Powered by Deep Web Technologies
Note: This page contains sample records for the topic "virginia coalbed methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Virginia Coalbed Methane Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

Production (Billion Cubic Feet) Virginia Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 56 81...

2

Virginia Coalbed Methane Proved Reserves (Billion Cubic Feet...  

Gasoline and Diesel Fuel Update (EIA)

Proved Reserves (Billion Cubic Feet) Virginia Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

3

West Virginia Coalbed Methane Proved Reserves (Billion Cubic...  

Gasoline and Diesel Fuel Update (EIA)

Proved Reserves (Billion Cubic Feet) West Virginia Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

4

West Virginia Coalbed Methane Production (Billion Cubic Feet...  

Gasoline and Diesel Fuel Update (EIA)

Production (Billion Cubic Feet) West Virginia Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 30...

5

,"Virginia Coalbed Methane Proved Reserves (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

6

,"West Virginia Coalbed Methane Proved Reserves (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

7

Coalbed Methane  

Energy.gov (U.S. Department of Energy (DOE))

Coalbed methane is natural gas found in coal deposits. It was once considered a nuisance and mine safety hazard, but today has become a valuable part of the U.S. energy portfolio. A major reason for this is resource characterization and the establishment of efficient recovery methods pioneered by Office of Fossil Energy R&D.

8

The basics of coalbed methane  

Science Conference Proceedings (OSTI)

The report is an overview of coalbed methane (CBM), also known as coal seam gas. It provides an overview of what coalbed methane is and the current status of global coalbed methane exploration and production. Topics covered in the report include: An analysis of the natural gas industry, including current and future production, consumption, and reserves; A detailed description of coalbed methane, its characteristics, and future potential; An analysis of the key business factors that are driving the increased interest in coalbed methane; An analysis of the barriers that are hindering the development of coalbed methane; An overview of the technologies used for coalbed methane production and water treatment; and Profiles of key coalbed methane producing countries. 25 figs., 5 tabs., 1 app.

NONE

2006-12-15T23:59:59.000Z

9

Enhanced coalbed methane recovery  

SciTech Connect

The recovery of coalbed methane can be enhanced by injecting CO{sub 2} in the coal seam at supercritical conditions. Through an in situ adsorption/desorption process the displaced methane is produced and the adsorbed CO{sub 2} is permanently stored. This is called enhanced coalbed methane recovery (ECBM) and it is a technique under investigation as a possible approach to the geological storage of CO{sub 2} in a carbon dioxide capture and storage system. This work reviews the state of the art on fundamental and practical aspects of the technology and summarizes the results of ECBM field tests. These prove the feasibility of ECBM recovery and highlight substantial opportunities for interdisciplinary research at the interface between earth sciences and chemical engineering.

Mazzotti, M.; Pini, R.; Storti, G. [ETH, Zurich (Switzerland). Inst. of Process Engineering

2009-01-15T23:59:59.000Z

10

Sequence Stratigraphy and Architecture of Lower Pennsylvanian Strata, Southern West Virginia: Potential for Carbon Sequestration and Enhanced Coal-Bed Methane Recovery in the Pocahontas Basin.  

E-Print Network (OSTI)

??Carbon dioxide sequestration in coal-bed methane fields has potential to add significant recoverable reserves and extend the production life of coal-bed methane fields while at… (more)

Rouse, William Allan

2009-01-01T23:59:59.000Z

11

Florida Coalbed Methane Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production Florida Coalbed Methane Proved Reserves, Reserves Changes, and...

12

Michigan Coalbed Methane Production (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production Michigan Coalbed Methane Proved Reserves, Reserves Changes, and...

13

Kentucky Coalbed Methane Production (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production Kentucky Coalbed Methane Proved Reserves, Reserves Changes, and...

14

Miscellaneous States Coalbed Methane Proved Reserves (Billion...  

Gasoline and Diesel Fuel Update (EIA)

Coalbed Methane Proved Reserves (Billion Cubic Feet) Miscellaneous States Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

15

Coalbed Methane Proved Reserves  

Gasoline and Diesel Fuel Update (EIA)

Coalbed Methane Proved Reserves (Billion Cubic Feet) Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes 2003 2004 2005 2006 2007 2008 View History U.S. 18,743 18,390 19,892 19,620 21,874 20,798 1989-2008 Alabama 1,665 1,900 1,773 2,068 2,126 1,727 1989-2008 Alaska 0 0 2007-2008 Arkansas 31 31 2007-2008 California 0 0 2007-2008 Colorado 6,473 5,787 6,772 6,344 7,869 8,238 1989-2008 Florida 0 0 2007-2008 Kansas 340 301 2007-2008 Kentucky 0 0 2007-2008 Louisiana 7 9 2007-2008 North 7 9 2007-2008 South Onshore 0 0 2007-2008 South Offshore 0 0 2007-2008 Michigan 0 0 2007-2008 Mississippi 0 0 2007-2008 Montana 66 75 2007-2008 New Mexico 4,396 5,166 5,249 4,894 4,169 3,991 1989-2008

16

coalbed methane | OpenEI  

Open Energy Info (EERE)

coalbed methane coalbed methane Dataset Summary Description (Abstract): Each TMY is a data set of hourly values of solar radiation and meteorological elements for a 1-year period. Solar radiation is modeled using the NREL METSTAT model, with surface observed cloud cover being the principal model input. The container file contains one TMY file for each selected station in the region, plus documentation files and a TMY data reader file for use with Microsoft Excel. (Purpose): Simulations Source NREL Date Released April 30th, 2005 (9 years ago) Date Updated November 07th, 2007 (7 years ago) Keywords coalbed methane GEF Kenya NREL SWERA TMY UNEP Data application/zip icon Download Data (zip, 5.4 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage

17

Utah Coalbed Methane Proved Reserves New Field Discoveries (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane New Field Discoveries Utah Coalbed Methane Proved Reserves, Reserves Changes, and Production...

18

Louisiana--South Onshore Coalbed Methane Production (Billion...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production LA, South Onshore Coalbed Methane Proved Reserves, Reserves...

19

California (with State off) Coalbed Methane Production (Billion...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production California Coalbed Methane Proved Reserves, Reserves Changes,...

20

Other States Natural Gas Coalbed Methane, Reserves Based Production...  

Gasoline and Diesel Fuel Update (EIA)

Other States Natural Gas Coalbed Methane, Reserves Based Production (Billion Cubic Feet) Other States Natural Gas Coalbed Methane, Reserves Based Production (Billion Cubic Feet)...

Note: This page contains sample records for the topic "virginia coalbed methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Texas (with State Offshore) Coalbed Methane Production (Billion...  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production Texas Coalbed Methane Proved Reserves, Reserves Changes, and...

22

Texas--RRC District 8 Coalbed Methane Production (Billion Cubic...  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production TX, RRC District 8 Coalbed Methane Proved Reserves, Reserves...

23

Texas--RRC District 5 Coalbed Methane Production (Billion Cubic...  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production TX, RRC District 5 Coalbed Methane Proved Reserves, Reserves...

24

Texas--RRC District 3 Onshore Coalbed Methane Proved Reserves...  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 TX, RRC District 3 Onshore Coalbed Methane Proved...

25

Texas--RRC District 6 Coalbed Methane Production (Billion Cubic...  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production TX, RRC District 6 Coalbed Methane Proved Reserves, Reserves...

26

Texas--RRC District 5 Coalbed Methane Proved Reserves (Billion...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 TX, RRC District 5 Coalbed Methane Proved Reserves,...

27

Lower 48 Federal Offshore Coalbed Methane Production (Billion...  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production Federal Offshore U.S. Coalbed Methane Proved Reserves, Reserves...

28

Texas--RRC District 9 Coalbed Methane Production (Billion Cubic...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production TX, RRC District 9 Coalbed Methane Proved Reserves, Reserves...

29

Louisiana--South Onshore Coalbed Methane Proved Reserves (Billion...  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 LA, South Onshore Coalbed Methane Proved Reserves,...

30

Alaska (with Total Offshore) Coalbed Methane Proved Reserves...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Alaska Coalbed Methane Proved Reserves, Reserves...

31

Texas--RRC District 6 Coalbed Methane Proved Reserves (Billion...  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 TX, RRC District 6 Coalbed Methane Proved Reserves,...

32

Texas--RRC District 3 Onshore Coalbed Methane Production (Billion...  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production TX, RRC District 3 Onshore Coalbed Methane Proved Reserves,...

33

Texas--RRC District 4 Onshore Coalbed Methane Production (Billion...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production TX, RRC District 4 Onshore Coalbed Methane Proved Reserves,...

34

North Dakota Coalbed Methane Proved Reserves (Billion Cubic Feet...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 North Dakota Coalbed Methane Proved Reserves, Reserves...

35

Texas--RRC District 10 Coalbed Methane Proved Reserves (Billion...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 TX, RRC District 10 Coalbed Methane Proved Reserves,...

36

Texas--RRC District 1 Coalbed Methane Production (Billion Cubic...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production TX, RRC District 1 Coalbed Methane Proved Reserves, Reserves...

37

Texas--RRC District 4 Onshore Coalbed Methane Proved Reserves...  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 TX, RRC District 4 Onshore Coalbed Methane Proved...

38

Texas--RRC District 1 Coalbed Methane Proved Reserves (Billion...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 TX, RRC District 1 Coalbed Methane Proved Reserves,...

39

New York Coalbed Methane Production (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production New York Coalbed Methane Proved Reserves, Reserves Changes, and...

40

Texas--RRC District 10 Coalbed Methane Production (Billion Cubic...  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production TX, RRC District 10 Coalbed Methane Proved Reserves, Reserves...

Note: This page contains sample records for the topic "virginia coalbed methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

North Dakota Coalbed Methane Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production North Dakota Coalbed Methane Proved Reserves, Reserves Changes,...

42

Louisiana--State Offshore Coalbed Methane Production (Billion...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production LA, State Offshore Coalbed Methane Proved Reserves, Reserves...

43

Texas--RRC District 9 Coalbed Methane Proved Reserves (Billion...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 TX, RRC District 9 Coalbed Methane Proved Reserves,...

44

Texas--RRC District 2 Onshore Coalbed Methane Production (Billion...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production TX, RRC District 2 Onshore Coalbed Methane Proved Reserves,...

45

Texas--State Offshore Coalbed Methane Proved Reserves (Billion...  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 TX, State Offshore Coalbed Methane Proved Reserves,...

46

Alaska (with Total Offshore) Coalbed Methane Production (Billion...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production Alaska Coalbed Methane Proved Reserves, Reserves Changes, and...

47

Texas--State Offshore Coalbed Methane Production (Billion Cubic...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production TX, State Offshore Coalbed Methane Proved Reserves, Reserves...

48

Mississippi (with State off) Coalbed Methane Proved Reserves...  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Mississippi Coalbed Methane Proved Reserves, Reserves...

49

Kentucky Coalbed Methane Proved Reserves (Billion Cubic Feet...  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Kentucky Coalbed Methane Proved Reserves, Reserves...

50

Texas--RRC District 8 Coalbed Methane Proved Reserves (Billion...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 TX, RRC District 8 Coalbed Methane Proved Reserves,...

51

Mississippi (with State off) Coalbed Methane Production (Billion...  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production Mississippi Coalbed Methane Proved Reserves, Reserves Changes,...

52

Other States Natural Gas Coalbed Methane, Proved Reserves (Billion...  

Gasoline and Diesel Fuel Update (EIA)

Other States Natural Gas Coalbed Methane, Proved Reserves (Billion Cubic Feet) Other States Natural Gas Coalbed Methane, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1...

53

Table 16. Coalbed Methane Proved Reserves, Reserves ...  

U.S. Energy Information Administration (EIA)

aIncludes Illinois and Indiana. Note: The above table is based on coalbed methane proved reserves and production volumes as reported to the EIA on ...

54

,"California - Coastal Region Coalbed Methane Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

- Coastal Region Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","...

55

,"Federal Offshore California Coalbed Methane Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

56

,"Miscellaneous States Coalbed Methane Proved Reserves (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

57

,"Pennsylvania Coalbed Methane Proved Reserves (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

58

Method for removal of methane from coalbeds  

DOE Patents (OSTI)

A method for removing methane gas from underground coalbeds prior to mining the coal which comprises drilling at least one borehole from the surface into the coalbed. The borehole is started at a slant rather than directly vertically, and as it descends, a gradual curve is followed until a horizontal position is reached where the desired portion of the coalbed is intersected. Approaching the coalbed in this manner and fracturing the coalbed in the major natural fraction direction cause release of large amounts of the trapped methane gas.

Pasini, III, Joseph (Morgantown, WV); Overbey, Jr., William K. (Morgantown, WV)

1976-01-01T23:59:59.000Z

59

Coalbed Methane Production  

Gasoline and Diesel Fuel Update (EIA)

Methane Production (Billion Cubic Feet) Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes 2006 2007 2008 2009...

60

Arkansas Coalbed Methane Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

Production (Billion Cubic Feet) Arkansas Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 2 3 3 3...

Note: This page contains sample records for the topic "virginia coalbed methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Alabama Coalbed Methane Production (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Production (Billion Cubic Feet) Alabama Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 23...

62

Kansas Coalbed Methane Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

Production (Billion Cubic Feet) Kansas Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 17 25 38...

63

Wyoming Coalbed Methane Production (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Production (Billion Cubic Feet) Wyoming Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 133 278...

64

Oklahoma Coalbed Methane Production (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Production (Billion Cubic Feet) Oklahoma Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 58 68...

65

Montana Coalbed Methane Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

Production (Billion Cubic Feet) Montana Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 12 12 13...

66

Pennsylvania Coalbed Methane Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

Production (Billion Cubic Feet) Pennsylvania Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 3 5...

67

Biogeochemistry of Microbial Coal-Bed Methane  

E-Print Network (OSTI)

Biogeochemistry of Microbial Coal-Bed Methane Dariusz Strapo´c,1, Maria Mastalerz,2 Katherine, biodegradation Abstract Microbial methane accumulations have been discovered in multiple coal- bearing basins low-maturity coals with predominantly microbial methane gas or uplifted coals containing older

Macalady, Jenn

68

Kansas Coalbed Methane Proved Reserves (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet) Kansas Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

69

Oklahoma Coalbed Methane Proved Reserves (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet) Oklahoma Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

70

Ohio Coalbed Methane Proved Reserves (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet) Ohio Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

71

New Mexico--West Coalbed Methane Proved Reserves (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet) New Mexico--West Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

72

Eastern States Coalbed Methane Proved Reserves (Billion Cubic...  

Annual Energy Outlook 2012 (EIA)

Eastern States Coalbed Methane Proved Reserves (Billion Cubic Feet) Eastern States Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

73

Western States Coalbed Methane Proved Reserves (Billion Cubic...  

Annual Energy Outlook 2012 (EIA)

Western States Coalbed Methane Proved Reserves (Billion Cubic Feet) Western States Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

74

New Mexico Coalbed Methane Proved Reserves (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet) New Mexico Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

75

Pennsylvania Coalbed Methane Proved Reserves (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet) Pennsylvania Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

76

Eastern States Coalbed Methane Production (Billion Cubic Feet...  

Annual Energy Outlook 2012 (EIA)

Coalbed Methane Production (Billion Cubic Feet) Eastern States Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

77

Western States Coalbed Methane Production (Billion Cubic Feet...  

Annual Energy Outlook 2012 (EIA)

Western States Coalbed Methane Production (Billion Cubic Feet) Western States Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

78

US COALBED METHANE The Past: Production The Present: Reserves  

U.S. Energy Information Administration (EIA) Indexed Site

Panel 2 of 2 Panel 2 of 2 US COALBED METHANE The Past: Production The Present: Reserves The Future: Resources Annual coalbed methane gas production data through 12/31/2006 was obtained from 17 state oil & gas regulatory entities or geological surv eys and one producing company. Data for 2006 were not yet av ailable for West Virginia and Pennsy lvania so the 2005 v olumes were assumed to repeat in 2006. Produced CBM gas v olumes from each state were clas sified by basin. The cumulative production pie chart to the left shows the sum of all reported CBM gas volumes by basin through 2006. The San Juan Bas in dominates the chart. The only other bas in to ex ceed 10% is the Pow der River Basin (12%). Relative cumulative production volumes by basin are spatially depicted in the c

79

California - Coastal Region Coalbed Methane Proved Reserves ...  

Annual Energy Outlook 2012 (EIA)

Coastal Region Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 - No...

80

Federal Offshore California Coalbed Methane Proved Reserves ...  

Annual Energy Outlook 2012 (EIA)

Offshore California Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 -...

Note: This page contains sample records for the topic "virginia coalbed methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Texas--RRC District 8A Coalbed Methane Proved Reserves (Billion...  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 TX, RRC District 8A Coalbed Methane Proved Reserves,...

82

Texas--RRC District 8A Coalbed Methane Production (Billion Cubic...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production TX, RRC District 8A Coalbed Methane Proved Reserves, Reserves...

83

Texas--RRC District 7C Coalbed Methane Proved Reserves (Billion...  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 TX, RRC Distict 7C Coalbed Methane Proved Reserves,...

84

Texas--RRC District 7B Coalbed Methane Production (Billion Cubic...  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production TX, RRC District 7B Coalbed Methane Proved Reserves, Reserves...

85

Texas--RRC District 7C Coalbed Methane Production (Billion Cubic...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production TX, RRC Distict 7C Coalbed Methane Proved Reserves, Reserves...

86

Utah Coalbed Methane Proved Reserves New Reservoir Discoveries...  

U.S. Energy Information Administration (EIA) Indexed Site

New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Utah Coalbed Methane Proved Reserves New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1...

87

,"Utah Coalbed Methane Proved Reserves, Reserves Changes, and...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2011,"6...

88

Powder River Basin (WY, MT) Coal and Coalbed Methane: Evaluating...  

Open Energy Info (EERE)

Powder River Basin (WY, MT) Coal and Coalbed Methane: Evaluating and Revising 100 Years of Studies The USGS published a USGS Professional Paper in 2010 entitled 

89

Powder River Basin (WY, MT) Coal and Coalbed Methane: Evaluating...  

Open Energy Info (EERE)

Search Share this page on Facebook icon Twitter icon Powder River Basin (WY, MT) Coal and Coalbed Methane: Evaluating and Revising 100 Years of Studies Dataset Summary...

90

Effect of matrix shrinkage on permeability of coalbed methane reservoirs .  

E-Print Network (OSTI)

??The dynamic nature of coalbed methane reservoir permeability makes the continuous modeling of the flow process difficult. Knowledge of conventional reservoir modeling is of little… (more)

Tandon, Rohit, 1966-

1991-01-01T23:59:59.000Z

91

,"Texas--RRC District 2 Onshore Coalbed Methane Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

2 Onshore Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

92

,"Lower 48 Federal Offshore Coalbed Methane Proved Reserves ...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

93

,"U.S. Coalbed Methane Proved Reserves Adjustments (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

94

,"U.S. Coalbed Methane Proved Reserves (Billion Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2011 ,"Release Date:","812013"...

95

,"Oklahoma Coalbed Methane Proved Reserves (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

96

,"California - Los Angeles Basin Onshore Coalbed Methane Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

97

,"Colorado Coalbed Methane Proved Reserves (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

98

,"Texas--RRC District 8 Coalbed Methane Proved Reserves (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

99

,"Utah Coalbed Methane Proved Reserves (Billion Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

100

,"Wyoming Coalbed Methane Proved Reserves (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

Note: This page contains sample records for the topic "virginia coalbed methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Table 16: Coalbed methane proved reserves and production, 2007...  

U.S. Energy Information Administration (EIA) Indexed Site

: Coalbed methane proved reserves and production, 2007 - 2011" "billion cubic feet" ,,"Reserves",,,,,,"Production" "State and Subdivision",,2007,2008,2009,2010,2011,,2007,2008,2009...

102

,"Alabama Coalbed Methane Proved Reserves (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

103

,"U.S. Coalbed Methane Proved Reserves, Reserves Changes, and...  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2011,"6301989"...

104

,"Texas--RRC District 9 Coalbed Methane Proved Reserves (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

105

,"Texas--State Offshore Coalbed Methane Proved Reserves (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

106

,"Michigan Coalbed Methane Proved Reserves (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

107

,"Montana Coalbed Methane Proved Reserves (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

108

,"Kansas Coalbed Methane Proved Reserves (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

109

,"U.S. Coalbed Methane Proved Reserves Revision Increases (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves Revision Increases (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

110

,"Texas--RRC District 5 Coalbed Methane Proved Reserves (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

111

,"Texas--RRC District 10 Coalbed Methane Proved Reserves (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

112

,"Ohio Coalbed Methane Proved Reserves (Billion Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

113

,"North Dakota Coalbed Methane Proved Reserves (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

114

,"Louisiana--North Coalbed Methane Proved Reserves (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

115

,"Florida Coalbed Methane Proved Reserves (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

116

,"U.S. Coalbed Methane Proved Reserves Acquisitions (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves Acquisitions (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

117

,"New Mexico--East Coalbed Methane Proved Reserves (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

118

,"U.S. Coalbed Methane Proved Reserves Revision Decreases (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves Revision Decreases (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

119

,"New Mexico Coalbed Methane Proved Reserves (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

120

,"Texas--RRC District 4 Onshore Coalbed Methane Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

Note: This page contains sample records for the topic "virginia coalbed methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

,"New York Coalbed Methane Proved Reserves (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

122

Table 16. Coalbed methane proved reserves and production, 2007 - 2011  

U.S. Energy Information Administration (EIA)

Table 16: Coalbed methane proved reserves and production, 2007 – 2011 billion cubic feet State and Subdivision 2007 2008 2009 2010 2011 2007 2008 2009 2010 2011

123

,"Louisiana--State Offshore Coalbed Methane Proved Reserves ...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

124

,"New Mexico--West Coalbed Methane Proved Reserves (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

125

,"Kentucky Coalbed Methane Proved Reserves (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

126

,"Texas (with State Offshore) Coalbed Methane Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

127

,"Texas--RRC District 1 Coalbed Methane Proved Reserves (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

128

,"Arkansas Coalbed Methane Proved Reserves (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

129

,"Lower 48 States Coalbed Methane Proved Reserves (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

130

,"Federal Offshore--Texas Coalbed Methane Proved Reserves (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

131

,"Texas--RRC District 6 Coalbed Methane Proved Reserves (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

132

,"U.S. Coalbed Methane Proved Reserves New Reservoir Discoveries...  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves New Reservoir Discoveries in Old Fields (Billion Cubic...

133

,"California - San Joaquin Basin Onshore Coalbed Methane Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

134

,"Louisiana (with State Offshore) Coalbed Methane Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

135

,"California--State Offshore Coalbed Methane Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

136

,"Alaska (with Total Offshore) Coalbed Methane Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

137

,"Louisiana--South Onshore Coalbed Methane Proved Reserves (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

138

,"Ohio Coalbed Methane Proved Reserves, Reserves Changes, and...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2010,"...

139

The Numerical Simulation of Conventional Ground Coalbed Methane Development  

Science Conference Proceedings (OSTI)

The migration, accumulation, and production of coalbed methane (CBM) are absolutely different from the conventional natural gas. The mechanism of the migration and production of CBM are researched and the geological model of CBM reservoir simulation ... Keywords: coalbed methane, numerical simulation, desportion-diffusion, two phase flow, fully implicit finite difference

Lin Xiaoying; Liu Guowei; Su Xianbo

2009-07-01T23:59:59.000Z

140

Enhanced Coalbed Methane Production While Sequestration CO2 in...  

NLE Websites -- All DOE Office Websites (Extended Search)

Road South Park, PA 15129 412-854-6676 dickwinschel@consolenergy.com EnhancEd coalbEd MEthanE Production WhilE SEquEStrating co 2 in unMinEablE coal SEaMS Background CONSOL Energy...

Note: This page contains sample records for the topic "virginia coalbed methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Enhancement of Biogenic Coalbed Methane Production and Back Injection of Coalbed Methane Co-Produced Water  

Science Conference Proceedings (OSTI)

Biogenic methane is a common constituent in deep subsurface environments such as coalbeds and oil shale beds. Coalbed methane (CBM) makes significant contributions to world natural gas industry and CBM production continues to increase. With increasing CBM production, the production of CBM co-produced water increases, which is an environmental concern. This study investigated the feasibility in re-using CBM co-produced water and other high sodic/saline water to enhance biogenic methane production from coal and other unconventional sources, such as oil shale. Microcosms were established with the selected carbon sources which included coal, oil shale, lignite, peat, and diesel-contaminated soil. Each microcosm contained either CBM coproduced water or groundwater with various enhancement and inhibitor combinations. Results indicated that the addition of nutrients and nutrients with additional carbon can enhance biogenic methane production from coal and oil shale. Methane production from oil shale was much greater than that from coal, which is possibly due to the greater amount of available Dissolved Organic Carbon (DOC) from oil shale. Inconclusive results were observed from the other sources since the incubation period was too low. WRI is continuing studies with biogenic methane production from oil shale.

Song Jin

2007-05-31T23:59:59.000Z

142

Utah Coalbed Methane Proved Reserves Adjustments (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Adjustments (Billion Cubic Feet) Utah Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

143

Utah Coalbed Methane Proved Reserves Sales (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Sales (Billion Cubic Feet) Utah Coalbed Methane Proved Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0...

144

Utah Coalbed Methane Proved Reserves Acquisitions (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Acquisitions (Billion Cubic Feet) Utah Coalbed Methane Proved Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

145

Utah Coalbed Methane Proved Reserves Extensions (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Extensions (Billion Cubic Feet) Utah Coalbed Methane Proved Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

146

Utah Coalbed Methane Proved Reserves Revision Decreases (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Decreases (Billion Cubic Feet) Utah Coalbed Methane Proved Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

147

Utah Coalbed Methane Proved Reserves Revision Increases (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Increases (Billion Cubic Feet) Utah Coalbed Methane Proved Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

148

NETL: News Release - DOE Study Raises Estimates of Coalbed Methane  

NLE Websites -- All DOE Office Websites (Extended Search)

December 16, 2002 December 16, 2002 DOE Study Raises Estimates of Coalbed Methane Potential in Powder River Basin Actual Production Will Hinge on Water Disposal Method WASHINGTON, DC - The Powder River Basin, a vast region of high plains in Wyoming and Montana known for producing low-sulfur coal, is also becoming a primary source of America's fastest growing natural gas resource, coalbed methane. Now, a new Department of Energy report projects that the region may hold more coalbed methane than previously estimated but the amount that will actually be produced will depend largely on the choice of the water disposal method. MORE INFO Download report [7.35MB PDF] The study, Powder River Basin Coalbed Methane Development and Produced Water Management Study, was prepared by Advanced Resources International of

149

U.S. Coalbed Methane Production (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Production (Billion Cubic Feet) U.S. Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 91 1990's...

150

Utah Coalbed Methane Proved Reserves (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Proved Reserves (Billion Cubic Feet) Utah Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's...

151

Louisiana--North Coalbed Methane Proved Reserves (Billion Cubic...  

Gasoline and Diesel Fuel Update (EIA)

Proved Reserves (Billion Cubic Feet) Louisiana--North Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

152

New Mexico--East Coalbed Methane Proved Reserves (Billion Cubic...  

Annual Energy Outlook 2012 (EIA)

Proved Reserves (Billion Cubic Feet) New Mexico--East Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

153

U.S. Coalbed Methane Proved Reserves Extensions (Billion Cubic...  

Gasoline and Diesel Fuel Update (EIA)

Extensions (Billion Cubic Feet) U.S. Coalbed Methane Proved Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

154

Alabama Coalbed Methane Proved Reserves (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Proved Reserves (Billion Cubic Feet) Alabama Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

155

Wyoming Coalbed Methane Proved Reserves (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Proved Reserves (Billion Cubic Feet) Wyoming Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

156

Louisiana (with State Offshore) Coalbed Methane Proved Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Proved Reserves (Billion Cubic Feet) Louisiana (with State Offshore) Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

157

Colorado Coalbed Methane Proved Reserves (Billion Cubic Feet...  

Annual Energy Outlook 2012 (EIA)

Proved Reserves (Billion Cubic Feet) Colorado Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

158

U.S. Coalbed Methane Proved Reserves Acquisitions (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Acquisitions (Billion Cubic Feet) U.S. Coalbed Methane Proved Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

159

Montana Coalbed Methane Proved Reserves (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

Proved Reserves (Billion Cubic Feet) Montana Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

160

New Mexico Coalbed Methane Production (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Production (Billion Cubic Feet) New Mexico Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 56...

Note: This page contains sample records for the topic "virginia coalbed methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

New Mexico--West Coalbed Methane Production (Billion Cubic Feet...  

Gasoline and Diesel Fuel Update (EIA)

Production (Billion Cubic Feet) New Mexico--West Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's...

162

Louisiana--North Coalbed Methane Production (Billion Cubic Feet...  

Annual Energy Outlook 2012 (EIA)

Production (Billion Cubic Feet) Louisiana--North Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's...

163

U.S. Coalbed Methane Proved Reserves Revision Decreases (Billion...  

Annual Energy Outlook 2012 (EIA)

Decreases (Billion Cubic Feet) U.S. Coalbed Methane Proved Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

164

,"U.S. Coalbed Methane Proved Reserves Extensions (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves Extensions (Billion Cubic Feet)",1,"Annual",2011 ,"Release Date:","8...

165

U.S. Coalbed Methane Proved Reserves Adjustments (Billion Cubic...  

Annual Energy Outlook 2012 (EIA)

Adjustments (Billion Cubic Feet) U.S. Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

166

Lower 48 States Coalbed Methane Production (Billion Cubic Feet...  

Gasoline and Diesel Fuel Update (EIA)

Production (Billion Cubic Feet) Lower 48 States Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's...

167

Texas (with State Offshore) Coalbed Methane Proved Reserves ...  

U.S. Energy Information Administration (EIA) Indexed Site

Texas (with State Offshore) Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0...

168

Lower 48 States Coalbed Methane Proved Reserves (Billion Cubic...  

Annual Energy Outlook 2012 (EIA)

Proved Reserves (Billion Cubic Feet) Lower 48 States Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

169

U.S. Coalbed Methane Proved Reserves Revision Increases (Billion...  

Annual Energy Outlook 2012 (EIA)

Increases (Billion Cubic Feet) U.S. Coalbed Methane Proved Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

170

Arkansas Coalbed Methane Proved Reserves (Billion Cubic Feet...  

Annual Energy Outlook 2012 (EIA)

Proved Reserves (Billion Cubic Feet) Arkansas Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

171

U.S. Coalbed Methane Proved Reserves New Reservoir Discoveries...  

Annual Energy Outlook 2012 (EIA)

New Reservoir Discoveries in Old Fields (Billion Cubic Feet) U.S. Coalbed Methane Proved Reserves New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1...

172

New Mexico--East Coalbed Methane Production (Billion Cubic Feet...  

Gasoline and Diesel Fuel Update (EIA)

Production (Billion Cubic Feet) New Mexico--East Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's...

173

,"U.S. Coalbed Methane Proved Reserves New Field Discoveries...  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves New Field Discoveries (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

174

NETL: Oil & Natural Gas Technologies Reference Shelf - Coalbed Methane  

NLE Websites -- All DOE Office Websites (Extended Search)

Coalbed Methane Production and Reclamation Field Tour Coalbed Methane Production and Reclamation Field Tour Coalbed Methane Production and Reclamation Field Tour Author: John Wheaton, Montana Tech of the University of Montana, Butte, MT. Venue: The tour will be conducted starting in Gillette, WY, and extend along the northern Powder River Basin, on June 3, 2007, under the auspices of the American Society for Mining and Reclamation (http://ces.ca.uky.edu/asmr/ [external site]). Abstract: This field tour will emphasize successful reclamation in an alternative type of coal industry in the Powder River Basin: coalbed methane. The tour will leave Gillette, WY, at 7:30 a.m., Sunday, June 3, 2007, and travel to Sheridan, WY, and back, touring coalbed methane production areas. Stops will include active drilling and producing areas to learn about the footprint and approach to development of coalbed methane. Reclamation includes drilling pads and linear trenching for water and gas pipelines. Produced-water management is a major expense and concern. Among the water management options we plan to see are stock-watering facilities, infiltration ponds, irrigation sites, and water treatment facilities. A landowner will join us and be able to answer questions from the ranching perspective for part of the tour. Lunches are included in the price of the tour.

175

The Optimization of Well Spacing in a Coalbed Methane Reservoir  

E-Print Network (OSTI)

Numerical reservoir simulation has been used to describe mechanism of methane gas desorption process, diffusion process, and fluid flow in a coalbed methane reservoir. The reservoir simulation model reflects the response of a reservoir system and the relationship among coalbed methane reservoir properties, operation procedures, and gas production. This work presents a procedure to select the optimum well spacing scenario by using a reservoir simulation. This work uses a two-phase compositional simulator with a dual porosity model to investigate well-spacing effects on coalbed methane production performance and methane recovery. Because of reservoir parameters uncertainty, a sensitivity and parametric study are required to investigate the effects of parameter variability on coalbed methane reservoir production performance and methane recovery. This thesis includes a reservoir parameter screening procedures based on a sensitivity and parametric study. Considering the tremendous amounts of simulation runs required, this work uses a regression analysis to replace the numerical simulation model for each wellspacing scenario. A Monte Carlo simulation has been applied to present the probability function. Incorporated with the Monte Carlo simulation approach, this thesis proposes a well-spacing study procedure to determine the optimum coalbed methane development scenario. The study workflow is applied in a North America basin resulting in distinct Net Present Value predictions between each well-spacing design and an optimum range of well-spacing for a particular basin area.

Sinurat, Pahala Dominicus

2010-12-01T23:59:59.000Z

176

Development of gas production type curves for horizontal wells in coalbed methane reservoirs.  

E-Print Network (OSTI)

??Coalbed methane is an unconventional gas resource that consists of methane production from coal seams .The unique difference between CBM and conventional gas reservoirs is… (more)

Nfonsam, Allen Ekahnzok.

2006-01-01T23:59:59.000Z

177

New York Coalbed Methane Proved Reserves (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 - No Data Reported;...

178

California (with State off) Coalbed Methane Proved Reserves ...  

U.S. Energy Information Administration (EIA) Indexed Site

(with State off) Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 - ...

179

Florida Coalbed Methane Proved Reserves (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 - No Data Reported;...

180

Texas--RRC District 2 Onshore Coalbed Methane Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

2 Onshore Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 - No Data...

Note: This page contains sample records for the topic "virginia coalbed methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Louisiana--State Offshore Coalbed Methane Proved Reserves (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Louisiana--State Offshore Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's...

182

California - San Joaquin Basin Onshore Coalbed Methane Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

San Joaquin Basin Onshore Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's...

183

Lower 48 Federal Offshore Coalbed Methane Proved Reserves (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Lower 48 Federal Offshore Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's...

184

Federal Offshore--Texas Coalbed Methane Proved Reserves (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Offshore--Texas Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 - No...

185

U.S. Coalbed Methane Proved Reserves (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

(Billion Cubic Feet) U.S. Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,676 1990's...

186

California--State Offshore Coalbed Methane Proved Reserves (Billion...  

Annual Energy Outlook 2012 (EIA)

Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 - No Data Reported;...

187

Michigan Coalbed Methane Proved Reserves (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Michigan Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 - No Data...

188

California - Los Angeles Basin Onshore Coalbed Methane Proved...  

Annual Energy Outlook 2012 (EIA)

Los Angeles Basin Onshore Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's...

189

Development of a Series of National Coalbed Methane Databases  

E-Print Network (OSTI)

Growing Interest in Coalbed Methane ­ Elevated natural gas prices ­ Demand for clean energy sources ­ Existence of large reserves of coal ­ Accessibility to coal seams at shallow depths ­ Coal's gas storage capacity ­ Expected future increase in the gas consumption #12;World Energy Consumption Source: BP

Mohaghegh, Shahab

190

,"U.S. Coalbed Methane Proved Reserves, Reserves Changes, and Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves, Reserves Changes, and Production" Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2011,"6/30/1989" ,"Release Date:","8/1/2013" ,"Next Release Date:","8/1/2014" ,"Excel File Name:","ng_enr_coalbed_dcu_nus_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_enr_coalbed_dcu_nus_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

191

CARBON DIOXIDE SEQUESTRATION ENHANCED COALBED METHANE RECOVERY  

E-Print Network (OSTI)

restructuring policies, resulting in a decline in coal production and consump- tion. Although China found a net increase in coal-bed emissions from 5.58 Tg CH4 in 1990 to 6.75 Tg in 1996, falling to 5 is that they are increasing steadily, because of the large quantities of coal being used to fuel a fast-growing industrial

Nur, Amos

192

Separation and Purification of Methane from coal-Bed Methane via the Hydrate Technology  

Science Conference Proceedings (OSTI)

The separation of methane from coal-bed methane (CBM) via hydrate process using tetrahydrofuran (THF) + sodium dodecyl sulfate (SDS) as additives was investigated in this work. The effect of additives, the concentration of the additives and hydrate memory ... Keywords: CBM, hydrate, separation, THF, SDS

Cai Jing; Chen Zhaoyang; Li Xiaosen; Xu Chungang

2010-12-01T23:59:59.000Z

193

,"Texas--RRC District 8A Coalbed Methane Proved Reserves (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

194

,"Texas--RRC District 7C Coalbed Methane Proved Reserves (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

195

,"Texas--RRC District 7B Coalbed Methane Proved Reserves (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

196

Parametric and predictive analysis of horizontal well configurations for coalbed methane reservoirs in Appalachian Basin.  

E-Print Network (OSTI)

??It has been a well-established fact that the Appalachian Basin represents a high potential region for the Coalbed Methane (CBM) production. The thin coal beds… (more)

Maricic, Nikola.

2004-01-01T23:59:59.000Z

197

State-of-the-art in coalbed methane drilling fluids  

SciTech Connect

The production of methane from wet coalbeds is often associated with the production of significant amounts of water. While producing water is necessary to desorb the methane from the coal, the damage from the drilling fluids used is difficult to assess, because the gas production follows weeks to months after the well is drilled. Commonly asked questions include the following: What are the important parameters for drilling an organic reservoir rock that is both the source and the trap for the methane? Has the drilling fluid affected the gas production? Are the cleats plugged? Does the 'filtercake' have an impact on the flow of water and gas? Are stimulation techniques compatible with the drilling fluids used? This paper describes the development of a unique drilling fluid to drill coalbed methane wells with a special emphasis on horizontal applications. The fluid design incorporates products to match the delicate surface chemistry on the coal, a matting system to provide both borehole stability and minimize fluid losses to the cleats, and a breaker method of removing the matting system once drilling is completed. This paper also discusses how coal geology impacts drilling planning, drilling practices, the choice of drilling fluid, and completion/stimulation techniques for Upper Cretaceous Mannville-type coals drilled within the Western Canadian Sedimentary Basin. A focus on horizontal coalbed methane (CBM) wells is presented. Field results from three horizontal wells are discussed, two of which were drilled with the new drilling fluid system. The wells demonstrated exceptional stability in coal for lengths to 1000 m, controlled drilling rates and ease of running slotted liners. Methods for, and results of, placing the breaker in the horizontal wells are covered in depth.

Baltoiu, L.V.; Warren, B.K.; Natras, T.A.

2008-09-15T23:59:59.000Z

198

Table 17. Coalbed methane proved reserves, reserves changes, and production, 201  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed methane proved reserves, reserves changes, and production, 2011" Coalbed methane proved reserves, reserves changes, and production, 2011" "billion cubic feet" ,,"Changes in Reserves During 2011" ,"Published",,,,,,,,"New Reservoir" ,"Proved",,"Revision","Revision",,,,"New Field","Discoveries","Estimated","Proved" ,"Reserves","Adjustments","Increases","Decreases","Sales","Acquisitions","Extensions","Discoveries","in Old Fields","Production","Reserves" "State and Subdivision",40543,"(+,-)","(+)","(-)","(-)","(+)","(+)","(+)","(+)","(-)",40908

199

Development of Risk Assessment System for Coal-Bed Methane Underbalanced Drilling  

Science Conference Proceedings (OSTI)

As there are a lot of factors with complexity and uncertainty, the process of coal-bed methane under balanced drilling has great risk. In order to overcome the one-sidedness and limitation caused by single evaluation method, the combined evaluation model ... Keywords: coal-bed methane, underbalanced drilling, combined evaluation model, risk assessment system

Xiujuan Yang; Qingyang Wen; Xiangzhen Yan; Yan Xia

2010-12-01T23:59:59.000Z

200

Unconventional gas resources. [Eastern Gas Shales, Western Gas Sands, Coalbed Methane, Methane from Geopressured Systems  

DOE Green Energy (OSTI)

This document describes the program goals, research activities, and the role of the Federal Government in a strategic plan to reduce the uncertainties surrounding the reserve potential of the unconventional gas resources, namely, the Eastern Gas Shales, the Western Gas Sands, Coalbed Methane, and methane from Geopressured Aquifers. The intent is to provide a concise overview of the program and to identify the technical activities that must be completed in the successful achievement of the objectives.

Komar, C.A. (ed.)

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "virginia coalbed methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Coalbed methane could cut India`s energy deficit  

Science Conference Proceedings (OSTI)

Foreign interest in upcoming Indian coalbed methane (CBM) concession rounds will depend on prospect quality, fiscal regime attractiveness, and perceptions interested parties will have concerning the government`s willingness to promote development. The more liberal tax and royalty provisions for foreign producers announced by the ministry of Petroleum and Natural Gas indicate that India is interested in attracting international CBM investments. This article examines the potential for developing the country`s large CBM resource base, estimated between 30 tcf (250 billion cu m) and 144 tcf (4 trillion cu m) of gas. It also provides an overview of the current contractual and regulatory framework governing CBM development.

Kelafant, J. [Advanced Resources International Inc., Arlington, VA (United States); Stern, M. [MathTech International Inc., Arlington, VA (United States)

1998-05-25T23:59:59.000Z

202

Numerical Simulations of Temperature Field of Coal-Bed Methane with Heat Injection Based on ANSYS  

Science Conference Proceedings (OSTI)

The three-dimensional temperature field of the coal-bed methane with heat injection was numerically calculated by ANSYS. The calculated results revealed that the temperature, the thermal gradients and the thermal flux vector sum of the coal-bed near ... Keywords: heat injection, numerical simulation, temperature

Bing Xiong Lu

2012-03-01T23:59:59.000Z

203

Coal-bed methane potential of Vancouver Island coalfields  

SciTech Connect

Commercially attractive quantities of coal-bed methane gas on Vancouver Island, British Columbia, are indicated from recent studies by the provincial Geological Survey Branch and independent consultants. Coal mining activity began in 1847, which provides large amount of data concerning drilling, mining, quality, and reserves. Presence of methane is corroborated by documented accounts of coal mine disasters. Coal measures are part of the Upper Cretaceous Nanaimo Group, which covers approximately 800 mi{sup 2} and are divided into two subbasins. Cretaceous strata rest unconformably on predominantly volcanic basement rocks and are controlled in their distribution by paleotopography. Maximum aggregate coal thickness in the Nanaimo subbasin is 30-60 ft in the Comox subbasin, greater than 40 ft. Post-Cretaceous faulting strongly influences the area. Tertiary intrusives have effected coal quality to some extent. Sampling of coal seams is currently underway to determine levels of thermal maturation. Vitrinite reflectance ranges from 0.59 to 3.21 (R{sub o} max). The majority of coals are of high-volatile B to A bituminous rank, with local variations near Tertiary intrusions. Test-well desorption data have indicated that coals can contain as much as 380 ft{sup 3} of methane per ton of coal. Gas samples taken were pipeline quality, about 95% methane, 4.5% heavier hydrocarbons, and 0.5% carbon dioxide. A conservative estimate of in-place methane resource is 800 bcf. Plans are currently underway to construct a natural gas pipeline from the mainland to service Vancouver Island. This would provide the necessary infrastructure to make extraction of the methane resource economic.

Kenyon, C. (Ministry of Energy, Mines, Petroleum Resources, Victoria, British Columbia (Canada)); Murray, D.K. (D. Keith Murray and Associates, Inc., Golden, CO (USA))

1990-05-01T23:59:59.000Z

204

U.S. Coalbed Methane Proved Reserves Sales (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Sales (Billion Cubic Feet) U.S. Coalbed Methane Proved Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 208...

205

,"U.S. Coalbed Methane Proved Reserves Sales (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves Sales (Billion Cubic Feet)",1,"Annual",2011 ,"Release Date:","81...

206

Analysis on Coalbed Methane Development Mode and Utilization Technology in China  

Science Conference Proceedings (OSTI)

Coal bed methane (CBM), as a new energy, has become an important supplement to natural gas in China. Development and utilization of CBM can also reduce greenhouse gas emissions and protect of ecological environment. Very different forms of the Chinese ... Keywords: coalbed methane, virtual reservoir, low concentration CBM, ventilation air methane, energy-saving and emission reduction

Yuandong Qiao; Daping Xia; Hongyu Guo

2010-10-01T23:59:59.000Z

207

Coalbed-methane pilots - timing, design, and analysis  

Science Conference Proceedings (OSTI)

Four distinct sequential phases form a recommended process for coalbed-methane (CBM)-prospect assessment: initial screening reconnaissance, pilot testing, and final appraisal. Stepping through these four phases provides a program of progressively ramping work and cost, while creating a series of discrete decision points at which analysis of results and risks can be assessed. While discussing each of these phases in some degree, this paper focuses on the third, the critically important pilot-testing phase. This paper contains roughly 30 specific recommendations and the fundamental rationale behind each recommendation to help ensure that a CBM pilot will fulfill its primary objectives of (1) demonstrating whether the subject coal reservoir will desorb and produce consequential gas and (2) gathering the data critical to evaluate and risk the prospect at the next-often most critical-decision point.

Roadifer, R.D.; Moore, T.R.

2009-10-15T23:59:59.000Z

208

Methane recovery from coalbeds project. Monthly progress report  

Science Conference Proceedings (OSTI)

Progress made on the Methane Recovery from Coalbeds Project (MRCP) is reported in the Raton Mesa Coal Region. The Uinta and Warrior basin reports have been reviewed and will be published and delivered in early December. A cooperative core test with R and P Coal Company on a well in Indiana County, Pennsylvania, was negotiated. In a cooperative effort with the USGS Coal Branch on three wells in the Wind River Basin, desorption of coal samples showed little or no gas. Completed field testing at the Dugan Petroleum well in the San Juan Basin. Coal samples showed minimal gas. Initial desorption of coal samples suggests that at least a moderate amount of gas was obtained from the Coors well test in the Piceance Basin. Field work for the Piceance Basin Detailed Site Investigation was completed. In the Occidental Research Corporation (ORC) project, a higher capacity vacuum pump to increase CH/sub 4/ venting operations has been installed. Drilling of Oxy No. 12 experienced delays caused by mine gas-offs and was eventually terminated at 460 ft after an attempt to drill through a roll which produced a severe dog leg and severely damaged the drill pipe. ORC moved the second drill rig and equipment to a new location in the same panel as Oxy No. 12 and set the stand pipe for Oxy No. 13. Drill rig No. 1 has been moved east of the longwall mining area in anticipation of drilling cross-panel on 500 foot intervals. Waynesburg College project, Equitable Gas Company has received the contract from Waynesburg College and has applied to the Pennsylvania Public Utilities Commission for a new tariff rate. Waynesburg College has identified a contractor to make the piping connections to the gas line after Equitable establishes their meter and valve requirements.

Not Available

1980-11-01T23:59:59.000Z

209

Texas--RRC District 7B Coalbed Methane Proved Reserves (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

B Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 - No Data...

210

U.S. Coalbed Methane Proved Reserves New Field Discoveries (Billion...  

Gasoline and Diesel Fuel Update (EIA)

U.S. Coalbed Methane Proved Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's 0 0 - ...

211

Split-estate negotiations: the case of coal-bed methane  

Science Conference Proceedings (OSTI)

Coal-bed methane is an emerging contributor to the US energy supply. Split estates, where landowners control the surface and the energy companies lease the rights to the underground gas from the federal government, often impede successful negotiations for methane extraction. We provide an extensive form representation of the dynamic game of the negotiation process for subsurface access. We then solve for a set of Nash equilibrium outcomes associated with the split estate negotiations. By examining the optimal offers we can identify methods to improve the likelihood of negotiations that do not break down and result in the gas developer resorting to the use of a bond. We examine how changes in transaction costs or entitlements will affect the outcomes, and support our finds with anecdotal evidence from actual negotiations for coal-bed methane access. 55 refs.

Hayley H. Chouinard; Christina Steinhoff [Washington State University, WA (United States)

2008-01-15T23:59:59.000Z

212

West Virginia Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

94 255 246 220 220 139 2005-2011 Adjustments 0 0 -1 2009-2011 Revision Increases 19 15 35 2009-2011 Revision Decreases 38 25 47 2009-2011 Sales 0 0 50 2009-2011 Acquisitions 0 5 0...

213

Virginia Coalbed Methane Proved Reserves, Reserves Changes, and...  

U.S. Energy Information Administration (EIA) Indexed Site

,813 1,948 1,851 2,261 1,752 1,623 2005-2011 Adjustments 0 1 26 2009-2011 Revision Increases 219 16 87 2009-2011 Revision Decreases 0 459 199 2009-2011 Sales 0 0 0 2009-2011...

214

Multi-Seam Well Completion Technology: Implications for Powder River Basin Coalbed Methane Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Seam Well Completion Seam Well Completion Technology: Implications for Powder River Basin Coalbed Methane Production U.S. Department of Energy Office of Fossil Energy and National Energy Technology Laboratory Strategic Center for Natural Gas September 2003 DOE/NETL-2003/1193 Multi-Seam Well Completion Technology: Implications for Powder River Basin Coalbed Methane Production U.S. Department of Energy National Energy Technology Laboratory (NETL) (Strategic Center for Natural Gas) DOE/NETL-2003/1193 September 2003 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal

215

U.S. Coalbed Methane Proved Reserves and Production  

Gasoline and Diesel Fuel Update (EIA)

Area: U.S. Alabama Colorado New Mexico Utah Wyoming Virginia Eastern States (IL, IN, OH, PA, WV) Western States (AR, KS, LA, MT, OK) Other States Period: Annual Download Series...

216

Coalbed Methane Resources in the Powder River Basin: Lithologic...  

Open Energy Info (EERE)

in Wyoming and North Dakota. Specifically, the analysis looked at: total gas desorbed, coal quality, and high-pressure methane adsorption isotherm data from 963 cored coal samples...

217

Coalbed methane potential of the Pechora Coalfield, Timan-Pechora Basin, Russia  

SciTech Connect

A comparison of the more important geologic attributes of coal beds in the coalbed methane producing regions of the United States to Permian coal beds in the Pechora Coalfield, Timan-Pechora Basin, Russia indicates a high potential for commercial coalbed methane production. Although the depositional and structural histories, as well as the age, of the coal beds in the Pechora Coalfield are different than coal beds in U.S. basins, coal quality attributes are similar. The more prospective part of the coal-bearing sequence is as thick as 1600 m and contains more than 150 coal beds that individually are as thick as 4 m. These coal beds are composed primarily of rank ranges from subbituminous to anthracite (,0.5->2.5% R[sub 0]), with the highest rank coal located near the city of Vorkuta. Published data indicates that the gas content of coals is as high as 28-35 m[sup 3]/ton, with an average value of 18 m[sup 3]/ton. About 700 MMCM of gas per year is emmitted from coal mines. Pore pressures in the coal beds are unknown, however, interbedded sandstones in some parts of the basin are overpressured. The commonly occurring problem, in mid-latitude coalbed methane well, of excessive amounts of water may be alleviated in this high-latitude coal field. We suggest that the wide-spread occurrence of permafrost in the Pechora Coalfield may form an effective barrier to down-dip water flow, thereby facilitating the dewatering state. In summary, the quality of coal beds in the Pechora Coalfield are similar to methane producing coal beds in the United States and should, therefore, be favorable for commercial rates of gas production.

Yakutseni, V.P.; Petrova, Y.E. (VNIGRI, St. Petersburg (Russian Federation)); Law, B.E.; Ulmishek, G.F. (Geological Survey, Denver, CO (United States))

1996-01-01T23:59:59.000Z

218

Simulation study of the effect of well spacing, effect of permeability anisotropy, and effect of Palmer and Mansoori model on coalbed methane production  

E-Print Network (OSTI)

Interference for adjacent wells may be beneficial to Coalbed-Methane production. The effect is the acceleration of de-watering which should lead to earlier and higher gas rate peaks. It is inherent that permeability anisotropy exists in the coalbed methane formation. It means that the placement of wells (wells configuration) has an effect on the development of coalbed methane field. The effect of Palmer-Mansoori Theory is increasing effective permeability at lower pressures due to matrix shrinkage during desorption. This effect should increase the gas recovery of coalbed methane production. Palmer and Mansoori model should be considered and included to coalbed methane reservoir simulation. These effects and phenomena can be modeled with the CMG simulator. A systematic sensitivity study of various reservoir and operating parameters will result in generalized guidelines for operating these reservoirs more effectively.

Zulkarnain, Ismail

2005-12-01T23:59:59.000Z

219

GEOLOGIC SCREENING CRITERIA FOR SEQUESTRATION OF CO2 IN COAL: QUANTIFYING POTENTIAL OF THE BLACK WARRIOR COALBED METHANE FAIRWAY, ALABAMA  

SciTech Connect

Sequestration of CO{sub 2} in coal has potential benefits for reducing greenhouse gas emissions from the highly industrialized Carboniferous coal basins of North America and Europe and for enhancing coalbed methane recovery. Hence, enhanced coalbed methane recovery operations provide a basis for a market-based environmental solution in which the cost of sequestration is offset by the production and sale of natural gas. The Black Warrior foreland basin of west-central Alabama contains the only mature coalbed methane production fairway in eastern North America, and data from this basin provide an excellent basis for quantifying the carbon sequestration potential of coal and for identifying the geologic screening criteria required to select sites for the demonstration and commercialization of carbon sequestration technology. Coalbed methane reservoirs in the upper Pottsville Formation of the Black Warrior basin are extremely heterogeneous, and this heterogeneity must be considered to screen areas for the application of CO{sub 2} sequestration and enhanced coalbed methane recovery technology. Major screening factors include stratigraphy, geologic structure, geothermics, hydrogeology, coal quality, sorption capacity, technology, and infrastructure. Applying the screening model to the Black Warrior basin indicates that geologic structure, water chemistry, and the distribution of coal mines and reserves are the principal determinants of where CO{sub 2} can be sequestered. By comparison, coal thickness, temperature-pressure conditions, and coal quality are the key determinants of sequestration capacity and unswept coalbed methane resources. Results of this investigation indicate that the potential for CO{sub 2} sequestration and enhanced coalbed methane recovery in the Black Warrior basin is substantial and can result in significant reduction of greenhouse gas emissions while increasing natural gas reserves. Coal-fired power plants serving the Black Warrior basin in Alabama emit approximately 31 MMst (2.4 Tcf) of CO{sub 2} annually. The total sequestration capacity of the Black Warrior coalbed methane fairway at 350 psi is about 189 MMst (14.9 Tcf), which is equivalent to 6.1 years of greenhouse gas emissions from the coal-fired power plants. Applying the geologic screening model indicates that significant parts of the coalbed methane fairway are not accessible because of fault zones, coal mines, coal reserves, and formation water with TDS content less than 3,000 mg/L. Excluding these areas leaves a sequestration potential of 60 MMst (4.7 Tcf), which is equivalent to 1.9 years of emissions. Therefore, if about10 percent of the flue gas stream from nearby power plants is dedicated to enhanced coalbed methane recovery, a meaningful reduction of CO{sub 2} emissions can be realized for nearly two decades. If the fresh-water restriction were removed for the purposes of CO{sub 2} sequestration, an additional 10 MMst (0.9 Tcf) of CO{sub 2} could feasibly be sequestered. The amount of unswept coalbed methane in the fairway is estimated to be 1.49 Tcf at a pressure of 50 psi. Applying the screening model results in an accessible unswept gas resource of 0.44 Tcf. Removal of the fresh-water restriction would elevate this number to 0.57 Tcf. If a recovery factor of 80 percent can be realized, then enhanced recovery activities can result in an 18 percent expansion of coalbed methane reserves in the Black Warrior basin.

Jack C. Pashin; Richard E. Carroll; Richard H. Groshong Jr.; Dorothy E. Raymond; Marcella McIntyre; J. Wayne Payton

2004-01-01T23:59:59.000Z

220

Coordinated studies in support of hydraulic fracturing of coalbed methane. Final report, July 1990-May 1995  

Science Conference Proceedings (OSTI)

The primary objective of this project is to provide laboratory data that is pertinent to designing hydraulic fracturing treatments for coalbed methane. Coal fluid interactions studies, fracture conductivity, fluid leak-off through cleats, rheology, and proppant transport are designed to respresent Black Warrior and San Juan treatments. A second objective is to apply the information learned in laboratory testing to actual hydraulic fracturing treatments in order to improve results. A final objective is to review methods currently used to catalog well performance following hydraulic fracturing for the purpose of placing the data in a useable database that can be accessed by users to determine the success of various treatment scenarios.

Penny, G.S.; Conway, M.W.

1996-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "virginia coalbed methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Virginia Gas and Oil Act (Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Virginia Gas and Oil Act (Virginia) Virginia Gas and Oil Act (Virginia) Virginia Gas and Oil Act (Virginia) < Back Eligibility Commercial Construction Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Systems Integrator Utility Program Info State Virginia Program Type Safety and Operational Guidelines Siting and Permitting Provider Virginia Department of Mines, Minerals, and Energy The Gas and Oil Act addresses the exploration, development, and production of oil and gas resources in the Commonwealth of Virginia. It contains provisions pertaining to wells and well spacing, permits and fees, ownership of coalbed methane gas, and land leases. No county, city, town or other political subdivision of the Commonwealth may impose any condition, or require any other local license, permit, fee or bond to perform any gas,

222

Investigation of feasibility of injecting power plant waste gases for enhanced coalbed methane recovery from low rank coals in Texas  

E-Print Network (OSTI)

Greenhouse gases such as carbon dioxide (CO2) may be to blame for a gradual rise in the average global temperature. The state of Texas emits more CO2 than any other state in the U.S., and a large fraction of emissions are from point sources such as power plants. CO2 emissions can be offset by sequestration of produced CO2 in natural reservoirs such as coal seams, which may initially contain methane. Production of coalbed methane can be enhanced through CO2 injection, providing an opportunity to offset the rather high cost of sequestration. Texas has large coal resources. Although they have been studied there is not enough information available on these coals to reliably predict coalbed methane production and CO2 sequestration potential. The goal of the work was to determine if sequestration of CO2 in low rank coals is an economically feasible option for CO2 emissions reduction. Additionally, reasonable CO2 injection and methane production rates were to be estimated, and the importance of different reservoir parameters investigated. A data set was compiled for use in simulating the injection of CO2 for enhanced coalbed methane production from Texas coals. Simulation showed that Texas coals could potentially produce commercial volumes of methane if production is enhanced by CO2 injection. The efficiency of the CO2 in sweeping the methane from the reservoir is very high, resulting in high recovery factors and CO2 storage. The simulation work also showed that certain reservoir parameters, such as Langmuir volumes for CO2 and methane, coal seam permeability, and Langmuir pressure, need to be determined more accurately. An economic model of Texas coalbed methane operations was built. Production and injection activities were consistent with simulation results. The economic model showed that CO2 sequestration for enhanced coalbed methane recovery is not commercially feasible at this time because of the extremely high cost of separating, capturing, and compressing the CO2. However, should government mandated carbon sequestration credits or a CO2 emissions tax on the order of $10/ton become a reality, CO2 sequestration projects could become economic at gas prices of $4/Mscf.

Saugier, Luke Duncan

2003-08-01T23:59:59.000Z

223

Enhanced Coalbed Methane Recovery Through Sequestration of Carbon Dioxide: Potential for a Market-Based Environmental Solution in the Black Warrior Basin of Alabama  

NLE Websites -- All DOE Office Websites (Extended Search)

Coalbed Methane Recovery Through Sequestration of Coalbed Methane Recovery Through Sequestration of Carbon Dioxide: Potential for a Market-Based Environmental Solution in the Black Warrior Basin of Alabama Jack C. Pashin (jpashin@gsa.state.al.us; 205-349-2852) Geological Survey of Alabama P.O. Box 869999 Tuscaloosa, AL 35486 Richard H. Groshong, Jr. (rgroshon@wgs.geo.ua.edu; 205-348-1882) Deparment of Geology University of Alabama Tuscaloosa, AL 35487 Richard E. Carroll (rcarroll@gsa.state.al.us; 205-349-2852) Geological Survey of Alabama P.O. Box 869999 Tuscaloosa, AL 35486 Abstract Sequestration of CO 2 in coal is a market-based environmental solution with potential to reduce greenhouse gas emissions while increasing coalbed methane recovery. Producing coalbed methane through injection of CO 2 is also more efficient than current techniques requiring

224

A parametric study on the benefits of drilling horizontal and multilateral wells in coalbed methane reservoirs  

Science Conference Proceedings (OSTI)

Recent years have witnessed a renewed interest in development of coalbed methane (CBM) reservoirs. Optimizing CBM production is of interest to many operators. Drilling horizontal and multilateral wells is gaining Popularity in many different coalbed reservoirs, with varying results. This study concentrates on variations of horizontal and multilateral-well configurations and their potential benefits. In this study, horizontal and several multilateral drilling patterns for CBM reservoirs are studied. The reservoir parameters that have been studied include gas content, permeability, and desorption characteristics. Net present value (NPV) has been used as the yard stick for comparing different drilling configurations. Configurations that have been investigated are single-, dual-, tri-, and quad-lateral wells along with fishbone (also known as pinnate) wells. In these configurations, the total length of horizontal wells and the spacing between laterals (SBL) have been studied. It was determined that in the cases that have been studied in this paper (all other circumstances being equal), quadlateral wells are the optimum well configuration.

Maricic, N.; Mohaghegh, S.D.; Artun, E. [Chevron Energy Technology Co., Houston, TX (USA)

2008-12-15T23:59:59.000Z

225

Modeling Coal Matrix Shrinkage and Differential Swelling with CO2 Injection for Enhanced Coalbed Methane Recovery and Carbon Sequestration Applications  

SciTech Connect

Matrix shrinkage and swelling can cause profound changes in porosity and permeability of coalbed methane reservoirs during depletion or when under CO{sub 2} injection processes, with significant implication for primary or enhanced methane recovery. Two models that are used to describe these effects are discussed. The first was developed by Advanced Resources International (ARI) and published in 1990 by Sawyer, et al. The second model was published by Palmer and Mansoori in 1996. This paper shows that the two provide equivalent results for most applications. However, their differences in formulation cause each to have relative advantages and disadvantages under certain circumstances. Specifically, the former appears superior for undersaturated coalbed methane reservoirs while the latter would be better if a case is found where matrix swelling is strongly disproportional to gas concentration. Since its presentation in 1996, the Palmer and Mansoori model has justifiably received much critical praise. However, the model developed by ARI for the COMET reservoir simulation program has been in use since 1990, and has significant advantages in certain settings. A review of data published by Levine in 1996 reveals that carbon dioxide causes a greater degree of coal matrix swelling compared to methane, even when measured on a unit of concentration basis. This effect is described in this report as differential swelling. Differential swelling may have important consequences for enhanced coalbed methane and carbon sequestration projects. To handle the effects of differential swelling, an extension to the matrix shrinkage and swelling model used by the COMET simulator is presented and shown to replicate the data of Levine. Preliminary field results from a carbon dioxide injection project are also presented in support of the extended model. The field evidence supports that considerable changes to coal permeability occur with CO{sub 2} injection, with significant implication for the design, implementation and performance of enhanced coalbed methane recovery and CO{sub 2} sequestration projects.

L. J. Pekot; S. R. Reeves

2002-03-31T23:59:59.000Z

226

Potential for CO2 Sequestration and Enhanced Coalbed Methane Production, Blue Creek Field, NW Black Warrior Basin, Alabama  

E-Print Network (OSTI)

Carbon dioxide (CO2) is a primary source of greenhouse gases. Injection of CO2 from power plants near coalbed reservoirs is a win-win method to reducing emissions of CO2 to the atmosphere. Limited studies have investigated CO2 sequestration and enhanced coalbed methane production in San Juan and Alberta basins, but reservoir modeling is needed to assess the potential of the Black Warrior basin. Alabama ranks 9th nationally in CO2 emissions from power plants; two electricity generation plants are adjacent to the Black Warrior coalbed methane fairway. This research project was a reservoir simulation study designed to evaluate the potential for CO2 sequestration and enhanced coalbed methane (ECBM) recovery in the Blue Creek Field of Black Warrior basin, Alabama. It considered the injection and production rate, the components of injected gas, coal dewatering, permeability anisotropy, various CO2 soak times, completion of multiple reservoir layers and pressure constraints at the injector and producer. The simulation study was based on a 5-spot well pattern 40-ac well spacing. Injection of 100 percent CO2 in coal seams resulted in average volumes of 0.57 Bcf of sequestered CO2 and average volumes of 0.2 Bcf of enhance methane production for the Mary Lee coal zone only, from an 80-acre 5-spot well pattern. For the entire Blue Creek field of the Black Warrior basin, if 100 percent CO2 is injected in the Pratt, Mary Lee and Black Creek coal zones, enhance methane resources recovered are estimated to be 0.3 Tcf, with a potential CO2sequestration capacity of 0.88 Tcf. The methane recovery factor is estimated to be 68.8 percent, if the three coal zones are completed but produced one by one. Approximately 700 wells may be needed in the field. For multi-layers completed wells, the permeability and pressure are important in determining the breakthrough time, methane produced and CO2 injected. Dewatering and soaking do not benefit the CO2 sequestration process but allow higher injection rates. Permeability anisotropy affects CO2 injection and enhanced methane recovery volumes of the field. I recommend a 5-spot pilot project with the maximum well BHP of 1,000 psi at the injector, minimum well BHP of 500 psi at the producer, maximum injection rate of 70 Mscf/D, and production rate of 35 Mscf/D. These technical results, with further economic evaluation, could generate significant projects for CO2 sequestration and enhance coalbed methane production in Blue Creek field, Black Warrior Basin, Alabama.

He, Ting

2009-12-01T23:59:59.000Z

227

Damage tolerance of well-completion and stimulation techniques in coalbed methane reservoirs  

SciTech Connect

Coalbed methane (CBM) reservoirs are characterized as naturally fractured, dual porosity, low permeability, and water saturated gas reservoirs. Initially, the gas, water and coal are at thermodynamic equilibrium under prevailing reservoir conditions. Dewatering is essential to promote gas production. This can be accomplished by suitable completion and stimulation techniques. This paper investigates the efficiency and performance of the openhole cavity, hydraulic fractures, frack and packs, and horizontal wells as potential completion methods which may reduce formation damage and increase the productivity in coalbed methane reservoirs. Considering the dual porosity nature of CBM reservoirs, numerical simulations have been carried out to determine the formation damage tolerance of each completion and, stimulation approach. A new comparison parameter named as the normalized productivity index is defined as the ratio of the productivity index of a stimulated well to that of a nondamaged vertical well as a function of time. Typical scenarios have been considered to evaluate the CBM properties, including reservoir heterogeneity, anisotropy, and formation damage, for their effects on this index over the production time. The results for each stimulation technique show that the value of the index declines over the time of production with a rate which depends upon the applied technique and the prevailing reservoir conditions. The results also show that horizontal wells have the best performance if drilled orthogonal to the butt cleats. Open-hole cavity completions outperform vertical fractures if the fracture conductivity is reduced by any damage process. When vertical permeability is much lower than horizontal permeability, production of vertical wells will improve while productivity of horizontal wells will decrease.

Jahediesfanjani, H.; Civan, F. [University of Oklahoma, Norman, OK (United States)

2005-09-01T23:59:59.000Z

228

Table 17. Coalbed methane proved reserves, reserves changes, and production, 2011  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed methane proved reserves, reserves changes, and production, 2011 Coalbed methane proved reserves, reserves changes, and production, 2011 billion cubic feet Published New Reservoir Proved Revision Revision New Field Discoveries Estimated Proved Reserves Adjustments Increases Decreases Sales Acquisitions Extensions Discoveries in Old Fields Production Reserves State and Subdivision 12/31/10 (+,-) (+) (-) (-) (+) (+) (+) (+) (-) 12/31/11 Alaska 0 0 0 0 0 0 0 0 0 0 0 Lower 48 States 17,508 -15 2,071 1,668 1,775 1,710 736 0 13 1,763 16,817 Alabama 1,298 -45 23 86 104 219 3 0 0 98 1,210 Arkansas 28 0 0 3 0 0 0 0 0 4 21 California 0 0 0 0 0 0 0 0 0 0 0 Colorado 6,485 73 698 367 1,034 1,021 220 0 0 516 6,580 Florida 0 0 0 0 0 0 0 0 0 0 0 Kansas 258 -6 24 14 0 0 3 0 0 37 228 Kentucky 0 0 0 0 0 0 0 0 0 0 0 Louisiana 0 0 0 0 0 0 0 0 0 0 0 North Onshore 0 0 0 0 0 0 0 0 0 0 0 South Onshore 0 0 0 0 0 0 0 0 0 0 0 State Offshore 0 0 0 0 0 0 0 0 0 0 0 Michigan 0 0 0 0 0 0 0 0 0 0 0 Mississippi 0 0 0 0 0 0 0 0 0

229

Coordinated studies in support of hydraulic fracturing of coalbed methane. Annual report, January 1993-April 1994  

SciTech Connect

The production of natural gas from coal typically requires stimulation in the form of hydraulic fracturing and, more recently, cavity completions. The results of hydraulic fracturing treatments have ranged from extremely successful to less than satisfactory. The purpose of this work is to characterize common and potential fracturing fluids in terms of coal-fluid interactions to identify reasons for less than satisfactory performance and to ultimately devise alternative fluids and treatment procedures to optimize production following hydraulic fracturing. The laboratory data reported herein has proven helpful in designing improved hydraulic fracturing treatments and remedial treatments in the Black Warrior Basin. Acid inhibitors, scale inhibitors, additives to improve coal relative permeability to gas, and non-damaging polymer systems for hydraulic fracturing have been screened in coal damage tests. The optimum conditions for creating field-like foams in the laboratory have been explored. Tests have been run to identify minimum polymer and surfactant concentrations for applications of foam in coal. The roll of 100 mesh sand in controlling leakoff and impairing conductivity in coal has been investigated. The leakoff and proppant transport of fluids with breaker has been investigated and recommendations have been made for breaker application to minimize damage potential in coal. A data base called COAL`S has been created in Paradox (trademark) for Windows to catalogue coalbed methane activities in the Black Warrior and San Juan Basins.

Penny, G.S.; Conway, M.W.

1994-08-01T23:59:59.000Z

230

Powder River Basin Coalbed Methane Development and Produced Water Management Study  

DOE Green Energy (OSTI)

Coalbed methane resources throughout the entire Powder River Basin were reviewed in this analysis. The study was conducted at the township level, and as with all assessments conducted at such a broad level, readers must recognize and understand the limitations and appropriate use of the results. Raw and derived data provided in this report will not generally apply to any specific location. The coal geology in the basin is complex, which makes correlation with individual seams difficult at times. Although more than 12,000 wells have been drilled to date, large areas of the Powder River Basin remain relatively undeveloped. The lack of data obviously introduces uncertainty and increases variability. Proxies and analogs were used in the analysis out of necessity, though these were always based on sound reasoning. Future development in the basin will make new data and interpretations available, which will lead to a more complete description of the coals and their fluid flow properties, and refined estimates of natural gas and water production rates and cumulative recoveries. Throughout the course of the study, critical data assumptions and relationships regarding gas content, methane adsorption isotherms, and reservoir pressure were the topics of much discussion with reviewers. A summary of these discussion topics is provided as an appendix. Water influx was not modeled although it is acknowledged that this phenomenon may occur in some settings. As with any resource assessment, technical and economic results are the product of the assumptions and methodology used. In this study, key assumptions as well as cost and price data, and economic parameters are presented to fully inform readers. Note that many quantities shown in various tables have been subject to rounding; therefore, aggregation of basic and intermediate quantities may differ from the values shown.

Advanced Resources International

2002-11-30T23:59:59.000Z

231

Factors facilitating or limiting the use of AVO for coal-bed methane  

Science Conference Proceedings (OSTI)

There are similarities and differences in employing amplitude variation with offset (AVO) to explore for gas-sand reservoirs, as opposed to coal-bed methane (CBM) reservoirs. The main similarity is that large Poisson's ratio contrasts, resulting in AVO gradient anomalies, are expected for both kinds of reservoirs. The main difference is that cleating and fracturing raise the Poisson's ratio of a coal seam as it improves its reservoir potential for CBM, while gas always lowers the Poisson's ratio of a sandstone reservoir. The top of gas sands usually has a negative AVO gradient, leading to a class one, two, or three anomaly depending on the impedance contrast with the overlying caprock. On the other hand, the top of a CBM reservoir has a positive AVO gradient, leading to a class four anomaly. Three environmental factors may limit the usage of AVO for CBM reservoirs: the smaller contrast in Poisson's ratio between a CBM reservoir and its surrounding rock, variations in the caprock of a specific CBM reservoir, and the fact that CBM is not always free to collect at structurally high points in the reservoir. However, other factors work in favor of using AVO. The strikingly high reflection amplitude of coal improves signal/noise ratio and hence the reliability of AVO measurements. The relatively simple characteristics of AVO anomalies make them easy to interpret. Because faults are known to improve the quality of CBM reservoirs, faults accompanied by AVO anomalies would be especially convincing. A 3D-AVO example offered in this paper shows that AVO might be helpful to delineate methane-rich sweet spots within coal seams.

Peng, S.P.; Chen, H.J.; Yang, R.Z.; Gao, Y.F.; Chen, X.P. [China University of Mining & Technology, Beijing (China)

2006-07-15T23:59:59.000Z

232

Selection of best drilling, completion and stimulation method for coalbed methane reservoirs  

E-Print Network (OSTI)

Over the past three decades, coalbed methane (CBM) has moved from a mining hazard and novel unconventional resource to an important fossil fuel that accounts for approximately 10% of the U.S. natural gas production and reserves. The expansion of this industry required development of different drilling, completion and stimulation practices for CBM in specific North American basins, owing to the complex combinations of geologic settings and reservoir parameters encountered. These challenges led to many technology advances and to development of CBM drilling, completion and stimulation technology for specific geologic settings. The objectives of this study were to (1) determine which geologic parameters affect CBM drilling, completion and stimulation decisions, (2) identify to the engineering best practices for specific geologic settings, and (3) present these findings in decision charts or advisory systems that could be applied by industry professionals. To determine best drilling, completion and stimulation practices for CBM reservoirs, I reviewed literature and solicited opinions of industry experts through responses to a questionnaire. I identified thirteen geologic parameters (and their ranges of values) that are assessed when selecting CBM drilling, completion and stimulating applications. These are coal thickness, number of seams, areal extent, dip, depth, rank, gas content, formation pressure, permeability, water saturation, and compressive strength, as well as the vertical distribution of coal beds and distance from coal reservoirs to fracture barriers or aquifers. Next, I identified the optimum CBM drilling, completion and stimulating practices for specific combinations of these geologic parameters. The engineering best practices identified in this project may be applied to new or existing fields, to optimize gas reserves and project economics. I identified the best engineering practices for the different CBM basins in N.A and combined these results in the form of two decision charts that engineers may use to select best drilling and completion practices, as well as the optimal stimulation methods and fluids for specific geologic settings. The decision charts are presented in a Visual Basic Application software program to facilitate their use by engineers.

Ramaswamy, Sunil

2007-12-01T23:59:59.000Z

233

Coalbed Methane Procduced Water Treatment Using Gas Hydrate Formation at the Wellhead  

Science Conference Proceedings (OSTI)

Water associated with coalbed methane (CBM) production is a significant and costly process waste stream, and economic treatment and/or disposal of this water is often the key to successful and profitable CBM development. In the past decade, advances have been made in the treatment of CBM produced water. However, produced water generally must be transported in some fashion to a centralized treatment and/or disposal facility. The cost of transporting this water, whether through the development of a water distribution system or by truck, is often greater than the cost of treatment or disposal. To address this economic issue, BC Technologies (BCT), in collaboration with Oak Ridge National Laboratory (ORNL) and International Petroleum Environmental Consortium (IPEC), proposed developing a mechanical unit that could be used to treat CBM produced water by forming gas hydrates at the wellhead. This process involves creating a gas hydrate, washing it and then disassociating hydrate into water and gas molecules. The application of this technology results in three process streams: purified water, brine, and gas. The purified water can be discharged or reused for a variety of beneficial purposes and the smaller brine can be disposed of using conventional strategies. The overall objectives of this research are to develop a new treatment method for produced water where it could be purified directly at the wellhead, to determine the effectiveness of hydrate formation for the treatment of produced water with proof of concept laboratory experiments, to design a prototype-scale injector and test it in the laboratory under realistic wellhead conditions, and to demonstrate the technology under field conditions. By treating the water on-site, producers could substantially reduce their surface handling costs and economically remove impurities to a quality that would support beneficial use. Batch bench-scale experiments of the hydrate formation process and research conducted at ORNL confirmed the feasibility of the process. However, researchers at BCT were unable to develop equipment suitable for continuous operation and demonstration of the process in the field was not attempted. The significant achievements of the research area: Bench-scale batch results using carbon dioxide indicate >40% of the feed water to the hydrate formation reactor was converted to hydrate in a single pass; The batch results also indicate >23% of the feed water to the hydrate formation reactor (>50% of the hydrate formed) was converted to purified water of a quality suitable for discharge; Continuous discharge and collection of hydrates was achieved at atmospheric pressure. Continuous hydrate formation and collection at atmospheric conditions was the most significant achievement and preliminary economics indicate that if the unit could be made operable, it is potentially economic. However, the inability to continuously separate the hydrate melt fraction left the concept not ready for field demonstration and the project was terminated after Phase Two research.

BC Technologies

2009-12-30T23:59:59.000Z

234

A fully coupled finite element model of coal deformation and two phase flow for coalbed methane extraction.  

E-Print Network (OSTI)

??A reservoir simulation model is usually required to represent the combined effects of gas transport, water flow, and coal swelling/shrinking on the extraction of coalbed… (more)

Chen, Dong

2012-01-01T23:59:59.000Z

235

U.S. Coalbed Methane Proved Reserves, Reserves Changes, and Production  

U.S. Energy Information Administration (EIA) Indexed Site

Area: U.S. Federal Offshore U.S. Federal Offshore, Pacific (California) Federal Offshore, Gulf of Mexico, LA & AL Federal Offshore, Gulf of Mexico, TX Alaska Lower 48 States Alabama Arkansas California CA, Coastal Region Onshore CA, Los Angeles Basin Onshore CA, San Joaquin Basin Onshore CA, State Offshore Colorado Florida Kansas Kentucky Louisiana North Louisiana LA, South Onshore LA, State Offshore Michigan Mississippi Montana New Mexico NM, East NM, West New York North Dakota Ohio Oklahoma Pennsylvania Texas TX, RRC District 1 TX, RRC District 2 Onshore TX, RRC District 3 Onshore TX, RRC District 4 Onshore TX, RRC District 5 TX, RRC District 6 TX, RRC District 7B TX, RRC District 7C TX, RRC District 8 TX, RRC District 8A TX, RRC District 9 TX, RRC District 10 TX, State Offshore Utah Virginia West Virginia Wyoming Miscellaneous Period:

236

"Northern Virginia Energy Innovation Forum" SUPLEMENTAL ...  

Science Conference Proceedings (OSTI)

... energy resources, including: oil, natural gas, coal, coalbed methane (CBM), gas hydrates, geothermal resources, uranium, oil shale, and bitumen ...

2010-10-27T23:59:59.000Z

237

Coalbed methane producibility from the Mannville coals in Alberta, Canada: A comparison of two areas  

E-Print Network (OSTI)

recently completed coal bed methane (CBM) and oil and gas wells; · Develop more-comprehensive in-place coal is to conduct regional-scale, coal resource and reserve assessments of the significant coal beds in all major U the coal beds are thick, shallow, and gently dipping along the eastern margin of the Wyoming part

Paris-Sud XI, Université de

238

Field-project designs for carbon dioxide sequestration and enhanced coalbed methane production  

Science Conference Proceedings (OSTI)

Worldwide concerns about global warming and possible contributions to it from anthropogenic carbon dioxide have become important during the past several years. Coal seams may make excellent candidates for CO{sub 2} sequestration; coal-seam sequestration could enhance methane production and improve sequestration economics. Reservoir-simulation computations are an important component of any engineering design before carbon dioxide is injected underground. We have performed such simulations for a hypothetical pilot-scale project in representative coal seams. In these simulations we assume four horizontal production wells that form a square, that is, two wells drilled at right angles to each other forming two sides of a square, with another pair of horizontal wells similarly drilled to form the other two sides. Four shorter horizontal wells are drilled from a vertical well at the center of the square, forming two straight lines orthogonal to each other. By modifying coal properties, especially sorption rate, we have approximated different types of coals. By varying operational parameters, such as injector length, injection well pressure, time to injection, and production well pressure, we can evaluate different production schemes to determine an optimum for each coal type. Any optimization requires considering a tradeoff between total CO{sub 2} sequestered and the rate of methane production. Values of total CO{sub 2} sequestered and methane produced are presented for multiple coal types and different operational designs. 30 refs., 11 figs., 1 tab.

W. Neal Sams; Grant Bromhal; Sinisha Jikich; Turgay Ertekin; Duane H. Smith [EG& G Technical Services, Morgantown, WV (United States). National Energy Technology Laboratory

2005-12-01T23:59:59.000Z

239

Simulation assessment of CO2 sequestration potential and enhanced methane recovery in low-rank coalbeds of the Wilcox Group, east-central Texas  

E-Print Network (OSTI)

Carbon dioxide (CO2) from energy consumption is a primary source of greenhouse gases. Injection of CO2 from power plants in coalbed reservoirs is a plausible method for reducing atmospheric emissions, and it can have the additional benefit of enhancing methane recovery from coal. Most previous studies have evaluated the merits of CO2 disposal in high-rank coals. Low-rank coals in the Gulf Coastal plain, specifically in Texas, are possible targets for CO2 sequestration and enhanced methane production. This research determines the technical feasibility of CO2 sequestration in Texas low-rank coals in the Wilcox Group in east-central Texas and the potential for enhanced coalbed methane (ECBM) recovery as an added benefit of sequestration. It includes deterministic and probabilistic simulation studies and evaluates both CO2 and flue gas injection scenarios. Probabilistic simulation results of 100% CO2 injection in an 80-acre 5-spot pattern indicate that these coals with average net thickness of 20 ft can store 1.27 to 2.25 Bcf of CO2 at depths of 6,200 ft, with an ECBM recovery of 0.48 to 0.85 Bcf. Simulation results of 50% CO2 - 50% N2 injection in the same 80-acre 5-spot pattern indicate that these coals can store 0.86 to 1.52 Bcf of CO2, with an ECBM recovery of 0.62 to 1.10 Bcf. Simulation results of flue gas injection (87% N2 - 13% CO2) indicate that these same coals can store 0.34 to 0.59 Bcf of CO2, with an ECBM recovery of 0.68 to 1.20 Bcf. Methane resources and CO2 sequestration potential of low-rank coals of the Wilcox Group Lower Calvert Bluff (LCB) formation in east-central Texas are significant. Resources from LCB low-rank coals in the Wilcox Group in east-central Texas are estimated to be between 6.3 and 13.6 Tcf of methane, with a potential sequestration capacity of 1,570 to 2,690 million tons of CO2. Sequestration capacity of the LCB lowrank coals in the Wilcox Group in east-central Texas equates to be between 34 and 59 years of emissions from six power plants in this area. These technical results, combined with attractive economic conditions and close proximity of many CO2 point sources near unmineable coalbeds, could generate significant projects for CO2 sequestration and ECBM production in Texas low-rank coals.

Hernandez Arciniegas, Gonzalo

2006-08-01T23:59:59.000Z

240

Coalbed Methane Reserves Extensions  

Gasoline and Diesel Fuel Update (EIA)

724 497 736 2009-2011 724 497 736 2009-2011 Federal Offshore U.S. 0 0 0 2009-2011 Pacific (California) 0 0 0 2009-2011 Louisiana & Alabama 0 0 0 2009-2011 Texas 0 0 0 2009-2011 Alaska 0 0 0 2009-2011 Lower 48 States 724 497 736 2009-2011 Alabama 21 29 3 2009-2011 Arkansas 0 0 0 2009-2011 California 0 0 0 2009-2011 Coastal Region Onshore 0 0 0 2009-2011 Los Angeles Basin Onshore 0 0 0 2009-2011 San Joaquin Basin Onshore 0 0 0 2009-2011 State Offshore 0 0 0 2009-2011 Colorado 48 184 220 2009-2011 Florida 0 0 0 2009-2011 Kansas 7 1 3 2009-2011 Kentucky 0 0 0 2009-2011 Louisiana 0 0 0 2009-2011 North 0 0 0 2009-2011 South Onshore 0 0 0 2009-2011 State Offshore 0 0 0 2009-2011 Michigan 0 0 0 2009-2011 Mississippi 0 0 0 2009-2011 Montana 3 3 0 2009-2011

Note: This page contains sample records for the topic "virginia coalbed methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Coalbed Methane Reserves Acquisitions  

Gasoline and Diesel Fuel Update (EIA)

24 226 1,710 2009-2011 24 226 1,710 2009-2011 Federal Offshore U.S. 0 0 0 2009-2011 Pacific (California) 0 0 0 2009-2011 Louisiana & Alabama 0 0 0 2009-2011 Texas 0 0 0 2009-2011 Alaska 0 0 0 2009-2011 Lower 48 States 24 226 1,710 2009-2011 Alabama 0 151 219 2009-2011 Arkansas 22 0 0 2009-2011 California 0 0 0 2009-2011 Coastal Region Onshore 0 0 0 2009-2011 Los Angeles Basin Onshore 0 0 0 2009-2011 San Joaquin Basin Onshore 0 0 0 2009-2011 State Offshore 0 0 0 2009-2011 Colorado 0 0 1,021 2009-2011 Florida 0 0 0 2009-2011 Kansas 0 0 0 2009-2011 Kentucky 0 0 0 2009-2011 Louisiana 0 0 0 2009-2011 North 0 0 0 2009-2011 South Onshore 0 0 0 2009-2011 State Offshore 0 0 0 2009-2011 Michigan 0 0 0 2009-2011 Mississippi 0 0 0 2009-2011 Montana

242

Coalbed Methane Reserves Acquisitions  

Gasoline and Diesel Fuel Update (EIA)

24 226 1,710 2009-2011 24 226 1,710 2009-2011 Federal Offshore U.S. 0 0 0 2009-2011 Pacific (California) 0 0 0 2009-2011 Louisiana & Alabama 0 0 0 2009-2011 Texas 0 0 0 2009-2011 Alaska 0 0 0 2009-2011 Lower 48 States 24 226 1,710 2009-2011 Alabama 0 151 219 2009-2011 Arkansas 22 0 0 2009-2011 California 0 0 0 2009-2011 Coastal Region Onshore 0 0 0 2009-2011 Los Angeles Basin Onshore 0 0 0 2009-2011 San Joaquin Basin Onshore 0 0 0 2009-2011 State Offshore 0 0 0 2009-2011 Colorado 0 0 1,021 2009-2011 Florida 0 0 0 2009-2011 Kansas 0 0 0 2009-2011 Kentucky 0 0 0 2009-2011 Louisiana 0 0 0 2009-2011 North 0 0 0 2009-2011 South Onshore 0 0 0 2009-2011 State Offshore 0 0 0 2009-2011 Michigan 0 0 0 2009-2011 Mississippi 0 0 0 2009-2011 Montana

243

Coalbed Methane Reserves Adjustments  

Gasoline and Diesel Fuel Update (EIA)

-14 784 -15 2009-2011 -14 784 -15 2009-2011 Federal Offshore U.S. 0 0 0 2009-2011 Pacific (California) 0 0 0 2009-2011 Louisiana & Alabama 0 0 0 2009-2011 Texas 0 0 0 2009-2011 Alaska 0 0 0 2009-2011 Lower 48 States -14 784 -15 2009-2011 Alabama 0 61 -45 2009-2011 Arkansas 0 1 0 2009-2011 California 0 0 0 2009-2011 Coastal Region Onshore 0 0 0 2009-2011 Los Angeles Basin Onshore 0 0 0 2009-2011 San Joaquin Basin Onshore 0 0 0 2009-2011 State Offshore 0 0 0 2009-2011 Colorado 0 106 73 2009-2011 Florida 0 0 0 2009-2011 Kansas -3 -22 -6 2009-2011 Kentucky 0 0 0 2009-2011 Louisiana 0 0 0 2009-2011 North 0 0 0 2009-2011 South Onshore 0 0 0 2009-2011 State Offshore 0 0 0 2009-2011 Michigan 0 0 0 2009-2011 Mississippi 0 0 0 2009-2011 Montana

244

Coalbed Methane Reserves Sales  

Gasoline and Diesel Fuel Update (EIA)

08 366 1,775 2009-2011 08 366 1,775 2009-2011 Federal Offshore U.S. 0 0 0 2009-2011 Pacific (California) 0 0 0 2009-2011 Louisiana & Alabama 0 0 0 2009-2011 Texas 0 0 0 2009-2011 Alaska 0 0 0 2009-2011 Lower 48 States 208 366 1,775 2009-2011 Alabama 2 266 104 2009-2011 Arkansas 31 0 0 2009-2011 California 0 0 0 2009-2011 Coastal Region Onshore 0 0 0 2009-2011 Los Angeles Basin Onshore 0 0 0 2009-2011 San Joaquin Basin Onshore 0 0 0 2009-2011 State Offshore 0 0 0 2009-2011 Colorado 0 0 1,034 2009-2011 Florida 0 0 0 2009-2011 Kansas 0 0 0 2009-2011 Kentucky 0 0 0 2009-2011 Louisiana 8 0 0 2009-2011 North 8 0 0 2009-2011 South Onshore 0 0 0 2009-2011 State Offshore 0 0 0 2009-2011 Michigan 0 0 0 2009-2011 Mississippi 0 0 0 2009-2011 Montana

245

Coalbed Methane Estimated Production  

Annual Energy Outlook 2012 (EIA)

2006 2007 2008 2009 2010 2011 View History U.S. 1,758 1,753 1,966 1,914 1,886 1,763 1989-2011 Federal Offshore U.S. 0 0 0 0 0 0 2005-2011 Pacific (California) 0 0 0 0 0 0 2005-2011...

246

Coalbed Methane Proved Reserves  

Annual Energy Outlook 2012 (EIA)

8,491 18,743 18,390 19,892 19,620 21,875 1989-2007 Alabama 1,283 1,665 1,900 1,773 2,068 2,127 1989-2007 Colorado 6,691 6,473 5,787 6,772 6,344 7,869 1989-2007 New Mexico 4,380...

247

Igneous intrusions and thermal evolution in the Raton Basin, CO-NM: contact metamorphism and coal-bed methane generation .  

E-Print Network (OSTI)

??Tertiary mafic dikes and sills intrude coal-bearing formations of the Raton Basin. This study investigates the role of intrusions in generating methane from coal. Coal… (more)

Cooper, Jennifer Rebecca

2006-01-01T23:59:59.000Z

248

First-of-a-Kind Sequestration Field Test Begins in West Virginia |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

First-of-a-Kind Sequestration Field Test Begins in West Virginia First-of-a-Kind Sequestration Field Test Begins in West Virginia First-of-a-Kind Sequestration Field Test Begins in West Virginia September 8, 2009 - 1:00pm Addthis Washington, DC - Injection of carbon dioxide (CO2) began today in a first-of-a-kind field trial of enhanced coalbed methane recovery with simultaneous CO2 sequestration in an unmineable coal seam. The ultimate goal of the U.S. Department of Energy-sponsored project is to help mitigate climate change by providing an effective and economic means to permanently store CO2 in unmineable coal seams. CONSOL Energy Inc., West Virginia University, and the National Energy Technology Laboratory (NETL) are collaborating in the $13 million field trial, located in Marshall County, W.Va. The site was chosen because of its

249

DOE Regional Partner Initiates CO2 Injection Study in Virginia | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Partner Initiates CO2 Injection Study in Virginia Partner Initiates CO2 Injection Study in Virginia DOE Regional Partner Initiates CO2 Injection Study in Virginia February 11, 2009 - 12:00pm Addthis Washington, D.C. -- A U.S. Department of Energy (DOE) team of regional partners has begun injecting carbon dioxide (CO2) into coal seams in the Central Appalachian Basin to determine the feasibility of CO2 storage in unmineable coal seams and the potential for enhanced coalbed methane recovery. The results of the study will be vital in assessing the potential of carbon storage in coal seams as a safe and permanent method to mitigate greenhouse gas emissions while enhancing production of natural gas. DOE's Southeast Regional Carbon Sequestration Partnership (SECARB) began injecting CO2 at the test site in Russell County, Virginia, in mid January.

250

The economic feasibility of enhanced coalbed methane recovery using CO2 sequestration in the San Juan Basin  

E-Print Network (OSTI)

Carbon dioxide emissions are considered a major source of increased atmospheric CO2 levels leading towards global warming. CO2 sequestration in coal bed reservoirs is one technique that can reduce the concentration of CO2 in the air. In addition, due to the chemical and physical properties of carbon dioxide, CO2 sequestration is a potential option for substantially enhancing coal bed methane recovery (ECBM). The San Juan Fruitland coal has the most prolific coal seams in the United States. This basin was studied to investigate the potential of CO2 sequestration and ECBM. Primary recovery of methane is controversial ranging between 20-60% based on reservoir properties in coal bed reservoirs15. Using CO2 sequestration as a secondary recovery technique can enhance coal bed methane recovery up to 30%. Within the San Juan Basin, permeability ranges from 1 md to 100 md. The Fairway region is characterized with higher ranges of permeability and lower pressures. On the western outskirts of the basin, there is a transition zone characterized with lower ranges of permeability and higher pressures. Since the permeability is lower in the transition zone, it is uncertain whether this area is suitable for CO2 sequestration and if it can deliver enhanced coal bed methane recovery. The purpose of this research is to determine the economic feasibility of sequestering CO2 to enhance coal bed methane production in the transition zone of the San Juan Basin Fruitland coal seams. The goal of this research is two- fold. First, to determine whether there is a potential to enhance coal bed methane recovery by using CO2 injection in the transition zone of the San Juan Basin. The second goal is to identify the optimal design strategy and utilize a sensitivity analysis to determine whether CO2 sequestration/ECBM is economically feasible. Based on the results of my research, I found an optimal design strategy for four 160- acre spacing wells. With a high rate injection of CO2 for 10 years, the percentage of recovery can increase by 30% for methane production and it stores 10.5 BCF of CO2. The economic value of this project is $17.56 M and $19.07 M if carbon credits were granted at a price of $5.00/ton. If CO2 was not injected, the project would only give $15.55 M.

Agrawal, Angeni

2003-05-01T23:59:59.000Z

251

Hydraulic fracturing and wellbore completion of coalbed methane wells in the Powder River Basin, Wyoming: Implications for water and gas production  

SciTech Connect

Excessive water production (more than 7000 bbl/month per well) from many coalbed methane (CBM) wells in the Powder River Basin of Wyoming is also associated with significant delays in the time it takes for gas production to begin. Analysis of about 550 water-enhancement activities carried out during well completion demonstrates that such activities result in hydraulic fracturing of the coal. Water-enhancement activities, consists of pumping 60 bbl of water/min into the coal seam during approximately 15 min. This is done to clean the well-bore and to enhance CBM production. Hydraulic fracturing is of concern because vertical hydraulic fracture growth could extend into adjacent formations and potentially result in excess CBM water production and inefficient depressurization of coals. Analysis of the pressure-time records of the water-enhancement tests enabled us to determine the magnitude of the least principal stress (S{sub 3}) in the coal seams of 372 wells. These data reveal that because S{sub 3} switches between the minimum horizontal stress and the overburden at different locations, both vertical and horizontal hydraulic fracture growth is inferred to occur in the basin, depending on the exact location and coal layer. Relatively low water production is observed for wells with inferred horizontal fractures, whereas all of the wells associated with excessive water production are characterized by inferred vertical hydraulic fractures. The reason wells with exceptionally high water production show delays in gas production appears to be inefficient depressurization of the coal caused by water production from the formations outside the coal. To minimize CBM water production, we recommend that in areas of known vertical fracture propagation, the injection rate during the water-enhancement tests should be reduced to prevent the propagation of induced fractures into adjacent water-bearing formations.

Colmenares, L.B.; Zoback, M.D. [Stanford University, Stanford, CA (United States). Dept. of Geophysics

2007-01-15T23:59:59.000Z

252

Reuse of Produced Water from CO2 Enhanced Oil Recovery, Coal-Bed Methane, and Mine Pool Water by Coal-Based Power Plants  

Science Conference Proceedings (OSTI)

Power generation in the Illinois Basin is expected to increase by as much as 30% by the year 2030, and this would increase the cooling water consumption in the region by approximately 40%. This project investigated the potential use of produced water from CO{sub 2} enhanced oil recovery (CO{sub 2}-EOR) operations; coal-bed methane (CBM) recovery; and active and abandoned underground coal mines for power plant cooling in the Illinois Basin. Specific objectives of this project were: (1) to characterize the quantity, quality, and geographic distribution of produced water in the Illinois Basin; (2) to evaluate treatment options so that produced water may be used beneficially at power plants; and (3) to perform a techno-economic analysis of the treatment and transportation of produced water to thermoelectric power plants in the Illinois Basin. Current produced water availability within the basin is not large, but potential flow rates up to 257 million liters per day (68 million gallons per day (MGD)) are possible if CO{sub 2}-enhanced oil recovery and coal bed methane recovery are implemented on a large scale. Produced water samples taken during the project tend to have dissolved solids concentrations between 10 and 100 g/L, and water from coal beds tends to have lower TDS values than water from oil fields. Current pretreatment and desalination technologies including filtration, adsorption, reverse osmosis (RO), and distillation can be used to treat produced water to a high quality level, with estimated costs ranging from $2.6 to $10.5 per cubic meter ($10 to $40 per 1000 gallons). Because of the distances between produced water sources and power plants, transportation costs tend to be greater than treatment costs. An optimization algorithm was developed to determine the lowest cost pipe network connecting sources and sinks. Total water costs increased with flow rate up to 26 million liters per day (7 MGD), and the range was from $4 to $16 per cubic meter ($15 to $60 per 1000 gallons), with treatment costs accounting for 13 â?? 23% of the overall cost. Results from this project suggest that produced water is a potential large source of cooling water, but treatment and transportation costs for this water are large.

Chad Knutson; Seyed Dastgheib; Yaning Yang; Ali Ashraf; Cole Duckworth; Priscilla Sinata; Ivan Sugiyono; Mark Shannon; Charles Werth

2012-04-30T23:59:59.000Z

253

Coalbed Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Publications Environmental Science Division Argonne National Laboratory Observations on a Montana Water Quality Proposal argonne_comments.pdf 585 KB Comments from James A. Slutz Deputy Assistant Secretary Oil and Natural Gas To the Secretary, Board of Environmental Review Montana Department of Environmental Quality BER_Comments_letter.pdf 308 KB ALL Consulting Coalbed Methane Primer: New Source of Natural Gas–Environmental Implications Background and Development in the Rocky Mountain West CBMPrimerFinal.pdf 18,223 KB ALL Consulting Montana Board of Oil & Gas Conservation Handbook on Best Management Practices and Mitigation Strategies for Coal Bed Methane in the Montana Portion of the Powder River Basin April 2002 CBM.pdf 107,140 KB ALL Consulting Montana Board of Oil & Gas Conservation

254

Gulf of Mexico Federal Offshore - Louisiana and Alabama Coalbed...  

Annual Energy Outlook 2012 (EIA)

Gulf of Mexico Federal Offshore - Louisiana and Alabama Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

255

Subsurface Drip Irrigation As a Methold to Beneficiallly Use Coalbed Methane Produced Water: Initial Impacts to Groundwater, Soil Water, and Surface Water  

Science Conference Proceedings (OSTI)

Coalbed methane (CBM) currently accounts for >8% of US natural gas production. Compared to traditional sources, CBM co-produces large volumes of water. Of particular interest is CBM development in the Powder River Basin of Wyoming and Montana, the 2nd largest CBM production field in the US, where CBM produced waters exhibit low to moderate TDS and relatively high sodium-adsorption ratio (SAR) that could potentially impact the surface environment. Subsurface drip irrigation (SDI) is an emerging technology for beneficial use of pre-treated CBM waters (injectate) which are emitted into the root zone of an agricultural field to aid in irrigation. The method is designed to minimize environmental impacts by storing potentially detrimental salts in the vadose zone. Research objectives include tracking the transport and fate of the water and salts from the injected CBM produced waters at an SDI site on an alluvial terrace, adjacent to the Powder River, Johnson County, Wyoming. This research utilizes soil science, geochemical, and geophysical methods. Initial results from pre-SDI data collection and the first 6-months of post-SDI operation will be presented. Substantial ranges in conductivity (2732-9830 {micro}S/cm) and dominant cation chemistry (Ca-SO{sub 4} to Na-SO{sub 4}) have been identified in pre-SDI analyses of groundwater samples from the site. Ratios of average composition of local ground water to injectate demonstrate that the injectate contains lower concentrations of most constituents except for Cr, Zn, and Tl (all below national water quality standards) but exhibits a higher SAR. Composition of soil water varies markedly with depth and between sites, suggesting large impacts from local controls, including ion exchange and equilibrium with gypsum and carbonates. Changes in chemical composition and specific conductivity along surface water transects adjacent to the site are minimal, suggesting that discharge to the Powder River from groundwater underlying the SDI fields is negligible. Findings from this project provide a critical understanding of water and salt dynamics associated with SDI systems using CBM produced water. The information obtained can be used to improve SDI and other CBM produced water use/disposal technologies in order to minimize adverse impacts.

Engle, M.A.: Bern, C: Healy, R: Sams, J: Zupancic, J.: Schroeder, K.

2009-10-18T23:59:59.000Z

256

Reuse of Produced Water from CO2 Enhanced Oil Recovery, Coal-Bed Methane, and Mine Pool Water by Coal-Based Power Plants: ProMIS/Project No.: DE-NT0005343  

NLE Websites -- All DOE Office Websites (Extended Search)

seyed Dastgheib seyed Dastgheib Principal Investigator Illinois State Geological Survey 615 E. Peabody Drive Champaign, Illinois 61820-6235 217-265-6274 dastgheib@isgs.uius.edu Reuse of PRoduced WateR fRom co 2 enhanced oil RecoveRy, coal-Bed methane, and mine Pool WateR By coal-Based PoWeR Plants: PRomis /PRoject no. : de-nt0005343 Background Coal-fired power plants are the second largest users of freshwater in the United States. In Illinois, the thermoelectric power sector accounts for approximately 84 percent of the estimated 14 billion gallons per day of freshwater withdrawals and one-third of the state's 1 billion gallons per day of freshwater consumption. Illinois electric power generation capacity is projected to expand 30 percent by 2030, increasing water consumption by

257

Coalbed Methane New Field Discoveries  

Gasoline and Diesel Fuel Update (EIA)

0 0 0 2009-2011 0 0 0 2009-2011 Federal Offshore U.S. 0 0 0 2009-2011 Pacific (California) 0 0 0 2009-2011 Louisiana & Alabama 0 0 0 2009-2011 Texas 0 0 0 2009-2011 Alaska 0 0 0 2009-2011 Lower 48 States 0 0 0 2009-2011 Alabama 0 0 0 2009-2011 Arkansas 0 0 0 2009-2011 California 0 0 0 2009-2011 Coastal Region Onshore 0 0 0 2009-2011 Los Angeles Basin Onshore 0 0 0 2009-2011 San Joaquin Basin Onshore 0 0 0 2009-2011 State Offshore 0 0 0 2009-2011 Colorado 0 0 0 2009-2011 Florida 0 0 0 2009-2011 Kansas 0 0 0 2009-2011 Kentucky 0 0 0 2009-2011 Louisiana 0 0 0 2009-2011 North 0 0 0 2009-2011 South Onshore 0 0 0 2009-2011 State Offshore 0 0 0 2009-2011 Michigan 0 0 0 2009-2011 Mississippi 0 0 0 2009-2011 Montana 0 0 0 2009-2011 New Mexico

258

Coalbed Methane New Field Discoveries  

Gasoline and Diesel Fuel Update (EIA)

0 0 0 2009-2011 0 0 0 2009-2011 Federal Offshore U.S. 0 0 0 2009-2011 Pacific (California) 0 0 0 2009-2011 Louisiana & Alabama 0 0 0 2009-2011 Texas 0 0 0 2009-2011 Alaska 0 0 0 2009-2011 Lower 48 States 0 0 0 2009-2011 Alabama 0 0 0 2009-2011 Arkansas 0 0 0 2009-2011 California 0 0 0 2009-2011 Coastal Region Onshore 0 0 0 2009-2011 Los Angeles Basin Onshore 0 0 0 2009-2011 San Joaquin Basin Onshore 0 0 0 2009-2011 State Offshore 0 0 0 2009-2011 Colorado 0 0 0 2009-2011 Florida 0 0 0 2009-2011 Kansas 0 0 0 2009-2011 Kentucky 0 0 0 2009-2011 Louisiana 0 0 0 2009-2011 North 0 0 0 2009-2011 South Onshore 0 0 0 2009-2011 State Offshore 0 0 0 2009-2011 Michigan 0 0 0 2009-2011 Mississippi 0 0 0 2009-2011 Montana 0 0 0 2009-2011 New Mexico

259

Coalbed Methane Reserves Revision Increases  

Gasoline and Diesel Fuel Update (EIA)

1,563 2,589 2,071 2009-2011 1,563 2,589 2,071 2009-2011 Federal Offshore U.S. 0 0 0 2009-2011 Pacific (California) 0 0 0 2009-2011 Louisiana & Alabama 0 0 0 2009-2011 Texas 0 0 0 2009-2011 Alaska 0 0 0 2009-2011 Lower 48 States 1,563 2,589 2,071 2009-2011 Alabama 17 134 23 2009-2011 Arkansas 3 9 0 2009-2011 California 0 0 0 2009-2011 Coastal Region Onshore 0 0 0 2009-2011 Los Angeles Basin Onshore 0 0 0 2009-2011 San Joaquin Basin Onshore 0 0 0 2009-2011 State Offshore 0 0 0 2009-2011 Colorado 126 937 698 2009-2011 Florida 0 0 0 2009-2011 Kansas 8 157 24 2009-2011 Kentucky 0 0 0 2009-2011 Louisiana 0 0 0 2009-2011 North 0 0 0 2009-2011 South Onshore 0 0 0 2009-2011 State Offshore 0 0 0 2009-2011 Michigan 0 0 0 2009-2011 Mississippi 0 0 0 2009-2011

260

Coalbed Methane Reserves Revision Decreases  

Gasoline and Diesel Fuel Update (EIA)

2,486 2,914 1,668 2009-2011 2,486 2,914 1,668 2009-2011 Federal Offshore U.S. 0 0 0 2009-2011 Pacific (California) 0 0 0 2009-2011 Louisiana & Alabama 0 0 0 2009-2011 Texas 0 0 0 2009-2011 Alaska 0 0 0 2009-2011 Lower 48 States 2,486 2,914 1,668 2009-2011 Alabama 316 51 86 2009-2011 Arkansas 0 1 3 2009-2011 California 0 0 0 2009-2011 Coastal Region Onshore 0 0 0 2009-2011 Los Angeles Basin Onshore 0 0 0 2009-2011 San Joaquin Basin Onshore 0 0 0 2009-2011 State Offshore 0 0 0 2009-2011 Colorado 566 1,557 367 2009-2011 Florida 0 0 0 2009-2011 Kansas 107 0 14 2009-2011 Kentucky 0 0 0 2009-2011 Louisiana 0 0 0 2009-2011 North 0 0 0 2009-2011 South Onshore 0 0 0 2009-2011 State Offshore 0 0 0 2009-2011 Michigan 0 0 0 2009-2011 Mississippi 0 0 0 2009-2011

Note: This page contains sample records for the topic "virginia coalbed methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Coalbed Methane (CBM) is natural  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to 2 trillion cubic feet of gas per year ...a very large return on a relatively small R&D investment." 1 tion | Annual Energy Outlook 2012 Early Release Overview U.S. economy,...

262

2005 international coalbed methane symposium  

Science Conference Proceedings (OSTI)

Papers are under the following topics: well completions; diversity; geology/resource assessment; reservoirs; and carbon dioxide sequestration.

NONE

2005-07-01T23:59:59.000Z

263

File:EIA-coalbed-gas.pdf | Open Energy Information  

Open Energy Info (EERE)

coalbed-gas.pdf coalbed-gas.pdf Jump to: navigation, search File File history File usage Coalbed Methane Fields, Lower 48 States Size of this preview: 776 × 600 pixels. Full resolution ‎(1,650 × 1,275 pixels, file size: 2.28 MB, MIME type: application/pdf) Description Coalbed Methane Fields, Lower 48 States Sources Energy Information Administration Related Technologies Natural Gas Creation Date 2009-04-08 Extent National Countries United States UN Region Northern America File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 17:53, 20 December 2010 Thumbnail for version as of 17:53, 20 December 2010 1,650 × 1,275 (2.28 MB) MapBot (Talk | contribs) Automated bot upload You cannot overwrite this file.

264

SEQUESTERING CARBON DIOXIDE IN COALBEDS  

SciTech Connect

The authors' long term goal is to develop accurate prediction methods for describing the adsorption behavior of gas mixtures on solid adsorbents over complete ranges of temperature, pressure and adsorbent types. The major objectives of the project are to: (1) measure the adsorption behavior of pure CO{sub 2}, methane, nitrogen and their binary and ternary mixtures on several selected coals having different properties at temperatures and pressures applicable to the particular coal being studied, (2) generalize the adsorption results in terms of appropriate properties of the coals, to facilitate estimation of adsorption behavior for coals other than those studied experimentally, (3) delineate the sensitivity of the competitive adsorption of CO{sub 2}, methane and nitrogen to the specific characteristics of the coal on which they are adsorbed; establish the major differences (if any) in the nature of this competitive adsorption on different coals, and (4) test and/or develop theoretically-based mathematical models to represent accurately the adsorption behavior of mixtures of the type for which measurements are made. The specific accomplishments of this project during this reporting period are summarized below in three broad categories outlining experimentation, model development, and coal characterization. (1) Experimental Work: Our adsorption apparatus was reassembled, and all instruments were tested and calibrated. Having confirmed the viability of the experimental apparatus and procedures used, adsorption isotherms for pure methane, carbon dioxide and nitrogen on wet Fruitland coal were measured at 319.3 K (115 F) and pressures to 12.4 MPa (1800 psia). These measurements showed good agreement with our previous data and yielded an expected uncertainty of about 2%. Preparations are underway to measure adsorption isotherms for pure methane, carbon dioxide and nitrogen on two other coals. (2) Model Development: The experimental data were used to evaluate the predictive capabilities of various adsorption models, including the Langmuir/loading ratio correlation, two-dimensional cubic equations of state, and the local density model. In general, all models performed well for Type I adsorption exhibited by methane, nitrogen, and carbon dioxide up to 8.3 MPa (average deviations within 2%). However, for pressures higher than 8.3 MPa (1200 psia), carbon dioxide produced multilayer adsorption behavior similar to Type IV adsorption. Our results to date indicate that the SLD model may be a suitable choice for modeling multilayer coalbed gas adsorption. However, model improvements are required to (a) account for coal heterogeneity and structure complexity, and (b) provide for more accurate density predictions. (3) Coal Characterization: We have identified several well-characterized coals for use in our adsorption studies. The criteria for coal selection has been guided by the need for coals that (a) span the spectrum of properties encountered in coalbed methane production (such as variation in rank), and (b) originate from coalbed methane recovery sites (e.g., San Juan Basin, Black Warrior Basin, etc.). At Pennsylvania State University, we have completed calibrating our instruments using a well-characterized activated carbon. In addition, we have conducted CO{sub 2} and methane uptakes on four samples, including (a) a widely used commercial activated carbon, BPL from Calgon Carbon Corp.; (b) an Illinois No.6 bituminous coal from the Argonne Premium Coal sample bank; (c) a Fruitland Intermediate coal sample; (d) a dry Fruitland sample. The results are as expected, except for a greater sensitivity to the outgassing temperature. ''Standard'' outgassing conditions (e.g., 383.2 K, overnight), which are often used, may not be appropriate for gas storage in coalbeds. Conditions that are more representative of in-situ coal (approximately 313.2 K) may be much more appropriate. In addition, our results highlight the importance of assessing the degree of approach to adsorption equilibrium.

K.A.M. Gasem; R.L. Robinson, Jr.; L.R. Radovic

2001-06-15T23:59:59.000Z

265

Study on the Principle and Technology of Coal and Methane Simultaneous Extraction Based on the Mining Fissure Elliptic Parabolic Zone  

Science Conference Proceedings (OSTI)

Coal and coal-bed methane are all valuable energy resource, if they can be extracted simultaneously and safely, the triple purposes of mine safety production, new energy resource supply and environment protection can be fulfilled. The coal-bed methane ... Keywords: Mining induced fissure, Elliptic Parabolic Zone, Relieved methane, Coal, methane simultaneous extraction

Lin Haifei; Li Shugang; Cheng Lianhua; Pan Hongyu

2011-02-01T23:59:59.000Z

266

L-FVM for Unsteady Seepage Flow in Low Permeability Coalbed  

SciTech Connect

The significant feature of coalbed in China is the low permeability. A new unsteady seepage flow model isdeveloped for the low permeability coalbed by considering the startup pressure gradient and methane desorption effect.Since the complexity of the problem, a new method which we call it ''L-FVM'' is developed, based on comparing the normal numerical calculation methods and comprehension research on FVM. The results show that L-FVM has the same precission but higher calculating velocity than normal FVM. This result is very important for monitoring the area pressure drawdown in coalbed methane engineering

Liu, Y. W.; Su, Z. L. [Key Laboratory of Environment Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China); Niu, C. C.; Cai, Q.; Li, H. S. [Beijing Technology and Business University, Beijing 100048 (China); Zhao, P. H.; Zhou, X. H.; Lu, Q. [Coalbed Methane Ltd. Company, Petrochina, Beijing 100028 (China)

2011-09-28T23:59:59.000Z

267

Coalbed Methane Production - Energy Information Administration  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: *Eastern States ...

268

Louisiana Coalbed Methane Proved Reserves, Reserves Changes,...  

Gasoline and Diesel Fuel Update (EIA)

1 7 9 0 0 0 2005-2011 Adjustments 0 0 0 2009-2011 Revision Increases 0 0 0 2009-2011 Revision Decreases 0 0 0 2009-2011 Sales 8 0 0 2009-2011 Acquisitions 0 0 0 2009-2011...

269

Colorado Coalbed Methane Production (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 12: 1990's: 26: 48: 82: 125: 179: 226: 274: 312: 401: 432: 2000's: 451: 490: 520 ...

270

Miscellaneous Coalbed Methane Proved Reserves, Reserves Changes...  

Annual Energy Outlook 2012 (EIA)

28 29 41 17 16 17 2005-2011 Adjustments 1 2 3 2009-2011 Revision Increases 0 0 0 2009-2011 Revision Decreases 24 2 0 2009-2011 Sales 0 0 1 2009-2011 Acquisitions 0 0 0 2009-2011...

271

Utah Coalbed Methane Production (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 2000's: 74: 83: 103: 97: 82: 75: 66: 73: 71: 71: 2010's: 66: 60-

272

Ohio Coalbed Methane Production (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 2000's: 0: 0: 0: 0: 0: 2010's: 0-

273

Pennsylvania Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

50 108 102 131 129 124 2005-2011 Adjustments 0 -1 1 2009-2011 Revision Increases 29 2 1 2009-2011 Revision Decreases 1 0 2 2009-2011 Sales 17 0 1 2009-2011 Acquisitions 0 0 0...

274

Coalbed Methane Proved Reserves - Energy Information Administration  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: *Eastern States ...

275

Louisiana (with State Offshore) Coalbed Methane Production ...  

U.S. Energy Information Administration (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 2000's: 0: 0: 0: 1: 1: 2010's: 0: 0-

276

California Coalbed Methane Proved Reserves, Reserves Changes...  

Annual Energy Outlook 2012 (EIA)

0 0 0 0 0 0 2005-2011 Adjustments 0 0 0 2009-2011 Revision Increases 0 0 0 2009-2011 Revision Decreases 0 0 0 2009-2011 Sales 0 0 0 2009-2011 Acquisitions 0 0 0 2009-2011...

277

SEQUESTERING CARBON DIOXIDE IN COALBEDS  

SciTech Connect

The authors' long-term goal is to develop accurate prediction methods for describing the adsorption behavior of gas mixtures on solid adsorbents over complete ranges of temperature, pressure and adsorbent types. The originally-stated, major objectives of the current project are to (1) measure the adsorption behavior of pure CO{sub 2}, methane, nitrogen, and their binary and ternary mixtures on several selected coals having different properties at temperatures and pressures applicable to the particular coals being studied, (2) generalize the adsorption results in terms of appropriate properties of the coals to facilitate estimation of adsorption behavior for coals other than those studied experimentally, (3) delineate the sensitivity of the competitive adsorption of CO{sub 2}, methane and nitrogen to the specific characteristics of the coal on which they are adsorbed; establish the major differences (if any) in the nature of this competitive adsorption on different coals, and (4) test and/or develop theoretically-based mathematical models to represent accurately the adsorption behavior of mixtures of the type for which measurements are made. As this project has developed, an important additional objective has been added to the above original list. Namely, we have been encouraged to interact with industry and/or governmental agencies to utilize our expertise to advance the state of the art in coalbed adsorption science and technology. As a result of this additional objective, we have participated with the Department of Energy and industry in the measurement and analysis of adsorption behavior as part of two distinct investigations. These include (a) Advanced Resources International (ARI) DOE Project DE-FC26-00NT40924, ''Adsorption of Pure Methane, Nitrogen, and Carbon Dioxide and Their Mixtures on Wet Tiffany Coal'', and (b) the DOE-NETL Project, ''Round Robin: CO{sub 2} Adsorption on Selected Coals''. These activities, contributing directly to the DOE projects listed above, have also provided direct synergism with the original goals of our work. Specific accomplishments of this project during the current reporting period are summarized in three broad categories outlining experimentation, model development, and coal characterization.

K.A.M. Gasem; R.L. Robinson, Jr.; L.R. Radovic

2003-03-10T23:59:59.000Z

278

SEQUESTERING CARBON DIOXIDE IN COALBEDS  

SciTech Connect

The authors' long-term goal is to develop accurate prediction methods for describing the adsorption behavior of gas mixtures on solid adsorbents over complete ranges of temperature, pressure, and adsorbent types. The originally-stated, major objectives of the current project are to: (1) measure the adsorption behavior of pure CO{sub 2}, methane, nitrogen, and their binary and ternary mixtures on several selected coals having different properties at temperatures and pressures applicable to the particular coals being studied, (2) generalize the adsorption results in terms of appropriate properties of the coals to facilitate estimation of adsorption behavior for coals other than those studied experimentally, (3) delineate the sensitivity of the competitive adsorption of CO{sub 2}, methane, and nitrogen to the specific characteristics of the coal on which they are adsorbed; establish the major differences (if any) in the nature of this competitive adsorption on different coals, and (4) test and/or develop theoretically-based mathematical models to represent accurately the adsorption behavior of mixtures of the type for which measurements are made. As this project developed, an important additional objective was added to the above original list. Namely, we were encouraged to interact with industry and/or governmental agencies to utilize our expertise to advance the state of the art in coalbed adsorption science and technology. As a result of this additional objective, we participated with the Department of Energy and industry in the measurement and analysis of adsorption behavior as part of two distinct investigations. These include (a) Advanced Resources International (ARI) DOE Project DE-FC26-00NT40924, ''Adsorption of Pure Methane, Nitrogen, and Carbon Dioxide and Their Mixtures on Wet Tiffany Coal'', and (b) the DOE-NETL Project, ''Round Robin: CO{sub 2} Adsorption on Selected Coals''. These activities, contributing directly to the DOE projects listed above, also provided direct synergism with the original goals of our work. Specific accomplishments of this project are summarized below in three broad categories: experimentation, model development, and coal characterization.

K.A.M. Gasem; R.L. Robinson, Jr.; J.E. Fitzgerald; Z. Pan; M. Sudibandriyo

2003-04-30T23:59:59.000Z

279

Methane drainage with horizontal boreholes in advance of longwall mining: an analysis. Final report  

SciTech Connect

The US Department of Energy (DOE) Morgantown Energy Technology Center has implemented a comprehensive program to demonstrate the technical and economic viability of coalbed methane as an energy resource. The program is directed toward solution of technical and institutional problems impeding the recovery and use of large quantities of methane contained in the nation's minable and unminable coalbeds. Conducted in direct support of the DOE Methane Recovery from Coalbeds Project, this study analyzes the economic aspects of a horizontal borehole methane recovery system integrated as part of a longwall mine operation. It establishes relationships between methane selling price and annual mine production, methane production rate, and the methane drainage system capital investment. Results are encouraging, indicating that an annual coal production increase of approximately eight percent would offset all associated drainage costs over the range of methane production rates and capital investments considered.

Gabello, D.P.; Felts, L.L.; Hayoz, F.P.

1981-05-01T23:59:59.000Z

280

Virginia Resources Authority Act (Virginia)  

Energy.gov (U.S. Department of Energy (DOE))

The Virginia Resources Authority provides financing options to support community investment in a number of areas, including wastewater, flood prevention and dam safety, solid waste, water, land...

Note: This page contains sample records for the topic "virginia coalbed methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Virginia Coalfield Economic Development Authority (Virginia) | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Virginia Coalfield Economic Development Authority (Virginia) Virginia Coalfield Economic Development Authority (Virginia) Virginia Coalfield Economic Development Authority (Virginia) < Back Eligibility Commercial Construction Industrial Program Info Start Date 1990 State Virginia Program Type Industry Recruitment/Support Loan Program Public Benefits Fund Provider Virginia Coalfield Economic Development Authority The Virginia Coalfield Economic Development Authority (VACEDA) was created in 1988 to encourage economic development in the western section of the state. The Authority administers incentive and financing programs designed to encourage new job creation and economic diversification, specifically in the electronic information technology, energy, education, and emerging technology sectors. VCEDA provides financial support for fixed assets,

282

Assessment of environmental health and safety issues associated with the commercialization of unconventional gas recovery: methane from coal seams  

Science Conference Proceedings (OSTI)

Potential public health and safety problems and the potential environmental impacts from the recovery of gas from coalbeds are identified and examined. The technology of methane recovery is described and economic and legal barriers to production are discussed. (ACR)

Ethridge, L.J.; Cowan, C.E.; Riedel, E.F.

1980-07-01T23:59:59.000Z

283

Virginia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and regulation of public service companies. July 12, 2013 Permit by Rule for Small Renewable Energy Projects (Virginia) In 2009, the Virginia General Assembly enacted...

284

Technology Zones (Virginia)  

Energy.gov (U.S. Department of Energy (DOE))

Virginia’s 26 designated Technology Zones offer tax relief in the form of abatements, credits, deductions, deferrals, exemptions, or rebates. Local governments may designate technology zones to...

285

West Virginia Direct Loan Program (West Virginia)  

Energy.gov (U.S. Department of Energy (DOE))

The West Virginia Direct Loan Program, provides up to 45 percent in financing fixed assets through low-interest, direct loans to businesses expanding or locating in West Virginia. Proceeds from the...

286

Virginia State Regulations  

NLE Websites -- All DOE Office Websites (Extended Search)

Virginia Virginia State Regulations: Virginia State of Virginia The Division of Gas and Oil in the Virginia Department of Mines, Minerals and Energy (DMME) regulates the effects of gas and oil operations both on and below the surface. The Virginia Gas and Oil Board is to foster, encourage, and promote the safe and efficient exploration for and development, production, and utilization of gas and oil resources. Otherwise, three regulatory citizen boards are responsible for adopting Virginia 's environmental regulations. The Virginia Department of Environmental Quality (DEQ) staff administers the regulations as approved by the boards. Finally, the U.S. Environmental Protection Agency (EPA) Region 3, through its Water Protection Division, administers Class II underground injection control (UIC) programs in Virginia in direct implementation.

287

West Virginia Venture Capital (West Virginia)  

Energy.gov (U.S. Department of Energy (DOE))

The West Virginia Venture Capital provides investment funds to eligible businesses stimulating economic growth and providing or retaining jobs within the state through qualified venture capital...

288

Coalbed Methane Proved Reserves as of Dec. 31  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Proved Reserves as of Dec. 31 Adjustments Revision Increases Revision Decreases Sales Acquisitions Extensions New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Period: Data Series: Proved Reserves as of Dec. 31 Adjustments Revision Increases Revision Decreases Sales Acquisitions Extensions New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2006 2007 2008 2009 2010 2011 View History U.S. 19,620 21,874 20,798 18,578 17,508 16,817 1989-2011 Federal Offshore U.S. 0 0 0 0 0 0 2005-2011 Pacific (California) 0 0 0 0 0 0 2005-2011 Louisiana & Alabama 0 0 0 0 0 0 2005-2011 Texas 0 0 0 0 0 0 2005-2011 Alaska 0 0 0 0 0 0 2005-2011 Lower 48 States 19,620 21,874 20,798 18,578 17,508 16,817 2005-2011

289

Federal Offshore U.S. Coalbed Methane Proved Reserves, Reserves ...  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Miscellaneous States ...

290

,"U.S. Coalbed Methane Production (Billion Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S....

291

POWDER RIVER BASIN COALBED METHANE DEVELOPMENT AND PRODUCED WATER...  

NLE Websites -- All DOE Office Websites (Extended Search)

Recoverable PRB CBM Resources, by Partition . . 3-3 3.4 Estimating Gas and Water Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-8 4.0 COSTS OF...

292

TX, RRC District 10 Coalbed Methane Proved Reserves, Reserves ...  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Miscellaneous States ...

293

Alaska Coalbed Methane Proved Reserves, Reserves Changes, and...  

Annual Energy Outlook 2012 (EIA)

0 0 0 0 0 0 2005-2011 Adjustments 0 0 0 2009-2011 Revision Increases 0 0 0 2009-2011 Revision Decreases 0 0 0 2009-2011 Sales 0 0 0 2009-2011 Acquisitions 0 0 0 2009-2011...

294

Arkansas Coalbed Methane Proved Reserves, Reserves Changes, and...  

U.S. Energy Information Administration (EIA) Indexed Site

34 31 31 22 28 21 2005-2011 Adjustments 0 1 0 2009-2011 Revision Increases 3 9 0 2009-2011 Revision Decreases 0 1 3 2009-2011 Sales 31 0 0 2009-2011 Acquisitions 22 0 0 2009-2011...

295

Utah Coalbed Methane Proved Reserves, Reserves Changes, and Production  

Gasoline and Diesel Fuel Update (EIA)

750 922 893 725 718 679 2000-2011 Adjustments 0 8 9 2009-2011 Revision Increases 9 77 46 2009-2011 Revision Decreases 110 30 31 2009-2011 Sales 0 0 130 2009-2011 Acquisitions 0 0...

296

NM, West Coalbed Methane Proved Reserves, Reserves Changes, and...  

Annual Energy Outlook 2012 (EIA)

4,572 3,780 3,461 3,172 3,009 2,851 2005-2011 Adjustments -9 257 -167 2009-2011 Revision Increases 443 490 551 2009-2011 Revision Decreases 323 565 277 2009-2011 Sales 33 12 221...

297

North Louisiana Coalbed Methane Proved Reserves, Reserves Changes...  

Annual Energy Outlook 2012 (EIA)

1 7 9 0 0 0 2005-2011 Adjustments 0 0 0 2009-2011 Revision Increases 0 0 0 2009-2011 Revision Decreases 0 0 0 2009-2011 Sales 8 0 0 2009-2011 Acquisitions 0 0 0 2009-2011...

298

Wyoming Coalbed Methane Proved Reserves, Reserves Changes, and ...  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Miscellaneous States ...

299

Montana Coalbed Methane Proved Reserves, Reserves Changes, and...  

Gasoline and Diesel Fuel Update (EIA)

77 66 75 37 64 25 2005-2011 Adjustments 0 11 -30 2009-2011 Revision Increases 0 23 0 2009-2011 Revision Decreases 29 0 3 2009-2011 Sales 0 0 0 2009-2011 Acquisitions 0 0 0...

300

Colorado Coalbed Methane Proved Reserves, Reserves Changes, and...  

Gasoline and Diesel Fuel Update (EIA)

6,344 7,869 8,238 7,348 6,485 6,580 1989-2011 Adjustments 0 106 73 2009-2011 Revision Increases 126 937 698 2009-2011 Revision Decreases 566 1,557 367 2009-2011 Sales 0 0 1,034...

Note: This page contains sample records for the topic "virginia coalbed methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Kansas Coalbed Methane Proved Reserves, Reserves Changes, and...  

U.S. Energy Information Administration (EIA) Indexed Site

234 340 301 163 258 228 2005-2011 Adjustments -3 -22 -6 2009-2011 Revision Increases 8 157 24 2009-2011 Revision Decreases 107 0 14 2009-2011 Sales 0 0 0 2009-2011 Acquisitions 0 0...

302

Ohio Coalbed Methane Proved Reserves, Reserves Changes, and Production  

U.S. Energy Information Administration (EIA) Indexed Site

5 2006 2007 2008 2009 2010 View History Proved Reserves as of Dec. 31 0 1 1 1 0 0 2005-2010 Adjustments 0 0 2009-2010 Revision Increases 0 0 2009-2010 Revision Decreases 1 0...

303

Alabama Coalbed Methane Proved Reserves, Reserves Changes, and...  

Annual Energy Outlook 2012 (EIA)

2,068 2,126 1,727 1,342 1,298 1,210 1989-2011 Adjustments 0 61 -45 2009-2011 Revision Increases 17 134 23 2009-2011 Revision Decreases 316 51 86 2009-2011 Sales 2 266 104 2009-2011...

304

New York Coalbed Methane Proved Reserves, Reserves Changes, and...  

Gasoline and Diesel Fuel Update (EIA)

0 0 0 0 0 0 2005-2011 Adjustments 0 0 0 2009-2011 Revision Increases 0 0 0 2009-2011 Revision Decreases 0 0 0 2009-2011 Sales 0 0 0 2009-2011 Acquisitions 0 0 0 2009-2011...

305

Texas Coalbed Methane Proved Reserves, Reserves Changes, and...  

Gasoline and Diesel Fuel Update (EIA)

0 0 0 0 0 0 2005-2011 Adjustments 0 0 0 2009-2011 Revision Increases 0 0 0 2009-2011 Revision Decreases 0 0 0 2009-2011 Sales 0 0 0 2009-2011 Acquisitions 0 0 0 2009-2011...

306

New Mexico Coalbed Methane Proved Reserves, Reserves Changes...  

Annual Energy Outlook 2012 (EIA)

4,894 4,169 3,991 3,646 3,532 3,358 1989-2011 Adjustments -9 261 -170 2009-2011 Revision Increases 443 562 562 2009-2011 Revision Decreases 353 565 279 2009-2011 Sales 33 12 221...

307

Oklahoma Coalbed Methane Proved Reserves, Reserves Changes, and...  

U.S. Energy Information Administration (EIA) Indexed Site

684 1,265 511 338 325 274 2005-2011 Adjustments 1 27 27 2009-2011 Revision Increases 81 82 91 2009-2011 Revision Decreases 216 84 98 2009-2011 Sales 6 6 40 2009-2011 Acquisitions 0...

308

Kentucky Coalbed Methane Proved Reserves, Reserves Changes, and...  

Gasoline and Diesel Fuel Update (EIA)

0 0 0 0 0 0 2005-2011 Adjustments 0 0 0 2009-2011 Revision Increases 0 0 0 2009-2011 Revision Decreases 0 0 0 2009-2011 Sales 0 0 0 2009-2011 Acquisitions 0 0 0 2009-2011...

309

NM, East Coalbed Methane Proved Reserves, Reserves Changes, and...  

U.S. Energy Information Administration (EIA) Indexed Site

322 389 530 474 523 507 2005-2011 Adjustments 0 4 -3 2009-2011 Revision Increases 0 72 11 2009-2011 Revision Decreases 30 0 2 2009-2011 Sales 0 0 0 2009-2011 Acquisitions 0 0 0...

310

Coalbed Methane New Reservoir Discoveries in Old Fields  

Annual Energy Outlook 2012 (EIA)

91 0 13 2009-2011 Federal Offshore U.S. 0 0 0 2009-2011 Pacific (California) 0 0 0 2009-2011 Louisiana & Alabama 0 0 0 2009-2011 Texas 0 0 0 2009-2011 Alaska 0 0 0 2009-2011 Lower...

311

Lower 48 States Coalbed Methane Proved Reserves, Reserves Changes...  

Gasoline and Diesel Fuel Update (EIA)

19,620 21,874 20,798 18,578 17,508 16,817 2005-2011 Adjustments -14 784 -15 2009-2011 Revision Increases 1,563 2,589 2,071 2009-2011 Revision Decreases 2,486 2,914 1,668 2009-2011...

312

Coalbed Methane Proved Reserves as of Dec. 31  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Miscellaneous States ...

313

LA, South Onshore Coalbed Methane Proved Reserves, Reserves Changes...  

Annual Energy Outlook 2012 (EIA)

0 0 0 0 0 0 2005-2011 Adjustments 0 0 0 2009-2011 Revision Increases 0 0 0 2009-2011 Revision Decreases 0 0 0 2009-2011 Sales 0 0 0 2009-2011 Acquisitions 0 0 0 2009-2011...

314

U.S. Coalbed Methane Proved Reserves and Production  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: *Eastern States ...

315

North Dakota Coalbed Methane Proved Reserves, Reserves Changes ...  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Miscellaneous States ...

316

Methane Main  

NLE Websites -- All DOE Office Websites (Extended Search)

the the Methane Hydrate Advisory Committee on Methane Hydrate Issues and Opportunities Including Assessment of Uncertainty of the Impact of Methane Hydrate on Global Climate Change December 2002 Report of the Methane Hydrate Advisory Committee on Methane Hydrate Issues and Opportunities Including Assessment of Uncertainty of the Impact of Methane Hydrate on Global Climate Change December 2002 i CONTENTS What is Methane Hydrate? ............................................................................................. 1 Why Methane Hydrate Matters for the United States? ..................................................... 4 Resource Potential of Methane Hydrate .......................................................................... 5 Implications of Methane Hydrate on Safety and Seafloor Stability

317

Evaluation of Phytoremediation of Coal Bed Methane Product Water and Waters of Quality Similar to that Associated with Coal Bed Methane Reserves of the Powder River Basin, Montana and Wyoming  

SciTech Connect

U.S. emphasis on domestic energy independence, along with advances in knowledge of vast biogenically sourced coalbed methane reserves at relatively shallow sub-surface depths with the Powder River Basin, has resulted in rapid expansion of the coalbed methane industry in Wyoming and Montana. Techniques have recently been developed which constitute relatively efficient drilling and methane gas recovery and extraction techniques. However, this relatively efficient recovery requires aggressive reduction of hydrostatic pressure within water-saturated coal formations where the methane is trapped. Water removed from the coal formation during pumping is typically moderately saline and sodium-bicarbonate rich, and managed as an industrial waste product. Current approaches to coalbed methane product water management include: surface spreading on rangeland landscapes, managed irrigation of agricultural crop lands, direct discharge to ephermeral channels, permitted discharge of treated and untreated water to perennial streams, evaporation, subsurface injection at either shallow or deep depths. A Department of Energy-National Energy Technology Laboratory funded research award involved the investigation and assessment of: (1) phytoremediation as a water management technique for waste water produced in association with coalbed methane gas extraction; (2) feasibility of commercial-scale, low-impact industrial water treatment technologies for the reduction of salinity and sodicity in coalbed methane gas extraction by-product water; and (3) interactions of coalbed methane extraction by-product water with landscapes, vegetation, and water resources of the Powder River Basin. Prospective, greenhouse studies of salt tolerance and water use potential of indigenous, riparian vegetation species in saline-sodic environments confirmed the hypothesis that species such as Prairie cordgrass, Baltic rush, American bulrush, and Nuttall's alkaligrass will thrive in saline-sodic environments when water supplies sourced from coalbed methane extraction are plentiful. Constructed wetlands, planted to native, salt tolerant species demonstrated potential to utilize substantial volumes of coalbed methane product water, although plant community transitions to mono-culture and limited diversity communities is a likely consequence over time. Additionally, selected, cultured forage quality barley varieties and native plant species such as Quail bush, 4-wing saltbush, and seaside barley are capable of sustainable, high quality livestock forage production, when irrigated with coalbed methane product water sourced from the Powder River Basin. A consequence of long-term plant water use which was enumerated is elevated salinity and sodicity concentrations within soil and shallow alluvial groundwater into which coalbed methane product water might drain. The most significant conclusion of these investigations was the understanding that phytoremediation is not a viable, effective technique for management of coalbed methane product water under the present circumstances of produced water within the Powder River Basin. Phytoremediation is likely an effective approach to sodium and salt removal from salt-impaired sites after product water discharges are discontinued and site reclamation is desired. Coalbed methane product water of the Powder River Basin is most frequently impaired with respect to beneficial use quality by elevated sodicity, a water quality constituent which can cause swelling, slaking, and dispersion of smectite-dominated clay soils, such as commonly occurring within the Powder River Basin. To address this issue, a commercial-scale fluid-bed, cationic resin exchange treatment process and prototype operating treatment plant was developed and beta-tested by Drake Water Technologies under subcontract to this award. Drake Water Technologies secured U.S. Patent No. 7,368,059-B2, 'Method for removal of benevolent cations from contaminated water', a beta Drake Process Unit (DPU) was developed and deployed for operation in the Powder River Basin. First year operatio

James Bauder

2008-09-30T23:59:59.000Z

318

Northern Virginia Elec Coop | Open Energy Information  

Open Energy Info (EERE)

Virginia Elec Coop (Redirected from Northern Virginia Electric Cooperative) Jump to: navigation, search Name Northern Virginia Elec Coop Place Manassas, Virginia Utility Id 13640...

319

Virginia Geothermal Resources Conservation Act (Virginia) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Virginia Geothermal Resources Conservation Act (Virginia) Virginia Geothermal Resources Conservation Act (Virginia) Virginia Geothermal Resources Conservation Act (Virginia) < Back Eligibility Commercial Construction Developer Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Systems Integrator Utility Savings Category Buying & Making Electricity Program Info State Virginia Program Type Safety and Operational Guidelines Provider Virginia Department of Mines, Minerals, and Energy It is the policy of the Commonwealth of Virginia to foster the development, production, and utilization of geothermal resources, prevent waste of geothermal resources, protect correlative rights to the resource, protect existing high quality state waters and safeguard potable waters from pollution, safeguard the natural environment, and promote geothermal and

320

Virginia Offshore Wind Development Authority (Virginia) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Virginia Offshore Wind Development Authority (Virginia) Virginia Offshore Wind Development Authority (Virginia) Virginia Offshore Wind Development Authority (Virginia) < Back Eligibility Commercial Construction Developer Industrial Installer/Contractor Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Systems Integrator Tribal Government Utility Savings Category Wind Buying & Making Electricity Program Info State Virginia Program Type Industry Recruitment/Support Provider Virginia Offshore Wind Development Authority The Virginia Offshore Wind Development Authority is a public body, established for the purposes of facilitating, coordinating, and supporting the development, either by the Authority or by other qualified entities, of the offshore wind energy industry, offshore wind energy projects, and

Note: This page contains sample records for the topic "virginia coalbed methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

West Virginia Loan Insurance Program (West Virginia)  

Energy.gov (U.S. Department of Energy (DOE))

The West Virginia Loan Insurance Program, provides a loan insurance program in cooperation with third party lenders to assist firms that cannot obtain conventional bank financing. Up to 80% of the...

322

Virginia Economic Development Incentive Grant (Virginia) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

a capital investment of at least 5 million or 6,500 per job (whichever is greater) and job creation thresholds ranging between 200-400 depending upon the locality. Virginia...

323

Virginia Electric Utility Regulation Act (Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Utility Regulation Act (Virginia) Electric Utility Regulation Act (Virginia) Virginia Electric Utility Regulation Act (Virginia) < Back Eligibility Commercial Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Systems Integrator Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Virginia Program Type Safety and Operational Guidelines Provider Virginia State Corporation Commission The Virginia Electric Utility Regulation Act constitutes the main legislation in Virginia that pertains to the regulation of the state's electric utilities. The Act directs the State Corporation Commission to construct regulations for electric utilities, and contains information on

324

Virginia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Western Virginia Water Authority's Roanoke Regional Wastewater Treatment Plant Biogas Combined Heat and Power CX(s) Applied: B5.1 Date: 02192010 Location(s): Roanoke...

325

Clean Coal Projects (Virginia)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation directs the Virginia Air Pollution Control Board to facilitate the construction and implementation of clean coal projects by expediting the permitting process for such projects.

326

Virginia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hopewell, Virginia Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory August 25, 2010 CX-003608: Categorical Exclusion Determination...

327

Virginia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

, 2010 Photo by Kelly Shimoda Lumenhaus Shows Off Solar in Times Square Solar Decathlon gets a spotlight January 22, 2010 CX-000710: Categorical Exclusion Determination Virginia...

328

Radiation Control (Virginia)  

Energy.gov (U.S. Department of Energy (DOE))

The Department of Health is responsible for regulating radiation and radioactive materials in the Commonwealth of Virginia. Although the Department's Radiation Control Program primarily focuses on...

329

,"Virginia Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Virginia Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

330

Virginia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 1, 2008, community associations in Virginia generally may not prohibit a homeowner from installing or using a solar energy collection device on their property. A...

331

SEQUESTERING CARBON DIOXIDE IN COALBEDS  

SciTech Connect

The authors' long term goal is to develop accurate prediction methods for describing the adsorption behavior of gas mixtures on solid adsorbents over complete ranges of temperature, pressure and adsorbent types. The major objectives of the project are to (1) measure the adsorption behavior of pure CO{sub 2}, methane, nitrogen and their binary and ternary mixtures on several selected coals having different properties at temperatures and pressures applicable to the particular coals being studied, (2) generalize the adsorption results in terms of appropriate properties of the coals to facilitate estimation of adsorption behavior for coals other than those studied experimentally, (3) delineate the sensitivity of the competitive adsorption of CO{sub 2}, methane and nitrogen to the specific characteristics of the coal on which they are adsorbed; establish the major differences (if any) in the nature of this competitive adsorption on different coals, and (4) test and/or develop theoretically-based mathematical models to represent accurately the adsorption behavior of mixtures of the type for which measurements are made. The specific accomplishments of this project during this reporting period are summarized in three broad categories outlining experimentation, model development, and coal characterization.

K.A.M. Gasem; R.L. Robinson, Jr.; L.R. Radovic

2001-12-26T23:59:59.000Z

332

Natural Gas Gross Withdrawals from Coalbed Wells (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells...

333

Illinois Natural Gas Gross Withdrawals from Coalbed Wells (Million...  

Annual Energy Outlook 2012 (EIA)

Date: 8302013 Referring Pages: Natural Gas Gross Withdrawals from Coalbed Wells Illinois Natural Gas Gross Withdrawals and Production Natural Gas Gross Withdrawals from...

334

South Dakota Natural Gas Gross Withdrawals from Coalbed Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) No chart available. South Dakota Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic Feet) Decade Year-0 Year-1...

335

South Dakota Natural Gas Gross Withdrawals from Coalbed Wells...  

Annual Energy Outlook 2012 (EIA)

View History: Monthly Annual Download Data (XLS File) No chart available. South Dakota Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic Feet) Year Jan Feb Mar Apr...

336

EFFECTS OF TEMPERATURE AND GAS MIXING ON FORMATION PRESSURE, CO2 SEQUESTRATION AND METHANE PRODUCTION IN  

E-Print Network (OSTI)

(CO2) injected into subsurface coalbeds replaces adsorbed methane (CH4) on coal surfaces, allowing and levels of CO2 adsorption on coal surfaces, and swelling/shrinkage of coal due to adsorption of CO2 injection. (3) CO2 is more than twice as adsorbing on coal as CH4, and remains tightly bound to coal

337

,"Virginia Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1: Prices" "Sourcekey","N3050VA3","N3010VA3","N3020VA3","N3035VA3","N3045VA3" "Date","Natural Gas Citygate Price in Virginia (Dollars per Thousand Cubic Feet)","Virginia Price of...

338

SEQUESTERING CARBON DIOXIDE IN COALBEDS  

SciTech Connect

During the present reporting period, six complementary tasks involving experimentation, model development, and coal characterization were undertaken to meet our project objectives: (1) A second adsorption apparatus, utilizing equipment donated by BP Amoco, was assembled. Having confirmed the reliability of this additional experimental apparatus and procedures, adsorption isotherms for CO{sub 2}, methane, ethane, and nitrogen on wet Fruitland coal and on activated carbon were measured at 319.3 K (115 F) and pressures to 12.4 MPa (1800 psia). These measurements showed good agreement with our previous data and yielded an expected uncertainty of about 3%. The addition of this new facility has allowed us to essentially double our rate of data production. (2) Adsorption isotherms for pure CO{sub 2}, methane, and nitrogen on wet Illinois-6 coal and on activated carbon were measured at 319.3 K (115 F) and pressures to 12.4 MPa (1800 psia) on our first apparatus. The activated carbon measurements showed good agreement with literature data and with measurements obtained on our second apparatus. The expected uncertainty of the data is about 3%. The Illinois-6 adsorption measurements are a new addition to the existing database. Preparations are underway to measure adsorption isotherms for pure methane, carbon dioxide and nitrogen on DESC-8 coal. (3) Adsorption from binary mixtures of methane, nitrogen and CO{sub 2} at a series of compositions was also measured on the wet Fruitland coal at 319.3 K (115 F), using our first apparatus. The nominal compositions of these mixtures are 20%/80%, 40%/60%, 60%/40%, and 80%/20%. The experiments were conducted at pressures from 100 psia to 1800 psia. The expected uncertainty for these binary mixture data varies from 2 to 9%. (4) A study was completed to address the previously-reported rise in the CO{sub 2} absolute adsorption on wet Fruitland coal at 115 F and pressures exceeding 1200 psia. Our additional adsorption measurements on Fruitland coal and on activated carbon show that: (a) the Gibbs adsorption isotherm for CO{sub 2} under study exhibits typical adsorption behavior for supercritical gas adsorption, and (b) a slight variation from Type I absolute adsorption may be observed for CO{sub 2}, but the variation is sensitive to the estimates used for adsorbed phase density. (5) The experimental data were used to evaluate the predictive capabilities of various adsorption models, including the Langmuir/loading ratio correlation, a two-dimensional cubic equation of state (EOS), a new two-dimensional (2-D) segment-segment interactions equation of state, and the simplified local density model (SLD). Our model development efforts have focused on developing the 2-D analog to the Park-Gasem-Robinson (PGR) EOS and an improved form of the SLD model. The new PGR EOS offers two advantages: (a) it has a more accurate repulsive term, which is important for reliable adsorption predictions, and (b) it is a segment-segment interactions model, which should more closely describe the gas-coal interactions during the adsorption process. In addition, a slit form of the SLD model was refined to account more precisely for heterogeneity of the coal surface and matrix swelling. In general, all models performed well for the Type I adsorption exhibited by methane, nitrogen, and carbon dioxide up to 8.3 MPa (average deviations within 2%). In comparison, the SLD model represented the adsorption behavior of all fluids considered within 5% average deviations, including the near-critical behavior of carbon dioxide beyond 8.3 MPa (1200 psia). Work is in progress to (a) derive and implement the biporous form of the SLD model, which would expand the number of structural geometries used to represent the heterogeneity of coal surface; and (b) extend the SLD model to mixture predictions. (6) Proper reduction of our adsorption data requires accurate gas-phase compressibility (Z) factors for methane, ethane, nitrogen and carbon dioxide and their mixtures to properly analyze our experimental adsorption data. A careful evaluation of t

K.A.M. Gasem; R.L. Robinson, Jr.; L.R. Radovic

2001-06-15T23:59:59.000Z

339

Circleville, West Virginia 26804  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

P.O. Box 194 P.O. Box 194 Circleville, West Virginia 26804 March 28, 2012 Lamont Jackson Office of Electricity Delivery and Energy Reliability U.S. Department of Energy 1000 Independence Ave. SW Washington, DC 20585 Via email to lamont.jackson@hq.doe.gov Re: OE Docket No. RRTT-IR-001 (Rapid Response Team for Transmission); Office of Electricity Delivery and Energy Reliability, Department of Energy Dear Mr. Jackson: Please accept the following comments submitted on behalf of the Allegheny Highlands Alliance, Inc. ("AHA"), an organization comprised of residents of the states of West Virginia, Pennsylvania, Maryland, Virginia and North Carolina. AHA is presently awaiting a decision

340

Virginia/Incentives | Open Energy Information  

Open Energy Info (EERE)

Virginia/Incentives Virginia/Incentives < Virginia Jump to: navigation, search Contents 1 Financial Incentive Programs for Virginia 2 Rules, Regulations and Policies for Virginia Download All Financial Incentives and Policies for Virginia CSV (rows 1 - 134) Financial Incentive Programs for Virginia Download Financial Incentives for Virginia CSV (rows 1 - 51) Incentive Incentive Type Active Arlington County - Green Building Incentive Program (Virginia) Green Building Incentive Yes Cape Charles - STIP Minimum Sustainability Requirements (Virginia) Green Building Incentive No Charlottesville Gas - Residential Energy Efficiency Rebate Program (Virginia) Utility Rebate Program Yes City of Danville Utilities - Business Energy Efficiency Rebates (Virginia) Utility Rebate Program Yes

Note: This page contains sample records for the topic "virginia coalbed methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Virginia | OpenEI  

Open Energy Info (EERE)

Virginia Virginia Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 88, and contains only the reference case. The data is broken down into electric power sector, cumulative planned additions,cumulative unplanned additions,cumulative retirements, end-use sector, electricity sales, net energy for load, generation by fuel type and price by service category. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO Carolina EIA Electric power projections Virginia Data application/vnd.ms-excel icon ASEO2011: Electric Power Projections for EMM Region - SERC Reliability Corporation / Virginia-Carolina- Reference Case (xls, 259.3 KiB)

342

Virginia Gasoline Price Data  

NLE Websites -- All DOE Office Websites (Extended Search)

Virginia Virginia Exit Fueleconomy.gov The links below are to pages that are not part of the fueleconomy.gov. We offer these external links for your convenience in accessing additional information that may be useful or interesting to you. Selected Cities Alexandria AlexandriaGasPrices.com Automotive.com Mapquest.com Arlington ArlingtonGasPrices.com Automotive.com Mapquest.com Chesapeake ChesapeakeGasPrices.com Automotive.com Mapquest.com Hampton HamptonGasPrices.com Automotive.com Mapquest.com Newport News NewportNewsGasPrices.com Automotive.com Mapquest.com Norfolk NorfolkGasPrices.com Automotive.com Mapquest.com Portsmouth PortsmouthGasPrices.com Automotive.com Mapquest.com Richmond RichmondGasPrices.com Automotive.com Mapquest.com Virginia Beach VirginiaBeachGasPrices.com Automotive.com Mapquest.com

343

Virginia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Learn about Wind Power First-Hand through Wind for Schools Program Constructive a wind turbine provides hands-on learning for Virginia students. February 7, 2011 Salazar, Chu...

344

Virginia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Title CX(s) Applied: A1, B5.1 Date: 12072011 Location(s): Virginia Offices(s): National Energy Technology Laboratory December 7, 2011 CX-007432: Categorical Exclusion...

345

Virginia Regional Industrial Facilities Act (Virginia) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Regional Industrial Facilities Act (Virginia) Regional Industrial Facilities Act (Virginia) Virginia Regional Industrial Facilities Act (Virginia) < Back Eligibility Commercial Construction Developer Industrial Investor-Owned Utility Local Government Municipal/Public Utility Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Virginia Program Type Industry Recruitment/Support Provider Regional Industrial Facility Authorities The Virginia Regional Industrial Facilities Act is meant to aid the economic development of localities within the Commonwealth. The Act provides a mechanism for localities to establish regional industrial facility authorities, enabling them to pool financial resources to stimulate economic development. The purpose of a regional industrial

346

Virginia Capital Access Program (Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Capital Access Program (Virginia) Capital Access Program (Virginia) Virginia Capital Access Program (Virginia) < Back Eligibility Commercial Industrial Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Virginia Program Type Loan Program Provider Virginia Economic Development Partnership The Virginia Capital Access Program (CAP), in partnership with Virginia's Small Business Financing Authority, provides access to capital for small businesses. Businesses must apply to participating banks for a traditional loan, and the lender advises the company of enrollment in CAP. The program offers loan guarantees on a portfolio of loans through a loan loss reserve, which it establishes at each participating bank. Funds can be used for

347

Virginia Jobs Investment Program (Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Jobs Investment Program (Virginia) Jobs Investment Program (Virginia) Virginia Jobs Investment Program (Virginia) < Back Eligibility Commercial Industrial Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Virginia Program Type Industry Recruitment/Support Training/Technical Assistance Workforce development Provider Virginia Department of Business Assistance The Virginia Jobs Investment Program provides cash grants to existing businesses which seek expansion or new facility locations. The company must create a minimum of 25 net new jobs within 12 months from the date of first hire and make a capital investment of at least $1,000,000. The Virginia Jobs Investment Program offers three programs to both new and

348

West Virginia Higher Education Graduate  

E-Print Network (OSTI)

1. Work Participation And Annualized Wages Of West Virginia Public Higher Education Graduates From This report analyzes the West Virginia industry of employment (and wages) of graduates from state public .................................................................................................1 Results By Industry And Summary Degree

Mohaghegh, Shahab

349

Texas Natural Gas Gross Withdrawals from Coalbed Wells (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) No chart available. Texas Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

350

Texas Natural Gas Gross Withdrawals from Coalbed Wells (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) No chart available. Texas Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

351

Virginia.indd  

NLE Websites -- All DOE Office Websites (Extended Search)

Virginia Virginia www.effi cientwindows.org March 2013 1. Meet the Energy Code and Look for the ENERGY STAR ® Windows must comply with your local energy code. Windows that are ENERGY STAR qualifi ed typically meet or exceed energy code requirements. To verify if specific window energy properties comply with the local code requirements, go to Step 2. 2. Look for Effi cient Properties on the NFRC Label The National Fenestration Rating Council (NFRC) label is needed for verifi cation of energy code compliance (www.nfrc. org). The NFRC label displays whole- window energy properties and appears on all fenestration products which are part of the ENERGY STAR program.

352

Alternative Fuels Data Center: West Virginia Information  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

West Virginia West Virginia Information to someone by E-mail Share Alternative Fuels Data Center: West Virginia Information on Facebook Tweet about Alternative Fuels Data Center: West Virginia Information on Twitter Bookmark Alternative Fuels Data Center: West Virginia Information on Google Bookmark Alternative Fuels Data Center: West Virginia Information on Delicious Rank Alternative Fuels Data Center: West Virginia Information on Digg Find More places to share Alternative Fuels Data Center: West Virginia Information on AddThis.com... West Virginia Information This state page compiles information related to alternative fuels and advanced vehicles in West Virginia and includes new incentives and laws, alternative fueling station locations, truck stop electrification sites,

353

Virginia Enterprise Zone Job Creation Grant (Virginia) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Enterprise Zone Job Creation Grant (Virginia) Enterprise Zone Job Creation Grant (Virginia) Virginia Enterprise Zone Job Creation Grant (Virginia) < Back Eligibility Commercial Industrial Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Maximum Rebate $500 per position Program Info State Virginia Program Type Enterprise Zone Grant Program Provider Virginia Department of Housing and Community Development The Virginia Enterprise Zone Job Creation Grant provides cash grants to businesses located in Enterprise zones that create permanent new jobs over a four-job threshold. State incentives are available to businesses and zone investors who create jobs and invest in real property within the boundaries of enterprise zones. The positions must pay at least 175 percent of the

354

West Virginia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

United States » West Virginia United States » West Virginia West Virginia October 22, 2013 Data Safer than Ever with FM-200 Installation The consolidated data center at the Legacy Management Business Center (LMBC) in Morgantown, West Virginia, is now guarded by a state-of-the-art FM-200® Fire Suppression System. Installation of the new system began on June 11, 2013, and the system became operational on July 18. October 16, 2013 West Virginia Venture Capital (West Virginia) The West Virginia Venture Capital provides investment funds to eligible businesses stimulating economic growth and providing or retaining jobs within the state through qualified venture capital companies. Terms and conditions for funding eligibility are dependent on the varying terms of participating venture capital funds.

355

Stored CO2 and Methane Leakage Risk Assessment and Monitoring Tool Development: CO2 Capture Project Phase 2 (CCP2)  

SciTech Connect

The primary project goal is to develop and test tools for optimization of ECBM recovery and geologic storage of CO{sub 2} in coalbeds, in addition to tools for monitoring CO{sub 2} sequestration in coalbeds to support risk assessment. Three critical topics identified are (1) the integrity of coal bed methane geologic and engineered systems, (2) the optimization of the coal bed storage process, and (3) reliable monitoring and verification systems appropriate to the special conditions of CO{sub 2} storage and flow in coals.

Dan Kieki

2008-09-30T23:59:59.000Z

356

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

– Formation and Dissociation of Methane Hydrates Last Reviewed 07/7/2011 – Formation and Dissociation of Methane Hydrates Last Reviewed 07/7/2011 Project Objective Observe hydrate formation and dissociation phenomena in various porous media and characterize hydrate-bearing sediments by estimating physical properties (kinetic parameters for hydrate formation and dissociation, thermal conductivity, permeability, relative permeability, and mechanical strength) to enhance fundamental understanding on hydrate formation and accumulation and to support numerical simulations and potential gas hydrate production Project Performers Yongkoo Seol – NETL Office of Research & Development Jeong Choi – Oak Ridge Institute for Science and Education Jongho Cha-Virginia Polytech Institute Project Location National Energy Technology Laboratory - Morgantown, West Virginia

357

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Numerical Simulation Last Reviewed 3/8/2013 Numerical Simulation Last Reviewed 3/8/2013 Project Goal The goal of NETL's gas hydrate numerical simulation studies is to obtain pertinent, high-quality information on the behavior of gas hydrates in their natural environment under either production (methane gas extraction) or climate change scenarios. This research is closely linked with NETL's experimental and field studies programs to ensure the validity of input datasets and scenarios. Project Performers Brian Anderson, NETL/RUA Fellow (West Virginia University) Hema Siriwardane, NETL/RUA Fellow (West Virginia University) Eugene Myshakin, NETL/URS Project Locations National Energy Technology Laboratory, Pittsburgh PA, and Morgantown WV West Virginia University, Morgantown, WV Background Field-scale hydrate production tests rely heavily on reservoir-scale

358

Appalachian Basin. The Central Appalachian Basin, a 10,000-square  

NLE Websites -- All DOE Office Websites (Extended Search)

cubic feet. SECARB initiated CO 2 injection in mid- January at its test site in Russell County, Virginia. An existing coalbed methane (CBM) well was converted for CO 2 injection...

359

West Virginia.indd  

NLE Websites -- All DOE Office Websites (Extended Search)

West Virginia West Virginia www.effi cientwindows.org March 2013 1. Meet the Energy Code and Look for the ENERGY STAR ® Windows must comply with your local energy code. Windows that are ENERGY STAR qualifi ed typically meet or exceed energy code requirements. To verify if specific window energy properties comply with the local code requirements, go to Step 2. 2. Look for Effi cient Properties on the NFRC Label The National Fenestration Rating Council (NFRC) label is needed for verifi cation of energy code compliance (www.nfrc. org). The NFRC label displays whole- window energy properties and appears on all fenestration products which are part of the ENERGY STAR program.

360

West Virginia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

January 12, 2010 January 12, 2010 Training Changing Face of West Virginia's Workforce West Virginia's stimulus funding is expected to spur green jobs and build skills for the future in a state that relies on a nonrenewable energy source -- coal - to employ 35,000 members of its workforce. October 19, 2009 CX-000162: Categorical Exclusion Determination West Virginia State Energy Office CX(s) Applied: A9, A11 Date: 10/19/2009 Location(s): West Virginia Office(s): Energy Efficiency and Renewable Energy, Golden Field Office June 26, 2009 Obama Administration Awards More than $96 Million for State Energy Programs in Ohio, Oregon, Virginia and West Virginia Funding Will Speed Adoption of Efficiency and Renewable Energy Technologies March 26, 2009 Obama Administration Announces Additional $14,003,800 for Local Energy

Note: This page contains sample records for the topic "virginia coalbed methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

West Virginia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Groundwater Protection Rules Coal Mining Operations (West Virginia) Groundwater Protection Rules Coal Mining Operations (West Virginia) These rules establish a series of practices for the protection of groundwater which are to be followed by any person who conducts coal mining operations subject to the provisions of West Virginia Groundwater Protection Act and subject to regulation under the West Virginia Coal Mining and Reclamation Act and/or under West Virginia Water Pollution Control Act as it relates to coal mining operations. October 16, 2013 Groundwater Protection Plan (West Virginia) Groundwater Protection Plans (GPPs) are required for all facilities having the potential to impact groundwater. They are "preventive maintenance" documents that cover all processes and materials at a facility that "may

362

Virginia Datos del Precio de la Gasolina  

NLE Websites -- All DOE Office Websites (Extended Search)

VirginiaGasPrices.com (Busqueda por Ciudad o Cdigo Postal) - GasBuddy.com Virginia Gas Prices (Ciudades Selectas) - GasBuddy.com Virginia Gas Prices (Organizado por Condado)...

363

Coal Mine Safety Act (Virginia)  

Energy.gov (U.S. Department of Energy (DOE))

This Act is the primary legislation pertaining to coal mine safety in Virginia. It contains information on safety rules, safety standards and required certifications for mine workers, prohibited...

364

Conservation of Water Resources (Virginia)  

Energy.gov (U.S. Department of Energy (DOE))

The State Water Control Board is responsible for formulating and implementing a comprehensive water use policy for the Commonwealth of Virginia. Implemented by the Department of Environmental...

365

,"West Virginia Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","West Virginia Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

366

DOE Solar Decathlon: Virginia Tech: Perfecting Solar  

NLE Websites -- All DOE Office Websites (Extended Search)

Where Are the Houses Now? Auburn Carnegie Mellon Colorado Crowder Delaware Maryland Puerto Rico Rolla Texas Texas A&M Tuskegee UNC Charlotte Virginia Virginia Tech Quick...

367

West Virginia Shale Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) West Virginia Shale Production (Billion Cubic Feet) West Virginia Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

368

NETL: Science Bowl Information - West Virginia  

NLE Websites -- All DOE Office Websites (Extended Search)

Home > Educational Initiatives > Science Bowl Information > Science Bowl Information - West Virginia Educational Initiatives Science Bowl Information - West Virginia Welcome to the...

369

Energy Crossroads: Utility Energy Efficiency Programs Virginia...  

NLE Websites -- All DOE Office Websites (Extended Search)

Virginia Energy Crossroads Index Utility Energy Efficiency Programs Index Suggest a Listing Delmarva Power Information for Businesses Dominion Virginia Power Information for...

370

Assessment of CO2 Sequestration and ECBM Potential of U.S. Coalbeds  

SciTech Connect

In October, 2000, the U.S. Department of Energy, through contractor Advanced Resources International, launched a multi-year government-industry R&D collaboration called the Coal-Seq project. The Coal-Seq project is investigating the feasibility of CO{sub 2} sequestration in deep, unmineable coalseams, by performing detailed reservoir studies of two enhanced coalbed methane recovery (ECBM) field projects in the San Juan basin. The two sites are the Allison Unit, operated by Burlington Resources, and into which CO{sub 2} is being injected, and the Tiffany Unit, operating by BP America, into which N{sub 2} is being injected (the interest in understanding the N{sub 2}-ECBM process has important implications for CO{sub 2} sequestration via flue-gas injection). The purposes of the field studies are to understand the reservoir mechanisms of CO{sub 2} and N{sub 2} injection into coalseams, demonstrate the practical effectiveness of the ECBM and sequestration processes, an engineering capability to simulate them, and to evaluate sequestration economics. In support of these efforts, laboratory and theoretical studies are also being performed to understand and model multi-component isotherm behavior, and coal permeability changes due to swelling with CO{sub 2} injection. This report describes the results of an important component of the overall project, applying the findings from the San Juan Basin to a national scale to develop a preliminary assessment of the CO{sub 2} sequestration and ECBM recovery potential of U.S. coalbeds. Importantly, this assessment improves upon previous investigations by (1) including a more comprehensive list of U.S. coal basins, (2) adopting technical rationale for setting upper-bound limits on the results, and (3) incorporating new information on CO{sub 2}/CH{sub 4} replacement ratios as a function of coal rank. Based on the results of the assessment, the following conclusions have been drawn: (1) The CO{sub 2} sequestration capacity of U.S. coalbeds is estimated to be about 90 Gt. Of this, about 38 Gt is in Alaska (even after accounting for high costs associated with this province), 14 Gt is in the Powder River basin, 10 Gt is in the San Juan basin, and 8 Gt is in the Greater Green River basin. By comparison, total CO{sub 2} emissions from power generation plants is currently about 2.2 Gt/year. (2) The ECBM recovery potential associated with this sequestration is estimated to be over 150 Tcf. Of this, 47 Tcf is in Alaska (even after accounting for high costs associated with this province), 20 Tcf is in the Powder River basin, 19 Tcf is in the Greater Green River basin, and 16 Tcf is in the San Juan basin. By comparison, total CBM recoverable resources are currently estimated to be about 170 Tcf. (3) Between 25 and 30 Gt of CO{sub 2} can be sequestered at a profit, and 80-85 Gt can be sequestered at costs of less than $5/ton. These estimates do not include any costs associated with CO{sub 2} capture and transportation, and only represent geologic sequestration. (4) Several Rocky Mountain basins, including the San Juan, Raton, Powder River and Uinta appear to hold the most favorable conditions for sequestration economics. The Gulf Coast and the Central Appalachian basin also appear to hold promise as economic sequestration targets, depending upon gas prices. (5) In general, the 'non-commercial' areas (those areas outside the main play area that are not expected to produce primary CBM commercially) appear more favorable for sequestration economics than the 'commercial' areas. This is because there is more in-place methane to recover in these settings (the 'commercial' areas having already been largely depleted of methane).

Scott R. Reeves

2003-03-31T23:59:59.000Z

371

Microsoft Word - virginia.doc  

Gasoline and Diesel Fuel Update (EIA)

Virginia Virginia NERC Region(s) ....................................................................................................... RFC/SERC Primary Energy Source........................................................................................... Nuclear Net Summer Capacity (megawatts) ....................................................................... 24,109 16 Electric Utilities ...................................................................................................... 19,434 15 Independent Power Producers & Combined Heat and Power ................................ 4,676 21 Net Generation (megawatthours) ........................................................................... 72,966,456 21

372

Microsoft Word - virginia.doc  

U.S. Energy Information Administration (EIA) Indexed Site

Virginia Virginia NERC Region(s) ....................................................................................................... RFC/SERC Primary Energy Source........................................................................................... Nuclear Net Summer Capacity (megawatts) ....................................................................... 24,109 16 Electric Utilities ...................................................................................................... 19,434 15 Independent Power Producers & Combined Heat and Power ................................ 4,676 21 Net Generation (megawatthours) ........................................................................... 72,966,456 21

373

,"West Virginia Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1: Prices" "Sourcekey","N3050WV3","N3010WV3","N3020WV3","N3035WV3","N3045WV3" "Date","Natural Gas Citygate Price in West Virginia (Dollars per Thousand Cubic Feet)","West Virginia...

374

Safety at coal mines: what role does methane play?  

SciTech Connect

The recent Sago Mine disaster in West Virginia and other widely publicized coal mine accidents around the world have received a great deal of attention and have generated some confusion about the link between methane drainage and safety. In response, this article provides an overview of safety concerns faced by coal mines and how they do or do not relate to methane. The first section explains the variety of safety issues a coal mine must take into consideration, including methane build-up. The second section summarizes the recent coal mines accident at Sago Mine in West Virginia. The final section describes the regulatory and legislative responses in the US. 2 refs., 2 figs.

NONE

2006-04-01T23:59:59.000Z

375

Virginia | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Virginia Virginia Last updated on 2013-11-05 Current News BHCD/DHCD workgroups are currently meeting over the next 12+ months for the 2012 USBC/IECC regulatory process, with an anticipated effective date in early 2014. Commercial Residential Code Change Current Code 2009 IECC Amendments / Additional State Code Information Virginia's current code is the 2009 IECC with reference to ASHRAE 90.1-2007. Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Virginia (BECP Report, Sept. 2009) Approximate Energy Efficiency Equivalent to 2009 IECC Effective Date 03/01/2011 Adoption Date 07/26/2010 Code Enforcement Mandatory DOE Determination ASHRAE 90.1-2007: Yes ASHRAE 90.1-2010: No Virginia DOE Determination Letter, May 31, 2013

376

Florida Natural Gas Gross Withdrawals from Coalbed Wells (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005...

377

West Virginia 1995 Vintage Gas Well History  

U.S. Energy Information Administration (EIA)

West Virginia 1995 Vintage Gas Well History. Energy Information Administration (U.S. Dept. of Energy)

378

West Virginia 1995 Vintage Oil Well History  

U.S. Energy Information Administration (EIA)

West Virginia 1995 Vintage Oil Well History. Energy Information Administration (U.S. Dept. of Energy)

379

Virginia/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Virginia Virginia Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Virginia Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Virginia No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Virginia No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Virginia No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Virginia Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

380

Forestry Policies (Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Virginia) Virginia) Forestry Policies (Virginia) < Back Eligibility Agricultural Commercial Developer Savings Category Solar Buying & Making Electricity Wind Program Info State Virginia Program Type Environmental Regulations Provider Virginia Department of Forestry Virginia's forests are managed by the Virginia Department of Forestry. In 2010 the Department issued its Statewide Assessment of Forest Resources and Strategic Plan documents: http://www.dof.virginia.gov/info/print/2010-State-Assessment.pdf http://www.dof.virginia.gov/info/print/2010-Strategic-Plan.pdf The Department has also issued a concise reference of the State Forestry Laws: http://www.dof.virginia.gov/resources/pub-2005-Va-Forestry-Laws.pdf State incentives for forest biomass energy are currently limited to the

Note: This page contains sample records for the topic "virginia coalbed methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Alternative Fuels Data Center: Virginia Information  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Virginia Information Virginia Information to someone by E-mail Share Alternative Fuels Data Center: Virginia Information on Facebook Tweet about Alternative Fuels Data Center: Virginia Information on Twitter Bookmark Alternative Fuels Data Center: Virginia Information on Google Bookmark Alternative Fuels Data Center: Virginia Information on Delicious Rank Alternative Fuels Data Center: Virginia Information on Digg Find More places to share Alternative Fuels Data Center: Virginia Information on AddThis.com... Virginia Information This state page compiles information related to alternative fuels and advanced vehicles in Virginia and includes new incentives and laws, alternative fueling station locations, truck stop electrification sites, fuel prices, and local points of contact. Select a new state Select a State Alabama Alaska Arizona Arkansas

382

Better Buildings Neighborhood Program: Virginia - SEP  

NLE Websites -- All DOE Office Websites (Extended Search)

Virginia - Virginia - SEP to someone by E-mail Share Better Buildings Neighborhood Program: Virginia - SEP on Facebook Tweet about Better Buildings Neighborhood Program: Virginia - SEP on Twitter Bookmark Better Buildings Neighborhood Program: Virginia - SEP on Google Bookmark Better Buildings Neighborhood Program: Virginia - SEP on Delicious Rank Better Buildings Neighborhood Program: Virginia - SEP on Digg Find More places to share Better Buildings Neighborhood Program: Virginia - SEP on AddThis.com... Better Buildings Residential Network Progress Stories Interviews Videos Events Quick Links to Partner Information AL | AZ | CA | CO | CT FL | GA | IL | IN | LA ME | MD | MA | MI | MO NE | NV | NH | NJ | NY NC | OH | OR | PA | SC TN | TX | VT | VI | VA WA | WI Virginia - SEP Virginia's Regional Energy Alliances Help Forge a State Program for

383

State Energy Program Assurances - West Virginia Governor Manchin...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

State Energy Program Assurances - West Virginia Governor Manchin State Energy Program Assurances - West Virginia Governor Manchin Letter from West Virginia Governor Manchin...

384

Virginia's 1st congressional district: Energy Resources | Open...  

Open Energy Info (EERE)

Registered Energy Companies in Virginia's 1st congressional district Delta T Corporation E85 Inc Virginia Biodiesel Refinery Utility Companies in Virginia's 1st congressional...

385

Virginia's 3rd congressional district: Energy Resources | Open...  

Open Energy Info (EERE)

Virginia. Registered Energy Companies in Virginia's 3rd congressional district EarthCraft Virginia Enviva Materials LLC Ingenco Intrinergy Mead Westaco Retrieved from "http:...

386

Virginia EV Road Show - PHEV Operations and Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

- Virginia EV Road Show - PHEV Operations and Performance Jim Francfort Virginia Clean Cities and Hampton Roads Clean Cities Coalition - Virginia Electric Drive Road Show Poquoson,...

387

Virginia Grebasch | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Virginia Grebasch Virginia Grebasch About Us Virginia Grebasch - Counsel to the Inspector General Virginia Grebasch was appointed Counsel to the Inspector General in August, 2012. She provides comprehensive legal advice to the Inspector General and senior leadership, and serves as the primary liaison to Congressional staff. Prior to joining the Office of Inspector General, Ms. Grebasch served for four years as a Senior Assistant Counsel in the Office of General Counsel, U.S. General Services Administration (GSA), where she provided legal advice to the Federal Acquisition Service's Office of Travel and Transportation, the Office of Governmentwide Policy, and the Office of Emergency Response and Recovery. In addition, Ms. Grebasch represented GSA in bid protests of major contracts before the Government Accountability Office. From 1991

388

West Virginia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Qualifying RPS State Export Markets (West Virginia) Qualifying RPS State Export Markets (West Virginia) This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in West Virginia as eligible sources towards their RPS targets or goals. For specific information with regard to eligible technologies or other restrictions which may vary by state, see the RPS policy entries for the individual states, shown below in the Authority listings. Typically energy must be delivered to an in-state utility or Load Serving Entity, and often only a portion of compliance targets may be met by out-of-state generation. October 16, 2013 Proof of Proper Solid Waste Disposal (West Virginia) This rule provides guidance to persons occupying a residence or operating a business establishment in this state regarding the approved method of

389

West Virginia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June 17, 2010 June 17, 2010 CX-002740: Categorical Exclusion Determination Coal Use By-Product Characterization Lab Decommissioning CX(s) Applied: B3.6 Date: 06/17/2010 Location(s): Morgantown, West Virginia Office(s): Fossil Energy, National Energy Technology Laboratory June 9, 2010 CX-002635: Categorical Exclusion Determination Energy Conservation Measure (ECM) #2: MERC Well Upgrade, National Energy Technology Laboratory Morgantown, West Virginia CX(s) Applied: B5.12 Date: 06/09/2010 Location(s): Morgantown, West Virginia Office(s): Fossil Energy, National Energy Technology Laboratory June 7, 2010 EIS-0445: Notice of Intent to Prepare an Environmental Impact Statement Mountaineer Commercial Scale Carbon Capture and Storage Project, Mason County, West Virginia June 4, 2010

390

West Virginia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Underground Injection Control (West Virginia) Underground Injection Control (West Virginia) This rule set forth criteria and standards for the requirements which apply to the State Underground Injection Control Program (U.I.C.). The UIC permit program regulates underground injections by 5 classes of wells. All owners or operators of these injection wells must be authorized either by permit or rule by the Director. October 16, 2013 Underground Gas Storage Reservoirs (West Virginia) Lays out guidelines for the conditions under which coal mining operations must notify state authorities of intentions to mine where underground gas is stored as well as map and data requirements, inspection of facilities and penalties. October 16, 2013 Tax Exemption for Wind Energy Generation In March 2007, West Virginia enacted legislation

391

Geothermal investigations in West Virginia  

DOE Green Energy (OSTI)

Deep sedimentary basins and warm-spring systems in West Virginia are potential geothermal resources. A temperature gradient map based on 800 bottom-hole temperatures for West Virginia shows that variations of temperature gradient trend northeasterly, parallel to regional structure. Highest temperature gradient values of about 28/sup 0/C/km occur in east-central West Virginia, and the lowest gradients (18/sup 0/C/km) are found over the Rome Trough. Results from ground-water geochemistry indicate that the warm waters circulate in very shallow aquifers and are subject to seasonal temperature fluctuations. Silica heat-flow data in West Virginia vary from about 0.89 to 1.4 HFU and generally increase towards the west. Bouguer, magnetic, and temperature gradient profiles suggest that an ancient rift transects the state and is the site of several deep sedimentary basins.

Hendry, R.; Hilfiker, K.; Hodge, D.; Morgan, P.; Swanberg, C.; Shannon, S.S. Jr.

1982-11-01T23:59:59.000Z

392

,"West Virginia Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

New Reservoir Discoveries in Old Fields (Billion Cubic Feet)","West Virginia Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)" 28306,1567,1,76,63,,,97,5,17,124...

393

West Virginia Gasoline Price Data  

NLE Websites -- All DOE Office Websites (Extended Search)

West Virginia Exit Fueleconomy.gov The links below are to pages that are not part of the fueleconomy.gov. We offer these external links for your convenience in accessing additional...

394

NETL: News Release - DOE-funded R&D Seeks to Bolster Coalbed...  

NLE Websites -- All DOE Office Websites (Extended Search)

Engineering of Helena, MT, helps producers of coalbed natural gas (CBNG) clean up co-produced water for beneficial uses, in turn addressing critical water shortages in the...

395

Characterization and Simulation of ECBM: History Matching of Forecasting CO2 Sequestration in Marshal County, West Virginia.  

E-Print Network (OSTI)

into an unmineable coal seam in the Marshall Country West Virginia. Two coal seams (Pittsburgh and Upper Freeport) are the subject of this pilot CO2 sequestration project. Methane is produced from both coal seams; however CO2 is injected only in the Upper Freeport which includes four wells. The shallower Pittsburgh coal is used

Mohaghegh, Shahab

396

Recovery Act State Memos Virginia  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Virginia Virginia For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 5

397

West Virginia/Incentives | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » West Virginia/Incentives < West Virginia Jump to: navigation, search Contents 1 Financial Incentive Programs for West Virginia 2 Rules, Regulations and Policies for West Virginia Download All Financial Incentives and Policies for West Virginia CSV (rows 1 - 62) Financial Incentive Programs for West Virginia Download Financial Incentives for West Virginia CSV (rows 1 - 12) Incentive Incentive Type Active AEP Appalachian Power - Commercial and Industrial Rebate Programs (West Virginia) Utility Rebate Program Yes AEP Appalachian Power - Residential Energy Efficiency Rebate Program (West Virginia) Utility Rebate Program Yes

398

Clean Cities: Virginia Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Virginia Clean Cities Coalition Virginia Clean Cities Coalition The Virginia Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Virginia Clean Cities coalition Contact Information Alleyn Harned 540-568-8896 aharned@vacleancities.org Ryan Cornett 540-568-5586 rcornett@vacleancities.org Coalition Website Clean Cities Coordinators Coord Alleyn Harned Coord Coord Ryan Cornett Coord Photo of Alleyn Harned Alleyn Harned joined Virginia Clean Cities in 2009 and serves as the program coordinator. Harned works from the Virginia Clean Cities partnership at James Madison University, in Harrisonburg, Virginia. Prior to Clean Cities, Harned served as Assistant Secretary of Commerce and Trade in Virginia. Virginia Clean Cities

399

Simulation of binary mixture adsorption of methane and CO{sub 2} at supercritical conditions in carbons  

Science Conference Proceedings (OSTI)

Knowledge of the adsorption behavior of coal-bed gases, mainly under supercritical high-pressure conditions, is important for optimum design of production processes to recover coal-bed methane and to sequester CO{sub 2} in coal-beds. Here, we compare the two most rigorous adsorption methods based on the statistical mechanics approach, which are Density Functional Theory (DFT) and Grand Canonical Monte Carlo (GCMC) simulation, for single and binary mixtures of methane and carbon dioxide in slit-shaped pores ranging from around 0.75 to 7.5 nm in width, for pressure up to 300 bar, and temperature range of 308-348 K, as a preliminary study for the CO{sub 2} sequestration problem. For single component adsorption, the isotherms generated by DFT, especially for CO{sub 2}, do not match well with GCMC calculation, and simulation is subsequently pursued here to investigate the binary mixture adsorption. For binary adsorption, upon increase of pressure, the selectivity of carbon dioxide relative to methane in a binary mixture initially increases to a maximum value, and subsequently drops before attaining a constant value at pressures higher than 300 bar. While the selectivity increases with temperature in the initial pressure-sensitive region, the constant high-pressure value is also temperature independent. Optimum selectivity at any temperature is attained at a pressure of 90-100 bar at low bulk mole fraction of CO{sub 2}, decreasing to approximately 35 bar at high bulk mole fractions.

Kurniawan, Y.; Bhatia, S.K.; Rudolph, V. [University of Queensland, Brisbane, Qld. (Australia). Division of Chemical Engineering

2006-03-15T23:59:59.000Z

400

Land Conservation (Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Land Conservation (Virginia) Land Conservation (Virginia) Land Conservation (Virginia) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Virginia Program Type Siting and Permitting Provider Virginia Department of Conservation and Recreation The Virginia Department of Conservation and Recreation has developed the

Note: This page contains sample records for the topic "virginia coalbed methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Categorical Exclusion Determinations: Virginia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Virginia Virginia Categorical Exclusion Determinations: Virginia Location Categorical Exclusion Determinations issued for actions in Virginia. DOCUMENTS AVAILABLE FOR DOWNLOAD September 17, 2013 CX-010951: Categorical Exclusion Determination Automotive Technology Analysis CX(s) Applied: A8 Date: 09/17/2013 Location(s): Virginia Offices(s): National Energy Technology Laboratory September 11, 2013 CX-011027: Categorical Exclusion Determination Injecting Carbon Dioxide into Unconventional Storage Reservoirs in the Central Appalachian Basin... CX(s) Applied: B3.6 Date: 09/11/2013 Location(s): Virginia Offices(s): National Energy Technology Laboratory September 11, 2013 CX-011025: Categorical Exclusion Determination Injecting Carbon Dioxide into Unconventional Storage Reservoirs in the

402

Methane (CH4)  

NLE Websites -- All DOE Office Websites (Extended Search)

Methane (CH4) Gateway Pages to Methane Data Modern Records of Atmospheric Methane (CH4) and a 2000-year Ice-core Record from Law Dome, Antarctica 800,000-year Ice-Core Records of...

403

Virginia - State Energy Profile Data - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Uranium fuel, nuclear reactors, generation, spent fuel. ... Clean Cities Coalitions Virginia Clean Cities Coalition : Alternative Fuels: Virginia: ...

404

Surface Water Management Areas (Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Surface Water Management Areas (Virginia) Surface Water Management Areas (Virginia) Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General...

405

West Virginia/Geothermal | Open Energy Information  

Open Energy Info (EERE)

West Virginia/Geothermal West Virginia/Geothermal < West Virginia Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF West Virginia Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in West Virginia No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in West Virginia No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in West Virginia No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for West Virginia Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

406

Retail Unbundling - Virginia - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Retail Unbundling - Virginia. Status: The state has begun the process of implementing comprehensive unbundling programs for its residential gas customers.

407

Research and Development Concerning Coalbed Natural Gas  

Science Conference Proceedings (OSTI)

The Powder River Basin in northeastern Wyoming is one of the most active areas of coalbed natural gas (CBNG) development in the western United States. This resource provides clean energy but raises environmental concerns. Primary among these is the disposal of water that is co-produced with the gas during depressurization of the coal seam. Beginning with a few producing wells in Wyoming's Powder River Basin (PRB) in 1987, CBNG well numbers in this area increased to over 13,600 in 2004, with projected growth to 20,900 producing wells in the PRB by 2010. CBNG development is continuing apace since 2004, and CBNG is now being produced or evaluated in four other Wyoming coal basins in addition to the PRB, with roughly 3500-4000 new CBNG wells permitted statewide each year since 2004. This is clearly a very valuable source of clean fuel for the nation, and for Wyoming the economic benefits are substantial. For instance, in 2003 alone the total value of Wyoming CBNG production was about $1.5 billion, with tax and royalty income of about $90 million to counties, $140 million to the state, and $27 million to the federal government. In Wyoming, cumulative CBNG water production from 1987 through December 2004 was just over 380,000 acre-feet (2.9 billion barrels), while producing almost 1.5 trillion cubic feet (tcf) of CBNG gas statewide. Annual Wyoming CBNG water production in 2003 was 74,457 acre-feet (577 million barrels). Total production of CBNG water across all Wyoming coal fields could total roughly 7 million acre-feet (55.5 billion barrels), if all of the recoverable CBNG in the projected reserves of 31.7 tcf were produced over the coming decades. Pumping water from coals to produce CBNG has been designated a beneficial water use by the Wyoming State Engineer's Office (SEO), though recently the SEO has limited this beneficial use designation by requiring a certain gas/water production ratio. In the eastern part of the PRB where CBNG water is generally of good quality, most of it is discharged to surface drainages or to soil (for irrigation). CBNG water quality generally declines when moving from the Cheyenne River drainage northwestward to the Belle Fourche, Little Powder, and Powder River drainages and in the central and western part of the PRB, most CBNG water goes to evaporation-infiltration ponds or is discharged directly to surface drainages. Concerns center on the salinity of the water, usually measured as total dissolved solids (TDS), or electrical conductivity (EC) and sodium adsorption ratio (SAR). Other management options currently in use include injection, managed irrigation (with additives to mitigate the effects of high salinity), atomization, and treatment by reverse osmosis or ion exchange. A key water quality issue is the cumulative effect of numerous CBNG water discharges on the overall water quality of basin streams. This leads to one of the most contentious issues in CBNG development in Wyoming's PRB: Montana's concern about the potential downstream effects of water quality degradation on rivers flowing north into Montana. Many of the benefits and costs associated with CBNG development have been debated, but dealing with CBNG water quantity and quality arguably has been the most difficult of all the issues. Given the importance of these issues for continued development of CBNG resources in Wyoming and elsewhere, the DOE-NETL funded project presented here focuses on CBNG co-produced water management. The research was organized around nine separate, but interrelated, technical project tasks and one administrative task (Task 1). The nine technical project tasks were pursued by separate research teams at the University of Wyoming, but all nine tasks were coordinated to the extent possible in order to maximize information gained about CBNG co-produced waters. In addition to project management in Task 1, the key research tasks included: (2) estimating groundwater recharge rates in the PRB; (3) groundwater contamination of trace elements from CBNG disposal ponds; (4) use of environmental tracers in assessing wate

William Ruckelshaus

2008-09-30T23:59:59.000Z

408

West Virginia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

May 13, 2010 May 13, 2010 CX-002246: Categorical Exclusion Determination Decommission of B4, 112, Atmospheric Cold Flow Laboratory CX(s) Applied: B1.24, B1.27, B1.31 Date: 05/13/2010 Location(s): Morgantown, West Virginia Office(s): Fossil Energy, National Energy Technology Laboratory May 13, 2010 CX-002573: Categorical Exclusion Determination Millsop Community Center Energy Reduction Renovations CX(s) Applied: B2.5, B1.4, B5.1 Date: 05/13/2010 Location(s): Weirton, West Virginia Office(s): Energy Efficiency and Renewable Energy May 10, 2010 CX-002372: Categorical Exclusion Determination Building 17 and 19 Utility Meter Install CX(s) Applied: B1.15, B2.2 Date: 05/10/2010 Location(s): Morgantown, West Virginia Office(s): National Energy Technology Laboratory April 23, 2010 Recycling Energy Yields Super Savings

409

West Virginia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

April 29, 2011 April 29, 2011 CX-005662: Categorical Exclusion Determination The Use of Scrap Tires for Oil Well Stimulation CX(s) Applied: B3.7 Date: 04/29/2011 Location(s): Upper Falls, West Virginia Office(s): Fossil Energy, National Energy Technology Laboratory April 13, 2011 CX-005614: Categorical Exclusion Determination Building 33 Chemical Resistant Flooring Project CX(s) Applied: B1.3 Date: 04/13/2011 Location(s): Morgantown, West Virginia Office(s): Fossil Energy, National Energy Technology Laboratory April 13, 2011 CX-005613: Categorical Exclusion Determination Site-Wide Roadway Replacement CX(s) Applied: B1.3 Date: 04/13/2011 Location(s): Morgantown, West Virginia Office(s): Fossil Energy, National Energy Technology Laboratory April 12, 2011 CX-005607: Categorical Exclusion Determination

410

West Virginia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

April 7, 2010 April 7, 2010 CX-001435: Categorical Exclusion Determination Building 33 Chemical Resistant Flooring Project CX(s) Applied: B1.3 Date: 04/07/2010 Location(s): Morgantown, West Virginia Office(s): Fossil Energy, National Energy Technology Laboratory April 7, 2010 CX-001434: Categorical Exclusion Determination Building 7 Roof Replacement Project CX(s) Applied: B1.3 Date: 04/07/2010 Location(s): Morgantown, West Virginia Office(s): Fossil Energy, National Energy Technology Laboratory April 7, 2010 CX-001433: Categorical Exclusion Determination Site Perimeter Fencing Project CX(s) Applied: B1.3 Date: 04/07/2010 Location(s): Morgantown, West Virginia Office(s): Fossil Energy, National Energy Technology Laboratory April 2, 2010 W.Va. Mom Sees Benefits of Weatherization

411

West Virginia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 8, 2011 September 8, 2011 CX-006741: Categorical Exclusion Determination Information Technology Hub Relocation CX(s) Applied: B1.31 Date: 09/08/2011 Location(s): Morgantown, West Virginia Office(s): Fossil Energy, National Energy Technology Laboratory August 22, 2011 CX-006543: Categorical Exclusion Determination Building 40 New Video Surveillance CX(s) Applied: A11, B1.15, B2.3 Date: 08/22/2011 Location(s): Morgantown, West Virginia Office(s): Fossil Energy, National Energy Technology Laboratory August 12, 2011 CX-006480: Categorical Exclusion Determination Materials Research Laboratory (MRL) CX(s) Applied: B3.6 Date: 08/12/2011 Location(s): Morgantown, West Virginia Office(s): Fossil Energy, National Energy Technology Laboratory August 8, 2011 CX-006464: Categorical Exclusion Determination

412

Virginia Tech | OpenEI  

Open Energy Info (EERE)

Virginia Tech Virginia Tech Dataset Summary Description This project estimates the naturally available and technically recoverable U.S. wave energy resources, using a 51-month Wavewatch III hindcast database developed especially for this study by National Oceanographic and Atmospheric Administration's (NOAA's) National Centers for Environmental Prediction. For total resource estimation, wave power density in terms of kilowatts per meter is aggregated across a unit diameter circle. Source Electric Power Research Institute (EPRI) Date Released December 05th, 2011 (3 years ago) Date Updated Unknown Keywords EPRI MHK NREL ocean Virginia Tech wave wave power density Data application/pdf icon Download Full Report (pdf, 8.8 MiB) Quality Metrics Level of Review Some Review Comment

413

West Virginia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1, 2011 1, 2011 EIS-0445: DOE Notice of Availability of the Draft Environmental Impact Statement Mountaineer Commercial Scale Carbon Capture and Storage Project, Mason County, West Virginia March 4, 2011 EIS-0445: EPA Notice of Availability of the Draft Environmental Impact Statement Mountaineer Commercial Scale Carbon Capture and Storage Project, Mason County, West Virginia March 1, 2011 CX-005336: Categorical Exclusion Determination Materials Synthesis Laboratory Modifications/Additions CX(s) Applied: B3.6 Date: 03/01/2011 Location(s): Morgantown, West Virginia Office(s): Fossil Energy, National Energy Technology Laboratory March 1, 2011 CX-005335: Categorical Exclusion Determination National Energy Technology Laboratory Reciprocating Laboratory Decommissioning CX(s) Applied: B3.6

414

West Virginia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June 28, 2011 June 28, 2011 CX-006117: Categorical Exclusion Determination Flooring Improvements CX(s) Applied: B2.1, B2.5 Date: 06/28/2011 Location(s): Morgantown, West Virginia Office(s): Fossil Energy, National Energy Technology Laboratory June 23, 2011 CX-006129: Categorical Exclusion Determination Optical Sensors Laboratory CX(s) Applied: B3.6 Date: 06/23/2011 Location(s): Morgantown, West Virginia Office(s): Fossil Energy, National Energy Technology Laboratory June 21, 2011 CX-006132: Categorical Exclusion Determination Replacement of Sidewalk Along Collins Ferry Road CX(s) Applied: B1.3 Date: 06/21/2011 Location(s): Morgantown, West Virginia Office(s): Fossil Energy, National Energy Technology Laboratory June 15, 2011 CX-006137: Categorical Exclusion Determination B39 Cellular Repeater Installation

415

West Virginia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

November 30, 2010 November 30, 2010 CX-004582: Categorical Exclusion Determination Re-Utilization of Industrial Carbon Dioxide for Algae Production Using a Phase Change Material CX(s) Applied: A9, A11, B3.6 Date: 11/30/2010 Location(s): Triadelphia, West Virginia Office(s): Fossil Energy, National Energy Technology Laboratory November 18, 2010 CX-004477: Categorical Exclusion Determination Extreme Drilling Laboratory (XDL) CX(s) Applied: B3.6 Date: 11/18/2010 Location(s): Morgantown, West Virginia Office(s): Fossil Energy, National Energy Technology Laboratory November 18, 2010 CX-004470: Categorical Exclusion Determination Relocation of Laboratory on Morgantown Site from B25/102 to B4/112 CX(s) Applied: B3.6 Date: 11/18/2010 Location(s): Morgantown, West Virginia Office(s): Fossil Energy, National Energy Technology Laboratory

416

West Virginia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 19, 2010 March 19, 2010 CX-001303: Categorical Exclusion Determination Morgantown B39, Room B73: New Multi-Media Room Construction CX(s) Applied: B1.15 Date: 03/19/2010 Location(s): Morgantown, West Virginia Office(s): National Energy Technology Laboratory March 19, 2010 CX-001305: Categorical Exclusion Determination Site Wide Upgrade to Metering Software CX(s) Applied: A8 Date: 03/19/2010 Location(s): Morgantown, West Virginia Office(s): National Energy Technology Laboratory March 19, 2010 CX-001304: Categorical Exclusion Determination B3 Hot and Chilled Water Pump Upgrades CX(s) Applied: B1.5 Date: 03/19/2010 Location(s): Morgantown, West Virginia Office(s): National Energy Technology Laboratory March 17, 2010 CX-001327: Categorical Exclusion Determination Design/Construction/Installation of Appliance Technology Evaluation Center

417

West Virginia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Dioxide Sequestration (West Virginia) Carbon Dioxide Sequestration (West Virginia) The purpose of this law is to: October 16, 2013 Building Energy Code ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] websites.'' October 16, 2013 Alternative and Renewable Energy Portfolio Standard In June 2009, West Virginia enacted an ''Alternative and Renewable Energy Portfolio Standard'' that requires investor-owned utilities (IOUs)* with more than 30,000 residential customers to supply 25% of retail electric sales from eligible alternative and renewable energy resources by 2025.

418

The West Virginia Coal Economy February 2010  

E-Print Network (OSTI)

The West Virginia Coal Economy 2008 February 2010 Prepared By: Bureau of Business and Economic Partial funding for this research was provided by the West Virginia Coal Association. The opinions herein are those of the authors and do not necessarily reflect those of the West Virginia Coal Association, Higher

Mohaghegh, Shahab

419

NIST: Methane Symmetry Operations  

Science Conference Proceedings (OSTI)

*. Bookmark and Share. Version History Methane Symmetry Operations. JT Hougen Optical Technology Division Gloria Wiersma ...

2010-10-05T23:59:59.000Z

420

West Virginia Business & Economic Review, Spring 2010 1 West Virginia  

E-Print Network (OSTI)

in West Virginia during the past year have been widely distributed across industries. Indeed, losses were for energy and steel that results in less demand for coal and natural gas. Within the natural resources of con- struction and hotel accommodations, mostly in Las Vegas. Losses in the financial industry greatly

Mohaghegh, Shahab

Note: This page contains sample records for the topic "virginia coalbed methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Drainage, Sanitation, and Public Facilities Districts (Virginia) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Drainage, Sanitation, and Public Facilities Districts (Virginia) Drainage, Sanitation, and Public Facilities Districts (Virginia) Drainage, Sanitation, and Public Facilities Districts (Virginia) < Back Eligibility Agricultural Commercial Construction Developer Industrial Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Systems Integrator Tribal Government Utility Savings Category Water Buying & Making Electricity Home Weatherization Program Info State Virginia Program Type Siting and Permitting Provider Local Governments and Districts This legislation provides for the establishment of sanitary, sanitation, drainage, and public facilities districts in Virginia. Designated districts are public bodies, and have the authority to regulate the construction and development of sanitation and waste disposal projects in their

422

Climate Action Plan (Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Virginia) Virginia) Climate Action Plan (Virginia) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Virginia Program Type Climate Policies Provider Virginia Department of Environmental Qualiry Governor Timothy M. Kaine established the Governor's Commission on Climate

423

Forestry Policies (West Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Forestry Policies (West Virginia) Forestry Policies (West Virginia) Forestry Policies (West Virginia) < Back Eligibility Agricultural Commercial Program Info State West Virginia Program Type Environmental Regulations Provider Department of Commerce West Virginia's Forests are managed by the State Division of Forestry. In 2010 the State issues its Forest Resource Assessment: http://www.wvforestry.com/DOF100Assessment_Revised_091310_Part1.pdf The report summarizes available woody biomass resources, citing harvesting cost as a limiting factor due to complex terrain. In 2010 the Forestry Division issued the document "Strategic Plan for the sustainability of West Virginia Forests", which included a section summarizing the State Forester's Report to FMRC on the use of wood biomass from West Virginia forests:

424

Coordinated studies in support of hydraulic fracturing of coalbed methane. Annual report, November 1991-December 1992  

Science Conference Proceedings (OSTI)

The purpose of the work is to characterize common and potential fracturing fluids in terms of coal-fluid interactions to identify reasons for less than satisfactory performance and to ultimately devise alternative fluids and treatment procedures to optimize production following hydraulic fracturing. The laboratory data reported herein has proven helpful in designing improved hydraulic fracturing treatments and remedial treatments in the Black Warrior Basin. Acid inhibitors, scale inhibitors, additives to improve coal relative permeability to gas, and non-damaging polymer systems for hydraulic fracturing have been screened in coal damage tests. The optimum conditions for creating field-like foams in the laboratory have been explored. Tests have been run to identify minimum polymer and surfactant concentrations for applications of foam in coal. The roll of 100 mesh sand in controlling leakoff and impairing conductivity in coal has been investigated.

Not Available

1993-04-01T23:59:59.000Z

425

Simulation of CO2 Sequestration and Enhanced Coalbed Methane Production in Multiple Appalachian Basin Coal Seams  

Science Conference Proceedings (OSTI)

A DOE-funded field injection of carbon dioxide is to be performed in an Appalachian Basin coal seam by CONSOL Energy and CNX Gas later this year. A preliminary analysis of the migration of CO2 within the Upper Freeport coal seam and the resulting ground movements has been performed on the basis of assumed material and geometric parameters. Preliminary results show that ground movements at the field site may be in a range that are measurable by tiltmeter technology.

Bromhal, G.S.; Siriwardane, H.J.; Gondle, R.K.

2007-11-01T23:59:59.000Z

426

Multi-Seam Well Completion Technology: Implications for Powder River Basin Coalbed Methane Production  

Science Conference Proceedings (OSTI)

The purpose of this study is to evaluate the potential benefits of applying multiseam [well] completion (MSC) technology to the massive stack of low-rank coals in the Powder River Basin. As part of this, the study objectives are: Estimate how much additional CBM resource would become accessible and technically recoverable--compared to the current practice of drilling one well to drain a single coal seam; Determine whether there are economic benefits associated with MSC technology utilization (assuming its widespread, successful application) and if so, quantify the gains; Briefly examine why past attempts by Powder River Basin CBM operators to use MSC technology have been relatively unsuccessful; Provide the underpinnings to a decision whether a MSC technology development and/or demonstration effort is warranted by DOE. To a great extent, this assessment builds on the previously published study (DOE, 2002), which contains many of the key references that underlie this analysis. It is available on the U.S. Department of Energy, National Energy technology Laboratory, Strategic Center for Natural Gas website (www.netl.doe.gov/scng). It is suggested that readers obtain a copy of the original study to complement the current report.

Office of Fossil Energy; National Energy Technology Laboratory

2003-09-01T23:59:59.000Z

427

WATER QUALITY CHANGES AS A RESULT OF COALBED METHANE DEVELOPMENT IN A ROCKY MOUNTAIN WATERSHED1  

E-Print Network (OSTI)

discharge water in associated retention ponds moving from the south to the north. Further, Hulin (2003). LOWESS was used because it is usually superior to the parametric ordinary least squares regression sug

McClain, Michael

428

Influence of coal quality factors on seam permeability associated with coalbed methane production.  

E-Print Network (OSTI)

??Cleats are natural fractures in coal that serve as permeability avenues for darcy flow of gas and water to the well bore during production. Theoretically,… (more)

Wang, Xingjin

2007-01-01T23:59:59.000Z

429

Recovery 2011 CSPG CSEG CWLS Convention 1 Brine-methane Substitution: The Seismic Response of Coalbeds  

E-Print Network (OSTI)

an important source of natural gas (Shi and Durucan, 2005). The production of the CBM takes place when coal seam using a tank model which assumes that there is no variation of the reservoir properties). For the Gassmann fluid substitution, we assume a pore fluid of 100% brine as the initial condition and calculate

Ferguson, Robert J.

430

Other States Natural Gas Gross Withdrawals from Coalbed Wells (Million  

Gasoline and Diesel Fuel Update (EIA)

Coalbed Wells (Million Cubic Feet) Coalbed Wells (Million Cubic Feet) Other States Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 5,335 4,954 5,465 5,228 5,405 5,163 4,817 5,652 5,165 5,347 4,814 5,420 2004 5,684 5,278 5,822 5,570 5,758 5,500 5,132 6,022 5,502 5,697 5,129 5,774 2005 5,889 5,469 6,033 5,771 5,967 5,699 5,318 6,240 5,702 5,903 5,315 5,983 2006 65,302 59,484 66,007 63,071 65,663 63,437 65,249 65,951 62,242 65,271 63,215 64,841 2007 72,657 65,625 72,657 70,313 72,657 70,313 72,657 72,657 70,313 72,657 70,313 72,657 2008 75,926 71,027 75,926 73,476 75,926 73,476 75,926 75,926 73,476 75,926 73,476 75,926

431

Virginia Beach County, Virginia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

County, Virginia: Energy Resources County, Virginia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.7689068°, -76.0391909° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.7689068,"lon":-76.0391909,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

432

West Virginia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 8, 2010 September 8, 2010 Today: Live from the Carbon Capture and Storage Forum Want to know more about carbon capture and sequestration? Here'e how. August 25, 2010 CX-003556: Categorical Exclusion Determination Morgantown Site Metering Installation CX(s) Applied: B2.2 Date: 08/25/2010 Location(s): Morgantown, West Virginia Office(s): Fossil Energy, National Energy Technology Laboratory August 23, 2010 CX-003462: Categorical Exclusion Determination Visitor's Center Conference Room CX(s) Applied: B1.7, B1.15 Date: 08/23/2010 Location(s): Morgantown,West Virginia Office(s): Fossil Energy, National Energy Technology Laboratory August 17, 2010 CX-003427: Categorical Exclusion Determination Research Ridge 4 and 6 Data and Communication Cabling CX(s) Applied: B1.7 Date: 08/17/2010

433

West Virginia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

April 18, 2013 April 18, 2013 LM Discusses Management of LTS&M Records The U.S. Department of Energy Office of Legacy Management's (LM) efforts to maintain long-term surveillance and maintenance (LTS&M) records were highlighted during the 2013 Waste Management Symposia held February 24 through 28, in Phoenix, Arizona. April 18, 2013 Legacy Management Business Center January 25, 2013 AVESTAR provides high-quality, hands-on, simulator-based workforce training delivered by an experienced team of power industry training professionals for West Virginia students. | Photo courtesy of the Office of Fossil Energy. National Lab Helping to Train Operators for Next Generation of Power Plants Students in West Virginia are receiving hands-on experience for careers at cleaner-burning coal-fired power plants.

434

Virginia Natural Gas Gross Withdrawals and Production  

U.S. Energy Information Administration (EIA) Indexed Site

7,419 16,046 23,086 20,375 21,802 1967-2012 From Oil Wells 0 0 0 0 0 9 2006-2012 From Shale Gas Wells 19,100 19,468 18,284 16,433 18,501 17,212 2007-2012 From Coalbed Wells...

435

Women @ Energy: Virginia Dale | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Virginia Dale Virginia Dale Women @ Energy: Virginia Dale April 5, 2013 - 11:12am Addthis Dr. Virginia H. Dale is a Corporate Fellow in the Environmental Sciences Division at Oak Ridge National Laboratory (ORNL). Dr. Virginia H. Dale is a Corporate Fellow in the Environmental Sciences Division at Oak Ridge National Laboratory (ORNL). Check out other profiles in the Women @ Energy series and share your favorites on Pinterest. Dr. Virginia H. Dale is a Corporate Fellow in the Environmental Sciences Division at Oak Ridge National Laboratory (ORNL). She is Director of ORNL's Center for BioEnergy Sustainability. She obtained her M.S. in mathematics from the University of Tennessee and her Ph.D. in mathematical ecology from the University of Washington. Her primary research interests

436

DOE Solar Decathlon: West Virginia University  

NLE Websites -- All DOE Office Websites (Extended Search)

West Virginia University West Virginia University Team website: solar.wvu.edu Photo of members of the West Virginia University Solar Decathlon 2013 team in front of a building on campus. Enlarge image The West Virginia University Solar Decathlon 2013 team (Courtesy of the West Virginia University Solar Decathlon 2013 team) he West Virginia University audiovisual presentation Jury Feedback Architecture Contest Market Appeal Contest Engineering Contest Communications Contest Team Deliverables Project Manual Construction Drawings Menu and Recipes Neither the United States, nor the Department of Energy, nor the Alliance for Sustainable Energy LLC, nor any of their contractors, subcontractors, or their employees make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or

437

State Water Quality (Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Quality (Virginia) Quality (Virginia) State Water Quality (Virginia) < Back Eligibility Commercial Construction Industrial Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Systems Integrator Tribal Government Utility Savings Category Water Buying & Making Electricity Home Weatherization Program Info State Virginia Program Type Environmental Regulations Siting and Permitting Provider Virginia Department of Environmental Quality It is the policy of the Commonwealth of Virginia to: (1) protect existing high quality state waters and restore the quality of all other state waters to permit all reasonable public uses and support the propagation and growth of all aquatic life which might reasonably be expected to inhabit them; (2) safeguard the clean waters of the Commonwealth from pollution; (3) prevent

438

West Virginia | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

West Virginia West Virginia Last updated on 2013-08-02 Commercial Residential Code Change Current Code ASHRAE Standard 90.1-2007 Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of West Virginia (BECP Report, Sept. 2009) Approximate Energy Efficiency Equivalent to ASHRAE 90.1-2007 Effective Date 09/01/2013 Adoption Date 07/18/2012 Code Enforcement Mandatory DOE Determination Standard 90.1-2007: Yes Standard 90.1-2010: No West Virginia DOE Determination Letter, May 31, 2013 West Virginia State Certification of Commercial and Residential Building Energy Codes Current Code 2009 IECC Approved Compliance Tools Can use REScheck State Specific Research Impacts of the 2009 IECC for Residential Buildings in the State of West Virginia (BECP Report, Sept. 2009)

439

Energy Incentive Programs, Virginia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Virginia Virginia Energy Incentive Programs, Virginia October 29, 2013 - 1:19pm Addthis Updated August 2013 Virginia utilities budgeted almost $6 million in 2012 to promote customer energy efficiency. What public-purpose-funded energy efficiency programs are available in my state? Virginia has no public-purpose-funded energy efficiency programs. What utility energy efficiency programs are available to me? Dominion Virginia Power has recently initiated a slate of energy efficiency programs, including two commercial/industrial offerings that may be attractive to federal customers: The Commercial Energy Audit program offers a free audit to facilities up to 10 MW peak load in its service territory, and then provides rebates totaling up to $4,000 on identified measures that are implemented within

440

West Virginia Datos del Precio de la Gasolina  

NLE Websites -- All DOE Office Websites (Extended Search)

VirginiaGasPrices.com (Busqueda por Ciudad o Cdigo Postal) - GasBuddy.com West Virginia Gas Prices (Ciudades Selectas) - GasBuddy.com West Virginia Gas Prices (Organizado por...

Note: This page contains sample records for the topic "virginia coalbed methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

RARE BOOK SCHOOL 114 Alderman Library University of Virginia Charlottesville, Virginia 22904-4103  

E-Print Network (OSTI)

RARE BOOK SCHOOL 114 Alderman Library · University of Virginia · Charlottesville, Virginia 22904-depth study of physical books and manuscripts is scarcely to be found. Rare Book School at the University of Virginia keeps the history of books alive. More than 300 students will take our courses this year

Whittle, Mark

442

Virginia Center for Coal+Energy Research VirginiaPolytechnicInstituteandStateUniversity  

E-Print Network (OSTI)

established a reliable set of benchmarks for Virginia's coal, gas and oil, and electricity industries. Future. Assessment of Virginia Coalfield Region Capability to Support an Electric Power Generation Industry. Carl E- sponded well to the changing chal- lenges faced by Virginia's coal and en- ergy industries. The center

443

Better Buildings Neighborhood Program: Northern Virginia Residents...  

NLE Websites -- All DOE Office Websites (Extended Search)

Makeover Contest logo. The Local Energy Alliance Program (LEAP) awarded energy efficiency funding to three households as part of the program's Northern Virginia Home Energy...

444

Virginia Shale Production (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA)

Natural Gas > Navigator Energy Glossary ... Download Data (XLS File) No chart available. Virginia Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3

445

New infrastructure boosts West Virginia, southern Pennsylvania ...  

U.S. Energy Information Administration (EIA)

September 2012: Equitrans placed into service its newly built 0.20 Bcf/d Blacksville Compressor Station in Monongalia County, West Virginia.

446

Alleghany Highlands Economic Development Authority (Virginia) | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alleghany Highlands Economic Development Authority (Virginia) Alleghany Highlands Economic Development Authority (Virginia) Alleghany Highlands Economic Development Authority (Virginia) < Back Eligibility Commercial Construction Developer Industrial Investor-Owned Utility Municipal/Public Utility Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Virginia Program Type Enterprise Zone Industry Recruitment/Support Loan Program Public Benefits Fund Provider Alleghany Highlands Economic Development Corporation The Alleghany Highlands Economic Development Authority was created to encourage economic development in the Alleghany Highlands. The Authority provides financial support for the purchase of real estate, construction of

447

DOE Solar Decathlon: News Blog » Tidewater Virginia  

NLE Websites -- All DOE Office Websites (Extended Search)

Skip Navigation to Main Content U.S. Department of Energy Solar Decathlon Solar Decathlon Home Blog Home Solar Decathlon Blog - Tidewater Virginia Below you will find Solar...

448

Retail Unbundling - West Virginia - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Energy Information Administration (U.S ... Unbundled service has been “on the books” to all ... West Virginia had 374,301 residential customers who consumed 30 ...

449

New infrastructure boosts West Virginia, southern Pennsylvania ...  

U.S. Energy Information Administration (EIA)

A notable increase since early 2012 in natural gas production in West Virginia and nearby counties in southern Pennsylvania continued through July 2013.

450

Retail Unbundling - Virginia - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Natural Gas Residential Programs by State. ... re-establishing retail rate regulation for most electricity customers in Virginia on January 1, 2009.

451

,"Virginia Natural Gas Gross Withdrawals and Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Virginia Natural Gas Gross Withdrawals and Production",10,"Annual",2012,"6301967" ,"Release Date:","1212...

452

,"Virginia Natural Gas Consumption by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Virginia Natural...

453

Cape Charles - STIP Minimum Sustainability Requirements (Virginia...  

Open Energy Info (EERE)

Share this page on Facebook icon Twitter icon Cape Charles - STIP Minimum Sustainability Requirements (Virginia) This is the approved revision of this page, as well as...

454

Virginia/EZFeed Policies | Open Energy Information  

Open Energy Info (EERE)

Tidal Energy Wave Energy Wind energy StateProvince The Virginia Enterprise Zone Job Creation Grant provides cash grants to businesses located in Enterprise zones that...

455

Clean Cities: Virginia Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

project at JMU. The project's goal is to help Virginia's Shenandoah Valley reach 25% energy consumption from renewable sources by the year 2025. Cornett is from Collinsville,...

456

Jefferson Lab Science Series - Volcanoes in Virginia!  

NLE Websites -- All DOE Office Websites (Extended Search)

Dr. Elizabeth Baedke Johnson - James Madison University January 24, 2012 The recent earthquake may have you wondering what other surprises Virginia's geology may hold. Could there...

457

,"West Virginia Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","West Virginia Underground Natural...

458

,"Virginia Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Virginia Underground Natural Gas...

459

Heat pipe methanator  

DOE Patents (OSTI)

A heat pipe methanator for converting coal gas to methane. Gravity return heat pipes are employed to remove the heat of reaction from the methanation promoting catalyst, transmitting a portion of this heat to an incoming gas pre-heat section and delivering the remainder to a steam generating heat exchanger.

Ranken, William A. (Los Alamos, NM); Kemme, Joseph E. (Los Alamos, NM)

1976-07-27T23:59:59.000Z

460

NETL: Methane Hydrates - Methane Hydrate Reference Shelf  

NLE Websites -- All DOE Office Websites (Extended Search)

Reference Shelf Reference Shelf The Methane Hydrate Reference Shelf was created to provide a repository for information collected from projects funded as part of the National Methane Hydrate R&D Program. As output from the projects is received, it will be reviewed and then placed onto the reference shelf to be available to other methane hydrate researchers. Projects: DOE/NETL Projects : These pages contain detailed information on methane hydrate projects funded through the National Energy Technology Laboratory. Publications: Newsletter | Bibliography | Software | Reports | Program Publications | Photo Gallery Newsletter: Fire in the Ice: A publication highlighting the National Methane Hydrate R&D Program Bibliography: "Project Reports Bibliography"[PDF]: The bibliography lists publications resulting from DOE/NETL-sponsored

Note: This page contains sample records for the topic "virginia coalbed methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Virginia's 8th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

US Recovery Act Smart Grid Projects in Virginia's 8th congressional district US Recovery Act Smart Grid Projects in Virginia's 8th congressional district 2 Registered Policy Organizations in Virginia's 8th congressional district 3 Registered Energy Companies in Virginia's 8th congressional district 4 Registered Financial Organizations in Virginia's 8th congressional district US Recovery Act Smart Grid Projects in Virginia's 8th congressional district National Rural Electric Cooperative Association Smart Grid Demonstration Project Registered Policy Organizations in Virginia's 8th congressional district Bordeaux International Energy Consulting, LLC Conservation International Millennium Institute The Nature Conservancy Tropical Forest Foundation Registered Energy Companies in Virginia's 8th congressional district AES Corporation AES Solar

462

Albemarle County, Virginia ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Albemarle County, Virginia ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Albemarle County, Virginia ASHRAE Standard ASHRAE 169-2006 Climate...

463

Augusta County, Virginia ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Augusta County, Virginia ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Augusta County, Virginia ASHRAE Standard ASHRAE 169-2006 Climate Zone...

464

Bedford City County, Virginia ASHRAE 169-2006 Climate Zone |...  

Open Energy Info (EERE)

Bedford City County, Virginia ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Bedford City County, Virginia ASHRAE Standard ASHRAE 169-2006...

465

Barbour County, West Virginia ASHRAE 169-2006 Climate Zone |...  

Open Energy Info (EERE)

Barbour County, West Virginia ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Barbour County, West Virginia ASHRAE Standard ASHRAE 169-2006...

466

Accomack County, Virginia ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Accomack County, Virginia ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Accomack County, Virginia ASHRAE Standard ASHRAE 169-2006 Climate Zone...

467

Arlington County, Virginia ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Arlington County, Virginia ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Arlington County, Virginia ASHRAE Standard ASHRAE 169-2006 Climate...

468

Changes related to "Clean Coal Projects (Virginia)" | Open Energy...  

Open Energy Info (EERE)

page Share this page on Facebook icon Twitter icon Changes related to "Clean Coal Projects (Virginia)" Clean Coal Projects (Virginia) Jump to: navigation, search...

469

Pages that link to "Clean Coal Projects (Virginia)" | Open Energy...  

Open Energy Info (EERE)

History Share this page on Facebook icon Twitter icon Pages that link to "Clean Coal Projects (Virginia)" Clean Coal Projects (Virginia) Jump to: navigation, search...

470

Changes related to "Coal Mine Safety Act (Virginia)" | Open Energy...  

Open Energy Info (EERE)

Special page Share this page on Facebook icon Twitter icon Changes related to "Coal Mine Safety Act (Virginia)" Coal Mine Safety Act (Virginia) Jump to: navigation,...

471

Virginia Natural Gas Pipeline and Distribution Use (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Virginia Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Virginia Natural Gas Pipeline and Distribution Use (Million...

472

West Virginia/EZ Policies | Open Energy Information  

Open Energy Info (EERE)

http:www.wvcommerce.orgAppMediaassetsdocenergy11WVWoodByproduct.pdf Gas Pipeline Safety (West Virginia) West Virginia Safety and Operational Guidelines Yes State...

473

Virginia Natural Gas Gross Withdrawals from Shale Gas (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly Annual Download Data (XLS File) Virginia Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Virginia Natural Gas Gross Withdrawals from Shale Gas...

474

West Virginia Shale Proved Reserves (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) West Virginia Shale Proved Reserves (Billion Cubic Feet) West Virginia Shale Proved Reserves (Billion Cubic Feet) Decade Year-0...

475

West Virginia Natural Gas Gross Withdrawals from Shale Gas (Million...  

Annual Energy Outlook 2012 (EIA)

Annual Download Data (XLS File) West Virginia Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) West Virginia Natural Gas Gross Withdrawals from Shale Gas...

476

Water Pollution Control Act (West Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Pollution Control Act (West Virginia) Water Pollution Control Act (West Virginia) Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State...

477

Water Resources Protection and Management Act (West Virginia...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Resources Protection and Management Act (West Virginia) Water Resources Protection and Management Act (West Virginia) Eligibility Utility Fed. Government Commercial Agricultural...

478

,"West Virginia Natural Gas Gross Withdrawals from Shale Gas...  

U.S. Energy Information Administration (EIA) Indexed Site

PM" "Back to Contents","Data 1: West Virginia Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)" "Sourcekey","NGMEPG0FGSSWVMMCF" "Date","West Virginia...

479

West Virginia Dry Natural Gas Reserves Sales (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) West Virginia Dry Natural Gas Reserves Sales (Billion Cubic Feet) West Virginia Dry Natural Gas Reserves Sales (Billion Cubic Feet)...

480

West Virginia Natural Gas % of Total Residential - Sales (Percent...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) West Virginia Natural Gas % of Total Residential - Sales (Percent) West Virginia Natural Gas % of Total Residential - Sales...

Note: This page contains sample records for the topic "virginia coalbed methane" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Virginia Dry Natural Gas Reserves Sales (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Virginia Dry Natural Gas Reserves Sales (Billion Cubic Feet) Virginia Dry Natural Gas Reserves Sales (Billion Cubic Feet) Decade...

482

Dominion Virginia Power - Commercial Energy Efficiency Programs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dominion Virginia Power - Commercial Energy Efficiency Programs Dominion Virginia Power - Commercial Energy Efficiency Programs Dominion Virginia Power - Commercial Energy Efficiency Programs < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Sealing Your Home Ventilation Heat Pumps Appliances & Electronics Commercial Lighting Lighting Program Info Expiration Date March 31, 2013 State Virginia Program Type Utility Rebate Program Rebate Amount Commercial Energy Audit/Incentives: Up to $4,000 Duct Testing/Sealing: $90/ton (20 tons or less) Duct Testing/Sealing: $75/ton (21 tons or more) Dominion Virginia Power provides a number of rebates to customers for the installation of energy efficient equipment and measures.

483

Categorical Exclusion Determinations: Virginia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

23, 2012 23, 2012 CX-008903: Categorical Exclusion Determination Virginia-County-Albemarle CX(s) Applied: A1, A9, A11, B2.5, B5.1 Date: 08/23/2012 Location(s): Virginia Offices(s): Energy Efficiency and Renewable Energy August 1, 2012 CX-008971: Categorical Exclusion Determination Multi-Phase Fluid Flow Simulation Assisted Exploration and Production of Hydrocarbons from Niobrara.. CX(s) Applied: A9 Date: 08/01/2012 Location(s): Virginia Offices(s): National Energy Technology Laboratory July 9, 2012 CX-008608: Categorical Exclusion Determination Virginia Program Year 2012 State Energy Program Formula Grant CX(s) Applied: A9, A11 Date: 07/09/2012 Location(s): Virginia Offices(s): Golden Field Office June 11, 2012 CX-008470: Categorical Exclusion Determination Economic Development - Lighting Fixture Replacement/Upgrade & Indoor Heat

484

Clean Energy Group Virginia | Open Energy Information  

Open Energy Info (EERE)

Virginia Virginia Jump to: navigation, search Name Clean Energy Group (Virginia) Place Reston, Virginia Zip VA 20191 Product Virginia-based state regional office of the Clean Energy Group which promotes the commercialization of clean energy technologies. Coordinates 38.959374°, -77.354571° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.959374,"lon":-77.354571,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

485

NETL: Methane Hydrates - Methane Hydrate Library  

NLE Websites -- All DOE Office Websites (Extended Search)

Ridge region Ongoing areas of study in the Hydrate Ridge region Map showing where gas hydrates occur off the Cascadia Margin Locations of methane hydrate off the Cascadia Margin...

486

NETL: Methane Hydrates - Methane Hydrate Reference Shelf  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrates Primer provides background and general information about the history of hydrate R&D, the science of methane hydrates, their occurrences, and R&D related issues. Photo...

487

Why not methane--5. Delivering methane  

SciTech Connect

A discussion showed that the methane delivery system in the U.S. consists of 350,000 mi of underground high-pressure pipelines, 650,000 mi of distribution mains and connections to 45 million energy users. This delivery system now carries much less natural gas than it could carry because of the regulation-caused shortages of recent years. The delivery system is also connected to an efficient storage system of exhausted underground gas wells into which methane from any source (e.g., gasification of coal or vegetation) could be pumped and then recovered as needed. This storage system could be readily expanded and could thus be used for strategic storage of methane. Enough methane could be stored to replace foreign oil if the foreign supply should be interrupted; and methane can be quickly delivered nation-wide, whereas strategic oil storage requires unusual and expensive provisions for delivery. Natural gas usage could be increased by 20Vertical Bar3< in two years and would reduce payments for imported oil by about $10 billion. Doubling the amount of methane used in the U.S. would eliminate the need for foreign oil entirely.

Luntey, E.

1979-01-01T23:59:59.000Z

488

Methane to methanol conversion  

DOE Green Energy (OSTI)

The purpose of this project is to develop a novel process by which natural gas or methane from coal gasification products can be converted to a transportable liquid fuel. It is proposed that methanol can be produced by the direct, partial oxidation of methane utilizing air or oxygen. It is anticipated that, compared to present technologies, the new process might offer significant economic advantages with respect to capital investment and methane feedstock purity requirements. Results to date are discussed. 6 refs.

Finch, F.T.; Danen, W.C.; Lyman, J.L.; Oldenborg, R.C.; Rofer, C.K.; Ferris, M.J.

1990-01-01T23:59:59.000Z

489

Project and Equipment Financing (Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project and Equipment Financing (Virginia) Project and Equipment Financing (Virginia) Project and Equipment Financing (Virginia) < Back Eligibility Local Government Savings Category Other Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Solar Heating & Cooling Heating Water Heating Wind Program Info State Virginia Program Type State Loan Program Rebate Amount Varies Provider Virginia Resources Authority The Virginia Resources Authority (VRA) was created in 1984 and provides financial assistance to local governments in Virginia for a variety of projects, including energy and energy conservation projects. In March 2011, H.B. 2389 added "renewable energy" to the list of eligible projects (though it may have already been technically eligible under the "energy" category).

490

Alternative Fuels Data Center: Virginia Points of Contact  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Virginia Points of Virginia Points of Contact to someone by E-mail Share Alternative Fuels Data Center: Virginia Points of Contact on Facebook Tweet about Alternative Fuels Data Center: Virginia Points of Contact on Twitter Bookmark Alternative Fuels Data Center: Virginia Points of Contact on Google Bookmark Alternative Fuels Data Center: Virginia Points of Contact on Delicious Rank Alternative Fuels Data Center: Virginia Points of Contact on Digg Find More places to share Alternative Fuels Data Center: Virginia Points of Contact on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Virginia Points of Contact The following people or agencies can help you find more information about Virginia's clean transportation laws, incentives, and funding

491

Virginia's 5th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Registered Research Institutions in Virginia's 5th congressional district Registered Research Institutions in Virginia's 5th congressional district 2 Registered Networking Organizations in Virginia's 5th congressional district 3 Registered Energy Companies in Virginia's 5th congressional district 4 Energy Generation Facilities in Virginia's 5th congressional district Registered Research Institutions in Virginia's 5th congressional district The Global Innovation Commons Registered Networking Organizations in Virginia's 5th congressional district Virginia Energy Project Registered Energy Companies in Virginia's 5th congressional district Aker Wade Power Technologies LLC Apex Wind Energy Inc Fiberight LLC Greenlight Biofuels Greenlight Energy Resources Inc GER Multitrade Biomass Holdings LLC Sol Sage Energy Energy Generation Facilities in Virginia's 5th congressional district

492

Alternative Fuels Data Center: Virginia Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Virginia Laws and Virginia Laws and Incentives to someone by E-mail Share Alternative Fuels Data Center: Virginia Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Virginia Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Virginia Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Virginia Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Virginia Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Virginia Laws and Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Virginia Laws and Incentives Listed below are incentives, laws, and regulations related to alternative fuels and advanced vehicles for Virginia. Your Clean Cities coordinator at

493

Alternative Fuels Data Center: West Virginia Points of Contact  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

West Virginia Points West Virginia Points of Contact to someone by E-mail Share Alternative Fuels Data Center: West Virginia Points of Contact on Facebook Tweet about Alternative Fuels Data Center: West Virginia Points of Contact on Twitter Bookmark Alternative Fuels Data Center: West Virginia Points of Contact on Google Bookmark Alternative Fuels Data Center: West Virginia Points of Contact on Delicious Rank Alternative Fuels Data Center: West Virginia Points of Contact on Digg Find More places to share Alternative Fuels Data Center: West Virginia Points of Contact on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type West Virginia Points of Contact The following people or agencies can help you find more information about West Virginia's clean transportation laws, incentives, and funding

494

Plasma—Methane Reformation  

INL thermal plasma methane reformation process produces hydrogen and elemental carbon from natural gas and other hydrocarbons, such as natural gas or ...

495

Trends Online Methane Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Emissions Introduction Annual Estimates of Global Anthropogenic Methane Emissions: 1860-1994 - D.I. Stern and R.K. Kaufmann Contents-Trends | CDIAC Home 102001...

496

Virginia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Virginia: Energy Resources Virginia: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.4315734,"lon":-78.6568942,"alt":0,"address":"Virginia","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

497

Methane Hydrate Advisory Committee Charter | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Charter Methane Hydrate Advisory Committee Charter Methane Hydrate Advisory Committee Charter Methane Hydrate Advisory Committee Charter...

498

When Her Thousand Chimneys Smoked: Virginia's Enslaved Cooks and Their Kitchens  

E-Print Network (OSTI)

Chambers, Murder at Montpelier: Igbo African in Virginia (Douglas B. Murder at Montpelier: Igbo African in Virginia, (Chambers. Murder at Montpelier: Igbo African in Virginia, (

Deetz, Kelley

2010-01-01T23:59:59.000Z

499

NIST: Methane Symmetry Operations - Introduction  

Science Conference Proceedings (OSTI)

Methane Symmetry Operations. ... At least three T d symmetry classification systems are widely used at present in the methane literature [5-13]. ...

500

West Virginia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

December 1, 2006 December 1, 2006 EIS-0361: EPA Notice of Availability of Environmental Impact Statement Western Greenbrier Co-Production Demonstration Project, Rainelle, WV December 1, 2006 EIS-0361: Draft Environmental Impact Statement Western Greenbrier Co-Production Demonstration Project June 3, 2003 EIS-0361: Notice of Intent to Prepare an Environmental Impact Statement and Notice of Floodplain/Wetlands Involvement Western Greenbrier Co-Production Demonstration Project, Rainelle, West Virginia September 16, 2002 EA-1444: Finding of No Significant Impact Construction of a New Office Building, Childcare Facility, Parking Garage, and Storm water Retention Pond September 2, 2002 EA-1444: Final Environmental Assessment Construction of New Office Building, Child-Care Facility, Parking Garage,