Powered by Deep Web Technologies
Note: This page contains sample records for the topic "virginia nuclear waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Virginia Waste Management Act (Virginia)  

Energy.gov (U.S. Department of Energy (DOE))

Solid waste and hazardous waste are regulated under a number of programs at the Department of Environmental Quality. These programs are designed to encourage the reuse and recycling of solid waste...

2

Virginia Nuclear Profile - All Fuels  

U.S. Energy Information Administration (EIA) Indexed Site

"Other: Blast furnace gas, propane gas, other manufactured and waste gases derived from fossil fuels, non-biogenic municipal solid waste, batteries, chemicals, hydrogen, pitch,...

3

Solid Waste Management Act (West Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Act (West Virginia) Act (West Virginia) Solid Waste Management Act (West Virginia) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State West Virginia Program Type Siting and Permitting Provider Department of Environmental Protection In addition to establishing a comprehensive program of controlling all phases of solid waste management and assigning responsibilities for solid waste management to the Secretary of Department of Environmental

4

Virginia Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

5

Solid Waste Assessment Fee Exemptions (West Virginia) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solid Waste Assessment Fee Exemptions (West Virginia) Solid Waste Assessment Fee Exemptions (West Virginia) Solid Waste Assessment Fee Exemptions (West Virginia) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State West Virginia Program Type Rebate Program A person who owns, operates, or leases an approved solid waste disposal facility is exempt from the payment of solid waste assessment fees, upon the receipt of a Certificate of Exemption from the director, if that

6

Solid Waste Management Rule (West Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rule (West Virginia) Rule (West Virginia) Solid Waste Management Rule (West Virginia) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State West Virginia Program Type Siting and Permitting This rule establishes requirements for the siting, financial assurance, installation, establishment, construction, design, groundwater monitoring, modification, operation, permitting, closure and post-closure care of any

7

Nuclear Waste Management  

NLE Websites -- All DOE Office Websites (Extended Search)

Waste Management's Yucca Mountain Project and the Office of Nuclear Energy's Advanced Fuel Cycle Initiative (AFCI) and Global Nuclear Energy Partnership (GNEP) programs. Efforts...

8

Immobilization of Nuclear Wastes  

Science Conference Proceedings (OSTI)

Oct 20, 2010 ... Glassy and Glass Composite Nuclear Wasteforms: Michael Ojovan1; Bill Lee2; ... wastes which should be solidified for safe storage and disposal. ... has been vitrifying the Department of Energy's High Level Waste (HLW) at ...

9

Nuclear Waste Policy Act Signed | National Nuclear Security Administra...  

National Nuclear Security Administration (NNSA)

> Nuclear Waste Policy Act Signed Nuclear Waste Policy Act Signed January 07, 1983 Washington, DC Nuclear Waste Policy Act Signed President Reagan signs the Nuclear Waste...

10

Chapter 19 - Nuclear Waste Fund  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Waste Fund 19-1 Nuclear Waste Fund 19-1 CHAPTER 19 NUCLEAR WASTE FUND 1. INTRODUCTION. a. Purpose. This chapter establishes the financial, accounting, and budget policies and procedures for civilian and defense nuclear waste activities, as authorized in Public Law 97-425, the Nuclear Waste Policy Act, as amended, referred to hereafter as the Act. b. Applicability. This chapter applies to all Departmental elements, including the National Nuclear Security Administration, and activities that are funded by the Nuclear Waste Fund (NWF) or the Defense Nuclear Waste Disposal appropriation. c. Background. The Act established the Office of Civilian Radioactive Waste Management (OCRWM) and assigned it responsibility for the management

11

Nuclear waste solutions  

DOE Patents (OSTI)

High efficiency removal of technetium values from a nuclear waste stream is achieved by addition to the waste stream of a precipitant contributing tetraphenylphosphonium cation, such that a substantial portion of the technetium values are precipitated as an insoluble pertechnetate salt.

Walker, Darrel D. (1684 Partridge Dr., Aiken, SC 29801); Ebra, Martha A. (129 Hasty Rd., Aiken, SC 29801)

1987-01-01T23:59:59.000Z

12

Pioneering Nuclear Waste Disposal  

NLE Websites -- All DOE Office Websites (Extended Search)

18 18 19 T he WIPP's first waste receipt, 11 years later than originally planned, was a monumental step forward in the safe management of nuclear waste. Far from ending, however, the WIPP story has really just begun. For the next 35 years, the DOE will face many challenges as it manages a complex shipment schedule from transuranic waste sites across the United States and continues to ensure that the repository complies with all regulatory requirements. The DOE will work to maintain the highest level of safety in waste handling and trans- portation. Coordination with sites Disposal operations require coordination with sites that will ship transuranic waste to the WIPP and include periodic certification of waste characterization and handling practices at those facilities. During the WIPP's

13

Waste Form Performance Modeling [Nuclear Waste Management using...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

14

Development of Cementitious Waste Forms for Nuclear Waste ...  

Science Conference Proceedings (OSTI)

Symposium, Materials Solutions for the Nuclear Renaissance. Presentation Title, Development of Cementitious Waste Forms for Nuclear Waste Immobilization.

15

Virginia Resources Authority Act (Virginia)  

Energy.gov (U.S. Department of Energy (DOE))

The Virginia Resources Authority provides financing options to support community investment in a number of areas, including wastewater, flood prevention and dam safety, solid waste, water, land...

16

Swedish nuclear waste efforts  

SciTech Connect

After the introduction of a law prohibiting the start-up of any new nuclear power plant until the utility had shown that the waste produced by the plant could be taken care of in an absolutely safe way, the Swedish nuclear utilities in December 1976 embarked on the Nuclear Fuel Safety Project, which in November 1977 presented a first report, Handling of Spent Nuclear Fuel and Final Storage of Vitrified Waste (KBS-I), and in November 1978 a second report, Handling and Final Storage of Unreprocessed Spent Nuclear Fuel (KBS II). These summary reports were supported by 120 technical reports prepared by 450 experts. The project engaged 70 private and governmental institutions at a total cost of US $15 million. The KBS-I and KBS-II reports are summarized in this document, as are also continued waste research efforts carried out by KBS, SKBF, PRAV, ASEA and other Swedish organizations. The KBS reports describe all steps (except reprocessing) in handling chain from removal from a reactor of spent fuel elements until their radioactive waste products are finally disposed of, in canisters, in an underground granite depository. The KBS concept relies on engineered multibarrier systems in combination with final storage in thoroughly investigated stable geologic formations. This report also briefly describes other activities carried out by the nuclear industry, namely, the construction of a central storage facility for spent fuel elements (to be in operation by 1985), a repository for reactor waste (to be in operation by 1988), and an intermediate storage facility for vitrified high-level waste (to be in operation by 1990). The R and D activities are updated to September 1981.

Rydberg, J.

1981-09-01T23:59:59.000Z

17

WEB RESOURCE: Nuclear Waste Disposal  

Science Conference Proceedings (OSTI)

May 10, 2007 ... The complete "Yucca Mountain Resource Book" is also available for download at this site. Citation: Nuclear Waste Disposal. 2007. Nuclear ...

18

Pioneering Nuclear Waste Disposal  

NLE Websites -- All DOE Office Websites (Extended Search)

PIONEERING NUCLEAR WASTE DISPOSAL U.S. Department of Energy Carlsbad Area Office February 2000 DOECAO-00-3124 T h e W a s t e I s o l a t i o n P i l o t P l a n t ii Table of...

19

Pioneering Nuclear Waste Disposal  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 3 T he journey to the WIPP began nearly 60 years before the first barrels of transuranic waste arrived at the repository. The United States produced the world's first sig- nificant quantities of transuranic material during the Manhattan Project of World War II in the early 1940s. The government idled its plutonium- producing reactors and warhead manu- facturing plants at the end of the Cold War and scheduled most of them for dismantlement. However, the DOE will generate more transuranic waste as it cleans up these former nuclear weapons facilities. The WIPP is a cor- nerstone of the effort to clean up these facilities by providing a safe repository to isolate transuranic waste in disposal rooms mined out of ancient salt beds, located 2,150 feet below ground. The need for the WIPP

20

Waste canister for storage of nuclear wastes  

DOE Patents (OSTI)

A waste canister for storage of nuclear wastes in the form of a solidified glass includes fins supported from the center with the tips of the fins spaced away from the wall to conduct heat away from the center without producing unacceptable hot spots in the canister wall.

Duffy, James B. (Fullerton, CA)

1977-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "virginia nuclear waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Proof of Proper Solid Waste Disposal (West Virginia)  

Energy.gov (U.S. Department of Energy (DOE))

This rule provides guidance to persons occupying a residence or operating a business establishment in this state regarding the approved method of providing proof of proper solid waste disposal to...

22

Nuclear Waste Policy Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Waste Policy Act Nuclear Waste Policy Act Document on the Nuclear Waste Policy Act of 1982 An Act to provide for the development of repositories for the disposal of...

23

Chemotoxicity of nuclear waste repositories  

Science Conference Proceedings (OSTI)

In this paper published studies on chemotoxicity of nuclear waste repositories are reviewed. According to these studies, radiotoxicity is of primary concern. However, there also is a risk, primarily from genotoxic chemical substances, which could eventually reach the biosphere. Possible chemotoxic effects should be studied as an integral part of the risk assessment and risk management of repositories for nuclear waste.

Buchheim, B. (Nordostschweizerische Kraftwerke-AG, Parkstrasse 23, CH-5401 Baden (CH)); Persson, L. (Swedish Radiation Protection Inst., P.O. Box 60204, S-104 01 Stockholm (SE))

1992-03-01T23:59:59.000Z

24

Small businesses selected for nuclear waste services  

NLE Websites -- All DOE Office Websites (Extended Search)

Small businesses selected for nuclear waste services Small businesses selected for nuclear waste clean-up services Northern New Mexico businesses compete for up to 200 million in...

25

Nuclear waste solidification  

DOE Patents (OSTI)

High level liquid waste solidification is achieved on a continuous basis by atomizing the liquid waste and introducing the atomized liquid waste into a reaction chamber including a fluidized, heated inert bed to effect calcination of the atomized waste and removal of the calcined waste by overflow removal and by attrition and elutriation from the reaction chamber, and feeding additional inert bed particles to the fluidized bed to maintain the inert bed composition.

Bjorklund, William J. (Richland, WA)

1977-01-01T23:59:59.000Z

26

Nuclear Waste Management using Electrometallurgical Technology - Nuclear  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Technology Nuclear Fuel Cycle and Waste Management Technologies Overview Modeling and analysis Unit Process Modeling Mass Tracking System Software Waste Form Performance Modeling Safety Analysis, Hazard and Risk Evaluations Development, Design, Operation Overview Systems and Components Development Expertise System Engineering Design Other Major Programs Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE Division on Flickr Nuclear Waste Management using Electrometallurgical Technology Bookmark and Share The NE system engineering activities involve the conceptual design, through the manufacturing and qualification testing of the Mk-IV and Mk-V electrorefiner and the cathode processor. These first-of-a-kind large scale

27

Nuclear Waste Management Policy in France  

Science Conference Proceedings (OSTI)

Technical Paper / New Directions in Nuclear Energy with Emphasis on Fuel Cycles / Radioactive Waste Management

Jean F. Lefevre

28

Advancements in nuclear waste assay.  

E-Print Network (OSTI)

??The research described in this thesis is directed at advancing the state of the practice of the non-destructive gamma-ray assay of nuclear waste containers. A… (more)

Curtis, Deborah Claire

2008-01-01T23:59:59.000Z

29

Pioneering Nuclear Waste Disposal  

NLE Websites -- All DOE Office Websites (Extended Search)

Department of Energy (DOE) is closing the circle on the generation, management, and disposal of transuranic waste. But the WIPP story is not just about radioactive waste. It is...

30

Campus Energy, Water, and Waste Reduction Policy Page 1 of 7 Virginia Polytechnic Institute and State University No. 5505 Rev.: 2  

E-Print Network (OSTI)

Campus Energy, Water, and Waste Reduction Policy Page 1 of 7 Virginia Polytechnic Institute __________________________________________________________________________________ Subject: Campus Energy, Water, and Waste Reduction Policy and State University No. 5505 Rev.: 2 Policy and Procedures Date: February 28, 2011

Virginia Tech

31

Nuclear Energy Research Advisory Committee Meeting March 30-31, 1999, Marriott Crystal City, Arlington, Virginia  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 30-31, 1999, Marriott Crystal City, Arlington, Virginia March 30-31, 1999, Marriott Crystal City, Arlington, Virginia NERAC members present: John Ahearne Robert Long Thomas Boulette Sekazi Mtingwa Thomas Cochran Richard Reba Joseph Comfort Joy Rempe Jose Luis Cortez Miguel Rios Maureen S. Crandall C. Paul Robinson (Tuesday only) Allen Croff Allen Sessoms (Wednesday only) James Duderstadt (Chair) Daniel C. Sullivan Marvin Fertel (Wednesday only) John Taylor Dale Klein Charles E. Till Linda Knight Neil Todreas NERAC members absent: Beverly Hartline Warren Miller J. Bennett Johnston Robert Socolow William Kastenberg Bruce Tarter Also present: Norton Haberman, Senior Technical Advisor, Office of Nuclear Energy, Science, and Technology (NE), DOE John Herczeg, Lead Nuclear Engineer, Office of Technology, DOE William Magwood, Director, Office of Nuclear Energy, Science, and Technology (NE), DOE

32

Virginia Geothermal Resources Conservation Act (Virginia) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Virginia Geothermal Resources Conservation Act (Virginia) Virginia Geothermal Resources Conservation Act (Virginia) Virginia Geothermal Resources Conservation Act (Virginia) < Back Eligibility Commercial Construction Developer Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Systems Integrator Utility Savings Category Buying & Making Electricity Program Info State Virginia Program Type Safety and Operational Guidelines Provider Virginia Department of Mines, Minerals, and Energy It is the policy of the Commonwealth of Virginia to foster the development, production, and utilization of geothermal resources, prevent waste of geothermal resources, protect correlative rights to the resource, protect existing high quality state waters and safeguard potable waters from pollution, safeguard the natural environment, and promote geothermal and

33

Pioneering Nuclear Waste Disposal  

NLE Websites -- All DOE Office Websites (Extended Search)

T h e W a s t e I s o l a t i o n P i l o t P l a n t DOE 1980. Final Environmental Impact Statement, Waste Isolation Pilot Plant. DOE/EIS-0026, Washington, DC, Office of Environmental Management, U.S. Department of Energy. DOE 1981. Waste Isolation Pilot Plant (WIPP): Record of Decision. Federal Register, Vol. 46, No. 18, p. 9162, (46 Federal Register 9162), January 28, 1981. U.S. Department of Energy. DOE 1990. Final Supplement Environmental Impact Statement, Waste Isolation Pilot Plant. DOE/EIS-0026-FS, Washington, DC, Office of Environmental Management, U.S. Department of Energy. DOE 1990. Record of Decision: Waste Isolation Pilot Plant. Federal Register, Vol. 55, No. 121, 25689-25692, U.S. Department of Energy. DOE 1994. Comparative Study of Waste Isolation Pilot Plant (WIPP) Transportation Alternatives.

34

The Social and Ethical Aspects of Nuclear Waste  

E-Print Network (OSTI)

issues in nuclear energy: Radioactive waste. La Grange Park,into radioactive waste management ( Nuclear Energy Agency,Nuclear Energy Agency, Radioactive Waste Management

Marshall, Alan

2005-01-01T23:59:59.000Z

35

Materials Science of Nuclear Waste Management I  

Science Conference Proceedings (OSTI)

Mar 6, 2013 ... Separation of the nuclear waste stream into actinides and fission products offers new opportunities for development of ceramic waste forms.

36

Materials and Processes to Immobilize Nuclear Waste  

Science Conference Proceedings (OSTI)

Oct 8, 2012 ... While borosilicate glass is widely regarded as baseline technology for nuclear waste immobilisation, there are a wide range of such wastes that ...

37

Pioneering Nuclear Waste Disposal  

NLE Websites -- All DOE Office Websites (Extended Search)

request for further delays After the EPA certified that the WIPP met the standards for disposal of transuranic waste in May 1998, then-New Mexico Attorney General Tom Udall...

38

Unit Process Modeling [Nuclear Waste Management using Electrometallurg...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

39

The Social and Ethical Aspects of Nuclear Waste  

E-Print Network (OSTI)

people feel toward nuclear weapons seem to have generalizedwaste left over from nuclear weapons and nuclear powerfor nuclear waste facility planners to derail weapons/waste

Marshall, Alan

2005-01-01T23:59:59.000Z

40

UNITED STATES NUCLEAR WASTE TECHNICAL REVIEW BOARD  

E-Print Network (OSTI)

in the assay of waste materials generated in the decommissioning of nuclear installations in which one would

Note: This page contains sample records for the topic "virginia nuclear waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Environmental Degradation of Nuclear Waste Storage Canister ...  

Science Conference Proceedings (OSTI)

Abstract Scope, The interaction between mild steel nuclear waste storage containers ... Durable and Highly Efficient Energy-harvesting Electrochromic Window ...

42

Nuclear Waste Policy Act Signed | National Nuclear Security Administra...  

NLE Websites -- All DOE Office Websites (Extended Search)

Waste Policy Act Signed | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response...

43

NUCLEAR WASTE CONSULTANTS, INC.  

E-Print Network (OSTI)

Attached please find the Subtask 1.2 Management, prepared by Water, Waste bibliographical information relevant on NNWSI, now comprising 356 titles. scheduled, semi-annual update report contract. Update Report: Data Inventory and and Land (WWL). The report presents the to the all documents in the WWL library Please note that this is the last for Subtask 1.2 under the current The WWL report has received a managerial review by M. Logsdon (NWC), and the report was prepared under WWL's QA procedures, consistent with the NWC QA-manual. 009-1.2-- NNWSI DATABASE- Aucust IS- 19M-2 Auou~~~~ ~ _ _ _ 5._,1_88

Technical Review Branch

1988-01-01T23:59:59.000Z

44

Virginia - State Energy Profile Data - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Uranium fuel, nuclear reactors, generation, spent fuel. ... Clean Cities Coalitions Virginia Clean Cities Coalition : Alternative Fuels: Virginia: ...

45

The Social and Ethical Aspects of Nuclear Waste  

E-Print Network (OSTI)

2002). Current issues in nuclear energy: Radioactive waste.trans/trfact03.htm Nuclear Energy Agency. (1995). TheSweden: Komentus. Nuclear Energy Agency, Radioactive Waste

Marshall, Alan

2005-01-01T23:59:59.000Z

46

Nuclear Utility Mixed Waste Stream Characterization Study  

Science Conference Proceedings (OSTI)

This report presents industry experience at nuclear utilities in characterizing the hazardous component of potential mixed waste streams. It identifies key considerations for characterizing mixed waste; provides background information, including actual sample results, on the majority of plant processes with a potential to generate mixed waste; and presents a methodology for characterizing mixed waste.

1994-12-31T23:59:59.000Z

47

Uranium immobilization and nuclear waste  

SciTech Connect

Considerable information useful in nuclear waste storage can be gained by studying the conditions of uranium ore deposit formation. Further information can be gained by comparing the chemistry of uranium to nuclear fission products and other radionuclides of concern to nuclear waste disposal. Redox state appears to be the most important variable in controlling uranium solubility, especially at near neutral pH, which is characteristic of most ground water. This is probably also true of neptunium, plutonium, and technetium. Further, redox conditions that immobilize uranium should immobilize these elements. The mechanisms that have produced uranium ore bodies in the Earth's crust are somewhat less clear. At the temperatures of hydrothermal uranium deposits, equilibrium models are probably adequate, aqueous uranium (VI) being reduced and precipitated by interaction with ferrous-iron-bearing oxides and silicates. In lower temperature roll-type uranium deposits, overall equilibrium may not have been achieved. The involvement of sulfate-reducing bacteria in ore-body formation has been postulated, but is uncertain. Reduced sulfur species do, however, appear to be involved in much of the low temperature uranium precipitation. Assessment of the possibility of uranium transport in natural ground water is complicated because the system is generally not in overall equilibrium. For this reason, Eh measurements are of limited value. If a ground water is to be capable of reducing uranium, it must contain ions capable of reducing uranium both thermodynamically and kinetically. At present, the best candidates are reduced sulfur species.

Duffy, C.J.; Ogard, A.E.

1982-02-01T23:59:59.000Z

48

Basic Research for Evaluating Nuclear Waste Form Performance  

Science Conference Proceedings (OSTI)

Technical Paper / Argonne National Laboratory Specialists’ Workshop on Basic Research Needs for Nuclear Waste Management / Radioactive Waste

Don J. Bradley

49

Nuclear Waste and the Distant Future Nuclear Waste and the Distant Future  

E-Print Network (OSTI)

Nuclear Waste and the Distant Future 1 Nuclear Waste and the Distant Future PER F. PETERSON WILLIAM://www.issues.org/22.4/peterson.html Regulation of nuclear hazards must be consistent with rules governing other of the radioactive material generated by nuclear energy decays away over short times ranging from minutes to several

Kammen, Daniel M.

50

Nuclear Waste Management. Semiannual progress report, October 1984-March 1985  

Science Conference Proceedings (OSTI)

Progress reports are presented for the following studies on radioactive waste management: defense waste technology; nuclear waste materials characterization center; and supporting studies. 19 figs., 29 tabs.

McElroy, J.L.; Powell, J.A. (comps.)

1985-06-01T23:59:59.000Z

51

NuclearNuclear ""BurningBurning"" of Nuclearof Nuclear ""WasteWaste"" Constantine P. Tzanos  

E-Print Network (OSTI)

1. INTRODUCTION 1.1. Yucca Mountain Project The Yucca Mountain site in Nevada has been designated as United States choice for nuclear waste repository. Yucca Mountain is in a remote dry area, on federal has been made to characterize the nature of the discontinuities of the Yucca Mountain proposed nuclear

52

Nuclear Waste Policy Act.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Civilian Radioactive Civilian Radioactive Waste Management Washington, D.C. 20585 March 2004 i THE NUCLEAR WASTE POLICY ACT OF 1982 1 An Act to provide for the development of repositories for the disposal of high-level radioactive waste and spent nuclear fuel, to establish a program of research, development, and demonstration regarding the disposal of high-level radioactive waste and spent nuclear fuel, and for other purposes. Be it enacted by the Senate and House of Representatives of the United States of America in Congress assembled, SHORT TITLE AND TABLE OF CONTENTS Section 1. This Act may be cited as the "Nuclear Waste Policy Act of 1982". Sec. 1. Short title and table of contents...........................................................................i

53

Plasma Mass Filters For Nuclear Waste Reprocessing  

SciTech Connect

Practical disposal of nuclear waste requires high-throughput separation techniques. The most dangerous part of nuclear waste is the fission product, which contains the most active and mobile radioisotopes and produces most of the heat. We suggest that the fission products could be separated as a group from nuclear waste using plasma mass filters. Plasmabased processes are well suited to separating nuclear waste, because mass rather than chemical properties are used for separation. A single plasma stage can replace several stages of chemical separation, producing separate streams of bulk elements, fission products, and actinoids. The plasma mass filters may have lower cost and produce less auxiliary waste than chemical processing plants. Three rotating plasma configurations are considered that act as mass filters: the plasma centrifuge, the Ohkawa filter, and the asymmetric centrifugal trap.

Abraham J. Fetterman and Nathaniel J. Fisch

2011-05-26T23:59:59.000Z

54

Accelerated Chemical Aging of Crystalline Nuclear Waste Forms  

Science Conference Proceedings (OSTI)

Symposium, Materials Science of Nuclear Waste Management ... thereof) will ultimately determine whether nuclear energy is deemed environmentally friendly.

55

Removing nuclear waste, one shipment at a time  

NLE Websites -- All DOE Office Websites (Extended Search)

Stories Removing nuclear waste, one shipment at a time Removing nuclear waste, one shipment at a time The Lab's 1,000th shipment of transuranic waste recently left Los Alamos,...

56

Lesson 7 - Waste from Nuclear Power Plants | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 - Waste from Nuclear Power Plants 7 - Waste from Nuclear Power Plants Lesson 7 - Waste from Nuclear Power Plants This lesson takes a look at the waste from electricity production at nuclear power plants. It considers the different types of waste generated, as well as how we deal with each type of waste. Specific topics covered include: Nuclear Waste Some radioactive Types of radioactive waste Low-level waste High-level waste Disposal and storage Low-level waste disposal Spent fuel storage Waste isolation Reprocessing Decommissioning Lesson 7 - Waste.pptx More Documents & Publications National Report Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management Third National Report for the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management

57

GNEP Element:Minimize Nuclear Waste | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Documents & Publications Global Nuclear Energy Partnership Fact Sheet - Minimize Nuclear Waste The Global Nuclear Energy Partnership: Greater Energy Security in a Cleaner, Safer...

58

Nuclear Fuel Cycle and Waste Management Technologies - Nuclear Engineering  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Fuel Cycle and Nuclear Fuel Cycle and Waste Management Technologies Nuclear Fuel Cycle and Waste Management Technologies Overview Modeling and analysis Unit Process Modeling Mass Tracking System Software Waste Form Performance Modeling Safety Analysis, Hazard and Risk Evaluations Development, Design, Operation Overview Systems and Components Development Expertise System Engineering Design Other Major Programs Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE Division on Flickr Nuclear Fuel Cycle and Waste Management Technologies Overview Bookmark and Share Much of the NE Division's research is directed toward developing software and performing analyses, system engineering design, and experiments to support the demonstration and optimization of the electrometallurgical

59

Natural analogues of nuclear waste glass corrosion.  

SciTech Connect

This report reviews and summarizes studies performed to characterize the products and processes involved in the corrosion of natural glasses. Studies are also reviewed and evaluated on how well the corrosion of natural glasses in natural environments serves as an analogue for the corrosion of high-level radioactive waste glasses in an engineered geologic disposal system. A wide range of natural and experimental corrosion studies has been performed on three major groups of natural glasses: tektite, obsidian, and basalt. Studies of the corrosion of natural glass attempt to characterize both the nature of alteration products and the reaction kinetics. Information available on natural glass was then compared to corresponding information on the corrosion of nuclear waste glasses, specifically to resolve two key questions: (1) whether one or more natural glasses behave similarly to nuclear waste glasses in laboratory tests, and (2) how these similarities can be used to support projections of the long-term corrosion of nuclear waste glasses. The corrosion behavior of basaltic glasses was most similar to that of nuclear waste glasses, but the corrosion of tektite and obsidian glasses involves certain processes that also occur during the corrosion of nuclear waste glasses. The reactions and processes that control basalt glass dissolution are similar to those that are important in nuclear waste glass dissolution. The key reaction of the overall corrosion mechanism is network hydrolysis, which eventually breaks down the glass network structure that remains after the initial ion-exchange and diffusion processes. This review also highlights some unresolved issues related to the application of an analogue approach to predicting long-term behavior of nuclear waste glass corrosion, such as discrepancies between experimental and field-based estimates of kinetic parameters for basaltic glasses.

Abrajano, T.A. Jr.; Ebert, W.L.; Luo, J.S.

1999-01-06T23:59:59.000Z

60

System Engineering Design [Nuclear Waste Management using  

NLE Websites -- All DOE Office Websites (Extended Search)

System Engineering System Engineering Design Nuclear Fuel Cycle and Waste Management Technologies Overview Modeling and analysis Unit Process Modeling Mass Tracking System Software Waste Form Performance Modeling Safety Analysis, Hazard and Risk Evaluations Development, Design, Operation Overview Systems and Components Development Expertise System Engineering Design Other Major Programs Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE Division on Flickr Nuclear Waste Management using Electrometallurgical Technology System Engineering Design Bookmark and Share Two major pieces of electrometallurgical process equipment are the Electrorefiner and the Cathode Processor. NE personnel have been involved in the conceptual design, final design, procurement, manufacture,

Note: This page contains sample records for the topic "virginia nuclear waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

UNITED STATES NUCLEAR WASTE TECHNICAL REVIEW BOARD  

E-Print Network (OSTI)

1. INTRODUCTION 1.1. Yucca Mountain Project The Yucca Mountain site in Nevada has been designated as United States choice for nuclear waste repository. Yucca Mountain is in a remote dry area, on federal has been made to characterize the nature of the discontinuities of the Yucca Mountain proposed nuclear

62

Nuclear waste package fabricated from concrete  

Science Conference Proceedings (OSTI)

After the United States enacted the Nuclear Waste Policy Act in 1983, the Department of Energy must design, site, build and operate permanent geologic repositories for high-level nuclear waste. The Department of Energy has recently selected three sites, one being the Hanford Site in the state of Washington. At this particular site, the repository will be located in basalt at a depth of approximately 3000 feet deep. The main concern of this site, is contamination of the groundwater by release of radionuclides from the waste package. The waste package basically has three components: the containment barrier (metal or concrete container, in this study concrete will be considered), the waste form, and other materials (such as packing material, emplacement hole liners, etc.). The containment barriers are the primary waste container structural materials and are intended to provide containment of the nuclear waste up to a thousand years after emplacement. After the containment barriers are breached by groundwater, the packing material (expanding sodium bentonite clay) is expected to provide the primary control of release of radionuclide into the immediate repository environment. The loading conditions on the concrete container (from emplacement to approximately 1000 years), will be twofold; (1) internal heat of the high-level waste which could be up to 400/sup 0/C; (2) external hydrostatic pressure up to 1300 psi after the seepage of groundwater has occurred in the emplacement tunnel. A suggested container is a hollow plain concrete cylinder with both ends capped. 7 refs.

Pfeiffer, P.A.; Kennedy, J.M.

1987-03-01T23:59:59.000Z

63

Nuclear waste incineration technology status  

Science Conference Proceedings (OSTI)

The incinerators developed and/or used for radioactive waste combustion are discussed and suggestions are made for uses of incineration in radioactive waste management programs and for incinerators best suited for specific applications. Information on the amounts and types of radioactive wastes are included to indicate the scope of combustible wastes being generated and in existence. An analysis of recently developed radwaste incinerators is given to help those interested in choosing incinerators for specific applications. Operating information on US and foreign incinerators is also included to provide additional background information. Development needs are identified for extending incinerator applications and for establishing commercial acceptance.

Ziegler, D.L.; Lehmkuhl, G.D.; Meile, L.J.

1981-07-15T23:59:59.000Z

64

Challenges of Nuclear Waste Vitrification  

Science Conference Proceedings (OSTI)

The US DOE has developed glass property-composition models to control glass compositions for HLW vitrification at Hanford Waste Treatment & Immobilization ...

65

Nuclear Energy Research Advisory Committee Meeting April 15-16, 2002, Marriott Crystal City Hotel, Arlington, Virginia  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

15-16, 2002, Marriott Crystal City Hotel, Arlington, Virginia 15-16, 2002, Marriott Crystal City Hotel, Arlington, Virginia NERAC members present: John Ahearne (Monday only) Robert Long Thomas Cochran Warren F. Miller, Jr. Joseph Comfort Benjamin F. Montoya Michael L. Corradini Sekazi Mtingwa Jose Luis Cortez Lura Powell Maureen S. Crandall Richard Reba (Tuesday only) Allen Croff Joy Rempe James Duderstadt (Chair) Daniel C. Sullivan (Monday morning only) Steve Fetter John Taylor Beverly Hartline Ashok Thadani (ad hoc; Monday only) Leslie Hartz Charles E. Till Andrew Klein Neil Todreas (Tuesday only) Dale Klein (Monday only) NERAC members absent: Marvin Fertel Allen Sessoms J. Bennett Johnston C. Bruce Tarter Linda C. Knight Joan Woodard Also present: Ralph Bennett, Director for Advanced Nuclear Energy, Idaho National Engineering and

66

WIPP - Pioneering Nuclear Waste Disposal  

NLE Websites -- All DOE Office Websites (Extended Search)

Waste Disposal Cover Page and Table of Contents Closing the Circle The Long Road to WIPP - Part 1 The Long Road to WIPP - Part 2 Looking to the Future Related Reading and The...

67

Ceramics for Nuclear Waste Disposition  

Science Conference Proceedings (OSTI)

Oct 27, 2009 ... Materials Solutions for the Nuclear Renaissance: Ceramics for .... In-situ Decommissioning of Heavy Water Reactor Disassembly Basin: ...

68

Chemical aspects of nuclear waste treatment  

SciTech Connect

The chemical aspects of the treatment of gaseous, liquid, and solid wastes are discussed in overview. The role of chemistry and the chemical reactions in waste treatment are emphasized. Waste treatment methods encompass the chemistry of radioactive elements from every group of the periodic table. In most streams, the radioactive elements are present in relatively low concentrations and are often associated with moderately large amounts of process reagents, or materials. In general, it is desirable that waste treatment methods are based on chemistry that is selective for the concentration of radionuclides and does not require the addition of reagents that contribute significantly to the volume of the treated waste. Solvent extraction, ion exchange, and sorbent chemistry play a major role in waste treatment because of the high selectivity provided for many radionuclides. This paper deals with the chemistry of the onsite treatment methods that is typically used at nuclear installations and is not concerned with the chemistry of the various alternative materials proposed for long-term storage of nuclear wastes. The chemical aspects are discussed from a generic point of view in which the chemistry of important radionuclides is emphasized.

Bond, W.D.

1980-01-01T23:59:59.000Z

69

Experience in Using Fills for Spent Nuclear Fuel Waste Packages  

NLE Websites -- All DOE Office Websites (Extended Search)

Fills for SNF Waste Packages Experience in Using Fills for Spent Nuclear Fuel Waste Packages The use of other fill materials in waste packages has been investigated by several...

70

Corrosion Behavior of Container Alloys in Nuclear Waste Repositories  

Science Conference Proceedings (OSTI)

Symposium, Materials Issues in Nuclear Waste Management in the 21st Century ... Abstract Scope, Commercial nuclear energy has been around for six ...

71

Recovery of fissile materials from nuclear wastes  

DOE Patents (OSTI)

A process is described for recovering fissile materials such as uranium, and plutonium, and rare earth elements, from complex waste feed material, and converting the remaining wastes into a waste glass suitable for storage or disposal. The waste feed is mixed with a dissolution glass formed of lead oxide and boron oxide resulting in oxidation, dehalogenation, and dissolution of metal oxides. Carbon is added to remove lead oxide, and a boron oxide fusion melt is produced. The fusion melt is essentially devoid of organic materials and halogens, and is easily and rapidly dissolved in nitric acid. After dissolution, uranium, plutonium, and rare earth elements are separated from the acid and recovered by processes such as PUREX or ion exchange. The remaining acid waste stream is vitrified to produce a waste glass suitable for storage or disposal. Potential waste feed materials include plutonium scrap and residue, miscellaneous spent nuclear fuel, and uranium fissile wastes. The initial feed materials may contain mixtures of metals, ceramics, amorphous solids, halides, organic material and other carbon-containing material.

Forsberg, Charles W.

1997-12-01T23:59:59.000Z

72

Recovery of fissile materials from nuclear wastes  

DOE Patents (OSTI)

A process for recovering fissile materials such as uranium, and plutonium, and rare earth elements, from complex waste feed material, and converting the remaining wastes into a waste glass suitable for storage or disposal. The waste feed is mixed with a dissolution glass formed of lead oxide and boron oxide resulting in oxidation, dehalogenation, and dissolution of metal oxides. Carbon is added to remove lead oxide, and a boron oxide fusion melt is produced. The fusion melt is essentially devoid of organic materials and halogens, and is easily and rapidly dissolved in nitric acid. After dissolution, uranium, plutonium and rare earth elements are separated from the acid and recovered by processes such as PUREX or ion exchange. The remaining acid waste stream is vitrified to produce a waste glass suitable for storage or disposal. Potential waste feed materials include plutonium scrap and residue, miscellaneous spent nuclear fuel, and uranium fissile wastes. The initial feed materials may contain mixtures of metals, ceramics, amorphous solids, halides, organic material and other carbon-containing material.

Forsberg, Charles W. (Oak Ridge, TN)

1999-01-01T23:59:59.000Z

73

Materials for Nuclear Waste Disposal and Environmental Cleanup  

Science Conference Proceedings (OSTI)

Symposium, Materials for Nuclear Waste Disposal and Environmental Cleanup ... Secure and Certify Studies to Work on Production of Spiked Plutonium.

74

Nuclear Waste Fund fee adequacy: An assessment  

SciTech Connect

The purpose of this report is to present the Department of Energy`s (the Department) analysis of the adequacy of the 1.00 mill per kilowatt-hour (kWh) fee being paid by the utilities generating nuclear power for the permanent disposal of their spent nuclear fuel (SNF). In accordance with the Nuclear Waste Policy Act (NWPA), the SNF would be disposed of in a geologic repository to be developed by the Department. An annual analysis of the fee`s adequacy is required by the NWPA.

NONE

1990-11-01T23:59:59.000Z

75

Neutron pulse simulation in nuclear waste for waste characterization  

SciTech Connect

The numerical simulations discussed in this paper show how analysis with computer-generated illustrations can be used to explain the concepts and advantages of pulsed neutron systems for tank waste evaluations. Furthermore, the analysis-illustration approach lends itself to parametric studies evaluating design features of hardware before it is fabricated. Nuclear material characteristics of hazardous or toxic simulants can be evaluated before preparing them or finding nontoxic or nonhazardous substitutes that will exhibit similar nuclear properties. Pulsed neutron systems hold significant promise for partial characterization of tank waste. The device could operate in a high background gamma radiation field and provide important information on moisture concentrations, fissionable material contents, and material interfaces quickly and at considerably less cost than obtainable from sample analyses.

Toffer, H.; Watson, W.T.; Roetman, V.E.

1993-12-01T23:59:59.000Z

76

Nuclear waste management. Quarterly progress report, October-December 1979  

SciTech Connect

Progress and activities are reported on the following: high-level waste immobilization, alternative waste forms, nuclear waste materials characterization, TRU waste immobilization programs, TRU waste decontamination, krypton solidification, thermal outgassing, iodine-129 fixation, monitoring of unsaturated zone transport, well-logging instrumentation development, mobile organic complexes of fission products, waste management system and safety studies, assessment of effectiveness of geologic isolation systems, waste/rock interactions technology, spent fuel and fuel pool integrity program, and engineered barriers. (DLC)

Platt, A.M.; Powell, J.A. (comps.)

1980-04-01T23:59:59.000Z

77

Virginia - State Energy Profile Analysis - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Natural gas consumption by Virginia's electric power generators has increased sharply since 2009. ... Municipal solid waste and landfill gas also ...

78

Nuclear Waste Fund Activities Management Team | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Waste Fund Activities Management Team Waste Fund Activities Management Team Nuclear Waste Fund Activities Management Team The Nuclear Waste Fund Activities Management Team has responsibility to: Manage the investments and expenditures of the Nuclear Waste Fund; Support correspondence regarding Nuclear Waste Policy Act issues raised by congressional, Inspector General, Government Accounting Office and Freedom of Information Act inquiries; and, Manage the annual fee adequacy assessment process. Applicable Documents Nuclear Waste Policy Act of 1982 Standard Contract for Disposal of Spent Nuclear Fuel and/or High-Level Radioactive Waste Standard Contract Amendment for New Reactors FY 2007 Total System Life Cycle Cost, Pub 2008 FY 2007 Fee Adequacy, Pub 2008 2009 Letter to Congress OCRWM Financial Statements for Annual Report for Years Ended

79

Nuclear Waste Assessment System for Technical Evaluation (NUWASTE)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NWTRB NWTRB www.nwtrb.gov U.S. Nuclear Waste Technical Review Board U.S. Nuclear Waste Technical Review Board: Roles and Priorities Presented by: Nigel Mote, Executive Director, U.S. Nuclear Waste Technical Review Board May 14, 2013 Hyatt Regency Buffalo, Buffalo, NY. Presented to: National Transportation Stakeholders' Forum NWTRB www.nwtrb.gov U.S. Nuclear Waste Technical Review Board The Board's Statutory Mandate * The 1987 amendments to the Nuclear Waste Policy Act (NWPA) established the U.S. Nuclear Waste Technical Review Board. * The Board evaluates the technical and scientific validity of DOE activities related to implementing the NWPA, including: - transportation, packaging, and storage of spent nuclear fuel (SNF) and high-level radioactive waste (HLW)

80

Nuclear Energy Research Advisory Committee Meeting November 17-18, 1998, Hyatt Regency Crystal City, Arlington, Virginia  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1- 1- Minutes for the Nuclear Energy Research Advisory Committee Meeting November 17-18, 1998, Hyatt Regency Crystal City, Arlington, Virginia NERAC members present: John Ahearne (Tuesday only) Linda Knight Thomas Boulette Thomas Cochran Robert Long Joseph Comfort Warren Miller Jose Luis Cortez Sekazi Mtingwa Maureen S. Crandall (Tuesday only) Richard Reba Allen Croff Joy Rempe James Duderstadt (Chair) Robert Socolow (Tuesday only) Marvin Fertel Daniel C. Sullivan Beverly Hartline Bruce Tarter (Tuesday only) William Kastenberg Charles E. Till Dale Klein Neil Todreas NERAC members absent: J. Bennett Johnston Glenn Seaborg C. Paul Robinson Allen Sessoms Miguel Rios John Taylor Also present: Norton Haberman, Senior Technical Advisor, Office of Nuclear Energy, Science, and Technology, NE, DOE

Note: This page contains sample records for the topic "virginia nuclear waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Sulfate Retention in High Level Nuclear Waste Glasses  

Science Conference Proceedings (OSTI)

Symposium, Materials Solutions for the Nuclear Renaissance ... Atomistic Simulations of Radiation Effects in Ceramics for Nuclear Waste Disposal ... Creep Behavior of High Temperature Alloys for Generation IV Nuclear Energy Applications.

82

The Social and Ethical Aspects of Nuclear Waste  

E-Print Network (OSTI)

level waste and spent nuclear fuel: The continuing societal1999). Transportation of spent nuclear fuel and high-levelfor the disposal of spent nuclear fuel in Finland, 15-16

Marshall, Alan

2005-01-01T23:59:59.000Z

83

International nuclear waste management fact book  

Science Conference Proceedings (OSTI)

The International Nuclear Waste Management Fact Book has been compiled to provide current data on fuel cycle and waste management facilities, R and D programs, and key personnel in 24 countries, including the US; four multinational agencies; and 20 nuclear societies. This document, which is in its second year of publication supersedes the previously issued International Nuclear Fuel Cycle Fact Book (PNL-3594), which appeared annually for 12 years. The content has been updated to reflect current information. The Fact Book is organized as follows: National summaries--a section for each country that summarizes nuclear policy, describes organizational relationships, and provides addresses and names of key personnel and information on facilities. International agencies--a section for each of the international agencies that has significant fuel cycle involvement and a list of nuclear societies. Glossary--a list of abbreviations/acronyms of organizations, facilities, and technical and other terms. The national summaries, in addition to the data described above, feature a small map for each country and some general information that is presented from the perspective of the Fact Book user in the US.

Abrahms, C W; Patridge, M D; Widrig, J E

1995-11-01T23:59:59.000Z

84

Seal welded cast iron nuclear waste container  

SciTech Connect

This invention identifies methods and articles designed to circumvent metallurgical problems associated with hermetically closing an all cast iron nuclear waste package by welding. It involves welding nickel-carbon alloy inserts which are bonded to the mating plug and main body components of the package. The welding inserts might be bonded in place during casting of the package components. When the waste package closure weld is made, the most severe thermal effects of the process are restricted to the nickel-carbon insert material which is far better able to accommodate them than is cast iron. Use of nickel-carbon weld inserts should eliminate any need for pre-weld and post-weld heat treatments which are a problem to apply to nuclear waste packages. Although the waste package closure weld approach described results in a dissimilar metal combination, the relative surface area of nickel-to-iron, their electrochemical relationship, and the presence of graphite in both materials will act to prevent any galvanic corrosion problem.

Filippi, Arthur M. (Pittsburgh, PA); Sprecace, Richard P. (Murrysville, PA)

1987-01-01T23:59:59.000Z

85

COMBINED HEAT AND POWER FOR A COLLEGE CAMPUS THE HARRISONBURG, VIRGINIA WASTE-TO-ENERGY FACILITY  

E-Print Network (OSTI)

of installing the super-heaters, cooling towers, condensers and auxiliary equipment needed to make and cooling needs of the campus. This facility also has a small turbine that can be brought on line to produce Madison University central heating & cooling system. This facility uses a mass-burn style waste combustion

Columbia University

86

Nuclear Waste Programs semiannual progress report, April--September 1992  

Science Conference Proceedings (OSTI)

This document reports on the work done by the Nuclear Waste Programs of the Chemical Technology Division (CMT), Argonne National Laboratory, in the period April--September 1992. In these programs, studies are underway on the performance of waste glass and spent fuel in projected nuclear repository conditions to provide input to the licensing of the nation`s high-level waste repositories.

Bates, J.K.; Bradley, C.R.; Buck, E.C. [and others

1994-05-01T23:59:59.000Z

87

Nuclear waste programs; Semiannual progress report, October 1991--March 1992  

SciTech Connect

This document reports on the work done by the Nuclear Waste Programs of the Chemical Technology Division (CMT), Argonne National Laboratory, in the period October 1991-March 1992. In these programs, studies are underway on the performance of waste glass and spent fuel in projected nuclear repository conditions to provide input to the licensing of the nation`s high-level waste repositories

Bates, J.K.; Bradley, C.R.; Buck, E.C.; Dietz, N.L.; Ebert, W.L.; Emery, J.W.; Feng, X.; Finn, P.A.; Gerding, T.J.; Hoh, J.C. [and others

1993-11-01T23:59:59.000Z

88

A Characteristics-Based Approach to Radioactive Waste Classification in Advanced Nuclear Fuel Cycles  

E-Print Network (OSTI)

Anthony   V.   Guide  Nuclear  Reactors.   University   of  of   fuel   for   nuclear   reactors—create   wastes  Level  Waste   nuclear reactors, and subsequent utilization

Djokic, Denia

2013-01-01T23:59:59.000Z

89

EA-0896; Research in Alzheimer's Disease Health Sciences Center - West Virginia University Environmental Assessment and (FONSI) Center For Nuclear Medicine Research In Alzheimer's Disease Health Sciences Center - West Virginia University  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6; Research in Alzheimer's Disease Health Sciences Center - West 6; Research in Alzheimer's Disease Health Sciences Center - West Virginia University Environmental Assessment and (FONSI) Center for Nuclear Medicine Research in Alzheimer's Disease Health Sciences Center - West Virginia University TABLE OF CONTENTS 1.0 DOCUMENT SUMMARY 1.1. Description 1.2 Alternatives 1.3 Affected Environment 1.4 Construction Impacts 1.5 Operating Impacts 2.0 PURPOSE AND NEED FOR AGENCY ACTION 3.0 DESCRIPTION OF ALTERNATIVES INCLUDING THE PROPOSED ACTION 3.1 Description of the Proposed Action 3.2.1 Construction Activities 3.2.2 Operation Activities 3.3 The No Action Alternative 3.4 Site Alternatives 4.0 THE AFFECTED ENVIRONMENT 5.0 ENVIRONMENTAL CONSEQUENCES OF THE PROPOSED ACTION AND ALTERNATIVES 5.1 Construction Impacts 5.1.1 Sensitive Resources

90

The necessity for permanence : making a nuclear waste storage facility  

E-Print Network (OSTI)

The United States Department of Energy is proposing to build a nuclear waste storage facility in southern Nevada. This facility will be designed to last 10,000 years. It must prevent the waste from contaminating the ...

Stupay, Robert Irving

1991-01-01T23:59:59.000Z

91

Disposing of nuclear waste in a salt bed  

NLE Websites -- All DOE Office Websites (Extended Search)

Disposing of nuclear waste in a salt bed Disposing of nuclear waste in a salt bed 1663 Los Alamos science and technology magazine Latest Issue:November 2013 All Issues » submit Disposing of nuclear waste in a salt bed Decades' worth of transuranic waste from Los Alamos is being laid to rest at the Waste Isolation Pilot Plant in southeastern New Mexico March 25, 2013 Disposing of nuclear waste in a salt bed Depending on the impurities embedded within it, the salt from WIPP can be anything from a reddish, relatively opaque rock to a clear crystal like the one shown here. Ordinary salt effectively seals transuranic waste in a long-term repository Transuranic waste, made of items such as lab coats and equipment that have been contaminated by radioactive elements heavier than uranium, is being shipped from the Los Alamos National Laboratory to a long-term storage

92

WIPP Uses Recovery Act Funding to Reduce Nuclear Waste Footprint |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Uses Recovery Act Funding to Reduce Nuclear Waste Footprint Uses Recovery Act Funding to Reduce Nuclear Waste Footprint WIPP Uses Recovery Act Funding to Reduce Nuclear Waste Footprint August 1, 2011 - 12:00pm Addthis Media Contact Deb Gill www.wipp.energy.gov 575-234-7270 CARLSBAD, N.M. - The U.S. Department of Energy's (DOE's) Carlsbad Field Office (CBFO) reduced the nuclear waste footprint by using American Recovery and Reinvestment Act funds to expedite the clean up of five transuranic (TRU) waste storage sites and to make important infrastructure improvements at the Waste Isolation Pilot Plant (WIPP). Expediting TRU waste shipments supports DOE's goal to dispose of 90 percent of legacy TRU waste by 2015, saving taxpayers million of dollars in storage and maintenance costs. Recovery Act funds allowed highly trained teams to safely prepare and load

93

Microsoft Word - virginia.doc  

Gasoline and Diesel Fuel Update (EIA)

Virginia Virginia NERC Region(s) ....................................................................................................... RFC/SERC Primary Energy Source........................................................................................... Nuclear Net Summer Capacity (megawatts) ....................................................................... 24,109 16 Electric Utilities ...................................................................................................... 19,434 15 Independent Power Producers & Combined Heat and Power ................................ 4,676 21 Net Generation (megawatthours) ........................................................................... 72,966,456 21

94

Microsoft Word - virginia.doc  

U.S. Energy Information Administration (EIA) Indexed Site

Virginia Virginia NERC Region(s) ....................................................................................................... RFC/SERC Primary Energy Source........................................................................................... Nuclear Net Summer Capacity (megawatts) ....................................................................... 24,109 16 Electric Utilities ...................................................................................................... 19,434 15 Independent Power Producers & Combined Heat and Power ................................ 4,676 21 Net Generation (megawatthours) ........................................................................... 72,966,456 21

95

Extraction of cesium and strontium from nuclear waste  

DOE Patents (OSTI)

Cesium is extracted from acidified nuclear waste by contacting the waste with a bis 4,4[prime](5) [1-hydroxy-2-ethylhexyl]benzo 18-crown-6 compound and a cation exchanger in a matrix solution. Strontium is extracted from acidified nuclear waste by contacting the waste with a bis 4,4[prime](5[prime]) [1-hydroxyheptyl]cyclohexo 18-crown-6 compound, and a cation exchanger in a matrix solution. 3 figs.

Davis, M.W. Jr.; Bowers, C.B. Jr.

1988-06-07T23:59:59.000Z

96

Extraction of cesium and strontium from nuclear waste  

DOE Patents (OSTI)

Cesium is extracted from acidified nuclear waste by contacting the waste with a bis 4,4'(5) [1-hydroxy-2-ethylhexyl]benzo 18-crown-6 compound and a cation exchanger in a matrix solution. Strontium is extracted from acidified nuclear waste by contacting the waste with a bis 4,4'(5') [1-hydroxyheptyl]cyclohexo 18-crown-6 compound, and a cation exchanger in a matrix solution.

Davis, Jr., Milton W. (Lexington, SC); Bowers, Jr., Charles B. (Columbia, SC)

1988-01-01T23:59:59.000Z

97

Secretarial Determination of the Adequacy of the Nuclear Waste...  

NLE Websites -- All DOE Office Websites (Extended Search)

next annual review. Secretarial Determination of the Adequacy of the Nuclear Waste Fund Fee More Documents & Publications The Report To The President And The Congress By The...

98

Congressional Preferences and the Advancement of American Nuclear Waste Policy.  

E-Print Network (OSTI)

??The problem of nuclear waste disposal has existed since the time of the Manhattan Project in World War II. Although there exist a number of… (more)

Ternate, Rhoel Gonzales

2013-01-01T23:59:59.000Z

99

Development of Ceramic Waste Forms for an Advanced Nuclear ...  

Science Conference Proceedings (OSTI)

Presentation Title, Development of Ceramic Waste Forms for an Advanced Nuclear Fuel Cycle. Author(s), James C. Marra, Amanda Billings, Kyle Brinkman,  ...

100

Geopolymers in Nuclear Waste Immobilization: Past, Present, and ...  

Science Conference Proceedings (OSTI)

Symposium, Materials Issues in Nuclear Waste Management in the 21st Century. Presentation Title ... Metal Organic Frameworks for Clean Energy Applications.

Note: This page contains sample records for the topic "virginia nuclear waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Developments in Nuclear Waste Forms: University/International ...  

Science Conference Proceedings (OSTI)

Symposium, Materials for Nuclear Waste Disposal and Environmental Cleanup ... to proceed albeit with even greater care over security and safety aspects.

102

"1. Bath County","Pumped Storage","Virginia Electric & Power Co",3003  

U.S. Energy Information Administration (EIA) Indexed Site

Virginia" Virginia" "1. Bath County","Pumped Storage","Virginia Electric & Power Co",3003 "2. North Anna","Nuclear","Virginia Electric & Power Co",1864 "3. Possum Point","Gas","Virginia Electric & Power Co",1733 "4. Chesterfield","Coal","Virginia Electric & Power Co",1639 "5. Surry","Nuclear","Virginia Electric & Power Co",1638 "6. Yorktown","Coal","Virginia Electric & Power Co",1141 "7. Tenaska Virginia Generating Station","Gas","Tenaska Virginia Partners LP",927 "8. Clover","Coal","Virginia Electric & Power Co",865

103

Drainage, Sanitation, and Public Facilities Districts (Virginia) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Drainage, Sanitation, and Public Facilities Districts (Virginia) Drainage, Sanitation, and Public Facilities Districts (Virginia) Drainage, Sanitation, and Public Facilities Districts (Virginia) < Back Eligibility Agricultural Commercial Construction Developer Industrial Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Systems Integrator Tribal Government Utility Savings Category Water Buying & Making Electricity Home Weatherization Program Info State Virginia Program Type Siting and Permitting Provider Local Governments and Districts This legislation provides for the establishment of sanitary, sanitation, drainage, and public facilities districts in Virginia. Designated districts are public bodies, and have the authority to regulate the construction and development of sanitation and waste disposal projects in their

104

Bioenergy and Wood Fiber in Virginia and Beyond John F. Munsell  

E-Print Network (OSTI)

­ Grayson County and others · Northern Virginia ­ Municipal Waste · Bio-fuels / Ethanol Goals ­ VA Energy energy productiongy p · 9% renewable: 47% biomass: 72% wood-based 17.00% 9.00% 31.00% 2% Wind 45% Hydroelectric 11.00% Petroleum Renewable Energy Nuclear Electric Hydroelectric 5% Geothermal 47% 32.00% Coal

Wynne, Randolph H.

105

GEOTECHNICAL ASSESSMENT AND INSTRUMENTATION NEEDS FOR NUCLEAR WASTE ISOLATION IN CRYSTALLINE AND ARGILLACEOUS ROCKS SYMPOSIUM  

E-Print Network (OSTI)

Radioactive Wastes from the Nuclear Fuel Cycle. ProceedingsRadioactive Wastes from the Nuclear Fuel Cycle. ProceedingsWastes from the Nuclear Fuel Cycle, Vienna, March 22-26,

Authors, Various

2011-01-01T23:59:59.000Z

106

U.S. Nuclear Waste Technical Review Board: Roles and Priorities...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Waste Technical Review Board: Roles and Priorities U.S. Nuclear Waste Technical Review Board: Roles and Priorities Presentation made by Nigel Mote for the NTSF annual...

107

Nuclear waste vitrification efficiency: cold cap reactions  

SciTech Connect

The cost and schedule of nuclear waste treatment and immobilization are greatly affected by the rate of glass production. Various factors influence the performance of a waste-glass melter. One of the most significant, and also one of the least understood, is the process of batch melting. Studies are being conducted to gain fundamental understanding of the batch reactions, particularly those that influence the rate of melting, and models are being developed to link batch makeup and melter operation to the melting rate. Batch melting takes place within the cold cap, i.e., a batch layer floating on the surface of molten glass. The conversion of batch to glass consists of various chemical reactions, phase transitions, and diffusion-controlled processes. These include water evaporation (slurry feed contains as high as 60% water), gas evolution, the melting of salts, the formation of borate melt, reactions of borate melt with molten salts and with amorphous oxides (Fe2O3 and Al2O3), the formation of intermediate crystalline phases, the formation of a continuous glass-forming melt, the growth and collapse of primary foam, and the dissolution of residual solids. To this list we also need to add the formation of secondary foam that originates from molten glass but accumulates on the bottom of the cold cap. This study presents relevant data obtained for a high-level-waste melter feed and introduces a one-dimensional (1D) mathematical model of the cold cap as a step toward an advanced three-dimensional (3D) version for a complete model of the waste glass melter. The 1D model describes the batch-to-glass conversion within the cold cap as it progresses in a vertical direction. With constitutive equations and key parameters based on measured data, and simplified boundary conditions on the cold-cap interfaces with the glass melt and the plenum space of the melter, the model provides sensitivity analysis of the response of the cold cap to the batch makeup and melter conditions. The model demonstrates that batch foaming has a decisive influence on the rate of melting. Understanding the dynamics of the foam layer at the bottom of the cold cap and the heat transfer through it appears crucial for a reliable prediction of the rate of melting as a function of the melter-feed makeup and melter operation parameters. Although the study is focused on a batch for waste vitrification, the authors expect that the outcome will also be relevant for commercial glass melting.

Hrma, Pavel R.; Kruger, Albert A.; Pokorny, Richard

2012-12-15T23:59:59.000Z

108

Idaho Nuclear Technology and Engineering Center (INTEC) Sodium Bearing Waste - Waste Incidental to Reprocessing Determination  

SciTech Connect

U.S. Department of Energy Manual 435.1-1, Radioactive Waste Management, Section I.1.C, requires that all radioactive waste subject to Department of Energy Order 435.1 be managed as high-level radioactive waste, transuranic waste, or low-level radioactive waste. Determining the radiological classification of the sodium-bearing waste currently in the Idaho Nuclear Technology and Engineering Center Tank Farm Facility inventory is important to its proper treatment and disposition. This report presents the technical basis for making the determination that the sodium-bearing waste is waste incidental to spent fuel reprocessing and should be managed as mixed transuranic waste. This report focuses on the radiological characteristics of the sodiumbearing waste. The report does not address characterization of the nonradiological, hazardous constituents of the waste in accordance with Resource Conservation and Recovery Act requirements.

Jacobson, Victor Levon

2002-08-01T23:59:59.000Z

109

A QUARTER CENTURY OF NUCLEAR WASTE MANAGEMENT IN JAPAN  

Science Conference Proceedings (OSTI)

This paper is entitled ''A QUARTER CENTURY OF NUCLEAR WASTE MANAGEMENT IN JAPAN''. Since the first statement on the strategy for radioactive waste management in Japan was made by the Atomic Energy Commission (AEC) in 1976, a quarter century has passed, in which much experience has been accumulated both in technical and social domains. This paper looks back in this 25-year history of radioactive waste management in Japan by highlighting activities related to high-level radioactive waste (HLW) disposal.

Masuda, S.

2002-02-25T23:59:59.000Z

110

Method of preparing nuclear wastes for tansportation and interim storage  

SciTech Connect

Nuclear waste is formed into a substantially water-insoluble solid for temporary storage and transportation by mixing the calcined waste with at least 10 weight percent powdered anhydrous sodium silicate to form a mixture and subjecting the mixture to a high humidity environment for a period of time sufficient to form cementitious bonds by chemical reaction. The method is suitable for preparing an interim waste form from dried high level radioactive wastes.

Bandyopadhyay, Gautam (Naperville, IL); Galvin, Thomas M. (Darien, IL)

1984-01-01T23:59:59.000Z

111

Virginia Coalfield Economic Development Authority (Virginia) | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Virginia Coalfield Economic Development Authority (Virginia) Virginia Coalfield Economic Development Authority (Virginia) Virginia Coalfield Economic Development Authority (Virginia) < Back Eligibility Commercial Construction Industrial Program Info Start Date 1990 State Virginia Program Type Industry Recruitment/Support Loan Program Public Benefits Fund Provider Virginia Coalfield Economic Development Authority The Virginia Coalfield Economic Development Authority (VACEDA) was created in 1988 to encourage economic development in the western section of the state. The Authority administers incentive and financing programs designed to encourage new job creation and economic diversification, specifically in the electronic information technology, energy, education, and emerging technology sectors. VCEDA provides financial support for fixed assets,

112

WEB RESOURCE: Nuclear Materials and Nuclear Fuel/Waste  

Science Conference Proceedings (OSTI)

Feb 12, 2007 ... Select, Sandbox, Open Discussion Regarding Materials for Nuclear ... Trends in Nuclear Power, The Nuclear Fuel Cycle, Nuclear Science ...

113

Nepheline Crystallization in Nuclear Waste Glasses: Progress ...  

Science Conference Proceedings (OSTI)

Abstract Scope, One significant limitation to waste loading in glass for Hanford defense wastes is the commonly high Al concentrations. The primary concern is ...

114

Removing nuclear waste, one shipment at a time  

NLE Websites -- All DOE Office Websites (Extended Search)

Stories » Stories » Removing nuclear waste, one shipment at a time Removing nuclear waste, one shipment at a time The Lab's 1,000th shipment of transuranic waste recently left Los Alamos, on its way to a permanent repository near Carlsbad, NM. June 26, 2012 Governor Martinez applauding the 1014th TRU waste shipment New Mexico Governor Susana Martinez and other dignitaries applaud as the 1,014th shipment of transuranic waste leaves Los Alamos National Laboratory. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email "The milestone we're celebrating is one that has been a long-term environmental commitment." Removing nuclear waste, one shipment at a time Elected officials and other dignitaries recently gathered at Los Alamos

115

Nuclear waste treatment program: Annual report for FY 1987  

SciTech Connect

Two of the US Department of Energy's (DOE) nuclear waste management-related goals are to ensure that waste management is not an obstacle to the further development of light-water reactors and the closure of the nuclear fuel cycle and to fulfill its institutional responsibility for providing safe storage and disposal of existing and future nuclear wastes. As part of its approach to achieving these goals, the Office of Remedial Action and Waste Technology of DOE established what is now called the Nuclear Waste Treatment Program (NWTP) at the Pacific Northwest Laboratory during the second half of FY 1982. To support DOE's attainment of its goals, the NWTP is to provide technology necessary for the design and operation of nuclear waste treatment facilities by commercial enterprises as part of a licensed waste management system and problem-specific treatment approaches, waste form and treatment process adaptations, equipment designs, and trouble-shooting assistance, as required to treat existing wastes. This annual report describes progress during FY 1987 towards meeting these two objectives. 24 refs., 59 figs., 24 tabs.

Brouns, R.A.; Powell, J.A. (comps.)

1988-09-01T23:59:59.000Z

116

Depleted uranium as a backfill for nuclear fuel waste package  

DOE Patents (OSTI)

A method is described for packaging spent nuclear fuel for long-term disposal in a geological repository. At least one spent nuclear fuel assembly is first placed in an unsealed waste package and a depleted uranium fill material is added to the waste package. The depleted uranium fill material comprises flowable particles having a size sufficient to substantially fill any voids in and around the assembly and contains isotopically-depleted uranium in the +4 valence state in an amount sufficient to inhibit dissolution of the spent nuclear fuel from the assembly into a surrounding medium and to lessen the potential for nuclear criticality inside the repository in the event of failure of the waste package. Last, the waste package is sealed, thereby substantially reducing the release of radionuclides into the surrounding medium, while simultaneously providing radiation shielding and increased structural integrity of the waste package. 6 figs.

Forsberg, C.W.

1998-11-03T23:59:59.000Z

117

Depleted uranium as a backfill for nuclear fuel waste package  

DOE Patents (OSTI)

A method is described for packaging spent nuclear fuel for long-term disposal in a geological repository. At least one spent nuclear fuel assembly is first placed in an unsealed waste package and a depleted uranium fill material is added to the waste package. The depleted uranium fill material comprises flowable particles having a size sufficient to substantially fill any voids in and around the assembly and contains isotonically-depleted uranium in the +4 valence state in an amount sufficient to inhibit dissolution of the spent nuclear fuel from the assembly into a surrounding medium and to lessen the potential for nuclear criticality inside the repository in the event of failure of the waste package. Last, the waste package is sealed, thereby substantially reducing the release of radionuclides into the surrounding medium, while simultaneously providing radiation shielding and increased structural integrity of the waste package.

Forsberg, Charles W.

1997-12-01T23:59:59.000Z

118

Depleted uranium as a backfill for nuclear fuel waste package  

DOE Patents (OSTI)

A method for packaging spent nuclear fuel for long-term disposal in a geological repository. At least one spent nuclear fuel assembly is first placed in an unsealed waste package and a depleted uranium fill material is added to the waste package. The depleted uranium fill material comprises flowable particles having a size sufficient to substantially fill any voids in and around the assembly and contains isotopically-depleted uranium in the +4 valence state in an amount sufficient to inhibit dissolution of the spent nuclear fuel from the assembly into a surrounding medium and to lessen the potential for nuclear criticality inside the repository in the event of failure of the waste package. Last, the waste package is sealed, thereby substantially reducing the release of radionuclides into the surrounding medium, while simultaneously providing radiation shielding and increased structural integrity of the waste package.

Forsberg, Charles W. (Oak Ridge, TN)

1998-01-01T23:59:59.000Z

119

Systems and Components Development Expertise [Nuclear Waste Management  

NLE Websites -- All DOE Office Websites (Extended Search)

Systems and Components Systems and Components Development Expertise Nuclear Fuel Cycle and Waste Management Technologies Overview Modeling and analysis Unit Process Modeling Mass Tracking System Software Waste Form Performance Modeling Safety Analysis, Hazard and Risk Evaluations Development, Design, Operation Overview Systems and Components Development Expertise System Engineering Design Other Major Programs Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE Division on Flickr Nuclear Waste Management using Electrometallurgical Technology Systems and Components Development Expertise Bookmark and Share Electrorefiner The electrorefiner: an apparatus used for electrometallurgical treatment of spent nuclear fuel to facilitate storage and ultimate disposal. Click on

120

Modeling and simulation in analyzing geological repositories for high level nuclear waste  

Science Conference Proceedings (OSTI)

Nuclear energy is very often used to generate electricity. But first the energy must be released from atoms which can be done in two ways: nuclear fusion and nuclear fission. Nuclear power plants use nuclear fission to produce electrical energy. Electrical ... Keywords: modeling, nuclear energy, nuclear waste, nuclear waste storage, simulation

Dietmar P. F. Möller

2007-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "virginia nuclear waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

The Middle Ground for Nuclear Waste Management: Social and Ethical Aspects of Shallow Storage  

Science Conference Proceedings (OSTI)

The 2001 terrorist attacks in the USA and the 2011 seismic events in Japan have brought into sharp relief the vulnerabilities involved in storing nuclear waste on the land's surface. Nuclear engineers and waste managers are deciding that disposing nuclear ... Keywords: Ethics, Inter-Generational Equity, Nuclear Waste, Shallow Storage, Waste Disposal

Alan Marshall

2011-04-01T23:59:59.000Z

122

GEOTECHNICAL ASSESSMENT AND INSTRUMENTATION NEEDS FOR NUCLEAR WASTE ISOLATION IN CRYSTALLINE AND ARGILLACEOUS ROCKS SYMPOSIUM  

E-Print Network (OSTI)

Summary • • INSTRUMENTATION NEEDS FOR DETERMINING ROCKDepository Design . . • • • . . INSTRUMENTATION NEEDS FORASSESSMENT AND INSTRUMENTATION NEEDS FOR NUCLEAR WASTE

Authors, Various

2011-01-01T23:59:59.000Z

123

Linear and nonlinear transient heat conduction in nuclear waste repositories  

Science Conference Proceedings (OSTI)

Analytical solutions of thermal problems connected with the disposal of nuclear wastes are presented. Linear and nonlinear diffusion problems are analyzed considering time-dependent heat sources. Comparisons between the temperature distributions at a ...

C. A. Estrada-Gasca; M. H. Cobble

1988-10-01T23:59:59.000Z

124

Nuclear waste disposal in New Mexico and Nevada  

Science Conference Proceedings (OSTI)

The author describes the Waste Isolation Pilot Project (WIPP) for safely discarded nuclear wates is discussed. WIPP, now essentially complete, near Carlsbad, NM, and Yucca Mountain, in the early stages of construction northwest of Las Vegas, Nev. The ...

J. Beard

1997-11-01T23:59:59.000Z

125

Nuclear Waste Partnership LLC PO Box 2078 GSA-207  

NLE Websites -- All DOE Office Websites (Extended Search)

072012 1 of 3 A URS-led partnership with B&W and AREVA Note: Form must be filled out completely and signed prior to submittal to the following address: Nuclear Waste Partnership...

126

Canister design for deep borehole disposal of nuclear waste  

E-Print Network (OSTI)

The objective of this thesis was to design a canister for the disposal of spent nuclear fuel and other high-level waste in deep borehole repositories using currently available and proven oil, gas, and geothermal drilling ...

Hoag, Christopher Ian

2006-01-01T23:59:59.000Z

127

The Properties of Spent Nuclear Fuel under Waste Disposal ...  

Science Conference Proceedings (OSTI)

Symposium, Materials Issues in Nuclear Waste Management in the 21st Century ... UO2 in the form of a ceramic pellet with a density close to theoretical. ... On discharge fro reactor the pellets have undergone a number of physical and ...

128

West Virginia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Qualifying RPS State Export Markets (West Virginia) Qualifying RPS State Export Markets (West Virginia) This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in West Virginia as eligible sources towards their RPS targets or goals. For specific information with regard to eligible technologies or other restrictions which may vary by state, see the RPS policy entries for the individual states, shown below in the Authority listings. Typically energy must be delivered to an in-state utility or Load Serving Entity, and often only a portion of compliance targets may be met by out-of-state generation. October 16, 2013 Proof of Proper Solid Waste Disposal (West Virginia) This rule provides guidance to persons occupying a residence or operating a business establishment in this state regarding the approved method of

129

Sulfate Volatilization in Simulated Nuclear Waste Glasses  

Science Conference Proceedings (OSTI)

Radioactive Demonstrations of Fluidized Bed Steam Reforming (FBSR) with Hanford Low Activity Wastes · Radionuclide Behavior and Geochemistry in Boom

130

Method for calcining nuclear waste solutions containing zirconium and halides  

DOE Patents (OSTI)

A reduction in the quantity of gelatinous solids which are formed in aqueous zirconium-fluoride nuclear reprocessing waste solutions by calcium nitrate added to suppress halide volatility during calcination of the solution while further suppressing chloride volatility is achieved by increasing the aluminum to fluoride mole ratio in the waste solution prior to adding the calcium nitrate.

Newby, Billie J. (Idaho Falls, ID)

1979-01-01T23:59:59.000Z

131

Method for forming microspheres for encapsulation of nuclear waste  

SciTech Connect

Microspheres for nuclear waste storage are formed by gelling droplets containing the waste in a gelation fluid, transferring the gelled droplets to a furnace without the washing step previously used, and heating the unwashed gelled droplets in the furnace under temperature or humidity conditions that result in a substantially linear rate of removal of volatile components therefrom.

Angelini, Peter (Oak Ridge, TN); Caputo, Anthony J. (Knoxville, TN); Hutchens, Richard E. (Knoxville, TN); Lackey, Walter J. (Oak Ridge, TN); Stinton, David P. (Knoxville, TN)

1984-01-01T23:59:59.000Z

132

Water borne transport of high level nuclear waste in very deep borehole disposal of high level nuclear waste  

E-Print Network (OSTI)

The purpose of this report is to examine the feasibility of the very deep borehole experiment and to determine if it is a reasonable method of storing high level nuclear waste for an extended period of time. The objective ...

Cabeche, Dion Tunick

2011-01-01T23:59:59.000Z

133

Microbial Effects on Nuclear Waste Packaging Materials  

DOE Green Energy (OSTI)

Microorganisms may enhance corrosion of components of planned engineered barriers within the proposed nuclear waste repository at Yucca Mountain (YM). Corrosion could occur either directly, through processes collectively known as Microbiologically Influenced Corrosion (MIC), or indirectly, by adversely affecting the composition of water or brines that come into direct contact with engineered barrier surfaces. Microorganisms of potential concern (bacteria, archea, and fungi) include both those indigenous to Yucca Mountain and those that infiltrate during repository construction and after waste emplacement. Specific aims of the experimental program to evaluate the potential of microorganisms to affect damage to engineered barrier materials include the following: Indirect Effects--(1) Determine the limiting factors to microbial growth and activity presently in the YM environment. (2) Assess these limiting factors to aid in determining the conditions and time during repository evolution when MIC might become operant. (3) Evaluate present bacterial densities, the composition of the YM microbial community, and determining bacterial densities if limiting factors are overcome. During a major portion of the regulatory period, environmental conditions that are presently extant become reestablished. Therefore, these studies ascertain whether biomass is sufficient to cause MIC during this period and provide a baseline for determining the types of bacterial activities that may be expected. (4) Assess biogenic environmental effects, including pH, alterations to nitrate concentration in groundwater, the generation of organic acids, and metal dissolution. These factors have been shown to be those most relevant to corrosion of engineered barriers. Direct Effects--(1) Characterize and quantify microbiological effects on candidate containment materials. These studies were carried out in a number of different approaches, using whole YM microbiological communities, a subset of YM bacteria, and select reference organisms. Studies were carried out to determine morphological alterations to materials surfaces and using electrochemical methods to help quantify effects and modes of MIC, and to provide additional alternative means of evaluating MIC effects. They were carried out only under conservative conditions (low temperature, saturated conditions); thus, resulting conclusions may be considered an upper bound of potential biological effects on tested materials.

Horn, J; Martin, S; Carrillo, C; Lian, T

2005-07-22T23:59:59.000Z

134

Safety Analysis, Hazard and Risk Evaluations [Nuclear Waste Management  

NLE Websites -- All DOE Office Websites (Extended Search)

Safety Analysis, Hazard Safety Analysis, Hazard and Risk Evaluations Nuclear Fuel Cycle and Waste Management Technologies Overview Modeling and analysis Unit Process Modeling Mass Tracking System Software Waste Form Performance Modeling Safety Analysis, Hazard and Risk Evaluations Development, Design, Operation Overview Systems and Components Development Expertise System Engineering Design Other Major Programs Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE Division on Flickr Nuclear Waste Management using Electrometallurgical Technology Safety Analysis, Hazard and Risk Evaluations Bookmark and Share NE Division personnel had a key role in the creation of the FCF Final Safety Analysis Report (FSAR), FCF Technical Safety Requirements (TSR)

135

Nuclear waste/nuclear power: their futures are linked  

SciTech Connect

This paper briefly reviews current aspects of radioactive waste disposal techniques and transportation. Addressed are high-level and low-level radioactive wastes, interim spent fuel storage and transportation. The waste options being explored by DOE are listed. Problems of public acceptance will be more difficult to overcome than technical problems. (DMC)

Skoblar, L.T.

1981-01-01T23:59:59.000Z

136

Spherical tokamak (ST) transmutation of nuclear wastes  

SciTech Connect

The concept for an ST fusion core that drives a He-cooled, actinide-bearing, molten-salt blanket of moderate power density to generate electricity is examined for the first time. The results show that the fusion core is suited for this purpose and require a level of plasma, power density, engineering, and material performances moderate in comparison with what has been considered desirable for fusion-only power plants. The low aspect ratio of ST introduces a relatively thick, diverted scrape-off layer which leads to reduced heat fluxes at the limiter and divertor tiles. The use of a demountable, water-cooled, single-turn copper center leg for the toroidal field coils enables simplifications of the fusion core configuration and improves overall practicality for future power applications. These result in much reduced size and cost of the fusion core for the transmutation power plant relative to an optimized fusion-only fusion core. Surrounded by a separate tritium-breeding zone, the molten-salt blanket concept is in principle less complex and costly than the thermal breeding blankets for fusion. These combine to effect major reductions in the cost and weight of the power core equipment for the transmutation power plant. The minimum cost of electricity for such a power plant is thus reduced from the best fusion-only counterpart by more than 30%, based on consistent but approximate modeling. The key issues, development steps, and the potential value inherent in the ST fusion core in addressing the world needs for nuclear waste energy production are discussed.

Peng, Y.-K.M.; Galambos, J.D. [Oak Ridge National Lab., TN (United States); Cheng, E.T.; Cerbone, R.J. [TSI Research, Inc., Solana Beach, CA (United States)

1995-12-31T23:59:59.000Z

137

Spherical tokamak (ST) transmutation of nuclear wastes  

SciTech Connect

The concept for an ST fusion core that drives a He-cooled, actinide-bearing, molten-salt blanket of moderate power density to generate electricity is examined for the first time. The results show that the fusion core is suited for this purpose and require a level of plasma, power density, engineering, and material performances moderate in comparison with what has been considered desirable for fusion-only power plants. The low aspect ratio of ST introduces a relatively thick, diverted scrape-off layer which leads to reduced heat fluxes at the limiter and divertor tiles. The use of a demountable, water-cooled, single-turn copper center leg for the toroidal field coils enables simplifications of the fusion core configuration and improves overall practicality for future power applications. These result in much reduced size and cost of the fusion core for the transmutation power plant relative to an optimized fusion-only fusion core. Surrounded by a separate tritium-breeding zone, the molten-salt blanket concept is in principle less complex and costly than the thermal breeding blankets for fusion. These combine to effect major reductions in the cost and weight of the power core equipment for the transmutation power plant. The minimum cost of electricity for such a power plant is thus reduced from the best fusion-only counterpart by more than 30%, based on consistent but approximate modeling. The key issues, development steps, and the potential value inherent in the ST fusion core in addressing the world needs for nuclear waste reduction and energy production are discussed.

Peng, Yueng Kay Martin [ORNL; Cheng, E.T. [TSI Research Inc.; Galambos, John D [ORNL; Cerbone, R. J. [TSI Research Inc.

1995-01-01T23:59:59.000Z

138

Expected brine movement at potential nuclear waste repository salt sites  

SciTech Connect

The BRINEMIG brine migration code predicts rates and quantities of brine migration to a waste package emplaced in a high-level nuclear waste repository in salt. The BRINEMIG code is an explicit time-marching finite-difference code that solves a mass balance equation and uses the Jenks equation to predict velocities of brine migration. Predictions were made for the seven potentially acceptable salt sites under consideration as locations for the first US high-level nuclear waste repository. Predicted total quantities of accumulated brine were on the order of 1 m/sup 3/ brine per waste package or less. Less brine accumulation is expected at domal salt sites because of the lower initial moisture contents relative to bedded salt sites. Less total accumulation of brine is predicted for spent fuel than for commercial high-level waste because of the lower temperatures generated by spent fuel. 11 refs., 36 figs., 29 tabs.

McCauley, V.S.; Raines, G.E.

1987-08-01T23:59:59.000Z

139

Commercial Spent Nuclear Fuel Waste Package Misload Analysis  

Science Conference Proceedings (OSTI)

The purpose of this calculation is to estimate the probability of misloading a commercial spent nuclear fuel waste package with a fuel assembly(s) that has a reactivity (i.e., enrichment and/or burnup) outside the waste package design. The waste package designs are based on the expected commercial spent nuclear fuel assemblies and previous analyses (Macheret, P. 2001, Section 4.1 and Table 1). For this calculation, a misloaded waste package is defined as a waste package that has a fuel assembly(s) loaded into it with an enrichment and/or burnup outside the waste package design. An example of this type of misload is a fuel assembly designated for the 21-PWR Control Rod waste package being incorrectly loaded into a 21-PWR Absorber Plate waste package. This constitutes a misloaded 21-PWR Absorber Plate waste package, because the reactivity (i.e., enrichment and/or burnup) of a 21-PWR Control Rod waste package fuel assembly is outside the design of a 21-PWR Absorber Plate waste package. These types of misloads (i.e., fuel assembly with enrichment and/or burnup outside waste package design) are the only types that are evaluated in this calculation. This calculation utilizes information from ''Frequency of SNF Misload for Uncanistered Fuel Waste Package'' (CRWMS M&O 1998) as the starting point. The scope of this calculation is limited to the information available. The information is based on the whole population of fuel assemblies and the whole population of waste packages, because there is no information about the arrival of the waste stream at this time. The scope of this calculation deviates from that specified in ''Technical Work Plan for: Risk and Criticality Department'' (BSC 2002a, Section 2.1.30) in that only waste package misload is evaluated. The remaining issues identified (i.e., flooding and geometry reconfiguration) will be addressed elsewhere. The intended use of the calculation is to provide information and inputs to the Preclosure Safety Analysis Department. Before using the results of this calculation, the reader is cautioned to verify that the assumptions made in this calculation regarding the waste stream, the loading process, and the staging of the spent nuclear fuel assemblies are applicable.

A. Alsaed

2005-07-28T23:59:59.000Z

140

Energy Department and Catholic University Improve Safety of Nuclear Waste |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Catholic University Improve Safety of Nuclear Catholic University Improve Safety of Nuclear Waste Energy Department and Catholic University Improve Safety of Nuclear Waste January 30, 2013 - 12:51pm Addthis Secretary of Energy Steven Chu participates in a tour of Catholic University's Vitreous State Laboratory. | Photo courtesy of the Office of Environmental Management. Secretary of Energy Steven Chu participates in a tour of Catholic University's Vitreous State Laboratory. | Photo courtesy of the Office of Environmental Management. David Sheeley David Sheeley Editor/Writer What does this project do? Hanford treats and immobilizes significant quantities of legacy nuclear waste left from the manufacture of plutonium during World War II and the Cold War. Secretary Steven Chu recently visited Catholic University's Vitreous

Note: This page contains sample records for the topic "virginia nuclear waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

The Nuclear Waste Policy Act, as amended with appropriations acts appended  

Science Conference Proceedings (OSTI)

The Nuclear Waste Policy Act of 1982 provides for the development of repositories for the disposal of high-level radioactive waste and spent nuclear fuel, to establish a program of research, development and demonstration regarding the disposal of high-level radioactive waste and spent nuclear fuel. Titles 1 and 2 cover these subjects. Also included in this Act are: Title 3: Other provisions relating to radioactive waste; Title 4: Nuclear waste negotiation; Title 5: Nuclear waste technical review board; and Title 6: High-level radioactive waste. An appendix contains excerpts from appropriations acts from fiscal year 1984--1994.

Not Available

1994-03-01T23:59:59.000Z

142

Nuclear Waste Disposal: An Independent View of the Big Picture and a Proposal for CARD  

E-Print Network (OSTI)

1 Nuclear Waste Disposal: An Independent View of the Big Picture and a Proposal for CARD Presented to isolate nuclear waste successfully from the biosphere for the long term can be developed if our society to this impasse? In the 1940's at the beginning of the nuclear age, nuclear waste was seen as a "problem" only

California at Santa Cruz, University of

143

Nuclear Waste Imaging and Spent Fuel Verification by Muon Tomography  

E-Print Network (OSTI)

This paper explores the use of cosmic ray muons to image the contents of shielded containers and detect high-Z special nuclear materials inside them. Cosmic ray muons are a naturally occurring form of radiation, are highly penetrating and exhibit large scattering angles on high Z materials. Specifically, we investigated how radiographic and tomographic techniques can be effective for non-invasive nuclear waste characterization and for nuclear material accountancy of spent fuel inside dry storage containers. We show that the tracking of individual muons, as they enter and exit a structure, can potentially improve the accuracy and availability of data on nuclear waste and the contents of Dry Storage Containers (DSC) used for spent fuel storage at CANDU plants. This could be achieved in near real time, with the potential for unattended and remotely monitored operations. We show that the expected sensitivity, in the case of the DSC, exceeds the IAEA detection target for nuclear material accountancy.

Jonkmans, G; Jewett, C; Thompson, M

2012-01-01T23:59:59.000Z

144

Approach for enhancing nuclear materials tracking and reporting in waste  

SciTech Connect

Recent policy from the Department of Energy/Office of Safeguards and Security (DOE/OSS) has identified the need to report nuclear materials in waste in a manner that is consistent with the Department of Energy's Nuclear Materials Information System (NMIS), which uses Form 471 as its official record. NMIS is used to track nuclear material inventories while they are subject to safeguards. This requirement necessitates the reevaluation of existing business practices that are used to track and report these nuclear materials. This paper provides a methodology for applying a systems approach to the evaluation of the flow of nuclear waste materials from a generating facility through to permanent disposal. This methodology can be used to integrate existing systems and leverage data already gathered that support both the waste reporting requirements and the NMIS requirements. In order to consider an active waste reporting system that covers waste management through to final disposal, the requirements for characterization, certification, and transportation for disposal at the Waste Isolation Pilot Plant (WIPP) are used as an example. These requirements are found in the WIPP Waste Acceptance Criteria (WIPP/WAC) and associated requirement documents. This approach will prevent inconsistencies in reported data and address current and future needs. For example, spent fuel (which the U.S. intends to dispose of as high-level waste) has not been viewed as particularly attractive in terms of proliferation in comparison to materials associated with other parts of the nuclear fuel cycle. However, collecting high-level waste (or some types of defense waste) in one location where it will be left for hundreds or thousands of years presents proliferation and safeguards issues that need to be considered as part of a systems evaluation. This paper brings together information on domestic and international safeguards practices and considers the current system of documentation used by the U.S. Department of Energy for radioactive waste disposal. The information presented represents current practices, and we recognize that the practices were designed to address different goals. After providing an overview of these areas, some steps that may help develop safeguards systems for geologic repositories in the U.S. context are discussed.

Longmire, V. L. (Victoria L.); Seitz, S. L. (Sharon L.); Sinkule, B. J. (Barbara J.)

2001-06-01T23:59:59.000Z

145

National briefing summaries: Nuclear fuel cycle and waste management  

SciTech Connect

Since 1976, the International Program Support Office (IPSO) at the Pacific Northwest Laboratory (PNL) has collected and compiled publicly available information concerning foreign and international radioactive waste management programs. This National Briefing Summaries is a printout of an electronic database that has been compiled and is maintained by the IPSO staff. The database contains current information concerning the radioactive waste management programs (with supporting information on nuclear power and the nuclear fuel cycle) of most of the nations (except eastern European countries) that now have or are contemplating nuclear power, and of the multinational agencies that are active in radioactive waste management. Information in this document is included for three additional countries (China, Mexico, and USSR) compared to the prior issue. The database and this document were developed in response to needs of the US Department of Energy.

Schneider, K.J.; Bradley, D.J.; Fletcher, J.F.; Konzek, G.J.; Lakey, L.T.; Mitchell, S.J.; Molton, P.M.; Nightingale, R.E.

1991-04-01T23:59:59.000Z

146

Chemical digestion of low level nuclear solid waste material  

DOE Patents (OSTI)

A chemical digestion for treatment of low level combustible nuclear solid waste material is provided and comprises reacting the solid waste material with concentrated sulfuric acid at a temperature within the range of 230.degree.-300.degree.C and simultaneously and/or thereafter contacting the reacting mixture with concentrated nitric acid or nitrogen dioxide. In a special embodiment spent ion exchange resins are converted by this chemical digestion to noncombustible gases and a low volume noncombustible residue.

Cooley, Carl R. (Richland, WA); Lerch, Ronald E. (Richland, WA)

1976-01-01T23:59:59.000Z

147

Virginia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and regulation of public service companies. July 12, 2013 Permit by Rule for Small Renewable Energy Projects (Virginia) In 2009, the Virginia General Assembly enacted...

148

Technology Zones (Virginia)  

Energy.gov (U.S. Department of Energy (DOE))

Virginia’s 26 designated Technology Zones offer tax relief in the form of abatements, credits, deductions, deferrals, exemptions, or rebates. Local governments may designate technology zones to...

149

Nuclear waste management. Quarterly progress report, January-March, 1981  

SciTech Connect

Reports and summaries are provided for the following programs: high-level waste process development; alternative waste forms; nuclear waste materials characterization center; TRU waste immobilization; TRU waste decontamination; krypton solidification; thermal outgassing; iodine-129 fixation; NWVP off-gas analysis; monitoring and physical characterization of unsaturated zone transport; well-logging instrumentation development; verification instrument development; mobility of organic complexes of radionuclide in soils; low-level waste generation reduction handbook; waste management system studies; assessment of effectiveness of geologic isolation systems; waste/rock interactions technology program; high-level waste form preparation; development of backfill materials; development of structural engineered barriers; disposal charge analysis; analysis of spent fuel policy implementation; spent fuel and pool component integrity program; analysis of postulated criticality events in a storage array of spent LWR fuel; asphalt emulsion sealing of uranium mill tailings; liner evaluation for uranium mill tailings; multilayer barriers for sealing of uranium tailings; application of long-term chemical biobarriers for uranium tailings; and revegetation of inactive uranium tailings sites.

Chikalla, T.D.; Powell, J.A. (comp.)

1981-06-01T23:59:59.000Z

150

Materials Science of Nuclear Waste Management  

Science Conference Proceedings (OSTI)

The intent is to provide a forum for researchers from national laboratories, universities, and nuclear industry to discuss current understanding of materials ...

151

Virginia Nuclear Profile - Surry  

U.S. Energy Information Administration (EIA) Indexed Site

Surry" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

152

Process to separate transuranic elements from nuclear waste  

DOE Patents (OSTI)

A process is described for removing transuranic elements from a waste chloride electrolytic salt containing transuranic elements in addition to rare earth and other fission product elements so the salt waste may be disposed of more easily and the valuable transuranic elements may be recovered for reuse. The salt is contacted with a cadmium-uranium alloy which selectively extracts the transuranic elements from the salt. The waste salt is generated during the reprocessing of nuclear fuel associated with the Integral Fast Reactor (IFR). 2 figs.

Johnson, T.R.; Ackerman, J.P.; Tomczuk, Z.; Fischer, D.F.

1989-03-21T23:59:59.000Z

153

Process to separate transuranic elements from nuclear waste  

DOE Patents (OSTI)

A process for removing transuranic elements from a waste chloride electrolytic salt containing transuranic elements in addition to rare earth and other fission product elements so the salt waste may be disposed of more easily and the valuable transuranic elements may be recovered for reuse. The salt is contacted with a cadmium-uranium alloy which selectively extracts the transuranic elements from the salt. The waste salt is generated during the reprocessing of nuclear fuel associated with the Integral Fast Reactor (IFR). 2 figs.

Johnson, T.R.; Ackerman, J.P.; Tomczuk, Z.; Fischer, D.F.

1988-07-12T23:59:59.000Z

154

Recovery of transplutonium elements from nuclear reactor waste  

DOE Patents (OSTI)

A method of separating actinide values from nitric acid waste solutions resulting from reprocessing of irradiated nuclear fuels comprises oxalate precipitation of the major portion of actinide and lanthanide values to provide a trivalent fraction suitable for subsequent actinide/lanthanide partition, exchange of actinide and lanthanide values in the supernate onto a suitable cation exchange resin to provide an intermediate-lived raffinate waste stream substantially free of actinides, and elution of the actinide values from the exchange resin. The eluate is then used to dissolve the trivalent oxalate fraction prior to actinide/lanthanide partition or may be combined with the reprocessing waste stream and recycled.

Campbell, David O. (Oak Ridge, TN); Buxton, Samuel R. (Wartburg, TN)

1977-05-24T23:59:59.000Z

155

West Virginia Direct Loan Program (West Virginia)  

Energy.gov (U.S. Department of Energy (DOE))

The West Virginia Direct Loan Program, provides up to 45 percent in financing fixed assets through low-interest, direct loans to businesses expanding or locating in West Virginia. Proceeds from the...

156

Mesoscale to plant-scale models of nuclear waste reprocessing.  

Science Conference Proceedings (OSTI)

Imported oil exacerabates our trade deficit and funds anti-American regimes. Nuclear Energy (NE) is a demonstrated technology with high efficiency. NE's two biggest political detriments are possible accidents and nuclear waste disposal. For NE policy, proliferation is the biggest obstacle. Nuclear waste can be reduced through reprocessing, where fuel rods are separated into various streams, some of which can be reused in reactors. Current process developed in the 1950s is dirty and expensive, U/Pu separation is the most critical. Fuel rods are sheared and dissolved in acid to extract fissile material in a centrifugal contactor. Plants have many contacts in series with other separations. We have taken a science and simulation-based approach to develop a modern reprocessing plant. Models of reprocessing plants are needed to support nuclear materials accountancy, nonproliferation, plant design, and plant scale-up.

Noble, David Frederick; O'Hern, Timothy John; Moffat, Harry K.; Nemer, Martin B.; Domino, Stefan Paul; Rao, Rekha Ranjana; Cipiti, Benjamin B.; Brotherton, Christopher M.; Jove-Colon, Carlos F.; Pawlowski, Roger Patrick

2010-09-01T23:59:59.000Z

157

Salt disposal of heat-generating nuclear waste.  

SciTech Connect

This report summarizes the state of salt repository science, reviews many of the technical issues pertaining to disposal of heat-generating nuclear waste in salt, and proposes several avenues for future science-based activities to further the technical basis for disposal in salt. There are extensive salt formations in the forty-eight contiguous states, and many of them may be worthy of consideration for nuclear waste disposal. The United States has extensive experience in salt repository sciences, including an operating facility for disposal of transuranic wastes. The scientific background for salt disposal including laboratory and field tests at ambient and elevated temperature, principles of salt behavior, potential for fracture damage and its mitigation, seal systems, chemical conditions, advanced modeling capabilities and near-future developments, performance assessment processes, and international collaboration are all discussed. The discussion of salt disposal issues is brought current, including a summary of recent international workshops dedicated to high-level waste disposal in salt. Lessons learned from Sandia National Laboratories' experience on the Waste Isolation Pilot Plant and the Yucca Mountain Project as well as related salt experience with the Strategic Petroleum Reserve are applied in this assessment. Disposal of heat-generating nuclear waste in a suitable salt formation is attractive because the material is essentially impermeable, self-sealing, and thermally conductive. Conditions are chemically beneficial, and a significant experience base exists in understanding this environment. Within the period of institutional control, overburden pressure will seal fractures and provide a repository setting that limits radionuclide movement. A salt repository could potentially achieve total containment, with no releases to the environment in undisturbed scenarios for as long as the region is geologically stable. Much of the experience gained from United States repository development, such as seal system design, coupled process simulation, and application of performance assessment methodology, helps define a clear strategy for a heat-generating nuclear waste repository in salt.

Leigh, Christi D. (Sandia National Laboratories, Carlsbad, NM); Hansen, Francis D.

2011-01-01T23:59:59.000Z

158

Working Group Report on - Space Nuclear Power Systems and Nuclear Waste  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Working Group Report on - Space Nuclear Power Systems and Nuclear Working Group Report on - Space Nuclear Power Systems and Nuclear Waste Technology R&D Working Group Report on - Space Nuclear Power Systems and Nuclear Waste Technology R&D "Even though one cannot anticipate the answers in basic research, the return on the public's investment can be maximized through long-range planning of the most promising avenues to explore and the resources needed to explore them." (p. v) "Pursuit of this goal entails developing new technologies and advanced facilities, educating young scientists, training a technical workforce, and contributing to the broader science and technology enterprise?." (p. vi) Ref:: "Nuclear Science: A Long Range Plan", DOE/NSF, Feb. 1996. The purpose of this effort is to develop the first iteration of a

159

Working Group Report on - Space Nuclear Power Systems and Nuclear Waste  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Working Group Report on - Space Nuclear Power Systems and Nuclear Working Group Report on - Space Nuclear Power Systems and Nuclear Waste Technology R&D Working Group Report on - Space Nuclear Power Systems and Nuclear Waste Technology R&D "Even though one cannot anticipate the answers in basic research, the return on the public's investment can be maximized through long-range planning of the most promising avenues to explore and the resources needed to explore them." (p. v) "Pursuit of this goal entails developing new technologies and advanced facilities, educating young scientists, training a technical workforce, and contributing to the broader science and technology enterprise?." (p. vi) Ref:: "Nuclear Science: A Long Range Plan", DOE/NSF, Feb. 1996. The purpose of this effort is to develop the first iteration of a

160

Risk analysis and solving the nuclear waste siting problem  

SciTech Connect

In spite of millions of dollars and countless human resources being expended on finding nuclear wastes sites, the search has proved extremely difficult for the nuclear industry. This may be due to the approach followed, rather than inadequacies in research or funding. A new approach to the problem, the reverse Dutch auction, is suggested. It retains some of the useful elements of the present system, but it also adds new ones.

Inhaber, H.

1993-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "virginia nuclear waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Idaho Site Taps Old World Process to Treat Nuclear Waste | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho Site Taps Old World Process to Treat Nuclear Waste Idaho Site Taps Old World Process to Treat Nuclear Waste September 9, 2013 - 12:00pm Addthis The Idaho site's sodium...

162

UNITED STATES NUCLEAR WASTE TECHNICAL REVIEW BOARD  

E-Print Network (OSTI)

waste management program in addition to the site-characterization efforts at Yucca Mountain Upwelling at Yucca Mountain The Board completed its review of material (11 re- ports) first submitted that there is evidence of ongoing, intermittent hydrothermal upwelling at Yucca Mountain and that large earth- quake

163

GEOHYDROLOGICAL STUDIES FOR NUCLEAR WASTE ISOLATION AT THE HANFORD RESERVATION -- Vol. I: Executive Summary; Vol. II: Final Report  

E-Print Network (OSTI)

NUCLEAR WASTE ISOLATION AT THE HANFORD RESERVATION Volume I:of Washington state." Rockwell Hanford Operations Topicalmodel evaluation at the Hanford nuclear waste facility."

Apps, J.

2010-01-01T23:59:59.000Z

164

Multiple-code simulation study of the long-term EDZ evolution of geological nuclear waste repositories  

E-Print Network (OSTI)

SKB TR-06-09. Swedish Nuclear Fuel and Waste Management Co,and tunnel boring. Swedish Nuclear Fuel and Waste Management

Rutqvist, J.

2008-01-01T23:59:59.000Z

165

Monitoring the Durability Performance of Concrete in Nuclear Waste Containment. Second technical progress report  

Science Conference Proceedings (OSTI)

OAK-B135 Monitoring the Durability Performance of Concrete in Nuclear Waste Containment. Second technical progress report

Ulm, Franz-Josef

1999-12-31T23:59:59.000Z

166

Locations of Spent Nuclear Fuel and High-Level Radioactive Waste  

Energy.gov (U.S. Department of Energy (DOE))

Map of the United States of America showing the locations of spent nuclear fuel and high-level radioactive waste.

167

Communication Between U.S. Nuclear Waste Technical Review Board  

E-Print Network (OSTI)

Moving Beyond the Yucca Mountain Viability Assessment U.S. Nuclear Waste Technical Review Board the Yucca Mountain site in Nevada as the sole location to be studied for possi- ble development of the Yucca Mountain site. The U.S. Department of Energy (DOE) recently published Viability As- sessment

168

U.S. NUCLEAR WASTE TECHNICAL REVIEW BOARD  

E-Print Network (OSTI)

FOR YUCCA MOUNTAIN, NEVADA CAPT Raymond L. Clark, U.S. Public Health Service Team Leader for the Yucca disposal system in Yucca Mountain, Nevada. These standards are found in Part 197 of Title 40 of the Code for the potential spent nuclear fuel and high-level radioactive waste disposal system in Yucca Mountain, Nevada

169

An Underwater Robotic Network for Monitoring Nuclear Waste Storage Pools  

E-Print Network (OSTI)

An Underwater Robotic Network for Monitoring Nuclear Waste Storage Pools Sarfraz Nawaz1 , Muzammil must be stored for around 60 years in underwater storage pools before permanent disposal. These underwater storage environments must be carefully monitored and controlled to avoid an environmental

Jeavons, Peter

170

Backfill composition for secondary barriers in nuclear waste repositories  

DOE Patents (OSTI)

A backfill composition for sorbing and retaining hazardous elements of nuclear wastes comprises 50 to 70% by weight of quartz, 10 to 30% by weight of montmorillonite, 1 to 10% by weight of phosphate mineral, 1 to 10% by weight of ferrous mineral, 1 to 10% by weight of sulfate mineral and 1 to 10% by weight of attapulgite.

Beall, G.W.; Allard, B.M.

1980-05-30T23:59:59.000Z

171

Mass Tracking System Software [Nuclear Waste Management using  

NLE Websites -- All DOE Office Websites (Extended Search)

Mass Tracking System Mass Tracking System Software Nuclear Fuel Cycle and Waste Management Technologies Overview Modeling and analysis Unit Process Modeling Mass Tracking System Software Waste Form Performance Modeling Safety Analysis, Hazard and Risk Evaluations Development, Design, Operation Overview Systems and Components Development Expertise System Engineering Design Other Major Programs Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE Division on Flickr Nuclear Waste Management using Electrometallurgical Technology Mass Tracking System Software Bookmark and Share The NE Division has developed a computer-based Mass Tracking (MTG) system, which is used at the Idaho National Laboratory Fuel Conditioning Facility (FCF) to maintain a real-time accounting of the inventory of containers and

172

Waste management plan for Hanford spent nuclear fuel characterization activities  

SciTech Connect

A joint project was initiated between Westinghouse Hanford Company (WHC) and Pacific Northwest Laboratory (PNL) to address critical issues associated with the Spent Nuclear Fuel (SNF) stored at the Hanford Site. Recently, particular attention has been given to remediation of the SNF stored in the K Basins. A waste management plan (WMP) acceptable to both parties is required prior to the movement of selected material to the PNL facilities for examination. N Reactor and Single Pass Reactor (SPR) fuel has been stored for an extended period of time in the N Reactor, PUREX, K-East, and K-West Basins. Characterization plans call for transport of fuel material form the K Basins to the 327 Building Postirradiation Testing Laboratory (PTL) in the 300 Area for examination. However, PNL received a directive stating that no examination work will be started in PNL hot cell laboratories without an approved disposal route for all waste generated related to the activity. Thus, as part of the Characterization Program Management Plan for Hanford Spent Nuclear Fuel, a waste management plan which will ensure that wastes generated as a result of characterization activities conducted at PNL will be accepted by WHC for disposition is required. This document contains the details of the waste handling plan that utilizes, to the greatest extent possible, established waste handling and disposal practices at Hanford between PNL and WHC. Standard practices are sufficient to provides for disposal of most of the waste materials, however, special consideration must be given to the remnants of spent nuclear fuel elements following examination. Fuel element remnants will be repackaged in an acceptable container such as the single element canister and returned to the K Basins for storage.

Chastain, S.A. [Westinghouse Hanford Co., Richland, WA (United States); Spinks, R.L. [Pacific Northwest Lab., Richland, WA (United States)

1994-10-17T23:59:59.000Z

173

Existing nuclear sites can be used for new powerplants and nuclear waste storage  

SciTech Connect

Locating future nuclear powerplants at existing sites offers important advantages which warrant consideration by the Nuclear Regulatory Commission. The number of locations committed to long-term restricted use and periodic surveillance and maintenance could be limited. The burden of long-term care and final disposition of retired nuclear powerplants could be eased. Overall environmental impacts from the construction and operation of the powerplants could be reduced. Time and money in completing licensing proceedings could be saved. GAO also found that low-level wastes can be stored at nuclear powerplant sites, but such storage only postpones the inevitable need for disposal. Finally, permanent waste disposal at powerplant sites should only be permitted when sites conform to the national low-level waste disposal plan being prepared by the Department of Energy.

Staats, E.B.

1980-04-01T23:59:59.000Z

174

Requirements Governing Water Quality Standards (West Virginia) | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Requirements Governing Water Quality Standards (West Virginia) Requirements Governing Water Quality Standards (West Virginia) Requirements Governing Water Quality Standards (West Virginia) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State West Virginia Program Type Siting and Permitting This rule establishes the requirements governing the discharge or deposit of sewage, industrial wastes and other wastes into waters and establishes water quality standards.

175

Melting of foaming batches: Nuclear waste glass  

Science Conference Proceedings (OSTI)

A simple model is presented for the rate of melting of a batch blanket in an electric glassmelting furnace. The melting process is assumed to be jointly controlled by the heat transfer from the pool of molten glass and the batch-to-glass conversion kinetics. Factors affecting the melting rate in the conversion-controlled regime are discussed. Attention is paid to gas evolution from redox reactions in waste glass batches and component accumulation within the blanket. It is suggested that the high rate of the blanket-free melting in a mechanically agitated furnace is made possible by increasing the rate of melt surface renewal. 27 refs.

Hrma, P.

1990-10-01T23:59:59.000Z

176

Case histories of EA documents for nuclear waste  

SciTech Connect

Nuclear power programs and policies in the United States have been subject to environmental assessment under the National Environmental Policy Act (NEPA) since 1971. NEPA documentation prepared for programmatic policy decision-making within the nuclear fuel cycle and concurrent federal policy are examined as they relate to radioactive waste management in this paper. Key programmatic environmental impact statements that address radioactive waste management include: the Atomic Energy Commission document on management of commercial high-level and transuranium-contaminated radioactive waste, which focussed on development of engineered retrievable surface storage facilities (RSSF); the Nuclear Regulatory Commission (NRC) document on use of recycled plutonium in mixed oxide fuel in light water cooled reactors, which focussed on plutonium recycle and RSSF; the NRC statement on handling of spent light water power reactor fuel, which focussed on spent fuel storage; and the Department of Energy (DOE) statement on management of commercially generated radioactive wastes, which focussed on development of deep geologic repositories. DOE is currently pursuing the deep geologic repository option, with monitored retrievable storage as a secondary option.

Vocke, R.W.

1985-01-01T23:59:59.000Z

177

Graphite matrix materials for nuclear waste isolation  

SciTech Connect

At low temperatures, graphites are chemically inert to all but the strongest oxidizing agents. The raw materials from which artificial graphites are produced are plentiful and inexpensive. Morover, the physical properties of artificial graphites can be varied over a very wide range by the choice of raw materials and manufacturing processes. Manufacturing processes are reviewed herein, with primary emphasis on those processes which might be used to produce a graphite matrix for the waste forms. The approach, recommended herein, involves the low-temperature compaction of a finely ground powder produced from graphitized petroleum coke. The resultant compacts should have fairly good strength, low permeability to both liquids and gases, and anisotropic physical properties. In particular, the anisotropy of the thermal expansion coefficients and the thermal conductivity should be advantageous for this application. With two possible exceptions, the graphite matrix appears to be superior to the metal alloy matrices which have been recommended in prior studies. The two possible exceptions are the requirements on strength and permeability; both requirements will be strongly influenced by the containment design, including the choice of materials and the waste form, of the multibarrier package. Various methods for increasing the strength, and for decreasing the permeability of the matrix, are reviewed and discussed in the sections in Incorporation of Other Materials and Elimination of Porosity. However, it would be premature to recommend a particular process until the overall multi-barrier design is better defined. It is recommended that increased emphasis be placed on further development of the low-temperature compacted graphite matrix concept.

Morgan, W.C.

1981-06-01T23:59:59.000Z

178

Virginia State Regulations  

NLE Websites -- All DOE Office Websites (Extended Search)

Virginia Virginia State Regulations: Virginia State of Virginia The Division of Gas and Oil in the Virginia Department of Mines, Minerals and Energy (DMME) regulates the effects of gas and oil operations both on and below the surface. The Virginia Gas and Oil Board is to foster, encourage, and promote the safe and efficient exploration for and development, production, and utilization of gas and oil resources. Otherwise, three regulatory citizen boards are responsible for adopting Virginia 's environmental regulations. The Virginia Department of Environmental Quality (DEQ) staff administers the regulations as approved by the boards. Finally, the U.S. Environmental Protection Agency (EPA) Region 3, through its Water Protection Division, administers Class II underground injection control (UIC) programs in Virginia in direct implementation.

179

The U.S. Nuclear Waste Technical Review Board Status Update  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NWTRB NWTRB www.nwtrb.gov U.S. Nuclear Waste Technical Review Board The U S Nuclear Waste Technical Review Board The U.S. Nuclear Waste Technical Review Board Status Update Presented to: National Transportation Stakeholders Forum Presented By: National Transportation Stakeholders Forum Mark Abkowitz May 11, 2011 The Board's Statutory Mandate * The 1987 amendments to the Nuclear Waste Policy Act (NWPA) established the U S Nuclear Waste Technical Review Board established the U.S. Nuclear Waste Technical Review Board. * The Board evaluates the technical and scientific validity of DOE activities related to: - transportation, packaging and storage of spent nuclear fuel (SNF) and high-level radioactive waste (HLW) - site characterization, design, development, and operations of facilities for

180

Control of Nepheline Crystallization in Nuclear Waste Glass  

SciTech Connect

Glass frits with a high B{sub 2}O{sub 3} concentration have been designed which, when combined with high-alumina concentration nuclear waste streams, will form glasses with durabilities that are acceptable for repository disposal and predictable using a free energy of hydration model. Two glasses with nepheline discriminator values closest to 0.62 showed significant differences in normalized boron release between the quenched and heat treated versions of each glass. X-ray diffraction confirmed that nepheline crystallized in the glass with the lowest nepheline discriminator value, and nepheline may also exist in the second glass as small nanocrystals. The high-B{sub 2}O{sub 3} frit was successful in producing simulated waste glasses with no detectable nepheline crystallization at waste loadings of up to 45 wt%. The melt rate of this frit was also considerably better than other frits with increased concentrations of Na{sub 2}O.

Fox, Kevin

2008-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "virginia nuclear waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Transmutation of nuclear waste in accelerator-driven systems  

E-Print Network (OSTI)

Today more than ever energy is not only a cornerstone of human development, but also a key to the environmental sustainability of economic activity. In this context, the role of nuclear power may be emphasized in the years to come. Nevertheless, the problems of nuclear waste, safety and proliferation still remain to be solved. It is believed that the use of accelerator-driven systems (ADSs) for nuclear waste transmutation and energy production would address these problems in a simple, clean and economically viable, and therefore sustainable, manner. This thesis covers the major nuclear physics aspects of ADSs, in particular the spallation process and the core neutronics specific to this type of systems. The need for accurate nuclear data is described, together with a detailed analysis of the specific isotopes and energy ranges in which this data needs to be improved and the impact of their uncertainty. Preliminary experimental results for some of these isotopes, produced by the Neutron Time-of-Flight (n_TOF) ...

Herrera-Martínez, A

2004-01-01T23:59:59.000Z

182

Alcohol-free alkoxide process for containing nuclear waste  

DOE Patents (OSTI)

Disclosed is a method of containing nuclear waste. A composition is first prepared of about 25 to about 80%, calculated as SiO.sub.2, of a partially hydrolyzed silicon compound, up to about 30%, calculated as metal oxide, of a partially hydrolyzed aluminum or calcium compound, about 5 to about 20%, calculated as metal oxide, of a partially hydrolyzed boron or calcium compound, about 3 to about 25%, calculated as metal oxide, of a partially hydrolyzed sodium, potassium or lithium compound, an alcohol in a weight ratio to hydrolyzed alkoxide of about 1.5 to about 3% and sufficient water to remove at least 99% of the alcohol as an azeotrope. The azeotrope is boiled off and up to about 40%, based on solids in the product, of the nuclear waste, is mixed into the composition. The mixture is evaporated to about 25 to about 45% solids and is melted and cooled.

Pope, James M. (Monroeville, PA); Lahoda, Edward J. (Edgewood, PA)

1984-01-01T23:59:59.000Z

183

USED NUCLEAR MATERIALS AT SAVANNAH RIVER SITE: ASSET OR WASTE?  

SciTech Connect

The nuclear industry, both in the commercial and the government sectors, has generated large quantities of material that span the spectrum of usefulness, from highly valuable (“assets”) to worthless (“wastes”). In many cases, the decision parameters are clear. Transuranic waste and high level waste, for example, have no value, and is either in a final disposition path today, or – in the case of high level waste – awaiting a policy decision about final disposition. Other materials, though discardable, have intrinsic scientific or market value that may be hidden by the complexity, hazard, or cost of recovery. An informed decision process should acknowledge the asset value, or lack of value, of the complete inventory of materials, and the structure necessary to implement the range of possible options. It is important that informed decisions are made about the asset value for the variety of nuclear materials available. For example, there is a significant quantity of spent fuel available for recycle (an estimated $4 billion value in the Savannah River Site’s (SRS) L area alone); in fact, SRS has already blended down more than 300 metric tons of uranium for commercial reactor use. Over 34 metric tons of surplus plutonium is also on a path to be used as commercial fuel. There are other radiological materials that are routinely handled at the site in large quantities that should be viewed as strategically important and / or commercially viable. In some cases, these materials are irreplaceable domestically, and failure to consider their recovery could jeopardize our technological leadership or national defense. The inventories of nuclear materials at SRS that have been characterized as “waste” include isotopes of plutonium, uranium, americium, and helium. Although planning has been performed to establish the technical and regulatory bases for their discard and disposal, recovery of these materials is both economically attractive and in the national interest.

Magoulas, V.

2013-06-03T23:59:59.000Z

184

West Virginia Venture Capital (West Virginia)  

Energy.gov (U.S. Department of Energy (DOE))

The West Virginia Venture Capital provides investment funds to eligible businesses stimulating economic growth and providing or retaining jobs within the state through qualified venture capital...

185

Method of determining a content of a nuclear waste container  

DOE Patents (OSTI)

A method and apparatus are provided for identifying contents of a nuclear waste container. The method includes the steps of forming an image of the contents of the container using digital radiography, visually comparing contents of the image with expected contents of the container and performing computer tomography on the container when the visual inspection reveals an inconsistency between the contents of the image and the expected contents of the container.

Bernardi, Richard T. (Prospect Heights, IL); Entwistle, David (Buffalo Grove, IL)

2003-04-22T23:59:59.000Z

186

Potential applications of nanostructured materials in nuclear waste management.  

Science Conference Proceedings (OSTI)

This report summarizes the results obtained from a Laboratory Directed Research & Development (LDRD) project entitled 'Investigation of Potential Applications of Self-Assembled Nanostructured Materials in Nuclear Waste Management'. The objectives of this project are to (1) provide a mechanistic understanding of the control of nanometer-scale structures on the ion sorption capability of materials and (2) develop appropriate engineering approaches to improving material properties based on such an understanding.

Braterman, Paul S. (The University of North Texas, Denton, TX); Phol, Phillip Isabio; Xu, Zhi-Ping (The University of North Texas, Denton, TX); Brinker, C. Jeffrey; Yang, Yi (University of New Mexico, Albuquerque, NM); Bryan, Charles R.; Yu, Kui; Xu, Huifang (University of New Mexico, Albuquerque, NM); Wang, Yifeng; Gao, Huizhen

2003-09-01T23:59:59.000Z

187

Tank waste remediation system nuclear criticality safety program management review  

SciTech Connect

This document provides the results of an internal management review of the Tank Waste Remediation System (TWRS) criticality safety program, performed in advance of the DOE/RL assessment for closure of the TWRS Nuclear Criticality Safety Issue, March 1994. Resolution of the safety issue was identified as Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-40-12, due September 1999.

BRADY RAAP, M.C.

1999-06-24T23:59:59.000Z

188

Consideration of nuclear criticality when disposing of transuranic waste at the Waste Isolation Pilot Plant  

Science Conference Proceedings (OSTI)

Based on general arguments presented in this report, nuclear criticality was eliminated from performance assessment calculations for the Waste Isolation Pilot Plant (WIPP), a repository for waste contaminated with transuranic (TRU) radioisotopes, located in southeastern New Mexico. At the WIPP, the probability of criticality within the repository is low because mechanisms to concentrate the fissile radioisotopes dispersed throughout the waste are absent. In addition, following an inadvertent human intrusion into the repository (an event that must be considered because of safety regulations), the probability of nuclear criticality away from the repository is low because (1) the amount of fissile mass transported over 10,000 yr is predicted to be small, (2) often there are insufficient spaces in the advective pore space (e.g., macroscopic fractures) to provide sufficient thickness for precipitation of fissile material, and (3) there is no credible mechanism to counteract the natural tendency of the material to disperse during transport and instead concentrate fissile material in a small enough volume for it to form a critical concentration. Furthermore, before a criticality would have the potential to affect human health after closure of the repository--assuming that a criticality could occur--it would have to either (1) degrade the ability of the disposal system to contain nuclear waste or (2) produce significantly more radioisotopes than originally present. Neither of these situations can occur at the WIPP; thus, the consequences of a criticality are also low.

RECHARD,ROBERT P.; SANCHEZ,LAWRENCE C.; STOCKMAN,CHRISTINE T.; TRELLUE,HOLLY R.

2000-04-01T23:59:59.000Z

189

Review of Concrete Biodeterioration in Relation to Buried Nuclear Waste  

Science Conference Proceedings (OSTI)

Long-term storage of low level radioactive material in below ground concrete disposal units (DUs) (Saltstone Disposal Facility) is a means of depositing wastes generated from nuclear operations of the U.S. Department of Energy. Based on the currently modeled degradation mechanisms, possible microbial induced effects on the structural integrity of buried low level wastes must be addressed. Previous international efforts related to microbial impacts on concrete structures that house low level radioactive waste showed that microbial activity can play a significant role in the process of concrete degradation and ultimately structural deterioration. This literature review examines the recent research in this field and is focused on specific parameters that are applicable to modeling and prediction of the fate of concrete vaults housing stored wastes and the wastes themselves. Rates of concrete biodegradation vary with the environmental conditions, illustrating a need to understand the bioavailability of key compounds involved in microbial activity. Specific parameters require pH and osmotic pressure to be within a certain range to allow for microbial growth as well as the availability and abundance of energy sources like components involved in sulfur, iron and nitrogen oxidation. Carbon flow and availability are also factors to consider in predicting concrete biodegradation. The results of this review suggest that microbial activity in Saltstone, (grouted low level radioactive waste) is unlikely due to very high pH and osmotic pressure. Biodegradation of the concrete vaults housing the radioactive waste however, is a possibility. The rate and degree of concrete biodegradation is dependent on numerous physical, chemical and biological parameters. Results from this review point to parameters to focus on for modeling activities and also, possible options for mitigation that would minimize concrete biodegradation. In addition, key chemical components that drive microbial activity on concrete surfaces are discussed.

Turick, C; Berry, C.

2012-10-15T23:59:59.000Z

190

HEAT TRANSFER ANALYSIS FOR NUCLEAR WASTE SOLIDIFICATION CONTAINER  

SciTech Connect

The Nuclear Nonproliferation Programs Design Authority is in the design stage of the Waste Solidification Building (WSB) for the treatment and solidification of the radioactive liquid waste streams generated by the Pit Disassembly and Conversion Facility (PDCF) and Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF). The waste streams will be mixed with a cementitious dry mix in a 55-gallon waste container. Savannah River National Laboratory (SRNL) has been performing the testing and evaluations to support technical decisions for the WSB. Engineering Modeling & Simulation Group was requested to evaluate the thermal performance of the 55-gallon drum containing hydration heat source associated with the current baseline cement waste form. A transient axi-symmetric heat transfer model for the drum partially filled with waste form cement has been developed and heat transfer calculations performed for the baseline design configurations. For this case, 65 percent of the drum volume was assumed to be filled with the waste form, which has transient hydration heat source, as one of the baseline conditions. A series of modeling calculations has been performed using a computational heat transfer approach. The baseline modeling results show that the time to reach the maximum temperature of the 65 percent filled drum is about 32 hours when a 43 C initial cement temperature is assumed to be cooled by natural convection with 27 C external air. In addition, the results computed by the present model were compared with analytical solutions. The modeling results will be benchmarked against the prototypic test results. The verified model will be used for the evaluation of the thermal performance for the WSB drum. Detailed results and the cases considered in the calculations will be discussed here.

Lee, S.

2009-06-01T23:59:59.000Z

191

Nuclear waste repository transparency technology test bed demonstrations at WIPP  

SciTech Connect

Secretary of Energy, Bill Richardson, has stated that one of the nuclear waste legacy issues is ``The challenge of managing the fuel cycle's back end and assuring the safe use of nuclear power.'' Waste management (i.e., the back end) is a domestic and international issue that must be addressed. A key tool in gaining acceptance of nuclear waste repository technologies is transparency. Transparency provides information to outside parties for independent assessment of safety, security, and legitimate use of materials. Transparency is a combination of technologies and processes that apply to all elements of the development, operation, and closure of a repository system. A test bed for nuclear repository transparency technologies has been proposed to develop a broad-based set of concepts and strategies for transparency monitoring of nuclear materials at the back end of the fuel/weapons cycle. WIPP is the world's first complete geologic repository system for nuclear materials at the back end of the cycle. While it is understood that WIPP does not currently require this type of transparency, this repository has been proposed as realistic demonstration site to generate and test ideas, methods, and technologies about what transparency may entail at the back end of the nuclear materials cycle, and which could be applicable to other international repository developments. An integrated set of transparency demonstrations was developed and deployed during the summer, and fall of 1999 as a proof-of-concept of the repository transparency technology concept. These demonstrations also provided valuable experience and insight into the implementation of future transparency technology development and application. These demonstrations included: Container Monitoring Rocky Flats to WIPP; Underground Container Monitoring; Real-Time Radiation and Environmental Monitoring; Integrated level of confidence in the system and information provided. As the world's only operating deep geologic repository, the Waste Isolation Pilot Plant (WIPP) offers a unique opportunity to serve as an international cooperative test bed for developing and demonstrating technologies and processes in a fully operational repository system setting. To address the substantial national security implications for the US resulting from the lack of integrated, transparent management and disposition of nuclear materials at the back-end of the nuclear fuel and weapons cycles, it is proposed that WIPP be used as a test bed to develop and demonstrate technologies that will enable the transparent and proliferation-resistant geologic isolation of nuclear materials. The objectives of this initiative are to: (1) enhance public confidence in safe, secure geologic isolation of nuclear materials; (2) develop, test, and demonstrate transparency measures and technologies for the back-end of nuclear fuel cycle; and (3) foster international collaborations leading to workable, effective, globally-accepted standards for the transparent monitoring of geological repositories for nuclear materials. Test-bed activities include: development and testing of monitoring measures and technologies; international demonstration experiments; transparency workshops; visiting scientist exchanges; and educational outreach. These activities are proposed to be managed by the Department of Energy/Carlsbad Area Office (DOE/CAO) as part of The Center for Applied Repository and Underground Studies (CARUS).

BETSILL,J. DAVID; ELKINS,NED Z.; WU,CHUAN-FU; MEWHINNEY,JAMES D.; AAMODT,PAUL

2000-01-27T23:59:59.000Z

192

Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC).  

Science Conference Proceedings (OSTI)

The objective of the U.S. Department of Energy Office of Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC) is to provide an integrated suite of computational modeling and simulation (M&S) capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive-waste storage facility or disposal repository. Achieving the objective of modeling the performance of a disposal scenario requires describing processes involved in waste form degradation and radionuclide release at the subcontinuum scale, beginning with mechanistic descriptions of chemical reactions and chemical kinetics at the atomic scale, and upscaling into effective, validated constitutive models for input to high-fidelity continuum scale codes for coupled multiphysics simulations of release and transport. Verification and validation (V&V) is required throughout the system to establish evidence-based metrics for the level of confidence in M&S codes and capabilities, including at the subcontiunuum scale and the constitutive models they inform or generate. This Report outlines the nature of the V&V challenge at the subcontinuum scale, an approach to incorporate V&V concepts into subcontinuum scale modeling and simulation (M&S), and a plan to incrementally incorporate effective V&V into subcontinuum scale M&S destined for use in the NEAMS Waste IPSC work flow to meet requirements of quantitative confidence in the constitutive models informed by subcontinuum scale phenomena.

Schultz, Peter Andrew

2011-12-01T23:59:59.000Z

193

Assessment of nuclear safety and nuclear criticality potential in the Defense Waste Processing Facility  

SciTech Connect

A panel of experts in the fields of process engineering, process chemistry, and safety analysis met together on January 26, 1993, and February 19, 1993, to discuss nuclear safety and nuclear criticality potential in the Defense Waste Processing Facility (DWPF) processes. Nuclear safety issues and possibilities of nuclear criticality incidents in the DWPF were examined in depth. The discussion started at the receipt of slurry feeds: The Low Point Pump Pit Precipitate Tank (LPPPPT) and the Low Point Pump Pit Sludge Tank (LPPPST), and went into detail the whole DWPF processes. This report provides discussion of each of the areas and processes of the DWPF in terms of potential nuclear safety issues and nuclear criticality concerns.

Ha, B.C.

1993-05-10T23:59:59.000Z

194

Conceivable new recycling of nuclear waste by nuclear power companies in their plants  

E-Print Network (OSTI)

We outline the basic principles and the needed experiments for a conceivable new recycling of nuclear waste by the power plants themselves to avoid its transportation and storage to a (yet unknown) dumping area. Details are provided in an adjoining paper and in patents pending.

Ruggero Maria Santilli

1997-04-09T23:59:59.000Z

195

Idaho Site Taps Old World Process to Treat Nuclear Waste | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho Site Taps Old World Process to Treat Nuclear Waste Idaho Site Taps Old World Process to Treat Nuclear Waste Idaho Site Taps Old World Process to Treat Nuclear Waste September 9, 2013 - 12:00pm Addthis The Idaho site's sodium distillation system. The Idaho site's sodium distillation system. The top of a sodium distillation vessel, where waste enters the system. The top of a sodium distillation vessel, where waste enters the system. The Idaho site's sodium distillation system. The top of a sodium distillation vessel, where waste enters the system. IDAHO FALLS, Idaho - The EM program at the Idaho site is using an age-old process to treat transuranic (TRU) waste left over from nuclear reactor experiments. Developed in the first century and perfected by moonshiners in the 19th century, distillation will be used at the Idaho Nuclear Technology and

196

2011 SECRETARIAL DETERMINATION OF THE ADEQUACY OF THE NUCLEAR WASTE FUND  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2011 SECRETARIAL DETERMINATION OF THE ADEQUACY OF THE NUCLEAR WASTE 2011 SECRETARIAL DETERMINATION OF THE ADEQUACY OF THE NUCLEAR WASTE FUND FEE 2011 SECRETARIAL DETERMINATION OF THE ADEQUACY OF THE NUCLEAR WASTE FUND FEE As required by the Nuclear Waste Policy Act of 1982 (NWPA), DOE has completed its annual review of the adequacy of the Nuclear Waste Fund fee. Based on that review, the Office of Standard Contract Management has determined that there is no basis to propose an adjustment to the fee to Congress. The Secretary of Energy has adopted and approved this determination. As a result, the fee will remain at the amount specified in the NWPA pending the next annual review. The Secretary's determination is available here. 2011 Secretarial Fee Adequacy Determination.PDF More Documents & Publications Secretarial Determination of the Adequacy of the Nuclear Waste Fund Fee

197

2011 SECRETARIAL DETERMINATION OF THE ADEQUACY OF THE NUCLEAR WASTE FUND  

NLE Websites -- All DOE Office Websites (Extended Search)

2011 SECRETARIAL DETERMINATION OF THE ADEQUACY OF THE NUCLEAR WASTE 2011 SECRETARIAL DETERMINATION OF THE ADEQUACY OF THE NUCLEAR WASTE FUND FEE 2011 SECRETARIAL DETERMINATION OF THE ADEQUACY OF THE NUCLEAR WASTE FUND FEE As required by the Nuclear Waste Policy Act of 1982 (NWPA), DOE has completed its annual review of the adequacy of the Nuclear Waste Fund fee. Based on that review, the Office of Standard Contract Management has determined that there is no basis to propose an adjustment to the fee to Congress. The Secretary of Energy has adopted and approved this determination. As a result, the fee will remain at the amount specified in the NWPA pending the next annual review. The Secretary's determination is available here. 2011 Secretarial Fee Adequacy Determination.PDF More Documents & Publications Secretarial Determination of the Adequacy of the Nuclear Waste Fund Fee

198

WASTE TREATMENT AND DISPOSAL PROBLEMS OF THE FUTURE NUCLEAR POWER INDUSTRY  

SciTech Connect

The elements of waste treatment and disposal are assessed which are expected to become important in the development of the nuclear power industry of the future. Growth of the nuclear power economy is considered along with composition and quantities of anticipated waste. In addition, the economic implications of waste disposal are considered. It is concluded that research should be concentrated on decontaminating off-gases and on conversion of wastes to a more suitable form than liquid for storage. (J.R.D.)

Bruce, F.R.

1959-01-28T23:59:59.000Z

199

Northern Virginia Elec Coop | Open Energy Information  

Open Energy Info (EERE)

Virginia Elec Coop (Redirected from Northern Virginia Electric Cooperative) Jump to: navigation, search Name Northern Virginia Elec Coop Place Manassas, Virginia Utility Id 13640...

200

West Virginia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

April 18, 2013 April 18, 2013 LM Discusses Management of LTS&M Records The U.S. Department of Energy Office of Legacy Management's (LM) efforts to maintain long-term surveillance and maintenance (LTS&M) records were highlighted during the 2013 Waste Management Symposia held February 24 through 28, in Phoenix, Arizona. April 18, 2013 Legacy Management Business Center January 25, 2013 AVESTAR provides high-quality, hands-on, simulator-based workforce training delivered by an experienced team of power industry training professionals for West Virginia students. | Photo courtesy of the Office of Fossil Energy. National Lab Helping to Train Operators for Next Generation of Power Plants Students in West Virginia are receiving hands-on experience for careers at cleaner-burning coal-fired power plants.

Note: This page contains sample records for the topic "virginia nuclear waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

National briefing summaries: Nuclear fuel cycle and waste management  

SciTech Connect

The National Briefing Summaries is a compilation of publicly available information concerning the nuclear fuel cycle and radioactive waste management strategies and programs of 21 nations, including the United States and three international agencies that have publicized their activities in this field. It presents available highlight information with references that may be used by the reader for additional information. The information in this document is compiled primarily for use by the US Department of Energy and other US federal agencies and their contractors to provide summary information on radioactive waste management activities in other countries. This document provides an awareness to managers and technical staff of what is occurring in other countries with regard to strategies, activities, and facilities. The information may be useful in program planning to improve and benefit United States' programs through foreign information exchange. Benefits to foreign exchange may be derived through a number of exchange activities.

Schneider, K.J.; Lakey, L.T.; Silviera, D.J.

1988-12-01T23:59:59.000Z

202

Flammability Control In A Nuclear Waste Vitrification System  

SciTech Connect

The Defense Waste Processing Facility at the Savannah River Site processes high-level radioactive waste from the processing of nuclear materials that contains dissolved and precipitated metals and radionuclides. Vitrification of this waste into borosilicate glass for ultimate disposal at a geologic repository involves chemically modifying the waste to make it compatible with the glass melter system. Pretreatment steps include removal of excess aluminum by dissolution and washing, and processing with formic and nitric acids to: 1) adjust the reduction-oxidation (redox) potential in the glass melter to reduce radionuclide volatility and improve melt rate; 2) adjust feed rheology; and 3) reduce by steam stripping the amount of mercury that must be processed in the melter. Elimination of formic acid in pretreatment has been studied to eliminate the production of hydrogen in the pretreatment systems, which requires nuclear grade monitoring equipment. An alternative reductant, glycolic acid, has been studied as a substitute for formic acid. However, in the melter, the potential for greater formation of flammable gases exists with glycolic acid. Melter flammability is difficult to control because flammable mixtures can be formed during surges in offgases that both increase the amount of flammable species and decrease the temperature in the vapor space of the melter. A flammable surge can exceed the 60% of the LFL with no way to mitigate it. Therefore, careful control of the melter feed composition based on scaled melter surge testing is required. The results of engineering scale melter tests with the formic-nitric flowsheet and the use of these data in the melter flammability model are presented.

Zamecnik, John R.; Choi, Alexander S.; Johnson, Fabienne C.; Miller, Donald H.; Lambert, Daniel P.; Stone, Michael E.; Daniel, William E. Jr.

2013-07-25T23:59:59.000Z

203

Virginia Offshore Wind Development Authority (Virginia) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Virginia Offshore Wind Development Authority (Virginia) Virginia Offshore Wind Development Authority (Virginia) Virginia Offshore Wind Development Authority (Virginia) < Back Eligibility Commercial Construction Developer Industrial Installer/Contractor Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Systems Integrator Tribal Government Utility Savings Category Wind Buying & Making Electricity Program Info State Virginia Program Type Industry Recruitment/Support Provider Virginia Offshore Wind Development Authority The Virginia Offshore Wind Development Authority is a public body, established for the purposes of facilitating, coordinating, and supporting the development, either by the Authority or by other qualified entities, of the offshore wind energy industry, offshore wind energy projects, and

204

Hydrogen speciation in hydrated layers on nuclear waste glass  

DOE Green Energy (OSTI)

The hydration of an outer layer on nuclear waste glasses is known to occur during leaching, but the actual speciation of hydrogen (as water or hydroxyl groups) in these layers has not been determined. As part of the Nevada Nuclear Waste Storage Investigations Project, we have used infrared spectroscopy to determine hydrogen speciations in three nuclear waste glass compositions (SRL-131 & 165, and PNL 76-68), which were leached at 90{sup 0}C (all glasses) or hydrated in a vapor-saturated atmosphere at 202{sup 0}C (SRL-131 only). Hydroxyl groups were found in the surface layers of all the glasses. Molecular water was found in the surface of SRL-131 and PNL 76-68 glasses that had been leached for several months in deionized water, and in the vapor-hydrated sample. The water/hydroxyl ratio increases with increasing reaction time; molecular water makes up most of the hydrogen in the thick reaction layers on vapor-phase hydrated glass while only hydroxyl occurs in the least reacted samples. Using the known molar absorptivities of water and hydroxyl in silica-rich glass the vapor-phase layer contained 4.8 moles/liter of molecular water, and 0.6 moles water in the form hydroxyl. A 15 {mu}m layer on SRL-131 glass formed by leaching at 90{sup 0}C contained a total of 4.9 moles/liter of water, 2/3 of which was as hydroxyl. The unreacted bulk glass contains about 0.018 moles/liter water, all as hydroxyl. The amount of hydrogen added to the SRL-131 glass was about 70% of the original Na + Li content, not the 300% that would result from alkali=hydronium ion interdiffusion. If all the hydrogen is then assumed to be added as the result of alkali-H{sup +} interdiffusion, the molecular water observed may have formed from condensation of the original hydroxyl groups.

Aines, R.D.; Weed, H.C.; Bates, J.K.

1987-01-15T23:59:59.000Z

205

State of Nevada, Agency for Nuclear Projects/Nuclear Waste Project Office narrative report, July 1--September 30, 1991  

Science Conference Proceedings (OSTI)

The Agency for Nuclear Projects/Nuclear Waste Project Office (NWPO) is the State of Nevada agency designated by State law to monitor and oversee US Department of Energy (DOE) activities relative to the possible siting, construction, operation and closure of a high-level nuclear waste repository at Yucca Mountain and to carry out the State of Nevada`s responsibilities under the Nuclear Waste Policy Act of 1982. During the reporting period the NWPO continued to work toward the five objectives designed to implement the Agency`s oversight responsibilities. (1) Assure that the health and safety of Nevada`s citizens are adequately protected with regard to any federal high-level radioactive waste program within the State. (2) Take the responsibilities and perform the duties of the State of Nevada as described in the Nuclear Waste Policy Act of 1982 (Public Law 97-425) and the Nuclear Waste Policy Amendments Act of 1987. (3) Advise the Governor, the State Commission on Nuclear Projects and the Nevada State Legislature on matters concerning the potential disposal of high-level radioactive waste in the State. (4) Work closely and consult with affected local governments and State agencies. (5) Monitor and evaluate federal planning and activities regarding high-level radioactive waste disposal. Plan and conduct independent State studies regarding the proposed repository.

NONE

1991-12-31T23:59:59.000Z

206

Thermodynamic data management system for nuclear waste disposal performance assessment  

Science Conference Proceedings (OSTI)

Thermodynamic property values for use in assessing the performance of a nuclear waste repository are described. More emphasis is on a computerized data base management system which facilitates use of the thermodynamic data in sensitivity analysis and other studies which critically assess the performance of disposal sites. Examples are given of critical evaluation procedures; comparison of apparent equilibrium constants calculated from the data base, with other work; and of correlations useful in estimating missing values of both free energy and enthalpy of formation for aqueous species. 49 refs., 11 figs., 6 tabs.

Phillips, S.L.; Hale, F.V.; Siegel, M.D.

1988-04-01T23:59:59.000Z

207

Ultrafiltration treatment for liquid laundry wastes from nuclear power stations  

SciTech Connect

The authors conduct a comprehensive analysis of the waste constituents--radioactive and organic--of the laundry water resulting from the on-site laundering and decontamination of clothing worn in nuclear power plants. The primary isotope contaminants consist of niobium and zirconium 95, manganese 54, cobalt 60, iron 59, and cesium 134 and 137. A variety of filter and adsorbent materials used in an ultrafiltration process are comparatively tested for their effectiveness in removing not only these isotopes but also the organic contaminants in the process of recycling the water. Those materials consist of copper hexacyanoferrate, polyacrylophosphonic acid, and several metal-polymer complexes.

Kichik, V.A.; Maslova, M.N.; Svittsov, A.A.; Kuleshov, N.F.

1988-03-01T23:59:59.000Z

208

Double Diffusive Natural Convection in a Nuclear Waste Repository  

Science Conference Proceedings (OSTI)

In this study, we conduct a two-dimensional numerical analysis of double diffusive natural convection in an emplacement drift for a nuclear waste repository. In-drift heat and moisture transport is driven by combined thermal- and compositional-induced buoyancy forces. Numerical results demonstrate buoyancy-driven convective flow patterns and configurations during both repository heat-up and cool-down phases. It is also shown that boundary conditions, particularly on the drip-shield surface, have strong impacts on the in-drift convective flow and transport.

Y. Hao; J. Nitao; T.A. Buscheck; Y. Sun

2006-03-28T23:59:59.000Z

209

Liquidus Temperature Studies for High Level Nuclear Waste Glasses  

Science Conference Proceedings (OSTI)

... of Fluidized Bed Steam Reforming (FBSR) with Hanford Low Activity Wastes ... Level Waste at the Defense Waste Processing Facility through Sludge Batch 7b.

210

Long-term management of high-level radioactive waste (HLW) and spent nuclear fuel (SNF)  

Energy.gov (U.S. Department of Energy (DOE))

GC-52 provides legal advice to DOE regarding the long-term management of high-level radioactive waste (HLW) and spent nuclear fuel (SNF). SNF is nuclear fuel that has been used as fuel in a reactor...

211

An aerial radiological survey of the Babcock and Wilcox Nuclear Facilities and surrounding area, Lynchburg, Virginia. Date of survey: July 1988  

SciTech Connect

An aerial radiological survey was conducted from July 18 through July 25, 1988, over a 41-square-kilometer (16-square-mile) area surrounding the Babcock and Wilcox nuclear facilities located near Lynchburg, Virginia. The survey was conducted at a nominal altitude of 61 meters (200 feet) with line spacings of 91 meters (300 feet). A contour map of the terrestrial gamma exposure rate extrapolated to 1 meter above ground level (AGL) was prepared and overlaid on an aerial photograph. The terrestrial exposure rates varied from 8 to 12 microroentgens per hour ({mu}R/h). A search of the data for man-made radiation sources revealed the presence of three areas of high count rates in the survey area. Spectra accumulated over the main plant showed the presence of cobalt-60 ({sup 60}Co) and cesium-137 ({sup 137}Cs). A second area near the main plant indicated the presence of uranium-235 ({sup 235}U). Protactinium-234m ({sup 234m}Pa) and {sup 60}Co were detected over a building to the east of the main plant. Soil samples and pressurized ion chamber measurements were obtained at four locations within the survey boundaries in support of the aerial data.

Guss, P.P.

1993-04-01T23:59:59.000Z

212

West Virginia Loan Insurance Program (West Virginia)  

Energy.gov (U.S. Department of Energy (DOE))

The West Virginia Loan Insurance Program, provides a loan insurance program in cooperation with third party lenders to assist firms that cannot obtain conventional bank financing. Up to 80% of the...

213

Virginia Economic Development Incentive Grant (Virginia) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

a capital investment of at least 5 million or 6,500 per job (whichever is greater) and job creation thresholds ranging between 200-400 depending upon the locality. Virginia...

214

DOE Completes Annual Determination of the Adequacy of the Nuclear Waste  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Completes Annual Determination of the Adequacy of the Nuclear Completes Annual Determination of the Adequacy of the Nuclear Waste Fund Fee DOE Completes Annual Determination of the Adequacy of the Nuclear Waste Fund Fee November 2, 2010 - 7:41pm Addthis As required by the Nuclear Waste Policy Act of 1982 (NWPA), DOE has completed its annual review of the adequacy of the Nuclear Waste Fund fee. Based on that review, the Office of Standard Contract Management has determined that there is no basis to propose an adjustment to the fee to Congress. The Secretary of Energy has adopted and approved this determination. As a result, the fee will remain at the amount specified in the NWPA pending the next annual review. The Secretary's determination is available here. Addthis Related Articles GC Commits to Transparency on Nuclear Waste Fund Fee Adequacy Decisions

215

Separation of technetium from nuclear waste stream simulants. Final report  

Science Conference Proceedings (OSTI)

The author studied liquid anion exchangers, such as Aliquat-336 nitrate, various pyridinium nitrates, and related salts, so that they may be applied toward a specific process for extracting (partitioning) and recovering {sup 99}TcO{sub 4}{sup {minus}} from nuclear waste streams. Many of the waste streams are caustic and contain a variety of other ions. For this reason, the author studied waste stream simulants that are caustic and contain appropriate concentrations of selected, relevant ions. Methods of measuring the performance of the exchangers and extractant systems included contact experiments. Batch contact experiments were used to determine the forward and reverse extraction parameters as a function of temperature, contact time, phase ratio, concentration, solvent (diluent), and other physical properties. They were also used for stability and competition studies. Specifically, the author investigated the solvent extraction behavior of salts of perrhenate (ReO{sub 4}{sup {minus}}), a stable (non-radioactive) chemical surrogate for {sup 99}TcO{sub 4}{sup {minus}}. Results are discussed for alternate organic solvents; metalloporphyrins, ferrocenes, and N-cetyl pyridium nitrate as alternate extractant salts; electroactive polymers; and recovery of ReO{sub 4}{sup {minus}} and TcO{sub 4}{sup {minus}}.

Strauss, S.H. [Colorado State Univ., Fort Collins, CO (United States). Dept. of Chemistry

1995-09-11T23:59:59.000Z

216

Transmutation of Nuclear Waste and the future MYRRHA Demonstrator  

E-Print Network (OSTI)

While a considerable and world-wide growth of the nuclear share in the global energy mix is desirable for many reasons, there are also, in particular in the "old world" major objections. These are both concerns about safety, in particular in the wake of the Fukushima nuclear accident and concerns about the long-term burden that is constituted by the radiotoxic waste from the spent fuel. With regard to the second topic, the present contribution will outline the concept of Partitioning & Transmutation (P&T), as scientific and technological answer. Deployment of P&T may use dedicated "Transmuter" or "Burner" reactors, using a fast neutron spectrum. For the transmutation of waste with a large content (up to 50%) of (very long-lived) Minor Actinides, a sub-critical reactor, using an external neutron source is a most attractive solution. It is constituted by coupling a proton accelerator, a spallation target and a subcritical core. This promising new technology is named ADS, for accelerator-driven syste...

Mueller, Alex C

2012-01-01T23:59:59.000Z

217

Transmutation of Nuclear Waste and the future MYRRHA Demonstrator  

E-Print Network (OSTI)

While a considerable and world-wide growth of the nuclear share in the global energy mix is desirable for many reasons, there are also, in particular in the "old world" major objections. These are both concerns about safety, in particular in the wake of the Fukushima nuclear accident and concerns about the long-term burden that is constituted by the radiotoxic waste from the spent fuel. With regard to the second topic, the present contribution will outline the concept of Partitioning & Transmutation (P&T), as scientific and technological answer. Deployment of P&T may use dedicated "Transmuter" or "Burner" reactors, using a fast neutron spectrum. For the transmutation of waste with a large content (up to 50%) of (very long-lived) Minor Actinides, a sub-critical reactor, using an external neutron source is a most attractive solution. It is constituted by coupling a proton accelerator, a spallation target and a subcritical core. This promising new technology is named ADS, for accelerator-driven system. The present paper aims at a short introduction into the field that has been characterized by a high collaborative activity during the last decade in Europe, in order to focus, in its later part, on the MYRRHA project as the European ADS technology demonstrator.

Alex C. Mueller

2012-10-16T23:59:59.000Z

218

Disposition of nuclear waste using subcritical accelerator-driven systems  

Science Conference Proceedings (OSTI)

Spent fuel from nuclear power plants contains large quantities of Pu, other actinides, and fission products (FP). This creates challenges for permanent disposal because of the long half-lives of some isotopes and the potential for diversion of the fissile material. Two issues of concern for the US repository concept are: (1) long-term radiological risk peaking tens-of-thousands of years in the future; and (2) short-term thermal loading (decay heat) that limits capacity. An accelerator-driven neutron source can destroy actinides through fission, and can convert long-lived fission products to shorter-lived or stable isotopes. Studies over the past decade have established that accelerator transmutation of waste (ATW) can have a major beneficial impact on the nuclear waste problem. Specifically, the ATW concept the authors are evaluating: (1) destroys over 99.9% of the actinides; (2) destroys over 99.9% of the Tc and I; (3) separates Sr-90 and Cs-137; (4) separates uranium from the spent fuel; (5) produces electric power.

Venneri, F.; Li, N.; Williamson, M.; Houts, M.; Lawrence, G.

1998-12-31T23:59:59.000Z

219

Precipitation-adsorption process for the decontamination of nuclear waste supernates  

DOE Patents (OSTI)

High-level nuclear waste supernate is decontaminated of cesium by precipitation of the cesium and potassium with sodium tetraphenyl boron. Simultaneously, strontium-90 is removed from the waste supernate sorption of insoluble sodium titanate. The waste solution is then filtered to separate the solution decontaminated of cesium and strontium.

Lee, L.M.; Kilpatrick, L.L.

1982-05-19T23:59:59.000Z

220

Precipitation-adsorption process for the decontamination of nuclear waste supernates  

DOE Patents (OSTI)

High-level nuclear waste supernate is decontaminated of cesium by precipitation of the cesium and potassium with sodium tetraphenyl boron. Simultaneously, strontium-90 is removed from the waste supernate sorption of insoluble sodium titanate. The waste solution is then filtered to separate the solution decontaminated of cesium and strontium.

Lee, Lien-Mow (North Augusta, SC); Kilpatrick, Lester L. (Aiken, SC)

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "virginia nuclear waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Virginia Electric Utility Regulation Act (Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Utility Regulation Act (Virginia) Electric Utility Regulation Act (Virginia) Virginia Electric Utility Regulation Act (Virginia) < Back Eligibility Commercial Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Systems Integrator Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Virginia Program Type Safety and Operational Guidelines Provider Virginia State Corporation Commission The Virginia Electric Utility Regulation Act constitutes the main legislation in Virginia that pertains to the regulation of the state's electric utilities. The Act directs the State Corporation Commission to construct regulations for electric utilities, and contains information on

222

Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oversight Assessment of Oversight Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility Project May 2011 January 2013 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Independent Oversight Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility Project

223

Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Oversight Assessment of Oversight Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility Project May 2011 January 2013 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Independent Oversight Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility Project

224

Calcined Waste Storage at the Idaho Nuclear Technology and Engineering Center  

Science Conference Proceedings (OSTI)

This report provides a quantitative inventory and composition (chemical and radioactivity) of calcined waste stored at the Idaho Nuclear Technology and Engineering Center. From December 1963 through May 2000, liquid radioactive wastes generated by spent nuclear fuel reprocessing were converted into a solid, granular form called calcine. This report also contains a description of the calcine storage bins.

M. D. Staiger M. C. Swenson

2007-06-01T23:59:59.000Z

225

Virginia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Western Virginia Water Authority's Roanoke Regional Wastewater Treatment Plant Biogas Combined Heat and Power CX(s) Applied: B5.1 Date: 02192010 Location(s): Roanoke...

226

Clean Coal Projects (Virginia)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation directs the Virginia Air Pollution Control Board to facilitate the construction and implementation of clean coal projects by expediting the permitting process for such projects.

227

Virginia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hopewell, Virginia Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory August 25, 2010 CX-003608: Categorical Exclusion Determination...

228

Virginia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

, 2010 Photo by Kelly Shimoda Lumenhaus Shows Off Solar in Times Square Solar Decathlon gets a spotlight January 22, 2010 CX-000710: Categorical Exclusion Determination Virginia...

229

Radiation Control (Virginia)  

Energy.gov (U.S. Department of Energy (DOE))

The Department of Health is responsible for regulating radiation and radioactive materials in the Commonwealth of Virginia. Although the Department's Radiation Control Program primarily focuses on...

230

,"Virginia Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Virginia Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

231

Virginia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 1, 2008, community associations in Virginia generally may not prohibit a homeowner from installing or using a solar energy collection device on their property. A...

232

Application of rock melting to construction of storage holes for nuclear waste  

Science Conference Proceedings (OSTI)

Rock melting technology can provide in-situ glass liners in nuclear waste package emplacement holes to reduce permeability and increase borehole stability. Reduction of permeability would reduce the time and probability of groundwater contacting the waste packages. Increasing the stability of the storage boreholes would enhance the retrievability of the nuclear waste packages. The rock melting hole forming technology has already been tested in volcanic tuff similar to the geology at the proposed nuclear waste repository at Yucca Mountain, Nevada. 6 refs., 5 figs., 2 tabs.

Neudecker, J.W. Jr.

1988-12-31T23:59:59.000Z

233

Standard Guide for Preparing Waste Management Plans for Decommissioning Nuclear Facilities  

E-Print Network (OSTI)

1.1 This guide addresses the development of waste management plans for potential waste streams resulting from decommissioning activities at nuclear facilities, including identifying, categorizing, and handling the waste from generation to final disposal. 1.2 This guide is applicable to potential waste streams anticipated from decommissioning activities of nuclear facilities whose operations were governed by the Nuclear Regulatory Commission (NRC) or Agreement State license, under Department of Energy (DOE) Orders, or Department of Defense (DoD) regulations. 1.3 This guide provides a description of the key elements of waste management plans that if followed will successfully allow for the characterization, packaging, transportation, and off-site treatment or disposal, or both, of conventional, hazardous, and radioactive waste streams. 1.4 This guide does not address the on-site treatment, long term storage, or on-site disposal of these potential waste streams. 1.5 This standard does not purport to address ...

American Society for Testing and Materials. Philadelphia

2010-01-01T23:59:59.000Z

234

GC Commits to Transparency on Nuclear Waste Fund Fee Adequacy Decisions |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GC Commits to Transparency on Nuclear Waste Fund Fee Adequacy GC Commits to Transparency on Nuclear Waste Fund Fee Adequacy Decisions GC Commits to Transparency on Nuclear Waste Fund Fee Adequacy Decisions February 26, 2010 - 3:17pm Addthis Consistent with the Administration's commitment to transparency, DOE General Counsel Scott Blake Harris has decided that all future determinations as to the adequacy of the Nuclear Waste Fund fee will be made available to the public on DOE's website shortly after DOE makes a determination. The report relied upon in determining fee adequacy for 2008, the most recent year for which DOE has made a determination, is available here: (2008 Fee Adequacy Letter Report). Addthis Related Articles DOE Completes Annual Determination of the Adequacy of the Nuclear Waste Fund Fee Department of Energy Files Motion to Withdraw Yucca Mountain License

235

EXPERIMENTAL METHODS TO ESTIMATE ACCUMULATED SOLIDS IN NUCLEAR WASTE TANKS  

SciTech Connect

The Department of Energy has a large number of nuclear waste tanks. It is important to know if fissionable materials can concentrate when waste is transferred from staging tanks prior to feeding waste treatment plants. Specifically, there is a concern that large, dense particles, e.g., plutonium containing, could accumulate in poorly mixed regions of a blend tank heel for tanks that employ mixing jet pumps. At the request of the DOE Hanford Tank Operations Contractor, Washington River Protection Solutions, the Engineering Development Laboratory of the Savannah River National Laboratory performed a scouting study in a 1/22-scale model of a waste tank to investigate this concern and to develop measurement techniques that could be applied in a more extensive study at a larger scale. Simulated waste tank solids and supernatant were charged to the test tank and rotating liquid jets were used to remove most of the solids. Then the volume and shape of the residual solids and the spatial concentration profiles for the surrogate for plutonium were measured. This paper discusses the overall test results, which indicated heavy solids only accumulate during the first few transfer cycles, along with the techniques and equipment designed and employed in the test. Those techniques include: Magnetic particle separator to remove stainless steel solids, the plutonium surrogate from a flowing stream; Magnetic wand used to manually remove stainless steel solids from samples and the tank heel; Photographs were used to determine the volume and shape of the solids mounds by developing a composite of topographical areas; Laser rangefinders to determine the volume and shape of the solids mounds; Core sampler to determine the stainless steel solids distribution within the solids mounds; Computer driven positioner that placed the laser rangefinders and the core sampler over solids mounds that accumulated on the bottom of a scaled staging tank in locations where jet velocities were low. These devices and techniques were very effective to estimate the movement, location, and concentrations of the solids representing plutonium and are expected to perform well at a larger scale. The operation of the techniques and their measurement accuracies will be discussed as well as the overall results of the accumulated solids test.

Duignan, M.; Steeper, T.; Steimke, J.

2012-12-10T23:59:59.000Z

236

,"Virginia Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1: Prices" "Sourcekey","N3050VA3","N3010VA3","N3020VA3","N3035VA3","N3045VA3" "Date","Natural Gas Citygate Price in Virginia (Dollars per Thousand Cubic Feet)","Virginia Price of...

237

Resolution of the nuclear criticality safety issue for the Hanford site high-level waste tanks  

SciTech Connect

This paper describes the approach used to resolve the Nuclear Criticality Safety Issue for the Hanford Site high-level waste tanks. Although operational controls have been in place at the Hanford Site throughout its operating life to minimize the amount of fissile material discarded as waste, estimates of the total amount of plutonium that entered the waste tanks range from 500 to 1,000 kg. Nuclear criticality safety concerns were heightened in 1991 based on a review of waste analysis results and a subsequent U.S. Department of Energy 1399 review of the nuclear criticality program. Although the DOE review team concluded that there was no imminent risk of a criticality at the Hanford Site tank farms, the team also stated its concern regarding the lack of definitive knowledge of the fissile material inventory and distribution within the waste tanks and the lack of sufficient management support for the overall criticality safety program. An in-depth technical review of the nuclear criticality safety of the waste tanks was conducted to develop a defensible technical basis to ensure that waste tanks are subcritical. The review covered all relevant aspects of nuclear criticality safety including neutronics and chemical and physical phenomena of the waste form under aging waste conditions as well as during routine waste management operations. This paper provides a review of the technical basis to support the conclusion that given current plutonium inventories and operating conditions, a nuclear criticality is incredible. The DOE has been requested to close the Nuclear Criticality Safety Issue. The Defense Nuclear Facilities Safety Board is currently reviewing the technicalbasis.

Bratzel, D.R.

1997-01-07T23:59:59.000Z

238

Nuclear energy and radioactive waste disposal in the age of recycling  

Science Conference Proceedings (OSTI)

The magnitude of humanity's energy needs requires that we embrace a multitude of various energy sources and applications. For a variety of reasons, nuclear energy must be a major portion of the distribution, at least one third. The often-cited strategic hurdle to this approach is nuclear waste disposal. Present strategies concerning disposal of nuclear waste need to be changed if the world is to achieve both a sustainable energy distribution by 2040 and solve the largest environmental issue of the 21. century - global warming. It is hoped that ambitious proposals to replace fossil fuel power generation by alternatives will drop the percentage of fossil fuel use substantially, but the absolute amount of fossil fuel produced electricity must be kept at or below its present 10 trillion kW-hrs/year. Unfortunately, the rapid growth in consumption to over 30 trillion kW-hrs/year by 2040, means that 20 trillion kW-hrs/yr of non-fossil fuel generated power has to come from other sources. If half of that comes from alternative non-nuclear, non-hydroelectric sources (an increase of 3000%), then nuclear still needs to increase by a factor of four worldwide to compensate. Many of the reasons nuclear energy did not expand after 1970 in North America (proliferation, capital costs, operational risks, waste disposal, and public fear) are no longer a problem. The WIPP site in New Mexico, an example of a solution to the nuclear waste disposal issue, and also to public fear, is an operating deep geologic nuclear waste repository in the massive bedded salt of the Salado Formation. WIPP has been operating for eight years, and as of this writing, has disposed of over 50,000 m{sup 3} of transuranic waste (>100 nCi/g but <23 Curie/liter) including high activity waste. The Salado Formation is an ideal host for any type of nuclear waste, especially waste from recycled spent fuel. (authors)

Conca, James L. [New Mexico State University, CEMRC IEE, 1400 University Drive, Carlsbad New Mexico 88220 (United States); Apted, Michael [Monitor Scientific, 3900 S. Wadsworth, Denver, CO 80235 (United States)

2007-07-01T23:59:59.000Z

239

Assessment of nuclear safety and nuclear criticality potential in the Defense Waste Processing Facility. Revision 1  

SciTech Connect

The S-Area Defense Waste Processing Facility (DWPF) will initially process Batch 1 sludge in the sludge-only processing mode, with simulated non-radioactive Precipitate Hydrolysis, Aqueous (PHA) product, without the risk of nuclear criticality. The dilute concentration of fissile material in the sludge combined with excess of neutron absorbers during normal operations make criticality throughout the whole process incredible. Subsequent batches of the DWPF involving radioactive precipitate slurry and PHA will require additional analysis. Any abnormal or upset process operations, which are not considered in this report and could potentially separate fissile material, must be individually evaluated. Scheduled maintenance operation procedures are not considered to be abnormal.

Ha, B.C.

1993-07-20T23:59:59.000Z

240

Nuclear waste management. Semiannual progress report, October 1982-March 1983  

SciTech Connect

This document is one of a series of technical progress reports designed to report radioactive waste management programs at the Pacific Northwest Laboratory. Accomplishments in the following programs are reported: waste stabilization; Materials Characterization Center; waste isolation; low-level waste management; remedial action; and supporting studies.

Chikalla, T.D.; Powell, J.A. (comps.)

1983-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "virginia nuclear waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Nuclear Power 2010 Program Dominion Virginia Power Cooperative Project U.S. Department of Energy Cooperative Agreement DE-FC07-05ID14635 Construction and Operating License Demonstration Project Final Report  

Science Conference Proceedings (OSTI)

This report serves to summarize the major activities completed as part of Virginia Electric and Power Company's North Anna construction and operating license demonstration project with DOE. Project successes, lessons learned, and suggestions for improvement are discussed. Objectives of the North Anna COL project included preparation and submittal of a COLA to the USNRC incorporating ESBWR technology for a third unit a the North Anna Power Station site, support for the NRC review process and mandatory hearing, obtaining NRC approval of the COLA and issuance of a COL, and development of a business case necessary to support a decision on building a new nuclear power plant at the North Anna site.

Eugene S. Grecheck David P. Batalo

2010-11-30T23:59:59.000Z

242

Integrated data base report - 1994: US spent nuclear fuel and radioactive waste inventories, projections, and characteristics  

SciTech Connect

The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and U.S. Department of Energy (DOE) spent nuclear fuel and commercial and U.S. government-owned radioactive wastes. Except for transuranic wastes, inventories of these materials are reported as of December 31, 1994. Transuranic waste inventories are reported as of December 31, 1993. All spent nuclear fuel and radioactive waste data reported are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest DOE/Energy Information Administration (EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, DOE Environmental Restoration Program contaminated environmental media, commercial reactor and fuel-cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through the calendar-year 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions.

NONE

1995-09-01T23:59:59.000Z

243

Circleville, West Virginia 26804  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

P.O. Box 194 P.O. Box 194 Circleville, West Virginia 26804 March 28, 2012 Lamont Jackson Office of Electricity Delivery and Energy Reliability U.S. Department of Energy 1000 Independence Ave. SW Washington, DC 20585 Via email to lamont.jackson@hq.doe.gov Re: OE Docket No. RRTT-IR-001 (Rapid Response Team for Transmission); Office of Electricity Delivery and Energy Reliability, Department of Energy Dear Mr. Jackson: Please accept the following comments submitted on behalf of the Allegheny Highlands Alliance, Inc. ("AHA"), an organization comprised of residents of the states of West Virginia, Pennsylvania, Maryland, Virginia and North Carolina. AHA is presently awaiting a decision

244

Lead iron phosphate glass as a containment medium for disposal of high-level nuclear waste  

DOE Patents (OSTI)

Lead-iron phosphate glasses containing a high level of Fe.sub.2 O.sub.3 for use as a storage medium for high-level radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste, a highly corrosion resistant, homogeneous, easily processed glass can be formed. For corroding solutions at 90.degree. C., with solution pH values in the range between 5 and 9, the corrosion rate of the lead-iron phosphate nuclear waste glass is at least 10.sup.2 to 10.sup.3 times lower than the corrosion rate of a comparable borosilicate nuclear waste glass. The presence of Fe.sub.2 O.sub.3 in forming the lead-iron phosphate glass is critical. Lead-iron phosphate nuclear waste glass can be prepared at temperatures as low as 800.degree. C., since they exhibit very low melt viscosities in the 800.degree. to 1050.degree. C. temperature range. These waste-loaded glasses do not readily devitrify at temperatures as high as 550.degree. C. and are not adversely affected by large doses of gamma radiation in H.sub.2 O at 135.degree. C. The lead-iron phosphate waste glasses can be prepared with minimal modification of the technology developed for processing borosilicate glass nuclear wasteforms.

Boatner, Lynn A. (Oak Ridge, TN); Sales, Brian C. (Oak Ridge, TN)

1989-01-01T23:59:59.000Z

245

Virginia/Incentives | Open Energy Information  

Open Energy Info (EERE)

Virginia/Incentives Virginia/Incentives < Virginia Jump to: navigation, search Contents 1 Financial Incentive Programs for Virginia 2 Rules, Regulations and Policies for Virginia Download All Financial Incentives and Policies for Virginia CSV (rows 1 - 134) Financial Incentive Programs for Virginia Download Financial Incentives for Virginia CSV (rows 1 - 51) Incentive Incentive Type Active Arlington County - Green Building Incentive Program (Virginia) Green Building Incentive Yes Cape Charles - STIP Minimum Sustainability Requirements (Virginia) Green Building Incentive No Charlottesville Gas - Residential Energy Efficiency Rebate Program (Virginia) Utility Rebate Program Yes City of Danville Utilities - Business Energy Efficiency Rebates (Virginia) Utility Rebate Program Yes

246

Virginia Gas and Oil Act (Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Virginia Gas and Oil Act (Virginia) Virginia Gas and Oil Act (Virginia) Virginia Gas and Oil Act (Virginia) < Back Eligibility Commercial Construction Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Systems Integrator Utility Program Info State Virginia Program Type Safety and Operational Guidelines Siting and Permitting Provider Virginia Department of Mines, Minerals, and Energy The Gas and Oil Act addresses the exploration, development, and production of oil and gas resources in the Commonwealth of Virginia. It contains provisions pertaining to wells and well spacing, permits and fees, ownership of coalbed methane gas, and land leases. No county, city, town or other political subdivision of the Commonwealth may impose any condition, or require any other local license, permit, fee or bond to perform any gas,

247

Virginia Gasoline Price Data  

NLE Websites -- All DOE Office Websites (Extended Search)

Virginia Virginia Exit Fueleconomy.gov The links below are to pages that are not part of the fueleconomy.gov. We offer these external links for your convenience in accessing additional information that may be useful or interesting to you. Selected Cities Alexandria AlexandriaGasPrices.com Automotive.com Mapquest.com Arlington ArlingtonGasPrices.com Automotive.com Mapquest.com Chesapeake ChesapeakeGasPrices.com Automotive.com Mapquest.com Hampton HamptonGasPrices.com Automotive.com Mapquest.com Newport News NewportNewsGasPrices.com Automotive.com Mapquest.com Norfolk NorfolkGasPrices.com Automotive.com Mapquest.com Portsmouth PortsmouthGasPrices.com Automotive.com Mapquest.com Richmond RichmondGasPrices.com Automotive.com Mapquest.com Virginia Beach VirginiaBeachGasPrices.com Automotive.com Mapquest.com

248

Virginia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Learn about Wind Power First-Hand through Wind for Schools Program Constructive a wind turbine provides hands-on learning for Virginia students. February 7, 2011 Salazar, Chu...

249

Virginia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Title CX(s) Applied: A1, B5.1 Date: 12072011 Location(s): Virginia Offices(s): National Energy Technology Laboratory December 7, 2011 CX-007432: Categorical Exclusion...

250

Virginia | OpenEI  

Open Energy Info (EERE)

Virginia Virginia Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 88, and contains only the reference case. The data is broken down into electric power sector, cumulative planned additions,cumulative unplanned additions,cumulative retirements, end-use sector, electricity sales, net energy for load, generation by fuel type and price by service category. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO Carolina EIA Electric power projections Virginia Data application/vnd.ms-excel icon ASEO2011: Electric Power Projections for EMM Region - SERC Reliability Corporation / Virginia-Carolina- Reference Case (xls, 259.3 KiB)

251

Depleted Uraniuim Dioxide as a Spent-Nuclear-Fuel-Waste Package...  

NLE Websites -- All DOE Office Websites (Extended Search)

15 DEPLETED URANIUM DIOXIDE AS A SPENT-NUCLEAR-FUEL WASTE-PACKAGE PARTICULATE FILL: FILL BEHAVIOR Charles W. Forsberg Oak Ridge National Laboratory * P.O. Box 2008 Oak Ridge,...

252

Nuclear Safety R&D in the Waste Processing Technology Development & Deployment Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

R&D in the Waste Processing R&D in the Waste Processing Technology Development & Deployment Program Presentation to the DOE High Level Waste Corporate Board July 29, 2009 Al Baione Office of Waste Processing DOE-EM Office of Engineering & Technology 2 Outline Nuclear Safety Research & Development Overview Summary of EM- NSR&D Presentations from February 2009 Evaluating Performance of Nuclear Grade HEPA Filters under Fire/Smoke Challenge Conditions Structural Integrity Initiative for HLW Tanks Pipeline Plugging and Prevention Advanced Mixing Models Basic Science Opportunities in HLW Storage and Processing Safety Cementitious Barriers Partnership 3 Nuclear Safety Research & Development Overview DNFSB 2004-1 identified need for renewed DOE attention to nuclear safety R&D

253

Effective thermal conductivity measurements relevant to deep borehole nuclear waste disposal  

E-Print Network (OSTI)

The objective of this work was to measure the effective thermal conductivity of a number of materials (particle beds, and fluids) proposed for use in and around canisters for disposal of high level nuclear waste in deep ...

Shaikh, Samina

2007-01-01T23:59:59.000Z

254

Monitoring the Durability Performance of Concrete in Nuclear Waste Containment. Technical Progress Report No. 3  

SciTech Connect

OAK-B135 Monitoring the Durability Performance of Concrete in Nuclear Waste Containment. Technical Progress Report No. 3(NOTE: Part II A item 1 indicates ''PAPER'', but a report is attached electronically)

Ulm, Franz-Josef

2000-03-31T23:59:59.000Z

255

An evaluation of the feasibility of disposal of nuclear waste in very deep boreholes  

E-Print Network (OSTI)

Deep boreholes, 3 to 5 km into igneous rock, such as granite, are evaluated for next- generation repository use in the disposal of spent nuclear fuel and other high level waste. The primary focus is on the stability and ...

Anderson, Victoria Katherine, 1980-

2004-01-01T23:59:59.000Z

256

Feasibility of very deep borehole disposal of US nuclear defense wastes  

E-Print Network (OSTI)

This thesis analyzes the feasibility of emplacing DOE-owned defense nuclear waste from weapons production into a permanent borehole repository drilled ~4 km into granite basement rock. Two canister options were analyzed ...

Dozier, Frances Elizabeth

2011-01-01T23:59:59.000Z

257

Feasibility of lateral emplacement in very deep borehole disposal of high level nuclear waste  

E-Print Network (OSTI)

The U.S. Department of Energy recently filed a motion to withdraw the Nuclear Regulatory Commission license application for the High Level Waste Repository at Yucca Mountain in Nevada. As the U.S. has focused exclusively ...

Gibbs, Jonathan Sutton

2010-01-01T23:59:59.000Z

258

Disposition of nuclear waste using subcritical accelerator-driven systems  

Science Conference Proceedings (OSTI)

Studies have shown that the repository long-term radiological risk is from the long-lived transuranics and the fission products Tc-99 and I-129, thermal loading concerns arise mainly form the short-lived fission products Sr-90 and Cs-137. In relation to the disposition of nuclear waste, ATW is expected to accomplish the following: (1) destroy over 99.9% of the actinides; (2) destroy over 99.9% of the Tc and I; (3) separate Sr and Cs (short half-life isotopes); (4) separate uranium; (5) produce electricity. In the ATW concept, spent fuel would be shipped to a ATW site where the plutonium, other transuranics and selected long-lived fission products would be destroyed by fission or transmutation in their only pass through the facility. This approach contrasts with the present-day reprocessing practices in Europe and Japan, during which high purity plutonium is produced and used in the fabrication of fresh mixed-oxide fuel (MOX) that is shipped off-site for use in light water reactors.

Venneri, F.; Li, N.; Williamson, M.; Houts, M.; Lawrence, G.

1998-12-01T23:59:59.000Z

259

Method for recovering palladium and technetium values from nuclear fuel reprocessing waste solutions  

DOE Patents (OSTI)

A method for recovering palladium and technetium values from nuclear fuel reprocessing waste solutions containing these and other values by contacting the waste solution with an extractant of tricaprylmethylammonium nitrate in an inert hydrocarbon diluent which extracts the palladium and technetium values from the waste solution. The palladium and technetium values are recovered from the extractant and from any other coextracted values with a strong nitric acid strip solution.

Horwitz, E. Philip (Elmhurst, IL); Delphin, Walter H. (Woodridge, IL)

1979-07-24T23:59:59.000Z

260

The Nuclear Waste Policy Act, as amended, with appropriations acts appended. Revision 1  

SciTech Connect

This act provides for the development of repositories for the disposal of high-level radioactive wastes, low-level radioactive wastes, and spent nuclear fuels. In addition, it establishes research and development programs, as well as demonstration programs regarding the disposal of these wastes. This Act consists of the Act of Jan. 7, 1983 (Public Law 97-425; 96 Stat. 2201), as amended by Public Law 100-203 and Public Law 102-486.

NONE

1995-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "virginia nuclear waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Engineered barrier development for a nuclear waste repository in basalt: an integration of current knowledge  

Science Conference Proceedings (OSTI)

This document represents a compilation of data and interpretive studies conducted as part of the engineered barriers program of the Basalt Waste Isolation Project. The overall objective of these studies is to provide information on barrier system designs, emplacement and isolation techniques, and chemical reactions expected in a nuclear waste repository located in the basalts underlying the Hanford Site within the state of Washington. Backfills, waste-basalt interactions, sorption, borehole plugging, etc., are among the topics discussed.

Smith, M.J.

1980-05-01T23:59:59.000Z

262

State-of-the-art review of materials properties of nuclear waste forms.  

SciTech Connect

The Materials Characterization Center (MCC) was established at the Pacific Northwest Laboratory to assemble a standardized nuclear waste materials data base for use in research, systems and facility design, safety analyses, and waste management decisions. This centralized data base will be provided through the means of a Nuclear Waste Materials Handbook. The first issue of the Handbook will be published in the fall of 1981 in looseleaf format so that it can be updated as additional information becomes available. To ensure utmost reliability, all materials data appearing in the Handbook will be obtained by standard procedures defined in the Handbook and approved by an independent Materials Review Board (MRB) comprised of materials experts from Department of Energy laboratories and from universities and industry. In the interim before publication of the Handbook there is need for a report summarizing the existing materials data on nuclear waste forms. This review summarizes materials property data for the nuclear waste forms that are being developed for immobilization of high-level radioactive waste. It is intended to be a good representation of the knowledge concerning the properties of HLW forms as of March 1981. The table of contents lists the following topics: introduction which covers waste-form categories, and important waste-form materials properties; physical properties; mechanical properties; chemical durability; vaporization; radiation effects; and thermal phase stability.

Mendel, J.E.; Nelson, R.D.; Turcotte, R.P.; Gray, W.J.; Merz, M.D.; Roberts, F.P.; Weber, W.J.; Westsik, J.H. Jr.; Clark, D.E.

1981-04-01T23:59:59.000Z

263

Precipitation process for the removal of technetium values from nuclear waste solutions  

DOE Patents (OSTI)

High efficiency removal of techetium values from a nuclear waste stream is achieved by addition to the waste stream of a precipitant contributing tetraphenylphosphonium cation, such that a substantial portion of the technetium values are precipitated as an insoluble pertechnetate salt.

Walker, D.D.; Ebra, M.A.

1985-11-21T23:59:59.000Z

264

Revised rail-stop exposure model for incident-free transport of nuclear waste  

SciTech Connect

This report documents a model for estimating railstop doses that occur during incident-free transport of nuclear waste by rail. The model, which has been incorporated into the RADTRAN III risk assessment code, can be applied to general freight and dedicated train shipments of waste.

Ostmeyer, R.M.

1986-02-01T23:59:59.000Z

265

Municipal spotlight: Working together in Northern Virginia  

Science Conference Proceedings (OSTI)

The Northern Virginia region is one of the nation`s liveliest centers of commerce as measured by job creation, new business formation, residential and commercial construction, and retail sales. The region also has one of the most advanced integrated waste management programs. In 1994, more than 1.6 million tons of municipal solid (MSW) were generated in the Northern Virginia region. Of that amount, 1 million tons were recovered as energy and more than 500,000 tons were landfilled. Additionally, more than 500,000 tons were recycled. The jurisdictions in this region have built an extensive network of solid waste management programs that are handled on the local government level, through cooperative programs, and through implementation of unique interjurisdictional agreements. These programs are arranged in the following hierarchy: source reduction, composting, recycling, energy recovery, and landfilling. This article provides a description of how this hierarchy is implemented in the region.

Arner, R.

1995-10-01T23:59:59.000Z

266

Virginia Regional Industrial Facilities Act (Virginia) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Regional Industrial Facilities Act (Virginia) Regional Industrial Facilities Act (Virginia) Virginia Regional Industrial Facilities Act (Virginia) < Back Eligibility Commercial Construction Developer Industrial Investor-Owned Utility Local Government Municipal/Public Utility Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Virginia Program Type Industry Recruitment/Support Provider Regional Industrial Facility Authorities The Virginia Regional Industrial Facilities Act is meant to aid the economic development of localities within the Commonwealth. The Act provides a mechanism for localities to establish regional industrial facility authorities, enabling them to pool financial resources to stimulate economic development. The purpose of a regional industrial

267

Modeling of Sulfate Double-salts in Nuclear Wastes  

Science Conference Proceedings (OSTI)

Due to limited tank space at Hanford and Savannah River, the liquid nuclear wastes or supernatants have been concentrated in evaporators to remove excess water prior to the hot solutions being transferred to underground storage tanks. As the waste solutions cooled, the salts in the waste exceeded the associated solubility limits and precipitated in the form of saltcakes. The initial step in the remediation of these saltcakes is a rehydration process called saltcake dissolution. At Hanford, dissolution experiments have been conducted on small saltcake samples from five tanks. Modeling of these experimental results, using the Environmental Simulation Program (ESP), are being performed at the Diagnostic Instrumentation and Analysis Laboratory (DIAL) at Mississippi State University. The River Protection Project (RPP) at Hanford will use these experimental and theoretical results to determine the amount of water that will be needed for its dissolution and retrieval operations. A comprehensive effort by the RPP and the Tank Focus Area continues to validate and improve the ESP and its databases for this application. The initial effort focused on the sodium, fluoride, and phosphate system due to its role in the formation of pipeline plugs. In FY 1999, an evaluation of the ESP predictions for sodium fluoride, trisodium phosphate dodecahydrate, and natrophosphate clearly indicated that improvements to the Public database of the ESP were needed. One of the improvements identified was double salts. The inability of any equilibrium thermodynamic model to properly account for double salts in the system can result in errors in the predicted solid-liquid equilibria (SLE) of species in the system. The ESP code is evaluated by comparison with experimental data where possible. However, data does not cover the range of component concentrations and temperatures found in many tank wastes. Therefore, comparison of ESP with another code is desirable, and may illuminate problems with both. For this purpose, the SOLGASMIX code was used in conjunction with a small private database developed at ORNL. This code calculates thermodynamic equilibria through minimization of Gibbs Energy, and utilizes the Pitzer model for activity coefficients. The sodium nitrate-sulfate double salt and the sodium fluoride-sulfate double salt were selected for the FY 2000 validation study of ESP. Even though ESP does not include the sulfate-nitrate double salt, this study found that this omission does not appear to be a major consequence. In this case, the solubility predictions with and without the sulfate-nitrate double salt are comparable. In contrast, even though the sulfate-fluoride double salt is included within the ESP databank, comparison to previous experimental results indicates that ESP underestimates solubility. Thus, the prediction for the sulfate-fluoride system needs to be improved. A main consequence of the inability to accurately predict the SLE of double salts is its impact on the predicted ionic strength of the solution. The ionic strength has been observed to be an important factor in the formation of pipeline plugs. To improve the ESP prediction, solubility tests on the sulfate-fluoride system are underway at DIAL, and these experimental results will be incorporated into the Public database by OLI System, Inc. Preliminary ESP simulations also indicated difficulties with the SLE prediction for anhydrous sodium sulfate. The Public database for the ESP does not include fundamental parameters for this solid in mixed solutions below 32.4 C. The limitation, in the range of anhydrous sodium sulfate, leads to convergence problems in ESP and to inaccurate predictions of solubility near the invariant point when sodium sulfate decahydrate and other salts, such as sodium nitrate, were present. These difficulties were partially corrected through the use of an additional database. In conclusion, these results indicate the need for experimental data at temperatures above 25 C and in solutions containing both nitrate and hydroxide. Furthermore, the validation and do

Toghiani, B.

2000-10-30T23:59:59.000Z

268

Virginia Nuclear Profile - North Anna  

U.S. Energy Information Administration (EIA) Indexed Site

North Anna" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

269

Proceedings of the 17th Annual North American Waste-to-Energy Conference May 18-20, 2009, Chantilly, Virginia, USA  

E-Print Network (OSTI)

.; Mondragon, F., CO2 strong chemisorption as an estimate of coal char gasification reactivity. Fuel 1999, 78 WASTE (MSW) GASIFICATION UNDER VARIOUS PRESSURES AND CO2 CONCENTRATION ATMOSPHERES Eilhann Kwon, Kelly J, New York, NY 10027 ABSTRACT The Municipal Solid Waste (MSW) gasification process is a promising

Columbia University

270

Nuclear Solid Waste Processing Design at the Idaho Spent Fuels Facility  

Science Conference Proceedings (OSTI)

A spent nuclear fuels (SNF) repackaging and storage facility was designed for the Idaho National Engineering and Environmental Laboratory (INEEL), with nuclear solid waste processing capability. Nuclear solid waste included contaminated or potentially contaminated spent fuel containers, associated hardware, machinery parts, light bulbs, tools, PPE, rags, swabs, tarps, weld rod, and HEPA filters. Design of the nuclear solid waste processing facilities included consideration of contractual, regulatory, ALARA (as low as reasonably achievable) exposure, economic, logistical, and space availability requirements. The design also included non-attended transfer methods between the fuel packaging area (FPA) (hot cell) and the waste processing area. A monitoring system was designed for use within the FPA of the facility, to pre-screen the most potentially contaminated fuel canister waste materials, according to contact- or non-contact-handled capability. Fuel canister waste materials which are not able to be contact-handled after attempted decontamination will be processed remotely and packaged within the FPA. Noncontact- handled materials processing includes size-reduction, as required to fit into INEEL permitted containers which will provide sufficient additional shielding to allow contact handling within the waste areas of the facility. The current design, which satisfied all of the requirements, employs mostly simple equipment and requires minimal use of customized components. The waste processing operation also minimizes operator exposure and operator attendance for equipment maintenance. Recently, discussions with the INEEL indicate that large canister waste materials can possibly be shipped to the burial facility without size-reduction. New waste containers would have to be designed to meet the drop tests required for transportation packages. The SNF waste processing facilities could then be highly simplified, resulting in capital equipment cost savings, operational time savings, and significantly improved ALARA exposure.

Dippre, M. A.

2003-02-25T23:59:59.000Z

271

Virginia Capital Access Program (Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Capital Access Program (Virginia) Capital Access Program (Virginia) Virginia Capital Access Program (Virginia) < Back Eligibility Commercial Industrial Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Virginia Program Type Loan Program Provider Virginia Economic Development Partnership The Virginia Capital Access Program (CAP), in partnership with Virginia's Small Business Financing Authority, provides access to capital for small businesses. Businesses must apply to participating banks for a traditional loan, and the lender advises the company of enrollment in CAP. The program offers loan guarantees on a portfolio of loans through a loan loss reserve, which it establishes at each participating bank. Funds can be used for

272

Virginia Jobs Investment Program (Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Jobs Investment Program (Virginia) Jobs Investment Program (Virginia) Virginia Jobs Investment Program (Virginia) < Back Eligibility Commercial Industrial Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Virginia Program Type Industry Recruitment/Support Training/Technical Assistance Workforce development Provider Virginia Department of Business Assistance The Virginia Jobs Investment Program provides cash grants to existing businesses which seek expansion or new facility locations. The company must create a minimum of 25 net new jobs within 12 months from the date of first hire and make a capital investment of at least $1,000,000. The Virginia Jobs Investment Program offers three programs to both new and

273

Nuclear criticality safety analysis summary report: The S-area defense waste processing facility  

SciTech Connect

The S-Area Defense Waste Processing Facility (DWPF) can process all of the high level radioactive wastes currently stored at the Savannah River Site with negligible risk of nuclear criticality. The characteristics which make the DWPF critically safe are: (1) abundance of neutron absorbers in the waste feeds; (2) and low concentration of fissionable material. This report documents the criticality safety arguments for the S-Area DWPF process as required by DOE orders to characterize and to justify the low potential for criticality. It documents that the nature of the waste feeds and the nature of the DWPF process chemistry preclude criticality.

Ha, B.C.

1994-10-21T23:59:59.000Z

274

An Evaluation of Alternative Classification Methods for Routine Low Level Waste from the Nuclear Power Industry  

Science Conference Proceedings (OSTI)

This report investigates the feasibility of classifying all routine nuclear power plant low level waste, including Class B and Class C waste, as Class A low level waste within the framework of NRC regulatory requirements. A change in classification could expand disposal venues and reduce the uncertainty of future disposal. The report shows that all of the waste, when managed as a composite stream, will meet the requirements for Class A disposal without leaving a portion of the stream orphaned to on-site ...

2007-11-19T23:59:59.000Z

275

Calcine Waste Storage at the Idaho Nuclear Technology and Engineering Center  

SciTech Connect

This report documents an inventory of calcined waste produced at the Idaho Nuclear Technology and Engineering Center during the period from December 1963 to May 2000. The report was prepared based on calciner runs, operation of the calcined solids storage facilities, and miscellaneous operational information that establishes the range of chemical compositions of calcined waste stored at Idaho Nuclear Technology and Engineering Center. The report will be used to support obtaining permits for the calcined solids storage facilities, possible treatment of the calcined waste at the Idaho National Engineering and Environmental Laboratory, and to ship the waste to an off-site facility including a geologic repository. The information in this report was compiled from calciner operating data, waste solution analyses and volumes calcined, calciner operating schedules, calcine temperature monitoring records, and facility design of the calcined solids storage facilities. A compact disk copy of this report is provided to facilitate future data manipulations and analysis.

Staiger, Merle Daniel; M. C. Swenson

2005-01-01T23:59:59.000Z

276

Coating crystalline nuclear waste forms to improve inertness  

Science Conference Proceedings (OSTI)

Crystalline waste forms of high simulated waste loading were successfully coated with layers of pyrolytic carbon and silicon carbide. Sol-gel technology was used to produce microspheres that contained simulated waste. A separate process for cesium immobilization was developed, which loads 5 wt % Cs onto zeolite particles for subsequent coating. The chemical vapor deposition process was developed for depositing thin layers of carbon and silicon carbide onto particles in a fluidized-bed coater. Pyrolytic carbon-coated particles were extremely inert in numerous leach tests. Aqueous leach test results of coated waste forms were below detection limits of such sensitive analytical techniques as atomic absorption and inductively coupled plasma atomic emission.

Stinton, D.P.; Angelini, P.; Caputo, A.J.; Lackey, W.J.

1981-01-01T23:59:59.000Z

277

Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program FY-2000 Status Report  

SciTech Connect

The Low-Activity Waste Process Technology Program anticipated that grouting will be used for disposal of low-level and transuranic wastes generated at the Idaho Nuclear Technology Engineering Center (INTEC). During fiscal year 2000, grout formulations were studied for transuranic waste derived from INTEC liquid sodium-bearing waste and for projected newly generated low-level liquid waste. Additional studies were completed using silica gel and other absorbents to solidify sodium-bearing wastes. A feasibility study and conceptual design were completed for the construction of a grout pilot plant for simulated wastes and demonstration facility for actual wastes.

Herbst, A.K.; McCray, J.A.; Kirkham, R.J.; Pao, J.; Argyle, M.D.; Lauerhass, L.; Bendixsen, C.L.; Hinckley, S.H.

2000-10-31T23:59:59.000Z

278

Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program FY-2000 Status Report  

SciTech Connect

The Low-Activity Waste Process Technology Program anticipated that grouting will be used for disposal of low-level and transuranic wastes generated at the Idaho Nuclear Technology Engineering Center (INTEC). During fiscal year 2000, grout formulations were studied for transuranic waste derived from INTEC liquid sodium-bearing waste and for projected newly generated low-level liquid waste. Additional studies were completed using silica gel and other absorbents to solidify sodium-bearing wastes. A feasibility study and conceptual design were completed for the construction of a grout pilot plant for simulated wastes and demonstration facility for actual wastes.

Herbst, Alan Keith; Mc Cray, John Alan; Kirkham, Robert John; Pao, Jenn Hai; Argyle, Mark Don; Lauerhass, Lance; Bendixsen, Carl Lee; Hinckley, Steve Harold

2000-11-01T23:59:59.000Z

279

West Virginia Higher Education Graduate  

E-Print Network (OSTI)

1. Work Participation And Annualized Wages Of West Virginia Public Higher Education Graduates From This report analyzes the West Virginia industry of employment (and wages) of graduates from state public .................................................................................................1 Results By Industry And Summary Degree

Mohaghegh, Shahab

280

The Department of Energy's Nuclear Waste Fund's Fiscal Year 2011 Financial Statements  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Department of Energy's Nuclear The Department of Energy's Nuclear Waste Fund's Fiscal Year 2011 Financial Statements OAS-FS-12-03 November 2011 Department of Energy Washington, DC 20585 November 21, 2011 MEMORANDUM FOR THE DIRECTOR, OFFICE OF STANDARD CONTRACT MANAGEMENT, OFFICE OF GENERAL COUNSEL FROM: Rickey R. Hass Deputy Inspector General for Audits and Inspections Office of Inspector General SUBJECT: INFORMATION: Report on "The Department of Energy's Nuclear Waste Fund's Fiscal Year 2011 Financial Statements" The attached report presents the results of the independent certified public accountants' audit of the Department of Energy's Nuclear Waste Fund's (Fund) Fiscal Year 2011 balance sheet and the related statements of net cost, changes in net position, and budgetary resources.

Note: This page contains sample records for the topic "virginia nuclear waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Department of Energy's Nuclear Waste Fund's Fiscal Year 2012 Financial Statement Audit  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Nuclear Waste Fund's Fiscal Year 2012 Financial Statements OAS-FS-13-05 November 2012 U.S. Department of Energy Office of Inspector General Office of Audits & Inspections Department of Energy Washington, DC 20585 November 28, 2012 MEMORANDUM FOR THE DIRECTOR, OFFICE OF STANDARD CONTRACT MANAGEMENT, OFFICE OF GENERAL COUNSEL FROM: Rickey R. Hass Deputy Inspector General for Audits and Inspections Office of Inspector General SUBJECT: INFORMATION: Audit Report on "Department of Energy's Nuclear Waste Fund's Fiscal Year 2012 Financial Statement Audit" The attached report presents the results of the independent certified public accountants' audit of the Department of Energy's Nuclear Waste Fund's (Fund) Fiscal Year 2012 balance sheet and the

282

SBOT VIRGINIA THOMAS JEFFERSON LAB POC Danny Llyod Telephone  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

VIRGINIA VIRGINIA THOMAS JEFFERSON LAB POC Danny Llyod Telephone (757) 269-7121 Email lloyd@jlab.org ADMINISTATIVE / WASTE / REMEDIATION Facilities Support Services 561210 Employment Placement Agencies 561311 Travel Agencies 561510 Locksmiths 561622 Exterminating and Pest Control Services 561710 Janitorial Services 561720 Landscaping Services 561730 Carpet and Upholstery Cleaning Services 561740 Hazardous Waste Collection 562112 CONSTRUCTION Industrial Building Construction 236210 Commercial and Institutional Building Construction 236220 Water and Sewer Line and Related Structures Construction 237110 Power and Communication Line and Related Structures Construction 237130 Highway, Street, and Bridge Construction 237310 Other Heavy and Civil Engineering Construction 237990 Other Foundation, Structure, and Building Exterior Contractors

283

Secondary Waste Considerations for Vitrification of Sodium-Bearing Waste at the Idaho Nuclear Technology and Engineering Center FY-2001 Status Report  

SciTech Connect

The Idaho Nuclear Technology and Engineering Center (INTEC) is considering vitrification to process liquid sodium-bearing waste. Preliminary studies were completed to evaluate the potential secondary wastes from the melter off-gas clean up systems. Projected secondary wastes comprise acidic and caustic scrubber solutions, HEPA filters, activated carbon, and ion exchange media. Possible treatment methods, waste forms, and disposal sites are evaluated from radiological and mercury contamination estimates.

Herbst, A.K.; Kirkham, R.J.; Losinski, S.J.

2002-09-26T23:59:59.000Z

284

Secondary Waste Considerations for Vitrification of Sodium-Bearing Waste at the Idaho Nuclear Techology and Engineering Center FY-2001 Status Report  

SciTech Connect

The Idaho Nuclear Technology and Engineering Center (INTEC) is considering vitrification to process liquid sodium-bearing waste. Preliminary studies were completed to evaluate the potential secondary wastes from the melter off-gas clean up systems. Projected secondary wastes comprise acidic and caustic scrubber solutions, HEPA filters, activated carbon, and ion exchange media. Possible treatment methods, waste forms, and disposal sites are evaluated from radiological and mercury contamination estimates.

Herbst, Alan Keith; Kirkham, Robert John; Losinski, Sylvester John

2001-09-01T23:59:59.000Z

285

Solid radioactive waste management facility design for managing CANDU{sup R} 600 MW nuclear generating station re-tube/refurbishment Waste Streams  

Science Conference Proceedings (OSTI)

The main design features of the re-tube canisters, waste handling equipment and waste containers designed by Atomic Energy of Canada Limited (AECL{sup R}) and implemented in support of the re-tube/refurbishment activities for Candu 600 MW nuclear generating stations are described in this paper. The re-tube/refurbishment waste characterization and the waste management principles, which form the basis of the design activities, are also briefly outlined. (authors)

Pontikakis, N.; Hopkins, J.; Scott, D.; Bajaj, V.; Nosella, L. [AECL, 2251 Speakman Drive, Mississauga, Ontario, L5K 1B2 (Canada)

2007-07-01T23:59:59.000Z

286

Virginia.indd  

NLE Websites -- All DOE Office Websites (Extended Search)

Virginia Virginia www.effi cientwindows.org March 2013 1. Meet the Energy Code and Look for the ENERGY STAR ® Windows must comply with your local energy code. Windows that are ENERGY STAR qualifi ed typically meet or exceed energy code requirements. To verify if specific window energy properties comply with the local code requirements, go to Step 2. 2. Look for Effi cient Properties on the NFRC Label The National Fenestration Rating Council (NFRC) label is needed for verifi cation of energy code compliance (www.nfrc. org). The NFRC label displays whole- window energy properties and appears on all fenestration products which are part of the ENERGY STAR program.

287

Computational Efficient Upscaling Methodology for Predicting Thermal Conductivity of Nuclear Waste forms  

SciTech Connect

This study evaluated different upscaling methods to predict thermal conductivity in loaded nuclear waste form, a heterogeneous material system. The efficiency and accuracy of these methods were compared. Thermal conductivity in loaded nuclear waste form is an important property specific to scientific researchers, in waste form Integrated performance and safety code (IPSC). The effective thermal conductivity obtained from microstructure information and local thermal conductivity of different components is critical in predicting the life and performance of waste form during storage. How the heat generated during storage is directly related to thermal conductivity, which in turn determining the mechanical deformation behavior, corrosion resistance and aging performance. Several methods, including the Taylor model, Sachs model, self-consistent model, and statistical upscaling models were developed and implemented. Due to the absence of experimental data, prediction results from finite element method (FEM) were used as reference to determine the accuracy of different upscaling models. Micrographs from different loading of nuclear waste were used in the prediction of thermal conductivity. Prediction results demonstrated that in term of efficiency, boundary models (Taylor and Sachs model) are better than self consistent model, statistical upscaling method and FEM. Balancing the computation resource and accuracy, statistical upscaling is a computational efficient method in predicting effective thermal conductivity for nuclear waste form.

Li, Dongsheng; Sun, Xin; Khaleel, Mohammad A.

2011-09-28T23:59:59.000Z

288

Can we talk? Communications management for the Waste Isolation Pilot Plant, a complex nuclear waste management project  

SciTech Connect

Sandia Nuclear Waste Management Program is pursuing for DOE an option for permanently disposing radioactive waste in deep geologic repositories. Included in the Program are the Waste Isolation Pilot Plant (WIPP) Project for US defense program mixed waste the Yucca Mountain Project (YMP) for spent power reactor fuel and vitrified high-level waste, projects for other waste types, and development efforts in environmental decision support technologies. WIPP and YMP are in the public arena, of a controversial nature, and provide significant management challenges. Both projects have large project teams, multiple organization participants, large budgets, long durations, are very complex, have a high degree of programmatic risk, and operate in an extremely regulated environment requiring legal defensibility. For environmental projects like these to succeed, SNL`s Program is utilizing nearly all areas in PMI`s Project Management Body of Knowledge (PMBOK) to manage along multiple project dimensions such as the physical sciences (e.g., geophysics and geochemistry; performance assessment; decision analysis) management sciences (controlling the triple constraint of performance, cost and schedule), and social sciences (belief systems; public participation; institutional politics). This discussion focuses primarily on communication challenges active on WIPP. How is the WIPP team meeting the challenges of managing communications?`` and ``How are you approaching similar challenges?`` will be questions for a dialog with the audience.

Goldstein, S.A.; Pullen, G.M.; Brewer, D.R.

1995-07-01T23:59:59.000Z

289

Locations of spent nuclear fuel and high-level radioactive waste ultimately destined for geologic disposal  

Science Conference Proceedings (OSTI)

Since the late 1950s, Americans have come to rely more and more on energy generated from nuclear reactors. Today, 109 commercial nuclear reactors supply over one-fifth of the electricity used to run our homes, schools, factories, and farms. When the nuclear fuel can no longer sustain a fission reaction in these reactors it becomes `spent` or `used` and is removed from the reactors and stored onsite. Most of our Nation`s spent nuclear fuel is currently being stored in specially designed deep pools of water at reactor sites; some is being stored aboveground in heavy thick-walled metal or concrete structures. Sites currently using aboveground dry storage systems include Virginia Power`s Surry Plant, Carolina Power and Light`s H.B. Robinson Plant, Duke Power`s Oconee Nuclear Station, Colorado Public Service Company`s shutdown reactor at Fort St. Vrain, Baltimore Gas and Electric`s Calvert Cliffs Plant, and Michigan`s Consumer Power Palisades Plant.

Not Available

1994-09-01T23:59:59.000Z

290

Alternative Fuels Data Center: West Virginia Information  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

West Virginia West Virginia Information to someone by E-mail Share Alternative Fuels Data Center: West Virginia Information on Facebook Tweet about Alternative Fuels Data Center: West Virginia Information on Twitter Bookmark Alternative Fuels Data Center: West Virginia Information on Google Bookmark Alternative Fuels Data Center: West Virginia Information on Delicious Rank Alternative Fuels Data Center: West Virginia Information on Digg Find More places to share Alternative Fuels Data Center: West Virginia Information on AddThis.com... West Virginia Information This state page compiles information related to alternative fuels and advanced vehicles in West Virginia and includes new incentives and laws, alternative fueling station locations, truck stop electrification sites,

291

Intermediate long-lived nuclear waste management: an ...  

management: an integrated ... Nuclear Energy Division / Department of Physico-Chemistry. ... CIMETAL Project Air carbonation phenomenology Transport ...

292

Virginia Enterprise Zone Job Creation Grant (Virginia) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Enterprise Zone Job Creation Grant (Virginia) Enterprise Zone Job Creation Grant (Virginia) Virginia Enterprise Zone Job Creation Grant (Virginia) < Back Eligibility Commercial Industrial Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Maximum Rebate $500 per position Program Info State Virginia Program Type Enterprise Zone Grant Program Provider Virginia Department of Housing and Community Development The Virginia Enterprise Zone Job Creation Grant provides cash grants to businesses located in Enterprise zones that create permanent new jobs over a four-job threshold. State incentives are available to businesses and zone investors who create jobs and invest in real property within the boundaries of enterprise zones. The positions must pay at least 175 percent of the

293

Method for utilizing decay heat from radioactive nuclear wastes  

DOE Patents (OSTI)

Management of radioactive heat-producing waste material while safely utilizing the heat thereof is accomplished by encapsulating the wastes after a cooling period, transporting the capsules to a facility including a plurality of vertically disposed storage tubes, lowering the capsules as they arrive at the facility into the storage tubes, cooling the storage tubes by circulating a gas thereover, employing the so heated gas to obtain an economically beneficial result, and continually adding waste capsules to the facility as they arrive thereat over a substantial period of time.

Busey, H.M.

1974-10-14T23:59:59.000Z

294

Nuclear waste management technical support in the development of nuclear waste form criteria for the NRC. Task 1. Waste package overview  

Science Conference Proceedings (OSTI)

In this report the current state of waste package development for high level waste, transuranic waste, and spent fuel in the US and abroad has been assessed. Specifically, reviewed are recent and on-going research on various waste forms, container materials and backfills and tentatively identified those which are likely to perform most satisfactorily in the repository environment. Radiation effects on the waste package components have been reviewed and the magnitude of these effects has been identified. Areas requiring further research have been identified. The important variables affecting radionuclide release from the waste package have been described and an evaluation of regulatory criteria for high level waste and spent fuel is presented. Finally, for spent fuel, high level, and TRU waste, components which could be used to construct a waste package having potential to meet NRC performance requirements have been described and identified.

Dayal, R.; Lee, B.S.; Wilke, R.J.; Swyler, K.J.; Soo, P.; Ahn, T.M.; McIntyre, N.S.; Veakis, E.

1982-02-01T23:59:59.000Z

295

Thermal impact of waste emplacement and surface cooling associated with geologic disposal of nuclear waste  

Science Conference Proceedings (OSTI)

The thermal effects associated with the emplacement of aged radioactive wastes in a geologic repository were studied, with emphasis on the following subjects: the waste characteristics, repository structure, and rock properties controlling the thermally induced effects; the current knowledge of the thermal, thermomechanical, and thermohydrologic impacts, determined mainly on the basis of previous studies that assume 10-year-old wastes; the thermal criteria used to determine the repository waste loading densities; and the technical advantages and disadvantages of surface cooling of the wastes prior to disposal as a means of mitigating the thermal impacts. The waste loading densities determined by repository designs for 10-year-old wastes are extended to older wastes using the near-field thermomechanical criteria based on room stability considerations. Also discussed are the effects of long surface cooling periods determined on the basis of far-field thermomechanical and thermohydrologic considerations. The extension of the surface cooling period from 10 years to longer periods can lower the near-field thermal impact but have only modest long-term effects for spent fuel. More significant long-term effects can be achieved by surface cooling of reprocessed high-level waste.

Wang, J.S.Y.; Mangold, D.C.; Spencer, R.K.; Tsang, C.F.

1982-08-01T23:59:59.000Z

296

State of the art review of radioactive waste volume reduction techniques for commercial nuclear power plants  

Science Conference Proceedings (OSTI)

A review is made of the state of the art of volume reduction techniques for low level liquid and solid radioactive wastes produced as a result of: (1) operation of commercial nuclear power plants, (2) storage of spent fuel in away-from-reactor facilities, and (3) decontamination/decommissioning of commercial nuclear power plants. The types of wastes and their chemical, physical, and radiological characteristics are identified. Methods used by industry for processing radioactive wastes are reviewed and compared to the new techniques for processing and reducing the volume of radioactive wastes. A detailed system description and report on operating experiences follow for each of the new volume reduction techniques. In addition, descriptions of volume reduction methods presently under development are provided. The Appendix records data collected during site surveys of vendor facilities and operating power plants. A Bibliography is provided for each of the various volume reduction techniques discussed in the report.

Not Available

1980-04-01T23:59:59.000Z

297

West Virginia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

United States » West Virginia United States » West Virginia West Virginia October 22, 2013 Data Safer than Ever with FM-200 Installation The consolidated data center at the Legacy Management Business Center (LMBC) in Morgantown, West Virginia, is now guarded by a state-of-the-art FM-200® Fire Suppression System. Installation of the new system began on June 11, 2013, and the system became operational on July 18. October 16, 2013 West Virginia Venture Capital (West Virginia) The West Virginia Venture Capital provides investment funds to eligible businesses stimulating economic growth and providing or retaining jobs within the state through qualified venture capital companies. Terms and conditions for funding eligibility are dependent on the varying terms of participating venture capital funds.

298

Disposition of Nuclear Waste Using Subcritical Accelerator-Driven Systems: Technology Choices and Implementation Scenarios  

SciTech Connect

Los Alamos National Laboratory has led the development of accelerator-driven transmutation of waste (ATW) to provide an alternative technological solution to the disposition of nuclear waste. While ATW will not eliminate the need for a high-level waste repository, it offers a new technology option for altering the nature of nuclear waste and enhancing the capability of a repository. The basic concept of ATW focuses on reducing the time horizon for the radiological risk from hundreds of thousands of years to a few hundred years and on reducing the thermal loading. As such, ATW will greatly reduce the amount of transuranic elements that will be disposed of in a high-level waste repository. The goal of the ATW nuclear subsystem is to produce three orders of magnitude reduction in the long-term radiotoxicity of the waste sent to a repository, including losses through processing. If the goal is met, the radiotoxicity of ATW-treated waste after 300 yr would be less than that of untreated waste after 100 000 yr.These objectives can be achieved through the use of high neutron fluxes produced in accelerator-driven subcritical systems. While critical fission reactors can produce high neutron fluxes to destroy actinides and select fission products, the effectiveness of the destruction is limited by the criticality requirement. Furthermore, a substantial amount of excess reactivity would have to be supplied initially and compensated for by control poisons. To overcome these intrinsic limitations, we searched for solutions in subcritical systems freed from the criticality requirement by taking advantage of the recent breakthroughs in accelerator technology and the release of liquid lead/bismuth nuclear coolant technology from Russia. The effort led to the selection of an accelerator-driven subcritical system that results in the destruction of the actinides and fission products of concern as well as permitting easy operational control through the external control of the neutron source.

Venneri, Francesco; Williamson, Mark A.; Li Ning; Houts, Michael G.; Morley, Richard A.; Beller, Denis E.; Sailor, William; Lawrence, George [Los Alamos National Laboratory (United States)

2000-10-15T23:59:59.000Z

299

Method for forming microspheres for encapsulation of nuclear waste. [Patent application  

DOE Patents (OSTI)

Microspheres for nuclear waste storage are formed by gelling droplets containing the waste in a gelation fluid, transferring the gelled droplets to a furnace without the washing step previously used, and heating the unwashed gelled droplets in the furnace under temperature or humidity conditions that result in a substantially linear rate of removal of volatile components therefrom. Fuel particles were also produced using this method.

Angelini, P.; Caputo, A.J.; Hutchens, R.E.; Lackey, W.J.; Stinton, D.P.

1982-01-29T23:59:59.000Z

300

Review and Demonstration of Korea Hydro & Nuclear Power (KHNP) Vitrification Technology for Low Level Waste Treatment  

Science Conference Proceedings (OSTI)

Vitrification is the process of stabilizing nuclides in a glass matrix in order to enhance disposal options. A mature technology, vitrification has been applied to high level radioactive waste (HLW) for more than 40 years. As disposal costs and public concern for the environment increase, vitrification is considered to be a promising technology for low level waste (LLW) stabilization. This report covers the characteristics of LLW generated from nuclear power plants, current melter technologies ...

2013-08-14T23:59:59.000Z

Note: This page contains sample records for the topic "virginia nuclear waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Recovery of fissile materials from plutonium residues, miscellaneous spent nuclear fuel, and uranium fissile wastes  

SciTech Connect

A new process is proposed that converts complex feeds containing fissile materials into a chemical form that allows the use of existing technologies (such as PUREX and ion exchange) to recover the fissile materials and convert the resultant wastes to glass. Potential feed materials include (1) plutonium scrap and residue, (2) miscellaneous spent nuclear fuel, and (3) uranium fissile wastes. The initial feed materials may contain mixtures of metals, ceramics, amorphous solids, halides, and organics. 14 refs., 4 figs.

Forsberg, C.W.

1997-03-01T23:59:59.000Z

302

Nuclear data for nuclear transmutation  

Science Conference Proceedings (OSTI)

Current status on nuclear data for the study of nuclear transmutation of radioactive wastes is reviewed

Hideo Harada

2009-01-01T23:59:59.000Z

303

Materials characterization center workshop on compositional and microstructural analysis of nuclear waste materials. Summary report  

SciTech Connect

The purpose of the Workshop on Compositional and Microstructural Analysis of Nuclear Waste Materials, conducted November 11 and 12, 1980, was to critically examine and evaluate the various methods currently used to study non-radioactive, simulated, nuclear waste-form performance. Workshop participants recognized that most of the Materials Characterization Center (MCC) test data for inclusion in the Nuclear Waste Materials Handbook will result from application of appropriate analytical procedures to waste-package materials or to the products of performance tests. Therefore, the analytical methods must be reliable and of known accuracy and precision, and results must be directly comparable with those from other laboratories and from other nuclear waste materials. The 41 participants representing 18 laboratories in the United States and Canada were organized into three working groups: Analysis of Liquids and Solutions, Quantitative Analysis of Solids, and Phase and Microstructure Analysis. Each group identified the analytical methods favored by their respective laboratories, discussed areas needing attention, listed standards and reference materials currently used, and recommended means of verifying interlaboratory comparability of data. The major conclusions from this workshop are presented.

Daniel, J.L.; Strachan, D.M.; Shade, J.W.; Thomas, M.T.

1981-06-01T23:59:59.000Z

304

Risk perception on management of nuclear high-level and transuranic waste storage  

SciTech Connect

The Department of Energy`s program for disposing of nuclear High-Level Waste (HLW) and transuranic (TRU) waste has been impeded by overwhelming political opposition fueled by public perceptions of actual risk. Analysis of these perceptions shows them to be deeply rooted in images of fear and dread that have been present since the discovery of radioactivity. The development and use of nuclear weapons linked these images to reality and the mishandling of radioactive waste from the nations military weapons facilities has contributed toward creating a state of distrust that cannot be erased quickly or easily. In addition, the analysis indicates that even the highly educated technical community is not well informed on the latest technology involved with nuclear HLW and TRU waste disposal. It is not surprising then, that the general public feels uncomfortable with DOE`s management plans for with nuclear HLW and TRU waste disposal. Postponing the permanent geologic repository and use of Monitored Retrievable Storage (MRS) would provide the time necessary for difficult social and political issues to be resolved. It would also allow time for the public to become better educated if DOE chooses to become proactive.

Dees, L.A.

1994-08-15T23:59:59.000Z

305

Hydrogen generation rates in Savannah River Site high-level nuclear waste  

DOE Green Energy (OSTI)

High-level nuclear waste (HLW) is stored at the Savannah River Site (SRS) as alkaline, high-nitrate slurries in underground carbon steel tanks. Hydrogen is continuously generated in the waste tanks as a result of the radiolysis of water. Hydrogen generation rates have recently been measured in several waste tanks containing different types of waste. The measured rates ranged from 1.1 to 6.7 cubic feet per million Btu of decay heat. The measured rates are consistent with laboratory data which show that the hydrogen generation rate depends on the nitrate concentration and the decay heat content of the waste. Sampling at different locations indicated that the hydrogen is uniformly distributed radially within the tank.

Hobbs, D.T.; Norris, P.W.; Pucko, S.A.; Bibler, N.E.; Walker, D.D.; d'Entremont, P.D.

1992-01-01T23:59:59.000Z

306

A STUDY OF CORROSION AND STRESS CORROSION CRACKING OF CARBON STEEL NUCLEAR WASTE STORAGE TANKS  

SciTech Connect

The Hanford reservation Tank Farms in Washington State has 177 underground storage tanks that contain approximately 50 million gallons of liquid legacy radioactive waste from cold war plutonium production. These tanks will continue to store waste until it is treated and disposed. These nuclear wastes were converted to highly alkaline pH wastes to protect the carbon steel storage tanks from corrosion. However, the carbon steel is still susceptible to localized corrosion and stress corrosion cracking. The waste chemistry varies from tank to tank, and contains various combinations of hydroxide, nitrate, nitrite, chloride, carbonate, aluminate and other species. The effect of each of these species and any synergistic effects on localized corrosion and stress corrosion cracking of carbon steel have been investigated with electrochemical polarization, slow strain rate, and crack growth rate testing. The effect of solution chemistry, pH, temperature and applied potential are all considered and their role in the corrosion behavior will be discussed.

BOOMER, K.D.

2007-08-21T23:59:59.000Z

307

Management of radioactive waste gases from the nuclear fuel cycle. Volume I. Comparison of alternatives  

SciTech Connect

Alternatives were compared for collection and fixation of radioactive waste gases released during normal operation of the nuclear fuel cycle, and for transportation and storage/disposal of the resulting waste forms. The study used a numerical rating scheme to evaluate and compare the alternatives for krypton-85, iodine-129, and carbon-14; whereas a subjective evaluation, based on published reports and engineering judgement, was made for transportation and storage/disposal options. Based on these evaluations, certain alternatives are recommended for an integrated scheme for waste management of each of the subject waste gases. Phase II of this project, which is concerned with the development of performance criteria for the waste forms associated with the subject gases, will be completed by the end of 1980. This work will be documented as Volume II of this report.

Evans, A.G.; Prout, W.E.; Buckner, J.T.; Buckner, M.R.

1980-12-01T23:59:59.000Z

308

Assessment of Nuclear Safety Culture at the Salt Waste Processing...  

NLE Websites -- All DOE Office Websites (Extended Search)

BARS Behavioral Anchored Rating Scales DNFSB Defense Nuclear Facilities Safety Board DOE U.S. Department of Energy DPO Differing Professional Opinion ECP Employee Concern...

309

Precipitate hydrolysis process for the removal of organic compounds from nuclear waste slurries  

DOE Patents (OSTI)

A process for removing organic compounds from a nuclear waste slurry comprising reacting a mixture of radioactive waste precipitate slurry and an acid in the presence of a catalytically effective amount of a copper(II) catalyst whereby the organic compounds in the precipitate slurry are hydrolyzed to form volatile organic compounds which are separated from the reacting mixture. The resulting waste slurry, containing less than 10 percent of the original organic compounds, is subsequently blended with high level radioactive sludge land transferred to a vitrification facility for processing into borosilicate glass for long-term storage. 2 figs., 3 tabs.

Doherty, J.P.; Marek, J.C.

1987-02-25T23:59:59.000Z

310

Radioactive waste shipments to Hanford Retrievable Storage from the General Electric Vallecitos Nuclear Center, Pleasanton, California  

SciTech Connect

During the next two decades the transuranic (TRU) wastes now stored in the burial trenches and storage facilities at the Hanford Site are to be retrieved, processed at the Waste Receiving and Processing Facility, and shipped to the Waste Isolation Pilot Plant near Carlsbad, New Mexico for final disposal. Approximately 3.8% of the TRU waste to be retrieved for shipment to WIPP was generated at the General Electric (GE) Vallecitos Nuclear Center (VNC) in Pleasanton, California and shipped to the Hanford Site for storage. The purpose of this report is to characterize these radioactive solid wastes using process knowledge, existing records, and oral history interviews. The waste was generated almost exclusively from the activities, of the Plutonium Fuels Development Laboratory and the Plutonium Analytical Laboratory. Section 2.0 provides further details of the VNC physical plant, facility operations, facility history, and current status. The solid radioactive wastes were associated with two US Atomic Energy Commission/US Department of Energy reactor programs -- the Fast Ceramic Reactor (FCR) program, and the Fast Flux Test Reactor (FFTR) program. These programs involved the fabrication and testing of fuel assemblies that utilized plutonium in an oxide form. The types and estimated quantities of waste resulting from these programs are discussed in detail in Section 3.0. A detailed discussion of the packaging and handling procedures used for the VNC radioactive wastes shipped to the Hanford Site is provided in Section 4.0. Section 5.0 provides an in-depth look at this waste including the following: weight and volume of the waste, container types and numbers, physical description of the waste, radiological components, hazardous constituents, and current storage/disposal locations.

Vejvoda, E.J.; Pottmeyer, J.A.; DeLorenzo, D.S.; Weyns-Rollosson, M.I. [Los Alamos Technical Associates, Inc., NM (United States); Duncan, D.R. [Westinghouse Hanford Co., Richland, WA (United States)

1993-10-01T23:59:59.000Z

311

U.S. Nuclear Waste Technical Review Board Correspondence with  

E-Print Network (OSTI)

Symposium on Zirconium in the Nuclear Industry: Fourteenth International Symposium on 13­17 June 2004 deformation, thus also avoiding friction effects. In this study, the steel punch had a diameter of 25.4 mm Zircaloy-4," 11th International Symposium on Zr in the Nuclear Industry, ASTM STP 1295, Garmisch

312

Lead-iron phosphate glass as a containment medium for the disposal of high-level nuclear wastes  

DOE Patents (OSTI)

Disclosed are lead-iron phosphate glasses containing a high level of Fe/sub 2/O/sub 3/ for use as a storage medium for high-level radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste

Boatner, L.A.; Sales, B.C.

1984-04-11T23:59:59.000Z

313

Plan for waste package environment for NNWSI [Nevada Nuclear Waste Storage Investigations  

SciTech Connect

The purpose and objective of the Waste Package Environment task is to establish and characterize the environmental processes affecting the near-field repository host rock after waste package emplacement. These processes, which reflect the perturbation induces in the environment by engineering effects and by the waste package decay heat and radiation, will influence chemical, mineralogical and hydrological features of the environment. The thermal and radiation output of the waste packages will change with time, resulting in an environment in which the chemical, mineralogical and physical attributes may also change through time. To assure that waste package design considerations reflect the characteristics of this evolving environment, it is necessary to determine the range of conditions that may develop in the pre- and post-emplacement waste package environment. To assure that the emplacement configurations do not compromise the lifetime of the repository or the waste packages, the design of the emplacement configuration must also consider the environmental features. Recognition of these requirements resulted in the development of the issue an information needs. 20 refs.

Glassley, W.E.

1988-02-01T23:59:59.000Z

314

NEAMS Nuclear Waste Management IPSC : evaluation and selection of tools for the quality environment.  

Science Conference Proceedings (OSTI)

The objective of the U.S. Department of Energy Office of Nuclear Energy Advanced Modeling and Simulation Nuclear Waste Management Integrated Performance and Safety Codes (NEAMS Nuclear Waste Management IPSC) is to provide an integrated suite of computational modeling and simulation (M&S) capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive-waste storage facility or disposal repository. These M&S capabilities are to be managed, verified, and validated within the NEAMS Nuclear Waste Management IPSC quality environment. M&S capabilities and the supporting analysis workflow and simulation data management tools will be distributed to end-users from this same quality environment. The same analysis workflow and simulation data management tools that are to be distributed to end-users will be used for verification and validation (V&V) activities within the quality environment. This strategic decision reduces the number of tools to be supported, and increases the quality of tools distributed to end users due to rigorous use by V&V activities. This report documents an evaluation of the needs, options, and tools selected for the NEAMS Nuclear Waste Management IPSC quality environment. The objective of the U.S. Department of Energy (DOE) Office of Nuclear Energy Advanced Modeling and Simulation Nuclear Waste Management Integrated Performance and Safety Codes (NEAMS Nuclear Waste Management IPSC) program element is to provide an integrated suite of computational modeling and simulation (M&S) capabilities to assess quantitatively the long-term performance of waste forms in the engineered and geologic environments of a radioactive-waste storage facility or disposal repository. This objective will be fulfilled by acquiring and developing M&S capabilities, and establishing a defensible level of confidence in these M&S capabilities. The foundation for assessing the level of confidence is based upon the rigor and results from verification, validation, and uncertainty quantification (V&V and UQ) activities. M&S capabilities are to be managed, verified, and validated within the NEAMS Nuclear Waste Management IPSC quality environment. M&S capabilities and the supporting analysis workflow and simulation data management tools will be distributed to end-users from this same quality environment. The same analysis workflow and simulation data management tools that are to be distributed to end-users will be used for verification and validation (V&V) activities within the quality environment. This strategic decision reduces the number of tools to be supported, and increases the quality of tools distributed to end users due to rigorous use by V&V activities. NEAMS Nuclear Waste Management IPSC V&V and UQ practices and evidence management goals are documented in the V&V Plan. This V&V plan includes a description of the quality environment into which M&S capabilities are imported and V&V and UQ activities are managed. The first phase of implementing the V&V plan is to deploy an initial quality environment through the acquisition and integration of a set of software tools. An evaluation of the needs, options, and tools selected for the quality environment is given in this report.

Bouchard, Julie F.; Stubblefield, William Anthony; Vigil, Dena M.; Edwards, Harold Carter (Org. 1444 : Multiphysics Simulation Technology)

2011-05-01T23:59:59.000Z

315

THERMAL IMPACT OF WASTE EMPLACEMENT AND SURFACE COOLING ASSOCIATED WITH GEOLOGIC DISPOSAL OF NUCLEAR WASTE  

E-Print Network (OSTI)

for each of T M W three nuclear fuel cycles Decay heat powerfor d i f f e r e n t nuclear fuel cycles for a PWR. Decayd i f f e r e n t nuclear fuel cycles for a BWR. Relative

Wang, J.S.Y.

2010-01-01T23:59:59.000Z

316

Supplemnental Volume - Independent Oversight Assessment of the Nuclear Safety Culture and Management of Nuclear Safety Concerns at the Hanford Site Waste Treatment and Immobilization Plant, January 2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Volume Volume Independent Oversight Assessment of Nuclear Safety Culture and Management of Nuclear Safety Concerns at the Hanford Site Waste Treatment and Immobilization Plant January 2012 Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Office of Health, Safety and Security HSS i Independent Oversight Assessment of Safety Culture and Management of Nuclear Safety Concerns at the Hanford Site Waste Treatment and Immobilization Plant Supplemental Volume Table of Contents Foreword ...................................................................................................................................................... iii Acronyms ...................................................................................................................................................... v

317

Nuclear waste transportation: Case studies of identifying stakeholder risk information needs  

E-Print Network (OSTI)

The U.S. Department of Energy (DOE) is responsible for the cleanup of our nation’s nuclear legacy, involving complex decisions about how and where to dispose of nuclear waste and how to transport it to its ultimate disposal site. It is widely recognized that a broad range of stakeholders and tribes should be involved in this kind of decision. All too frequently, however, stakeholders and tribes are only invited to participate by commenting on processes and activities that are near completion; they are not included in the problem formulation stages. Moreover, it is often assumed that high levels of complexity and uncertainty prevent meaningful participation by these groups. Considering the types of information that stakeholders and tribes need to be able to participate in the full life cycle of decision making is critical for improving participation and transparency of decision making. Toward this objective, the Consortium for Risk Evaluation with Stakeholder Participation (CRESP) participated in three public processes relating to nuclear waste transportation and disposal in 1997–1998. First, CRESP organized focus groups to identify concerns about nuclear waste transportation. Second, CRESP conducted exit surveys at regional public workshops held by DOE to get input from stakeholders on intersite waste transfer issues. Third, CRESP developed visual tools to synthesize technical information and allow stakeholders and tribes with varying levels of knowledge about nuclear waste to participate in meaningful discussion. In this article we share the results of the CRESP findings, discuss common themes arising from these interactions, and comment on special considerations needed to facilitate stakeholder and tribal participation in similar decision-making processes. Key words: environmental information, hazardous waste, risk communication, risk perception, stakeholders. Environ Health Perspect

Christina H. Drew; Deirdre A. Grace; Susan M. Silbernagel; Erin S. Hemmings; Alan Smith; William C. Griffith; Timothy K. Takaro; Elaine M. Faustman

2003-01-01T23:59:59.000Z

318

Present and future roles of solvent extraction in treatment of nuclear wastes  

SciTech Connect

Solvent extraction has played a major role in development of the nuclear industry and has recovered much of the uranium from raw materials and essentially all of the plutonium and uranium from spent fuels. These operations produced a wide variety of radioactive wastes as well as the uranium and plutonium products. Solvent extraction worked well in the earlier nuclear facilities and should play a significant role in future cleanup operations.

Watson, J.S.

1995-12-31T23:59:59.000Z

319

Depleted uranium oxides as spent-nuclear-fuel waste-package invert and backfill materials  

SciTech Connect

A new technology has been proposed in which depleted uranium, in the form of oxides or silicates, is placed around the outside of the spent nuclear fuel waste packages in the geological repository. This concept may (1) reduce the potential for repository nuclear criticality events and (2) reduce long-term release of radionuclides from the repository. As a new concept, there are significant uncertainties.

Forsberg, C.W.; Haire, M.J.

1997-07-07T23:59:59.000Z

320

Communication Between U.S. Nuclear Waste Technical Review Board  

E-Print Network (OSTI)

Lessons Learned from Yucca Mountain and Other Programs June 2011 A Report to Congress and the Secretary's efforts to develop a deep geologic repository for high-activity waste1 at Yucca Mountain in Nevada Commission (NRC) to construct a repository at Yucca Mountain. An important part of the Board's mission

Note: This page contains sample records for the topic "virginia nuclear waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

THERMAL IMPACT OF WASTE EMPLACEMENT AND SURFACE COOLING ASSOCIATED WITH GEOLOGIC DISPOSAL OF NUCLEAR WASTE  

E-Print Network (OSTI)

l e of both uranium and plutonium. The overall objective i sthe remaining uranium or plutonium, or both, can be recycledSF) contains both uranium and plutonium as waste components.

Wang, J.S.Y.

2010-01-01T23:59:59.000Z

322

Management of Salt Waste from Electrochemical Processing of Used Nuclear Fuel  

SciTech Connect

Electrochemical processing of used nuclear fuel involves operation of one or more cells containing molten salt electrolyte. Processing of the fuel results in contamination of the salt via accumulation of fission products and transuranic (TRU) actinides. Upon reaching contamination limits, the salt must be removed and either disposed or treated to remove the contaminants and recycled back to the process. During development of the Experimental Breeder Reactor-II spent fuel treatment process, waste salt from the electrorefiner was to be stabilized in a ceramic waste form and disposed of in a high-level waste repository. With the cancellation of the Yucca Mountain high-level waste repository, other options are now being considered. One approach that involves direct disposal of the salt in a geologic salt formation has been evaluated. While waste forms such as the ceramic provide near-term resistance to corrosion, they may not be necessary to ensure adequate performance of the repository. To improve the feasibility of direct disposal, recycling a substantial fraction of the useful salt back to the process equipment could minimize the volume of the waste. Experiments have been run in which a cold finger is used for this purpose to crystallize LiCl from LiCl/CsCl. If it is found to be unsuitable for transportation, the salt waste could also be immobilized in zeolite without conversion to the ceramic waste form.

Michael F. Simpson; Michael N. Patterson; Joon Lee; Yifeng Wang; Joshua Versey; Ammon Williams; Supathorn Phongikaroon; James Allensworth; Man-Sung Yim

2013-10-01T23:59:59.000Z

323

West Virginia.indd  

NLE Websites -- All DOE Office Websites (Extended Search)

West Virginia West Virginia www.effi cientwindows.org March 2013 1. Meet the Energy Code and Look for the ENERGY STAR ® Windows must comply with your local energy code. Windows that are ENERGY STAR qualifi ed typically meet or exceed energy code requirements. To verify if specific window energy properties comply with the local code requirements, go to Step 2. 2. Look for Effi cient Properties on the NFRC Label The National Fenestration Rating Council (NFRC) label is needed for verifi cation of energy code compliance (www.nfrc. org). The NFRC label displays whole- window energy properties and appears on all fenestration products which are part of the ENERGY STAR program.

324

The Use of Transportable Processing Systems for the Treatment of Radioactive Nuclear Wastes  

Science Conference Proceedings (OSTI)

EnergySolutions has developed two major types of radioactive processing plants based on its experience in the USA and UK, and its exclusive North American access to the intellectual property and know-how developed over 50 years at the Sellafield nuclear site in the UK. Passive Secure Cells are a type of hot cell used in place of the Canyons typically used in US-designed radioactive facilities. They are used in permanent, large scale plants suitable for long term processing of large amounts of radioactive material. The more recently developed Transportable Processing Systems, which are the subject of this paper, are used for nuclear waste processing and clean-up when processing is expected to be complete within shorter timescales and when it is advantageous to be able to move the processing equipment amongst a series of geographically spread-out waste treatment sites. Such transportable systems avoid the construction of a monolithic waste processing plant which itself would require extensive decommissioning and clean-up when its mission is complete. This paper describes a range of transportable radioactive waste processing equipment that EnergySolutions and its partners have developed including: the portable MOSS drum-based waste grouting system, the skid mounted MILWPP large container waste grouting system, the IPAN skid-mounted waste fissile content non-destructive assay system, the Wiped Film Evaporator low liquid hold-up transportable evaporator system, the CCPU transportable solvent extraction cesium separation system, and the SEP mobile shielded cells for emptying radioactive debris from water-filled silos. Maximum use is made of proven, robust, and compact processing equipment such as centrifugal contactors, remote sampling systems, and cement grout feed and metering devices. Flexible, elastomer-based Hose-in-Hose assemblies and container-based transportable pump booster stations are used in conjunction with these transportable waste processing units for transferring radioactive waste from its source to the processing equipment. (authors)

Phillips, Ch.; Houghton, D.; Crawford, G. [EnergySolutions LLC., 2345 Stevens Drive, Richland, WA (United States)

2008-07-01T23:59:59.000Z

325

Technical support for the Ukrainian State Committee for Nuclear Radiation Safety on specific waste issues  

Science Conference Proceedings (OSTI)

The government of Ukraine, a now-independent former member of the Soviet Union, has asked the United States to assist its State Committee for Nuclear and Radiation Safety (SCNRS) in improving its regulatory control in technical fields for which it has responsibility. The US Nuclear Regulatory Commission (NRC) is providing this assistance in several areas, including management of radioactive waste and spent fuel. Radioactive wastes resulting from nuclear power plant operation, maintenance, and decommissioning must be stored and ultimately disposed of appropriately. In addition, radioactive residue from radioisotopes used in various industrial and medical applications must be managed. The objective of this program is to provide the Ukrainian SCNRS with the information it needs to establish regulatory control over uranium mining and milling activities in the Zheltye Vody (Yellow Waters) area and radioactive waste disposal in the Pripyat (Chernobyl) area among others. The author of this report, head of the Environmental Technology Section, Health Sciences Research Division of Oak Ridge National Laboratory, accompanied NRC staff to Ukraine to meet with SCNRS staff and visit sites in question. The report highlights problems at the sites visited and recommends license conditions that SCNRS can require to enhance safety of handling mining and milling wastes. The author`s responsibility was specifically for the visit to Zheltye Vody and the mining and milling waste sites associated with that facility. An itinerary for the Zheltye Vody portion of the trip is included as Appendix A.

Little, C.A.

1995-07-01T23:59:59.000Z

326

Preliminary characterization of risks in the nuclear waste management system based on information in the literature  

Science Conference Proceedings (OSTI)

This document presents preliminary information on the radiological and nonradiological risks in the nuclear waste management system. The objective of the study was to (1) review the literature containing information on risks in the nuclear waste management system and (2) use this information to develop preliminary estimates of the potential magnitude of these risks. Information was collected on a broad range of risk categories to assist the US Department of Energy (DOE) in communicating information about the risks in the waste management systems. The study examined all of the portions of the nuclear waste management system currently expected to be developed by the DOE. The scope of this document includes the potential repository, the integral MRS facility, and the transportation system that supports the potential repository and the MRS facility. Relevant literature was reviewed for several potential repository sites and geologic media. A wide range of ``risk categories`` are addressed in this report: (1) public and occupational risks from accidents that could release radiological materials, (2) public and occupational radiation exposure resulting from routine operations, (3) public and occupational risks from accidents involving hazards other than radioactive materials, and (4) public and occupational risks from exposure to nonradioactive hazardous materials during routine operations. The report is intended to provide a broad spectrum of risk-related information about the waste management system. This information is intended to be helpful for planning future studies.

Daling, P.M.; Rhoads, R.E.; Van Luick, A.E.; Fecht, B.A.; Nilson, S.A.; Sevigny, N.L. [Pacific Northwest Lab., Richland, WA (United States); Armstrong, G.R. [Westinghouse Hanford Co., Richland, WA (United States); Hill, D.H.; Rowe, M.; Stern, E. [Brookhaven National Lab., Upton, NY (United States)

1992-01-01T23:59:59.000Z

327

West Virginia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

January 12, 2010 January 12, 2010 Training Changing Face of West Virginia's Workforce West Virginia's stimulus funding is expected to spur green jobs and build skills for the future in a state that relies on a nonrenewable energy source -- coal - to employ 35,000 members of its workforce. October 19, 2009 CX-000162: Categorical Exclusion Determination West Virginia State Energy Office CX(s) Applied: A9, A11 Date: 10/19/2009 Location(s): West Virginia Office(s): Energy Efficiency and Renewable Energy, Golden Field Office June 26, 2009 Obama Administration Awards More than $96 Million for State Energy Programs in Ohio, Oregon, Virginia and West Virginia Funding Will Speed Adoption of Efficiency and Renewable Energy Technologies March 26, 2009 Obama Administration Announces Additional $14,003,800 for Local Energy

328

West Virginia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Groundwater Protection Rules Coal Mining Operations (West Virginia) Groundwater Protection Rules Coal Mining Operations (West Virginia) These rules establish a series of practices for the protection of groundwater which are to be followed by any person who conducts coal mining operations subject to the provisions of West Virginia Groundwater Protection Act and subject to regulation under the West Virginia Coal Mining and Reclamation Act and/or under West Virginia Water Pollution Control Act as it relates to coal mining operations. October 16, 2013 Groundwater Protection Plan (West Virginia) Groundwater Protection Plans (GPPs) are required for all facilities having the potential to impact groundwater. They are "preventive maintenance" documents that cover all processes and materials at a facility that "may

329

Functionalized ultra-porous titania nanofiber membranes as nuclear waste separation and sequestration scaffolds for nuclear fuels recycle.  

SciTech Connect

Advanced nuclear fuel cycle concept is interested in reducing separations to a simplified, one-step process if possible. This will benefit from the development of a one-step universal getter and sequestration material so as a simplified, universal waste form was proposed in this project. We have developed a technique combining a modified sol-gel chemistry and electrospinning for producing ultra-porous ceramic nanofiber membranes with controllable diameters and porous structures as the separation/sequestration materials. These ceramic nanofiber materials have been determined to have high porosity, permeability, loading capacity, and stability in extreme conditions. These porous fiber membranes were functionalized with silver nanoparticles and nanocrystal metal organic frameworks (MOFs) to introduce specific sites to capture gas species that are released during spent nuclear fuel reprocessing. Encapsulation into a durable waste form of ceramic composition was also demonstrated.

Liu, Haiqing; Bell, Nelson Simmons; Cipiti, Benjamin B.; Lewis, Tom Goslee,; Sava, Dorina Florentina; Nenoff, Tina Maria

2012-09-01T23:59:59.000Z

330

Integrated data base report--1996: US spent nuclear fuel and radioactive waste inventories, projections, and characteristics  

SciTech Connect

The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and U.S. Department of Energy (DOE) spent nuclear fuel (SNF) and commercial and U.S. government-owned radioactive wastes. Inventories of most of these materials are reported as of the end of fiscal year (FY) 1996, which is September 30, 1996. Commercial SNF and commercial uranium mill tailings inventories are reported on an end-of-calendar year (CY) basis. All SNF and radioactive waste data reported are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest DOE/Energy Information Administration (EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are SNF, high-level waste, transuranic waste, low-level waste, uranium mill tailings, DOE Environmental Restoration Program contaminated environmental media, naturally occurring and accelerator-produced radioactive material, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through FY 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions.

NONE

1997-12-01T23:59:59.000Z

331

Recovery of cesium and palladium from nuclear reactor fuel processing waste  

DOE Patents (OSTI)

A method of recovering cesium and palladium values from nuclear reactor fission product waste solution involves contacting the solution with a source of chloride ions and oxidizing palladium ions present in the solution to precipitate cesium and palladium as Cs.sub.2 PdCl.sub.6.

Campbell, David O. (Oak Ridge, TN)

1976-01-01T23:59:59.000Z

332

Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program FY-99 Status Report  

SciTech Connect

The Low-Activity Waste Process Technology Program at the Idaho Nuclear Technology and Engineering Center (INTEC) anticipates that large volumes of low-level/low-activity wastes will need to be grouted prior to near-surface disposal. During fiscal year 1999, grout formulations were studied for transuranic waste derived from INTEC liquid sodium-bearing waste and for projected newly generated low-level liquid waste. Additional studies were completed on radionuclide leaching, microbial degradation, waste neutralization, and a small mockup for grouting the INTEC underground storage tank residual heels.

Herbst, Alan Keith; Mc Cray, John Alan; Kirkham, Robert John; Pao, Jenn Hai; Hinckley, Steve Harold

1999-10-01T23:59:59.000Z

333

Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program FY-99 Status Report  

SciTech Connect

The Low-Activity Waste Process Technology Program at the Idaho Nuclear Technology and Engineering Center (INTEC) anticipates that large volumes of low-level/low-activity wastes will need to be grouted prior to near-surface disposal. During fiscal year 1999, grout formulations were studied for transuranic waste derived from INTEC liquid sodium-bearing waste and for projected newly generated low-level liquid waste. Additional studies were completed on radionuclide leaching, microbial degradation, waste neutralization, and a small mockup for grouting the INTEC underground storage tank residual heels.

A. K. Herbst; J. A. McCray; R. J. Kirkham; J. Pao; S. H. Hinckley

1999-09-30T23:59:59.000Z

334

Management of radioactive waste from nuclear power plants  

SciTech Connect

Even thought risk assessment is an essential consideration in all projects involving radioactive or hazardous waste, its public role is often unclear, and it is not fully utilized in the decision-making process for public acceptance of such facilities. Risk assessment should be an integral part of such projects and should play an important role from beginning to end, i.e., from planning stages to the closing of a disposal facility. A conceptual model that incorporates all potential pathways of exposure and is based on site-specific conditions is key to a successful risk assessment. A baseline comparison with existing standards determines, along with other factors, whether the disposal site is safe. Risk assessment also plays a role in setting priorities between sites during cleanup actions and in setting cleanup standards for certain contaminants at a site. The applicable technologies and waste disposal designs can be screened through risk assessment.

Not Available

1993-09-01T23:59:59.000Z

335

Nuclear Waste Assessment System for Technical Evaluation (NUWASTE)  

E-Print Network (OSTI)

of depleted uranium within the country. The 15% that emerges as enriched uranium is converted into ceramic (total) 15.51­ 40.75 Depleted uranium reconversion 2.10­6.24 Packaging depleted uranium 0.25­3.11 Sequestration of depleted uranium 0.12­0.35 Sequestration of enrichment waste 0.16­0.44 Sequestration

336

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Virginia profile Virginia profile Virginia total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 3,501 14.5 26,572 36.4 Coal 5,868 24.3 25,459 34.9 Hydro and Pumped Storage 4,107 17.0 10 * Natural Gas 7,581 31.4 16,999 23.3 Other 1 - - 414 0.6 Other Renewable1 621 2.6 2,220 3.0 Petroleum 2,432 10.1 1,293 1.8 Total 24,109 100.0 72,966 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05.

337

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Virginia profile Virginia profile Virginia total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 3,501 14.5 26,572 36.4 Coal 5,868 24.3 25,459 34.9 Hydro and Pumped Storage 4,107 17.0 10 * Natural Gas 7,581 31.4 16,999 23.3 Other 1 - - 414 0.6 Other Renewable1 621 2.6 2,220 3.0 Petroleum 2,432 10.1 1,293 1.8 Total 24,109 100.0 72,966 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05.

338

Virginia Datos del Precio de la Gasolina  

NLE Websites -- All DOE Office Websites (Extended Search)

VirginiaGasPrices.com (Busqueda por Ciudad o Cdigo Postal) - GasBuddy.com Virginia Gas Prices (Ciudades Selectas) - GasBuddy.com Virginia Gas Prices (Organizado por Condado)...

339

Coal Mine Safety Act (Virginia)  

Energy.gov (U.S. Department of Energy (DOE))

This Act is the primary legislation pertaining to coal mine safety in Virginia. It contains information on safety rules, safety standards and required certifications for mine workers, prohibited...

340

Conservation of Water Resources (Virginia)  

Energy.gov (U.S. Department of Energy (DOE))

The State Water Control Board is responsible for formulating and implementing a comprehensive water use policy for the Commonwealth of Virginia. Implemented by the Department of Environmental...

Note: This page contains sample records for the topic "virginia nuclear waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

,"West Virginia Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","West Virginia Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

342

Materials characterization center workshop on the irradiation effects in nuclear waste forms  

SciTech Connect

The Workshop on Irradiation Effects in Nuclear Waste Forms sponsored by the Materials Characterization Center (MCC) brought together experts in radiation damage in materials and waste-management technology to review the problems associated with irradiation effects on waste-form integrity and to evaluate standard methods for generating data to be included in the Nuclear Waste Materials Handbook. The workshop reached the following conclusions: the concept of Standard Test for the Effects of Alpha-Decay in Nuclear Waste Solids, (MCC-6) for evaluating the effects of alpha decay is valid and useful, and as a result of the workshop, modifications to the proposed procedure will be incorpoated in a revised version of MCC-6; the MCC-6 test is not applicable to the evaluation of radiation damage in spent fuel; plutonium-238 is recommended as the dopant for transuranic and defense high-level waste forms, and when high doses are required, as in the case of commercial high-level waste forms, /sup 244/Cm can be used; among the important property changes caused by irradiation are those that lead to greater leachability, and additionally, radiolysis of the leachant may increase leach rates; research is needed in this area; ionization-induced changes in physical properties can be as important as displacement damage in some materials, and a synergism is also likely to exist from the combined effects of ionization and displacement damage; and the effect of changing the temperature and dose rates on property changes induced by radiation damage needs to be determined.

Roberts, F.P.; Turcotte, R.P.; Weber, W.J.

1981-01-01T23:59:59.000Z

343

Calcine Waste Storage at the Idaho Nuclear Technology and Engineering Center  

Science Conference Proceedings (OSTI)

A potential option in the program for long-term management of high-level wastes at the Idaho Nuclear Technology and Engineering Center (INTEC), at the Idaho National Engineering and Environmental Laboratory, calls for retrieving calcine waste and converting it to a more stable and less dispersible form. An inventory of calcine produced during the period December 1963 to May 1999 has been prepared based on calciner run, solids storage facilities operating, and miscellaneous operational information, which gives the range of chemical compositions of calcine waste stored at INTEC. Information researched includes calciner startup data, waste solution analyses and volumes calcined, calciner operating schedules, solids storage bin capacities, calcine storage bin distributor systems, and solids storage bin design and temperature monitoring records. Unique information on calcine solids storage facilities design of potential interest to remote retrieval operators is given.

M. D. Staiger

1999-06-01T23:59:59.000Z

344

Virginia Energy Plan (Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

assesses the state's energy picture through an examination of the state's primary energy sources: electricity, coal, nuclear, natural gas, renewables, and petroleum. The plan...

345

Department of Energy plan for recovery and utilization of nuclear byproducts from defense wastes. Volume 2  

SciTech Connect

Nuclear wastes from the defense production cycle contain many uniquely useful, intrinsically valuable, and strategically important materials. These materials have a wide range of known and potential applications in food technology, agriculture, energy, public health, medicine, industrial technology, and national security. Furthermore, their removal from the nuclear waste stream can facilitate waste management and yield economic, safety, and environmental advantages in the management and disposal of the residual nuclear wastes that have no redemptive value. This document is the program plan for implementing the recovery and beneficial use of these valuable materials. An Executive Summary of this document, DOE/DP-0013, Vol. 1, January 1983, is available. Program policy, goals and strategy are stated in Section 2. Implementation tasks, schedule and funding are detailed in Section 3. The remaining five sections and the appendixes provide necessary background information to support these two sections. Section 4 reviews some of the unique properties of the individual byproduct materials and describes both demonstrated and potential applications. The amounts of byproduct materials that are available now for research and demonstration purposes, and the amounts that could be recovered in the future for expanded applications are detailed in Section 5. Section 6 describes the effects byproduct recovery and utilization have on the management and final disposal of nuclear wastes. The institutional issues that affect the recovery, processing and utilization of nuclear byproducts are discussed in Section 7. Finally, Section 8 presents a generalized mathematical process by which applications can be evaluated and prioritized (rank-ordered) to provide planning data for program management.

1983-08-01T23:59:59.000Z

346

Related Resources - Nuclear Data Program, Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

347

Publications: Other Resources - Nuclear Data Program - Nuclear...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

348

Publications 2005 - Nuclear Data Program - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

349

Publications 2003 - Nuclear Data Program - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

350

Contacts - Nuclear Data Program, Nuclear Engineering Division...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

351

Publications 2001 - Nuclear Data Program - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

352

Publications 2004 - Nuclear Data Program - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

353

Publications 2009 - Nuclear Data Program - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

354

Nuclear Criticality Safety: Current Activities - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

355

Nuclear Criticality Safety - Nuclear Engineering Division (Argonne...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

356

Nuclear Systems Analysis - Nuclear Engineering Division (Argonne...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

357

Publications 2011 - Nuclear Data Program - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

358

DOE Solar Decathlon: Virginia Tech: Perfecting Solar  

NLE Websites -- All DOE Office Websites (Extended Search)

Where Are the Houses Now? Auburn Carnegie Mellon Colorado Crowder Delaware Maryland Puerto Rico Rolla Texas Texas A&M Tuskegee UNC Charlotte Virginia Virginia Tech Quick...

359

West Virginia Shale Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) West Virginia Shale Production (Billion Cubic Feet) West Virginia Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

360

NETL: Science Bowl Information - West Virginia  

NLE Websites -- All DOE Office Websites (Extended Search)

Home > Educational Initiatives > Science Bowl Information > Science Bowl Information - West Virginia Educational Initiatives Science Bowl Information - West Virginia Welcome to the...

Note: This page contains sample records for the topic "virginia nuclear waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Energy Crossroads: Utility Energy Efficiency Programs Virginia...  

NLE Websites -- All DOE Office Websites (Extended Search)

Virginia Energy Crossroads Index Utility Energy Efficiency Programs Index Suggest a Listing Delmarva Power Information for Businesses Dominion Virginia Power Information for...

362

Appendix A U.S. Nuclear Waste Technical Review  

E-Print Network (OSTI)

engineering­transportation by MIT in 1980. From 1976 to 1980, he worked as a project manager and research of Westinghouse Hanford Company. Dr. Arnold was elected to the National Academy of Engineering in 1974 and a Ph.D. in nuclear engineering in 1984. He then worked for Lawrence Livermore National Laboratory

363

Other U.S. Nuclear Waste Technical Review Board Correspondence  

E-Print Network (OSTI)

and scientific validity of ac- tivities undertaken by the Secretary of Energy to characterize Yucca Mountain) and spent nuclear fuel (SNF). The U.S. Department of Energy (DOE) began studying Yucca Mountain features of Yucca Moun- tain led to its selection as a potential repository site: · Yucca Mountain now

364

RADIOACTIVE WASTE MANAGEMENT IN THE CHERNOBYL EXCLUSION ZONE - 25 YEARS SINCE THE CHERNOBYL NUCLEAR POWER PLANT ACCIDENT  

Science Conference Proceedings (OSTI)

Radioactive waste management is an important component of the Chernobyl Nuclear Power Plant accident mitigation and remediation activities of the so-called Chernobyl Exclusion Zone. This article describes the localization and characteristics of the radioactive waste present in the Chernobyl Exclusion Zone and summarizes the pathways and strategy for handling the radioactive waste related problems in Ukraine and the Chernobyl Exclusion Zone, and in particular, the pathways and strategies stipulated by the National Radioactive Waste Management Program. The brief overview of the radioactive waste issues in the ChEZ presented in this article demonstrates that management of radioactive waste resulting from a beyond-designbasis accident at a nuclear power plant becomes the most challenging and the costliest effort during the mitigation and remediation activities. The costs of these activities are so high that the provision of radioactive waste final disposal facilities compliant with existing radiation safety requirements becomes an intolerable burden for the current generation of a single country, Ukraine. The nuclear accident at the Fukushima-1 NPP strongly indicates that accidents at nuclear sites may occur in any, even in a most technologically advanced country, and the Chernobyl experience shows that the scope of the radioactive waste management activities associated with the mitigation of such accidents may exceed the capabilities of a single country. Development of a special international program for broad international cooperation in accident related radioactive waste management activities is required to handle these issues. It would also be reasonable to consider establishment of a dedicated international fund for mitigation of accidents at nuclear sites, specifically, for handling radioactive waste problems in the ChEZ. The experience of handling Chernobyl radioactive waste management issues, including large volumes of radioactive soils and complex structures of fuel containing materials can be fairly useful for the entire world's nuclear community and can help make nuclear energy safer.

Farfan, E.; Jannik, T.

2011-10-01T23:59:59.000Z

365

THERMAL IMPACT OF WASTE EMPLACEMENT AND SURFACE COOLING ASSOCIATED WITH GEOLOGIC DISPOSAL OF NUCLEAR WASTE  

E-Print Network (OSTI)

emplacement in t u f f s . Sandia National Laboratories,e a r waste in s h a l e . Sandia N a t i o n a l L a b o rof a WIPP mine d r i f t . Sandia N a t i o n a l L a b o r

Wang, J.S.Y.

2010-01-01T23:59:59.000Z

366

Disposition of Nuclear Waste Using Subcritical Accelerator-Driven Systems  

SciTech Connect

ATW destroys virtually all the plutonium and higher actinides without reprocessing the spent fuel in a way that could lead to weapons material diversion. An ATW facility consists of three major elements: (1) a high-power proton linear accelerator; (2) a pyrochemical spent fuel treatment i waste cleanup system; (3) a liquid lead-bismuth cooled burner that produces and utilizes an intense source-driven neutron flux for transmutation in a heterogeneous (solid fuel) core. The concept is the result of many years of development at LANL as well as other major international research centers. Once demonstrated and developed, ATW could be an essential part of a global non-proliferation strategy for countries that could build up large quantities of plutonium from their commercial reactor waste. ATW technology, initially proposed in the US, has received wide and rapidly increasing attention abroad, especially in Europe and the Far East with major programs now being planned, organized and tided. Substantial convergence presently exists on the technology choices among the programs, opening the possibility of a strong and effective international collaboration on the phased development of the ATW technology.

Doolen, G.D.; Venneri, F.; Li, N.; Williamson, M.A.; Houts, M.; Lawrence, G.

1998-06-27T23:59:59.000Z

367

Apparatus and method for quantitative assay of generic transuranic wastes from nuclear reactors  

DOE Patents (OSTI)

A combination of passive and active neutron measurements which yields quantitative information about the isotopic composition of transuranic wastes from nuclear power or weapons material manufacture reactors is described. From the measurement of prompt and delayed neutron emission and the incidence of two coincidentally emitted neutrons from induced fission of fissile material in the sample, one can quantify /sup 233/U, /sup 235/U and /sup 239/Pu isotopes in waste samples. Passive coincidence counting, including neutron multiplicity measurement and determination of the overall passive neutron flux additionally enables the separate quantitative evaluation of spontaneous fission isotopes such as /sup 240/Pu, /sup 244/Cm and /sup 252/Cf, and the spontaneous alpha particle emitter /sup 241/Am. These seven isotopes are the most important constituents of wastes from nuclear power reactors and once the mass of each isotope present is determined by the apparatus and method of the instant invention, the overall alpha particle activity can be determined to better than 1 nCi/g from known radioactivity data. Therefore, in addition to the quantitative analysis of the waste sample useful for later reclamation purposes, the alpha particle activity can be determined to decide whether permanent low-level burial is appropriate for the waste sample.

Caldwell, J.T.; Kunz, W.E.; Atencio, J.D.

1982-03-31T23:59:59.000Z

368

Apparatus and method for quantitative assay of generic transuranic wastes from nuclear reactors  

DOE Patents (OSTI)

A combination of passive and active neutron measurements which yields quantitative information about the isotopic composition of transuranic wastes from nuclear power or weapons material manufacture reactors is described. From the measurement of prompt and delayed neutron emission and the incidence of two coincidentally emitted neutrons from induced fission of fissile material in the sample, one can quantify .sup.233 U, .sup.235 U and .sup.239 Pu isotopes in waste samples. Passive coincidence counting, including neutron multiplicity measurement and determination of the overall passive neutron flux additionally enables the separate quantitative evaluation of spontaneous fission isotopes such as .sup.240 Pu, .sup.244 Cm and .sup.252 Cf, and the spontaneous alpha particle emitter .sup.241 Am. These seven isotopes are the most important constituents of wastes from nuclear power reactors and once the mass of each isotope present is determined by the apparatus and method of the instant invention, the overall alpha particle activity can be determined to better than 1 nCi/g from known radioactivity data. Therefore, in addition to the quantitative analysis of the waste sample useful for later reclamation purposes, the alpha particle activity can be determined to decide whether "permanent" low-level burial is appropriate for the waste sample.

Caldwell, John T. (Los Alamos, NM); Kunz, Walter E. (Santa Fe, NM); Atencio, James D. (Los Alamos, NM)

1984-01-01T23:59:59.000Z

369

Nevada Nuclear-Waste-Storage Investigations. Quarterly report, April-June 1982  

SciTech Connect

The Nevada Nuclear Waste Storage Investigations (NNWSI) are studying the Nevada Test Site (NTS) area to establish whether it would qualify as a licensable location for a commercial nuclear waste repository; determining whether specific underground rock masses in the NTS area are technically acceptable for permanently disposing of highly radioactive solid wastes; and developing and demonstrating the capability to safely handle and store commercial spent reactor fuel and high-level waste. Progress reports for the following eight tasks are presented: systems; waste package; site; repository; regulatory and institutional; test facilities; land acquisition; and program management. Some of the highlights are: A code library was established to provide a central location for documentation of repository performance assessment codes. A two-dimensional finite element code, SAGUARO, was developed for modeling saturated/unsaturated groundwater flow. The results of an initial experiment to determine canister penetration rates due to corrosion indicate the expected strong effect of toxic environmental conditions on the corrosion rate of carbon steel in tuff-conditioned water. Wells USW-H3 and USW-H4 at Yucca Mountain have been sampled for groundwater analysis. A summary characterizing and relating the mineralogy and petrology of Yucca Mountain tuffs was compiled from the findings of studies of core samples from five drill holes.

None

1982-09-01T23:59:59.000Z

370

Long-term comparison of dissolution behavior between fully radioactive and simulated nuclear waste glasses  

SciTech Connect

The behavior of radioactive sludge-based and simulated nuclear waste glasses has been compared by long-term testing of radioactive and simulated compositions of Savannah River Laboratory 165, 131, and 200 glasses. Static tests at glass surface area-to-solution volume (SA/V) ratios of 340 and 2000 m[sup [minus]1] up to 720 days show little difference in reactivity between radioactive and simulated waste glasses. The same leach trends are observed for both glass types. The differences in reactivity at an SA/V of 2000 m[sup [minus]1] or below are not large enough to alter the order of glass durability for the different compositions nor to change the controlling glass dissolution processes. The small differences in reactivity between fully radioactive and simulated glasses can reasonably be explained if the controlling reaction process and leachate pH values are accounted for. However, at an SA/V of 20,000 m[sup [minus]1], the simulated nuclear waste glass, 200S, leaches faster than the corresponding radioactive glass by a factor of 40 within 1 yr. The accelerated reaction with the simulated glass 200S is associated with the formation of crystalline phases such as clinoptilolite (or K-feldspar), and a pH excursion. The radiation field generated by the fully radioactive glass reduces the solution pH, which, in turn, may retard the onset of the increased reaction rate. This result suggests that the fully radioactive nuclear waste glass 200R may be substantially more durable than the simulated 200S glass if the lower pH in the 200R leachate can be sustained. Meaningful comparison tests between radioactive and simulated nuclear waste glasses should include long-term and high SA/V tests.

Feng, Xiangdong; Bates, J.K.; Buck, E.C.; Bradley, C.R.; Gong, Meiling (Argonne National Lab., Argonne, IL (United States))

1993-11-01T23:59:59.000Z

371

,"West Virginia Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1: Prices" "Sourcekey","N3050WV3","N3010WV3","N3020WV3","N3035WV3","N3045WV3" "Date","Natural Gas Citygate Price in West Virginia (Dollars per Thousand Cubic Feet)","West Virginia...

372

Environmental Statements, Availability, Etc., Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8679 8679 Thursday June 1, 1995 Part III Department of Energy Environmental Statements, Availability, Etc.; Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs: Notice 28680 Federal Register / Vol. 60, No. 105 / Thursday, June 1, 1995 / Notices DEPARTMENT OF ENERGY Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs AGENCY: Department of Energy. ACTION: Record of decision. SUMMARY: The Department of Energy has issued a Record of Decision on Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs. The Record of Decision includes a Department-wide decision to

373

Integrated data base report--1995: US spent nuclear fuel and radioactive waste inventories, projections, and characteristics  

Science Conference Proceedings (OSTI)

The information in this report summarizes the U.S. Department of Energy (DOE) data base for inventories, projections, and characteristics of domestic spent nuclear fuel and radioactive waste. This report is updated annually to keep abreast of continual waste inventory and projection changes in both the government and commercial sectors. Baseline information is provided for DOE program planning purposes and to support DOE program decisions. Although the primary purpose of this document is to provide background information for program planning within the DOE community, it has also been found useful by state and local governments, the academic community, and some private citizens.

NONE

1996-12-01T23:59:59.000Z

374

Virginia | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Virginia Virginia Last updated on 2013-11-05 Current News BHCD/DHCD workgroups are currently meeting over the next 12+ months for the 2012 USBC/IECC regulatory process, with an anticipated effective date in early 2014. Commercial Residential Code Change Current Code 2009 IECC Amendments / Additional State Code Information Virginia's current code is the 2009 IECC with reference to ASHRAE 90.1-2007. Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Virginia (BECP Report, Sept. 2009) Approximate Energy Efficiency Equivalent to 2009 IECC Effective Date 03/01/2011 Adoption Date 07/26/2010 Code Enforcement Mandatory DOE Determination ASHRAE 90.1-2007: Yes ASHRAE 90.1-2010: No Virginia DOE Determination Letter, May 31, 2013

375

Application of exemption principles to low-level waste disposal and recycle of wastes from nuclear facilities  

Science Conference Proceedings (OSTI)

The International Atomic Energy Agency (IAEA) and other international groups are considering exempting from regulatory control certain radiation sources and practices, initially under the general heading of de minimis. A significant fraction of the wastes from industry, research, medicine, and the nuclear fuel cycle are contaminated to such low levels that the associated risks to health are trivial. IAEA work has been conducted by Advisory Groups to establish principles for exemption, and to apply the principles to various areas of waste management. In the second area, the main objectives have been to illustrate a methodology for developing practical radiological criteria through the application of the IAEA preliminary exemption principles, to establish generic criteria, and to determine the practicability of the preliminary exemption principles. The method used relies on a modeling assessment of the potential radiation exposure pathways and scenarios for individuals and population groups following the unrestricted release of materials. This paper describes the IAEA's assessment methodology and presents the generic results expressed in terms of the limiting activity concentration in municipal waste and in low-activity materials for recycle and reuse. 2 refs., 2 tabs.

Kennedy, W.E. Jr.; Hemming, C.R.; O'Donnell, F.R.; Linsley, G.S.

1988-04-01T23:59:59.000Z

376

Truck and rail charges for shipping spent fuel and nuclear waste  

SciTech Connect

The Pacific Northwest Laboratory developed techniques for calculating estimates of nuclear-waste shipping costs and compiled a listing of representative data that facilitate incorporation of reference shipping costs into varius logistics analyses. The formulas that were developed can be used to estimate costs that will be incurred for shipping spent fuel or nuclear waste by either legal-weight truck or general-freight rail. The basic data for this study were obtained from tariffs of a truck carrier licensed to serve the 48 contiguous states and from various rail freight tariff guides. Also, current transportation regulations as issued by the US Department of Transportation and the Nuclear Regulatory Commission were investigated. The costs that will be incurred for shipping spent fuel and/or nuclear waste, as addressed by the tariff guides, are based on a complex set of conditions involving the shipment origin, route, destination, weight, size, and volume and the frequency of shipments, existing competition, and the length of contracts. While the complexity of these conditions is an important factor in arriving at a ''correct'' cost, deregulation of the transportation industry means that costs are much more subject to negotiation and, thus, the actual fee that will be charged will not be determined until a shipping contract is actually signed. This study is designed to provide the baseline data necessary for making comparisons of the estimated costs of shipping spent fuel and/or nuclear wastes by truck and rail transportation modes. The scope of the work presented in this document is limited to the costs incurred for shipping, and does not include packaging, cask purchase/lease costs, or local fees placed on shipments of radioactive materials.

McNair, G.W.; Cole, B.M.; Cross, R.E.; Votaw, E.F.

1986-06-01T23:59:59.000Z

377

Heat pipe effects in nuclear waste isolation: a review  

SciTech Connect

The existence of fractures favors heat pipe development in a geologic repository as does a partially saturated medium. A number of geologic media are being considered as potential repository sites. Tuff is partially saturated and fractured, basalt and granite are saturated and fractured, salt is unfractured and saturated. Thus the most likely conditions for heat pipe formation occur in tuff while the least likely occur in salt. The relative permeability and capillary pressure dependences on saturation are of critical importance for predicting thermohydraulic behavior around a repository. Mineral redistribution in heat pipe systems near high-level waste packages emplaced in partially saturated formations may significantly affect fluid flow and heat transfer processes, and the chemical environment of the packages. We believe that a combined laboratory, field, and theoretical effort will be needed to identify the relevant physical and chemical processes, and the specific parameters applicable to a particular site. 25 refs., 1 fig.

Doughty, C.; Pruess, K.

1985-12-01T23:59:59.000Z

378

Calcined Waste Storage at the Idaho Nuclear Technology and Engineering Center  

Science Conference Proceedings (OSTI)

This comprehensive report provides definitive volume, mass, and composition (chemical and radioactivity) of calcined waste stored at the Idaho Nuclear Technology and Engineering Center. Calcine composition data are required for regulatory compliance (such as permitting and waste disposal), future treatment of the caline, and shipping the calcine to an off-Site-facility (such as a geologic repository). This report also contains a description of the calcine storage bins. The Calcined Solids Storage Facilities (CSSFs) were designed by different architectural engineering firms and built at different times. Each CSSF has a unique design, reflecting varying design criteria and lessons learned from historical CSSF operation. The varying CSSF design will affect future calcine retrieval processes and equipment. Revision 4 of this report presents refinements and enhancements of calculations concerning the composition, volume, mass, chemical content, and radioactivity of calcined waste produced and stored within the CSSFs. The historical calcine samples are insufficient in number and scope of analysis to fully characterize the entire inventory of calcine in the CSSFs. Sample data exist for all the liquid wastes that were calcined. This report provides calcine composition data based on liquid waste sample analyses, volume of liquid waste calcined, calciner operating data, and CSSF operating data using several large Microsoft Excel (Microsoft 2003) databases and spreadsheets that are collectively called the Historical Processing Model. The calcine composition determined by this method compares favorably with historical calcine sample data.

Staiger, M. Daniel, Swenson, Michael C.

2011-09-01T23:59:59.000Z

379

What are Spent Nuclear Fuel and High-Level Radioactive Waste ?  

Science Conference Proceedings (OSTI)

Spent nuclear fuel and high-level radioactive waste are materials from nuclear power plants and government defense programs. These materials contain highly radioactive elements, such as cesium, strontium, technetium, and neptunium. Some of these elements will remain radioactive for a few years, while others will be radioactive for millions of years. Exposure to such radioactive materials can cause human health problems. Scientists worldwide agree that the safest way to manage these materials is to dispose of them deep underground in what is called a geologic repository.

DOE

2002-12-01T23:59:59.000Z

380

Materials Characterization Center. Second workshop on irradiation effects in nuclear waste forms. Summary report  

SciTech Connect

The purpose of this second workshop on irradiations effects was to continue the discussions initiated at the first workshop and to obtain guidance for the Materials Characterization Center in developing test methods. The following major conclusions were reached: Ion or neutron irradiations are not substitutes for the actinide-doping technique, as described by the MCC-6 Method for Preparation and Characterization of Actinide-Doped Waste Forms, in the final evaluation of any waste form with respect to the radiation effects from actinide decay. Ion or neutron irradiations may be useful for screening tests or more fundamental studies. The use of these simulation techniques as screening tests for actinide decay requires that a correlation between ion or neutron irradiations and actinide decay be established. Such a correlation has not yet been established and experimental programs in this area are highly recommended. There is a need for more fundamental studies on dose-rate effects, temperature dependence, and the nature and importance of alpha-particle effects relative to the recoil nucleus in actinide decay. There are insufficient data presently available to evaluate the potential for damage from ionizing radiation in nuclear waste forms. No additional test methods were recommended for using ion or neutron irradiations to simulate actinide decay or for testing ionization damage in nuclear waste forms. It was recognized that additional test methods may be required and developed as more data become available. An American Society for Testing and Materials (ASTM) Task Group on the Simulation of Radiation Effects in Nuclear Waste Forms (E 10.08.03) was organized to act as a continuing vehicle for discussions and development of procedures, particularly with regard to ion irradiations.

Weber, W.J.; Turcotte, R.P.

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "virginia nuclear waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

West Virginia 1995 Vintage Gas Well History  

U.S. Energy Information Administration (EIA)

West Virginia 1995 Vintage Gas Well History. Energy Information Administration (U.S. Dept. of Energy)

382

West Virginia 1995 Vintage Oil Well History  

U.S. Energy Information Administration (EIA)

West Virginia 1995 Vintage Oil Well History. Energy Information Administration (U.S. Dept. of Energy)

383

Using Single-Camera 3-D Imaging to Guide Material Handling Robots in a Nuclear Waste Package Closure System  

SciTech Connect

Nuclear reactors for generating energy and conducting research have been in operation for more than 50 years, and spent nuclear fuel and associated high-level waste have accumulated in temporary storage. Preparing this spent fuel and nuclear waste for safe and permanent storage in a geological repository involves developing a robotic packaging system—a system that can accommodate waste packages of various sizes and high levels of nuclear radiation. During repository operation, commercial and government-owned spent nuclear fuel and high-level waste will be loaded into casks and shipped to the repository, where these materials will be transferred from the casks into a waste package, sealed, and placed into an underground facility. The waste packages range from 12 to 20 feet in height and four and a half to seven feet in diameter. Closure operations include sealing the waste package and all its associated functions, such as welding lids onto the container, filling the inner container with an inert gas, performing nondestructive examinations on welds, and conducting stress mitigation. The Idaho National Laboratory is designing and constructing a prototype Waste Package Closure System (WPCS). Control of the automated material handling is an important part of the overall design. Waste package lids, welding equipment, and other tools must be moved in and around the closure cell during the closure process. These objects are typically moved from tool racks to a specific position on the waste package to perform a specific function. Periodically, these objects are moved from a tool rack or the waste package to the adjacent glovebox for repair or maintenance. Locating and attaching to these objects with the remote handling system, a gantry robot, in a loosely fixtured environment is necessary for the operation of the closure cell. Reliably directing the remote handling system to pick and place the closure cell equipment within the cell is the major challenge.

Rodney M. Shurtliff

2005-09-01T23:59:59.000Z

384

Long-Term Environmental Monitoring of an Operating Deep Geologic Nuclear Waste Repository  

Science Conference Proceedings (OSTI)

In the present energy dilemma in which we find ourselves, the magnitude of humanity's energy needs requires that we embrace a multitude of various energy sources and applications. Nuclear energy must be a major portion of the distribution. One often-cited strategic hurdle to the commercial production of nuclear energy is the apparent lack of an acceptable nuclear waste repository. This issue has been quietly addressed at the U. S. Department of Energy (DOE) Waste Isolation Pilot Plant (WIPP; see http://www.wipp.energy.gov), the closest population center of significant size being Carlsbad, New Mexico. WIPP has been operating for about nine years, disposing of over 250,000 drum-equivalents of nuclear waste. From the standpoint of addressing operational and environmental risk, as well as public fear, WIPP has had extensive human health and environmental monitoring. The Carlsbad Environmental Monitoring and Research Center is in the Institute for Energy and the Environment, in the College of Engineering at New Mexico State University. Located in Carlsbad, NM, CEMRC has been the independent monitoring facility for the area around WIPP from 1993 to the present, i.e., from six years before disposal operations began to nine years of waste disposal operations (www.cemcr.org). Based on the radiological analyses of monitoring samples completed to date for area residents and site workers, and for selected aerosols, soils, sediments, drinking water and surface waters, there is no evidence of increases in radiological contaminants in the region of WIPP that could be attributed to releases from WIPP. Levels of radiological and non-radiological analytes measured since operations began in 1999 have been within the range of baseline levels measured previously, and are within the ranges measured by other entities at the State and local levels since well before disposal phase operations began in 1999. (authors)

Conca, J.; Kirchner, Th.; Monk, J.; Sage, S. [Carlsbad Environmental Monitoring and Research Center, IEE NMSU, 1400 University Drive, Carlsbad, NM (United States)

2008-07-01T23:59:59.000Z

385

Quantitative assessment of in situ microbial communities affecting nuclear waste disposal  

Science Conference Proceedings (OSTI)

Microbes in the environments surrounding nuclear waste depositories pose several questions regarding the protection of the surrounding communities. microbes can facilitate microbially influenced corrosion (MIC), mobilize and facilitate the transport of nuclides as well as produce gaseous emissions which can compromise containment. We have developed an analysis of the extant microbiota that is independent of quantitative recovery and subsequent growth, based on signature biomarkers analysis (SBA).

White, D.C. [Tennessee Univ., Knoxville, TN (United States)]|[Oak Ridge National Lab., TN (United States)

1996-05-01T23:59:59.000Z

386

Nuclear heat-load limits for above-grade storage of solid transuranium wastes  

SciTech Connect

Nuclear safety and heat load limits were established for above-grade storage of transuranium (TRU) wastes. Nuclear safety limits were obtained from a study by J.L. Forstner and are summarized. Heat load limits are based on temperature calculations for TRU waste drums stored in concrete containers (hats), and results are summarized. Waste already in storage is within these limits. The limiting factors for individual drum heat load limits were (1) avoidance of temperatures in excess of 190/sup 0/F (decomposition temperature of anion resin) when anion resin is present in a concrete hat, and (2) avoidance of temperatures in excess of 450/sup 0/F (ignition temperature of paper) at any point inside a waste drum. The limiting factor for concrete had heat load limits was avoidance of temperatures in excess of 265/sup 0/F (melt point of high density polyethylene) at the drum liners. A temperature profile for drums and hats filled to recommended limits is shown. Equations and assumptions used were conservative.

Clontz, B.G.

1978-06-01T23:59:59.000Z

387

Geochemical modeling of the nuclear-waste repository system. A status report  

Science Conference Proceedings (OSTI)

The primary objective of the geochemical modeling task is to develop an understanding of the waste-repository geochemical system and provide a valuable tool for estimating future states of that system. There currently exists a variety of computer codes which can be used in geochemical modeling studies. Some available codes contain the framework for simulating a natural chemical system and estimating, within limits, the response of that system to environmental changes. By data-base enhancement and code development, this modeling technique can be even more usefully applied to a nuclear-waste repository. In particular, thermodynamic data on elements not presently in the data base but identified as being of particular hazard in the waste-repository system, need to be incorporated into the code to estimate the near-field as well as the far-field reactions during a hypothetical breach. A reaction-path-simulation code, which estimates the products of specific rock/water reactions, has been tested using basalt and ground water. Results show that the mass-transfer capabilities of the code will be useful in chemical-evolution studies and scenario analyses. The purpose of this report is to explain the status of geochemical modeling as it currently applies to the chemical system of a hypothetical nuclear-waste repository in basalt and to present the plan proposed for further developmet and application.

Deutsch, W.J.

1980-12-01T23:59:59.000Z

388

Virginia/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Virginia Virginia Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Virginia Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Virginia No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Virginia No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Virginia No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Virginia Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

389

Forestry Policies (Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Virginia) Virginia) Forestry Policies (Virginia) < Back Eligibility Agricultural Commercial Developer Savings Category Solar Buying & Making Electricity Wind Program Info State Virginia Program Type Environmental Regulations Provider Virginia Department of Forestry Virginia's forests are managed by the Virginia Department of Forestry. In 2010 the Department issued its Statewide Assessment of Forest Resources and Strategic Plan documents: http://www.dof.virginia.gov/info/print/2010-State-Assessment.pdf http://www.dof.virginia.gov/info/print/2010-Strategic-Plan.pdf The Department has also issued a concise reference of the State Forestry Laws: http://www.dof.virginia.gov/resources/pub-2005-Va-Forestry-Laws.pdf State incentives for forest biomass energy are currently limited to the

390

Better Buildings Neighborhood Program: Virginia - SEP  

NLE Websites -- All DOE Office Websites (Extended Search)

Virginia - Virginia - SEP to someone by E-mail Share Better Buildings Neighborhood Program: Virginia - SEP on Facebook Tweet about Better Buildings Neighborhood Program: Virginia - SEP on Twitter Bookmark Better Buildings Neighborhood Program: Virginia - SEP on Google Bookmark Better Buildings Neighborhood Program: Virginia - SEP on Delicious Rank Better Buildings Neighborhood Program: Virginia - SEP on Digg Find More places to share Better Buildings Neighborhood Program: Virginia - SEP on AddThis.com... Better Buildings Residential Network Progress Stories Interviews Videos Events Quick Links to Partner Information AL | AZ | CA | CO | CT FL | GA | IL | IN | LA ME | MD | MA | MI | MO NE | NV | NH | NJ | NY NC | OH | OR | PA | SC TN | TX | VT | VI | VA WA | WI Virginia - SEP Virginia's Regional Energy Alliances Help Forge a State Program for

391

Alternative Fuels Data Center: Virginia Information  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Virginia Information Virginia Information to someone by E-mail Share Alternative Fuels Data Center: Virginia Information on Facebook Tweet about Alternative Fuels Data Center: Virginia Information on Twitter Bookmark Alternative Fuels Data Center: Virginia Information on Google Bookmark Alternative Fuels Data Center: Virginia Information on Delicious Rank Alternative Fuels Data Center: Virginia Information on Digg Find More places to share Alternative Fuels Data Center: Virginia Information on AddThis.com... Virginia Information This state page compiles information related to alternative fuels and advanced vehicles in Virginia and includes new incentives and laws, alternative fueling station locations, truck stop electrification sites, fuel prices, and local points of contact. Select a new state Select a State Alabama Alaska Arizona Arkansas

392

Should high-level nuclear waste be disposed of at geographically dispersed sites?  

SciTech Connect

Consideration of the technical feasibility of Yucca Mountain in Nevada as the site for a high-level nuclear waste repository has led to an intense debate regarding the economic, social, and political impacts of the repository. Impediments to the siting process mean that the nuclear waste problem is being resolved by adhering to the status quo, in which nuclear waste is stored at scattered sites near major population centers. To assess the merits of alternative siting strategies--including both the permanent repository and the status quo- we consider the variables that would be included in a model designed to select (1) the optimal number of disposal facilities, (2) the types of facilities (e.g., permanent repository or monitored retrievable facility), and (3) the geographic location of storage sites. The objective function in the model is an all-inclusive measure of social cost. The intent of the exercise is not to demonstrate the superiority of any single disposal strategy; uncertainties preclude a conclusive proof of optimality for any of the disposal options. Instead, we want to assess the sensitivity of a variety of proposed solutions to variations in the physical, economic, political, and social variables that influence a siting strategy.

Bassett, G.W. Jr. [Chicago Univ., IL (United States). Dept. of Economics; Hemphill, R.; Kohout, E. [Argonne National Lab., IL (United States)

1992-07-01T23:59:59.000Z

393

Numerical study of the thm effects on the near-field safety of a hypothetical nuclear waste repository - bmt1 of the decovalex iii project. part 1: conceptualization and characterization of the problems and summary of results  

E-Print Network (OSTI)

071, Power Reactor and Nuclear Fuel Development Corporation,safety assessment of a nuclear fuel waste repository in aPower Reactor and Nuclear Fuel Development Corporation.

2004-01-01T23:59:59.000Z

394

Application of Direct Assessment Approaches and Methodologies to Cathodically Protected Nuclear Waste Transfer Lines  

SciTech Connect

The U.S. Department of Energy's (DOE) Hanford Site is responsible for the safe storage, retrieval, treatment, and disposal of approximately 54 million gallons (204 million liters) of radioactive waste generated since the site's inception in 1943. Today, the major structures involved in waste management at Hanford include 149 carbon steel single-shell tanks, 28 carbon-steel double-shell tanks, plus a network of buried metallic transfer lines and ancillary systems (pits, vaults, catch tanks, etc.) required to store, retrieve, and transfer waste within the tank farm system. Many of the waste management systems at Hanford are still in use today. In response to uncertainties regarding the structural integrity of these systems,' an independent, comprehensive integrity assessment of the Hanford Site piping system was performed. It was found that regulators do not require the cathodically protected pipelines located within the Hanford Site to be assessed by External Corrosion Direct Assessment (ECDA) or any other method used to ensure integrity. However, a case study is presented discussing the application of the direct assessment process on pipelines in such a nuclear environment. Assessment methodology and assessment results are contained herein. An approach is described for the monitoring, integration of outside data, and analysis of this information in order to identify whether coating deterioration accompanied by external corrosion is a threat for these waste transfer lines.

Dahl, Megan M. [ARES Corporation, Richland, WA (United States); Pikas, Joseph [Schiff Associates, Sugar Land TX (United States); Edgemon, Glenn L. [ARES Corporation, Richland, WA (United States); Philo, Sarah [ARES Corporation, Richland, WA (United States)

2013-01-22T23:59:59.000Z

395

Addendum to the Calcined Waste Storage at the Idaho Nuclear Technology Center  

Science Conference Proceedings (OSTI)

This report is an addendum to the report Calcined Waste Storage at the Idaho Nuclear Technology and Engineering Center, INEEL/EXT-98-00455 Rev. 1, June 2003. The original report provided a summary description of the Calcined Solids Storage Facilities (CSSFs). It also contained dozens of pages of detailed data tables documenting the volume and composition (chemical content and radionuclide activity) of the calcine stored in the CSSFs and the liquid waste from which the calcine was derived. This addendum report compiles the calcine composition data from the original report. It presents the compiled data in a graphical format with units (weight percent, curies per cubic meter, and nanocuries per gram) that are commonly used in regulatory and waste acceptance criteria documents. The compiled data are easier to use and understand when comparing the composition of the calcine with potential regulatory or waste acceptance criteria. This addendum report also provides detailed explanations for the large variability in the calcine composition among the CSSFs. The calcine composition varies as a result of reprocessing different types of fuel that had different cladding materials. Different chemicals were used to dissolve the various types of fuel, extract the uranium, and calcine the resulting waste. This resulted in calcine with variable compositions. This addendum report also identifies a few trace chemicals and radionuclides for which the accuracy of the amounts estimated to be in the calcine could be improved by making adjustments to the assumptions and methods used in making the estimates.

M. D. Staiger; Michael Swenson; T. R. Thomas

2004-05-01T23:59:59.000Z

396

DEVELOPMENT OF CERAMIC WASTE FORMS FOR AN ADVANCED NUCLEAR FUEL CYCLE  

SciTech Connect

A series of ceramic waste forms were developed and characterized for the immobilization of a Cesium/Lanthanide (CS/LN) waste stream anticipated to result from nuclear fuel reprocessing. Simple raw materials, including Al{sub 2}O{sub 3} and TiO{sub 2} were combined with simulated waste components to produce multiphase ceramics containing hollandite-type phases, perovskites (particularly BaTiO{sub 3}), pyrochlores and other minor metal titanate phases. Three fabrication methodologies were used, including melting and crystallizing, pressing and sintering, and Spark Plasma Sintering (SPS), with the intent of studying phase evolution under various sintering conditions. X-Ray Diffraction (XRD) and Scanning Electron Microscopy coupled with Energy Dispersive Spectroscopy (SEM/EDS) results showed that the partitioning of the waste elements in the sintered materials was very similar, despite varying stoichiometry of the phases formed. Identification of excess Al{sub 2}O{sub 3} via XRD and SEM/EDS in the first series of compositions led to a Phase II study, with significantly reduced Al{sub 2}O{sub 3} concentrations and increased waste loadings. The Phase II compositions generally contained a reduced amount of unreacted Al{sub 2}O{sub 3} as identified by XRD. Chemical composition measurements showed no significant issues with meeting the target compositions. However, volatilization of Cs and Mo was identified, particularly during melting, since sintering of the pressed pellets and SPS were performed at lower temperatures. Partitioning of some of the waste components was difficult to determine via XRD. SEM/EDS mapping showed that those elements, which were generally present in small concentrations, were well distributed throughout the waste forms.

Marra, J.; Billings, A.; Brinkman, K.; Fox, K.

2010-11-30T23:59:59.000Z

397

SBOT WEST VIRGINIA NATIONAL ENERGY TECHNOLOGY LAB -WV POC Larry Sullivan  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WEST VIRGINIA WEST VIRGINIA NATIONAL ENERGY TECHNOLOGY LAB -WV POC Larry Sullivan Telephone (412) 386-6115 Email larry.sullivan@netl.doe.gov ADMINISTATIVE / WASTE / REMEDIATION Facilities Support Services 561210 Employment Placement Agencies 561311 Temporary Help Services 561320 Professional Employer Organizations 561330 Document Preparation Services 561410 Security Guards and Patrol Services 561612 Security Systems Services (except Locksmiths) 561621 Janitorial Services 561720 Landscaping Services 561730 Hazardous Waste Treatment and Disposal 562211 Remediation Services 562910 Materials Recovery Facilities 562920 All Other Miscellaneous Waste Management Services 562998 CONSTRUCTION Industrial Building Construction 236210 Commercial and Institutional Building Construction 236220 Power and Communication Line and Related Structures Construction

398

DOE Awards Management and Operating Contract for DOE's Waste Isolation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Management and Operating Contract for DOE's Waste Management and Operating Contract for DOE's Waste Isolation Pilot Plant DOE Awards Management and Operating Contract for DOE's Waste Isolation Pilot Plant April 20, 2012 - 12:00pm Addthis Media Contacts Bill Taylor Environmental Management Consolidated Business Center (803) 952-8564 Deb Gill U.S. DOE Carlsbad Field Office (575) 234-7270 CARLSBAD, N.M. - The U.S. Department of Energy (DOE) announced today that Nuclear Waste Partnership LLC (members comprised of URS Energy & Construction, Inc., of Boise, Idaho, and Babcock & Wilcox Technical Services Group, Inc., of Lynchburg, Virginia, and Major Subcontractor, AREVA Federal Services LLC, of Bethesda, Maryland) has been awarded a $1.3 billion contract for management and operating (M&O) at DOE's Waste

399

State Energy Program Assurances - West Virginia Governor Manchin...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

State Energy Program Assurances - West Virginia Governor Manchin State Energy Program Assurances - West Virginia Governor Manchin Letter from West Virginia Governor Manchin...

400

Virginia's 1st congressional district: Energy Resources | Open...  

Open Energy Info (EERE)

Registered Energy Companies in Virginia's 1st congressional district Delta T Corporation E85 Inc Virginia Biodiesel Refinery Utility Companies in Virginia's 1st congressional...

Note: This page contains sample records for the topic "virginia nuclear waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Virginia's 3rd congressional district: Energy Resources | Open...  

Open Energy Info (EERE)

Virginia. Registered Energy Companies in Virginia's 3rd congressional district EarthCraft Virginia Enviva Materials LLC Ingenco Intrinergy Mead Westaco Retrieved from "http:...

402

Virginia EV Road Show - PHEV Operations and Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

- Virginia EV Road Show - PHEV Operations and Performance Jim Francfort Virginia Clean Cities and Hampton Roads Clean Cities Coalition - Virginia Electric Drive Road Show Poquoson,...

403

MANAGING SPENT NUCLEAR FUEL WASTES AT THE IDAHO NATIONAL LABORATORY  

SciTech Connect

The Idaho National Engineering Laboratory (INL) has a large inventory of diverse types of spent nuclear fuel (SNF). This legacy is in part due to the history of the INL as the National Reactor Testing Station, in part to its mission to recover highly enriched uranium from SNF and in part to it’s mission to test and examine SNF after irradiation. The INL also has a large diversity of SNF storage facility, some dating back 50 years in the site history. The success of the INL SNF program is measured by its ability to: 1) achieve safe existing storage, 2) continue to receive SNF from other locations, both foreign and domestic, 3) repackage SNF from wet storage to interim dry storage, and 4) prepare the SNF for dispositioning in a federal repository. Because of the diversity in the SNF and the facilities at the INL, the INL is addressing almost very condition that may exist in the SNF world. Many of solutions developed by the INL are applicable to other SNF storage sites as they develop their management strategy. The SNF being managed by the INL are in a variety of conditions, from intact assemblies to individual rods or plates to powders, rubble, and metallurgical mounts. Some of the fuel has been in wet storage for over forty years. The fuel is stored bare, or in metal cans and either wet under water or dry in vaults, caissons or casks. Inspections have shown varying degrees of corrosion and degradation of the fuel and the storage cans. Some of the fuel has been recanned under water, and the conditions of the fuel inside the second or third can are unknown. The fuel has been stored in one of 10 different facilities: five wet pools and one casks storage pad, one vault, two generations of caisson facilities, and one modular Independent Spent Fuel Storage Installation (ISFSI). The wet pools range from forty years old to the most modern pool in the US Department of Energy (DOE) complex. The near-term objective is moving the fuel in the older wet storage facilities to interim dry storage facilities, thus permitting the shutdown and decommission of the older facilities. Two wet pool facilities, one at the Idaho Nuclear Technology and Engineering Center and the other at Test Area North, were targeted for initial SNF movements since these were some of the oldest at the INL. Because of the difference in the SNF materials different types of drying processes had to be developed. Passive drying, as is done with typical commercial SNF was not an option because on the condition of some of the fuel, the materials to be dried, and the low heat generation of some of the SNF. There were also size limitations in the existing facility. Active dry stations were designed to address the specific needs of the SNF and the facilities.

Hill, Thomas J

2005-09-01T23:59:59.000Z

404

Electrical and electronic subsystems of a nuclear waste tank annulus inspection system  

SciTech Connect

The nuclear waste tank annulus inspection system is designed specifically for use at the Nuclear Regulatory Commission's Nuclear Fuel Services Facility at West Valley, New York. This system sends a television and photographic camera into the space between the walls of a double-shell nuclear waste tank to obtain images of the inner and outer walls at precisely known locations. The system is capable of inspecting a wall section 14 ft wide by 27 ft high. Due to the high temperature and radiation of the annulus environment, the operating life for the inspection device is uncertain, but is expected to be at least 100 h, with 1000 R/h at 82/sup 0/C. The film camera is shielded with 1/2 in. of lead to minimize radiation fogging of the film during a 25-min picture taking excursion. The operation of the inspection system is semiautomated with remote manual prepositioning of the camera, followed by a computer controlled wall scan. This apparatus is currently set up to take an array of contiguous pictures, but is adaptable to other modes of operation.

Evenson, R.J.

1981-06-01T23:59:59.000Z

405

Virginia Grebasch | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Virginia Grebasch Virginia Grebasch About Us Virginia Grebasch - Counsel to the Inspector General Virginia Grebasch was appointed Counsel to the Inspector General in August, 2012. She provides comprehensive legal advice to the Inspector General and senior leadership, and serves as the primary liaison to Congressional staff. Prior to joining the Office of Inspector General, Ms. Grebasch served for four years as a Senior Assistant Counsel in the Office of General Counsel, U.S. General Services Administration (GSA), where she provided legal advice to the Federal Acquisition Service's Office of Travel and Transportation, the Office of Governmentwide Policy, and the Office of Emergency Response and Recovery. In addition, Ms. Grebasch represented GSA in bid protests of major contracts before the Government Accountability Office. From 1991

406

West Virginia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Underground Injection Control (West Virginia) Underground Injection Control (West Virginia) This rule set forth criteria and standards for the requirements which apply to the State Underground Injection Control Program (U.I.C.). The UIC permit program regulates underground injections by 5 classes of wells. All owners or operators of these injection wells must be authorized either by permit or rule by the Director. October 16, 2013 Underground Gas Storage Reservoirs (West Virginia) Lays out guidelines for the conditions under which coal mining operations must notify state authorities of intentions to mine where underground gas is stored as well as map and data requirements, inspection of facilities and penalties. October 16, 2013 Tax Exemption for Wind Energy Generation In March 2007, West Virginia enacted legislation

407

Geothermal investigations in West Virginia  

DOE Green Energy (OSTI)

Deep sedimentary basins and warm-spring systems in West Virginia are potential geothermal resources. A temperature gradient map based on 800 bottom-hole temperatures for West Virginia shows that variations of temperature gradient trend northeasterly, parallel to regional structure. Highest temperature gradient values of about 28/sup 0/C/km occur in east-central West Virginia, and the lowest gradients (18/sup 0/C/km) are found over the Rome Trough. Results from ground-water geochemistry indicate that the warm waters circulate in very shallow aquifers and are subject to seasonal temperature fluctuations. Silica heat-flow data in West Virginia vary from about 0.89 to 1.4 HFU and generally increase towards the west. Bouguer, magnetic, and temperature gradient profiles suggest that an ancient rift transects the state and is the site of several deep sedimentary basins.

Hendry, R.; Hilfiker, K.; Hodge, D.; Morgan, P.; Swanberg, C.; Shannon, S.S. Jr.

1982-11-01T23:59:59.000Z

408

,"West Virginia Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

New Reservoir Discoveries in Old Fields (Billion Cubic Feet)","West Virginia Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)" 28306,1567,1,76,63,,,97,5,17,124...

409

West Virginia Gasoline Price Data  

NLE Websites -- All DOE Office Websites (Extended Search)

West Virginia Exit Fueleconomy.gov The links below are to pages that are not part of the fueleconomy.gov. We offer these external links for your convenience in accessing additional...

410

West Virginia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June 17, 2010 June 17, 2010 CX-002740: Categorical Exclusion Determination Coal Use By-Product Characterization Lab Decommissioning CX(s) Applied: B3.6 Date: 06/17/2010 Location(s): Morgantown, West Virginia Office(s): Fossil Energy, National Energy Technology Laboratory June 9, 2010 CX-002635: Categorical Exclusion Determination Energy Conservation Measure (ECM) #2: MERC Well Upgrade, National Energy Technology Laboratory Morgantown, West Virginia CX(s) Applied: B5.12 Date: 06/09/2010 Location(s): Morgantown, West Virginia Office(s): Fossil Energy, National Energy Technology Laboratory June 7, 2010 EIS-0445: Notice of Intent to Prepare an Environmental Impact Statement Mountaineer Commercial Scale Carbon Capture and Storage Project, Mason County, West Virginia June 4, 2010

411

Report of the committee to review the use of J-13 well water in Nevada Nuclear Waste Storage Investigations  

SciTech Connect

The Waste Management Project Office of the Department of Energy conducted a special audit of the activities of the Nevada Nuclear Waste Storage Investigation Project at Livermore. It was noted that there never has been a comprehensive, well-documented examination of the basis for the use of J-13 water in the nuclear waste storage investigations. In each of the sections of This Report, an issue relating to the use of J-13 water has been addressed. 58 refs., 19 figs., 8 tabs.

Harrar, J.E.; Carley, J.F.; Isherwood, W.F.; Raber, E.

1990-01-01T23:59:59.000Z

412

Recovery Act State Memos Virginia  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Virginia Virginia For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 5

413

State Nuclear Profiles 2010  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 Virginia Virginia total electric power industry, summer capacity and net generation, by energy source, 2010 Nuclear 3,501 14.5 26,572 36.4 Coal 5,868 24.3 25,459 34.9 Hydro and Pumped Storage 4,107 17.0 10 * Natural Gas 7,581 31.4 16,999 23.3 Other 1 - - 414 0.6 Other Renewable 1 621 2.6 2,220 3.0 Petroleum 2,432 10.1 1,293 1.8 Total 24,109 100.0 72,966 100.0 * = Absolute percentage less than 0.05. - = No data reported. Other Renewable: Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind. Source: Form EIA-860, "Annual Electric Generator Report," and Form EIA-923, "Power Plant Operations Report." Share of State total (percent)

414

State Nuclear Profiles 2010  

Gasoline and Diesel Fuel Update (EIA)

8 8 Virginia Virginia total electric power industry, summer capacity and net generation, by energy source, 2010 Nuclear 3,501 14.5 26,572 36.4 Coal 5,868 24.3 25,459 34.9 Hydro and Pumped Storage 4,107 17.0 10 * Natural Gas 7,581 31.4 16,999 23.3 Other 1 - - 414 0.6 Other Renewable 1 621 2.6 2,220 3.0 Petroleum 2,432 10.1 1,293 1.8 Total 24,109 100.0 72,966 100.0 * = Absolute percentage less than 0.05. - = No data reported. Other Renewable: Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind. Source: Form EIA-860, "Annual Electric Generator Report," and Form EIA-923, "Power Plant Operations Report." Share of State total (percent)

415

A Plan for Nuclear Waste http://www.washingtonpost.com/wp-dyn/content/article/2006/01/29/AR2006012900719_pf.html  

E-Print Network (OSTI)

Mountain in Nevada -- adjacent to the nuclear weapons test site -- was subsequently chosen by CongressA Plan for Nuclear Waste http://www.washingtonpost.com/wp-dyn/content/article/2006/01/29/AR2006012900719_pf.html A Plan for Nuclear Waste By John Deutch and Ernest J. Moniz U.S. policy for managing

Deutch, John

416

Understanding Cement Waste Forms  

Science Conference Proceedings (OSTI)

Oct 29, 2009 ... Ongoing nuclear operations, decontamination and decommissioning, salt waste disposal, and closure of liquid waste tanks result in ...

417

Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program FY-98 Status Report  

SciTech Connect

The Low-Activity Waste Process Technology Program at the Idaho Nuclear Technology and Engineering Center (INTEC) anticipates that large volumes of low-level/low-activity wastes will need to be grouted prior to near-surface disposal. During fiscal year 1998, three grout formulations were studied for low-activity wastes derived from INTEC liquid sodium-bearing waste. Compressive strength and leach results are presented for phosphate bonding cement, acidic grout, and alkaline grout formulations. In an additional study, grout formulations are recommended for stabilization of the INTEC underground storage tank residual heels.

Herbst, Alan Keith; Mc Cray, John Alan; Rogers, Adam Zachary; Simmons, R. F.; Palethorpe, S. J.

1999-03-01T23:59:59.000Z

418

Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program, FY-98 Status Report  

SciTech Connect

The Low-Activity Waste Process Technology Program at the Idaho Nuclear Technology and Engineering Center (INTEC) anticipates that large volumes of low-level/low-activity wastes will need to be grouted prior to near-surface disposal. During fiscal year 1998, three grout formulations were studied for low-activity wastes derived from INTEC liquid sodium-bearing waste. Compressive strength and leach results are presented for phosphate bonding cement, acidic grout, and alkaline grout formulations. In an additional study, grout formulations are recommended for stabilization of the INTEC underground storage tank residual heels.

Herbst, A.K.; Rogers, A.Z.; McCray, J.A.; Simmons, R.F.; Palethorpe, S.J.

1999-03-01T23:59:59.000Z

419

West Virginia/Incentives | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » West Virginia/Incentives < West Virginia Jump to: navigation, search Contents 1 Financial Incentive Programs for West Virginia 2 Rules, Regulations and Policies for West Virginia Download All Financial Incentives and Policies for West Virginia CSV (rows 1 - 62) Financial Incentive Programs for West Virginia Download Financial Incentives for West Virginia CSV (rows 1 - 12) Incentive Incentive Type Active AEP Appalachian Power - Commercial and Industrial Rebate Programs (West Virginia) Utility Rebate Program Yes AEP Appalachian Power - Residential Energy Efficiency Rebate Program (West Virginia) Utility Rebate Program Yes

420

Clean Cities: Virginia Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Virginia Clean Cities Coalition Virginia Clean Cities Coalition The Virginia Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Virginia Clean Cities coalition Contact Information Alleyn Harned 540-568-8896 aharned@vacleancities.org Ryan Cornett 540-568-5586 rcornett@vacleancities.org Coalition Website Clean Cities Coordinators Coord Alleyn Harned Coord Coord Ryan Cornett Coord Photo of Alleyn Harned Alleyn Harned joined Virginia Clean Cities in 2009 and serves as the program coordinator. Harned works from the Virginia Clean Cities partnership at James Madison University, in Harrisonburg, Virginia. Prior to Clean Cities, Harned served as Assistant Secretary of Commerce and Trade in Virginia. Virginia Clean Cities

Note: This page contains sample records for the topic "virginia nuclear waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Nuclear-waste isolation in the unsaturated zone of arid regions  

Science Conference Proceedings (OSTI)

The vadose zone in arid regions is considered as a possible environment for geologic isolation of nuclear waste. There are several topographic and lithologic combinations in the vadose zone of arid regions that may lend themselves to waste isolation considerations. In some cases, topographic highs such as mesas and interbasin ranges - comprised of several rock types, may contain essentially dry or partially saturated conditions favorable for isolation. The adjacent basins, especially in the far western and southwestern US, may have no surface or subsurface hydrologic connections with systems ultimately leading to the ocean. Some rock types may have the favorable characteristics of very low permeability and contain appropriate minerals for the strong chemical retardation of radionuclides. Environments exhibiting these hydrologic and geochemical attributes are the areas underlain by tuffaceous rocks, relatively common in the Basin and Range geomorphic province. Adjacent valley areas, where tuffaceous debris makes up a significant component of valley fill alluvium, may also contain thick zones of unsaturated material, and as such also lend themselves to strong consideration as respository environments. This paper summarizes the aspects of nuclear waste isolation in unsaturated regimes in alluvial-filled valleys and tuffaceous rocks of the Basin and Range province.

Wollenberg, H.A.; Wang, J.S.Y.; Korbin, G.

1982-05-01T23:59:59.000Z

422

Economic impacts of the total nuclear waste management program envisioned for the United States  

SciTech Connect

This paper presents information on the costs of nuclear waste management and on the impacts of those costs on the price of power and on the capital and labor markets. It is assumed that the LWR would be the sole commercial reactor used through the year 2000. Two fuel cycle options are considered: the throwaway mode (spent fuel is waste), and the full recycle for comparison. Total costs are calculated for all facilities needed to store, package, and reposit all the spent fuel through the lifetime of 380 GW capacity installed by 2000 and operating for 30 y. The economic impact is: the price of power produced by the reactors would be increased by 1.4%; the capital for nuclear plants would apply to waste management; the average annual labor effort needed over the next 50 to 75 years is 3000 to 5000 man years; and the unit cost of spent fuel disposal is $129/kg ($119/kg for full recycle). 7 tables. (DLC)

Busch, L.; Zielen, A.J.; Parry, S.J.S.

1978-01-01T23:59:59.000Z

423

Impact of nuclear fuel cycle centers on shipping special nuclear materials and wastes  

SciTech Connect

The impact of integrated nuclear fuel cycle facilities on the transportation sector appears from this admittedly rather narrow study to be of only marginal significance. However, there are other factors which must be taken into account such as nuclear safeguards, economics, and radiological, ecological, institutional, and sociological impacts. Unless more clear-cut advantages can be shown by on-going studies for some of these other considerations, the regimentation and control of industry that would result from the imposition of the integrated fuel cycle facility concept probably could not be justified. (auth)

Blomeke, J.O.

1975-01-01T23:59:59.000Z

424

Waste Classification based on Waste Form Heat Generation in Advanced Nuclear Fuel Cycles Using the Fuel-Cycle Integration and Tradeoffs (FIT) Model  

SciTech Connect

This study explores the impact of wastes generated from potential future fuel cycles and the issues presented by classifying these under current classification criteria, and discusses the possibility of a comprehensive and consistent characteristics-based classification framework based on new waste streams created from advanced fuel cycles. A static mass flow model, Fuel-Cycle Integration and Tradeoffs (FIT), was used to calculate the composition of waste streams resulting from different nuclear fuel cycle choices. This analysis focuses on the impact of waste form heat load on waste classification practices, although classifying by metrics of radiotoxicity, mass, and volume is also possible. The value of separation of heat-generating fission products and actinides in different fuel cycles is discussed. It was shown that the benefits of reducing the short-term fission-product heat load of waste destined for geologic disposal are neglected under the current source-based radioactive waste classification system , and that it is useful to classify waste streams based on how favorable the impact of interim storage is in increasing repository capacity.

Denia Djokic; Steven J. Piet; Layne F. Pincock; Nick R. Soelberg

2013-02-01T23:59:59.000Z

425

Integrated Waste Treatment Facility Fact Sheet | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Management Tank Waste and Waste Processing Integrated Waste Treatment Facility Fact Sheet Integrated Waste Treatment Facility Fact Sheet Waste Management Nuclear...

426

NDAA Section 3116 Waste Determinations with Related Disposal...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NDAA Section 3116 Waste Determinations with Related Disposal Performance Assessments Waste Management Nuclear Materials & Waste Tank Waste and Waste Processing Waste...

427

Land Conservation (Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Land Conservation (Virginia) Land Conservation (Virginia) Land Conservation (Virginia) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Virginia Program Type Siting and Permitting Provider Virginia Department of Conservation and Recreation The Virginia Department of Conservation and Recreation has developed the

428

Categorical Exclusion Determinations: Virginia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Virginia Virginia Categorical Exclusion Determinations: Virginia Location Categorical Exclusion Determinations issued for actions in Virginia. DOCUMENTS AVAILABLE FOR DOWNLOAD September 17, 2013 CX-010951: Categorical Exclusion Determination Automotive Technology Analysis CX(s) Applied: A8 Date: 09/17/2013 Location(s): Virginia Offices(s): National Energy Technology Laboratory September 11, 2013 CX-011027: Categorical Exclusion Determination Injecting Carbon Dioxide into Unconventional Storage Reservoirs in the Central Appalachian Basin... CX(s) Applied: B3.6 Date: 09/11/2013 Location(s): Virginia Offices(s): National Energy Technology Laboratory September 11, 2013 CX-011025: Categorical Exclusion Determination Injecting Carbon Dioxide into Unconventional Storage Reservoirs in the

429

Nevada Nuclear Waste Storage Investigations: Exploratory Shaft Facility fluids and materials evaluation  

Science Conference Proceedings (OSTI)

The objective of this study was to determine if any fluids or materials used in the Exploratory Shaft Facility (ESF) of Yucca Mountain will make the mountain unsuitable for future construction of a nuclear waste repository. Yucca Mountain, an area on and adjacent to the Nevada Test Site in southern Nevada, USA, is a candidate site for permanent disposal of high-level radioactive waste from commercial nuclear power and defense nuclear activities. To properly characterize Yucca Mountain, it will be necessary to construct an underground test facility, in which in situ site characterization tests can be conducted. The candidate repository horizon at Yucca Mountain, however, could potentially be compromised by fluids and materials used in the site characterization tests. To minimize this possibility, Los Alamos National Laboratory was directed to evaluate the kinds of fluids and materials that will be used and their potential impacts on the site. A secondary objective was to identify fluids and materials, if any, that should be prohibited from, or controlled in, the underground. 56 refs., 19 figs., 11 tabs.

West, K.A.

1988-11-01T23:59:59.000Z

430

Status of development of actinide blanket processing flowsheets for accelerator transmutation of nuclear waste  

SciTech Connect

An accelerator-driven subcritical nuclear system is briefly described that transmutes actinides and selected long-lived fission products. An application of this accelerator transmutation of nuclear waste (ATW) concept to spent fuel from a commercial nuclear power plant is presented as an example. The emphasis here is on a possible aqueous processing flowsheet to separate the actinides and selected long-lived fission products from the remaining fission products within the transmutation system. In the proposed system the actinides circulate through the thermal neutron flux as a slurry of oxide particles in heavy water in two loops with different average residence times: one loop for neptunium and plutonium and one for americium and curium. Material from the Np/Pu loop is processed with a short cooling time (5-10 days) because of the need to keep the total actinide inventory, low for this particular ATW application. The high radiation and thermal load from the irradiated material places severe constraints on the separation processes that can be used. The oxide particles are dissolved in nitric acid and a quarternary, ammonium anion exchanger is used to extract neptunium, plutonium, technetium, and palladium. After further cooling (about 90 days), the Am, Cm and higher actinides are extracted using a TALSPEAK-type process. The proposed operations were chosen because they have been successfully tested for processing high-level radioactive fuels or wastes in gram to kilogram quantities.

Dewey, H.J.; Jarvinen, G.D.; Marsh, S.F.; Schroeder, N.C.; Smith, B.F.; Villarreal, R.; Walker, R.B.; Yarbro, S.L.; Yates, M.A.

1993-09-01T23:59:59.000Z

431

Virginia State Energy Profile  

U.S. Energy Information Administration (EIA)

The State’s two nuclear power plants provided 38 percent of the net electricity generation ... Storage : 8,111 million cu ft ... energy demand is distributed fairly ...

432

Evaluation of nuclear facility decommissioning projects: Summary status report: Three Mile Island Unit 2. Radioactive waste and laundry shipments  

SciTech Connect

This document summarizes information concerning radioactive waste and laundry shipments from the Three Mile Island Nuclear Station Unit 2 to radioactive waste disposal sites and to protective clothing decontamination facilities (laundries) since the loss of coolant accident experienced on March 28, 1979. Data were collected from radioactive shipment records, summarized, and placed in a computerized data information retrieval/manipulation system which permits extraction of specific information. This report covers the period of April 9, 1979 through April 19, 1987. Included in this report are: waste disposal site locations, dose rates, curie content, waste description, container type and number, volumes and weights. This information is presented in two major categories: protective clothing (laundry) and radioactive waste. Each of the waste shipment reports is in chronological order.

Doerge, D. H.; Haffner, D. R.

1988-06-01T23:59:59.000Z

433

Surface Water Management Areas (Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Surface Water Management Areas (Virginia) Surface Water Management Areas (Virginia) Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General...

434

Recommendation by the Secretary of Energy Regarding the Suitability of the Yucca Mountain Site for a Repository Under the Nuclear Waste Policy Act of 1982  

Energy.gov (U.S. Department of Energy (DOE))

Recommendation by the Secretary of Energy Regarding the Suitability of the Yucca Mountain Site for a Repository Under the Nuclear Waste Policy Act of 1982

435

Integrated Data Base report--1993: U.S. spent nuclear fuel and radioactive waste inventories, projections, and characteristics. Revision 10  

Science Conference Proceedings (OSTI)

The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and DOE spent nuclear fuel; also, commercial and US government-owned radioactive wastes through December 31, 1993. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest US Department of Energy/Energy Information Administration projections of US commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, DOE Environmental Restoration Program wastes, commercial reactor and fuel-cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given the calendar-year 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal. 256 refs., 38 figs., 141 tabs.

Not Available

1994-12-01T23:59:59.000Z

436

A Characteristics-Based Approach to Radioactive Waste Classification in Advanced Nuclear Fuel Cycles  

E-Print Network (OSTI)

Framework   for   Nuclear   Fuel   Cycle   Concepts,”  Of   Used   Nuclear   Fuel”,   Nuclear  Engineering  and  Radiotoxicity  of  Spent  Nuclear   Fuel,”   Integrated  

Djokic, Denia

2013-01-01T23:59:59.000Z

437

Nevada Nuclear Waste Storage Investigations: exploratory shaft. Phase I. Conceptual design report  

SciTech Connect

It is proposed that an Exploratory Shaft (ES) be constructed in Yucca Mountain on or near the southwest portion of the Nevada Test Site (NTS) as part of the Nevada Nuclear Waste Storage Investigations. This document describes a conceptual design for an ES and a cost estimate based on a set of construction assumptions. Included in this document are appendixes consisting of supporting studies done at NTS by Fenix and Scisson, Inc. and Holmes and Narver, Inc. These appendixes constitute a history of the development of the design and are included as part of the record.

Nelson, D.C.; Merson, T.J.; McGuire, P.L.; Sibbitt, W.L.

1982-06-01T23:59:59.000Z

438

COMMERCIAL SPENT NUCLEAR FUEL ASSEMBLY WASTE VOLUME AND WEIGHT ESTIMATION FOR 63,000 MTU  

Science Conference Proceedings (OSTI)

The purpose of this calculation is to create a high-level estimation of the weights and volume of the commercial spent nuclear fuel (SNF) assemblies, at the time of repository receipt, that will comprise 63,000 metric tons of uranium (MTU) waste. The results of this calculation are for informational purposes only and are not intended to be used as input to design documents. This calculation was prepared in accordance with procedure AP-3.12Q REV 00 ICN 0, Calculations.

B.A. Colton

1999-07-22T23:59:59.000Z

439

Nuclear Energy Advanced Modeling and Simulation (NEAMS) Waste Integrated Performance and Safety Codes (IPSC) : FY10 development and integration.  

SciTech Connect

This report describes the progress in fiscal year 2010 in developing the Waste Integrated Performance and Safety Codes (IPSC) in support of the U.S. Department of Energy (DOE) Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Campaign. The goal of the Waste IPSC is to develop an integrated suite of computational modeling and simulation capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive waste storage or disposal system. The Waste IPSC will provide this simulation capability (1) for a range of disposal concepts, waste form types, engineered repository designs, and geologic settings, (2) for a range of time scales and distances, (3) with appropriate consideration of the inherent uncertainties, and (4) in accordance with robust verification, validation, and software quality requirements. Waste IPSC activities in fiscal year 2010 focused on specifying a challenge problem to demonstrate proof of concept, developing a verification and validation plan, and performing an initial gap analyses to identify candidate codes and tools to support the development and integration of the Waste IPSC. The current Waste IPSC strategy is to acquire and integrate the necessary Waste IPSC capabilities wherever feasible, and develop only those capabilities that cannot be acquired or suitably integrated, verified, or validated. This year-end progress report documents the FY10 status of acquisition, development, and integration of thermal-hydrologic-chemical-mechanical (THCM) code capabilities, frameworks, and enabling tools and infrastructure.

Criscenti, Louise Jacqueline; Sassani, David Carl; Arguello, Jose Guadalupe, Jr.; Dewers, Thomas A.; Bouchard, Julie F.; Edwards, Harold Carter; Freeze, Geoffrey A.; Wang, Yifeng; Schultz, Peter Andrew

2011-02-01T23:59:59.000Z

440

A Characteristics-Based Approach to Radioactive Waste Classification in Advanced Nuclear Fuel Cycles  

E-Print Network (OSTI)

water  reactor   mixed  low-­?level  waste   viii   MOX  includes   mixed   low-­?level   waste   (MLLW)   and  These  include  mixed  low-­?level  wastes  (MLLW),  for  

Djokic, Denia

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "virginia nuclear waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

International Cooperation on Safety of Nuclear Plants - Nuclear...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

442

Current R&D Activities in Nuclear Criticality Safety - Nuclear...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

443

NUCLEAR DATA AND MEASUREMENTS REPORTS 161-180 - Nuclear Data...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

444

Analysis Tools for Nuclear Criticality Safety - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

445

Progress toward bridging from atomistic to continuum modeling to predict nuclear waste glass dissolution.  

SciTech Connect

This report summarizes research performed for the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Subcontinuum and Upscaling Task. The work conducted focused on developing a roadmap to include molecular scale, mechanistic information in continuum-scale models of nuclear waste glass dissolution. This information is derived from molecular-scale modeling efforts that are validated through comparison with experimental data. In addition to developing a master plan to incorporate a subcontinuum mechanistic understanding of glass dissolution into continuum models, methods were developed to generate constitutive dissolution rate expressions from quantum calculations, force field models were selected to generate multicomponent glass structures and gel layers, classical molecular modeling was used to study diffusion through nanopores analogous to those in the interfacial gel layer, and a micro-continuum model (K{mu}C) was developed to study coupled diffusion and reaction at the glass-gel-solution interface.

Zapol, Peter (Argonne National Laboratory, Argonne, IL); Bourg, Ian (Lawrence Berkeley National Laboratories, Berkeley, CA); Criscenti, Louise Jacqueline; Steefel, Carl I. (Lawrence Berkeley National Laboratories, Berkeley, CA); Schultz, Peter Andrew

2011-10-01T23:59:59.000Z

446

Global Nuclear Energy Partnership Fact Sheet - Minimize Nuclear...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Global Nuclear Energy Partnership Fact Sheet - Minimize Nuclear Waste Global Nuclear Energy Partnership Fact Sheet - Minimize Nuclear Waste GNEP will increase the efficiency in the...

447

West Virginia/Geothermal | Open Energy Information  

Open Energy Info (EERE)

West Virginia/Geothermal West Virginia/Geothermal < West Virginia Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF West Virginia Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in West Virginia No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in West Virginia No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in West Virginia No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for West Virginia Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

448

Organization - Nuclear Engineering Division (Argonne)  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

449

Achievements: Nuclear Engineering Division (Argonne)  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

450

Nuclear Power and the Environment  

Reports and Publications (EIA)

This Nuclear Issue Paper discusses Nuclear Plant Wastes, Interactions of Fossil Fuel and Nuclear Power Waste Decisions, and the Environmental Position of Nuclear Power.

2013-05-30T23:59:59.000Z

451

Retail Unbundling - Virginia - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Retail Unbundling - Virginia. Status: The state has begun the process of implementing comprehensive unbundling programs for its residential gas customers.

452

West Virginia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

May 13, 2010 May 13, 2010 CX-002246: Categorical Exclusion Determination Decommission of B4, 112, Atmospheric Cold Flow Laboratory CX(s) Applied: B1.24, B1.27, B1.31 Date: 05/13/2010 Location(s): Morgantown, West Virginia Office(s): Fossil Energy, National Energy Technology Laboratory May 13, 2010 CX-002573: Categorical Exclusion Determination Millsop Community Center Energy Reduction Renovations CX(s) Applied: B2.5, B1.4, B5.1 Date: 05/13/2010 Location(s): Weirton, West Virginia Office(s): Energy Efficiency and Renewable Energy May 10, 2010 CX-002372: Categorical Exclusion Determination Building 17 and 19 Utility Meter Install CX(s) Applied: B1.15, B2.2 Date: 05/10/2010 Location(s): Morgantown, West Virginia Office(s): National Energy Technology Laboratory April 23, 2010 Recycling Energy Yields Super Savings

453

West Virginia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

April 29, 2011 April 29, 2011 CX-005662: Categorical Exclusion Determination The Use of Scrap Tires for Oil Well Stimulation CX(s) Applied: B3.7 Date: 04/29/2011 Location(s): Upper Falls, West Virginia Office(s): Fossil Energy, National Energy Technology Laboratory April 13, 2011 CX-005614: Categorical Exclusion Determination Building 33 Chemical Resistant Flooring Project CX(s) Applied: B1.3 Date: 04/13/2011 Location(s): Morgantown, West Virginia Office(s): Fossil Energy, National Energy Technology Laboratory April 13, 2011 CX-005613: Categorical Exclusion Determination Site-Wide Roadway Replacement CX(s) Applied: B1.3 Date: 04/13/2011 Location(s): Morgantown, West Virginia Office(s): Fossil Energy, National Energy Technology Laboratory April 12, 2011 CX-005607: Categorical Exclusion Determination

454

West Virginia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

April 7, 2010 April 7, 2010 CX-001435: Categorical Exclusion Determination Building 33 Chemical Resistant Flooring Project CX(s) Applied: B1.3 Date: 04/07/2010 Location(s): Morgantown, West Virginia Office(s): Fossil Energy, National Energy Technology Laboratory April 7, 2010 CX-001434: Categorical Exclusion Determination Building 7 Roof Replacement Project CX(s) Applied: B1.3 Date: 04/07/2010 Location(s): Morgantown, West Virginia Office(s): Fossil Energy, National Energy Technology Laboratory April 7, 2010 CX-001433: Categorical Exclusion Determination Site Perimeter Fencing Project CX(s) Applied: B1.3 Date: 04/07/2010 Location(s): Morgantown, West Virginia Office(s): Fossil Energy, National Energy Technology Laboratory April 2, 2010 W.Va. Mom Sees Benefits of Weatherization

455

West Virginia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 8, 2011 September 8, 2011 CX-006741: Categorical Exclusion Determination Information Technology Hub Relocation CX(s) Applied: B1.31 Date: 09/08/2011 Location(s): Morgantown, West Virginia Office(s): Fossil Energy, National Energy Technology Laboratory August 22, 2011 CX-006543: Categorical Exclusion Determination Building 40 New Video Surveillance CX(s) Applied: A11, B1.15, B2.3 Date: 08/22/2011 Location(s): Morgantown, West Virginia Office(s): Fossil Energy, National Energy Technology Laboratory August 12, 2011 CX-006480: Categorical Exclusion Determination Materials Research Laboratory (MRL) CX(s) Applied: B3.6 Date: 08/12/2011 Location(s): Morgantown, West Virginia Office(s): Fossil Energy, National Energy Technology Laboratory August 8, 2011 CX-006464: Categorical Exclusion Determination

456

Virginia Tech | OpenEI  

Open Energy Info (EERE)

Virginia Tech Virginia Tech Dataset Summary Description This project estimates the naturally available and technically recoverable U.S. wave energy resources, using a 51-month Wavewatch III hindcast database developed especially for this study by National Oceanographic and Atmospheric Administration's (NOAA's) National Centers for Environmental Prediction. For total resource estimation, wave power density in terms of kilowatts per meter is aggregated across a unit diameter circle. Source Electric Power Research Institute (EPRI) Date Released December 05th, 2011 (3 years ago) Date Updated Unknown Keywords EPRI MHK NREL ocean Virginia Tech wave wave power density Data application/pdf icon Download Full Report (pdf, 8.8 MiB) Quality Metrics Level of Review Some Review Comment

457

West Virginia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1, 2011 1, 2011 EIS-0445: DOE Notice of Availability of the Draft Environmental Impact Statement Mountaineer Commercial Scale Carbon Capture and Storage Project, Mason County, West Virginia March 4, 2011 EIS-0445: EPA Notice of Availability of the Draft Environmental Impact Statement Mountaineer Commercial Scale Carbon Capture and Storage Project, Mason County, West Virginia March 1, 2011 CX-005336: Categorical Exclusion Determination Materials Synthesis Laboratory Modifications/Additions CX(s) Applied: B3.6 Date: 03/01/2011 Location(s): Morgantown, West Virginia Office(s): Fossil Energy, National Energy Technology Laboratory March 1, 2011 CX-005335: Categorical Exclusion Determination National Energy Technology Laboratory Reciprocating Laboratory Decommissioning CX(s) Applied: B3.6

458

West Virginia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June 28, 2011 June 28, 2011 CX-006117: Categorical Exclusion Determination Flooring Improvements CX(s) Applied: B2.1, B2.5 Date: 06/28/2011 Location(s): Morgantown, West Virginia Office(s): Fossil Energy, National Energy Technology Laboratory June 23, 2011 CX-006129: Categorical Exclusion Determination Optical Sensors Laboratory CX(s) Applied: B3.6 Date: 06/23/2011 Location(s): Morgantown, West Virginia Office(s): Fossil Energy, National Energy Technology Laboratory June 21, 2011 CX-006132: Categorical Exclusion Determination Replacement of Sidewalk Along Collins Ferry Road CX(s) Applied: B1.3 Date: 06/21/2011 Location(s): Morgantown, West Virginia Office(s): Fossil Energy, National Energy Technology Laboratory June 15, 2011 CX-006137: Categorical Exclusion Determination B39 Cellular Repeater Installation

459

West Virginia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

November 30, 2010 November 30, 2010 CX-004582: Categorical Exclusion Determination Re-Utilization of Industrial Carbon Dioxide for Algae Production Using a Phase Change Material CX(s) Applied: A9, A11, B3.6 Date: 11/30/2010 Location(s): Triadelphia, West Virginia Office(s): Fossil Energy, National Energy Technology Laboratory November 18, 2010 CX-004477: Categorical Exclusion Determination Extreme Drilling Laboratory (XDL) CX(s) Applied: B3.6 Date: 11/18/2010 Location(s): Morgantown, West Virginia Office(s): Fossil Energy, National Energy Technology Laboratory November 18, 2010 CX-004470: Categorical Exclusion Determination Relocation of Laboratory on Morgantown Site from B25/102 to B4/112 CX(s) Applied: B3.6 Date: 11/18/2010 Location(s): Morgantown, West Virginia Office(s): Fossil Energy, National Energy Technology Laboratory

460

West Virginia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 19, 2010 March 19, 2010 CX-001303: Categorical Exclusion Determination Morgantown B39, Room B73: New Multi-Media Room Construction CX(s) Applied: B1.15 Date: 03/19/2010 Location(s): Morgantown, West Virginia Office(s): National Energy Technology Laboratory March 19, 2010 CX-001305: Categorical Exclusion Determination Site Wide Upgrade to Metering Software CX(s) Applied: A8 Date: 03/19/2010 Location(s): Morgantown, West Virginia Office(s): National Energy Technology Laboratory March 19, 2010 CX-001304: Categorical Exclusion Determination B3 Hot and Chilled Water Pump Upgrades CX(s) Applied: B1.5 Date: 03/19/2010 Location(s): Morgantown, West Virginia Office(s): National Energy Technology Laboratory March 17, 2010 CX-001327: Categorical Exclusion Determination Design/Construction/Installation of Appliance Technology Evaluation Center

Note: This page contains sample records for the topic "virginia nuclear waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

West Virginia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Dioxide Sequestration (West Virginia) Carbon Dioxide Sequestration (West Virginia) The purpose of this law is to: October 16, 2013 Building Energy Code ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] websites.'' October 16, 2013 Alternative and Renewable Energy Portfolio Standard In June 2009, West Virginia enacted an ''Alternative and Renewable Energy Portfolio Standard'' that requires investor-owned utilities (IOUs)* with more than 30,000 residential customers to supply 25% of retail electric sales from eligible alternative and renewable energy resources by 2025.

462

Assessment of Nuclear Safety Culture at the Idaho Cleanup Project Sodium Bearing Waste Treatment Project, November 2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho Cleanup Project Idaho Cleanup Project Sodium Bearing Waste Treatment Project May 2011 November 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Independent Oversight Assessment of Nuclear Safety Culture at the Idaho Cleanup Project Sodium Bearing Waste Treatment Project Table of Contents 1.0 Introduction........................................................................................................................................... 1 2.0 Scope and Methodology ....................................................................................................................... 2

463

The West Virginia Coal Economy February 2010  

E-Print Network (OSTI)

The West Virginia Coal Economy 2008 February 2010 Prepared By: Bureau of Business and Economic Partial funding for this research was provided by the West Virginia Coal Association. The opinions herein are those of the authors and do not necessarily reflect those of the West Virginia Coal Association, Higher

Mohaghegh, Shahab

464

Polyphase ceramic for consolidating nuclear waste compositions with high Zr-Cd-Na content  

Science Conference Proceedings (OSTI)

The development of dense polyphase tailored ceramic forms for the immobilization of high-level nuclear wastes has been extended to an Idaho Chemical Processing Plant Fluorinel composition. The ceramic was designed to maximize waste loading and subsequent waste volume reduction without sacrificing chemical durability in aqueous environments. The ceramic, fabricated by hot isostatic pressing, consists of four main crystalline phases, calcium fluoride, zirconia, an apatite-structured solid-solution phase, and sphene. The form also contains a designed borosilicate glass phase, a Ni-Cd alloy, and a minor amount of crystalline zircon. The crystalline apatite solid-solution phase is the major host for incorporating the actinide simulants U, Ce, and Y, while the glass phase contains Cs and Sr. The calcium fluoride and sphene phases provide microstructural isolation of the radionuclide-containing phases. Since the glass and crystalline components of the ceramic are not phase compatible at all temperatures, the exact phase content is determined by the tailoring additives, consolidation temperature, and oxidation state control during processing.

Harker, A.B.; Flintoff, J.F. (Rockwell International Corp., Thousand Oaks, CA (USA). Science Center)

1990-07-01T23:59:59.000Z

465

Selected, annotated bibliography of studies relevant to the isolation of nuclear wastes. [705 references  

Science Conference Proceedings (OSTI)

This annotated bibliography of 705 references represents the first in a series to be published by the Ecological Sciences Information Center containing scientific, technical, economic, and regulatory information relevant to nuclear waste isolation. Most references discuss deep geologic disposal, with fewer studies of deep seabed disposal; space disposal is also included. The publication covers both domestic and foreign literature for the period 1954 to 1980. Major chapters selected are Chemical and Physical Aspects; Container Design and Performance; Disposal Site; Envirnmental Transport; General Studies and Reviews; Geology, Hydrology and Site Resources; Regulatory and Economic Aspects; Repository Design and Engineering; Transportation Technology; Waste Production; and Waste Treatment. Specialized data fields have been incorporated to improve the ease and accuracy of locating pertinent references. Specific radionuclides for which data are presented are listed in the Measured Radionuclides field, and specific parameters which affect the migration of these radionuclides are presented in the Measured Parameters field. The references within each chapter are arranged alphabetically by leading author, corporate affiliation, or title of the document. When the author is not given, the corporate affiliation appears first. If these two levels of authorship are not given, the title of the document is used as the identifying level. Indexes are provided for author(s), keywords, subject category, title, geographic location, measured parameters, measured radionuclides, and publication description.

Hyder, L.K.; Fore, C.S.; Vaughan, N.D.; Faust, R.A.

1980-09-01T23:59:59.000Z

466

Selection of candidate canister materials for high-level nuclear waste containment in a tuff repository  

Science Conference Proceedings (OSTI)

A repository located at Yucca Mountain at the Nevada Test Site is a potential site for permanent geological disposal of high-level nuclear waste. The repository can be located in a horizon in welded tuff, a volcanic rock, which is above the static water level at this site. The environmental conditions in this unsaturated zone are expected to be air and water vapor dominated for much of the containment period. Type 304L stainless steel is the reference material for fabricating canisters to contain the solid high-level wastes. Alternative stainless alloys are considered because of possible susceptibility of 304L to localized and stress forms of corrosion. For the reprocessed glass wastes, the canisters serve as the recipient for pouring the glass with the result that a sensitized microstructure may develop because of the times at elevated temperatures. Corrosion testing of the reference and alternative materials has begun in tuff-conditioned water and steam environments. 21 references, 8 figures, 8 tables.

McCright, R.D.; Weiss, H.; Juhas, M.C.; Logan, R.W.

1983-11-01T23:59:59.000Z

467

Recycle of Zirconium from Used Nuclear Fuel Cladding: A Major Element of Waste Reduction  

SciTech Connect

Feasibility tests were initiated to determine if the zirconium in commercial used nuclear fuel (UNF) cladding can be recovered in sufficient purity to permit re-use, and if the recovery process can be operated economically. Initial tests are being performed with unirradiated, non-radioactive samples of various types of Zircaloy materials that are used in UNF cladding to develop the recovery process and determine the degree of purification that can be obtained. Early results indicate that quantitative recovery can be accomplished and product contamination with alloy constituents can be controlled sufficiently to meet purification requirements. Future tests with actual radioactive UNF cladding are planned. The objective of current research is to determine the feasibility of recovery and recycle of zirconium from used fuel cladding wastes. Zircaloy cladding, which contains 98+% of hafnium-free zirconium, is the second largest mass, on average {approx}25 wt %, of the components in used U.S. light-water-reactor fuel assemblies. Therefore, recovery and recycle of t