National Library of Energy BETA

Sample records for virginia nuclear waste

  1. Virginia

    U.S. Energy Information Administration (EIA) Indexed Site

    Virginia

  2. West Virginia

    U.S. Energy Information Administration (EIA) Indexed Site

    Virginia

  3. Virginia Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net ...

  4. Virginia Nuclear Profile - All Fuels

    U.S. Energy Information Administration (EIA) Indexed Site

    components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable." "* Absolute percentage less than 0.05." "- No data reported." ...

  5. Virginia Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal ... Electric & Power Co" "2 Plants 4 Reactors","3,501","26,572",100.0 "Note: ...

  6. Virginia Nuclear Profile - All Fuels

    U.S. Energy Information Administration (EIA) Indexed Site

    total (percent)","Net generation (thousand mwh)","Share of State total (percent)" "Nuclear","3,501",14.5,"26,572",36.4 "Coal","5,868",24.3,"25,459",34.9 "Hydro and Pumped ...

  7. JLab Nuclear Theorist earns Virginia Outstanding Scientist of 2004 Award |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab Nuclear Theorist earns Virginia Outstanding Scientist of 2004 Award Nucleons are composed of a collection of quarks and gluons. Here is an artist's conception of a nucleon illustrated as its three basic quarks surrounded by a sea of quarks and gluons. GPDs will allow physicists to form a much clearer picture of the internal structure of a fast-moving nucleon - a snapshot of this structure at one instant in time. JLab Nuclear Theorist earns Virginia Outstanding Scientist of 2004

  8. Nuclear Waste Partnership, LLC

    Office of Environmental Management (EM)

    Nuclear Waste Partnership, LLC Waste Isolation Pilot Plant Report from the Department of Energy Voluntary Protection Program Onsite Review March 17-27, 2015 U.S. Department of ...

  9. Pioneering Nuclear Waste Disposal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... agen- cies, scientific advisory panels, and concerned citizens. * As a ... It also prohibited the disposal of high-level radioactive waste and spent nuclear fuel. In 1996, ...

  10. Nuclear waste solutions

    DOE Patents [OSTI]

    Walker, Darrel D.; Ebra, Martha A.

    1987-01-01

    High efficiency removal of technetium values from a nuclear waste stream is achieved by addition to the waste stream of a precipitant contributing tetraphenylphosphonium cation, such that a substantial portion of the technetium values are precipitated as an insoluble pertechnetate salt.

  11. Nuclear Waste Challenge | Department of Energy

    Office of Environmental Management (EM)

    Consent-Based Siting Nuclear Waste Challenge Nuclear Waste Challenge Approximate locations of the current sites where spent nuclear fuel and high-level radioactive waste are ...

  12. Chapter 19 - Nuclear Waste Fund

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Waste Fund 19-1 CHAPTER 19 NUCLEAR WASTE FUND 1. INTRODUCTION. a. Purpose. This chapter establishes the financial, accounting, and budget policies and procedures for civilian and defense nuclear waste activities, as authorized in Public Law 97-425, the Nuclear Waste Policy Act, as amended, referred to hereafter as the Act. b. Applicability. This chapter applies to all Departmental elements, including the National Nuclear Security Administration, and activities that are funded by the

  13. Pioneering Nuclear Waste Disposal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PIONEERING NUCLEAR WASTE DISPOSAL U.S. Department of Energy Carlsbad Area Office February 2000 DOE/CAO-00-3124 T h e W a s t e I s o l a t i o n P i l o t P l a n t ii Table of Contents Closing the Circle on Transuranic Waste 1 The Long Road to the WIPP 3 The need for the WIPP The National Academy of Sciences Community leaders suggest Carlsbad as the site for the WIPP Construction of the WIPP The WIPP Land Withdrawal Act Certification by the EPA The National Environmental Policy Act The Resource

  14. Nuclear Waste Policy Act Signed | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    | (NNSA) Waste Policy Act Signed Nuclear Waste Policy Act Signed Washington, DC President Reagan signs the Nuclear Waste Policy Act of 1982, the Nation's first comprehensive nuclear waste legislation

  15. Turning nuclear waste into glass

    SciTech Connect (OSTI)

    Pegg, Ian L.

    2015-02-15

    Vitrification has emerged as the treatment option of choice for the most dangerous radioactive waste. But dealing with the nuclear waste legacy of the Cold War will require state-of-the-art facilities and advanced glass formulations.

  16. Nuclear Waste Policy Act | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Waste Policy Act Nuclear Waste Policy Act Document on the Nuclear Waste Policy Act of 1982 An Act to provide for the development of repositories for the disposal of ...

  17. Global Nuclear Energy Partnership Fact Sheet - Minimize Nuclear Waste |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Minimize Nuclear Waste Global Nuclear Energy Partnership Fact Sheet - Minimize Nuclear Waste GNEP will increase the efficiency in the management of used nuclear fuel, also known as spent fuel, and defer the need for additional geologic nuclear waste repositories until the next century. Global Nuclear Energy Partnership Fact Sheet - Minimize Nuclear Waste (1.2 MB) More Documents & Publications GNEP Element:Develop Enhanced Nuclear Safeguards Global Nuclear Energy

  18. Nuclear waste solidification

    DOE Patents [OSTI]

    Bjorklund, William J.

    1977-01-01

    High level liquid waste solidification is achieved on a continuous basis by atomizing the liquid waste and introducing the atomized liquid waste into a reaction chamber including a fluidized, heated inert bed to effect calcination of the atomized waste and removal of the calcined waste by overflow removal and by attrition and elutriation from the reaction chamber, and feeding additional inert bed particles to the fluidized bed to maintain the inert bed composition.

  19. WIPP - Pioneering Nuclear Waste Disposal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pioneering Nuclear Waste Disposal Cover Page and Table of Contents Closing the Circle The Long Road to WIPP - Part 1 The Long Road to WIPP - Part 2 Looking to the Future Related Reading and The WIPP Team

  20. Virginia - Compare - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Virginia Virginia

  1. Virginia - Rankings - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Virginia Virginia

  2. Virginia - Search - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Virginia Virginia

  3. Pioneering Nuclear Waste Disposal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... The names below are those who were on the team on the day of first waste receipt. The U.S. ... Brannan, David Brewer, Danny Britain, Randy Britain, Stacey Brooks, Susan Brown, Barry ...

  4. Pioneering Nuclear Waste Disposal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    18 19 T he WIPP's first waste receipt, 11 years later than originally planned, was a ... Far from ending, however, the WIPP story has really just begun. For the next 35 years, the ...

  5. Pioneering Nuclear Waste Disposal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    30, 1992 President Bush signs into law the WIPP Land Withdrawal Act, designating the EPA as the WIPP's primary regulator. October 21, 1993 DOE moves radioactive waste tests planned for WIPP to national laboratories. December 9, 1993 DOE creates the Carlsbad Area Office to manage the National Transuranic Waste Program and the WIPP. T h e W a s t e I s o l a t i o n P i l o t P l a n t 12 study was to analyze long-term per- formance of the underground reposito- ry based on information obtained

  6. US nuclear waste may have temporary home

    SciTech Connect (OSTI)

    Kramer, David

    2015-05-15

    Combined developments could break the logjam over disposition of spent nuclear fuel and defense high-level radioactive waste.

  7. Lesson 7 - Waste from Nuclear Power Plants | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7 - Waste from Nuclear Power Plants Lesson 7 - Waste from Nuclear Power Plants This lesson takes a look at the waste from electricity production at nuclear power plants. It considers the different types of waste generated, as well as how we deal with each type of waste. Specific topics covered include: Nuclear Waste Some radioactive Types of radioactive waste Low-level waste High-level waste Disposal and storage Low-level waste disposal Spent fuel storage Waste isolation Reprocessing

  8. Glossary of Nuclear Waste Terms

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Glossary of Nuclear Waste Terms Atom The basic component of all matter; it is the smallest part of an element having all the chemical properties of that element. Atoms are made up of protons and neutrons (in the nucleus) and electronics. Background Radiation Radiation arising from natural radioactive material and always present in the environment, including solar and cosmic radiation and radioactive elements in the upper atmosphere, the ground, building materials and the human body. Canister The

  9. Plasma filtering techniques for nuclear waste remediation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gueroult, Renaud; Hobbs, David T.; Fisch, Nathaniel J.

    2015-04-24

    Nuclear waste cleanup is challenged by the handling of feed stocks that are both unknown and complex. Plasma filtering, operating on dissociated elements, offers advantages over chemical methods in processing such wastes. The costs incurred by plasma mass filtering for nuclear waste pretreatment, before ultimate disposal, are similar to those for chemical pretreatment. However, significant savings might be achieved in minimizing the waste mass. As a result, this advantage may be realized over a large range of chemical waste compositions, thereby addressing the heterogeneity of legacy nuclear waste.

  10. Department of Energy Cites Nuclear Waste Partnership, LLC and...

    Office of Environmental Management (EM)

    Nuclear Waste Partnership, LLC and Los Alamos National Security, LLC for Violations Related to Worker Safety and Health and Nuclear Safety Department of Energy Cites Nuclear Waste ...

  11. Preliminary Notice of Violation, Nuclear Waste Partnership, LLC...

    Office of Environmental Management (EM)

    Nuclear Waste Partnership, LLC Preliminary Notice of Violation, Nuclear Waste Partnership, LLC February 18, 2016 Worker Safety and Health and Nuclear Safety Enforcement Preliminary ...

  12. Bubblers Speed Nuclear Waste Processing at SRS

    ScienceCinema (OSTI)

    None

    2014-08-06

    At the Department of Energy's Savannah River Site, American Recovery and Reinvestment Act funding has supported installation of bubbler technology and related enhancements in the Defense Waste Processing Facility (DWPF). The improvements will accelerate the processing of radioactive waste into a safe, stable form for storage and permit expedited closure of underground waste tanks holding 37 million gallons of liquid nuclear waste.

  13. Bubblers Speed Nuclear Waste Processing at SRS

    SciTech Connect (OSTI)

    2010-11-14

    At the Department of Energy's Savannah River Site, American Recovery and Reinvestment Act funding has supported installation of bubbler technology and related enhancements in the Defense Waste Processing Facility (DWPF). The improvements will accelerate the processing of radioactive waste into a safe, stable form for storage and permit expedited closure of underground waste tanks holding 37 million gallons of liquid nuclear waste.

  14. Uranium immobilization and nuclear waste

    SciTech Connect (OSTI)

    Duffy, C.J.; Ogard, A.E.

    1982-02-01

    Considerable information useful in nuclear waste storage can be gained by studying the conditions of uranium ore deposit formation. Further information can be gained by comparing the chemistry of uranium to nuclear fission products and other radionuclides of concern to nuclear waste disposal. Redox state appears to be the most important variable in controlling uranium solubility, especially at near neutral pH, which is characteristic of most ground water. This is probably also true of neptunium, plutonium, and technetium. Further, redox conditions that immobilize uranium should immobilize these elements. The mechanisms that have produced uranium ore bodies in the Earth's crust are somewhat less clear. At the temperatures of hydrothermal uranium deposits, equilibrium models are probably adequate, aqueous uranium (VI) being reduced and precipitated by interaction with ferrous-iron-bearing oxides and silicates. In lower temperature roll-type uranium deposits, overall equilibrium may not have been achieved. The involvement of sulfate-reducing bacteria in ore-body formation has been postulated, but is uncertain. Reduced sulfur species do, however, appear to be involved in much of the low temperature uranium precipitation. Assessment of the possibility of uranium transport in natural ground water is complicated because the system is generally not in overall equilibrium. For this reason, Eh measurements are of limited value. If a ground water is to be capable of reducing uranium, it must contain ions capable of reducing uranium both thermodynamically and kinetically. At present, the best candidates are reduced sulfur species.

  15. Global Nuclear Energy Partnership Waste Treatment Baseline

    SciTech Connect (OSTI)

    Dirk Gombert; William Ebert; James Marra; Robert Jubin; John Vienna

    2008-05-01

    The Global Nuclear Energy Partnership program (GNEP) is designed to demonstrate a proliferation-resistant and sustainable integrated nuclear fuel cycle that can be commercialized and used internationally. Alternative stabilization concepts for byproducts and waste streams generated by fuel recycling processes were evaluated and a baseline of waste forms was recommended for the safe disposition of waste streams. Waste forms are recommended based on the demonstrated or expected commercial practicability and technical maturity of the processes needed to make the waste forms, and performance of the waste form materials when disposed. Significant issues remain in developing technologies to process some of the wastes into the recommended waste forms, and a detailed analysis of technology readiness and availability may lead to the choice of a different waste form than what is recommended herein. Evolving regulations could also affect the selection of waste forms.

  16. Plasma filtering techniques for nuclear waste remediation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gueroult, Renaud; Hobbs, David T.; Fisch, Nathaniel J.

    2015-04-24

    The economical viability of nuclear waste cleanup e orts could, in some cases, be put at risk due to the difficulties faced in handling unknown and complex feedstocks. Plasma filtering, which operates on dissociated elements, offers advantages over chemical techniques for the processing of such wastes. In this context, the economic feasibility of plasma mass filtering for nuclear waste pretreatment before ultimate disposal is analyzed. Results indicate similar costs for chemical and plasma solid-waste pretreatment per unit mass of waste, but suggest significant savings potential as a result of a superior waste mass minimization. This performance improvement is observed overmore » a large range of waste chemical compositions, representative of legacy waste's heterogeneity. Although smaller, additional savings arise from the absence of a secondary liquid waste stream, as typically produced by chemical techniques.« less

  17. Plasma filtering techniques for nuclear waste remediation

    SciTech Connect (OSTI)

    Gueroult, Renaud; Hobbs, David T.; Fisch, Nathaniel J.

    2015-04-24

    The economical viability of nuclear waste cleanup e orts could, in some cases, be put at risk due to the difficulties faced in handling unknown and complex feedstocks. Plasma filtering, which operates on dissociated elements, offers advantages over chemical techniques for the processing of such wastes. In this context, the economic feasibility of plasma mass filtering for nuclear waste pretreatment before ultimate disposal is analyzed. Results indicate similar costs for chemical and plasma solid-waste pretreatment per unit mass of waste, but suggest significant savings potential as a result of a superior waste mass minimization. This performance improvement is observed over a large range of waste chemical compositions, representative of legacy waste's heterogeneity. Although smaller, additional savings arise from the absence of a secondary liquid waste stream, as typically produced by chemical techniques.

  18. Nuclear Waste Policy Act.doc

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Civilian Radioactive Waste Management Washington, D.C. 20585 March 2004 i THE NUCLEAR WASTE POLICY ACT OF 1982 1 An Act to provide for the development of repositories for the disposal of high-level radioactive waste and spent nuclear fuel, to establish a program of research, development, and demonstration regarding the disposal of high-level radioactive waste and spent nuclear fuel, and for other purposes. Be it enacted by the Senate and House of Representatives of the United States of America

  19. FACT SHEET: The Path Forward on Nuclear Waste Disposal | Department...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FACT SHEET: The Path Forward on Nuclear Waste Disposal FACT SHEET: The Path Forward on Nuclear Waste Disposal FACT SHEET: The Path Forward on Nuclear Waste Disposal More Documents...

  20. EM Shares Waste Isolation Pilot Plant Lessons Learned with Nuclear...

    Office of Environmental Management (EM)

    Shares Waste Isolation Pilot Plant Lessons Learned with Nuclear Energy Agency EM Shares Waste Isolation Pilot Plant Lessons Learned with Nuclear Energy Agency April 14, 2016 - ...

  1. Nuclear Waste Partnership (NWP) Corrective Action Plan - Truck...

    Office of Environmental Management (EM)

    Nuclear Waste Partnership (NWP) Corrective Action Plan - Truck Fire and Radiological ... Corrective Action Plan under Nuclear Waste Partnership LLC Contract DE-EM0001971. ...

  2. Secretarial Determination of the Adequacy of the Nuclear Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Secretarial Determination of the Adequacy of the Nuclear Waste Fund Fee Secretarial Determination of the Adequacy of the Nuclear Waste Fund Fee I adopt and approve the attached ...

  3. Deep Borehole Disposal of Nuclear Waste: Science Needs. (Conference...

    Office of Scientific and Technical Information (OSTI)

    Deep Borehole Disposal of Nuclear Waste: Science Needs. Citation Details In-Document Search Title: Deep Borehole Disposal of Nuclear Waste: Science Needs. Abstract not provided. ...

  4. Deep Borehole Disposal of Nuclear Waste. (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Deep Borehole Disposal of Nuclear Waste. Citation Details In-Document Search Title: Deep Borehole Disposal of Nuclear Waste. Abstract not provided. Authors: Arnold, Bill Walter ;...

  5. Enforcement Notice of Intent to Investigate, Nuclear Waste Partnership...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    issues a Notice of Intent to Investigate potential nuclear safety and worker safety and health programmatic deficiencies at the Waste Isolation Pilot Plant to Nuclear Waste...

  6. The Department of Energy's Nuclear Waste Fund's Fiscal Year 2011...

    Office of Environmental Management (EM)

    The Department of Energy's Nuclear Waste Fund's Fiscal Year 2011 Financial Statements ... on "The Department of Energy's Nuclear Waste Fund's Fiscal Year 2011 Financial ...

  7. Assessment of Nuclear Safety Culture at the Salt Waste Processing...

    Office of Environmental Management (EM)

    Oversight Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility ... of Nuclear Safety Culture at the Salt Waste Processing Facility Project Table of ...

  8. Study Builds Knowledge of Nuclear Waste Glass, Provides Insight...

    Office of Environmental Management (EM)

    Study Builds Knowledge of Nuclear Waste Glass, Provides Insight to Facility Design Study Builds Knowledge of Nuclear Waste Glass, Provides Insight to Facility Design April 14, 2016 ...

  9. Plasma Mass Filters For Nuclear Waste Reprocessing

    SciTech Connect (OSTI)

    Abraham J. Fetterman and Nathaniel J. Fisch

    2011-05-25

    Practical disposal of nuclear waste requires high-throughput separation techniques. The most dangerous part of nuclear waste is the fission product, which contains the most active and mobile radioisotopes and produces most of the heat. We suggest that the fission products could be separated as a group from nuclear waste using plasma mass filters. Plasmabased processes are well suited to separating nuclear waste, because mass rather than chemical properties are used for separation. A single plasma stage can replace several stages of chemical separation, producing separate streams of bulk elements, fission products, and actinoids. The plasma mass filters may have lower cost and produce less auxiliary waste than chemical processing plants. Three rotating plasma configurations are considered that act as mass filters: the plasma centrifuge, the Ohkawa filter, and the asymmetric centrifugal trap.

  10. Plasma Mass Filters For Nuclear Waste Reprocessing

    SciTech Connect (OSTI)

    Abraham J. Fetterman and Nathaniel J. Fisch

    2011-05-26

    Practical disposal of nuclear waste requires high-throughput separation techniques. The most dangerous part of nuclear waste is the fission product, which contains the most active and mobile radioisotopes and produces most of the heat. We suggest that the fission products could be separated as a group from nuclear waste using plasma mass filters. Plasmabased processes are well suited to separating nuclear waste, because mass rather than chemical properties are used for separation. A single plasma stage can replace several stages of chemical separation, producing separate streams of bulk elements, fission products, and actinoids. The plasma mass filters may have lower cost and produce less auxiliary waste than chemical processing plants. Three rotating plasma configurations are considered that act as mass filters: the plasma centrifuge, the Ohkawa filter, and the asymmetric centrifugal trap.

  11. Nuclear Waste Fund Activities Management Team | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Fund Activities Management Team Nuclear Waste Fund Activities Management Team The Nuclear Waste Fund Activities Management Team has responsibility to: Manage the investments and expenditures of the Nuclear Waste Fund; Support correspondence regarding Nuclear Waste Policy Act issues raised by congressional, Inspector General, Government Accounting Office and Freedom of Information Act inquiries; and, Manage the annual fee adequacy assessment process. Applicable Documents Nuclear Waste

  12. Science, society, and America's nuclear waste: Unit 3, The Nuclear Waste Policy Act

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    This is the 3rd unit, (The Nuclear Waste Policy Act) a four-unit secondary curriculum. It is intended to provide information about scientific and societal issues related to the management of spent nuclear fuel from generation of electricity at nuclear powerplants and high-level radioactive waste from US national defense activities. The curriculum, supporting classroom activities, and teaching materials present a brief discussion of energy and electricity generation, including that produced at nuclear powerplants; information on sources, amounts, location, and characteristics of spent nuclear fuel and high-level radioactive waste; sources, types and effects of radiation; US policy for managing and disposing of spent nuclear fuel and high-level radioactive waste and what other countries are doing; and the components of the nuclear waste management system.

  13. Science, society, and America`s nuclear waste: Unit 3, The Nuclear Waste Policy Act

    SciTech Connect (OSTI)

    Not Available

    1992-11-01

    This is the 3rd unit, (The Nuclear Waste Policy Act) a four-unit secondary curriculum. It is intended to provide information about scientific and societal issues related to the management of spent nuclear fuel from generation of electricity at nuclear powerplants and high-level radioactive waste from US national defense activities. The curriculum, supporting classroom activities, and teaching materials present a brief discussion of energy and electricity generation, including that produced at nuclear powerplants; information on sources, amounts, location, and characteristics of spent nuclear fuel and high-level radioactive waste; sources, types and effects of radiation; US policy for managing and disposing of spent nuclear fuel and high-level radioactive waste and what other countries are doing; and the components of the nuclear waste management system.

  14. Science, society, and America's nuclear waste: Unit 3, The Nuclear Waste Policy Act

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    This teachers guide is unit 3, the nuclear waste policy act, in a four-unit secondary curriculum. It is intended to provide information about scientific and societal issues related to the management of spent nuclear fuel from generation of electricity at nuclear powerplants and high-level radioactive waste from US national defense activities. The curriculum, supporting classroom activities, and teaching materials present a brief discussion of energy and electricity generation, including that produced at nuclear power plants; information on sources, amounts, location, and characteristics of spent nuclear fuel and high-level radioactive waste; sources, types and effects of radiation; US policy for managing and disposing of spent nuclear fuel and high-level radioactive waste and what other countries are doing; and the components of the nuclear waste management system.

  15. Nuclear Waste Partnership Contract Modifications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Control Nuclear Verification Challenge: Maintain the U.S. ability to monitor and verify nuclear reduction agreements and detect violations of treaties and other nuclear nonproliferation commitments. Solution: Develop and deploy measures to ensure verifiable compliance with treaties and other international agreements, implement regimes to reduce nuclear weapons, and detect and dismantle undeclared nuclear programs. Specific subprogram activities include: Implementing current and developing future

  16. Removing nuclear waste, one shipment at a time

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Removing nuclear waste, one shipment at a time Removing nuclear waste, one shipment at a time The Lab's 1,000th shipment of transuranic waste recently left Los Alamos, on its way...

  17. Radiation Effects in Nuclear Waste Materials

    SciTech Connect (OSTI)

    Weber, William J.

    2005-09-30

    The objective of this project is to develop a fundamental understanding of radiation effects in glasses and ceramics, as well as the influence of solid-state radiation effects on aqueous dissolution kinetics, which may impact the performance of nuclear waste forms and stabilized nuclear materials. This work provides the underpinning science to develop improved glass and ceramic waste forms for the immobilization and disposition of high-level tank waste, excess plutonium, plutonium residues and scrap, other actinides, and other nuclear waste streams. Furthermore, this work is developing develop predictive models for the performance of nuclear waste forms and stabilized nuclear materials. Thus, the research performed under this project has significant implications for the immobilization of High-Level Waste (HLW) and Nuclear Materials, two mission areas within the Office of Environmental Management (EM). With regard to the HLW mission, this research will lead to improved understanding of radiation-induced degradation mechanisms and their effects on dissolution kinetics, as well as development of predictive models for waste form performance. In the Nuclear Materials mission, this research will lead to improvements in the understanding of radiation effects on the chemical and structural properties of materials for the stabilization and long-term storage of plutonium, highly-enriched uranium, and other actinides. The research uses plutonium incorporation, ion-beam irradiation, and electron-beam irradiation to simulate the effects of alpha decay and beta decay on relevant glasses and ceramics. The research under this project has the potential to result in improved glass and ceramic materials for the stabilization and immobilization of high-level tank waste, plutonium residues and scraps, surplus weapons plutonium, highly-enriched uranium, other actinides, and other radioactive materials.

  18. Radiation Effects in Nuclear Waste Materials

    SciTech Connect (OSTI)

    Weber, William J.

    2005-06-01

    The objective of this project is to develop a fundamental understanding of radiation effects in glasses and ceramics, as well as the influence of solid-state radiation effects on aqueous dissolution kinetics, which may impact the performance of nuclear waste forms and stabilized nuclear materials. This work provides the underpinning science to develop improved glass and ceramic waste forms for the immobilization and disposition of high-level tank waste, excess plutonium, plutonium residues and scrap, other actinides, and other nuclear waste streams. Furthermore, this work is developing develop predictive models for the performance of nuclear waste forms and stabilized nuclear materials. Thus, the research performed under this project has significant implications for the immobilization of High-Level Waste (HLW) and Nuclear Materials, two mission areas within the Office of Environmental Management (EM). With regard to the HLW mission, this research will lead to improved understanding of radiation-induced degradation mechanisms and their effects on dissolution kinetics, as well as development of predictive models for waste form performance. In the Nuclear Materials mission, this research will lead to improvements in the understanding of radiation effects on the chemical and structural properties of materials for the stabilization and long-term storage of plutonium, highly-enriched uranium, and other actinides. The research uses plutonium incorporation, ion-beam irradiation, and electron-beam irradiation to simulate the effects of alpha decay and beta decay on relevant glasses and ceramics. The research under this project has the potential to result in improved glass and ceramic materials for the stabilization and immobilization of high-level tank waste, plutonium residues and scraps, surplus weapons plutonium, highly-enriched uranium, other actinides, and other radioactive materials.

  19. Doing the impossible: Recycling nuclear waste

    ScienceCinema (OSTI)

    None

    2013-04-19

    A Science Channel feature explores how Argonne techniques could be used to safely reduce the amount of radioactive waste generated by nuclear power?the most plentiful carbon-neutral energy source. Read more at http://www.anl.gov/Media_Center/ArgonneNow/Fall_2009/nuclear.html

  20. Nuclear Waste Partnership Contract Modifications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Waste Partnership Contract DE-EM0001971 Modifications NWP Modification Index Description Modification 001 Modification 002 Modification 003 Modification 004 Modification 005...

  1. Nuclear waste package fabricated from concrete

    SciTech Connect (OSTI)

    Pfeiffer, P.A.; Kennedy, J.M.

    1987-03-01

    After the United States enacted the Nuclear Waste Policy Act in 1983, the Department of Energy must design, site, build and operate permanent geologic repositories for high-level nuclear waste. The Department of Energy has recently selected three sites, one being the Hanford Site in the state of Washington. At this particular site, the repository will be located in basalt at a depth of approximately 3000 feet deep. The main concern of this site, is contamination of the groundwater by release of radionuclides from the waste package. The waste package basically has three components: the containment barrier (metal or concrete container, in this study concrete will be considered), the waste form, and other materials (such as packing material, emplacement hole liners, etc.). The containment barriers are the primary waste container structural materials and are intended to provide containment of the nuclear waste up to a thousand years after emplacement. After the containment barriers are breached by groundwater, the packing material (expanding sodium bentonite clay) is expected to provide the primary control of release of radionuclide into the immediate repository environment. The loading conditions on the concrete container (from emplacement to approximately 1000 years), will be twofold; (1) internal heat of the high-level waste which could be up to 400/sup 0/C; (2) external hydrostatic pressure up to 1300 psi after the seepage of groundwater has occurred in the emplacement tunnel. A suggested container is a hollow plain concrete cylinder with both ends capped. 7 refs.

  2. Domestic and international nuclear waste management

    SciTech Connect (OSTI)

    Jones, J.

    1994-12-31

    Passage of the Nuclear Waste Policy Act in 1982, and subsequent 1987 amendments, allowed Congress to establish the plan to manage the nation`s spent nuclear fuel and other high-level radioactive waste. The principal elements in the waste management system include waste acceptance, storage, disposal, and transportation. Interim storage of spent fuel is proposed to be in a Monitored Retrievable Storage facility. The Department has been relying on a voluntary siting processes for the temporary storage of spent fuel. A potential repository site is located at Yucca Mountain, Nevada. Site characterizations are currently being conducted. Underground construction has started for the Exploratory Studies Facility; surface based activities, including drilling and trenching, are currently under way to acquire additional data. The United States is involved in cooperative studies with other countries. Most of these studies emphasize assessment of long-term performance. By participating in international activities, the United States has been involved in transfer of technological developments and information exchange. There are currently over 400 nuclear power reactors operating in 25 countries. Most countries producing electricity with nuclear power plan to dispose of the spent fuel within their own countries. This paper will provide the status of the US program in the storage and disposal of its nuclear waste.

  3. Nuclear waste isolation activities report

    SciTech Connect (OSTI)

    1980-12-01

    Included are: a report from the Deputy Assistant Secretary, a summary of recent events, new literature, a list of upcoming waste management meetings, and background information on DOE`s radwaste management programs. (DLC)

  4. Energy Department and Catholic University Improve Safety of Nuclear Waste

    Office of Energy Efficiency and Renewable Energy (EERE)

    A new waste processing plant in Washington will help to safely remove nuclear and chemical waste, thanks to research from Catholic University.

  5. Nuclear Waste Partnership (NWP) Corrective Action Plan Addendum...

    Office of Environmental Management (EM)

    Addendum Radiological Release Event Phase II Nuclear Waste Partnership (NWP) Corrective ... the underground (UG) repository at the Waste Isolation Pilot Plant (WIPP), which ...

  6. Nuclear Waste Partnership (NWP) Quality Assurance Program Description...

    Office of Environmental Management (EM)

    Waste Partnership (NWP) Quality Assurance Program Description (QAPD) Nuclear Waste Partnership (NWP) Quality Assurance Program Description (QAPD) The documents included in this ...

  7. West Virginia - Compare - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    West Virginia West Virginia

  8. West Virginia - Rankings - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    West Virginia West Virginia

  9. West Virginia - Search - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    West Virginia West Virginia

  10. Radioactive Waste Issues in Major Nuclear Incidents | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Radioactive Waste Issues in Major Nuclear Incidents Radioactive Waste Issues in Major Nuclear Incidents S.Y. Chen*, Illinois Institute of Technology Abstract: Large amounts of radioactive waste had been generated in major nuclear accidents such as the Chernobyl nuclear accident in Ukraine of 1986 and the recent Fukushima nuclear accident in Japan of 2011. The wastes were generated due to the accidental releases of radioactive materials that resulted in widespread contamination throughout the

  11. Deep Borehole Disposal of Nuclear Waste. Arnold, Bill Walter...

    Office of Scientific and Technical Information (OSTI)

    Nuclear Waste. Arnold, Bill Walter; Brady, Patrick Vane. Abstract not provided. Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States) USDOE National Nuclear...

  12. Nuclear waste management. Quarterly progress report, January-March 1980

    SciTech Connect (OSTI)

    Platt, A.M.; Powell, J.A.

    1980-06-01

    Reported are: high-level waste immobilization, alternative waste forms, nuclear waste materials characterization, TRU waste immobilization, TRU waste decontamination, krypton solidification, thermal outgassing, iodine-129 fixation, unsaturated zone transport, well-logging instrumentation development, mobile organic complexes of fission products, waste management system and safety studies, assessment of effectiveness of geologic isolation systems, waste/rock interactions, engineered barriers, criteria for defining waste isolation, and spent fuel and pool component integrity. (DLC)

  13. Nuclear Waste Assessment System for Technical Evaluation (NUWASTE...

    Office of Environmental Management (EM)

    NWTRB www.nwtrb.gov U.S. Nuclear Waste Technical Review Board U.S. Nuclear Waste Technical Review Board: Roles and Priorities Presented by: Nigel Mote, Executive Director, U.S. ...

  14. Department of Energy's Nuclear Waste Fund's Fiscal Year 2012...

    Office of Environmental Management (EM)

    Nuclear Waste Fund's Fiscal Year 2012 Financial Statements OAS-FS-13-05 November 2012 U.S. ... Report on "Department of Energy's Nuclear Waste Fund's Fiscal Year 2012 Financial ...

  15. Department of Energy's Nuclear Waste Fund's Fiscal Year 2014...

    Office of Environmental Management (EM)

    Nuclear Waste Fund's Fiscal Year 2014 Financial Statement Audit OAS-FS-15-03 November 2014 ... Report on "Department of Energy's Nuclear Waste Fund's Fiscal Year 2014 Financial ...

  16. Recovery of fissile materials from nuclear wastes

    DOE Patents [OSTI]

    Forsberg, Charles W.

    1999-01-01

    A process for recovering fissile materials such as uranium, and plutonium, and rare earth elements, from complex waste feed material, and converting the remaining wastes into a waste glass suitable for storage or disposal. The waste feed is mixed with a dissolution glass formed of lead oxide and boron oxide resulting in oxidation, dehalogenation, and dissolution of metal oxides. Carbon is added to remove lead oxide, and a boron oxide fusion melt is produced. The fusion melt is essentially devoid of organic materials and halogens, and is easily and rapidly dissolved in nitric acid. After dissolution, uranium, plutonium and rare earth elements are separated from the acid and recovered by processes such as PUREX or ion exchange. The remaining acid waste stream is vitrified to produce a waste glass suitable for storage or disposal. Potential waste feed materials include plutonium scrap and residue, miscellaneous spent nuclear fuel, and uranium fissile wastes. The initial feed materials may contain mixtures of metals, ceramics, amorphous solids, halides, organic material and other carbon-containing material.

  17. Scientific Solutions to Nuclear Waste Environmental Challenges

    SciTech Connect (OSTI)

    Johnson, Bradley R.

    2014-01-30

    The Hidden Cost of Nuclear Weapons The Cold War arms race drove an intense plutonium production program in the U.S. This campaign produced approximately 100 tons of plutonium over 40 years. The epicenter of plutonium production in the United States was the Hanford site, a 586 square mile reservation owned by the Department of Energy and located on the Colombia River in Southeastern Washington. Plutonium synthesis relied on nuclear reactors to convert uranium to plutonium within the reactor fuel rods. After a sufficient amount of conversion occurred, the rods were removed from the reactor and allowed to cool. They were then dissolved in an acid bath and chemically processed to separate and purify plutonium from the rest of the constituents in the used reactor fuel. The acidic waste was then neutralized using sodium hydroxide and the resulting mixture of liquids and precipitates (small insoluble particles) was stored in huge underground waste tanks. The byproducts of the U.S. plutonium production campaign include over 53 million gallons of high-level radioactive waste stored in 177 large underground tanks at Hanford and another 34 million gallons stored at the Savannah River Site in South Carolina. This legacy nuclear waste represents one of the largest environmental clean-up challenges facing the world today. The nuclear waste in the Hanford tanks is a mixture of liquids and precipitates that have settled into sludge. Some of these tanks are now over 60 years old and a small number of them are leaking radioactive waste into the ground and contaminating the environment. The solution to this nuclear waste challenge is to convert the mixture of solids and liquids into a durable material that won't disperse into the environment and create hazards to the biosphere. What makes this difficult is the fact that the radioactive half-lives of some of the radionuclides in the waste are thousands to millions of years long. (The half-life of a radioactive substance is the amount

  18. Managing America's Defense Nuclear Waste | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Managing America's Defense Nuclear Waste Managing America's Defense Nuclear Waste Managing America's Defense Nuclear Waste (1.1 MB) More Documents & Publications Reorganization of the Office of Energy Efficiency and Renewable Energy: Preliminary Observations National Defense Authorization Act for Fiscal Year 2005, Information Request, Mission & Functions Statement for the Office of Environmental Management

  19. Voluntary Protection Program Onsite Review, Nuclear Waste Partnership, LLC

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - March 2015 | Department of Energy Nuclear Waste Partnership, LLC - March 2015 Voluntary Protection Program Onsite Review, Nuclear Waste Partnership, LLC - March 2015 March 2015 Certification of NWP as a Merit Participant in the Department of Energy Voluntary Protection Program. This report summarizes the results from the evaluation of Nuclear Waste Partnership, LLC (NWP), at the Waste Isolation Pilot Plant in Carlsbad, New Mexico, during the period of March 17-27, 2015, and provides the

  20. International nuclear waste management fact book

    SciTech Connect (OSTI)

    Abrahms, C W; Patridge, M D; Widrig, J E

    1995-11-01

    The International Nuclear Waste Management Fact Book has been compiled to provide current data on fuel cycle and waste management facilities, R and D programs, and key personnel in 24 countries, including the US; four multinational agencies; and 20 nuclear societies. This document, which is in its second year of publication supersedes the previously issued International Nuclear Fuel Cycle Fact Book (PNL-3594), which appeared annually for 12 years. The content has been updated to reflect current information. The Fact Book is organized as follows: National summaries--a section for each country that summarizes nuclear policy, describes organizational relationships, and provides addresses and names of key personnel and information on facilities. International agencies--a section for each of the international agencies that has significant fuel cycle involvement and a list of nuclear societies. Glossary--a list of abbreviations/acronyms of organizations, facilities, and technical and other terms. The national summaries, in addition to the data described above, feature a small map for each country and some general information that is presented from the perspective of the Fact Book user in the US.

  1. Removing nuclear waste, one shipment at a time

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Removing nuclear waste, one shipment at a time Removing nuclear waste, one shipment at a time The Lab's 1,000th shipment of transuranic waste recently left Los Alamos, on its way to a permanent repository near Carlsbad, NM. June 26, 2012 Governor Martinez applauding the 1014th TRU waste shipment New Mexico Governor Susana Martinez and other dignitaries applaud as the 1,014th shipment of transuranic waste leaves Los Alamos National Laboratory. Contact Patti Jones Communications Office (505)

  2. Nuclear Materials: Reconsidering Wastes and Assets - 13193

    SciTech Connect (OSTI)

    Michalske, T.A.

    2013-07-01

    The nuclear industry, both in the commercial and the government sectors, has generated large quantities of material that span the spectrum of usefulness, from highly valuable ('assets') to worthless ('wastes'). In many cases, the decision parameters are clear. Transuranic waste and high level waste, for example, have no value, and is either in a final disposition path today, or - in the case of high level waste - awaiting a policy decision about final disposition. Other materials, though discardable, have intrinsic scientific or market value that may be hidden by the complexity, hazard, or cost of recovery. An informed decision process should acknowledge the asset value, or lack of value, of the complete inventory of materials, and the structure necessary to implement the range of possible options. It is important that informed decisions are made about the asset value for the variety of nuclear materials available. For example, there is a significant quantity of spent fuel available for recycle (an estimated $4 billion value in the Savannah River Site's (SRS) L area alone); in fact, SRS has already blended down more than 300 metric tons of uranium for commercial reactor use. Over 34 metric tons of surplus plutonium is also on a path to be used as commercial fuel. There are other radiological materials that are routinely handled at the site in large quantities that should be viewed as strategically important and / or commercially viable. In some cases, these materials are irreplaceable domestically, and failure to consider their recovery could jeopardize our technological leadership or national defense. The inventories of nuclear materials at SRS that have been characterized as 'waste' include isotopes of plutonium, uranium, americium, and helium. Although planning has been performed to establish the technical and regulatory bases for their discard and disposal, recovery of these materials is both economically attractive and in the national interest. (authors)

  3. Seal welded cast iron nuclear waste container

    DOE Patents [OSTI]

    Filippi, Arthur M.; Sprecace, Richard P.

    1987-01-01

    This invention identifies methods and articles designed to circumvent metallurgical problems associated with hermetically closing an all cast iron nuclear waste package by welding. It involves welding nickel-carbon alloy inserts which are bonded to the mating plug and main body components of the package. The welding inserts might be bonded in place during casting of the package components. When the waste package closure weld is made, the most severe thermal effects of the process are restricted to the nickel-carbon insert material which is far better able to accommodate them than is cast iron. Use of nickel-carbon weld inserts should eliminate any need for pre-weld and post-weld heat treatments which are a problem to apply to nuclear waste packages. Although the waste package closure weld approach described results in a dissimilar metal combination, the relative surface area of nickel-to-iron, their electrochemical relationship, and the presence of graphite in both materials will act to prevent any galvanic corrosion problem.

  4. Waste Stream Analyses for Nuclear Fuel Cycles

    SciTech Connect (OSTI)

    N. R. Soelberg

    2010-08-01

    A high-level study was performed in Fiscal Year 2009 for the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) Advanced Fuel Cycle Initiative (AFCI) to provide information for a range of nuclear fuel cycle options (Wigeland 2009). At that time, some fuel cycle options could not be adequately evaluated since they were not well defined and lacked sufficient information. As a result, five families of these fuel cycle options are being studied during Fiscal Year 2010 by the Systems Analysis Campaign for the DOE NE Fuel Cycle Research and Development (FCRD) program. The quality and completeness of data available to date for the fuel cycle options is insufficient to perform quantitative radioactive waste analyses using recommended metrics. This study has been limited thus far to qualitative analyses of waste streams from the candidate fuel cycle options, because quantitative data for wastes from the front end, fuel fabrication, reactor core structure, and used fuel for these options is generally not yet available.

  5. Extraction of cesium and strontium from nuclear waste

    DOE Patents [OSTI]

    Davis, Jr., Milton W.; Bowers, Jr., Charles B.

    1988-01-01

    Cesium is extracted from acidified nuclear waste by contacting the waste with a bis 4,4'(5) [1-hydroxy-2-ethylhexyl]benzo 18-crown-6 compound and a cation exchanger in a matrix solution. Strontium is extracted from acidified nuclear waste by contacting the waste with a bis 4,4'(5') [1-hydroxyheptyl]cyclohexo 18-crown-6 compound, and a cation exchanger in a matrix solution.

  6. NNWSI [Nevada Nuclear Waste Storage Investigation] strategy for repository licensing

    SciTech Connect (OSTI)

    Plodinec, M.J.

    1987-01-16

    The Nevada Nuclear Waste Storage Investigation (NNWSI) has developed a strategy to license a nuclear waste repository in tuff. This strategy, which is currently circulating in draft form within the Department of Energy`s Office of Civilian Radioactive Waste Management, has important implications for DWPF waste form qualification activities, design of the DWPF process, and DWPF operations. In this report, the strategy and its implications for the DWPF are presented. 2 refs.

  7. Extraction of cesium and strontium from nuclear waste

    DOE Patents [OSTI]

    Davis, M.W. Jr.; Bowers, C.B. Jr.

    1988-06-07

    Cesium is extracted from acidified nuclear waste by contacting the waste with a bis 4,4[prime](5) [1-hydroxy-2-ethylhexyl]benzo 18-crown-6 compound and a cation exchanger in a matrix solution. Strontium is extracted from acidified nuclear waste by contacting the waste with a bis 4,4[prime](5[prime]) [1-hydroxyheptyl]cyclohexo 18-crown-6 compound, and a cation exchanger in a matrix solution. 3 figs.

  8. Nuclear Waste Partnership (NWP) Corrective Action Plan - Truck Fire and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Radiological Release Phase I | Department of Energy - Truck Fire and Radiological Release Phase I Nuclear Waste Partnership (NWP) Corrective Action Plan - Truck Fire and Radiological Release Phase I Submittal of the Underground Salt Haul Truck Fire Corrective Action Plan and the Radiological Release Event Corrective Action Plan under Nuclear Waste Partnership LLC Contract DE-EM0001971. Nuclear Waste Partnership (NWP) Corrective Action Plan - Truck Fire and Radiological Release Phase I (4.46

  9. Voluntary Protection Program Onsite Review, Nuclear Waste Partnership...

    Broader source: Energy.gov (indexed) [DOE]

    Certification of NWP as a Merit Participant in the Department of Energy Voluntary Protection Program. This report summarizes the results from the evaluation of Nuclear Waste ...

  10. Nuclear Waste Program Quarterly Report July 1, 2003 - September...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ecology's Perspective on the Draft TC & WM EIS Suzanne Dahl Nuclear Waste Program Washington State Department of Ecology Topics Decisions the Draft EIS supports Cooperating ...

  11. Sandia Energy - Study Could Help Improve Nuclear Waste Repositories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    underground clay formations for nuclear waste disposal, because clay offers low permeability and high radionuclide retention. Even when a repository isn't sited in clay,...

  12. Read More About Nuclear Waste Management | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste Blue Ribbon Commission on America's Nuclear Future Report to the Secretary of Energy ...

  13. Science, society, and America`s nuclear waste: Unit 3, The Nuclear Waste Policy Act. Teacher guide

    SciTech Connect (OSTI)

    Not Available

    1992-11-01

    This teachers guide is unit 3, the nuclear waste policy act, in a four-unit secondary curriculum. It is intended to provide information about scientific and societal issues related to the management of spent nuclear fuel from generation of electricity at nuclear powerplants and high-level radioactive waste from US national defense activities. The curriculum, supporting classroom activities, and teaching materials present a brief discussion of energy and electricity generation, including that produced at nuclear power plants; information on sources, amounts, location, and characteristics of spent nuclear fuel and high-level radioactive waste; sources, types and effects of radiation; US policy for managing and disposing of spent nuclear fuel and high-level radioactive waste and what other countries are doing; and the components of the nuclear waste management system.

  14. Liquid centrifugation for nuclear waste partitioning

    SciTech Connect (OSTI)

    Bowman, C.D.

    1992-03-11

    The performance of liquid centrifugation for nuclear waste partitioning is examined for the Accelerator Transmutation of Waste Program currently under study at the Los Alamos National Laboratory. Centrifugation might have application for the separation of the LiF-BeF{sub 2} salt from heavier radioactive materials fission product and actinides in the separation of fission product from actinides, in the isotope separation of fission-product cesium before transmutation of the {sup 137}Cs and {sup 135}Cs, and in the removal of spallation product from the liquid lead target. It is found that useful chemical separations should be possible using existing materials for the centrifuge construction for all four cases with the actinide fraction in fission product perhaps as low as 1 part in 10{sup 7} and the fraction of {sup 137}CS in {sup 133}Cs being as low as a few parts in 10{sup 5}. A centrifuge cascade has the advantage that it can be assembled and operated as a completely closed system without a waste stream except that associated with maintenance or replacement of centrifuge components.

  15. WIPP Uses Recovery Act Funding to Reduce Nuclear Waste Footprint

    Broader source: Energy.gov [DOE]

    CARLSBAD, N.M., August 1, 2011 – The U.S. Department of Energy’s (DOE’s) Carlsbad Field Office (CBFO) reduced the nuclear waste footprint by using American Recovery and Reinvestment Act funds to expedite the clean up of five transuranic (TRU) waste storage sites and to make important infrastructure improvements at the Waste Isolation Pilot Plant (WIPP).

  16. Prince William County, Virginia: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Virginia Gainesville, Virginia Haymarket, Virginia Lake Ridge, Virginia Linton Hall, Virginia Loch Lomond, Virginia Montclair, Virginia Nokesville, Virginia Occoquan,...

  17. Fairfax County, Virginia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Franconia, Virginia Great Falls, Virginia Groveton, Virginia Herndon, Virginia Huntington, Virginia Hybla Valley, Virginia Idylwood, Virginia Jefferson, Virginia Lake...

  18. Whats Next for Nuclear Waste

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WHAT'S NEXT FOR NUCLEAR WASTE? A New Strategy for the CSRA September 2009 PREFACE This White Paper was prepared by the Savannah River Site Community Reuse Organization (SRSCRO) to serve as a catalyst for public dialog concerning the implications of the Obama Administration's decision to halt more than two decades of work on Yucca Mountain in Nevada as the nation's permanent nuclear waste repository. United States policies governing the permanent disposal of high level waste are defined by the

  19. Nuclear waste vitrification efficiency: cold cap reactions

    SciTech Connect (OSTI)

    Hrma, Pavel R.; Kruger, Albert A.; Pokorny, Richard

    2012-12-15

    The cost and schedule of nuclear waste treatment and immobilization are greatly affected by the rate of glass production. Various factors influence the performance of a waste-glass melter. One of the most significant, and also one of the least understood, is the process of batch melting. Studies are being conducted to gain fundamental understanding of the batch reactions, particularly those that influence the rate of melting, and models are being developed to link batch makeup and melter operation to the melting rate. Batch melting takes place within the cold cap, i.e., a batch layer floating on the surface of molten glass. The conversion of batch to glass consists of various chemical reactions, phase transitions, and diffusion-controlled processes. These include water evaporation (slurry feed contains as high as 60% water), gas evolution, the melting of salts, the formation of borate melt, reactions of borate melt with molten salts and with amorphous oxides (Fe2O3 and Al2O3), the formation of intermediate crystalline phases, the formation of a continuous glass-forming melt, the growth and collapse of primary foam, and the dissolution of residual solids. To this list we also need to add the formation of secondary foam that originates from molten glass but accumulates on the bottom of the cold cap. This study presents relevant data obtained for a high-level-waste melter feed and introduces a one-dimensional (1D) mathematical model of the cold cap as a step toward an advanced three-dimensional (3D) version for a complete model of the waste glass melter. The 1D model describes the batch-to-glass conversion within the cold cap as it progresses in a vertical direction. With constitutive equations and key parameters based on measured data, and simplified boundary conditions on the cold-cap interfaces with the glass melt and the plenum space of the melter, the model provides sensitivity analysis of the response of the cold cap to the batch makeup and melter conditions

  20. NUCLEAR WASTE VITRIFICATION EFFICIENCY COLD CAP REACTIONS

    SciTech Connect (OSTI)

    KRUGER AA; HRMA PR; POKORNY R

    2011-07-29

    The cost and schedule of nuclear waste treatment and immobilization are greatly affected by the rate of glass production. Various factors influence the performance of a waste-glass melter. One of the most significant, and also one of the least understood, is the process of batch melting. Studies are being conducted to gain fundamental understanding of the batch reactions, particularly those that influence the rate of melting, and models are being developed to link batch makeup and melter operation to the melting rate. Batch melting takes place within the cold cap, i.e., a batch layer floating on the surface of molten glass. The conversion of batch to glass consists of various chemical reactions, phase transitions, and diffusion-controlled processes. These include water evaporation (slurry feed contains as high as 60% water), gas evolution, the melting of salts, the formation of borate melt, reactions of borate melt with molten salts and with amorphous oxides (Fe{sub 2}O{sub 3} and Al{sub 2}O{sub 3}), the formation of intermediate crystalline phases, the formation of a continuous glass-forming melt, the growth and collapse of primary foam, and the dissolution of residual solids. To this list we also need to add the formation of secondary foam that originates from molten glass but accumulates on the bottom of the cold cap. This study presents relevant data obtained for a high-level-waste melter feed and introduces a one-dimensional (1D) mathematical model of the cold cap as a step toward an advanced three-dimensional (3D) version for a complete model of the waste glass melter. The 1D model describes the batch-to-glass conversion within the cold cap as it progresses in a vertical direction. With constitutive equations and key parameters based on measured data, and simplified boundary conditions on the cold-cap interfaces with the glass melt and the plenum space of the melter, the model provides sensitivity analysis of the response of the cold cap to the batch makeup

  1. Nuclear waste management. Quarterly progress report, April-June 1981

    SciTech Connect (OSTI)

    Chikalla, T.D.; Powell, J.A.

    1981-09-01

    Reports and summaries are presented for the following: high-level waste process development; alternative waste forms; TMI zeolite vitrification demonstration program; nuclear waste materials characterization center; TRU waste immobilization; TRU waste decontamination; krypton implantation; thermal outgassing; iodine-129 fixation; NWVP off-gas analysis; monitoring and physical characterization of unsaturated zone transport; well-logging instrumentation development; verification instrument development; mobility of organic complexes of radionuclides in soils; handbook of methods to decrease the generation of low-level waste; waste management system studies; waste management safety studies; assessment of effectiveness of geologic isolation systems; waste/rock interactions technology program; high-level waste form preparation; development of backfill materials; development of structural engineered barriers; disposal charge analysis; and analysis of spent fuel policy implementation.

  2. Waste Cleanup at DOE Nuclear Sites | U.S. DOE Office of Science...

    Office of Science (SC) Website

    Research to Support Waste Cleanup at DOE Nuclear Sites Energy Frontier Research Centers ... Energy Department Awards 40 Million for Research to Support Waste Cleanup at DOE Nuclear ...

  3. DOE Completes Annual Determination of the Adequacy of the Nuclear Waste Fund Fee

    Broader source: Energy.gov [DOE]

    As required by the Nuclear Waste Policy Act of 1982 (NWPA), DOE has completed its annual review of the adequacy of the Nuclear Waste Fund fee.

  4. Method of preparing nuclear wastes for tansportation and interim storage

    DOE Patents [OSTI]

    Bandyopadhyay, Gautam (Naperville, IL); Galvin, Thomas M. (Darien, IL)

    1984-01-01

    Nuclear waste is formed into a substantially water-insoluble solid for temporary storage and transportation by mixing the calcined waste with at least 10 weight percent powdered anhydrous sodium silicate to form a mixture and subjecting the mixture to a high humidity environment for a period of time sufficient to form cementitious bonds by chemical reaction. The method is suitable for preparing an interim waste form from dried high level radioactive wastes.

  5. Nuclear waste storage container with metal matrix

    DOE Patents [OSTI]

    Sump, Kenneth R.

    1978-01-01

    The invention relates to a storage container for high-level waste having a metal matrix for the high-level waste, thereby providing greater impact strength for the waste container and increasing heat transfer properties.

  6. Small businesses selected for nuclear waste services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    buildings, and chemical or other hazardous wastes. Some of these materials may include trace or low levels of radioactive material. They also include transuranic waste generated...

  7. Depleted uranium as a backfill for nuclear fuel waste package

    DOE Patents [OSTI]

    Forsberg, C.W.

    1998-11-03

    A method is described for packaging spent nuclear fuel for long-term disposal in a geological repository. At least one spent nuclear fuel assembly is first placed in an unsealed waste package and a depleted uranium fill material is added to the waste package. The depleted uranium fill material comprises flowable particles having a size sufficient to substantially fill any voids in and around the assembly and contains isotopically-depleted uranium in the +4 valence state in an amount sufficient to inhibit dissolution of the spent nuclear fuel from the assembly into a surrounding medium and to lessen the potential for nuclear criticality inside the repository in the event of failure of the waste package. Last, the waste package is sealed, thereby substantially reducing the release of radionuclides into the surrounding medium, while simultaneously providing radiation shielding and increased structural integrity of the waste package. 6 figs.

  8. Depleted uranium as a backfill for nuclear fuel waste package

    DOE Patents [OSTI]

    Forsberg, Charles W.

    1998-01-01

    A method for packaging spent nuclear fuel for long-term disposal in a geological repository. At least one spent nuclear fuel assembly is first placed in an unsealed waste package and a depleted uranium fill material is added to the waste package. The depleted uranium fill material comprises flowable particles having a size sufficient to substantially fill any voids in and around the assembly and contains isotopically-depleted uranium in the +4 valence state in an amount sufficient to inhibit dissolution of the spent nuclear fuel from the assembly into a surrounding medium and to lessen the potential for nuclear criticality inside the repository in the event of failure of the waste package. Last, the waste package is sealed, thereby substantially reducing the release of radionuclides into the surrounding medium, while simultaneously providing radiation shielding and increased structural integrity of the waste package.

  9. Nuclear waste treatment program: Annual report for FY 1987

    SciTech Connect (OSTI)

    Brouns, R.A.; Powell, J.A.

    1988-09-01

    Two of the US Department of Energy's (DOE) nuclear waste management-related goals are to ensure that waste management is not an obstacle to the further development of light-water reactors and the closure of the nuclear fuel cycle and to fulfill its institutional responsibility for providing safe storage and disposal of existing and future nuclear wastes. As part of its approach to achieving these goals, the Office of Remedial Action and Waste Technology of DOE established what is now called the Nuclear Waste Treatment Program (NWTP) at the Pacific Northwest Laboratory during the second half of FY 1982. To support DOE's attainment of its goals, the NWTP is to provide technology necessary for the design and operation of nuclear waste treatment facilities by commercial enterprises as part of a licensed waste management system and problem-specific treatment approaches, waste form and treatment process adaptations, equipment designs, and trouble-shooting assistance, as required to treat existing wastes. This annual report describes progress during FY 1987 towards meeting these two objectives. 24 refs., 59 figs., 24 tabs.

  10. Nuclear waste management. Quarterly progress report, October through December 1980

    SciTech Connect (OSTI)

    Chikalla, T.D.; Powell, J.A.

    1981-03-01

    Progress reports and summaries are presented under the following headings: high-level waste process development; alternative waste forms; nuclear waste materials characterization center; TRU waste immobilization; TRU waste decontamination; krypton solidification; thermal outgassing; iodine-129 fixation; monitoring and physical characterization of unsaturated zone transport; well-logging instrumentation development; mobility of organic complexes of radionuclides in soils; waste management system studies; waste management safety studies; assessment of effectiveness of geologic isolation systems; waste/rock interactions technology; high level waste form preparation; development of backfill material; development of structural engineered barriers; ONWI disposal charge analysis; spent fuel and fuel component integrity program; analysis of spent fuel policy implementation; analysis of postulated criticality events in a storage array of spent LWR fuel; asphalt emulsion sealing of uranium tailings; liner evaluation for uranium mill tailings; multilayer barriers for sealing of uranium tailings; application of long-term chemical biobarriers for uranium tailings; revegetation of inactive uranium tailing sites; verification instrument development.

  11. Vitrification of Polyvinyl Chloride Waste from Korean Nuclear Power Plants

    SciTech Connect (OSTI)

    Sheng, Jiawei [Kyoto University (Japan); Choi, Kwansik [Nuclear Environment Technology Institute (Korea, Republic of); Yang, Kyung-Hwa [Nuclear Environment Technology Institute (Korea, Republic of); Lee, Myung-Chan [Nuclear Environment Technology Institute (Korea, Republic of); Song, Myung-Jae [Nuclear Environment Technology Institute (Korea, Republic of)

    2000-02-15

    Vitrification is considered as an economical and safe treatment technology for low-level radioactive waste (LLW) generated from nuclear power plants (NPPs). Korea is in the process of preparing for its first ever vitrification plant to handle LLW from its NPPs. Polyvinyl chloride (PVC) has the largest volume of dry active wastes and is the main waste stream to treat. Glass formulation development for PVC waste is the focus of study. The minimum additive waste stabilization approach has been utilized in vitrification. It was found that glasses can incorporate a high content of PVC ash (up to 50 wt%), which results in a large volume reduction. A glass frit, KEP-A, was developed to vitrify PVC waste after the optimization of waste loading, melt viscosity, melting temperature, and chemical durability. The KEP-A could satisfactorily vitrify PVC with a waste loading of 30 to 50 wt%. The PVC-frit was tolerant of variations in waste composition.

  12. Nuclear waste management. Quarterly progress report, April-June 1980

    SciTech Connect (OSTI)

    Platt, A.M.; Powell, J.A.

    1980-09-01

    The status of the following programs is reported: high-level waste immobilization; alternative waste forms; Nuclear Waste Materials Characterization Center; TRU waste immobilization; TRU waste decontamination; krypton solidification; thermal outgassing; iodine-129 fixation; monitoring and physical characterization of unsaturated zone transport; well-logging instrumentation development; mobility of organic complexes of fission products in soils; waste management system studies; waste management safety studies; assessment of effectiveness of geologic isolation systems; waste/rock interactions technology; systems study on engineered barriers; criteria for defining waste isolation; spent fuel and fuel pool component integrity program; analysis of spent fuel policy implementation; asphalt emulsion sealing of uranium tailings; application of long-term chemical biobarriers for uranium tailings; and development of backfill material.

  13. FACT SHEET: The Path Forward on Nuclear Waste Disposal | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy FACT SHEET: The Path Forward on Nuclear Waste Disposal FACT SHEET: The Path Forward on Nuclear Waste Disposal FACT SHEET: The Path Forward on Nuclear Waste Disposal (76.83 KB) More Documents & Publications Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste Integrated Waste Management and Consent-Based Siting Booklet

  14. West Virginia Total Electric Power Industry Net Summer Capacity...

    U.S. Energy Information Administration (EIA) Indexed Site

    West Virginia" "Energy Source",2006,2007,2008,2009,2010 "Fossil",16113,15769,15756,15766,1... " Other Gases","-","-","-","-","-" "Nuclear","-","-","-","-","-" ...

  15. Idaho Site Taps Old World Process to Treat Nuclear Waste

    Office of Energy Efficiency and Renewable Energy (EERE)

    IDAHO FALLS, Idaho – The EM program at the Idaho site is using an age-old process to treat transuranic (TRU) waste left over from nuclear reactor experiments.

  16. Nuclear waste actinides as fissile fuel in hybrid blankets

    SciTech Connect (OSTI)

    Sahin, S.; Al-Kusayer, T.A.

    1983-12-01

    The widespread use of the present LWRs produces substantial quantities of nuclear waste materials. Among those, actinide nuclear waste poses a serious problem of stockage because the associated half life times for actinides is measured in terms of geological time periods (several millions of years) so that no waste disposal guarantee over such time intervals can be given, except for space disposal. On the other hand, these nuclear waste actinides are very good fissionable materials for high energetic (D,T) fusion neutrons. It is therefore worthwhile to investigate their quality as potential nuclear fuel in hybrid blankets. The present study investigates the neutronic performance of hybrid blankets containing Np/sup 237/ and Cm/sup 244/ as fissile materials. The isotopic composition of Americium has been adjusted to the spent fuel isotope composition of a LWR. The geometrical design has been made, according to the AYMAN fussion-fission (hybrid) experimental facility, now in the very early phase of planning.

  17. radioactive waste | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Home radioactive waste Y-12 completes waste removal project two years ahead of schedule U.S. Leads Fifth International Review Meeting on the Safety of Spent Fuel and Radioactive ...

  18. Iron Phosphate Glasses: An Alternative for Vitrifying Certain Nuclear Wastes

    SciTech Connect (OSTI)

    Delbert E. Day; Chandra S. Ray; Cheol-Woon Kim

    2004-12-28

    Vitrification of nuclear waste in a glass is currently the preferred process for waste disposal. DOE currently approves only borosilicate (BS) type glasses for such purposes. However, many nuclear wastes, presently awaiting disposal, have complex and diverse chemical compositions, and often contain components that are poorly soluble or chemically incompatible in BS glasses. Such problematic wastes can be pre-processed and/or diluted to compensate for their incompatibility with a BS glass matrix, but both of these solutions increases the wasteform volume and the overall cost for vitrification. Direct vitrification using alternative glasses that utilize the major components already present in the waste is preferable, since it avoids pre-treating or diluting the waste, and, thus, minimizes the wasteform volume and overall cost.

  19. Los Alamos National Laboratory selects small businesses for nuclear waste

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    services LANL selects small businesses for nuclear waste services LANL selects small businesses for nuclear waste services Environmental Dimensions, Inc.; North Wind, Inc.; Navarro Research and Engineering, Inc.; and Portage, Inc. selected to bid for a number of individual tasks. February 16, 2012 Aerial view of Los Alamos National Laboratory Aerial view of Los Alamos National Laboratory. Contact Colleen Curran Communications Office (505) 664-0344 Email Subcontract worth up to $200 million

  20. Watch a Centrifuge Separate Nuclear Waste | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a Centrifuge Separate Nuclear Waste Watch a Centrifuge Separate Nuclear Waste July 20, 2016 - 11:09am Addthis John Greenwald Princeton Plasma Physics Laboratory Centrifuges are spinning cylinders that create an outward -- or centrifugal -- force that separates the substances inside. A spinning clothes dryer is a familiar example. The type of centrifuge in this video, however, isn't found around the house. Scientists use centrifuges for a variety of scientific applications, but one of the most

  1. Nuclear Waste Partnership (NWP) Corrective Action Plan Addendum

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Radiological Release Event Phase II | Department of Energy Addendum Radiological Release Event Phase II Nuclear Waste Partnership (NWP) Corrective Action Plan Addendum Radiological Release Event Phase II On Friday, February 14, 2014 there was an incident in the underground (U/G) repository at the Waste Isolation Pilot Plant (WIPP), which resulted in the release of americium and plutonium from one or more transuranic (TRU) waste containers into the U/G mine and the environment. The accident

  2. Process to separate transuranic elements from nuclear waste

    DOE Patents [OSTI]

    Johnson, Terry R.; Ackerman, John P.; Tomczuk, Zygmunt; Fischer, Donald F.

    1989-01-01

    A process for removing transuranic elements from a waste chloride electrolytic salt containing transuranic elements in addition to rare earth and other fission product elements so the salt waste may be disposed of more easily and the valuable transuranic elements may be recovered for reuse. The salt is contacted with a cadmium-uranium alloy which selectively extracts the transuranic elements from the salt. The waste salt is generated during the reprocessing of nuclear fuel associated with the Integral Fast Reactor (IFR).

  3. Method for forming microspheres for encapsulation of nuclear waste

    DOE Patents [OSTI]

    Angelini, Peter; Caputo, Anthony J.; Hutchens, Richard E.; Lackey, Walter J.; Stinton, David P.

    1984-01-01

    Microspheres for nuclear waste storage are formed by gelling droplets containing the waste in a gelation fluid, transferring the gelled droplets to a furnace without the washing step previously used, and heating the unwashed gelled droplets in the furnace under temperature or humidity conditions that result in a substantially linear rate of removal of volatile components therefrom.

  4. Development of Ceramic Waste Forms for High-Level Nuclear Waste Over the Last 30 Years

    SciTech Connect (OSTI)

    Vance, Eric

    2007-07-01

    Many types of ceramics have been put forward for immobilisation of high-level waste (HLW) from reprocessing of nuclear power plant fuel or weapons production. After describing some historical aspects of waste form research, the essential features of the chemical design and processing of these different ceramic types will be discussed briefly. Given acceptable laboratory and long-term predicted performance based on appropriately rigorous chemical design, the important processing parameters are mostly waste loading, waste throughput, footprint, offgas control/minimization, and the need for secondary waste treatment. It is concluded that the 'problem of high-level nuclear waste' is largely solved from a technical point of view, within the current regulatory framework, and that the main remaining question is which technical disposition method is optimum for a given waste. (author)

  5. The U.S. Nuclear Waste Technical Review Board Status Update

    Office of Environmental Management (EM)

    The U S Nuclear Waste Technical Review Board The U.S. Nuclear Waste Technical Review Board Status Update Presented to: National Transportation Stakeholders Forum Presented By: National Transportation Stakeholders Forum Mark Abkowitz May 11, 2011 The Board's Statutory Mandate * The 1987 amendments to the Nuclear Waste Policy Act (NWPA) established the U S Nuclear Waste Technical Review Board established the U.S. Nuclear Waste Technical Review Board. * The Board evaluates the technical and

  6. Chesterfield County, Virginia: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Facility Places in Chesterfield County, Virginia Bellwood, Virginia Bensley, Virginia Bon Air, Virginia Chester, Virginia Chesterfield Court House, Virginia Ettrick, Virginia...

  7. Expected brine movement at potential nuclear waste repository salt sites

    SciTech Connect (OSTI)

    McCauley, V.S.; Raines, G.E.

    1987-08-01

    The BRINEMIG brine migration code predicts rates and quantities of brine migration to a waste package emplaced in a high-level nuclear waste repository in salt. The BRINEMIG code is an explicit time-marching finite-difference code that solves a mass balance equation and uses the Jenks equation to predict velocities of brine migration. Predictions were made for the seven potentially acceptable salt sites under consideration as locations for the first US high-level nuclear waste repository. Predicted total quantities of accumulated brine were on the order of 1 m/sup 3/ brine per waste package or less. Less brine accumulation is expected at domal salt sites because of the lower initial moisture contents relative to bedded salt sites. Less total accumulation of brine is predicted for spent fuel than for commercial high-level waste because of the lower temperatures generated by spent fuel. 11 refs., 36 figs., 29 tabs.

  8. Evaluation of Waste Arising from Future Nuclear Fuel Cycle

    SciTech Connect (OSTI)

    Jubin, Robert Thomas; Taiwo, Temitope; Wigeland, Roald

    2015-01-01

    A comprehensive study was recently completed at the request of the US Department of Energy Office of Nuclear Energy (DOE-NE) to evaluate and screen nuclear fuel cycles. The final report was issued in October 2014. Uranium- and thorium-based fuel cycles were evaluated using both fast and thermal spectrum reactors. Once-through, limited-recycle, and continuous-recycle cases were considered. This study used nine evaluation criteria to identify promising fuel cycles. Nuclear waste management was one of the nine evaluation criteria. The waste generation criterion from this study is discussed herein.

  9. The Nuclear Waste Policy Act, as amended with appropriations acts appended

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    The Nuclear Waste Policy Act of 1982 provides for the development of repositories for the disposal of high-level radioactive waste and spent nuclear fuel, to establish a program of research, development and demonstration regarding the disposal of high-level radioactive waste and spent nuclear fuel. Titles 1 and 2 cover these subjects. Also included in this Act are: Title 3: Other provisions relating to radioactive waste; Title 4: Nuclear waste negotiation; Title 5: Nuclear waste technical review board; and Title 6: High-level radioactive waste. An appendix contains excerpts from appropriations acts from fiscal year 1984--1994.

  10. DOE-Managed High-Level Radioactive Waste and Spent Nuclear Fuel

    Office of Environmental Management (EM)

    Assessment of Disposal Options for DOE-Managed High-Level Radioactive Waste and Spent ... level radioactive waste and spent nuclear fuel in a single repository or repositories. ...

  11. Nuclear waste repository research at the micro- to nanoscale

    SciTech Connect (OSTI)

    Schaefer, T.; Denecke, M. A.

    2010-04-06

    Micro- and nano-focused synchrotron radiation techniques to investigate determinant processes in contaminant transport in geological media are becoming especially an increasingly used tool in nuclear waste disposal research. There are a number of reasons for this but primarily they are driven by the need to characterize actinide speciation localized in components of heterogeneous natural systems. We summarize some of the recent research conducted by researchers of the Institute of Nuclear Waste Disposal (INE) at the Karlsruhe Institute of Technology using micro- and nano-focused X-ray beams for characterization of colloids and their interaction with minerals and of elemental and phase distributions in potential repository host rocks and actinide speciation in a repository natural analogues sample. Such investigations are prerequisite to ensuring reliable assessment of the long term radiological safety for proposed nuclear waste disposal sites.

  12. National briefing summaries: Nuclear fuel cycle and waste management

    SciTech Connect (OSTI)

    Schneider, K.J.; Bradley, D.J.; Fletcher, J.F.; Konzek, G.J.; Lakey, L.T.; Mitchell, S.J.; Molton, P.M.; Nightingale, R.E.

    1991-04-01

    Since 1976, the International Program Support Office (IPSO) at the Pacific Northwest Laboratory (PNL) has collected and compiled publicly available information concerning foreign and international radioactive waste management programs. This National Briefing Summaries is a printout of an electronic database that has been compiled and is maintained by the IPSO staff. The database contains current information concerning the radioactive waste management programs (with supporting information on nuclear power and the nuclear fuel cycle) of most of the nations (except eastern European countries) that now have or are contemplating nuclear power, and of the multinational agencies that are active in radioactive waste management. Information in this document is included for three additional countries (China, Mexico, and USSR) compared to the prior issue. The database and this document were developed in response to needs of the US Department of Energy.

  13. Nuclear waste management: the need for immediate legislative reform

    SciTech Connect (OSTI)

    Ostrander, J.L.; Masters, L.S.

    1980-01-01

    A balance must be struck between nuclear power advocates, who insist that the environmental consequences of present energy sources pose a greater ecological threat than does nuclear energy and that increasing reliance on foreign energy sources menaces American security, and nuclear detractors, who question that actual potential of nuclear energy. Nuclear opponents object to the moral and philosophical implications of bequeathing risks to future generations in order to satisfy the present generation's demand. The continued production of commercial radioactive waste is becoming an increasingly more significant constraint on nuclear power at a time of rising costs and constricted energy supplies. It is an issue demanding an immediate, yet considered, legislative response. Congress must organize a political framework in which the inherent risks can be equitably distributed with a minimum of dissention. Regardless of the ultimate decision on nuclear power's future, an environmentally wise and politically acceptable management program must be developed and implemented. 101 references.

  14. Chemical digestion of low level nuclear solid waste material

    DOE Patents [OSTI]

    Cooley, Carl R.; Lerch, Ronald E.

    1976-01-01

    A chemical digestion for treatment of low level combustible nuclear solid waste material is provided and comprises reacting the solid waste material with concentrated sulfuric acid at a temperature within the range of 230.degree.-300.degree.C and simultaneously and/or thereafter contacting the reacting mixture with concentrated nitric acid or nitrogen dioxide. In a special embodiment spent ion exchange resins are converted by this chemical digestion to noncombustible gases and a low volume noncombustible residue.

  15. Preliminary Notice of Violation Nuclear Waste Partnership, LLC

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8, 2016 VIA OVERNIGHT UPS MAIL CARRIER Mr. Philip Breidenbach President and Project Manager Nuclear Waste Partnership, LLC 4021 National Parks Highway Carlsbad, New Mexico 88220 WEA-2016-01 Dear Mr. Breidenbach: This letter refers to the Department of Energy's (DOE) investigation into the facts and circumstances associated with two events that occurred in February 2014 at the Waste Isolation Pilot Plant (WIPP): (1) a fire in a salt haul truck in the underground, and (2) a radiological release.

  16. Nuclear waste management. Quarterly progress report, January-March, 1981

    SciTech Connect (OSTI)

    Chikalla, T.D.; Powell, J.A.

    1981-06-01

    Reports and summaries are provided for the following programs: high-level waste process development; alternative waste forms; nuclear waste materials characterization center; TRU waste immobilization; TRU waste decontamination; krypton solidification; thermal outgassing; iodine-129 fixation; NWVP off-gas analysis; monitoring and physical characterization of unsaturated zone transport; well-logging instrumentation development; verification instrument development; mobility of organic complexes of radionuclide in soils; low-level waste generation reduction handbook; waste management system studies; assessment of effectiveness of geologic isolation systems; waste/rock interactions technology program; high-level waste form preparation; development of backfill materials; development of structural engineered barriers; disposal charge analysis; analysis of spent fuel policy implementation; spent fuel and pool component integrity program; analysis of postulated criticality events in a storage array of spent LWR fuel; asphalt emulsion sealing of uranium mill tailings; liner evaluation for uranium mill tailings; multilayer barriers for sealing of uranium tailings; application of long-term chemical biobarriers for uranium tailings; and revegetation of inactive uranium tailings sites.

  17. Recovery of transplutonium elements from nuclear reactor waste

    DOE Patents [OSTI]

    Campbell, David O.; Buxton, Samuel R.

    1977-05-24

    A method of separating actinide values from nitric acid waste solutions resulting from reprocessing of irradiated nuclear fuels comprises oxalate precipitation of the major portion of actinide and lanthanide values to provide a trivalent fraction suitable for subsequent actinide/lanthanide partition, exchange of actinide and lanthanide values in the supernate onto a suitable cation exchange resin to provide an intermediate-lived raffinate waste stream substantially free of actinides, and elution of the actinide values from the exchange resin. The eluate is then used to dissolve the trivalent oxalate fraction prior to actinide/lanthanide partition or may be combined with the reprocessing waste stream and recycled.

  18. Process to separate transuranic elements from nuclear waste

    DOE Patents [OSTI]

    Johnson, T.R.; Ackerman, J.P.; Tomczuk, Z.; Fischer, D.F.

    1989-03-21

    A process is described for removing transuranic elements from a waste chloride electrolytic salt containing transuranic elements in addition to rare earth and other fission product elements so the salt waste may be disposed of more easily and the valuable transuranic elements may be recovered for reuse. The salt is contacted with a cadmium-uranium alloy which selectively extracts the transuranic elements from the salt. The waste salt is generated during the reprocessing of nuclear fuel associated with the Integral Fast Reactor (IFR). 2 figs.

  19. Process to separate transuranic elements from nuclear waste

    DOE Patents [OSTI]

    Johnson, T.R.; Ackerman, J.P.; Tomczuk, Z.; Fischer, D.F.

    1988-07-12

    A process for removing transuranic elements from a waste chloride electrolytic salt containing transuranic elements in addition to rare earth and other fission product elements so the salt waste may be disposed of more easily and the valuable transuranic elements may be recovered for reuse. The salt is contacted with a cadmium-uranium alloy which selectively extracts the transuranic elements from the salt. The waste salt is generated during the reprocessing of nuclear fuel associated with the Integral Fast Reactor (IFR). 2 figs.

  20. Mesoscale to plant-scale models of nuclear waste reprocessing.

    SciTech Connect (OSTI)

    Noble, David Frederick; O'Hern, Timothy John; Moffat, Harry K.; Nemer, Martin B.; Domino, Stefan Paul; Rao, Rekha Ranjana; Cipiti, Benjamin B.; Brotherton, Christopher M.; Jove-Colon, Carlos F.; Pawlowski, Roger Patrick

    2010-09-01

    Imported oil exacerabates our trade deficit and funds anti-American regimes. Nuclear Energy (NE) is a demonstrated technology with high efficiency. NE's two biggest political detriments are possible accidents and nuclear waste disposal. For NE policy, proliferation is the biggest obstacle. Nuclear waste can be reduced through reprocessing, where fuel rods are separated into various streams, some of which can be reused in reactors. Current process developed in the 1950s is dirty and expensive, U/Pu separation is the most critical. Fuel rods are sheared and dissolved in acid to extract fissile material in a centrifugal contactor. Plants have many contacts in series with other separations. We have taken a science and simulation-based approach to develop a modern reprocessing plant. Models of reprocessing plants are needed to support nuclear materials accountancy, nonproliferation, plant design, and plant scale-up.

  1. Salt disposal of heat-generating nuclear waste.

    SciTech Connect (OSTI)

    Leigh, Christi D.; Hansen, Francis D.

    2011-01-01

    This report summarizes the state of salt repository science, reviews many of the technical issues pertaining to disposal of heat-generating nuclear waste in salt, and proposes several avenues for future science-based activities to further the technical basis for disposal in salt. There are extensive salt formations in the forty-eight contiguous states, and many of them may be worthy of consideration for nuclear waste disposal. The United States has extensive experience in salt repository sciences, including an operating facility for disposal of transuranic wastes. The scientific background for salt disposal including laboratory and field tests at ambient and elevated temperature, principles of salt behavior, potential for fracture damage and its mitigation, seal systems, chemical conditions, advanced modeling capabilities and near-future developments, performance assessment processes, and international collaboration are all discussed. The discussion of salt disposal issues is brought current, including a summary of recent international workshops dedicated to high-level waste disposal in salt. Lessons learned from Sandia National Laboratories' experience on the Waste Isolation Pilot Plant and the Yucca Mountain Project as well as related salt experience with the Strategic Petroleum Reserve are applied in this assessment. Disposal of heat-generating nuclear waste in a suitable salt formation is attractive because the material is essentially impermeable, self-sealing, and thermally conductive. Conditions are chemically beneficial, and a significant experience base exists in understanding this environment. Within the period of institutional control, overburden pressure will seal fractures and provide a repository setting that limits radionuclide movement. A salt repository could potentially achieve total containment, with no releases to the environment in undisturbed scenarios for as long as the region is geologically stable. Much of the experience gained from United

  2. An Adaptive, Consent-Based Path to Nuclear Waste Storage and...

    Office of Environmental Management (EM)

    An Adaptive, Consent-Based Path to Nuclear Waste Storage and Disposal Solutions An Adaptive, Consent-Based Path to Nuclear Waste Storage and Disposal Solutions February 12, 2014 - ...

  3. Portsmouth County, Virginia: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    A. Energy Generation Facilities in Portsmouth County, Virginia SPSA Waste To Energy Power Plant Biomass Facility Retrieved from "http:en.openei.orgwindex.php?titlePortsm...

  4. Backfill composition for secondary barriers in nuclear waste repositories

    DOE Patents [OSTI]

    Beall, G.W.; Allard, B.M.

    1980-05-30

    A backfill composition for sorbing and retaining hazardous elements of nuclear wastes comprises 50 to 70% by weight of quartz, 10 to 30% by weight of montmorillonite, 1 to 10% by weight of phosphate mineral, 1 to 10% by weight of ferrous mineral, 1 to 10% by weight of sulfate mineral and 1 to 10% by weight of attapulgite.

  5. Backfill composition for secondary barriers in nuclear waste repositories

    DOE Patents [OSTI]

    Beall, Gary W.; Allard, Bert M.

    1982-01-01

    A backfill composition for sorbing and retaining hazardous elements of nuclear wastes comprises 50-70% by weight of quartz, 10-30% by weight of montmorillonite, 1-10% by weight of phosphate mineral, 1-10% by weight of ferrous mineral, 1-10% by weight of sulfate mineral and 1-10% by weight of attapulgite.

  6. Evaluation of the transport and resuspension of a simulated nuclear waste slurry: Nuclear Waste Treatment Program

    SciTech Connect (OSTI)

    Carleson, T.E.; Drown, D.C.; Hart, R.E.; Peterson, M.E.

    1987-09-01

    The Department of Chemical Engineering at the University of Idaho conducted research on the transport and resuspension of a simulated high-level nuclear waste slurry. In the United States, the reference process for treating both defense and civilian HLLW is vitrification using the liquid-fed ceramic melter process. The non-Newtonian behavior of the slurry complicates the evaluation of the transport and resuspension characteristics of the slurry. The resuspension of a simulated (nonradioactive) melter feed slurry was evaluated using a slurry designated as WV-205. The simulated slurry was developed for the West Valley Demonstration Project and was used during a pilot-scale ceramic melter (PSCM) experiment conducted at PNL in July 1985 (PSCM-21). This study involved determining the transport characteristics of a fully suspended slurry and the resuspension characteristics of settled solids in a pilot-scale pipe loop. The goal was to predict the transport and resuspension of a full-scale system based on rheological data for a specific slurry. The rheological behavior of the slurry was evaluated using a concentric cylinder rotational viscometer, a capillary tube viscometer, and the pilot-scale pipe loop. The results obtained from the three approaches were compared. 40 refs., 74 figs., 15 tabs.

  7. Locations of Spent Nuclear Fuel and High-Level Radioactive Waste

    Broader source: Energy.gov [DOE]

    Map of the United States of America showing the locations of spent nuclear fuel and high-level radioactive waste.

  8. Waste management plan for Hanford spent nuclear fuel characterization activities

    SciTech Connect (OSTI)

    Chastain, S.A. [Westinghouse Hanford Co., Richland, WA (United States); Spinks, R.L. [Pacific Northwest Lab., Richland, WA (United States)

    1994-10-17

    A joint project was initiated between Westinghouse Hanford Company (WHC) and Pacific Northwest Laboratory (PNL) to address critical issues associated with the Spent Nuclear Fuel (SNF) stored at the Hanford Site. Recently, particular attention has been given to remediation of the SNF stored in the K Basins. A waste management plan (WMP) acceptable to both parties is required prior to the movement of selected material to the PNL facilities for examination. N Reactor and Single Pass Reactor (SPR) fuel has been stored for an extended period of time in the N Reactor, PUREX, K-East, and K-West Basins. Characterization plans call for transport of fuel material form the K Basins to the 327 Building Postirradiation Testing Laboratory (PTL) in the 300 Area for examination. However, PNL received a directive stating that no examination work will be started in PNL hot cell laboratories without an approved disposal route for all waste generated related to the activity. Thus, as part of the Characterization Program Management Plan for Hanford Spent Nuclear Fuel, a waste management plan which will ensure that wastes generated as a result of characterization activities conducted at PNL will be accepted by WHC for disposition is required. This document contains the details of the waste handling plan that utilizes, to the greatest extent possible, established waste handling and disposal practices at Hanford between PNL and WHC. Standard practices are sufficient to provides for disposal of most of the waste materials, however, special consideration must be given to the remnants of spent nuclear fuel elements following examination. Fuel element remnants will be repackaged in an acceptable container such as the single element canister and returned to the K Basins for storage.

  9. Radioactive Waste Management in Non-Nuclear Countries - 13070

    SciTech Connect (OSTI)

    Kubelka, Dragan; Trifunovic, Dejan

    2013-07-01

    This paper challenges internationally accepted concepts of dissemination of responsibilities between all stakeholders involved in national radioactive waste management infrastructure in the countries without nuclear power program. Mainly it concerns countries classified as class A and potentially B countries according to International Atomic Energy Agency. It will be shown that in such countries long term sustainability of national radioactive waste management infrastructure is very sensitive issue that can be addressed by involving regulatory body in more active way in the infrastructure. In that way countries can mitigate possible consequences on the very sensitive open market of radioactive waste management services, comprised mainly of radioactive waste generators, operators of end-life management facilities and regulatory body. (authors)

  10. Review: Waste-Pretreatment Technologies for Remediation of Legacy Defense Nuclear Wastes

    SciTech Connect (OSTI)

    Wilmarth, William R.; Lumetta, Gregg J.; Johnson, Michael E.; Poirier, Micheal R.; Thompson, Major C.; Suggs, Patricia C.; Machara, N.

    2011-01-13

    The U.S. Department of Energy (DOE) is responsible for retrieving, immobilizing, and disposing of radioactive waste that has been generated during the production of nuclear weapons in the United States. The vast bulk of this waste material is stored in underground tanks at the Savannah River Site in South Carolina and the Hanford Site in Washington State. The general strategy for treating the radioactive tank waste consists of first separating the waste into high-level and low-activity fractions. This initial partitioning of the waste is referred to as pretreatment. Following pretreatment, the high-level fraction will be immobilized in a glass form suitable for disposal in a geologic repository. The low-activity waste will be immobilized in a waste form suitable for disposal at the respective site. This paper provides a review of recent developments in the application of pretreatment technologies to the processing of the Hanford and Savannah River radioactive tank wastes. Included in the review are discussions of 1) solid/liquid separations methods, 2) cesium separation technologies, and 3) other separations critical to the success of the DOE tank waste remediation effort. Also included is a brief discussion of the different requirements and circumstances at the two DOE sites that have in some cases led to different choices in pretreatment technologies.

  11. Nuclear waste package materials testing report: basaltic and tuffaceous environments

    SciTech Connect (OSTI)

    Bradley, D.J.; Coles, D.G.; Hodges, F.N.; McVay, G.L.; Westerman, R.E.

    1983-03-01

    The disposal of high-level nuclear wastes in underground repositories in the continental United States requires the development of a waste package that will contain radionuclides for a time period commensurate with performance criteria, which may be up to 1000 years. This report addresses materials testing in support of a waste package for a basalt (Hanford, Washington) or a tuff (Nevada Test Site) repository. The materials investigated in this testing effort were: sodium and calcium bentonites and mixtures with sand or basalt as a backfill; iron and titanium-based alloys as structural barriers; and borosilicate waste glass PNL 76-68 as a waste form. The testing also incorporated site-specific rock media and ground waters: Reference Umtanum Entablature-1 basalt and reference basalt ground water, Bullfrog tuff and NTS J-13 well water. The results of the testing are discussed in four major categories: Backfill Materials: emphasizing water migration, radionuclide migration, physical property and long-term stability studies. Structural Barriers: emphasizing uniform corrosion, irradiation-corrosion, and environmental-mechanical testing. Waste Form Release Characteristics: emphasizing ground water, sample surface area/solution volume ratio, and gamma radiolysis effects. Component Compatibility: emphasizing solution/rock, glass/rock, glass/structural barrier, and glass/backfill interaction tests. This area also includes sensitivity testing to determine primary parameters to be studied, and the results of systems tests where more than two waste package components were combined during a single test.

  12. Anticipating Potential Waste Acceptance Criteria for Defense Spent Nuclear Fuel

    SciTech Connect (OSTI)

    Rechard, R.P.; Lord, M.E.; Stockman, C.T.; McCurley, R.D.

    1997-12-31

    The Office of Environmental Management of the U.S. Department of Energy is responsible for the safe management and disposal of DOE owned defense spent nuclear fuel and high level waste (DSNF/DHLW). A desirable option, direct disposal of the waste in the potential repository at Yucca Mountain, depends on the final waste acceptance criteria, which will be set by DOE`s Office of Civilian Radioactive Waste Management (OCRWM). However, evolving regulations make it difficult to determine what the final acceptance criteria will be. A method of anticipating waste acceptance criteria is to gain an understanding of the DOE owned waste types and their behavior in a disposal system through a performance assessment and contrast such behavior with characteristics of commercial spent fuel. Preliminary results from such an analysis indicate that releases of 99Tc and 237Np from commercial spent fuel exceed those of the DSNF/DHLW; thus, if commercial spent fuel can meet the waste acceptance criteria, then DSNF can also meet the criteria. In large part, these results are caused by the small percentage of total activity of the DSNF in the repository (1.5%) and regulatory mass (4%), and also because commercial fuel cladding was assumed to provide no protection.

  13. Characterization of Oversized Crates containing Nuclear Waste

    SciTech Connect (OSTI)

    Berg, Randal K.; Haggard, Daniel L.; Hilliard, Jim; Mozhayev, Andrey V.

    2007-11-01

    The 212-N Building at the Hanford Site held fifteen large crates containing glove boxes and process equipment associated with the development and fabrication of mixed oxide (MOX) fuel. The gloveboxes and associated equipment originated from the 308 Building of the Hanford Site and had been placed in the crates after a process upset in the 1960s. The crates were transported to the 212-N Building and had been in storage since 1972. In an effort to reduce the hazard categorization of 212-N the crates were removed from the building and Nondestructive Assay (NDA) was performed to characterize the crate contents meeting both Safeguards and Waste Management interests. A measurement system consisting of four configurable neutron slab detectors and high purity germanium (HPGe) detectors was deployed. Since no viable information regarding the waste matrix and configuration was available it was essential to correct for attenuation with a series of transmission measurements using californium and europium sources for both neutron and gamma applications. The gamma and neutron results obtained during this measurement campaign are compared and discussed in the paper.

  14. Putnam County, West Virginia: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    West Virginia Buffalo, West Virginia Culloden, West Virginia Eleanor, West Virginia Hurricane, West Virginia Nitro, West Virginia Poca, West Virginia Teays Valley, West Virginia...

  15. Kanawha County, West Virginia: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    West Virginia Dunbar, West Virginia East Bank, West Virginia Elkview, West Virginia Glasgow, West Virginia Handley, West Virginia Marmet, West Virginia Montgomery, West Virginia...

  16. Graphite matrix materials for nuclear waste isolation

    SciTech Connect (OSTI)

    Morgan, W.C.

    1981-06-01

    At low temperatures, graphites are chemically inert to all but the strongest oxidizing agents. The raw materials from which artificial graphites are produced are plentiful and inexpensive. Morover, the physical properties of artificial graphites can be varied over a very wide range by the choice of raw materials and manufacturing processes. Manufacturing processes are reviewed herein, with primary emphasis on those processes which might be used to produce a graphite matrix for the waste forms. The approach, recommended herein, involves the low-temperature compaction of a finely ground powder produced from graphitized petroleum coke. The resultant compacts should have fairly good strength, low permeability to both liquids and gases, and anisotropic physical properties. In particular, the anisotropy of the thermal expansion coefficients and the thermal conductivity should be advantageous for this application. With two possible exceptions, the graphite matrix appears to be superior to the metal alloy matrices which have been recommended in prior studies. The two possible exceptions are the requirements on strength and permeability; both requirements will be strongly influenced by the containment design, including the choice of materials and the waste form, of the multibarrier package. Various methods for increasing the strength, and for decreasing the permeability of the matrix, are reviewed and discussed in the sections in Incorporation of Other Materials and Elimination of Porosity. However, it would be premature to recommend a particular process until the overall multi-barrier design is better defined. It is recommended that increased emphasis be placed on further development of the low-temperature compacted graphite matrix concept.

  17. Process for recovery of palladium from nuclear fuel reprocessing wastes

    DOE Patents [OSTI]

    Campbell, D.O.; Buxton, S.R.

    1980-06-16

    Palladium is selectively removed from spent nuclear fuel reprocessing waste by adding sugar to a strong nitric acid solution of the waste to partially denitrate the solution and cause formation of an insoluble palladium compound. The process includes the steps of: (a) adjusting the nitric acid content of the starting solution to about 10 M; (b) adding 50% sucrose solution in an amount sufficient to effect the precipitation of the palladium compound; (c) heating the solution at reflux temperature until precipitation is complete; and (d) centrifuging the solution to separate the precipitated palladium compound from the supernatant liquid.

  18. Process for recovery of palladium from nuclear fuel reprocessing wastes

    DOE Patents [OSTI]

    Campbell, David O.; Buxton, Samuel R.

    1981-01-01

    Palladium is selectively removed from spent nuclear fuel reprocessing waste by adding sugar to a strong nitric acid solution of the waste to partially denitrate the solution and cause formation of an insoluble palladium compound. The process includes the steps of: (a) adjusting the nitric acid content of the starting solution to about 10 M, (b) adding 50% sucrose solution in an amount sufficient to effect the precipitation of the palladium compound, (c) heating the solution at reflux temperature until precipitation is complete, and (d) centrifuging the solution to separate the precipitated palladium compound from the supernatant liquid.

  19. Tokamak transmutation of (nuclear) waste (TTW): Parametric studies

    SciTech Connect (OSTI)

    Cheng, E.T.; Krakowski, R.A.; Peng, Y.K.M.

    1994-06-01

    Radioactive waste generated as part of the commercial-power and defense nuclear programs can be either stored or transmuted. The latter treatment requires a capital-intensive neutron source and is reserved for particularly hazardous and long-lived actinide and fission-product waste. A comparative description of fusion-based transmutation is made on the basis of rudimentary estimates of ergonic performance and transmutation capacities versus inventories for both ultra-low-aspect-ratio (spherical torus, ST) and conversional (aspect-ratio) tokamak fusion-power-core drivers. The parametric systems studies reported herein provides a preamble to more-detailed, cost-based systems analyses.

  20. The hydro nuclear services dry active waste processing system

    SciTech Connect (OSTI)

    Bunker, A.S.

    1985-04-01

    There is a real need for a dry active waste processing system that can separate clean trash and recoverable items from radwaste safely and efficiently. This paper reports that Hydro Nuclear Services has produced just such a system and is marketing it as a DAW Segregation/Volume Reduction Process. The system is a unique, semi-automated package of sensitive monitoring instruments of volume reduction equipment that separates clean trash from contaminated and recoverable items in the waste stream and prepares the clean trash for unrestricted release. What makes the HNS system truly unique is its end product - clean trash.

  1. Virginia Nuclear Profile - Surry

    U.S. Energy Information Administration (EIA) Indexed Site

    Surry" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" ...

  2. Virginia Nuclear Profile - Surry

    U.S. Energy Information Administration (EIA) Indexed Site

    expiration date" 1,839,"6,206",84.4,"PWR","applicationvnd.ms-excel","applicationvnd.ms-excel" 2,799,"6,966",99.5,"PWR","applicationvnd.ms-excel","application...

  3. "Hanford: A Conversation About Nuclear Waste and Cleanup"

    SciTech Connect (OSTI)

    Gephart, Roy E.

    2003-05-10

    In ''Hanford: A Conversation about Nuclear Waste and Cleanup'', Roy Gephart takes us on a journey through a world of facts, values, conflicts, and choices facing the most complex environmental cleanup project in the United States, the U.S. Department of Energy's Hanford Site. Starting with the top-secret Manhattan Project, Hanford was used to create tons of plutonium for nuclear weapons. Hundreds of tons of waste remain. In an easy-to-read, illustrated text, Gephart crafts the story of Hanford becoming the world's first nuclear weapons site to release large amounts of contaminants into the environment. This was at a time when radiation biology was in its infancy, industry practiced unbridled waste dumping, and the public trusted what it was told. The plutonium market stalled with the end of the Cold War. Public accountability and environmental compliance ushered in a new cleanup mission. Today, Hanford is driven by remediation choices whose outcomes remain uncertain. It's a story whose epilogue will be written by future generations. This book is an information resource, written for the general reader as well as the technically trained person wanting an overview of Hanford and cleanup issues facing the nuclear weapons complex. Each chapter is a topical mini-series. It's an idea guide that encourages readers to be informed consumers of Hanford news, to recognize that knowledge, high ethical standards, and social values are at the heart of coping with Hanford's past and charting its future. Hanford history is a window into many environmental conflicts facing our nation; it's about building upon success and learning from failure. And therein lies a key lesson, when powerful interests are involved, no generation is above pretense. Roy E. Gephart is a geohydrologist and senior program manager at the Pacific Northwest National Laboratory, Richland, Washington. He has 30 years experience in environmental studies and the nuclear waste industry.

  4. Alcohol-free alkoxide process for containing nuclear waste

    DOE Patents [OSTI]

    Pope, James M.; Lahoda, Edward J.

    1984-01-01

    Disclosed is a method of containing nuclear waste. A composition is first prepared of about 25 to about 80%, calculated as SiO.sub.2, of a partially hydrolyzed silicon compound, up to about 30%, calculated as metal oxide, of a partially hydrolyzed aluminum or calcium compound, about 5 to about 20%, calculated as metal oxide, of a partially hydrolyzed boron or calcium compound, about 3 to about 25%, calculated as metal oxide, of a partially hydrolyzed sodium, potassium or lithium compound, an alcohol in a weight ratio to hydrolyzed alkoxide of about 1.5 to about 3% and sufficient water to remove at least 99% of the alcohol as an azeotrope. The azeotrope is boiled off and up to about 40%, based on solids in the product, of the nuclear waste, is mixed into the composition. The mixture is evaporated to about 25 to about 45% solids and is melted and cooled.

  5. Workshop on fundamental geochemistry needs for nuclear waste isolation

    SciTech Connect (OSTI)

    Heiken, J.H.

    1985-09-01

    In their deliberations, workshop participants did not attempt to incorporate the constraints that the 1982 National Nuclear Waste Management Policy Act placed upon the site-specific investigations. In particular, there was no attempt to (1) identify the research areas that apply most strongly to a particular potential repository site, (2) identify the chronological time when the necessary data or knowledge could be available, or (3) include a sensitivity analysis to prioritize and limit data needs. The workshop participants felt these are the purview of the site-specific investigations; the purpose of the workshop was to discuss the generic geochemistry research needs for a nuclear waste repository among as broad spectrum of individual scientists as possible and to develop a consensus of what geochemical information is important and why.

  6. Supported liquid inorganic membranes for nuclear waste separation

    SciTech Connect (OSTI)

    Bhave, Ramesh R; DeBusk, Melanie M; DelCul, Guillermo D; Delmau, Laetitia H; Narula, Chaitanya K

    2015-04-07

    A system and method for the extraction of americium from radioactive waste solutions. The method includes the transfer of highly oxidized americium from an acidic aqueous feed solution through an immobilized liquid membrane to an organic receiving solvent, for example tributyl phosphate. The immobilized liquid membrane includes porous support and separating layers loaded with tributyl phosphate. The extracted solution is subsequently stripped of americium and recycled at the immobilized liquid membrane as neat tributyl phosphate for the continuous extraction of americium. The sequestered americium can be used as a nuclear fuel, a nuclear fuel component or a radiation source, and the remaining constituent elements in the aqueous feed solution can be stored in glassified waste forms substantially free of americium.

  7. Radiation and Thermal Ageing of Nuclear Waste Glass

    SciTech Connect (OSTI)

    Weber, William J [ORNL

    2014-01-01

    The radioactive decay of fission products and actinides incorporated into nuclear waste glass leads to self-heating and self-radiation effects that may affect the stability, structure and performance of the glass in a closed system. Short-lived fission products cause significant self-heating for the first 600 years. Alpha decay of the actinides leads to self-radiation damage that can be significant after a few hundred years, and over the long time periods of geologic disposal, the accumulation of helium and radiation damage from alpha decay may lead to swelling, microstructural evolution and changes in mechanical properties. Four decades of research on the behavior of nuclear waste glass are reviewed.

  8. Development of polyphase ceramics for the immobilization of high-level Defense nuclear waste

    SciTech Connect (OSTI)

    Morgan, P.E.D.; Harker, A.B.; Clarke, D.R.; Flintoff, J.J.; Shaw, T.M.

    1983-02-25

    The report contains two major sections: Section I - An Improved Polyphase Ceramic for High-Level Defense Nucleation Waste reports the work conducted on titanium-silica based ceramics for immobilizing Savannah River Plant waste. Section II - Formulation and Processing of Alumina Based Ceramic Nuclear Waste Forms describes the work conducted on developing a generic alumina and alumina-silica based ceramic waste form capable of immobilizing any nuclear waste with a high aluminum content. Such wastes include the Savannah River Plant wastes, Hanford neutralized purex wastes, and Hanford N-Reactor acid wastes. The design approach and process technology in the two reports demonstrate how the generic high waste loaded ceramic form can be applied to a broad range of nuclear waste compositions. The individual sections are abstracted and indexed separately.

  9. A new concept for accelerator driven transmutation of nuclear wastes

    SciTech Connect (OSTI)

    Arthur, E.D.

    1991-01-01

    A new concept for an accelerator-driven transmutation system is described. The central feature of the concept is generation of intense fluxes of thermal neutrons. In the system all long-lived radionuclides comprising high-level nuclear waste can be transmuted efficiently. Transmutation takes place in a unique, low material inventory environment. Presently two principal areas are being investigated for application of the concept. The first is associated with cleanup of defense high-level waste at DOE sites such as Hanford. The second, longer term area involves production of electric power using a coupled accelerator-multiplying blanket system. This system would utilize natural thorium or uranium and would transmute long-lived components of high-level waste concurrently during operation. 5 refs., 5 figs.

  10. Nuclear Waste Treatment Program: Qualification of commercial high-level waste forms: Approach and status

    SciTech Connect (OSTI)

    Brouns, R.A.; Kuhn, W.L.

    1986-12-01

    In this document, the Nuclear Waste Treatment Program (NWTP) proposes an approach for demonstrating compliance with acceptance specifications. The proposed approach relies first on developing models of the process (vitrification) and product (waste form) to relate measurable process variables to the product quality, and then on using process control and sampling of melter feed input as the quality control method. Coordinated test programs, using pilot-scale nonradioactive and radioactive tests, will be used to establish these models at the confidence level needed to assure compliance to waste acceptance specifications. The test programs are broadly focused to encompass the range of anticipated future wastes, but the results should also be equally applicable to current wastes as well. Demonstration of waste form compliance by some other method would likely require extensive product testing, including glass sampling during production and routine destructive examination of canisters. The process and product modeling approach eliminates the need for this type of testing and should result in a very high level of statistical confidence that the individual waste forms are acceptable for disposal.

  11. Tank waste remediation system nuclear criticality safety program management review

    SciTech Connect (OSTI)

    BRADY RAAP, M.C.

    1999-06-24

    This document provides the results of an internal management review of the Tank Waste Remediation System (TWRS) criticality safety program, performed in advance of the DOE/RL assessment for closure of the TWRS Nuclear Criticality Safety Issue, March 1994. Resolution of the safety issue was identified as Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-40-12, due September 1999.

  12. Radiation and transmutation effects relevant to solid nuclear waste forms

    SciTech Connect (OSTI)

    Vance, E.R.; Roy, R.; Pillay, K.K.S.

    1981-03-15

    Radiation effects in insulating solids are discussed in a general way as an introduction to the quite sparse published work on radiation effects in candidate nuclear waste forms other than glasses. Likely effects of transmutation in crystals and the chemical mitigation strategy are discussed. It seems probable that radiation effects in solidified HLW will not be serious if the actinides can be wholly incorporated in such radiation-resistant phases as monazite or uraninite.

  13. Method of determining a content of a nuclear waste container

    DOE Patents [OSTI]

    Bernardi, Richard T.; Entwistle, David

    2003-04-22

    A method and apparatus are provided for identifying contents of a nuclear waste container. The method includes the steps of forming an image of the contents of the container using digital radiography, visually comparing contents of the image with expected contents of the container and performing computer tomography on the container when the visual inspection reveals an inconsistency between the contents of the image and the expected contents of the container.

  14. Potential applications of nanostructured materials in nuclear waste management.

    SciTech Connect (OSTI)

    Braterman, Paul S. (The University of North Texas, Denton, TX); Phol, Phillip Isabio; Xu, Zhi-Ping (The University of North Texas, Denton, TX); Brinker, C. Jeffrey; Yang, Yi; Bryan, Charles R.; Yu, Kui; Xu, Huifang (University of New Mexico, Albuquerque, NM); Wang, Yifeng; Gao, Huizhen

    2003-09-01

    This report summarizes the results obtained from a Laboratory Directed Research & Development (LDRD) project entitled 'Investigation of Potential Applications of Self-Assembled Nanostructured Materials in Nuclear Waste Management'. The objectives of this project are to (1) provide a mechanistic understanding of the control of nanometer-scale structures on the ion sorption capability of materials and (2) develop appropriate engineering approaches to improving material properties based on such an understanding.

  15. Nuclear Waste Analytical Round Robins 1-6 summary report

    SciTech Connect (OSTI)

    Smith, G.L.; Marschman, S.C.

    1993-12-31

    The MCC has conducted six round robins for the waste management, research, and development community from 1987 to present. The laboratories participating regularly are Ames, Argonne, Catholic University, Lawrence Livermore, Pacific Northwest Laboratory, Savannah River, and West Valley Nuclear. Glass types analyzed in these round robins all have been simulated nuclear waste compositions expected from vitrification of high-level nuclear waste. A wide range of analytical procedures have been used by the participating laboratories including Atomic Absorption spectroscopy, inductively coupled plasma-atomic emission spectroscopy, direct current plasma-emission spectroscopy, and inductively coupled plasma-mass spectroscopy techniques. Consensus average relative error for Round Robins 1 through 6 is 5.4%, with values ranging from 9.4 to 1.1%. Trend on the average improved with each round robin. When the laboratories analyzed samples over longer periods of time, the intralaboratory variability increased. Lab-to-lab variation accounts for most of the total variability found in all the round robins. Participation in the radiochemistry portion has been minimal, and analytical results poor compared to nonradiochemistry portion. Additional radiochemical work is needed in future round robins.

  16. Consideration of nuclear criticality when disposing of transuranic waste at the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    RECHARD,ROBERT P.; SANCHEZ,LAWRENCE C.; STOCKMAN,CHRISTINE T.; TRELLUE,HOLLY R.

    2000-04-01

    Based on general arguments presented in this report, nuclear criticality was eliminated from performance assessment calculations for the Waste Isolation Pilot Plant (WIPP), a repository for waste contaminated with transuranic (TRU) radioisotopes, located in southeastern New Mexico. At the WIPP, the probability of criticality within the repository is low because mechanisms to concentrate the fissile radioisotopes dispersed throughout the waste are absent. In addition, following an inadvertent human intrusion into the repository (an event that must be considered because of safety regulations), the probability of nuclear criticality away from the repository is low because (1) the amount of fissile mass transported over 10,000 yr is predicted to be small, (2) often there are insufficient spaces in the advective pore space (e.g., macroscopic fractures) to provide sufficient thickness for precipitation of fissile material, and (3) there is no credible mechanism to counteract the natural tendency of the material to disperse during transport and instead concentrate fissile material in a small enough volume for it to form a critical concentration. Furthermore, before a criticality would have the potential to affect human health after closure of the repository--assuming that a criticality could occur--it would have to either (1) degrade the ability of the disposal system to contain nuclear waste or (2) produce significantly more radioisotopes than originally present. Neither of these situations can occur at the WIPP; thus, the consequences of a criticality are also low.

  17. Nuclear waste repository transparency technology test bed demonstrations at WIPP

    SciTech Connect (OSTI)

    BETSILL,J. DAVID; ELKINS,NED Z.; WU,CHUAN-FU; MEWHINNEY,JAMES D.; AAMODT,PAUL

    2000-01-27

    Secretary of Energy, Bill Richardson, has stated that one of the nuclear waste legacy issues is ``The challenge of managing the fuel cycle's back end and assuring the safe use of nuclear power.'' Waste management (i.e., the back end) is a domestic and international issue that must be addressed. A key tool in gaining acceptance of nuclear waste repository technologies is transparency. Transparency provides information to outside parties for independent assessment of safety, security, and legitimate use of materials. Transparency is a combination of technologies and processes that apply to all elements of the development, operation, and closure of a repository system. A test bed for nuclear repository transparency technologies has been proposed to develop a broad-based set of concepts and strategies for transparency monitoring of nuclear materials at the back end of the fuel/weapons cycle. WIPP is the world's first complete geologic repository system for nuclear materials at the back end of the cycle. While it is understood that WIPP does not currently require this type of transparency, this repository has been proposed as realistic demonstration site to generate and test ideas, methods, and technologies about what transparency may entail at the back end of the nuclear materials cycle, and which could be applicable to other international repository developments. An integrated set of transparency demonstrations was developed and deployed during the summer, and fall of 1999 as a proof-of-concept of the repository transparency technology concept. These demonstrations also provided valuable experience and insight into the implementation of future transparency technology development and application. These demonstrations included: Container Monitoring Rocky Flats to WIPP; Underground Container Monitoring; Real-Time Radiation and Environmental Monitoring; Integrated level of confidence in the system and information provided. As the world's only operating deep geologic

  18. Review of Concrete Biodeterioration in Relation to Buried Nuclear Waste

    SciTech Connect (OSTI)

    Turick, C; Berry, C.

    2012-10-15

    Long-term storage of low level radioactive material in below ground concrete disposal units (DUs) (Saltstone Disposal Facility) is a means of depositing wastes generated from nuclear operations of the U.S. Department of Energy. Based on the currently modeled degradation mechanisms, possible microbial induced effects on the structural integrity of buried low level wastes must be addressed. Previous international efforts related to microbial impacts on concrete structures that house low level radioactive waste showed that microbial activity can play a significant role in the process of concrete degradation and ultimately structural deterioration. This literature review examines the recent research in this field and is focused on specific parameters that are applicable to modeling and prediction of the fate of concrete vaults housing stored wastes and the wastes themselves. Rates of concrete biodegradation vary with the environmental conditions, illustrating a need to understand the bioavailability of key compounds involved in microbial activity. Specific parameters require pH and osmotic pressure to be within a certain range to allow for microbial growth as well as the availability and abundance of energy sources like components involved in sulfur, iron and nitrogen oxidation. Carbon flow and availability are also factors to consider in predicting concrete biodegradation. The results of this review suggest that microbial activity in Saltstone, (grouted low level radioactive waste) is unlikely due to very high pH and osmotic pressure. Biodegradation of the concrete vaults housing the radioactive waste however, is a possibility. The rate and degree of concrete biodegradation is dependent on numerous physical, chemical and biological parameters. Results from this review point to parameters to focus on for modeling activities and also, possible options for mitigation that would minimize concrete biodegradation. In addition, key chemical components that drive microbial

  19. HEAT TRANSFER ANALYSIS FOR NUCLEAR WASTE SOLIDIFICATION CONTAINER

    SciTech Connect (OSTI)

    Lee, S.

    2009-06-01

    The Nuclear Nonproliferation Programs Design Authority is in the design stage of the Waste Solidification Building (WSB) for the treatment and solidification of the radioactive liquid waste streams generated by the Pit Disassembly and Conversion Facility (PDCF) and Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF). The waste streams will be mixed with a cementitious dry mix in a 55-gallon waste container. Savannah River National Laboratory (SRNL) has been performing the testing and evaluations to support technical decisions for the WSB. Engineering Modeling & Simulation Group was requested to evaluate the thermal performance of the 55-gallon drum containing hydration heat source associated with the current baseline cement waste form. A transient axi-symmetric heat transfer model for the drum partially filled with waste form cement has been developed and heat transfer calculations performed for the baseline design configurations. For this case, 65 percent of the drum volume was assumed to be filled with the waste form, which has transient hydration heat source, as one of the baseline conditions. A series of modeling calculations has been performed using a computational heat transfer approach. The baseline modeling results show that the time to reach the maximum temperature of the 65 percent filled drum is about 32 hours when a 43 C initial cement temperature is assumed to be cooled by natural convection with 27 C external air. In addition, the results computed by the present model were compared with analytical solutions. The modeling results will be benchmarked against the prototypic test results. The verified model will be used for the evaluation of the thermal performance for the WSB drum. Detailed results and the cases considered in the calculations will be discussed here.

  20. Virginia Total Electric Power Industry Net Summer Capacity, by...

    U.S. Energy Information Administration (EIA) Indexed Site

    Virginia" "Energy Source",2006,2007,2008,2009,2010 "Fossil",14968,15080,15543,15740,15880 ... " Other Gases","-","-","-","-","-" "Nuclear",3432,3404,3404,3404,3501 ...

  1. Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC).

    SciTech Connect (OSTI)

    Schultz, Peter Andrew

    2011-12-01

    The objective of the U.S. Department of Energy Office of Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC) is to provide an integrated suite of computational modeling and simulation (M&S) capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive-waste storage facility or disposal repository. Achieving the objective of modeling the performance of a disposal scenario requires describing processes involved in waste form degradation and radionuclide release at the subcontinuum scale, beginning with mechanistic descriptions of chemical reactions and chemical kinetics at the atomic scale, and upscaling into effective, validated constitutive models for input to high-fidelity continuum scale codes for coupled multiphysics simulations of release and transport. Verification and validation (V&V) is required throughout the system to establish evidence-based metrics for the level of confidence in M&S codes and capabilities, including at the subcontiunuum scale and the constitutive models they inform or generate. This Report outlines the nature of the V&V challenge at the subcontinuum scale, an approach to incorporate V&V concepts into subcontinuum scale modeling and simulation (M&S), and a plan to incrementally incorporate effective V&V into subcontinuum scale M&S destined for use in the NEAMS Waste IPSC work flow to meet requirements of quantitative confidence in the constitutive models informed by subcontinuum scale phenomena.

  2. EM Shares Waste Isolation Pilot Plant Lessons Learned with Nuclear Energy Agency

    Broader source: Energy.gov [DOE]

    PARIS – EM officials shared lessons learned from the 2014 Waste Isolation Pilot Plant underground fire and radiological release with the Nuclear Energy Agency (NEA) Division of Radiological Protection and Radioactive Waste Management in a seminar in Paris recently.

  3. Smyth County, Virginia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Places in Smyth County, Virginia Adwolf, Virginia Atkins, Virginia Chilhowie, Virginia Marion, Virginia Saltville, Virginia Sugar Grove, Virginia Retrieved from "http:...

  4. Russell County, Virginia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Virginia Castlewood, Virginia Cleveland, Virginia Honaker, Virginia Lebanon, Virginia Raven, Virginia St. Paul, Virginia Retrieved from "http:en.openei.orgw...

  5. Tazewell County, Virginia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Bluefield, Virginia Cedar Bluff, Virginia Claypool Hill, Virginia Pocahontas, Virginia Raven, Virginia Richlands, Virginia Tazewell, Virginia Retrieved from "http:en.openei.org...

  6. Henrico County, Virginia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Highland Springs, Virginia Lakeside, Virginia Laurel, Virginia Montrose, Virginia Short Pump, Virginia Tuckahoe, Virginia Wyndham, Virginia Retrieved from "http:en.openei.orgw...

  7. Monongalia County, West Virginia: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Virginia Brookhaven, West Virginia Cassville, West Virginia Cheat Lake, West Virginia Granville, West Virginia Morgantown, West Virginia Star City, West Virginia Westover, West...

  8. Shenandoah County, Virginia: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    in Shenandoah County, Virginia Basye-Bryce Mountain, Virginia Edinburg, Virginia Mount Jackson, Virginia New Market, Virginia Strasburg, Virginia Toms Brook, Virginia Woodstock,...

  9. Fayette County, West Virginia: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Bridge, West Virginia Meadow Bridge, West Virginia Montgomery, West Virginia Mount Hope, West Virginia Oak Hill, West Virginia Pax, West Virginia Powellton, West Virginia...

  10. Lee County, Virginia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Virginia Ewing, Virginia Jonesville, Virginia Keokee, Virginia Pennington Gap, Virginia Rose Hill, Virginia St. Charles, Virginia Retrieved from "http:en.openei.orgw...

  11. Logan County, West Virginia: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    West Virginia Holden, West Virginia Logan, West Virginia Mallory, West Virginia Man, West Virginia Mitchell Heights, West Virginia Mount Gay-Shamrock, West Virginia...

  12. On-site waste storage assuring the success of on-site, low-level nuclear waste storage

    SciTech Connect (OSTI)

    Preston, E.L.

    1986-09-21

    Waste management has reached paramount importance in recent years. The successful management of radioactive waste is a key ingredient in the successful operation of any nuclear facility. This paper discusses the options available for on-site storage of low-level radioactive waste and those options that have been selected by the Department of Energy facilities operated by Martin Marietta Energy Systems, Inc. in Oak Ridge, Tennessee. The focus of the paper is on quality assurance (QA) features of waste management activities such as accountability and retrievability of waste materials and waste packages, retrievability of data, waste containment, safety and environmental monitoring. Technical performance and careful documentation of that performance are goals which can be achieved only through the cooperation of numerous individuals from waste generating and waste managing organizations, engineering, QA, and environmental management.

  13. CFD Modeling of Thermal Effects of Nuclear Waste Vitrification Processes

    SciTech Connect (OSTI)

    Rayner, Chris; Soltani, Mehdi; Barringer, Chris; Knight, Kelly

    2006-07-01

    The Waste Treatment Plant (WTP) at Hanford, WA will vitrify nuclear waste stored at the DOE Hanford facility. The vitrification process will take place in two large concrete buildings where the glass is poured into stainless steel canisters or containers and allowed to cool. Computational Fluid Dynamics (CFD) was used extensively to calculate the effects of the heat released by molten glass as it is poured and cooled, on the HVAC system and the building structure. CFD studies of the glass cooling in these facilities were used to predict canister temperatures, HVAC air temperatures, concrete temperatures and insulation requirements, and design temperatures for canister handling equipment and instrumentation at various stages of the process. These predictions provided critical input in the design of the HVAC system, specification of insulation, the design of canister handling equipment, and the selection of instrumentation. (authors)

  14. National briefing summaries: Nuclear fuel cycle and waste management

    SciTech Connect (OSTI)

    Schneider, K.J.; Lakey, L.T.; Silviera, D.J.

    1988-12-01

    The National Briefing Summaries is a compilation of publicly available information concerning the nuclear fuel cycle and radioactive waste management strategies and programs of 21 nations, including the United States and three international agencies that have publicized their activities in this field. It presents available highlight information with references that may be used by the reader for additional information. The information in this document is compiled primarily for use by the US Department of Energy and other US federal agencies and their contractors to provide summary information on radioactive waste management activities in other countries. This document provides an awareness to managers and technical staff of what is occurring in other countries with regard to strategies, activities, and facilities. The information may be useful in program planning to improve and benefit United States' programs through foreign information exchange. Benefits to foreign exchange may be derived through a number of exchange activities.

  15. Idaho Nuclear Technology and Engineering Center Newly Generated Liquid Waste Demonstration Project Feasibility Study

    SciTech Connect (OSTI)

    Herbst, A.K.

    2000-02-01

    A research, development, and demonstration project for the grouting of newly generated liquid waste (NGLW) at the Idaho Nuclear Technology and Engineering Center is considered feasible. NGLW is expected from process equipment waste, decontamination waste, analytical laboratory waste, fuel storage basin waste water, and high-level liquid waste evaporator condensate. The potential grouted waste would be classed as mixed low-level waste, stabilized and immobilized to meet RCRA LDR disposal in a grouting process in the CPP-604 facility, and then transported to the state.

  16. Flammability Control In A Nuclear Waste Vitrification System

    SciTech Connect (OSTI)

    Zamecnik, John R.; Choi, Alexander S.; Johnson, Fabienne C.; Miller, Donald H.; Lambert, Daniel P.; Stone, Michael E.; Daniel, William E. Jr.

    2013-07-25

    The Defense Waste Processing Facility at the Savannah River Site processes high-level radioactive waste from the processing of nuclear materials that contains dissolved and precipitated metals and radionuclides. Vitrification of this waste into borosilicate glass for ultimate disposal at a geologic repository involves chemically modifying the waste to make it compatible with the glass melter system. Pretreatment steps include removal of excess aluminum by dissolution and washing, and processing with formic and nitric acids to: 1) adjust the reduction-oxidation (redox) potential in the glass melter to reduce radionuclide volatility and improve melt rate; 2) adjust feed rheology; and 3) reduce by steam stripping the amount of mercury that must be processed in the melter. Elimination of formic acid in pretreatment has been studied to eliminate the production of hydrogen in the pretreatment systems, which requires nuclear grade monitoring equipment. An alternative reductant, glycolic acid, has been studied as a substitute for formic acid. However, in the melter, the potential for greater formation of flammable gases exists with glycolic acid. Melter flammability is difficult to control because flammable mixtures can be formed during surges in offgases that both increase the amount of flammable species and decrease the temperature in the vapor space of the melter. A flammable surge can exceed the 60% of the LFL with no way to mitigate it. Therefore, careful control of the melter feed composition based on scaled melter surge testing is required. The results of engineering scale melter tests with the formic-nitric flowsheet and the use of these data in the melter flammability model are presented.

  17. Review of Nuclear Safety Culture at the Hanford Site Waste Treatment and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Immobilization Plant Project, October 2010 | Department of Energy Review of Nuclear Safety Culture at the Hanford Site Waste Treatment and Immobilization Plant Project, October 2010 Review of Nuclear Safety Culture at the Hanford Site Waste Treatment and Immobilization Plant Project, October 2010 October 2010 Report for independent review of the nuclear safety culture at the Waste Treatment and Immobilization Plant (WTP) project at DOE's Hanford Site. This report provides the results of a

  18. USED NUCLEAR MATERIALS AT SAVANNAH RIVER SITE: ASSET OR WASTE?

    SciTech Connect (OSTI)

    Magoulas, V.

    2013-06-03

    The nuclear industry, both in the commercial and the government sectors, has generated large quantities of material that span the spectrum of usefulness, from highly valuable (“assets”) to worthless (“wastes”). In many cases, the decision parameters are clear. Transuranic waste and high level waste, for example, have no value, and is either in a final disposition path today, or – in the case of high level waste – awaiting a policy decision about final disposition. Other materials, though discardable, have intrinsic scientific or market value that may be hidden by the complexity, hazard, or cost of recovery. An informed decision process should acknowledge the asset value, or lack of value, of the complete inventory of materials, and the structure necessary to implement the range of possible options. It is important that informed decisions are made about the asset value for the variety of nuclear materials available. For example, there is a significant quantity of spent fuel available for recycle (an estimated $4 billion value in the Savannah River Site’s (SRS) L area alone); in fact, SRS has already blended down more than 300 metric tons of uranium for commercial reactor use. Over 34 metric tons of surplus plutonium is also on a path to be used as commercial fuel. There are other radiological materials that are routinely handled at the site in large quantities that should be viewed as strategically important and / or commercially viable. In some cases, these materials are irreplaceable domestically, and failure to consider their recovery could jeopardize our technological leadership or national defense. The inventories of nuclear materials at SRS that have been characterized as “waste” include isotopes of plutonium, uranium, americium, and helium. Although planning has been performed to establish the technical and regulatory bases for their discard and disposal, recovery of these materials is both economically attractive and in the national

  19. THERMODYNAMIC TABLES FOR NUCLEAR WASTE ISOLATION, V.1: AQUEOUSSOLUTIONS DATABASE

    SciTech Connect (OSTI)

    Phillips, S.L.; Hale, F.V.; Silvester, L.F.

    1988-05-01

    Tables of consistent thermodynamic property values for nuclear waste isolation are given. The tables include critically assessed values for Gibbs energy of formation. enthalpy of formation, entropy and heat capacity for minerals; solids; aqueous ions; ion pairs and complex ions of selected actinide and fission decay products at 25{sup o}C and zero ionic strength. These intrinsic data are used to calculate equilibrium constants and standard potentials which are compared with typical experimental measurements and other work. Recommendations for additional research are given.

  20. Review of Nuclear Safety Culture at the Hanford Site Waste Treatment...

    Energy Savers [EERE]

    Treatment and Immobilization Plant Project, October 2010 Review of Nuclear Safety Culture at the Hanford Site Waste Treatment and Immobilization Plant Project, October 2010 October ...

  1. Finding Long-Term Solutions for Nuclear Waste | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Long-Term Solutions for Nuclear Waste Finding Long-Term Solutions for Nuclear Waste December 21, 2015 - 1:00pm Addthis The Department of Energy is working toward long-term solutions for nuclear waste storage. | Photo by <a href="https://www.flickr.com/photos/mandj98/">James Marvin Phelps</a>. The Department of Energy is working toward long-term solutions for nuclear waste storage. | Photo by James Marvin Phelps. Franklin (Lynn) Orr Franklin (Lynn) Orr Under Secretary for

  2. 2011 SECRETARIAL DETERMINATION OF THE ADEQUACY OF THE NUCLEAR WASTE FUND

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FEE | Department of Energy 2011 SECRETARIAL DETERMINATION OF THE ADEQUACY OF THE NUCLEAR WASTE FUND FEE 2011 SECRETARIAL DETERMINATION OF THE ADEQUACY OF THE NUCLEAR WASTE FUND FEE As required by the Nuclear Waste Policy Act of 1982 (NWPA), DOE has completed its annual review of the adequacy of the Nuclear Waste Fund fee. Based on that review, the Office of Standard Contract Management has determined that there is no basis to propose an adjustment to the fee to Congress. The Secretary of

  3. Nuclear waste management. Semiannual progress report, April 1983-September 1983

    SciTech Connect (OSTI)

    McElroy, J.L.; Powell, J.A.

    1984-01-01

    The status of the following programs is reported: waste stabilization; waste isolation; low-level waste management; remedial action; and supporting studies. 58 figures, 39 tables.

  4. Long-term management of high-level radioactive waste (HLW) and spent nuclear fuel (SNF)

    Broader source: Energy.gov [DOE]

    GC-52 provides legal advice to DOE regarding the long-term management of high-level radioactive waste (HLW) and spent nuclear fuel (SNF). SNF is nuclear fuel that has been used as fuel in a reactor...

  5. Corrosion of Nuclear Fuel Inside a Failed Copper Nuclear Waste Container

    SciTech Connect (OSTI)

    Broczkowski, Michael E.; Goldik, Jonathan S.; Santos, Billy G.; Noel, James J.; Shoesmith, David

    2007-07-01

    Canada's Nuclear Waste Management Organization has recommended to the Canadian federal government an adaptive phased management approach to the long-term management of used nuclear fuel. This approach includes isolation in a deep geologic repository. In such a repository, the fuel would be sealed inside a carbon steel-lined copper container. To assist the development of performance assessment models studies of fuel behaviour inside a failed waste container are underway. Using an iterative modeling and experimental approach, the important features and processes that determine fuel behaviour have been identified and studied. These features and processes are discussed and the results of studies to elucidate specific mechanisms and determine important parameter values summarized. (authors)

  6. Separation of technetium from nuclear waste stream simulants. Final report

    SciTech Connect (OSTI)

    Strauss, S.H. [Colorado State Univ., Fort Collins, CO (United States). Dept. of Chemistry

    1995-09-11

    The author studied liquid anion exchangers, such as Aliquat-336 nitrate, various pyridinium nitrates, and related salts, so that they may be applied toward a specific process for extracting (partitioning) and recovering {sup 99}TcO{sub 4}{sup {minus}} from nuclear waste streams. Many of the waste streams are caustic and contain a variety of other ions. For this reason, the author studied waste stream simulants that are caustic and contain appropriate concentrations of selected, relevant ions. Methods of measuring the performance of the exchangers and extractant systems included contact experiments. Batch contact experiments were used to determine the forward and reverse extraction parameters as a function of temperature, contact time, phase ratio, concentration, solvent (diluent), and other physical properties. They were also used for stability and competition studies. Specifically, the author investigated the solvent extraction behavior of salts of perrhenate (ReO{sub 4}{sup {minus}}), a stable (non-radioactive) chemical surrogate for {sup 99}TcO{sub 4}{sup {minus}}. Results are discussed for alternate organic solvents; metalloporphyrins, ferrocenes, and N-cetyl pyridium nitrate as alternate extractant salts; electroactive polymers; and recovery of ReO{sub 4}{sup {minus}} and TcO{sub 4}{sup {minus}}.

  7. Characterization of Defense Nuclear Waste Using Hazardous Waste Guidance: Applications to Hanford Site Accelerated High-Level Waste Treatment and Disposal Mission

    SciTech Connect (OSTI)

    Hamel, William F.; Huffman, Lori A.; Lerchen, Megan E.; Wiemers, Karyn D.

    2003-02-24

    Federal hazardous waste regulations were developed for management of industrial waste. These same regulations are also applicable for much of the nation's defense nuclear wastes. At the U.S. Department of Energy’s (DOE) Hanford Site in southeast Washington State, one of the nation’s largest inventories of nuclear waste remains in storage in large underground tanks. The waste's regulatory designation and its composition and form constrain acceptable treatment and disposal options. Obtaining detailed knowledge of the tank waste composition presents a significant portion of the many challenges in meeting the regulatory-driven treatment and disposal requirements for this waste. Key in applying the hazardous waste regulations to defense nuclear wastes is defining the appropriate and achievable quality for waste feed characterization data and the supporting evidence demonstrating that applicable requirements have been met at the time of disposal. Application of a performance-based approach to demonstrating achievable quality standards will be discussed in the context of the accelerated high-level waste treatment and disposal mission at the Hanford Site.

  8. SRNL CRP progress report [Development of Melt Processed Ceramics for Nuclear Waste Immobilization

    SciTech Connect (OSTI)

    Amoroso, J.; Marra, J.

    2014-10-02

    A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics) over geologic timescales of interest for nuclear waste immobilization [1]. A durable multiphase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing.

  9. Calcined Waste Storage at the Idaho Nuclear Technology and Engineering Center

    SciTech Connect (OSTI)

    M. D. Staiger M. C. Swenson

    2007-06-01

    This report provides a quantitative inventory and composition (chemical and radioactivity) of calcined waste stored at the Idaho Nuclear Technology and Engineering Center. From December 1963 through May 2000, liquid radioactive wastes generated by spent nuclear fuel reprocessing were converted into a solid, granular form called calcine. This report also contains a description of the calcine storage bins.

  10. WASTE PROCESSING ANNUAL NUCLEAR SAFETY RELATED R AND D REPORT FOR CY2008

    SciTech Connect (OSTI)

    Fellinger, A.

    2009-10-15

    The Engineering and Technology Office of Waste Processing identifies and reduces engineering and technical risks associated with key waste processing project decisions. The risks, and actions taken to mitigate those risks, are determined through technology readiness assessments, program reviews, technology information exchanges, external technical reviews, technical assistance, and targeted technology development and deployment (TDD). The Office of Waste Processing TDD program prioritizes and approves research and development scopes of work that address nuclear safety related to processing of highly radioactive nuclear wastes. Thirteen of the thirty-five R&D approved work scopes in FY2009 relate directly to nuclear safety, and are presented in this report.

  11. WASTE ISOLATION PILOT PLANT (WIPP): THE NATIONS' SOLUTION TO NUCLEAR WASTE STORAGE AND DISPOSAL ISSUES

    SciTech Connect (OSTI)

    Lopez, Tammy Ann

    2014-07-17

    In the southeastern portion of my home state of New Mexico lies the Chihuahauan desert, where a transuranic (TRU), underground disposal site known as the Waste Isolation Pilot Plant (WIPP) occupies 16 square miles. Full operation status began in March 1999, the year I graduated from Los Alamos High School, in Los Alamos, NM, the birthplace of the atomic bomb and one of the nation’s main TRU waste generator sites. During the time of its development and until recently, I did not have a full grasp on the role Los Alamos was playing in regards to WIPP. WIPP is used to store and dispose of TRU waste that has been generated since the 1940s because of nuclear weapons research and testing operations that have occurred in Los Alamos, NM and at other sites throughout the United States (U.S.). TRU waste consists of items that are contaminated with artificial, man-made radioactive elements that have atomic numbers greater than uranium, or are trans-uranic, on the periodic table of elements and it has longevity characteristics that may be hazardous to human health and the environment. Therefore, WIPP has underground rooms that have been carved out of 2,000 square foot thick salt formations approximately 2,150 feet underground so that the TRU waste can be isolated and disposed of. WIPP has operated safely and successfully until this year, when two unrelated events occurred in February 2014. With these events, the safety precautions and measures that have been operating at WIPP for the last 15 years are being revised and improved to ensure that other such events do not occur again.

  12. Precipitation-adsorption process for the decontamination of nuclear waste supernates

    DOE Patents [OSTI]

    Lee, Lien-Mow; Kilpatrick, Lester L.

    1984-01-01

    High-level nuclear waste supernate is decontaminated of cesium by precipitation of the cesium and potassium with sodium tetraphenyl boron. Simultaneously, strontium-90 is removed from the waste supernate sorption of insoluble sodium titanate. The waste solution is then filtered to separate the solution decontaminated of cesium and strontium.

  13. Precipitation-adsorption process for the decontamination of nuclear waste supernates

    DOE Patents [OSTI]

    Lee, L.M.; Kilpatrick, L.L.

    1982-05-19

    High-level nuclear waste supernate is decontaminated of cesium by precipitation of the cesium and potassium with sodium tetraphenyl boron. Simultaneously, strontium-90 is removed from the waste supernate sorption of insoluble sodium titanate. The waste solution is then filtered to separate the solution decontaminated of cesium and strontium.

  14. EXPERIMENTAL METHODS TO ESTIMATE ACCUMULATED SOLIDS IN NUCLEAR WASTE TANKS

    SciTech Connect (OSTI)

    Duignan, M.; Steeper, T.; Steimke, J.

    2012-12-10

    The Department of Energy has a large number of nuclear waste tanks. It is important to know if fissionable materials can concentrate when waste is transferred from staging tanks prior to feeding waste treatment plants. Specifically, there is a concern that large, dense particles, e.g., plutonium containing, could accumulate in poorly mixed regions of a blend tank heel for tanks that employ mixing jet pumps. At the request of the DOE Hanford Tank Operations Contractor, Washington River Protection Solutions, the Engineering Development Laboratory of the Savannah River National Laboratory performed a scouting study in a 1/22-scale model of a waste tank to investigate this concern and to develop measurement techniques that could be applied in a more extensive study at a larger scale. Simulated waste tank solids and supernatant were charged to the test tank and rotating liquid jets were used to remove most of the solids. Then the volume and shape of the residual solids and the spatial concentration profiles for the surrogate for plutonium were measured. This paper discusses the overall test results, which indicated heavy solids only accumulate during the first few transfer cycles, along with the techniques and equipment designed and employed in the test. Those techniques include: Magnetic particle separator to remove stainless steel solids, the plutonium surrogate from a flowing stream; Magnetic wand used to manually remove stainless steel solids from samples and the tank heel; Photographs were used to determine the volume and shape of the solids mounds by developing a composite of topographical areas; Laser rangefinders to determine the volume and shape of the solids mounds; Core sampler to determine the stainless steel solids distribution within the solids mounds; Computer driven positioner that placed the laser rangefinders and the core sampler over solids mounds that accumulated on the bottom of a scaled staging tank in locations where jet velocities were low. These

  15. Selection of Corrosion Resistant Materials for Nuclear Waste Repositories

    SciTech Connect (OSTI)

    R.B. Rebak

    2006-08-28

    Several countries are considering geological repositories to dispose of nuclear waste. The environment of most of the currently considered repositories will be reducing in nature, except for the repository in the US, which is going to be oxidizing. For the reducing repositories, alloys such as carbon steel, stainless steels and titanium are being evaluated. For the repository in the US, some of the most corrosion resistant commercially available alloys are being investigated. This paper presents a summary of the behavior of the different materials under consideration for the repositories and the current understanding of the degradation modes of the proposed alloys in ground water environments from the point of view of general corrosion, localized corrosion and environmentally assisted cracking.

  16. Volcanoes in Virginia!

    ScienceCinema (OSTI)

    Johnson, Elizabeth Baedke [James Madison University

    2014-06-25

    The recent earthquake may have you wondering what other surprises Virginia's geology may hold. Could there be a volcanic eruption in Virginia? Probably not today, but during the Eocene, about 35-48 million years ago, a number of mysterious eruptions occurred in western Virginia. This talk investigates the possible origins of these eruptions, and what they can tell us about the crust and mantle underneath Virginia.

  17. Identifying suitable "piercement" salt domes for nuclear waste storage sites

    SciTech Connect (OSTI)

    Kehle, R.

    1980-08-01

    Piercement salt domes of the northern interior salt basins of the Gulf of Mexico are being considered as permanent storage sites for both nuclear and chemically toxic wastes. The suitable domes are stable and inactive, having reached their final evolutionary configuration at least 30 million years ago. They are buried to depths far below the level to which erosion will penetrate during the prescribed storage period and are not subject to possible future reactivation. The salt cores of these domes are themselves impermeable, permitting neither the entry nor exit of ground water or other unwanted materials. In part, a stable dome may be recognized by its present geometric configuration, but conclusive proof depends on establishing its evolutionary state. The evolutionary state of a dome is obtained by reconstructing the growth history of the dome as revealed by the configuration of sedimentary strata in a large area (commonly 3,000 square miles or more) surrounding the dome. A high quality, multifold CDP reflection seismic profile across a candidate dome will provide much of the necessary information when integrated with available subsurface control. Additional seismic profiles may be required to confirm an apparent configuration of the surrounding strata and an interpreted evolutionary history. High frequency seismic data collected in the near vicinity of a dome are also needed as a supplement to the CDP data to permit accurate depiction of the configuration of shallow strata. Such data must be tied to shallow drill hole control to confirm the geologic age at which dome growth ceased. If it is determined that a dome reached a terminal configuration many millions of years ago, such a dome is incapable of reactivation and thus constitutes a stable storage site for nuclear wastes.

  18. Franklin County, Virginia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Ferrum, Virginia North Shore, Virginia Penhook, Virginia Rocky Mount, Virginia Union Hall, Virginia Westlake Corner, Virginia Retrieved from "http:en.openei.orgw...

  19. Mingo County, West Virginia: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Creek, West Virginia Gilbert, West Virginia Kermit, West Virginia Matewan, West Virginia Red Jacket, West Virginia Williamson, West Virginia Retrieved from "http:en.openei.orgw...

  20. Rockingham County, Virginia: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Climate Zone Number 4 Climate Zone Subtype A. Places in Rockingham County, Virginia Bridgewater, Virginia Broadway, Virginia Dayton, Virginia Elkton, Virginia Grottoes, Virginia...

  1. Wise County, Virginia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Appalachia, Virginia Big Stone Gap, Virginia Coeburn, Virginia Pound, Virginia St. Paul, Virginia Wise, Virginia Retrieved from "http:en.openei.orgwindex.php?titleWiseCo...

  2. Raleigh County, West Virginia: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Places in Raleigh County, West Virginia Beaver, West Virginia Beckley, West Virginia Bradley, West Virginia Coal City, West Virginia Crab Orchard, West Virginia Daniels, West...

  3. Cermet Spent Nuclear Fuel Casks and Waste Packages

    SciTech Connect (OSTI)

    Forsberg, Charles W.; Dole, Leslie R.

    2007-07-01

    Multipurpose transport, aging, and disposal casks are needed for the management of spent nuclear fuel (SNF). Self-shielded cermet casks can out-perform current SNF casks because of the superior properties of cermets, which consist of encapsulated hard ceramic particulates dispersed in a continuous ductile metal matrix to produce a strong high-integrity, high-thermal conductivity cask. A multi-year, multinational development and testing program has been developing cermet SNF casks made of steel, depleted uranium dioxide, and other materials. Because cermets are the traditional material of construction for armor, cermet casks can provide superior protection against assault. For disposal, cermet waste packages (WPs) with appropriate metals and ceramics can buffer the local geochemical environment to (1) slow degradation of SNF, (2) reduce water flow though the degraded WP, (3) sorb neptunium and other radionuclides that determine the ultimate radiation dose to the public from the repository, and (4) contribute to long-term nuclear criticality control. Finally, new cermet cask fabrication methods have been partly developed to manufacture the casks with the appropriate properties. The results of this work are summarized with references to the detailed reports. (authors)

  4. Clean Energy Group Virginia | Open Energy Information

    Open Energy Info (EERE)

    Clean Energy Group Virginia Jump to: navigation, search Name: Clean Energy Group (Virginia) Place: Reston, Virginia Zip: VA 20191 Product: Virginia-based state regional office of...

  5. Virginia Biodiesel Refinery | Open Energy Information

    Open Energy Info (EERE)

    Refinery Jump to: navigation, search Name: Virginia Biodiesel Refinery Place: West Point, Virginia Zip: 23180 Product: Biodiesel producer based in Virginia References: Virginia...

  6. Decommissioning and Dismantling of Liquid Waste Storage and Liquid Waste Treatment Facility from Paldiski Nuclear Site, Estonia

    SciTech Connect (OSTI)

    Varvas, M.; Putnik, H.; Johnsson, B.

    2006-07-01

    The Paldiski Nuclear Facility in Estonia, with two nuclear reactors was owned by the Soviet Navy and was used for training the navy personnel to operate submarine nuclear reactors. After collapse of Soviet Union the Facility was shut down and handed over to the Estonian government in 1995. In co-operation with the Paldiski International Expert Reference Group (PIERG) decommission strategy was worked out and started to implement. Conditioning of solid and liquid operational waste and dismantling of contaminated installations and buildings were among the key issues of the Strategy. Most of the liquid waste volume, remained at the Facility, was processed in the frames of an Estonian-Finnish co-operation project using a mobile wastewater purification unit NURES (IVO International OY) and water was discharged prior to the site take-over. In 1999-2002 ca 120 m{sup 3} of semi-liquid tank sediments (a mixture of ion exchange resins, sand filters, evaporator and flocculation slurry), remained after treatment of liquid waste were solidified in steel containers and stored into interim storage. The project was carried out under the Swedish - Estonian co-operation program on radiation protection and nuclear safety. Contaminated installations in buildings, used for treatment and storage of liquid waste (Liquid Waste Treatment Facility and Liquid Waste Storage) were then dismantled and the buildings demolished in 2001-2004. (authors)

  7. GNEP Element:Minimize Nuclear Waste | Department of Energy

    Office of Environmental Management (EM)

    Enhanced Nuclear Safeguards Global Nuclear Energy Partnership Fact Sheet - Develop Enhanced Nuclear Safeguards GNEP Element:Demonstrate More Proliferation-Resistant Recycling...

  8. Long-Term Waste Package Degradation Studies at the Yucca Mountain Potential High-Level Nuclear Waste Repository

    SciTech Connect (OSTI)

    Mon, K. G.; Bullard, B. E.; Longsine, D. E.; Mehta, S.; Lee, J. H.; Monib, A. M.

    2002-02-26

    The Site Recommendation (SR) process for the potential repository for spent nuclear fuel (SNF) and high-level nuclear waste (HLW) at Yucca Mountain, Nevada is underway. Fulfillment of the requirements for substantially complete containment of the radioactive waste emplaced in the potential repository and subsequent slow release of radionuclides from the Engineered Barrier System (EBS) into the geosphere will rely on a robust waste container design, among other EBS components. Part of the SR process involves sensitivity studies aimed at elucidating which model parameters contribute most to the drip shield and waste package degradation characteristics. The model parameters identified included (a) general corrosion rate model parameters (temperature-dependence and uncertainty treatment), and (b) stress corrosion cracking (SCC) model parameters (uncertainty treatment of stress and stress intensity factor profiles in the Alloy 22 waste package outer barrier closure weld regions, the SCC initiation stress threshold, and the fraction of manufacturing flaws oriented favorably for through-wall penetration by SCC). These model parameters were reevaluated and new distributions were generated. Also, early waste package failures due to improper heat treatment were added to the waste package degradation model. The results of these investigations indicate that the waste package failure profiles are governed by the manufacturing flaw orientation model parameters and models used.

  9. Study Builds Knowledge of Nuclear Waste Glass, Provides Insight to Facility

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design | Department of Energy Study Builds Knowledge of Nuclear Waste Glass, Provides Insight to Facility Design Study Builds Knowledge of Nuclear Waste Glass, Provides Insight to Facility Design April 14, 2016 - 12:40pm Addthis Simulated low-activity waste is cooled in a prototypic steel container as part of ORP-sponsored testing at a Columbia, Md., facility in September 2003. Simulated low-activity waste is cooled in a prototypic steel container as part of ORP-sponsored testing at a

  10. Nuclear waste management. Quarterly progress report, July-September 1980

    SciTech Connect (OSTI)

    Chikalla, T.D.

    1980-11-01

    Research is reported on: high-level waste immobilization, alternative waste forms, TRU waste immobilization and decontamination, krypton solidification, thermal outgassing, /sup 129/I fixation, unsaturated zone transport, well-logging instrumentation, waste management system and safety studies, effectiveness of geologic isolation systems, waste/rock interactions, engineered barriers, backfill material, spent fuel storage (criticality), barrier sealing and liners for U mill tailings, and revegetation of inactive U tailings sites. (DLC)

  11. Proceedings of the symposium on Scientific Basis for Nuclear Waste Management XXX

    SciTech Connect (OSTI)

    Dunn, Darrell; Poinssot, Christophe; Begg, Bruce

    2007-07-01

    Management of nuclear waste remains an important international topic that includes reprocessing of commercial nuclear fuel, waste-form design and development, storage and disposal packaging, the process of repository site selection, system design, and performance assessment. Requirements to manage and dispose of materials from the production of nuclear weapons, and the renewed interest in nuclear power, in particular through the Generation IV Forum and the Advanced Fuel Cycle Initiative, can be expected to increase the need for scientific advances in waste management. A broad range of scientific and engineering disciplines is necessary to provide safe and effective solutions and address complex issues. This volume offers an interdisciplinary perspective on materials-related issues associated with nuclear waste management programs. Invited and contributed papers cover a wide range of topics including studies on: spent fuel; performance assessment and models; waste forms for low- and intermediate-level waste; ceramic and glass waste forms for plutonium and high-level waste; radionuclides; containers and engineered barriers; disposal environments and site characteristics; and partitioning and transmutation.

  12. Strategic Minimization of High Level Waste from Pyroprocessing of Spent Nuclear Fuel

    SciTech Connect (OSTI)

    Simpson, Michael F.; Benedict, Robert W.

    2007-09-01

    The pyroprocessing of spent nuclear fuel results in two high-level waste streams--ceramic and metal waste. Ceramic waste contains active metal fission product-loaded salt from the electrorefining, while the metal waste contains cladding hulls and undissolved noble metals. While pyroprocessing was successfully demonstrated for treatment of spent fuel from Experimental Breeder Reactor-II in 1999, it was done so without a specific objective to minimize high-level waste generation. The ceramic waste process uses “throw-away” technology that is not optimized with respect to volume of waste generated. In looking past treatment of EBR-II fuel, it is critical to minimize waste generation for technology developed under the Global Nuclear Energy Partnership (GNEP). While the metal waste cannot be readily reduced, there are viable routes towards minimizing the ceramic waste. Fission products that generate high amounts of heat, such as Cs and Sr, can be separated from other active metal fission products and placed into short-term, shallow disposal. The remaining active metal fission products can be concentrated into the ceramic waste form using an ion exchange process. It has been estimated that ion exchange can reduce ceramic high-level waste quantities by as much as a factor of 3 relative to throw-away technology.

  13. Integrated data base report - 1994: US spent nuclear fuel and radioactive waste inventories, projections, and characteristics

    SciTech Connect (OSTI)

    1995-09-01

    The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and U.S. Department of Energy (DOE) spent nuclear fuel and commercial and U.S. government-owned radioactive wastes. Except for transuranic wastes, inventories of these materials are reported as of December 31, 1994. Transuranic waste inventories are reported as of December 31, 1993. All spent nuclear fuel and radioactive waste data reported are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest DOE/Energy Information Administration (EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, DOE Environmental Restoration Program contaminated environmental media, commercial reactor and fuel-cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through the calendar-year 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions.

  14. Lead iron phosphate glass as a containment medium for disposal of high-level nuclear waste

    DOE Patents [OSTI]

    Boatner, Lynn A.; Sales, Brian C.

    1989-01-01

    Lead-iron phosphate glasses containing a high level of Fe.sub.2 O.sub.3 for use as a storage medium for high-level radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste, a highly corrosion resistant, homogeneous, easily processed glass can be formed. For corroding solutions at 90.degree. C., with solution pH values in the range between 5 and 9, the corrosion rate of the lead-iron phosphate nuclear waste glass is at least 10.sup.2 to 10.sup.3 times lower than the corrosion rate of a comparable borosilicate nuclear waste glass. The presence of Fe.sub.2 O.sub.3 in forming the lead-iron phosphate glass is critical. Lead-iron phosphate nuclear waste glass can be prepared at temperatures as low as 800.degree. C., since they exhibit very low melt viscosities in the 800.degree. to 1050.degree. C. temperature range. These waste-loaded glasses do not readily devitrify at temperatures as high as 550.degree. C. and are not adversely affected by large doses of gamma radiation in H.sub.2 O at 135.degree. C. The lead-iron phosphate waste glasses can be prepared with minimal modification of the technology developed for processing borosilicate glass nuclear wasteforms.

  15. Microwave energy for post-calcination treatment of high-level nuclear wastes

    SciTech Connect (OSTI)

    Gombert, D.; Priebe, S.J.; Berreth, J.R.

    1980-01-01

    High-level radioactive wastes generated from nuclear fuel reprocessing require treatment for effective long-term storage. Heating by microwave energy is explored in processing of two possible waste forms: (1) drying of a pelleted form of calcined waste; and (2) vitrification of calcined waste. It is shown that residence times for these processes can be greatly reduced when using microwave energy rather than conventional heating sources, without affecting product properties. Compounds in the waste and in the glass frit additives couple very well with the 2.45 GHz microwave field so that no special microwave absorbers are necessary.

  16. Nuclear wastes: as they build up, so does the dispute over storing them

    SciTech Connect (OSTI)

    Kuziak, S.M.; Havemann, J.

    1980-12-20

    Congress has been unable to resolve the policy issues of high-level radioactive wastes sought by both the environmentalists and the nuclear industry. Defense programs continue to generate these wastes, which are stored at sites in South Carolina, Idaho, and Washington and at a former commercial reprocessing site in New York. Neither the House bill (HR 8378) which sought to include defense wastes in public policy nor the Senate bill (S 2189) which authorized Federally-built away from reactor vaults for commercial wastes proved acceptable. The accumulation of spent fuel is the major commercial disposal problem. States may form regional agreements to handle the disposal of low-level wastes. (DCK)

  17. An Adaptive, Consent-Based Path to Nuclear Waste Storage and...

    Broader source: Energy.gov (indexed) [DOE]

    for the final disposition of used fuel and nuclear waste must be based not only on sound science but also on achieving public acceptance at the local, and state and tribal levels....

  18. GC Commits to Transparency on Nuclear Waste Fund Fee Adequacy Decisions

    Broader source: Energy.gov [DOE]

    Consistent with the Administration's commitment to transparency, DOE General Counsel Scott Blake Harris has decided that all future determinations as to the adequacy of the Nuclear Waste Fund fee...

  19. Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste is a framework for moving toward a sustainable program to deploy an integrated system capable of...

  20. Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste

    Office of Energy Efficiency and Renewable Energy (EERE)

    Issued on January 11, 2013, the Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste is a framework for moving toward a sustainable program to deploy an...

  1. Technical Aspects Regarding the Management of Radioactive Waste from Decommissioning of Nuclear Facilities

    SciTech Connect (OSTI)

    Dragolici, F.; Turcanu, C. N.; Rotarescu, G.; Paunica, I.

    2003-02-25

    The proper application of the nuclear techniques and technologies in Romania started in 1957, once with the commissioning of the Research Reactor VVR-S from IFIN-HH-Magurele. During the last 45 years, appear thousands of nuclear application units with extremely diverse profiles (research, biology, medicine, education, agriculture, transport, all types of industry) which used different nuclear facilities containing radioactive sources and generating a great variety of radioactive waste during the decommissioning after the operation lifetime is accomplished. A new aspect appears by the planning of VVR-S Research Reactor decommissioning which will be a new source of radioactive waste generated by decontamination, disassembling and demolition activities. By construction and exploitation of the Radioactive Waste Treatment Plant (STDR)--Magurele and the National Repository for Low and Intermediate Radioactive Waste (DNDR)--Baita, Bihor county, in Romania was solved the management of radioactive wastes arising from operation and decommissioning of small nuclear facilities, being assured the protection of the people and environment. The present paper makes a review of the present technical status of the Romanian waste management facilities, especially raising on treatment capabilities of ''problem'' wastes such as Ra-266, Pu-238, Am-241 Co-60, Co-57, Sr-90, Cs-137 sealed sources from industrial, research and medical applications. Also, contain a preliminary estimation of quantities and types of wastes, which would result during the decommissioning project of the VVR-S Research Reactor from IFIN-HH giving attention to some special category of wastes like aluminum, graphite and equipment, components and structures that became radioactive through neutron activation. After analyzing the technical and scientific potential of STDR and DNDR to handle big amounts of wastes resulting from the decommissioning of VVR-S Research Reactor and small nuclear facilities, the necessity of

  2. AUDIT REPORT Department of Energy Nuclear Waste Fund's Fiscal Year 2015 Financial Statement Audit

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Nuclear Waste Fund's Fiscal Year 2015 Financial Statement Audit OAI-FS-16-03 December 2015 U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Department of Energy Washington, DC 20585 December 1, 2015 MEMORANDUM FOR THE ACTING DIRECTOR, OFFICE OF STANDARD CONTRACT MANAGEMENT FROM: Rickey R. Hass Acting Inspector General SUBJECT: INFORMATION: Audit Report on "Department of Energy Nuclear Waste Fund's Fiscal Year 2015 Financial Statement Audit"

  3. Waste Cleanup at DOE Nuclear Sites | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Department Awards $40 Million for Research to Support Waste Cleanup at DOE Nuclear Sites Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News EFRC Events DOE Announcements Publications History Contact BES Home 07.18.16 Energy Department Awards $40 Million for Research to Support Waste Cleanup at DOE Nuclear Sites Print Text Size: A A A Subscribe FeedbackShare Page U.S. Energy Secretary Ernest Moniz today announced up to $40

  4. Engineered barrier development for a nuclear waste repository in basalt: an integration of current knowledge

    SciTech Connect (OSTI)

    Smith, M.J.

    1980-05-01

    This document represents a compilation of data and interpretive studies conducted as part of the engineered barriers program of the Basalt Waste Isolation Project. The overall objective of these studies is to provide information on barrier system designs, emplacement and isolation techniques, and chemical reactions expected in a nuclear waste repository located in the basalts underlying the Hanford Site within the state of Washington. Backfills, waste-basalt interactions, sorption, borehole plugging, etc., are among the topics discussed.

  5. Method for recovering palladium and technetium values from nuclear fuel reprocessing waste solutions

    DOE Patents [OSTI]

    Horwitz, E. Philip; Delphin, Walter H.

    1979-07-24

    A method for recovering palladium and technetium values from nuclear fuel reprocessing waste solutions containing these and other values by contacting the waste solution with an extractant of tricaprylmethylammonium nitrate in an inert hydrocarbon diluent which extracts the palladium and technetium values from the waste solution. The palladium and technetium values are recovered from the extractant and from any other coextracted values with a strong nitric acid strip solution.

  6. Precipitation process for the removal of technetium values from nuclear waste solutions

    DOE Patents [OSTI]

    Walker, D.D.; Ebra, M.A.

    1985-11-21

    High efficiency removal of techetium values from a nuclear waste stream is achieved by addition to the waste stream of a precipitant contributing tetraphenylphosphonium cation, such that a substantial portion of the technetium values are precipitated as an insoluble pertechnetate salt.

  7. Nuclear Waste Materials Characterization Center. Semiannual progress report, April 1985-September 1985

    SciTech Connect (OSTI)

    Mendel, J.E.

    1985-12-01

    Work continued on converting MCC Quality Assurance practices to comply with the national QA standard for nuclear facilities, ANSI/ASME NQA-1. Support was provided to the following: Office of Geologic Repositories; Salt Repository Project; Basalt Waste Isolation Project; Office of Defense Waste and Byproducts Management; Hanford Programs; Transportation Technology Center; and West Valley Demonstration Project. (LM)

  8. Circleville, West Virginia 26804

    Broader source: Energy.gov (indexed) [DOE]

    94 Circleville, West Virginia 26804 March 28, 2012 Lamont Jackson Office of Electricity Delivery and Energy Reliability U.S. Department of Energy 1000 Independence Ave. SW...

  9. Nuclear Solid Waste Processing Design at the Idaho Spent Fuels Facility

    SciTech Connect (OSTI)

    Dippre, M. A.

    2003-02-25

    A spent nuclear fuels (SNF) repackaging and storage facility was designed for the Idaho National Engineering and Environmental Laboratory (INEEL), with nuclear solid waste processing capability. Nuclear solid waste included contaminated or potentially contaminated spent fuel containers, associated hardware, machinery parts, light bulbs, tools, PPE, rags, swabs, tarps, weld rod, and HEPA filters. Design of the nuclear solid waste processing facilities included consideration of contractual, regulatory, ALARA (as low as reasonably achievable) exposure, economic, logistical, and space availability requirements. The design also included non-attended transfer methods between the fuel packaging area (FPA) (hot cell) and the waste processing area. A monitoring system was designed for use within the FPA of the facility, to pre-screen the most potentially contaminated fuel canister waste materials, according to contact- or non-contact-handled capability. Fuel canister waste materials which are not able to be contact-handled after attempted decontamination will be processed remotely and packaged within the FPA. Noncontact- handled materials processing includes size-reduction, as required to fit into INEEL permitted containers which will provide sufficient additional shielding to allow contact handling within the waste areas of the facility. The current design, which satisfied all of the requirements, employs mostly simple equipment and requires minimal use of customized components. The waste processing operation also minimizes operator exposure and operator attendance for equipment maintenance. Recently, discussions with the INEEL indicate that large canister waste materials can possibly be shipped to the burial facility without size-reduction. New waste containers would have to be designed to meet the drop tests required for transportation packages. The SNF waste processing facilities could then be highly simplified, resulting in capital equipment cost savings, operational

  10. Nuclear Power 2010 Program Dominion Virginia Power Cooperative Project U.S. Department of Energy Cooperative Agreement DE-FC07-05ID14635 Construction and Operating License Demonstration Project Final Report

    SciTech Connect (OSTI)

    Eugene S. Grecheck David P. Batalo

    2010-11-30

    This report serves to summarize the major activities completed as part of Virginia Electric and Power Company's North Anna construction and operating license demonstration project with DOE. Project successes, lessons learned, and suggestions for improvement are discussed. Objectives of the North Anna COL project included preparation and submittal of a COLA to the USNRC incorporating ESBWR technology for a third unit a the North Anna Power Station site, support for the NRC review process and mandatory hearing, obtaining NRC approval of the COLA and issuance of a COL, and development of a business case necessary to support a decision on building a new nuclear power plant at the North Anna site.