) 85,304 7 Sulfur dioxide (lbs/MWh) 4.3 4 Nitrogen oxide

  9. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana Electricity Profile 2013 Table 1. 2013 Summary statistics (Louisiana) Item Value U.S. Rank Primary energy source Natural gas Net summer capacity (megawatts) 26,228 15 Electric utilities 17,297 17 IPP & CHP 8,931 12 Net generation (megawatthours) 102,010,177 15 Electric utilities 56,226,016 17 IPP & CHP 45,784,161 8 Emissions Sulfur dioxide (short tons) 122,578 11 Nitrogen oxide (short tons) 82,286 9 Carbon dioxide (thousand metric tons) 58,274 12 Sulfur dioxide (lbs/MWh) 2.4 16

  10. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Maine Electricity Profile 2013 Table 1. 2013 Summary statistics (Maine) Item Value U.S. Rank Primary energy source Natural gas Net summer capacity (megawatts) 4,499 43 Electric utilities 14 49 IPP & CHP 4,485 21 Net generation (megawatthours) 14,030,038 44 Electric utilities 597 49 IPP & CHP 14,029,441 25 Emissions Sulfur dioxide (short tons) 13,365 38 Nitrogen oxide (short tons) 9,607 44 Carbon dioxide (thousand metric tons) 3,675 45 Sulfur dioxide (lbs/MWh) 1.9 23 Nitrogen oxide

  11. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Maryland Electricity Profile 2013 Table 1. 2013 Summary statistics (Maryland) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 12,339 33 Electric utilities 85 48 IPP & CHP 12,254 8 Net generation (megawatthours) 35,850,812 37 Electric utilities 30,205 46 IPP & CHP 35,820,607 9 Emissions Sulfur dioxide (short tons) 41,539 26 Nitrogen oxide (short tons) 21,995 34 Carbon dioxide (thousand metric tons) 18,950 34 Sulfur dioxide (lbs/MWh) 2.3 17 Nitrogen oxide

  12. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Massachusetts Electricity Profile 2013 Table 1. 2013 Summary statistics (Massachusetts) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 13,678 32 Electric utilities 969 42 IPP & CHP 12,709 7 Net generation (megawatthours) 32,885,021 40 Electric utilities 611,320 44 IPP & CHP 32,273,700 12 Emissions Sulfur dioxide (short tons) 12,339 40 Nitrogen oxide (short tons) 15,150 41 Carbon dioxide (thousand metric tons) 14,735 38 Sulfur dioxide (lbs/MWh) 0.8 38

  13. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Michigan Electricity Profile 2013 Table 1. 2013 Summary statistics (Michigan) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 30,128 11 Electric utilities 22,148 9 IPP & CHP 7,981 14 Net generation (megawatthours) 105,417,801 14 Electric utilities 83,171,310 13 IPP & CHP 22,246,490 14 Emissions Sulfur dioxide (short tons) 237,091 5 Nitrogen oxide (short tons) 86,058 8 Carbon dioxide (thousand metric tons) 67,193 10 Sulfur dioxide (lbs/MWh) 4.5 3 Nitrogen oxide

  14. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota Electricity Profile 2013 Table 1. 2013 Summary statistics (Minnesota) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 15,758 26 Electric utilities 11,901 22 IPP & CHP 3,858 25 Net generation (megawatthours) 51,296,988 31 Electric utilities 41,155,904 27 IPP & CHP 10,141,084 30 Emissions Sulfur dioxide (short tons) 35,625 28 Nitrogen oxide (short tons) 36,972 28 Carbon dioxide (thousand metric tons) 29,255 29 Sulfur dioxide (lbs/MWh) 1.4 28 Nitrogen

  15. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi Electricity Profile 2013 Table 1. 2013 Summary statistics (Mississippi) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 15,561 28 Electric utilities 12,842 20 IPP & CHP 2,719 35 Net generation (megawatthours) 52,810,264 29 Electric utilities 45,413,403 23 IPP & CHP 7,396,861 35 Emissions Sulfur dioxide (short tons) 87,718 17 Nitrogen oxide (short tons) 24,490 32 Carbon dioxide (thousand metric tons) 22,633 33 Sulfur dioxide (lbs/MWh) 3.3 9

  16. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Missouri Electricity Profile 2013 Table 1. 2013 Summary statistics (Missouri) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 21,801 19 Electric utilities 20,562 15 IPP & CHP 1,239 42 Net generation (megawatthours) 91,626,593 17 Electric utilities 89,217,205 10 IPP & CHP 2,409,387 46 Emissions Sulfur dioxide (short tons) 157,488 8 Nitrogen oxide (short tons) 78,033 10 Carbon dioxide (thousand metric tons) 78,344 8 Sulfur dioxide (lbs/MWh) 3.4 8 Nitrogen oxide

  17. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Montana Electricity Profile 2013 Table 1. 2013 Summary statistics (Montana) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 6,329 41 Electric utilities 2,568 38 IPP & CHP 3,761 27 Net generation (megawatthours) 27,687,326 41 Electric utilities 7,361,898 38 IPP & CHP 20,325,428 16 Emissions Sulfur dioxide (short tons) 16,865 36 Nitrogen oxide (short tons) 21,789 35 Carbon dioxide (thousand metric tons) 16,951 35 Sulfur dioxide (lbs/MWh) 1.2 31 Nitrogen oxide

  18. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Nebraska Electricity Profile 2013 Table 1. 2013 Summary statistics (Nebraska) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 8,449 36 Electric utilities 7,911 30 IPP & CHP 538 49 Net generation (megawatthours) 37,104,628 34 Electric utilities 35,170,167 30 IPP & CHP 1,934,461 48 Emissions Sulfur dioxide (short tons) 66,884 22 Nitrogen oxide (short tons) 31,505 29 Carbon dioxide (thousand metric tons) 28,043 32 Sulfur dioxide (lbs/MWh) 3.6 7 Nitrogen oxide

  19. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Nevada Electricity Profile 2013 Table 1. 2013 Summary statistics (Nevada) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 10,652 34 Electric utilities 7,915 29 IPP & CHP 2,737 34 Net generation (megawatthours) 36,443,874 35 Electric utilities 27,888,008 34 IPP & CHP 8,555,866 33 Emissions Sulfur dioxide (short tons) 7,436 41 Nitrogen oxide (short tons) 16,438 39 Carbon dioxide (thousand metric tons) 15,690 37 Sulfur dioxide (lbs/MWh) 0.4 43 Nitrogen

  20. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Hampshire Electricity Profile 2013 Table 1. 2013 Summary statistics (New Hampshire) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 4,413 44 Electric utilities 1,121 41 IPP & CHP 3,292 30 Net generation (megawatthours) 19,778,520 42 Electric utilities 2,266,903 41 IPP & CHP 17,511,617 20 Emissions Sulfur dioxide (short tons) 3,733 44 Nitrogen oxide (short tons) 5,057 47 Carbon dioxide (thousand metric tons) 3,447 46 Sulfur dioxide (lbs/MWh) 0.4 45 Nitrogen

  1. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Jersey Electricity Profile 2013 Table 1. 2013 Summary statistics (New Jersey) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 18,997 22 Electric utilities 544 43 IPP & CHP 18,452 6 Net generation (megawatthours) 64,750,942 24 Electric utilities -122,674 50 IPP & CHP 64,873,616 6 Emissions Sulfur dioxide (short tons) 3,196 46 Nitrogen oxide (short tons) 15,299 40 Carbon dioxide (thousand metric tons) 15,789 36 Sulfur dioxide (lbs/MWh) 0.1 48 Nitrogen oxide

  2. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Mexico Electricity Profile 2013 Table 1. 2013 Summary statistics (New Mexico) Item Value U.S. Rank Primary energy source Coal Net summer capacity (megawatts) 7,938 38 Electric utilities 5,912 33 IPP & CHP 2,026 36 Net generation (megawatthours) 35,870,965 36 Electric utilities 29,833,095 33 IPP & CHP 6,037,870 37 Emissions Sulfur dioxide (short tons) 17,735 34 Nitrogen oxide (short tons) 59,055 16 Carbon dioxide (thousand metric tons) 28,535 31 Sulfur dioxide (lbs/MWh) 1.0 36 Nitrogen

  3. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    York Electricity Profile 2013 Table 1. 2013 Summary statistics (New York) Item Value Rank Primary energy source Natural Gas Net summer capacity (megawatts) 39,918 6 Electric utilities 10,736 26 IPP & CHP 29,182 5 Net generation (megawatthours) 136,116,830 8 Electric utilities 33,860,490 31 IPP & CHP 102,256,340 5 Emissions Sulfur dioxide (short tons) 30,947 29 Nitrogen oxide (short tons) 44,824 24 Carbon dioxide (thousand metric tons) 33,456 26 Sulfur dioxide (lbs/MWh) 0.5 41 Nitrogen

  4. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    North Carolina Electricity Profile 2013 Table 1. 2013 Summary statistics (North Carolina) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 30,048 12 Electric utilities 26,706 6 IPP & CHP 3,342 29 Net generation (megawatthours) 125,936,293 9 Electric utilities 116,317,050 2 IPP & CHP 9,619,243 31 Emissions Sulfur dioxide (short tons) 71,293 20 Nitrogen oxide (short tons) 62,397 12 Carbon dioxide (thousand metric tons) 56,940 14 Sulfur dioxide (lbs/MWh) 1.1 32

  5. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota Electricity Profile 2013 Table 1. 2013 Summary statistics (North Dakota) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 6,566 40 Electric utilities 5,292 34 IPP & CHP 1,274 41 Net generation (megawatthours) 35,021,673 39 Electric utilities 31,044,374 32 IPP & CHP 3,977,299 42 Emissions Sulfur dioxide (short tons) 56,854 23 Nitrogen oxide (short tons) 48,454 22 Carbon dioxide (thousand metric tons) 30,274 28 Sulfur dioxide (lbs/MWh) 3.2 11 Nitrogen oxide

  6. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio Electricity Profile 2013 Table 1. 2013 Summary statistics (Ohio) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 32,482 8 Electric utilities 20,779 11 IPP & CHP 11,703 9 Net generation (megawatthours) 137,284,189 7 Electric utilities 88,763,825 12 IPP & CHP 48,520,364 7 Emissions Sulfur dioxide (short tons) 346,873 2 Nitrogen oxide (short tons) 102,526 4 Carbon dioxide (thousand metrictons) 102,466 4 Sulfur dioxide (lbs/MWh) 5.1 1 Nitrogen oxide (lbs/MWh)

  7. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma Electricity Profile 2013 Table 1. 2013 Summary statistics (Oklahoma) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 23,300 17 Electric utilities 16,951 18 IPP & CHP 6,349 17 Net generation (megawatthours) 73,673,680 22 Electric utilities 53,348,841 18 IPP & CHP 20,324,839 17 Emissions Sulfur dioxide 80,418 19 Nitrogen oxide 57,024 17 Carbon dioxide (thousand metric tons) 46,268 19 Sulfur dioxide (lbs/MWh) 2.2 18 Nitrogen oxide (lbs/MWh) 1.5 19

  8. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Oregon Electricity Profile 2013 Table 1. 2013 Summary statistics (Oregon) Item Value Rank Primary energy source Hydroelectric Net summer capacity (megawatts) 15,662 27 Electric utilities 10,973 25 IPP & CHP 4,689 19 Net generation (megawatthours) 59,895,515 26 Electric utilities 43,254,167 24 IPP & CHP 16,641,348 21 Emissions Sulfur dioxide (short tons) 17,511 35 Nitrogen oxide (short tons) 13,803 42 Carbon dioxide (thousand metric tons) 9,500 40 Sulfur dioxide (lbs/MWh) 0.6 39 Nitrogen

  9. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania Electricity Profile 2013 Table 1. 2013 Summary statistics (Pennsylvania) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 43,040 5 Electric utilities 455 44 IPP & CHP 42,584 3 Net generation (megawatthours) 226,785,630 2 Electric utilities 1,105,740 42 IPP & CHP 225,679,890 2 Emissions Sulfur dioxide (short tons) 276,851 3 Nitrogen oxide (short tons) 151,148 2 Carbon dioxide (thousand metric tons) 108,729 2 Sulfur dioxide (lbs/MWh) 2.4 15 Nitrogen

  10. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Rhode Island Electricity Profile 2013 Table 1. 2013 Summary statistics (Rhode Island) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 1,809 49 Electric utilities 8 50 IPP & CHP 1,802 38 Net generation (megawatthours) 6,246,807 50 Electric utilities 10,659 48 IPP & CHP 6,236,148 36 Emissions Sulfur dioxide (short tons) 1,271 49 Nitrogen oxide (short tons) 1,161 49 Carbon dioxide (thousand metric tons) 2,838 48 Sulfur dioxide (lbs/MWh) 0.4 44 Nitrogen

  11. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina Electricity Profile 2013 Table 1. 2013 Summary statistics (South Carolina) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 23,017 18 Electric utilities 21,039 10 IPP & CHP 1,978 37 Net generation (megawatthours) 95,249,894 16 Electric utilities 91,795,732 9 IPP & CHP 3,454,162 44 Emissions Sulfur dioxide (short tons) 47,671 25 Nitrogen oxide (short tons) 19,035 36 Carbon dioxide (thousand metric tons) 28,809 30 Sulfur dioxide (lbs/MWh) 1.0 35

  12. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    South Dakota Electricity Profile 2013 Table 1. 2013 Summary statistics (South Dakota) Item Value Rank Primary energy source Hydroelectric Net summer capacity (megawatts) 4,109 45 Electric utilities 3,480 36 IPP & CHP 629 48 Net generation (megawatthours) 10,108,887 46 Electric utilities 8,030,545 37 IPP & CHP 2,078,342 47 Emissions Sulfur dioxide (short tons) 15,347 37 Nitrogen oxide (short tons) 11,430 43 Carbon dioxide (thousand metric tons) 3,228 47 Sulfur dioxide (lbs/MWh) 3.0 12

  13. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Tennessee Electricity Profile 2013 Table 1. 2013 Summary statistics (Tennessee) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 21,326 20 Electric utilities 20,635 13 IPP & CHP 690 47 Net generation (megawatthours) 79,651,619 19 Electric utilities 75,988,871 15 IPP & CHP 3,662,748 43 Emissions Sulfur dioxide (short tons) 86,204 18 Nitrogen oxide (short tons) 23,189 33 Carbon dioxide (thousand metric tons) 38,118 22 Sulfur dioxide (lbs/MWh) 2.2 19 Nitrogen oxide

  14. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Texas Electricity Profile 2013 Table 1. 2013 Summary statistics (Texas) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 109,584 1 Electric utilities 28,705 3 IPP & CHP 80,879 1 Net generation (megawatthours) 433,380,166 1 Electric utilities 96,131,888 6 IPP & CHP 337,248,278 1 Emissions Sulfur Dioxide (short tons) 383,728 1 Nitrogen Oxide short tons) 228,695 1 Carbon Dioxide (thousand metric tons) 257,465 1 Sulfur Dioxide (lbs/MWh) 1.8 25 Nitrogen Oxide

  15. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Utah Electricity Profile 2013 Table 1. 2013 Summary statistics (Utah) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 7,698 39 Electric utilities 6,669 32 IPP & CHP 1,029 44 Net generation (megawatthours) 42,516,751 33 Electric utilities 39,526,881 29 IPP & CHP 2,989,870 45 Emissions Sulfur Dioxide (short tons) 23,670 32 Nitrogen Oxide (short tons) 62,296 13 Carbon Dioxide (thousand metric tons) 35,699 24 Sulfur Dioxide (lbs/MWh) 1.1 33 Nitrogen Oxide (lbs/MWh)

  16. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Vermont Electricity Profile 2013 Table 1. 2013 Summary statistics (Vermont) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 1,255 50 Electric utilities 329 45 IPP & CHP 925 46 Net generation (megawatthours) 6,884,910 48 Electric utilities 872,238 43 IPP & CHP 6,012,672 38 Emissions Sulfur Dioxide (short tons) 71 50 Nitrogen Oxide (short tons) 792 50 Carbon Dioxide (thousand metric tons) 15 51 Sulfur Dioxide (lbs/MWh) 0.0 50 Nitrogen Oxide (lbs/MWh) 0.2 51

  17. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Virginia Electricity Profile 2013 Table 1. 2013 Summary statistics (Virginia) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 24,828 16 Electric utilities 20,601 14 IPP & CHP 4,227 22 Net generation (megawatthours) 76,896,565 20 Electric utilities 63,724,860 16 IPP & CHP 13,171,706 28 Emissions Sulfur Dioxide (short tons) 68,077 21 Nitrogen Oxide (short tons) 39,706 27 Carbon Dioxide (thousand metric tons) 34,686 25 Sulfur Dioxide (lbs/MWh) 1.8 26 Nitrogen

  18. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Washington Electricity Profile 2013 Table 1. 2013 Summary statistics (Washington) Item Value Rank Primary energy source Hydroelectric Net summer capacity (megawatts) 30,656 10 Electric utilities 27,070 5 IPP & CHP 3,586 28 Net generation (megawatthours) 114,172,916 11 Electric utilities 100,013,661 5 IPP & CHP 14,159,255 24 Emissions Sulfur Dioxide (short tons) 13,259 39 Nitrogen Oxide (short tons) 17,975 38 Carbon Dioxide (thousand metric tons) 12,543 39 Sulfur Dioxide (lbs/MWh) 0.2 46

  19. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    West Virginia Electricity Profile 2013 Table 1. 2013 Summary statistics (West Virginia) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 16,282 24 Electric utilities 10,625 27 IPP & CHP 5,657 18 Net generation (megawatthours) 75,863,067 21 Electric utilities 46,351,104 22 IPP & CHP 29,511,963 13 Emissions Sulfur Dioxide (short tons) 93,888 15 Nitrogen Oxide (short tons) 60,229 14 Carbon Dioxide (thousand metric tons) 68,862 9 Sulfur Dioxide (lbs/MWh) 2.5 14

  20. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Wisconsin Electricity Profile 2013 Table 1. 2013 Summary statistics (Wisconsin) Item Value Rank Primary Energy Source Coal Net summer capacity (megawatts) 17,342 23 Electric utilities 13,358 19 IPP & CHP 3,984 23 Net generation (megawatthours) 65,962,792 23 Electric utilities 47,027,455 20 IPP & CHP 18,935,337 19 Emissions Sulfur Dioxide (short tons) 108,306 13 Nitrogen Oxide (short tons) 44,114 26 Carbon Dioxide (thousand metric tons) 47,686 18 Sulfur Dioxide (lbs/MWh) 3.3 10 Nitrogen

  1. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Wyoming Electricity Profile 2013 Table 1. 2013 Summary statistics (Wyoming) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 8,381 37 Electric utilities 7,279 31 IPP & CHP 1,102 43 Net generation (megawatthours) 52,483,065 30 Electric utilities 48,089,178 19 IPP & CHP 4,393,887 41 Emissions Sulfur Dioxide (short tons) 49,587 24 Nitrogen Oxide (short tons) 55,615 19 Carbon Dioxide (thousand metric tons) 50,687 17 Sulfur Dioxide (lbs/MWh) 1.9 24 Nitrogen Oxide

  2. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Vermont profile Vermont total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 620 55.0 4,782 72.2 Hydro and Pumped Storage 324 28.7 1,347 20.3 Natural Gas - - 4 0.1 Other Renewable1 84 7.5 482 7.3 Petroleum 100 8.9 5 0.1 Total 1,128 100.0 6,620 100.0 1Municipal Solid Waste net generation is allocated according to the

  3. Compare Gene Profiles

    Energy Science and Technology Software Center (OSTI)

    2014-05-31

    Compare Gene Profiles (CGP) performs pairwise gene content comparisons among a relatively large set of related bacterial genomes. CGP performs pairwise BLAST among gene calls from a set of input genome and associated annotation files, and combines the results to generate lists of common genes, unique genes, homologs, and genes from each genome that differ substantially in length from corresponding genes in the other genomes. CGP is implemented in Python and runs in a Linuxmore » environment in serial or parallel mode.« less

  4. Environmental profile of Paraguay

    SciTech Connect (OSTI)

    Not Available

    1985-12-01

    The social, cultural, physical, and economic dimensions of Paraguay's environment are analyzed to identify main environmental features and problems and to recommend specific actions. The environmental profile presents an overview of Paraguay's ethno-historic and anthropological background, present-day society, and the impact of pollution. Descriptions are presented of: the legal and institutional aspects of environmental policy; the structure and performance of the economy, with focus on the primary and energy sectors; physical resources (climate, geological, mineral, soil, and water resources); and biological resources (vegetation, wild animal life, protected areas, and fish resources).

  5. EIA - State Electricity Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Idaho Electricity Profile 2013 Table 1. 2013 Summary statistics (Idaho) Item Value U.S. Rank Primary energy source Hydroelectric Net summer capacity (megawatts) 4,924 42 Electric utilities 3,394 37 IPP & CHP 1,530 39 Net generation (megawatthours) 15,186,128 43 Electric utilities 9,600,216 36 IPP & CHP 5,585,912 39 Emissions Sulfur dioxide (short tons) 6,565 42 Nitrogen oxide (short tons) 7,627 46 Carbon dioxide (thousand metric tons) 1,942 49 Sulfur dioxide (lbs/MWh) 0.9 37 Nitrogen

  6. EIA - State Electricity Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oregon Electricity Profile 2013 Table 1. 2013 Summary statistics (Oregon) Item Value Rank Primary energy source Hydroelectric Net summer capacity (megawatts) 15,662 27 Electric utilities 10,973 25 IPP & CHP 4,689 19 Net generation (megawatthours) 59,895,515 26 Electric utilities 43,254,167 24 IPP & CHP 16,641,348 21 Emissions Sulfur dioxide (short tons) 17,511 35 Nitrogen oxide (short tons) 13,803 42 Carbon dioxide (thousand metric tons) 9,500 40 Sulfur dioxide (lbs/MWh) 0.6 39 Nitrogen

  7. EIA - State Electricity Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    South Dakota Electricity Profile 2013 Table 1. 2013 Summary statistics (South Dakota) Item Value Rank Primary energy source Hydroelectric Net summer capacity (megawatts) 4,109 45 Electric utilities 3,480 36 IPP & CHP 629 48 Net generation (megawatthours) 10,108,887 46 Electric utilities 8,030,545 37 IPP & CHP 2,078,342 47 Emissions Sulfur dioxide (short tons) 15,347 37 Nitrogen oxide (short tons) 11,430 43 Carbon dioxide (thousand metric tons) 3,228 47 Sulfur dioxide (lbs/MWh) 3.0 12

  8. EIA - State Electricity Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    United States Electricity Profile 2013 Table 1. 2013 Summary statistics (United States) Item Value Primary energy source Coal Net summer capacity (megawatts) 1,060,064 Electric utilities 616,799 IPP & CHP 443,264 Net generation (megawatthours) 4,065,964,067 Electric utilities 2,388,058,409 IPP & CHP 1,677,905,658 Emissions Sulfur Dioxide (short tons) 3,978,753 Nitrogen Oxide (short tons) 2,411,564 Carbon Dioxide (thousand metric tons) 2,172,355 Sulfur Dioxide (lbs/MWh) 2.0 Nitrogen Oxide

  9. EIA - State Electricity Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Washington Electricity Profile 2013 Table 1. 2013 Summary statistics (Washington) Item Value Rank Primary energy source Hydroelectric Net summer capacity (megawatts) 30,656 10 Electric utilities 27,070 5 IPP & CHP 3,586 28 Net generation (megawatthours) 114,172,916 11 Electric utilities 100,013,661 5 IPP & CHP 14,159,255 24 Emissions Sulfur Dioxide (short tons) 13,259 39 Nitrogen Oxide (short tons) 17,975 38 Carbon Dioxide (thousand metric tons) 12,543 39 Sulfur Dioxide (lbs/MWh) 0.2 46

  10. EIA - State Electricity Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wyoming Electricity Profile 2013 Table 1. 2013 Summary statistics (Wyoming) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 8,381 37 Electric utilities 7,279 31 IPP & CHP 1,102 43 Net generation (megawatthours) 52,483,065 30 Electric utilities 48,089,178 19 IPP & CHP 4,393,887 41 Emissions Sulfur Dioxide (short tons) 49,587 24 Nitrogen Oxide (short tons) 55,615 19 Carbon Dioxide (thousand metric tons) 50,687 17 Sulfur Dioxide (lbs/MWh) 1.9 24 Nitrogen Oxide

  11. EIA - State Nuclear Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vermont profile Vermont total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 620 55.0 4,782 72.2 Hydro and Pumped Storage 324 28.7 1,347 20.3 Natural Gas - - 4 0.1 Other Renewable1 84 7.5 482 7.3 Petroleum 100 8.9 5 0.1 Total 1,128 100.0 6,620 100.0 1Municipal Solid Waste net generation is allocated according to the

  12. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Arkansas Electricity Profile 2013 Table 1. 2013 Summary statistics (Arkansas) Item Value U.S. Rank Primary energy source Coal Net summer capacity (megawatts) 14,786 29 Electric utilities 11,559 23 IPP & CHP 3,227 31 Net generation (megawatthours) 60,322,492 25 Electric utilities 46,547,772 21 IPP & CHP 13,774,720 27 Emissions Sulfur dioxide (short tons) 88,811 16 Nitrogen oxide (short tons) 45,896 23 Carbon dioxide (thousand metric tons) 37,346 23 Sulfur dioxide (lbs/MWh) 2.9 13 Nitrogen

  13. Opposed-flow virtual cyclone for particle concentration

    DOE Patents [OSTI]

    Rader, Daniel J.; Torczynski, John R.

    2000-12-05

    An opposed-flow virtual cyclone for aerosol collation which can accurately collect, classify, and concentrate (enrich) particles in a specific size range. The opposed-flow virtual cyclone is a variation on the virtual cyclone and has its inherent advantages (no-impact particle separation in a simple geometry), while providing a more robust design for concentrating particles in a flow-through type system. The opposed-flow virtual cyclone consists of two geometrically similar virtual cyclones arranged such that their inlet jets are inwardly directed and symmetrically opposed relative to a plane of symmetry located between the two inlet slits. A top plate bounds both jets on the "top" side of the inlets, while the other or lower wall curves "down" and away from each inlet jet. Each inlet jet will follow the adjacent lower wall as it turns away, and that particles will be transferred away from the wall and towards the symmetry plane by centrifugal action. After turning, the two jets merge smoothly along the symmetry line and flow parallel to it through the throat. Particles are transferred from the main flows, across a dividing streamline, and into a central recirculating region, where particle concentrations become greatly increased relative to the main stream.

  14. Project Cost Profile Spreadsheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Cost Profile Spreadsheet Project Cost Profile Spreadsheet File Project Cost Profile Spreadsheet.xlsx More Documents & Publications Statement of Work (SOW) Template ...

  15. Virtual QCD corrections to Higgs boson plus four parton processes

    SciTech Connect (OSTI)

    Ellis, R.K.; Giele, W.T.; Zanderighi, G.

    2005-09-01

    We report on the calculation of virtual processes contributing to the production of a Higgs boson and two jets in hadron-hadron collisions. The coupling of the Higgs boson to gluons, via a virtual loop of top quarks, is treated using an effective theory, valid in the large top quark mass limit. The calculation is performed by evaluating one-loop diagrams in the effective theory. The primary method of calculation is a numerical evaluation of the virtual amplitudes as a Laurent series in D-4, where D is the dimensionality of space-time. For the cases H{yields}qqqq and H{yields}qqq{sup '}q{sup '} we confirm the numerical results by an explicit analytic calculation.

  16. Virtual electrodes for high-density electrode arrays

    DOE Patents [OSTI]

    Cela, Carlos J.; Lazzi, Gianluca

    2015-10-13

    The present embodiments are directed to implantable electrode arrays having virtual electrodes. The virtual electrodes may improve the resolution of the implantable electrode array without the burden of corresponding complexity of electronic circuitry and wiring. In a particular embodiment, a virtual electrode may include one or more passive elements to help steer current to a specific location between the active electrodes. For example, a passive element may be a metalized layer on a substrate that is adjacent to, but not directly connected to an active electrode. In certain embodiments, an active electrode may be directly coupled to a power source via a conductive connection. Beneficially, the passive elements may help to increase the overall resolution of the implantable array by providing additional stimulation points without requiring additional wiring or driver circuitry for the passive elements.

  17. Virtual Library on Genetics from Oak Ridge National Laboratory

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The World Wide Web (WWW) Virtual Library is a collaborative effort to provide topic indices that break down into many subtopics guiding users to vast resources of information around the world. ORNL hosts the Virtual Library on Genetics as part of the WWWVL's Biosciences topic area. The VL on Genetics is also a collection of links to information resources that supported the DOE Human Genome Project. That project has now evolved into Genomics: GTL. GTL is DOE's next step in genomics--builds on data and resources from the Human Genome Project, the Microbial Genome Program, and systems biology. GTL will accelerate understanding of dynamic living systems for solutions to DOE mission challenges in energy and the environment. The section of the Virtual Library on Genetics that is titled Organisms guides users to genetic information resources and gene sequences for animals, insects, microbes, and plant life.

  18. CASL-U-2015-0067-000 Virtual Environment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7-000 Virtual Environment for Reactor Applications (VERA) Workshop Session 2: Hands on Training Rose Montgomery The Tennessee Valley Authority April 1, 2015 CASL-U-2015-0067-000 1 Virtual Environment for Reactor Applications (VERA) Hands-On Training The American Nuclear Society ANFM Topical Meeting presents April 1, 2015 Hilton Head, SC Please check in to receive your student packet and RSA token to log onto the computers. CASL-U-2015-0067-000 2 2 CASL-U-2015-0067-000 2 CASL-U-2015-0067-000

  19. EGR Distribution in Engine Cylinders Using Advanced Virtual Simulation

    SciTech Connect (OSTI)

    Fan, Xuetong

    2000-08-20

    Exhaust Gas Recirculation (EGR) is a well-known technology for reduction of NOx in diesel engines. With the demand for extremely low engine out NOx emissions, it is important to have a consistently balanced EGR flow to individual engine cylinders. Otherwise, the variation in the cylinders' NOx contribution to the overall engine emissions will produce unacceptable variability. This presentation will demonstrate the effective use of advanced virtual simulation in the development of a balanced EGR distribution in engine cylinders. An initial design is analyzed reflecting the variance in the EGR distribution, quantitatively and visually. Iterative virtual lab tests result in an optimized system.

  20. Los Alamos' New Virtualized Data Center Saves Energy and Cash |

    Office of Environmental Management (EM)

    Department of Energy Alamos' New Virtualized Data Center Saves Energy and Cash Los Alamos' New Virtualized Data Center Saves Energy and Cash March 7, 2011 - 3:15pm Addthis It takes 8,900 kilowatt hours to provide electricity to one U.S. house for a year. With the energy saved annually through Infrastructure on Demand, LANL can power 216 homes. | Photo Courtesy of LANL It takes 8,900 kilowatt hours to provide electricity to one U.S. house for a year. With the energy saved annually through

  1. Beam Profile Monitor With Accurate Horizontal And Vertical Beam Profiles

    DOE Patents [OSTI]

    Havener, Charles C [Knoxville, TN; Al-Rejoub, Riad [Oak Ridge, TN

    2005-12-26

    A widely used scanner device that rotates a single helically shaped wire probe in and out of a particle beam at different beamline positions to give a pair of mutually perpendicular beam profiles is modified by the addition of a second wire probe. As a result, a pair of mutually perpendicular beam profiles is obtained at a first beamline position, and a second pair of mutually perpendicular beam profiles is obtained at a second beamline position. The simple modification not only provides more accurate beam profiles, but also provides a measurement of the beam divergence and quality in a single compact device.

  2. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    South Carolina profile South Carolina total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 6,486 27.0 51,988 49.9 Coal 7,230 30.1 37,671 36.2 Hydro and Pumped Storage 4,006 16.7 1,442 1.4 Natural Gas 5,308 22.1 10,927 10.5 Other 1 - - 61 0.1 Other Renewable1 284 1.2 1,873 1.8 Petroleum 670 2.8 191 0.2 Total 23,982

  3. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Tennessee profile Tennessee total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 3,401 15.9 27,739 33.7 Coal 8,805 41.1 43,670 53.0 Hydro and Pumped Storage 4,277 20.0 7,416 9.0 Natural Gas 4,655 21.7 2,302 2.8 Other 1 - - 16 * Other Renewable1 222 1.0 988 1.2 Petroleum 58 0.3 217 0.3 Total 21,417 100.0 82,349 100.0

  4. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Texas profile Texas total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,966 4.6 41,335 10.0 Coal 22,335 20.6 150,173 36.5 Hydro and Pumped Storage 689 0.6 1,262 0.3 Natural Gas 69,291 64.0 186,882 45.4 Other 1 477 0.4 3,630 0.9 Other Renewable1 10,295 9.5 27,705 6.7 Petroleum 204 0.2 708 0.2 Total 108,258 100.0

  5. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Virginia profile Virginia total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 3,501 14.5 26,572 36.4 Coal 5,868 24.3 25,459 34.9 Hydro and Pumped Storage 4,107 17.0 10 * Natural Gas 7,581 31.4 16,999 23.3 Other 1 - - 414 0.6 Other Renewable1 621 2.6 2,220 3.0 Petroleum 2,432 10.1 1,293 1.8 Total 24,109 100.0 72,966

  6. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Washington profile Washington total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,097 3.6 9,241 8.9 Coal 1,340 4.4 8,527 8.2 Hydro and Pumped Storage 21,495 70.5 68,342 66.0 Natural Gas 3,828 12.6 10,359 10.0 Other 1 - - 354 0.3 Other Renewable1 2,703 8.9 6,617 6.4 Petroleum 15 * 32 * Total 30,478 100.0 103,473

  7. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Wisconsin profile Wisconsin total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,584 8.9 13,281 20.7 Coal 8,063 45.2 40,169 62.5 Hydro and Pumped Storage 492 2.8 2,112 3.3 Natural Gas 6,110 34.3 5,497 8.5 Other 1 21 0.1 63 0.1 Other Renewable1 775 4.3 2,474 3.8 Petroleum 790 4.4 718 1.1 Total 17,836 100.0 64,314

  8. EIA - State Nuclear Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    South Carolina profile South Carolina total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 6,486 27.0 51,988 49.9 Coal 7,230 30.1 37,671 36.2 Hydro and Pumped Storage 4,006 16.7 1,442 1.4 Natural Gas 5,308 22.1 10,927 10.5 Other 1 - - 61 0.1 Other Renewable1 284 1.2 1,873 1.8 Petroleum 670 2.8 191 0.2 Total 23,982

  9. EIA - State Nuclear Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tennessee profile Tennessee total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 3,401 15.9 27,739 33.7 Coal 8,805 41.1 43,670 53.0 Hydro and Pumped Storage 4,277 20.0 7,416 9.0 Natural Gas 4,655 21.7 2,302 2.8 Other 1 - - 16 * Other Renewable1 222 1.0 988 1.2 Petroleum 58 0.3 217 0.3 Total 21,417 100.0 82,349 100.0

  10. EIA - State Nuclear Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Texas profile Texas total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,966 4.6 41,335 10.0 Coal 22,335 20.6 150,173 36.5 Hydro and Pumped Storage 689 0.6 1,262 0.3 Natural Gas 69,291 64.0 186,882 45.4 Other 1 477 0.4 3,630 0.9 Other Renewable1 10,295 9.5 27,705 6.7 Petroleum 204 0.2 708 0.2 Total 108,258 100.0

  11. EIA - State Nuclear Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Virginia profile Virginia total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 3,501 14.5 26,572 36.4 Coal 5,868 24.3 25,459 34.9 Hydro and Pumped Storage 4,107 17.0 10 * Natural Gas 7,581 31.4 16,999 23.3 Other 1 - - 414 0.6 Other Renewable1 621 2.6 2,220 3.0 Petroleum 2,432 10.1 1,293 1.8 Total 24,109 100.0 72,966

  12. EIA - State Nuclear Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Washington profile Washington total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,097 3.6 9,241 8.9 Coal 1,340 4.4 8,527 8.2 Hydro and Pumped Storage 21,495 70.5 68,342 66.0 Natural Gas 3,828 12.6 10,359 10.0 Other 1 - - 354 0.3 Other Renewable1 2,703 8.9 6,617 6.4 Petroleum 15 * 32 * Total 30,478 100.0 103,473

  13. EIA - State Nuclear Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wisconsin profile Wisconsin total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,584 8.9 13,281 20.7 Coal 8,063 45.2 40,169 62.5 Hydro and Pumped Storage 492 2.8 2,112 3.3 Natural Gas 6,110 34.3 5,497 8.5 Other 1 21 0.1 63 0.1 Other Renewable1 775 4.3 2,474 3.8 Petroleum 790 4.4 718 1.1 Total 17,836 100.0 64,314

  14. PROJECT PROFILE: Correlative Electronic Spectroscopies for Increasing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PROJECT PROFILE: Correlative Electronic Spectroscopies for Increasing Photovoltaic Efficiency PROJECT PROFILE: Correlative Electronic Spectroscopies for Increasing Photovoltaic ...

  15. Search Women@Energy Profiles

    Broader source: Energy.gov [DOE]

    Search the Women@Energy profiles to learn more about how to get into STEM, inspired by STEM, or find a STEM career.

  16. V-189: Oracle VirtualBox 'tracepath' Bug Lets Local Guest Users...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oracle VirtualBox 'tracepath' Bug Lets Local Guest Users Deny Service on the Target Host V-189: Oracle VirtualBox 'tracepath' Bug Lets Local Guest Users Deny Service on the Target...

  17. New JLab/Hall A Deeply Virtual Compton Scattering results

    SciTech Connect (OSTI)

    Defurne, Maxime

    2015-08-01

    New data points for unpolarized Deeply Virtual Compton Scattering cross sections have been extracted from the E00-110 experiment at Q2=1.9 GeV2 effectively doubling the statistics available in the valence region. A careful study of systematic uncertainties has been performed.

  18. PNNL offers 'virtual tour' of Shallow Underground Laboratory | National

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration offers 'virtual tour' of Shallow Underground Laboratory | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters

  19. Students Share Experiences from First Run of BioenergizeME Virtual Science

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fair | Department of Energy Students Share Experiences from First Run of BioenergizeME Virtual Science Fair Students Share Experiences from First Run of BioenergizeME Virtual Science Fair December 18, 2014 - 12:13pm Addthis Students Share Experiences from First Run of BioenergizeME Virtual Science Fair View all student infographics by clicking on website links through the BioenergizeME Virtual Science Fair map. Last week concluded the beta run of the Bioenergy Technologies Office (BETO)

  20. The Benefits and Risks of Virtual Bidding in Multi-Settlement Markets

    SciTech Connect (OSTI)

    Isemonger, Alan G.

    2006-11-15

    While it is possible that multi-settlement markets can exist without virtual trading, it is equally clear that virtual trading can provide many market benefits. The main one: In the absence of explicit virtual bidding (EVB), the price arbitrage trades that are benign in other commodity markets affect the reliability of the underlying electricity markets, resulting in a situation where EVB is most useful when it neutralizes the deleterious reliability effects of implicit virtual bidding and physical arbitrage. (author)

  1. Steel Energy and Environmental Profile

    SciTech Connect (OSTI)

    none,

    2000-08-01

    Major steelmaking processes (from ironmaking through fabrication and forming) and their associated energy requirements have been profiled in this 2001 report (PDF 582 KB). This profile by Energetics, Inc. also describes the waste streams generated by each process and estimates annual emissions of CO2 and criteria pollutants.

  2. Laser heterodyne surface profiler

    DOE Patents [OSTI]

    Sommargren, G.E.

    1980-06-16

    A method and apparatus are disclosed for testing the deviation of the face of an object from a flat smooth surface using a beam of coherent light of two plane-polarized components, one of a frequency constantly greater than the other by a fixed amount to produce a difference frequency with a constant phase to be used as a reference, and splitting the beam into its two components. The separate components are directed onto spaced apart points on the face of the object to be tested for smoothness while the face of the object is rotated on an axis normal to one point, thereby passing the other component over a circular track on the face of the object. The two components are recombined after reflection to produce a reflected frequency difference of a phase proportional to the difference in path length of one component reflected from one point to the other component reflected from the other point. The phase of the reflected frequency difference is compared with the reference phase to produce a signal proportional to the deviation of the height of the surface along the circular track with respect to the fixed point at the center, thereby to produce a signal that is plotted as a profile of the surface along the circular track. The phase detector includes a quarter-wave plate to convert the components of the reference beam into circularly polarized components, a half-wave plate to shift the phase of the circularly polarized components, and a polarizer to produce a signal of a shifted phase for comparison with the phase of the frequency difference of the reflected components detected through a second polarizer. Rotation of the half-wave plate can be used for phase adjustment over a full 360/sup 0/ range.

  3. Periodic local MP2 method employing orbital specific virtuals

    SciTech Connect (OSTI)

    Usvyat, Denis Schütz, Martin; Maschio, Lorenzo

    2015-09-14

    We introduce orbital specific virtuals (OSVs) to represent the truncated pair-specific virtual space in periodic local Møller-Plesset perturbation theory of second order (LMP2). The OSVs are constructed by diagonalization of the LMP2 amplitude matrices which correspond to diagonal Wannier-function (WF) pairs. Only a subset of these OSVs is adopted for the subsequent OSV-LMP2 calculation, namely, those with largest contribution to the diagonal pair correlation energy and with the accumulated value of these contributions reaching a certain accuracy. The virtual space for a general (non diagonal) pair is spanned by the union of the two OSV sets related to the individual WFs of the pair. In the periodic LMP2 method, the diagonal LMP2 amplitude matrices needed for the construction of the OSVs are calculated in the basis of projected atomic orbitals (PAOs), employing very large PAO domains. It turns out that the OSVs are excellent to describe short range correlation, yet less appropriate for long range van der Waals correlation. In order to compensate for this bias towards short range correlation, we augment the virtual space spanned by the OSVs by the most diffuse PAOs of the corresponding minimal PAO domain. The Fock and overlap matrices in OSV basis are constructed in the reciprocal space. The 4-index electron repulsion integrals are calculated by local density fitting and, for distant pairs, via multipole approximation. New procedures for determining the fit-domains and the distant-pair lists, leading to higher efficiency in the 4-index integral evaluation, have been implemented. Generally, and in contrast to our previous PAO based periodic LMP2 method, the OSV-LMP2 method does not require anymore great care in the specification of the individual domains (to get a balanced description when calculating energy differences) and is in that sense a black box procedure. Discontinuities in potential energy surfaces, which may occur for PAO-based calculations if one is not careful, virtually disappear for OSV-LMP2. Moreover, due to much increased compactness of the pair-specific virtual spaces, the OSV-LMP2 calculations are faster and require much less memory than PAO-LMP2 calculations, despite the noticeable overhead of the initial OSV construction procedure.

  4. Higher harmonics generation in relativistic electron beam with virtual cathode

    SciTech Connect (OSTI)

    Kurkin, S. A. Badarin, A. A.; Koronovskii, A. A.; Hramov, A. E.

    2014-09-15

    The study of the microwave generation regimes with intense higher harmonics taking place in a high-power vircator consisting of a relativistic electron beam with a virtual cathode has been made. The characteristics of these regimes, in particular, the typical spectra and their variations with the change of the system parameters (beam current, the induction of external magnetic field) as well as physical processes occurring in the system have been analyzed by means of 3D electromagnetic simulation. It has been shown that the system under study demonstrates the tendency to the sufficient growth of the amplitudes of higher harmonics in the spectrum of current oscillations in the VC region with the increase of beam current. The obtained results allow us to consider virtual cathode oscillators as promising high power mmw-to-THz sources.

  5. Wafer bonded virtual substrate and method for forming the same

    DOE Patents [OSTI]

    Atwater, Jr., Harry A. (So. Pasadena, CA); Zahler, James M. (Pasadena, CA); Morral, Anna Fontcuberta i (Paris, FR)

    2007-07-03

    A method of forming a virtual substrate comprised of an optoelectronic device substrate and handle substrate comprises the steps of initiating bonding of the device substrate to the handle substrate, improving or increasing the mechanical strength of the device and handle substrates, and thinning the device substrate to leave a single-crystal film on the virtual substrate such as by exfoliation of a device film from the device substrate. The handle substrate is typically Si or other inexpensive common substrate material, while the optoelectronic device substrate is formed of more expensive and specialized electro-optic material. Using the methodology of the invention a wide variety of thin film electro-optic materials of high quality can be bonded to inexpensive substrates which serve as the mechanical support for an optoelectronic device layer fabricated in the thin film electro-optic material.

  6. Virtual-state internal nuclear fusion in metal lattices

    SciTech Connect (OSTI)

    Bussard, R.W. )

    1989-09-01

    A model of deuterium-deuterium (D-D) fusion in metal lattices is presented based on two phenomena: reactions between virtual-state pairs of deuterons bound by electrons of high effective mass m and deuterium energy upscattering by fast ions from fusion or tritium reactions with virtual-state nuclear structure groups in palladium nuclei. Since m is a decreasing function of deuterium ion bulk density n/sub 0/ the exponential barrier tunneling factor decreases rapidly with m. As a result, the fusion rate reaches a maximum at a loading density above zero but less than saturation. This can explain observations of transient neutron output from the (/sup 3/He,n) branch, of D-D fusion.

  7. Parallel garbage collection on a virtual memory system

    SciTech Connect (OSTI)

    Abraham, S.G.; Patel, J.H.

    1987-01-01

    Since most artificial intelligence applications are programmed in list processing languages, it is important to design architectures to support efficient garbage collection. This paper presents an architecture and an associated algorithm for parallel garbage collection on a virtual memory system. All the previously proposed parallel algorithms attempt to collect cells released by the list processor during the garbage collection cycle. We do not attempt to collect such cells. As a consequence, the list processor incurs little overhead in the proposed scheme, since it need not synchronize with the collector. Most parallel algorithms are designed for shared memory machines which have certain implicit synchronization functions on variable access. The proposed algorithm is designed for virtual memory systems where both the list processor and the garbage collector have private memories. The enforcement of coherence between the two private memories can be expensive and is not necessary in our scheme. 15 refs., 3 figs.

  8. Virtual Aluminum Castings An Industrial Application of Integrated

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computational Materials Engineering | Energy Frontier Research Centers Virtual Aluminum Castings An Industrial Application of Integrated Computational Materials Engineering Home Author: J. Allison, M. Li, C. Wolverton, X. Su Year: 2006 Abstract: The automotive product design and manufacturing community is continually besieged by Hercule an engineering, timing, and cost challenges. Nowhere is this more evident than in the development of designs and manufacturing processes for cast aluminum

  9. LANSCE | News & Media | Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    background News Multimedia Events Profiles Highlights Activity Reports The Pulse User Program Headlines News & Media dotline LANSCE Profiles Kurt Schoenberg: Steering LANSCE for the Future Kurt Schoenberg Kurt Schoenberg, LANSCE User Facility Director and Los Alamos National Laboratory Deputy Associate Director retired from Los Alamos National Laboratory on October 1, 2015. Over the past decade, Kurt has been integral in creating opportunities for LANSCE and the neutron community through the

  10. JOBAID-ACCESSING AND MODIFYING TALENT PROFILE

    Broader source: Energy.gov [DOE]

    The purpose of this job aid is to guide users through the step-by-step process of accessing their talent profiles, adding information to their profiles, and editing existing talent profile...

  11. Heat transmission between a profiled nanowire and a thermal bath

    SciTech Connect (OSTI)

    Blanc, Christophe; Heron, Jean-Savin; Fournier, Thierry; Bourgeois, Olivier

    2014-07-28

    Thermal transport through profiled and abrupt contacts between a nanowire and a reservoir has been investigated by thermal conductance measurements. It is demonstrated that above 1?K the transmission coefficients are identical between abrupt and profiled junctions. This shows that the thermal transport is principally governed by the nanowire itself rather than by the resistance of the thermal contact. These results are perfectly compatible with the previous theoretical models. The thermal conductance measured at sub-Kelvin temperatures is discussed in relation to the universal value of the quantum of thermal conductance.

  12. ARM - PI Product - AERIoe Thermodynamic Profile and Cloud Retrieval for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MC3E Lamont X-band site (I6) Lamont X-band site (I6) ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : AERIoe Thermodynamic Profile and Cloud Retrieval for MC3E Lamont X-band site (I6) [ ARM research ] The AERIoe algorithm retrieves profiles of temperature and water vapor mixing ratio, together with cloud properties for a single-layer cloud (i.e., LWP, effective radius), from AERI-observed infrared

  13. PROJECT PROFILE: Scientific Approach to Reducing Photovoltaic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PROJECT PROFILE: Scientific Approach to Reducing Photovoltaic Module Material Costs While Increasing Durability PROJECT PROFILE: Scientific Approach to Reducing Photovoltaic Module ...

  14. PROJECT PROFILE: Support of International Photovoltaic Module...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PROJECT PROFILE: Support of International Photovoltaic Module Quality Assurance Task Force (PVQAT) PROJECT PROFILE: Support of International Photovoltaic Module Quality Assurance ...

  15. Edge profile measurements using Thomson scattering on the KSTAR tokamak

    SciTech Connect (OSTI)

    Lee, J. H. Ko, W. H.; Oh, S.; Lee, W. R.; Kim, K. P.; Lee, K. D.; Jeon, Y. M.; Yoon, S. W.; Cho, K. W.; Narihara, K.; Yamada, I.; Yasuhara, R.; Hatae, T.; Yatsuka, E.; Ono, T.; Hong, J. H.

    2014-11-15

    In the KSTAR Tokamak, a Tangential Thomson Scattering (TTS) diagnostic system has been designed and installed to measure electron density and temperature profiles. In the edge system, TTS has 12 optical fiber bundles to measure the edge profiles with 1015 mm spatial resolution. These 12 optical fibers and their spatial resolution are not enough to measure the pedestal width with a high accuracy but allow observations of L-H transition or H-L transitions at the edge. For these measurements, the prototype ITER edge Thomson Nd:YAG laser system manufactured by JAEA in Japan is installed. In this paper, the KSTAR TTS system is briefly described and some TTS edge profiles are presented and compared against the KSTAR Charge Exchange Spectroscopy and other diagnostics. The future upgrade plan of the system is also discussed in this paper.

  16. Runtime Performance and Virtual Network Control Alternatives in VM-Based High-Fidelity Network Simulations

    SciTech Connect (OSTI)

    Yoginath, Srikanth B; Perumalla, Kalyan S; Henz, Brian J

    2012-01-01

    In prior work (Yoginath and Perumalla, 2011; Yoginath, Perumalla and Henz, 2012), the motivation, challenges and issues were articulated in favor of virtual time ordering of Virtual Machines (VMs) in network simulations hosted on multi-core machines. Two major components in the overall virtualization challenge are (1) virtual timeline establishment and scheduling of VMs, and (2) virtualization of inter-VM communication. Here, we extend prior work by presenting scaling results for the first component, with experiment results on up to 128 VMs scheduled in virtual time order on a single 12-core host. We also explore the solution space of design alternatives for the second component, and present performance results from a multi-threaded, multi-queue implementation of inter-VM network control for synchronized execution with VM scheduling, incorporated in our NetWarp simulation system.

  17. Raman Lidar Profiles–Temperature (RLPROFTEMP) Value-Added Product

    SciTech Connect (OSTI)

    Newsom, RK; Sivaraman, C; McFarlane, SA

    2012-10-31

    The purpose of this document is to describe the Raman Lidar Profiles–Temperature (RLPROFTEMP) value-added product (VAP) and the procedures used to derive atmospheric temperature profiles from the raw RL measurements. Sections 2 and 4 describe the input and output variables, respectively. Section 3 discusses the theory behind the measurement and the details of the algorithm, including calibration and overlap correction.

  18. 2015 SunShot Incubator Virtual Showcase Slides | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 SunShot Incubator Virtual Showcase Slides 2015 SunShot Incubator Virtual Showcase Slides Download the slides from the 2015 SunShot Initiative Incubator Virtual Showcase webinar on March 4, 2015 below. You can also read the transcript. PDF icon Click here to download the webinar slides. More Documents & Publications 2014 SunShot Initiative Portfolio Book: Technology to Market PRESENTATION: OVERVIEW OF THE SUNSHOT INITIATIVE

  19. DOE AVESTAR Center Deploys 3-D Virtual Training System | Department of

    Office of Environmental Management (EM)

    Energy AVESTAR Center Deploys 3-D Virtual Training System DOE AVESTAR Center Deploys 3-D Virtual Training System October 2, 2012 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy's AVESTAR™ Center has taken a major step forward with the successful deployment and site acceptance testing of a new 3-D virtual immersive training system for integrated gasification combined cycle (IGCC) power plants with carbon capture. The training center, launched in 2011, continues to build its

  20. Decentralised optimisation of cogeneration in virtual power plants

    SciTech Connect (OSTI)

    Wille-Haussmann, Bernhard; Erge, Thomas; Wittwer, Christof

    2010-04-15

    Within several projects we investigated grid structures and management strategies for active grids with high penetration of renewable energy resources and distributed generation (RES and DG). Those ''smart grids'' should be designed and managed by model based methods, which are elaborated within these projects. Cogeneration plants (CHP) can reduce the greenhouse gas emissions by locally producing heat and electricity. The integration of thermal storage devices is suitable to get more flexibility for the cogeneration operation. If several power plants are bound to centrally managed clusters, it is called ''virtual power plant''. To operate smart grids optimally, new optimisation and model reduction techniques are necessary to get rid with the complexity. There is a great potential for the optimised management of CHPs, which is not yet used. Due to the fact that electrical and thermal demands do not occur simultaneously, a thermally driven CHP cannot supply electrical peak loads when needed. With the usage of thermal storage systems it is possible to decouple electric and thermal production. We developed an optimisation method based on mixed integer linear programming (MILP) for the management of local heat supply systems with CHPs, heating boilers and thermal storages. The algorithm allows the production of thermal and electric energy with a maximal benefit. In addition to fuel and maintenance costs it is assumed that the produced electricity of the CHP is sold at dynamic prices. This developed optimisation algorithm was used for an existing local heat system with 5 CHP units of the same type. An analysis of the potential showed that about 10% increase in benefit is possible compared to a typical thermally driven CHP system under current German boundary conditions. The quality of the optimisation result depends on an accurate prognosis of the thermal load which is realised with an empiric formula fitted with measured data by a multiple regression method. The key functionality of a virtual power plant is to increase the value of the produced power by clustering different plants. The first step of the optimisation concerns the local operation of the individual power generator, the second step is to calculate the contribution to the virtual power plant. With small extensions the suggested MILP algorithm can be used for an overall EEX (European Energy Exchange) optimised management of clustered CHP systems in form of the virtual power plant. This algorithm has been used to control cogeneration plants within a distribution grid. (author)

  1. User's Guide Virtual Hydropower Prospector Version 1.1

    SciTech Connect (OSTI)

    Douglas G. Hall; Sera E. White; Julie A. Brizzee; Randy D. Lee

    2005-11-01

    The Virtual Hydropower Prospector is a web-based geographic information system (GIS) application for displaying U.S. water energy resource sites on hydrologic region maps. The application assists the user in locating sites of interest and performing preliminary, development feasibility assessments. These assessments are facilitated by displaying contextual features in addition to the water energy resource sites such as hydrograpy, roads, power infrastructure, populated places, and land use and control. This guide provides instructions for operating the application to select what features are displayed and the extent of the map view. It also provides tools for selecting features of particular interest and displaying their attribute information.

  2. BioenergizeME Virtual Science Fair: Coal Can Be Green Too

    Broader source: Energy.gov [DOE]

    This infographic was created by students from Belfry School in Belfry, KY, as part of the U.S. Department of Energy-BioenergizeME Virtual Science Fair.

  3. T-608: HP Virtual Server Environment Lets Remote Authenticated Users Gain Elevated Privileges

    Broader source: Energy.gov [DOE]

    A potential security vulnerability has been identified in HP Virtual Server Environment for Windows. The vulnerability could be exploited remotely to elevate privileges.

  4. Integrated Virtual Lab in Supporting Heavy Duty Engine and Vehicle Emission Rulemaking

    Broader source: Energy.gov [DOE]

    Presentation discusses a virtual lab which can model sophisticated future vehicle systems using three layers of model fidelity supporting each other.

  5. PROJECT PROFILE: Advanced Thermal Management for Higher Module Power Output

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Advanced Thermal Management for Higher Module Power Output PROJECT PROFILE: Advanced Thermal Management for Higher Module Power Output Funding Opportunity: SuNLaMP SunShot Subprogram: Photovoltaics Location: Sandia National Laboratories, Albuquerque, NM Amount Awarded: $2,816,911 Higher temperatures of photovoltaic (PV) modules are causing lower than projected module performance. For example, a free-standing Si PV module has 0.4% decrease in efficiency per degree

  6. Project Profile: CSP Tower Air Brayton Combustor | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tower Air Brayton Combustor Project Profile: CSP Tower Air Brayton Combustor SWRI logo The Southwest Research Institute (SWRI) and its partners, under the 2012 Concentrating Solar Power (CSP) SunShot R&D funding opportunity announcement (FOA), are developing an external combustor capable of operating at much higher temperatures than the current state-of-the-art technology. Approach Illustration with a horizontal pipe with a vertical pipe that highlights fuel injector tubes. This project

  7. Project Profile: High-Efficiency Receivers for Supercritical Carbon Dioxide

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cycles | Department of Energy Receivers for Supercritical Carbon Dioxide Cycles Project Profile: High-Efficiency Receivers for Supercritical Carbon Dioxide Cycles Brayton logo Brayton Energy, under the 2012 SunShot Concentrating Solar Power (CSP) R&D FOA, is building and testing a new solar receiver that uses supercritical carbon dioxide (s-CO2) as the heat-transfer fluid. The research team is designing the receiver to withstand higher operating temperatures and pressures than

  8. Project Profile: Nanomaterials for Thermal Energy Storage in CSP Plants |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Nanomaterials for Thermal Energy Storage in CSP Plants Project Profile: Nanomaterials for Thermal Energy Storage in CSP Plants National Renewable National Laboratory logo The National Renewable Energy Laboratory (NREL), under an ARRA CSP Award, is extending previous work on nanoscale phase change materials to develop materials with technologically relevant temperature ranges and encapsulation structures. Approach Image of round and square particles floating together on

  9. Project Profile: Polyaromatic Naphthalene Derivatives as Solar Heat

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transfer Fluids | Department of Energy Polyaromatic Naphthalene Derivatives as Solar Heat Transfer Fluids Project Profile: Polyaromatic Naphthalene Derivatives as Solar Heat Transfer Fluids Oak Ridge National Laboratory logo Oak Ridge National Laboratory, under an ARRA CSP Award, is addressing the need for heat transfer fluids (HTFs) for solar power generation that are stable to temperatures approaching 600°C, have good thermal characteristics, and do not react with the vessels in which

  10. Project Profile: Thermally-Stable Ionic Liquid Carriers for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nanoparticle-Based Heat Transfer in CSP Applications | Department of Energy Thermally-Stable Ionic Liquid Carriers for Nanoparticle-Based Heat Transfer in CSP Applications Project Profile: Thermally-Stable Ionic Liquid Carriers for Nanoparticle-Based Heat Transfer in CSP Applications SRNL logo Savannah River National Laboratory, under an ARRA CSP Award, is performing research to better understand the thermal stability of low-temperature organic molten salts, which are commonly referred to as

  11. Project Profile: Thermochemical Heat Storage for CSP Based on Multivalent

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Metal Oxides | Department of Energy Heat Storage for CSP Based on Multivalent Metal Oxides Project Profile: Thermochemical Heat Storage for CSP Based on Multivalent Metal Oxides General Atomics logo General Atomics (GA), under the Thermal Storage FOA, is developing a high-density thermochemical heat storage system based on solid metal oxides. Approach Chart with a red line, representing re-oxidation, and a blue line, representing reduction, with time on the x-axis and temperature on the

  12. System and method for glass processing and temperature sensing

    DOE Patents [OSTI]

    Shepard, Chester L.; Cannon, Bret D.; Khaleel, Mohammad A.

    2004-09-28

    Techniques for measuring the temperature at various locations through the thickness of glass products and to control the glass processing operation with the sensed temperature information are disclosed. Fluorescence emission of iron or cerium in glass is excited and imaged onto segmented detectors. Spatially resolved temperature data are obtained through correlation of the detected photoluminescence signal with location within the glass. In one form the detected photoluminescence is compared to detected scattered excitation light to determine temperature. Stress information is obtained from the time history of the temperature profile data and used to evaluate the quality of processed glass. A heating or cooling rate of the glass is also controlled to maintain a predetermined desired temperature profile in the glass.

  13. Country Energy Profile, South Africa

    SciTech Connect (OSTI)

    1995-08-01

    This country energy profile provides energy and economic information about South Africa. Areas covered include: Economics, demographics, and environment; Energy situation; Energy structure; Energy investment opportunities; Department of Energy (DOE) programs in South Africa; and a listing of International aid to South Africa.

  14. MODELING OF CHANGING ELECTRODE PROFILES

    SciTech Connect (OSTI)

    Prentice, Geoffrey Allen

    1980-12-01

    A model for simulating the transient behavior of solid electrodes undergoing deposition or dissolution has been developed. The model accounts for ohmic drop, charge transfer overpotential, and mass transport limitations. The finite difference method, coupled with successive overrelaxation, was used as the basis of the solution technique. An algorithm was devised to overcome the computational instabilities associated with the calculations of the secondary and tertiary current distributions. Simulations were performed on several model electrode profiles: the sinusoid, the rounded corner, and the notch. Quantitative copper deposition data were obtained in a contoured rotating cylinder system, Sinusoidal cross-sections, machined on stainless steel cylinders, were used as model geometries, Kinetic parameters for use in the simulation were determined from polarization curves obtained on copper rotating cylinders, These parameters, along with other physical property and geometric data, were incorporated in simulations of growing sinusoidal profiles. The copper distributions on the sinusoidal cross-sections were measured and found to compare favorably with the simulated results. At low Wagner numbers the formation of a slight depression at the profile peak was predicted by the simulation and observed on the profile. At higher Wagner numbers, the simulated and experimental results showed that the formation of a depression was suppressed. This phenomenon was shown to result from the competition between ohmic drop and electrode curvature.

  15. Modal test optimization using VETO (Virtual Environment for Test Optimization)

    SciTech Connect (OSTI)

    Klenke, S.E.; Reese, G.M.; Schoof, L.A.; Shierling, C.

    1996-01-01

    We present a software environment integrating analysis and test-based models to support optimal modal test design through a Virtual Environment for Test Optimization (VETO). A goal in developing this software tool is to provide test and analysis organizations with a capability of mathematically simulating the complete test environment in software. Derived models of test equipment, instrumentation and hardware can be combined within the VETO to provide the user with a unique analysis and visualization capability to evaluate new and existing test methods. The VETO assists analysis and test engineers in maximizing the value of each modal test. It is particularly advantageous for structural dynamics model reconciliation applications. The VETO enables an engineer to interact with a finite element model of a test object to optimally place sensors and exciters and to investigate the selection of data acquisition parameters needed to conduct a complete modal survey. Additionally, the user can evaluate the use of different types of instrumentation such as filters, amplifiers and transducers for which models are available in the VETO. The dynamic response of most of the virtual instruments (including the device under test) is modeled in the state space domain. Design of modal excitation levels and appropriate test instrumentation are facilitated by the VETO`s ability to simulate such features as unmeasured external inputs, A/D quantization effects, and electronic noise. Measures of the quality of the experimental design, including the Modal Assurance Criterion, and the Normal Mode Indicator Function are available.

  16. Virtual laboratories: Collaborative environments and facilities-on-line

    SciTech Connect (OSTI)

    Thomas, C.E. Jr.; Cavallini, J.S.; Seweryniak, G.R.; Kitchens, T.A.; Hitchcock, D.A.; Scott, M.A.; Welch, L.C.; Aiken, R.J. |; Stevens, R.L.

    1995-07-01

    The Department of Energy (DOE) has major research laboratories in a number of locations in the US, typically co-located with large research instruments or research facilities valued at tens of millions to even billions of dollars. Present budget exigencies facing the entire nation are felt very deeply at DOE, just as elsewhere. Advances over the last few years in networking and computing technologies make virtual collaborative environments and conduct of experiments over the internetwork structure a possibility. The authors believe that development of these collaborative environments and facilities-on-line could lead to a ``virtual laboratory`` with tremendous potential for decreasing the costs of research and increasing the productivity of their capital investment in research facilities. The majority of these cost savings would be due to increased productivity of their research efforts, better utilization of resources and facilities, and avoiding duplication of expensive facilities. A vision of how this might all fit together and a discussion of the infrastructure necessary to enable these developments is presented.

  17. Coulter-RL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4-Year Study of the RASS Temperature Bias R. L. Coulter and B. M. Lesht Argonne National Laboratory Argonne, Illinois Introduction Measurements of vertical profiles of virtual...

  18. Profiling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    p rogram e xecu?on * Useful to first calibrate with a well---understood code on t he s ame p laorm ( e.g. STREAM) * Can h elp d etermine w hether y our c ode i s a t l east...

  19. LANSCE | News & Media | Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos Neutron Science Center lansce.lanl.gov lansce-user-office@lanl.gov phone: 505.665.1010 mesa header Beam Status Accelerator Ops (Internal) Operating Schedule Long Range Operating Schedule User Resources User Agreements Proposals Visit Registration Schedules Experiment Reports User Satisfaction Survey Reviews Users User Office User Program LANSCE User Group Rosen Scholar Rosen Prize News & Multimedia News Multimedia Events Profiles Highlights Seminars Activity Reports The Pulse User

  20. State coal profiles, January 1994

    SciTech Connect (OSTI)

    Not Available

    1994-02-02

    The purpose of State Coal Profiles is to provide basic information about the deposits, production, and use of coal in each of the 27 States with coal production in 1992. Although considerable information on coal has been published on a national level, there is a lack of a uniform overview for the individual States. This report is intended to help fill that gap and also to serve as a framework for more detailed studies. While focusing on coal output, State Coal Profiles shows that the coal-producing States are major users of coal, together accounting for about three-fourths of total US coal consumption in 1992. Each coal-producing State is profiled with a description of its coal deposits and a discussion of the development of its coal industry. Estimates of coal reserves in 1992 are categorized by mining method and sulfur content. Trends, patterns, and other information concerning production, number of mines, miners, productivity, mine price of coal, disposition, and consumption of coal are detailed in statistical tables for selected years from 1980 through 1992. In addition, coal`s contribution to the State`s estimated total energy consumption is given for 1991, the latest year for which data are available. A US summary of all data is provided for comparing individual States with the Nation as a whole. Sources of information are given at the end of the tables.

  1. Optimization of a Virtual Power Plant to Provide Frequency Support.

    SciTech Connect (OSTI)

    Neely, Jason C.; Johnson, Jay; Gonzalez, Sigifredo; Lave, Matthew Samuel; Delhotal, Jarod James

    2015-12-01

    Increasing the penetration of distributed renewable sources, including photovoltaic (PV) sources, poses technical challenges for grid management. The grid has been optimized over decades to rely upon large centralized power plants with well-established feedback controls, but now non-dispatchable, renewable sources are displacing these controllable generators. This one-year study was funded by the Department of Energy (DOE) SunShot program and is intended to better utilize those variable resources by providing electric utilities with the tools to implement frequency regulation and primary frequency reserves using aggregated renewable resources, known as a virtual power plant. The goal is to eventually enable the integration of 100s of Gigawatts into US power systems.

  2. Longitudinal target-spin asymmetries for deeply virtual Compton scattering

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Seder, E.; Biselli, A.; Pisano, S.; Niccolai, S.; Smith, G. D.; Joo, K.; Adhikari, K.; Amaryan, M. J.; Anderson, M. D.; Anefalos Pereira, S.; et al

    2015-01-22

    A measurement of the electroproduction of photons off protons in the deeply inelastic regime was performed at Jefferson Lab using a nearly 6-GeV electron beam, a longitudinally polarized proton target and the CEBAF Large Acceptance Spectrometer. Target-spin asymmetries for ep → e'p'y events, which arise from the interference of the deeply virtual Compton scattering and the Bethe-Heitler processes, were extracted over the widest kinematics in Q2, xB, t and Φ, for 166 four-dimensional bins. In the framework of Generalized Parton Distributions (GPDs), at leading twist the t dependence of these asymmetries provides insight on the spatial distribution of the axialmore » charge of the proton, which appears to be concentrated in its center. In conclusion, these results bring important and necessary constraints for the existing parametrizations of chiral-even GPDs.« less

  3. State Electricity Profiles | Open Energy Information

    Open Energy Info (EERE)

    Profiles Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: State Electricity Profiles Abstract On this website, the U.S. Energy Information...

  4. High Temperature ESP Monitoring

    Broader source: Energy.gov [DOE]

    The purpose of the High Temperature ESP Monitoring project is to develop a down-hole monitoring system to be used in wells with bottom hole temperature up to 300 °C for measuring motor temperature; pump discharge pressure; and formation temperature and pressure.

  5. Cooled, temperature controlled electrometer

    DOE Patents [OSTI]

    Morgan, John P.

    1992-01-01

    A cooled, temperature controlled electrometer for the measurement of small currents. The device employs a thermal transfer system to remove heat from the electrometer circuit and its environment and dissipate it to the external environment by means of a heat sink. The operation of the thermal transfer system is governed by a temperature regulation circuit which activates the thermal transfer system when the temperature of the electrometer circuit and its environment exceeds a level previously inputted to the external variable temperature control circuit. The variable temperature control circuit functions as subpart of the temperature control circuit. To provide temperature stability and uniformity, the electrometer circuit is enclosed by an insulated housing.

  6. Cooled, temperature controlled electrometer

    DOE Patents [OSTI]

    Morgan, John P.

    1992-08-04

    A cooled, temperature controlled electrometer for the measurement of small currents. The device employs a thermal transfer system to remove heat from the electrometer circuit and its environment and dissipate it to the external environment by means of a heat sink. The operation of the thermal transfer system is governed by a temperature regulation circuit which activates the thermal transfer system when the temperature of the electrometer circuit and its environment exceeds a level previously inputted to the external variable temperature control circuit. The variable temperature control circuit functions as subpart of the temperature control circuit. To provide temperature stability and uniformity, the electrometer circuit is enclosed by an insulated housing.

  7. IT Project Management Profile | Department of Energy

    Energy Savers [EERE]

    Project Management Profile IT Project Management Profile This is a form that must be completed to initiate the assessment of a Project Manager to determine the level of qualification PDF icon IT Project Management Profile More Documents & Publications IT Project Management Profile FEDERAL ACQUISITION CERTIFICATION FOR PROGRAM AND PROJECT MANAGERS (FAC-P/PM) Systems and Professional Development - David Brown, Director, Systems & Professional Development, OAPM

  8. IT Project Management Profile | Department of Energy

    Office of Environmental Management (EM)

    Project Management Profile IT Project Management Profile This form lists positions/experience and training relating to project management; include other positions/experience or training if relevant PDF icon IT Project Management Profile More Documents & Publications IT Project Management Profile FEDERAL ACQUISITION CERTIFICATION FOR PROGRAM AND PROJECT MANAGERS (FAC-P/PM) Systems and Professional Development - David Brown, Director, Systems & Professional Development, OAPM

  9. Mentee Profile Form | Department of Energy

    Office of Environmental Management (EM)

    Services » Learning and Workforce Development » Workforce Development » Leadership Development » DOE Mentoring Program » Mentee Profile Form Mentee Profile Form The information you provide on this form will assist us in providing you with a list of prospective mentors from which to choose the most appropriate match. PDF icon Mentee Profile Form More Documents & Publications Mentor Profile Form Tools for the Mentor Tools for the Mentee Benefits Executive Resources Learning and Workforce

  10. Continuous Profiles of Cloud Microphysical Properties for the Fixed Atmospheric Radiation Measurement Sites

    SciTech Connect (OSTI)

    Jensen, M; Jensen, K

    2006-06-01

    The Atmospheric Radiation Measurement (ARM) Program defined a specific metric for the third quarter of Fiscal Year 2006 to produce and refine a one-year continuous time series of cloud microphysical properties based on cloud radar measurements for each of the fixed ARM sites. To accomplish this metric, we used a combination of recently developed algorithms that interpret radar reflectivity profiles, lidar backscatter profiles, and microwave brightness temperatures into the context of the underlying cloud microphysical structure.

  11. High temperature furnace

    DOE Patents [OSTI]

    Borkowski, Casimer J.

    1976-08-03

    A high temperature furnace for use above 2000.degree.C is provided that features fast initial heating and low power consumption at the operating temperature. The cathode is initially heated by joule heating followed by electron emission heating at the operating temperature. The cathode is designed for routine large temperature excursions without being subjected to high thermal stresses. A further characteristic of the device is the elimination of any ceramic components from the high temperature zone of the furnace.

  12. Meteorological and pollutant profiles under very stable conditions

    SciTech Connect (OSTI)

    Wesely, M.L.; Coulter, R.L.

    1983-01-01

    The nocturnal boundary layer (NBL) can become very stable, with wind and temperature increasing rapidly with height and a local wind maximum often occurring near the top of the boundary layer. The wind speed, potential temperature, moisture, and ozone profiles in the NBL above flat terrain were studied by Argonne National Laboratory in the early morning and late evening during the Central Illinois Rainfall Convection Experiment (CIRCE) in July, 1979, with sensors carried aloft by a tethered kytoon. One aim was to examine closely the shape of profiles at heights of about 20 to 200 m by taking measurements at closely spaced height intervals. The tethered balloon was held at each level for a time sufficient for all sensors to come to equilibrium with the local atmosphere; this typically required 2 to 5 min at each level. It was possible to detect changes in spatial trends in profiles in real time, so that smaller height intervals could be used if the changes seemed important. As a result, greater resolution was achieved than is normally obtained with instruments attached to towers or to free balloons.

  13. Depth Profiling of SiC Lattice Damage Using Micro-Raman Spectroscopy

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Depth Profiling of SiC Lattice Damage Using Micro-Raman Spectroscopy Citation Details In-Document Search Title: Depth Profiling of SiC Lattice Damage Using Micro-Raman Spectroscopy Depth profiling for the amount of lattice damage using a Confocal Micro-Raman (CMR) spectrometer is demonstrated in this paper. Samples of n-type silicon carbide were implanted with 2 MeV He and O ions at both room temperature and 500 C, and fluences between 10{sup 15} and 10{sup 17}

  14. Stable Spheromaks with Profile Control

    SciTech Connect (OSTI)

    Fowler, T K; Jayakumar, R

    2008-01-29

    A spheromak equilibrium with zero edge current is shown to be stable to both ideal MHD and tearing modes that normally produce Taylor relaxation in gun-injected spheromaks. This stable equilibrium differs from the stable Taylor state in that the current density j falls to zero at the wall. Estimates indicate that this current profile could be sustained by non-inductive current drive at acceptable power levels. Stability is determined using the NIMROD code for linear stability analysis. Non-linear NIMROD calculations with non-inductive current drive could point the way to improved fusion reactors.

  15. ARM - Campaign Instrument - s-band-profiler

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentss-band-profiler Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : NOAA S-band (2835 Mhz) Profiler (S-BAND-PROFILER) Instrument Categories Atmospheric Profiling, Cloud Properties Campaigns CRYSTAL-FACE [ Download Data ] Off Site Campaign : various, including non-ARM sites, 2002.06.26 - 2002.08.01 Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers [ Download Data ] Southern Great

  16. Enzymatic temperature change indicator

    DOE Patents [OSTI]

    Klibanov, Alexander M.; Dordick, Jonathan S.

    1989-01-21

    A temperature change indicator is described which is composed of an enzyme and a substrate for that enzyme suspended in a solid organic solvent or mixture of solvents as a support medium. The organic solvent or solvents are chosen so as to melt at a specific temperature or in a specific temperature range. When the temperature of the indicator is elevated above the chosen, or critical temperature, the solid organic solvent support will melt, and the enzymatic reaction will occur, producing a visually detectable product which is stable to further temperature variation.

  17. G-Band Vapor Radiometer Profiler (GVRP) Handbook

    SciTech Connect (OSTI)

    Caddeau, MP

    2010-06-23

    The G-Band Vapor Radiometer Profiler (GVRP) provides time-series measurements of brightness temperatures from 15 channels between 170 and 183.310 GHz. Atmospheric emission in this spectral region is primarily due to water vapor, with some influence from liquid water. Channels between 170.0 and 176.0 GHz are particularly sensitive to the presence of liquid water. The sensitivity to water vapor of the 183.31-GHz line is approximately 30 times higher than at the frequencies of the two-channel microwave radiometer (MWR) for a precipitable water vapor (PWV) amount of less than 2.5 mm. Measurements from the GVRP instrument are therefore especially useful during low-humidity conditions (PWV < 5 mm). In addition to integrated water vapor and liquid water, the GVRP can provide low-resolution vertical profiles of water vapor in very dry conditions.

  18. An inter-realm, cyber-security infrastructure for virtual supercomputing

    SciTech Connect (OSTI)

    Al-Muhtadi, J.; Feng, W. C.; Fisk, M. E.

    2001-01-01

    Virtual supercomputing, (ise ., high-performance grid computing), is poised to revolutionize the way we think about and use computing. However, the security of the links interconnecting the nodes within such an environment will be its Achilles heel, particularly when secure communication is required to tunnel through heterogeneous domains. In this paper we examine existing security mechanisms, show their inadequacy, and design a comprehensive cybersecurity infrastructure that meets the security requirements of virtual supercomputing. Keywords Security, virtual supercomputing, grid computing, high-performance computing, GSS-API, SSL, IPsec, component-based software, dynamic reconfiguration.

  19. Array of virtual Frisch-grid CZT detectors with common cathode readout and

    Office of Scientific and Technical Information (OSTI)

    pulse-height correction (Conference) | SciTech Connect Conference: Array of virtual Frisch-grid CZT detectors with common cathode readout and pulse-height correction Citation Details In-Document Search Title: Array of virtual Frisch-grid CZT detectors with common cathode readout and pulse-height correction We present our new results from testing 15-mm-long virtual Frisch-grid CdZnTe detectors with a common-cathode readout for correcting pulse-height distortions. The array employs

  20. Breakthrough: MFiX: Building Industry-Scale Machines in a Virtual World |

    Energy Savers [EERE]

    Department of Energy Breakthrough: MFiX: Building Industry-Scale Machines in a Virtual World Breakthrough: MFiX: Building Industry-Scale Machines in a Virtual World July 11, 2012 - 1:34pm Addthis Mfix is open-source, virtual modeling software that makes coal gasification processes more efficient than was ever possible through lab tests. Modeling reduces the cost and time of testing and building actual systems and ultimately results in lower costs, improved power plant efficiency, and new

  1. A COMPUTATIONAL WORKBENCH ENVIRONMENT FOR VIRTUAL POWER PLANT SIMULATION

    SciTech Connect (OSTI)

    Mike Bockelie; Dave Swensen; Martin Denison; Adel Sarofim; Connie Senior

    2004-12-22

    In this report is described the work effort to develop and demonstrate a software framework to support advanced process simulations to evaluate the performance of advanced power systems. Integrated into the framework are a broad range of models, analysis tools, and visualization methods that can be used for the plant evaluation. The framework provides a tightly integrated problem-solving environment, with plug-and-play functionality, and includes a hierarchy of models, ranging from fast running process models to detailed reacting CFD models. The framework places no inherent limitations on the type of physics that can be modeled, numerical techniques, or programming languages used to implement the equipment models, or the type or amount of data that can be exchanged between models. Tools are provided to analyze simulation results at multiple levels of detail, ranging from simple tabular outputs to advanced solution visualization methods. All models and tools communicate in a seamless manner. The framework can be coupled to other software frameworks that provide different modeling capabilities. Three software frameworks were developed during the course of the project. The first framework focused on simulating the performance of the DOE Low Emissions Boiler System Proof of Concept facility, an advanced pulverized-coal combustion-based power plant. The second framework targeted simulating the performance of an Integrated coal Gasification Combined Cycle - Fuel Cell Turbine (IGCC-FCT) plant configuration. The coal gasifier models included both CFD and process models for the commercially dominant systems. Interfacing models to the framework was performed using VES-Open, and tests were performed to demonstrate interfacing CAPE-Open compliant models to the framework. The IGCC-FCT framework was subsequently extended to support Virtual Engineering concepts in which plant configurations can be constructed and interrogated in a three-dimensional, user-centered, interactive, immersive environment. The Virtual Engineering Framework (VEF), in effect a prototype framework, was developed through close collaboration with NETL supported research teams from Iowa State University Virtual Reality Applications Center (ISU-VRAC) and Carnegie Mellon University (CMU). The VEF is open source, compatible across systems ranging from inexpensive desktop PCs to large-scale, immersive facilities and provides support for heterogeneous distributed computing of plant simulations. The ability to compute plant economics through an interface that coupled the CMU IECM tool to the VEF was demonstrated, and the ability to couple the VEF to Aspen Plus, a commercial flowsheet modeling tool, was demonstrated. Models were interfaced to the framework using VES-Open. Tests were performed for interfacing CAPE-Open-compliant models to the framework. Where available, the developed models and plant simulations have been benchmarked against data from the open literature. The VEF has been installed at NETL. The VEF provides simulation capabilities not available in commercial simulation tools. It provides DOE engineers, scientists, and decision makers with a flexible and extensible simulation system that can be used to reduce the time, technical risk, and cost to develop the next generation of advanced, coal-fired power systems that will have low emissions and high efficiency. Furthermore, the VEF provides a common simulation system that NETL can use to help manage Advanced Power Systems Research projects, including both combustion- and gasification-based technologies.

  2. A Virtual Engineering Framework for Simulating Advanced Power System

    SciTech Connect (OSTI)

    Mike Bockelie; Dave Swensen; Martin Denison; Stanislav Borodai

    2008-06-18

    In this report is described the work effort performed to provide NETL with VE-Suite based Virtual Engineering software and enhanced equipment models to support NETL's Advanced Process Engineering Co-simulation (APECS) framework for advanced power generation systems. Enhancements to the software framework facilitated an important link between APECS and the virtual engineering capabilities provided by VE-Suite (e.g., equipment and process visualization, information assimilation). Model enhancements focused on improving predictions for the performance of entrained flow coal gasifiers and important auxiliary equipment (e.g., Air Separation Units) used in coal gasification systems. In addition, a Reduced Order Model generation tool and software to provide a coupling between APECS/AspenPlus and the GE GateCycle simulation system were developed. CAPE-Open model interfaces were employed where needed. The improved simulation capability is demonstrated on selected test problems. As part of the project an Advisory Panel was formed to provide guidance on the issues on which to focus the work effort. The Advisory Panel included experts from industry and academics in gasification, CO2 capture issues, process simulation and representatives from technology developers and the electric utility industry. To optimize the benefit to NETL, REI coordinated its efforts with NETL and NETL funded projects at Iowa State University, Carnegie Mellon University and ANSYS/Fluent, Inc. The improved simulation capabilities incorporated into APECS will enable researchers and engineers to better understand the interactions of different equipment components, identify weaknesses and processes needing improvement and thereby allow more efficient, less expensive plants to be developed and brought on-line faster and in a more cost-effective manner. These enhancements to APECS represent an important step toward having a fully integrated environment for performing plant simulation and engineering. Furthermore, with little effort the modeling capabilities described in this report can be extended to support other DOE programs, such as ultra super critical boiler development, oxy-combustion boiler development or modifications to existing plants to include CO2 capture and sequestration.

  3. High temperature measuring device

    DOE Patents [OSTI]

    Tokarz, Richard D.

    1983-01-01

    A temperature measuring device for very high design temperatures (to 2,000.degree. C.). The device comprises a homogenous base structure preferably in the form of a sphere or cylinder. The base structure contains a large number of individual walled cells. The base structure has a decreasing coefficient of elasticity within the temperature range being monitored. A predetermined quantity of inert gas is confined within each cell. The cells are dimensionally stable at the normal working temperature of the device. Increases in gaseous pressure within the cells will permanently deform the cell walls at temperatures within the high temperature range to be measured. Such deformation can be correlated to temperature by calibrating similarly constructed devices under known time and temperature conditions.

  4. High temperature sensor

    DOE Patents [OSTI]

    Tokarz, Richard D.

    1982-01-01

    A high temperature sensor includes a pair of electrical conductors separated by a mass of electrical insulating material. The insulating material has a measurable resistivity within the sensor that changes in relation to the temperature of the insulating material within a high temperature range (1,000 to 2,000 K.). When required, the sensor can be encased within a ceramic protective coating.

  5. PROJECT PROFILE: California Center for Sustainable Energy (Solar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy (Solar Market Pathways) Title: Virtual Net Metering Market Development Plan CCSE logo.png Funding Opportunity: Solar Market Pathways SunShot Subprogram: Soft Costs...

  6. CAD-centric Computation Management System for a Virtual TBM

    SciTech Connect (OSTI)

    Ramakanth Munipalli; K.Y. Szema; P.Y. Huang; C.M. Rowell; A.Ying; M. Abdou

    2011-05-03

    HyPerComp Inc. in research collaboration with TEXCEL has set out to build a Virtual Test Blanket Module (VTBM) computational system to address the need in contemporary fusion research for simulating the integrated behavior of the blanket, divertor and plasma facing components in a fusion environment. Physical phenomena to be considered in a VTBM will include fluid flow, heat transfer, mass transfer, neutronics, structural mechanics and electromagnetics. We seek to integrate well established (third-party) simulation software in various disciplines mentioned above. The integrated modeling process will enable user groups to interoperate using a common modeling platform at various stages of the analysis. Since CAD is at the core of the simulation (as opposed to computational meshes which are different for each problem,) VTBM will have a well developed CAD interface, governing CAD model editing, cleanup, parameter extraction, model deformation (based on simulation,) CAD-based data interpolation. In Phase-I, we built the CAD-hub of the proposed VTBM and demonstrated its use in modeling a liquid breeder blanket module with coupled MHD and structural mechanics using HIMAG and ANSYS. A complete graphical user interface of the VTBM was created, which will form the foundation of any future development. Conservative data interpolation via CAD (as opposed to mesh-based transfer), the regeneration of CAD models based upon computed deflections, are among the other highlights of phase-I activity.

  7. Final Report for the Virtual Reliability Realization System LDRD

    SciTech Connect (OSTI)

    DELLIN, THEODORE A.; HENDERSON, CHRISTOPHER L.; O'TOOLE, EDWARD J.

    2000-12-01

    Current approaches to reliability are not adequate to keep pace with the need for faster, better and cheaper products and systems. This is especially true in high consequence of failure applications. The original proposal for the LDRD was to look at this challenge and see if there was a new paradigm that could make reliability predictions, along with a quantitative estimate of the risk in that prediction, in a way that was faster, better and cheaper. Such an approach would be based on the underlying science models that are the backbone of reliability predictions. The new paradigm would be implemented in two software tools: the Virtual Reliability Realization System (VRRS) and the Reliability Expert System (REX). The three-year LDRD was funded at a reduced level for the first year ($120K vs. $250K) and not renewed. Because of the reduced funding, we concentrated on the initial development of the expertise system. We developed an interactive semiconductor calculation tool needed for reliability analyses. We also were able to generate a basic functional system using Microsoft Siteserver Commerce Edition and Microsoft Sequel Server. The base system has the capability to store Office documents from multiple authors, and has the ability to track and charge for usage. The full outline of the knowledge model has been incorporated as well as examples of various types of content.

  8. Deeply virtual Compton Scattering cross section measured with CLAS

    SciTech Connect (OSTI)

    Guegan, Baptistse

    2014-09-01

    The Generalized Parton Distributions (GPDs) provide a new description of nucleon structure in terms of its elementary constituents, the quarks and the gluons. Including and extending the information provided by the form factors and the parton distribution functions, they describe the correlation between the transverse position and the longitudinal momentum fraction of the partons in the nucleon. Deeply Virtual Compton Scattering (DVCS), the electroproduction of a real photon on a single quark in the nucleon eN --> e'N'g, is the exclusive process most directly interpretable in terms of GPDs. A dedicated experiment to study DVCS with the CLAS detector at Jefferson Lab has been carried out using a 5.9-GeV polarized electron beam and an unpolarized hydrogen target, allowing us to collect DVCS events in the widest kinematic range ever explored in the valence region : 1.0 < Q2 < 4.6 GeV2, 0.1 < xB < 0.58 and 0.09 < -t < 2.0 GeV2. In this paper, we show preliminary results of unpolarized cross sections and of polarized cross section differences for the DVCS channel.

  9. Interactive graphical model building using telepresence and virtual reality

    SciTech Connect (OSTI)

    Cooke, C.; Stansfield, S.

    1993-10-01

    This paper presents a prototype system developed at Sandia National Laboratories to create and verify computer-generated graphical models of remote physical environments. The goal of the system is to create an interface between an operator and a computer vision system so that graphical models can be created interactively. Virtual reality and telepresence are used to allow interaction between the operator, computer, and remote environment. A stereo view of the remote environment is produced by two CCD cameras. The cameras are mounted on a three degree-of-freedom platform which is slaved to a mechanically-tracked, stereoscopic viewing device. This gives the operator a sense of immersion in the physical environment. The stereo video is enhanced by overlaying the graphical model onto it. Overlay of the graphical model onto the stereo video allows visual verification of graphical models. Creation of a graphical model is accomplished by allowing the operator to assist the computer in modeling. The operator controls a 3-D cursor to mark objects to be modeled. The computer then automatically extracts positional and geometric information about the object and creates the graphical model.

  10. Array of virtual Frisch-grid detectors with common cathode and reduced length of shielding electrodes

    DOE Patents [OSTI]

    Bolotnikov, Aleksey; James, Ralph B.; De Geronimo, Gianluigi; Vernon, Emerson

    2015-09-15

    A radiation detector system that effectively solves the electron trapping problem by optimizing shielding of individual virtual Frisch-grid detectors in an array configuration with a common cathode.

  11. Array of virtual Frisch-grid detectors with common cathode and reduced length of shielding electrodes

    DOE Patents [OSTI]

    Bolotnikov, Aleksey E.; Yang, Ge; Camarda, Giuseppe; Cui, Yonggang; Hossain, Anwar; Kim, Ki Hyun; James, Ralph B.

    2015-09-01

    A radiation detector system that solves the electron trapping problem by optimizing shielding of the individual virtual Frisch-grid detectors in an array configuration with a common cathode.

  12. BioenergizeME Virtual Science Fair: Bio-fuels-Sustainable Transportation-

    Broader source: Energy.gov [DOE]

    This infographic was created by students from Sun Valley High School in Aston, PA, as part of the U.S. Department of Energy-BioenergizeME Virtual Science Fair.

  13. BioenergizeME Virtual Science Fair: History of Bioengineering Over the Years

    Broader source: Energy.gov [DOE]

    This infographic was created by students from Sun Valley High School in Aston, PA, as part of the U.S. Department of Energy-BioenergizeME Virtual Science Fair.

  14. BioenergizeME Virtual Science Fair: The Environmental Benefit of Bioenergy

    Broader source: Energy.gov [DOE]

    This infographic was created by students from Sun Valley High School in Aston, PA, as part of the U.S. Department of Energy-BioenergizeME Virtual Science Fair.

  15. BioenergizeME Virtual Science Fair: Energy Production Diversity and Carreers

    Broader source: Energy.gov [DOE]

    This infographic was created by students from Sun Valley High School in Aston, PA, as part of the U.S. Department of Energy-BioenergizeME Virtual Science Fair.

  16. BioenergizeME Virtual Science Fair: Is Algae the Next Big Thing

    Broader source: Energy.gov [DOE]

    This infographic was created by students from Daniel Boone Area High School in Birdsboro, PA, as part of the U.S. Department of Energy-BioenergizeME Virtual Science Fair.

  17. SMART Wind Consortium Virtual Meeting on Installation: Reducing Electrical and Foundation Costs

    Broader source: Energy.gov [DOE]

    This 90-minute SMART Wind Consortium virtual meeting is intended to foster dialogue on actions to improve safety and efficiency and to reduce installation costs for distributed wind turbines. Gary...

  18. BioenergizeME Virtual Science Fair: Science & Technology Sustainable Transportation Fuels

    Broader source: Energy.gov [DOE]

    This infographic was created by students from Sun Valley High School in Aston, PA, as part of the U.S. Department of Energy-BioenergizeME Virtual Science Fair.

  19. US nuclear warhead facility profiles

    SciTech Connect (OSTI)

    Cochran, T.B.; Arkin, W.A.; Norris, R.S.; Hoenig, M.M.

    1987-01-01

    US Nuclear Warhead Facility Profiles is the third volume of the Nuclear Weapons Databook, a series published by the Natural Resources Defense Council. This volume reviews the different facilities in the US nuclear warhead complex. Because of the linkage between nuclear energy and nuclear weapons, the authors cover not only those facilities associated mainly with nuclear power research, but also those well known for weapons development. They are: the Argonne National Laboratory; the Hanford Reservation; the Oak Ridge National Laboratory; the Pantex plant; the Los Alamos Test Site; the Rocky Flats plant; the Sandia National Laboratories; and a host of others. Information on each facility is organized into a standard format that makes the book easy to use. The reader will find precise information ranging from a facility's address to its mission, management, establishment, budget, and staff. An additional, more in-depth presentation covers the activities and technical process of each facility. Maps, pictures, and figures complement the text.

  20. Temperature compensated photovoltaic array

    DOE Patents [OSTI]

    Mosher, Dan Michael

    1997-11-18

    A temperature compensated photovoltaic module (20) comprised of a series of solar cells (22) having a thermally activated switch (24) connected in parallel with several of the cells (22). The photovoltaic module (20) is adapted to charge conventional batteries having a temperature coefficient (TC) differing from the temperature coefficient (TC) of the module (20). The calibration temperatures of the switches (24) are chosen whereby the colder the ambient temperature for the module (20), the more switches that are on and form a closed circuit to short the associated solar cells (22). By shorting some of the solar cells (22) as the ambient temperature decreases, the battery being charged by the module (20) is not excessively overcharged at lower temperatures. PV module (20) is an integrated solution that is reliable and inexpensive.

  1. Temperature compensated photovoltaic array

    DOE Patents [OSTI]

    Mosher, D.M.

    1997-11-18

    A temperature compensated photovoltaic module comprises a series of solar cells having a thermally activated switch connected in parallel with several of the cells. The photovoltaic module is adapted to charge conventional batteries having a temperature coefficient differing from the temperature coefficient of the module. The calibration temperatures of the switches are chosen whereby the colder the ambient temperature for the module, the more switches that are on and form a closed circuit to short the associated solar cells. By shorting some of the solar cells as the ambient temperature decreases, the battery being charged by the module is not excessively overcharged at lower temperatures. PV module is an integrated solution that is reliable and inexpensive. 2 figs.

  2. Symposium on Lower Tropospheric Profiling: Needs and Technologies, 1st, Boulder, CO, May 31-June 3, 1988, Papers

    SciTech Connect (OSTI)

    Dabberdt, W.F.; Hardesty, R.M.

    1989-10-01

    Papers on lower tropospheric profiling are presented, covering topics such as horizontal resolution needs for adequate lower tropospheric profiling with atmospheric systems forced by horizontal gradients in surface heating, meteorological data requirements for modeling air quality uncertainties, and kinematic quantities derived from a triangle of VHF Doppler wind profilers. Other topics include the intercomparison of wind measurements from two acoustic Doppler sodars, a laser Doppler radar, and in situ sensors, studying precipitation processes in the troposphere with an FM-CW radar, Doppler lidar measurements of profiles of turbulence and momentum flux, and airborne Doppler lidar measurements of the extended California sea breeze. Additional subjects include DIAL tropospheric ozone measurement using a Nd:YAG laser and the Raman shifting technique, design considerations for a network of thermodynamic profilers, nonredundant frequencies for ground-based microwave radiometric temperature profiling, and the sounding range of a 1-m wavelength radio acoustic sounder.

  3. Virtual Museum Captures Ohio Plant History: Web-based Project Preserves

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plant's Uranium Enrichment Legacy | Department of Energy Virtual Museum Captures Ohio Plant History: Web-based Project Preserves Plant's Uranium Enrichment Legacy Virtual Museum Captures Ohio Plant History: Web-based Project Preserves Plant's Uranium Enrichment Legacy May 21, 2012 - 12:00pm Addthis An online museum on the Portsmouth Gaseous Diffusion Plant went live earlier this year. An online museum on the Portsmouth Gaseous Diffusion Plant went live earlier this year. PIKETON, Ohio - Do

  4. Energy Department Launches Virtual Hackathon to Build the Next Big Solar

    Office of Environmental Management (EM)

    Software Solutions | Department of Energy Virtual Hackathon to Build the Next Big Solar Software Solutions Energy Department Launches Virtual Hackathon to Build the Next Big Solar Software Solutions February 20, 2015 - 8:29am Addthis Last week, the Energy Department's SunShot Initiative launched the largest-of-its-kind, 60-day online hackathon to quickly build prototype solutions and products that address barriers to greater solar energy deployment and drive down the costs of solar energy.

  5. Engineering ferroelectric tunnel junctions through potential profile shaping

    SciTech Connect (OSTI)

    Boyn, S.; Garcia, V. Fusil, S.; Carrtro, C.; Garcia, K.; Collin, S.; Deranlot, C.; Bibes, M.; Barthlmy, A.

    2015-06-01

    We explore the influence of the top electrode materials (W, Co, Ni, Ir) on the electronic band profile in ferroelectric tunnel junctions based on super-tetragonal BiFeO{sub 3}. Large variations of the transport properties are observed at room temperature. In particular, the analysis of current vs. voltage curves by a direct tunneling model indicates that the metal/ferroelectric interfacial barrier height increases with the top-electrode work function. While larger metal work functions result in larger OFF/ON ratios, they also produce a large internal electric field which results in large and potentially destructive switching voltages.

  6. Untangling the contributions of image charge and laser profile for optimal photoemission of high-brightness electron beams

    SciTech Connect (OSTI)

    Portman, J.; Zhang, H.; Makino, K.; Ruan, C. Y.; Berz, M.; Duxbury, P. M.

    2014-11-07

    Using our model for the simulation of photoemission of high brightness electron beams, we investigate the virtual cathode physics and the limits to spatio-temporal and spectroscopic resolution originating from the image charge on the surface and from the profile of the exciting laser pulse. By contrasting the effect of varying surface properties (leading to expanding or pinned image charge), laser profiles (Gaussian, uniform, and elliptical), and aspect ratios (pancake- and cigar-like) under different extraction field strengths and numbers of generated electrons, we quantify the effect of these experimental parameters on macroscopic pulse properties such as emittance, brightness (4D and 6D), coherence length, and energy spread. Based on our results, we outline optimal conditions of pulse generation for ultrafast electron microscope systems that take into account constraints on the number of generated electrons and on the required time resolution.

  7. gprof Profiling Tools | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tuning MPI on BG/Q Tuning and Analysis Utilities (TAU) HPCToolkit HPCTW mpiP gprof Profiling Tools Darshan PAPI BG/Q Performance Counters BGPM Openspeedshop Scalasca BG/Q DGEMM Performance Automatic Performance Collection (AutoPerf) Software & Libraries IBM References Cooley Policies Documentation Feedback Please provide feedback to help guide us as we continue to build documentation for our new computing resource. [Feedback Form] gprof Profiling Tools Contents Introduction Profiling on the

  8. High-Temperature Components for Rankine-Cycle-Based Waste Heat Recovery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems on Combustion Engines | Department of Energy Components for Rankine-Cycle-Based Waste Heat Recovery Systems on Combustion Engines High-Temperature Components for Rankine-Cycle-Based Waste Heat Recovery Systems on Combustion Engines This poster reports on recent developments, achievements, and capabilities within a virtual environment to predict the dynamic behavior of the Rankine cycle within real driving cycles. PDF icon p-11_janssens.pdf More Documents & Publications Biodiesel

  9. PROJECT PROFILE: Enabling High Concentration Photovoltaics with...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enabling High Concentration Photovoltaics with 50% Efficient Solar Cells PROJECT PROFILE: Enabling High Concentration Photovoltaics with 50% Efficient Solar Cells Funding ...

  10. Project Profile: Forecasting and Influencing Technological Progress...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Influencing Technological Progress in Solar Energy Project Profile: Forecasting and ... energy technologies based on estimates of future rates of progress and adoption. ...

  11. TAU Portable Performance Profiling Tools Sameer Shende

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TAU Portable Performance Profiling Tools Sameer Shende Department of CIS, University of Oregon, Advanced Computing Laboratory, Los Alamos National Laboratory sameer@cs.uoregon.edu...

  12. Plant Energy Profiler | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Assistance » Plant Energy Profiler Plant Energy Profiler April 17, 2014 - 11:19am Addthis The Plant Energy Profiler, or PEP, is an online software tool provided by the U.S. Department of Energy to help industrial plant managers in the United States identify how energy is being purchased and consumed at their plant and identify potential energy and cost savings. PEP is designed so that the users can complete a plant profile in about an hour. PEP provides users with a customized,

  13. Manufacturing of Profiles for Lightweight Structures

    SciTech Connect (OSTI)

    Chatti, Sami; Kleiner, Matthias

    2007-04-07

    The paper shows some investigation results about the production of straight and curved lightweight profiles for lightweight structures and presents their benefits as well as their manufacturing potential for present and future lightweight construction. A strong emphasis is placed on the manufacturing of straight and bent profiles by means of sheet metal bending of innovative products, such as tailor rolled blanks and tailored tubes, and the manufacturing of straight and curved profiles by the innovative procedures curved profile extrusion and composite extrusion, developed at the Institute of Forming Technology and Lightweight Construction (IUL) of the University of Dortmund.

  14. PROJECT PROFILE: Rapid Development of Disruptive Photovoltaic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rapid Development of Disruptive Photovoltaic Technologies PROJECT PROFILE: Rapid Development of Disruptive Photovoltaic Technologies Funding Opportunity: SuNLaMP SunShot ...

  15. A COMPUTATIONAL WORKBENCH ENVIRONMENT FOR VIRTUAL POWER PLANT SIMULATION

    SciTech Connect (OSTI)

    Mike Bockelie; Dave Swensen; Martin Denison; Zumao Chen; Mike Maguire; Adel Sarofim; Changguan Yang; Hong-Shig Shim

    2004-01-28

    This is the thirteenth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT41047. The goal of the project is to develop and demonstrate a Virtual Engineering-based framework for simulating the performance of Advanced Power Systems. Within the last quarter, good progress has been made on all aspects of the project. Software development efforts have focused on a preliminary detailed software design for the enhanced framework. Given the complexity of the individual software tools from each team (i.e., Reaction Engineering International, Carnegie Mellon University, Iowa State University), a robust, extensible design is required for the success of the project. In addition to achieving a preliminary software design, significant progress has been made on several development tasks for the program. These include: (1) the enhancement of the controller user interface to support detachment from the Computational Engine and support for multiple computer platforms, (2) modification of the Iowa State University interface-to-kernel communication mechanisms to meet the requirements of the new software design, (3) decoupling of the Carnegie Mellon University computational models from their parent IECM (Integrated Environmental Control Model) user interface for integration with the new framework and (4) development of a new CORBA-based model interfacing specification. A benchmarking exercise to compare process and CFD based models for entrained flow gasifiers was completed. A summary of our work on intrinsic kinetics for modeling coal gasification has been completed. Plans for implementing soot and tar models into our entrained flow gasifier models are outlined. Plans for implementing a model for mercury capture based on conventional capture technology, but applied to an IGCC system, are outlined.

  16. Magnetic nanoparticle temperature estimation

    SciTech Connect (OSTI)

    Weaver, John B.; Rauwerdink, Adam M.; Hansen, Eric W.

    2009-05-15

    The authors present a method of measuring the temperature of magnetic nanoparticles that can be adapted to provide in vivo temperature maps. Many of the minimally invasive therapies that promise to reduce health care costs and improve patient outcomes heat tissue to very specific temperatures to be effective. Measurements are required because physiological cooling, primarily blood flow, makes the temperature difficult to predict a priori. The ratio of the fifth and third harmonics of the magnetization generated by magnetic nanoparticles in a sinusoidal field is used to generate a calibration curve and to subsequently estimate the temperature. The calibration curve is obtained by varying the amplitude of the sinusoidal field. The temperature can then be estimated from any subsequent measurement of the ratio. The accuracy was 0.3 deg. K between 20 and 50 deg. C using the current apparatus and half-second measurements. The method is independent of nanoparticle concentration and nanoparticle size distribution.

  17. High temperature refrigerator

    DOE Patents [OSTI]

    Steyert, Jr., William A.

    1978-01-01

    A high temperature magnetic refrigerator which uses a Stirling-like cycle in which rotating magnetic working material is heated in zero field and adiabatically magnetized, cooled in high field, then adiabatically demagnetized. During this cycle said working material is in heat exchange with a pumped fluid which absorbs heat from a low temperature heat source and deposits heat in a high temperature reservoir. The magnetic refrigeration cycle operates at an efficiency 70% of Carnot.

  18. Automatic temperature adjustment apparatus

    DOE Patents [OSTI]

    Chaplin, James E.

    1985-01-01

    An apparatus for increasing the efficiency of a conventional central space heating system is disclosed. The temperature of a fluid heating medium is adjusted based on a measurement of the external temperature, and a system parameter. The system parameter is periodically modified based on a closed loop process that monitors the operation of the heating system. This closed loop process provides a heating medium temperature value that is very near the optimum for energy efficiency.

  19. ARM - Measurement - Atmospheric temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    temperature ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Atmospheric temperature The temperature indicated by a thermometer exposed to the air in a place sheltered from direct solar radiation. Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list

  20. High-temperature sensor

    DOE Patents [OSTI]

    Not Available

    1981-01-29

    A high temperature sensor is described which includes a pair of electrical conductors separated by a mass of electrical insulating material. The insulating material has a measurable resistivity within the sensor that changes in relation to the temperature of the insulating material within a high temperature range (1000 to 2000/sup 0/K). When required, the sensor can be encased within a ceramic protective coating.

  1. Low temperature cryoprobe

    DOE Patents [OSTI]

    Sungaila, Zenon F. (Orland Park, IL)

    1989-01-01

    A portable, hand held probe usable within a small confine to produce a point source of nitrogen or helium at a relatively constant temperature of 77 degrees Kelvin.

  2. Temperature and RH Targets

    Broader source: Energy.gov [DOE]

    Presented by Vishal O Mittal of the Florida Solar Energy Center at the High Temperature Membrane Working Group Meeting, San Francisco, September 14, 2006.

  3. Profiles in garbage glass containers

    SciTech Connect (OSTI)

    Miller, C.

    1997-09-01

    Glass containers are made from sand, limestone, soda ash, cullet (crushed bottles), and various additives, including those used to color brown, green, or blue bottles. Sixty percent of the glass used in the US is clear (flint) and one-fourth is brown (amber). Almost half of the green bottles are imported wind and beer bottles. Other glass products include flat glass such as windows; fiberglass insulation; and glassware. These products use different manufacturing processes and different additives than container glass. This profile covers only container glass. Glass bottles are commonly collected in curb-side programs. Losses due to breakage and the abrasiveness of glass during collection and processing offset their low collection and processing costs. Breakage solutions include installation of interior baffles or nets in the collection trucks, special glass-only truck compartments, and limiting the number of times glass is transferred after collection before final processing. Ten states require deposits on glass bottles for beer and soft drinks and related items.

  4. ARM - VAP Product - rwptemp

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1-888-ARM-DATA. Send VAP Output : RWPTEMP Radar Wind Profilers (RWP), 50 and 915 MHZ: virtual temperature profiles Active Dates 1995.12.15 - 2006.05.14 Originating VAP Process...

  5. Effect of resistivity profile on current decay time of initial phase of current quench in neon-gas-puff inducing disruptions of JT-60U

    SciTech Connect (OSTI)

    Kawakami, S.; Ohno, N.; Shibata, Y.; Isayama, A.; Kawano, Y.; Watanabe, K. Y.; National Institute for Fusion Science, Toki 509-5292 ; Takizuka, T.; Okamoto, M.

    2013-11-15

    According to an early work [Y. Shibata et al., Nucl. Fusion 50, 025015 (2010)] on the behavior of the plasma current decay in the JT-60U disruptive discharges caused by the radiative collapse with a massive neon-gas-puff, the increase of the internal inductance mainly determined the current decay time of plasma current during the initial phase of current quench. To investigate what determines the increase of the internal inductance, we focus attention on the relationship between the electron temperature (or the resistivity) profile and the time evolution of the current density profile and carry out numerical calculations. As a result, we find the reason of the increase of the internal inductance: The current density profile at the start of the current quench is broader than an expected current density profile in the steady state, which is determined by the temperature (or resistivity) profile. The current density profile evolves into peaked one and the internal inductance is increasing.

  6. PROJECT PROFILE: California Center for Sustainable Energy (Solar Market Pathways)

    Broader source: Energy.gov [DOE]

    The Center for Sustainable Energy (CSE) is creating the Virtual Net Metering Market Development Plan as a part of the Solar Market Pathways program to expand the awareness, effectiveness and use of virtual net metering in California and beyond. California recently passed a virtual net metering tariff, which allows kilowatt hour credits from one solar system to be distributed to numerous utility accounts throughout the property based on a predetermined allocation arrangement. Currently, solar adoption outside of traditional commercial or single family rooftop systems has been challenging for solar markets throughout California. Virtual net metering is a system that enables a multi-meter property owner to allocate a solar system's energy credits to other tenants. CSE aims to expand the application of virtual net metering to multifamily and multi-metered homes and facilities. For more information on this award and the Solar Market Pathway’s program, visit their website.

  7. Fiber optic temperature sensor

    SciTech Connect (OSTI)

    Rabold, D.

    1995-12-01

    Our fiber optic temperature measurement sensor and system is a major improvement over methods currently in use in most industrial processes, and it delivers all of the attributes required simplicity, accuracy, and cost efficiency-to help improve all of these processes. Because temperature is a basic physical attribute of nearly every industrial and commercial process, our system can eventually result in significant improvements in nearly every industrial and commercial process. Many finished goods, and the materials that go into them, are critically dependent on the temperature. The better the temperature measurement, the better quality the goods will be and the more economically they can be produced. The production and transmission of energy requires the monitoring of temperature in motors, circuit breakers, power generating plants, and transmission line equipment. The more reliable and robust the methods for measuring these temperature, the more available, stable, and affordable the supply of energy will become. The world is increasingly realizing the threats to health and safety of toxic or otherwise undesirable by products of the industrial economy in the environment. Cleanup of such contamination often depends on techniques that require the constant monitoring of temperature in extremely hazardous environments, which can damage most conventional temperature sensors and which are dangerous for operating personnel. Our system makes such monitoring safer and more economical.

  8. ARM - Word Seek: Temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Temperature Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Word Seek: Temperature

  9. High Temperature ESP Monitoring

    SciTech Connect (OSTI)

    Jack Booker; Brindesh Dhruva

    2011-06-20

    The objective of the High Temperature ESP Monitoring project was to develop a downhole monitoring system to be used in wells with bottom hole well temperatures up to 300C for measuring motor temperature, formation pressure, and formation temperature. These measurements are used to monitor the health of the ESP motor, to track the downhole operating conditions, and to optimize the pump operation. A 220 C based High Temperature ESP Monitoring system was commercially released for sale with Schlumberger ESP motors April of 2011 and a 250 C system with will be commercially released at the end of Q2 2011. The measurement system is now fully qualified, except for the sensor, at 300 C.

  10. High temperature probe

    DOE Patents [OSTI]

    Swan, Raymond A.

    1994-01-01

    A high temperature probe for sampling, for example, smokestack fumes, and is able to withstand temperatures of 3000.degree. F. The probe is constructed so as to prevent leakage via the seal by placing the seal inside the water jacket whereby the seal is not exposed to high temperature, which destroys the seal. The sample inlet of the probe is also provided with cooling fins about the area of the seal to provide additional cooling to prevent the seal from being destroyed. Also, a heated jacket is provided for maintaining the temperature of the gas being tested as it passes through the probe. The probe includes pressure sensing means for determining the flow velocity of an efficient being sampled. In addition, thermocouples are located in various places on the probe to monitor the temperature of the gas passing there through.

  11. Continuous profiling of magnetotelluric fields

    SciTech Connect (OSTI)

    Verdin, C.T.

    1991-05-01

    The magnetotelluric (MT) method of mapping ground electrical conductivity is traditionally based on measurement of the surface impedance at widely spaced stations to infer models of the subsurface through a suitable pseudo 1-D inverse or with linearized least-squares inversion for 2- or 3-D geoelectric media. It is well known that small near-surface inhomogeneities can produce spatial discontinuities in the measured electric fields over a wide frequency range and may consequently bias the impedance on a very local scale. Inadequate station spacing effectively aliases the electric field measurements and results in distortions that cannot be removed in subsequent processing or modelling. In order to fully exploit the benefits of magnetotellurics in complex geological environments, closely spaced measurements must be used routinely. This thesis entertains an analysis of MT data taken along continuous profiles and is a first step that will allow more encompassing 2-D sampling techniques to become viable in the years to come. The developments presented here are to a large extent motivated by the physical insight gained from low-contrast solutions to the forward MT problem. These solutions describe the relationship between a perturbation in the electrical conductivity of the subsurface and the ensuing perturbation of the MT response as the output of a linear system. Albeit strictly accurate in a limited subset of practical exploration problems, the linearized solutions allow one to pursue a model independent study of the response characteristics of MT data. In fact, these solutions yield simple expressions for 1-,2-, and 3-D resistivity models which are here examined in progressive sequence.

  12. State electricity profiles, March 1999

    SciTech Connect (OSTI)

    1999-03-01

    Due to the role electricity plays in the Nation`s economic and social well-being, interested parties have been following the electric power industry`s transition by keeping abreast of the restructuring and deregulation events that are taking place almost daily. Much of the attention centers around the States and how they are restructuring the business of electricity supply within their respective jurisdictions. This report is designed to profile each State and the District of Columbia regarding not only their current restructuring activities, but also their electricity generation and concomitant statistics from 1986 through 1996. Included are data on a number of subject areas including generating capability, generation, revenues, fuel use, capacity factor for nuclear plants, retail sales, and pollutant emissions. Although the Energy Information Administration (EIA) publishes this type of information, there is a lack of a uniform overview for each individual State. This report is intended to help fill that gap and also to serve as a framework for more detailed studies. In addition to basic statistics in tables and graphs, a textual section is provided for each State, discussing some of the points relative to electricity production that are noteworthy in, or unique to, that particular State. Also, each State is ranked according to the place it holds, as compared to the rest of the states, in various relevant areas, such as its average price of electricity per kilowatthour, its population, and its emissions of certain atmospheric pollutants. The final chapter covers the Nation as a whole. 451 figs., 520 tabs.

  13. Two-frequency lidar technique for mesospheric Na temperature measurements

    SciTech Connect (OSTI)

    She, C.Y.; Latifi, H.; Yu, J.R.; Alvarez, R.J. II ); Bills, R.E.; Gardner, C.S. )

    1990-06-01

    The authors describe a new two-frequency lidar for measuring Na temperature profiles that uses a stabilized cw single-mode dye laser oscillator (rms frequency jitter < 1 MHz) followed by a pulsed-dye power amplifier (140 MHz FWHM linewidth) which is pumped by an injection-locked Nd:YAG laser. The laser oscillator is tuned to the two operating frequencies by observing the Doppler-free structure of the Na D{sub 2} fluorescence spectrum in a vapor cells. The lidar technique and the initial observations of the temperature profile between 82 and 102 km at Ft. Collins, CO (40.6{degree}N,105{degree}W) are described. Absolute temperature accuracies at the Na layer peak of better than {plus minus}3 K with a vertical resolution of 1 km and an integration period of approximately 5 min were achieved.

  14. Temperatures in the blast furnace refractory lining

    SciTech Connect (OSTI)

    Hebel, R.; Streuber, C.; Steiger, R.; Jeschar, R.

    1995-12-01

    The campaign life duration of a blast furnace is mainly determined by the condition of the refractory lining in heavy-duty zones such as the hearth, bosh, belly and lower stack. To achieve a desired lifetime, the temperature of the lining in these areas thereby proved to be the decisive controllable parameter. Low operating temperatures result in prolonged service life and are attained through high cooling efficiency. Besides the refractory grade chosen, the wear profile is mainly determined by the type of cooling system applied and the cooling intensity. Therefore, an appropriate compromise between long service life and energy losses has to be found in each case. In order to predict the service life of a lining it is important to know the wear condition at all times during the campaign. The paper describes the approaches the authors have made so far on European blast furnaces, on a theoretical and practical basis, on how to analyze the lining wear.

  15. High pressure and high temperature apparatus

    DOE Patents [OSTI]

    Voronov, Oleg A.

    2005-09-13

    A design for high pressure/high temperature apparatus and reaction cell to achieve .about.30 GPa pressure in .about.1 cm volume and .about.100 GPa pressure in .about.1 mm volumes and 20-5000.degree. C. temperatures in a static regime. The device includes profiled anvils (28) action on a reaction cell (14, 16) containing the material (26) to be processed. The reaction cell includes a heater (18) surrounded by insulating layers and screens. Surrounding the anvils are cylindrical inserts and supporting rings (30-48) whose hardness increases towards the reaction cell. These volumes may be increased considerably if applications require it, making use of presses that have larger loading force capability, larger frames and using larger anvils.

  16. PROJECT PROFILE: SolarReserve

    Broader source: Energy.gov [DOE]

    This project will develop a concept for creating affordable, compact, and lightweight ceramic receiver for CSP applications. SolarReserve's CSP technology with molten salt energy storage captures and stores the sun's power onto a large heat exchanger called a receiver that sits atop a central tower. Within the receiver, molten salt flows through piping that forms the external walls, absorbing the heat from the concentrated sunlight. Currently the molten salt is heated from 550°F to 1050°F. This project will develop a ceramic receiver that can withstand 1350°F, breaking through current temperature and performance barriers, while meaningfully increasing efficiency, energy storage capabilities, and lowering capital cost.

  17. Temperature-sensitive optrode

    DOE Patents [OSTI]

    Hirschfeld, T.B.

    1985-09-24

    Method and apparatus are provided for measuring temperature and for generating optical signals related to temperature. Light from a fiber optic is directed to a material whose fluorescent response varies with ambient temperature. The same fiber optic delivering the excitation beam also collects a portion of the fluorescent emission for analysis. Signal collection efficiency of the fiber optic is enhanced by requiring that the fluorescent probe material be in the shape of an oblong parabolically tapered solid. Reproducibility is enhanced by using Raman backscatter to monitor excitation beam fluctuations, and by using measurements of fluorescence lifetime. 10 figs.

  18. Temperature | Open Energy Information

    Open Energy Info (EERE)

    C Property:Combustion Intake Air Temperature F Property:FirstWellTemp G Property:GeochemReservoirTemp Property:GeofluidTemp M Property:MeanReservoirTemp R...

  19. High-Temperature Superconductivity

    ScienceCinema (OSTI)

    Peter Johnson

    2010-01-08

    Like astronomers tweaking images to gain a more detailed glimpse of distant stars, physicists at Brookhaven National Laboratory have found ways to sharpen images of the energy spectra in high-temperature superconductors ? materials that carry electrical c

  20. Low temperature cryoprobe

    DOE Patents [OSTI]

    Sungaila, Z.F.

    1988-04-12

    A portable, hand held probe usable within a small confine to produce a point source of nitrogen or helium at a relatively constant temperatures of 77 degrees Kelvin, is discussed. 3 figs.

  1. Penrose Well Temperatures

    SciTech Connect (OSTI)

    Christopherson, Karen

    2013-03-15

    Penrose Well Temperatures Geothermal waters have been encountered in several wells near Penrose in Fremont County, Colorado. Most of the wells were drilled for oil and gas exploration and, in a few cases, production. This ESRI point shapefile utilizes data from 95 wells in and around the Penrose area provided by the Colorado Oil and Gas Conservation Commission (COGCC) database at http://cogcc.state.co.us/ . Temperature data from the database were used to calculate a temperature gradient for each well. This information was then used to estimate temperatures at various depths. Projection: UTM Zone 13 NAD27 Extent: West -105.224871 East -105.027633 North 38.486269 South 38.259507 Originators: Colorado Oil and Gas Conservation Commission (COGCC) Karen Christopherson

  2. Low temperature reactive bonding

    DOE Patents [OSTI]

    Makowiecki, Daniel M. (Livermore, CA); Bionta, Richard M. (Livermore, CA)

    1995-01-01

    The joining technique requires no external heat source and generates very little heat during joining. It involves the reaction of thin multilayered films deposited on faying surfaces to create a stable compound that functions as an intermediate or braze material in order to create a high strength bond. While high temperatures are reached in the reaction of the multilayer film, very little heat is generated because the films are very thin. It is essentially a room temperature joining process.

  3. Temperature measuring device

    DOE Patents [OSTI]

    Lauf, Robert J. (Oak Ridge, TN); Bible, Don W. (Clinton, TN); Sohns, Carl W. (Oak Ridge, TN)

    1999-01-01

    Systems and methods are described for a wireless instrumented silicon wafer that can measure temperatures at various points and transmit those temperature readings to an external receiver. The device has particular utility in the processing of semiconductor wafers, where it can be used to map thermal uniformity on hot plates, cold plates, spin bowl chucks, etc. without the inconvenience of wires or the inevitable thermal perturbations attendant with them.

  4. High temperature pressure gauge

    DOE Patents [OSTI]

    Echtler, J. Paul (Pittsburgh, PA); Scandrol, Roy O. (Library, PA)

    1981-01-01

    A high temperature pressure gauge comprising a pressure gauge positioned in fluid communication with one end of a conduit which has a diaphragm mounted in its other end. The conduit is filled with a low melting metal alloy above the diaphragm for a portion of its length with a high temperature fluid being positioned in the remaining length of the conduit and in the pressure gauge.

  5. High Temperature Aqueous Chemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accurate knowledge of aqueous chemistry at high temperatures and pressures is important in many applications including nuclear waste disposal and energy extraction. Sandia's Defense Waste Management Programs is equipped with a state-of-the-art hydrothermal experimental system that allows us to obtain high quality kinetic and equilibrium data at temperatures and pressures of interest up to 600 o C and 1,000 bars (100 MPa). This state-of-the-art hydrothermal experimental system includes the

  6. ARM - Temperature Converter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CalculatorsTemperature Converter Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Temperature Converter The Fahrenheit scale, invented by German physicist Daniel Gabriel Fahrenheit (1686-1736), is based on 32 °F for the freezing point of water and 212 °F for the boiling point of water. The

  7. Scanning optical pyrometer for measuring temperatures in hollow cathodes

    SciTech Connect (OSTI)

    Polk, J. E.; Marrese-Reading, C. M.; Thornber, B.; Dang, L.; Johnson, L. K.; Katz, I.

    2007-09-15

    Life-limiting processes in hollow cathodes are determined largely by the temperature of the electron emitter. To support cathode life assessment, a noncontact temperature measurement technique which employs a stepper motor-driven fiber optic probe was developed. The probe is driven inside the hollow cathode and collects light radiated by the hot interior surface of the emitter. Ratio pyrometry is used to determine the axial temperature profile. Thermocouples on the orifice plate provide measurements of the external temperature during cathode operation and are used to calibrate the pyrometer system in situ with a small oven enclosing the externally heated cathode. The diagnostic method and initial measurements of the temperature distribution in a hollow cathode are discussed.

  8. Natural gas annual 1992: Supplement: Company profiles

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    The data for the Natural Gas Annual 1991 Supplement : Company Profiles are taken from Form EIA-176, (open quotes) Annual Report of Natural and Supplemental Gas Supply and Disposition (close quotes). Other sources include industry literature and corporate annual reports to shareholders. The companies appearing in this report are major interstate natural gas pipeline companies, large distribution companies, or combination companies with both pipeline and distribution operations. The report contains profiles of 45 corporate families. The profiles describe briefly each company, where it operates, and any important issues that the company faces. The purpose of this report is to show the movement of natural gas through the various States served by the 45 large companies profiled.

  9. load profile | OpenEI Community

    Open Energy Info (EERE)

    data load data load profile OpenEI residential load TMY3 United States Load data Image source: NREL Files: applicationzip icon System Advisor Model Tool for Downloading Load Data...

  10. Bootstrap performance profiles in stochastic algorithms assessment

    SciTech Connect (OSTI)

    Costa, Lino; Esprito Santo, Isabel A.C.P.; Oliveira, Pedro

    2015-03-10

    Optimization with stochastic algorithms has become a relevant research field. Due to its stochastic nature, its assessment is not straightforward and involves integrating accuracy and precision. Performance profiles for the mean do not show the trade-off between accuracy and precision, and parametric stochastic profiles require strong distributional assumptions and are limited to the mean performance for a large number of runs. In this work, bootstrap performance profiles are used to compare stochastic algorithms for different statistics. This technique allows the estimation of the sampling distribution of almost any statistic even with small samples. Multiple comparison profiles are presented for more than two algorithms. The advantages and drawbacks of each assessment methodology are discussed.

  11. Red Hat Enterprise Virtualization - KVM-based infrastructure services at BNL

    SciTech Connect (OSTI)

    Cortijo, D.

    2011-06-14

    Over the past 18 months, BNL has moved a large percentage of its Linux-based servers and services into a Red Hat Enterprise Virtualization (RHEV) environment. This presentation will address our approach to virtualization, critical decision points, and a discussion of our implementation. Specific topics will include an overview of hardware and software requirements, networking, and storage; discussion of the decision of Red Hat solution over competing products (VMWare, Xen, etc); details on some of the features of RHEV - both current and on their roadmap; Review of performance and reliability gains since deployment completion; path forward for RHEV at BNL and caveats and potential problems.

  12. Selection of Light Duty Truck Engine Air Systems Using Virtual Lab Tests

    SciTech Connect (OSTI)

    Zhang, Houshun

    2000-08-20

    An integrated development approach using seasoned engine technology methodologies, virtual lab parametric investigations, and selected hardware verification tests reflects today's state-of-the-art R&D trends. This presentation will outline such a strategy. The use of this ''Wired'' approach results in substantial reduction in the development cycle time and hardware iterations. An example showing the virtual lab application for a viable design of the air-exhaust-turbocharger system of a light duty truck engine for personal transportation will be presented.

  13. Soft-virtual corrections to Higgs production at N 3 LO (Journal Article) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Soft-virtual corrections to Higgs production at N 3 LO Citation Details In-Document Search Title: Soft-virtual corrections to Higgs production at N 3 LO Authors: Li, Ye ; von Manteuffel, Andreas ; Schabinger, Robert M. ; Zhu, Hua Xing Publication Date: 2015-02-27 OSTI Identifier: 1179874 Grant/Contract Number: AC02-76SF00515 Type: Publisher's Accepted Manuscript Journal Name: Physical Review D Additional Journal Information: Journal Volume: 91; Journal Issue: 3; Journal ID:

  14. EcoCAR2 Teams Start their Virtual Engines | Department of Energy

    Office of Environmental Management (EM)

    EcoCAR2 Teams Start their Virtual Engines EcoCAR2 Teams Start their Virtual Engines May 17, 2012 - 4:11pm Addthis A North Carolina State University student works on an EcoCAR vehicle at the Year 3 finals last year in Milford, MI. | Energy Department photo. A North Carolina State University student works on an EcoCAR vehicle at the Year 3 finals last year in Milford, MI. | Energy Department photo. Shannon Brescher Shea Communications Manager, Clean Cities Program What are the key facts?

  15. PROJECT PROFILE: Boston University | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PROJECT PROFILE: Boston University PROJECT PROFILE: Boston University Funding Opportunity: CSP: APOLLO SunShot Subprogram: CSP Location: Boston, MA Amount Awarded: $1,150,000 Awardee Cost Share: $390,864 Boston University Logo.png The Boston University project under CSP: Apollo will use laboratory-scale electrodynamic-screen self-cleaning solar technology with heliostat mirrors and parabolic troughs in large scale solar plants. The objective is to reduce both the need to clean mirrors with water

  16. PROJECT PROFILE: Correlative Electronic Spectroscopies for Increasing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Photovoltaic Efficiency | Department of Energy PROJECT PROFILE: Correlative Electronic Spectroscopies for Increasing Photovoltaic Efficiency PROJECT PROFILE: Correlative Electronic Spectroscopies for Increasing Photovoltaic Efficiency Funding Opportunity: SuNLaMP SunShot Subprogram: Photovoltaics Location: National Renewable Energy Laboratory, Golden, CO Amount Awarded: $2,000,000 Recombination limits open-circuit voltages in thin film photovoltaic (PV) devices to 60-65% of the thermodynamic

  17. PROJECT PROFILE: Dartmouth College | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PROJECT PROFILE: Dartmouth College PROJECT PROFILE: Dartmouth College Funding Opportunity: CSP: APOLLO SunShot Subprogram: CSP Location: Hanover, NH Amount Awarded: $656,831 Awardee Cost Share: $173,020 Dartmouth Logo.png This project will develop large-scale, reliable coating technologies that facilitate vacuum-free, high-efficiency, low-cost CSP systems. The coating will be applied to Norwich Technology's vacuum-free SunTrap CSP receiver systems for prototype demonstration, achieving a thermal

  18. Debugging & Profiling | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Debugging & Profiling Allinea DDT Core File Settings Determining Memory Use Using VNC with a Debugger bgq_stack gdb Coreprocessor Runjob termination TotalView Performance Tools & APIs Software & Libraries IBM References Cooley Policies Documentation Feedback Please provide feedback to help guide us as we continue to build documentation for our new computing resource. [Feedback Form] Debugging & Profiling Initial setups Core file settings - this page contains some environment

  19. State Nuclear Profiles - Energy Information Administration

    Gasoline and Diesel Fuel Update (EIA)

    Nuclear & Uranium Glossary › FAQS › Overview Data Status of U.S. Nuclear Outages (interactive) Summary Uranium & nuclear fuel Nuclear power plants Spent nuclear fuel International All nuclear data reports Analysis & Projections Major Topics Most popular Nuclear plants and reactors Projections Recurring Uranium All reports Browse by Tag Alphabetical Frequency Tag Cloud ‹ See all Nuclear Reports State Nuclear Profiles Data for 2010 (See also State Electricity Profiles) | Release

  20. Forest Products Industry Profile | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Forest Products Industry Profile Forest Products Industry Profile Wood and paper products meet the everyday needs of consumers and businesses. They provide materials essential for communication, education, packaging, construction, shelter, sanitation, and protection. The U.S. forest products industry is based on a renewable and sustainable raw material: wood. It practices recovery and recycling in its operations. Its forests help the global carbon balance by taking up carbon dioxide from the

  1. Chemicals Industry Profile | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chemicals Industry Profile Chemicals Industry Profile Chemical products are essential to the production of a myriad of manufactured products. More than 96% of all manufactured goods are directly touched by the chemicals industry.1 The industry greatly influences our safe water supply, food, shelter, clothing, health care, computer technology, transportation, and almost every other facet of modern life. Economic The United States is the top chemical producer in the world, accounting for nearly

  2. Steel Industry Profile | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steel Industry Profile Steel Industry Profile The steel industry is critical to the U.S. economy. Steel is the material of choice for many elements of manufacturing, construction, transportation, and various consumer products. Traditionally valued for its strength, steel has also become the most recycled material.1 About two-thirds of the steel produced in the United States in 2008 was made from scrap.2 Steelmaking facilities use one of two processes. In the integrated steelmaking process, iron

  3. Project Cost Profile Spreadsheet | Department of Energy

    Energy Savers [EERE]

    Project Cost Profile Spreadsheet Project Cost Profile Spreadsheet Under DOE O 413.3B, Program and Project Management for the Acquisition of Capital Assets, the Office of Acquisition and Project Management (OAPM) must perform a Performance Baseline External Independent Review (EIR) prior to Critical Decision (CD) 2, and a Construction/Execution Readiness EIR for all Major System projects prior to CD-3. The EIR Standard Operating Procedures (SOP) discuss all elements of EIRs including review

  4. Effects of self-heating and phase change on the thermal profile of hydrogen isotopes in confined geometries

    SciTech Connect (OSTI)

    Baxamusa, S. Field, J.; Dylla-Spears, R.; Kozioziemski, B.; Suratwala, T.; Sater, J.

    2014-03-28

    Growth of high-quality single-crystal hydrogen in confined geometries relies on the in situ formation of seed crystals. Generation of deuterium-tritium seed crystals in a confined geometry is governed by three effects: self-heating due to tritium decay, external thermal environment, and latent heat of phase change at the boundary between hydrogen liquid and vapor. A detailed computation of the temperature profile for liquid hydrogen inside a hollow shell, as is found in inertial confinement fusion research, shows that seeds are likely to form at the equatorial plane of the shell. Radioactive decay of tritium to helium slowly alters the composition of the hydrogen vapor, resulting in a modified temperature profile that encourages seed formation at the top of the shell. We show that the computed temperature profile is consistent with a variety of experimental observations.

  5. ITP Metal Casting: Energy and Environmental Profile of the U...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environmental Profile of the U.S. Metal casting Industry ITP Metal Casting: Energy and Environmental Profile of the U.S. Metal casting Industry PDF icon profile.pdf More...

  6. LopezPersonalProfile.pdf | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LopezPersonalProfile.pdf LopezPersonalProfile.pdf PDF icon LopezPersonalProfile.pdf More Documents & Publications Wattman_bio.pdf FAQS Reference Guide - Aviation Manager FAQS Reference Guide - Aviation Safety Officer

  7. ARM - PI Product - AERIoe Thermodynamic Profile and Cloud Retrieval for SGP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CF during LABLE-2012 2 ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : AERIoe Thermodynamic Profile and Cloud Retrieval for SGP CF during LABLE-2012 [ ARM research ] The AERIoe algorithm retrieves profiles of temperature and water vapor mixing ratio, together with cloud properties for a single-layer cloud (i.e., LWP, effective radius), from AERI-observed infrared radiance spectrum. The method is a

  8. ARM - PI Product - AERIoe Thermodynamic Profile and Cloud Retrieval for SGP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CF during LABLE-2013 3 ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : AERIoe Thermodynamic Profile and Cloud Retrieval for SGP CF during LABLE-2013 [ ARM research ] The AERIoe algorithm retrieves profiles of temperature and water vapor mixing ratio, together with cloud properties for a single-layer cloud (i.e., LWP, effective radius), from AERI-observed infrared radiance spectrum. The method is a

  9. High temperature thermometric phosphors

    DOE Patents [OSTI]

    Allison, S.W.; Cates, M.R.; Boatner, L.A.; Gillies, G.T.

    1999-03-23

    A high temperature phosphor consists essentially of a material having the general formula LuPO{sub 4}:Dy{sub x},Eu{sub y} wherein: 0.1 wt % {<=} x {<=} 20 wt % and 0.1 wt % {<=} y {<=} 20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopant. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions. 2 figs.

  10. High temperature thermometric phosphors

    DOE Patents [OSTI]

    Allison, Stephen W.; Cates, Michael R.; Boatner, Lynn A.; Gillies, George T.

    1999-03-23

    A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.y) wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.

  11. Climate-Smart Agriculture Country Profiles | Open Energy Information

    Open Energy Info (EERE)

    featuredproductscsa-country-profiles Country: Argentina, Colombia, Costa Rica, El Salvador, Grenada, Mexico, Peru Cost: Free OpenEI Keyword(s): Agriculture, country profiles,...

  12. ITP Petroleum Refining: Profile of the Petroleum Refining Industry...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Profile of the Petroleum Refining Industry in California: California Industries of the Future Program ITP Petroleum Refining: Profile of the Petroleum Refining Industry in...

  13. Pharmacologic Profile of the Adnectin BMS-962476, a Small Protein...

    Office of Scientific and Technical Information (OSTI)

    Pharmacologic Profile of the Adnectin BMS-962476, a Small Protein Biologic Alternative to ... Title: Pharmacologic Profile of the Adnectin BMS-962476, a Small Protein Biologic ...

  14. Category:Electrical Profiling Configurations | Open Energy Information

    Open Energy Info (EERE)

    Electrical Profiling Configurations Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Electrical Profiling Configurations page? For...

  15. Water Energy Load Profiling (WELP) Tool | Open Energy Information

    Open Energy Info (EERE)

    Load Profiling (WELP) Tool Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Water Energy Load Profiling (WELP) Tool AgencyCompany Organization: California Public...

  16. Building America Top Innovations Hall of Fame Profile - Building...

    Energy Savers [EERE]

    Building America Top Innovations Hall of Fame Profile - Building Energy Optimization Analysis Method (BEopt) Building America Top Innovations Hall of Fame Profile - Building Energy...

  17. Category:Electromagnetic Profiling Techniques | Open Energy Informatio...

    Open Energy Info (EERE)

    Electromagnetic Profiling Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Electromagnetic Profiling Techniques page? For...

  18. Microsoft PowerPoint - Williams_Profilers.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2835-MHz Profiler Status of Profiler and Surface Data Sets for TWPICE Christopher.R.Williams@noaa.gov - University of Colorado at Boulder and NOAA Earth Science Research...

  19. Vertical Seismic Profiling At Rye Patch Area (DOE GTP, 2011)...

    Open Energy Info (EERE)

    Vertical Seismic Profiling At Rye Patch Area (DOE GTP, 2011) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Vertical Seismic Profiling At Rye...

  20. Vertical Seismic Profiling At Snake River Plain Region (DOE GTP...

    Open Energy Info (EERE)

    Vertical Seismic Profiling At Snake River Plain Region (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Vertical Seismic Profiling At...