Powered by Deep Web Technologies
Note: This page contains sample records for the topic "virgin islands energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Energy Office Grant Helps the Virgin Islands Environmental Resource Station  

Broader source: Energy.gov (indexed) [DOE]

Office Grant Helps the Virgin Islands Environmental Resource Office Grant Helps the Virgin Islands Environmental Resource Station Install Solar Panels, Improve Efficiency, and Cut Monthly Energy Use Nearly 30% (Fact Sheet), Energy Development in Island Nations, U.S. Virgin Islands (EDIN) Energy Office Grant Helps the Virgin Islands Environmental Resource Station Install Solar Panels, Improve Efficiency, and Cut Monthly Energy Use Nearly 30% (Fact Sheet), Energy Development in Island Nations, U.S. Virgin Islands (EDIN) This fact sheet highlights the energy challenges faced by the Virgin Islands Environmental Resource Station, the renewable energy and energy efficiency solutions implemented, the resulting energy efficiency savings, and other project benefits. 54376.pdf More Documents & Publications USVI Energy Road Map: Charting the Course to a Clean Energy Future

2

Virgin Islands Recovery Act State Memo | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Virgin Islands Recovery Act State Memo Virgin Islands Recovery Act State Memo Virgin Islands Recovery Act State Memo The American Recovery & Reinvestment Act( ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in the U.S. Virgin Islands are supporting a broad range of clean energy projects from energy efficiency and the smart grid to solar power and biofuels. Through these investments, the U.S. Virgin Islands' businesses, universities, non-profits, and local governments are creating quality jobs today and positioning the U.S. Virgin Islands to play an important role in the new energy economy of the future. Virgin Islands Recovery Act State Memo More Documents & Publications Slide 1 MP_recovery_act_memo__updated.pdf Northern Mariana Islands

3

Energy Office Grant Helps the Virgin Islands Environmental Resource...  

Office of Environmental Management (EM)

Office Grant Helps the Virgin Islands Environmental Resource Station Install Solar Panels, Improve Efficiency, and Cut Monthly Energy Use Nearly 30% Energy Office Grant Helps the...

4

US Virgin Islands-Energy Development in Island Nations (EDIN) Pilot Project  

Open Energy Info (EERE)

US Virgin Islands-Energy Development in Island Nations (EDIN) Pilot Project US Virgin Islands-Energy Development in Island Nations (EDIN) Pilot Project Jump to: navigation, search Logo: US Virgin Islands-Energy Development in Island Nations (EDIN) Pilot Project Name US Virgin Islands-Energy Development in Island Nations (EDIN) Pilot Project Agency/Company /Organization National Renewable Energy Laboratory, United States Department of Energy Partner EDIN Initiative Partners Sector Energy Focus Area Energy Efficiency Topics Background analysis, Low emission development planning Website http://www.edinenergy.org/usvi Country US Virgin Islands Latin America and the Caribbean References National Renewable Energy Laboratory, EERE Supported International Activities FY 2009 Annual Operating Plan (August 25, 2009 Abstract The purpose of the EDIN pilot is to have a meaningful impact in a short duration by developing clean energy technologies, policies, and financing mechanisms for the pilot island with projects whose elements can be repeated on other islands.

5

United States Virgin Islands: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Virgin Islands: Energy Resources Virgin Islands: Energy Resources Jump to: navigation, search Name United States Virgin Islands 2-letter ISO code VI 3-letter ISO code VIR Numeric ISO code 850 Equivalent URI DBpedia GeoNames ID 4796775 UN Region[1] Latin America and the Caribbean Coordinates 18.34829°, -64.98348° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":18.34829,"lon":-64.98348,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

6

U.S. Virgin Islands - Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

U.S. Virgin Islands - Net Metering U.S. Virgin Islands - Net Metering U.S. Virgin Islands - Net Metering < Back Eligibility Commercial Fed. Government Institutional Local Government Residential Schools State Government Tribal Government Savings Category Solar Buying & Making Electricity Wind Program Info Program Type Net Metering In February 2007, the U.S. Virgin Islands Public Services Commission approved a limited net-metering program for residential and commercial photovoltaic (PV), wind-energy or other renewable energy system up to 10 kilowatts (kW) in capacity. In July 2009, the legislature passed Act 7075 that raised the capacity limits to 20 kW for residential systems, 100 kW for commercial systems, and 500 kW for public (which includes government, schools, hospitals). The aggregate capacity limit of all net-metered systems is five megawatts

7

United States Virgin Islands: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Islands: Energy Resources Islands: Energy Resources (Redirected from Virgin Islands) Jump to: navigation, search Name United States Virgin Islands 2-letter ISO code VI 3-letter ISO code VIR Numeric ISO code 850 Equivalent URI DBpedia GeoNames ID 4796775 UN Region[1] Latin America and the Caribbean Coordinates 18.34829°, -64.98348° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":18.34829,"lon":-64.98348,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

8

US Virgin Islands EDIN Pilot Project | Open Energy Information  

Open Energy Info (EERE)

Islands EDIN Pilot Project Islands EDIN Pilot Project Jump to: navigation, search Logo: EDIN US Virgin Islands Pilot Project Name EDIN US Virgin Islands Pilot Project Agency/Company /Organization National Renewable Energy Laboratory, United States Department of Energy Partner EDIN Initiative Partners Sector Energy Focus Area Energy Efficiency Topics Low emission development planning, Background analysis Website http://www.edinenergy.org/usvi Country United States Northern America References National Renewable Energy Laboratory, EERE Supported International Activities FY 2009 Annual Operating Plan (August 25, 2009 Abstract The purpose of the EDIN pilot is to have a meaningful impact in a short duration by developing clean energy technologies, policies, and financing mechanisms for the pilot island with projects whose elements can be repeated on other islands.

9

Waste-to-Energy Evaluation: U.S. Virgin Islands  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Waste-to-Energy Evaluation: Waste-to-Energy Evaluation: U.S. Virgin Islands Jerry Davis, Scott Haase, and Adam Warren Technical Report NREL/TP-7A20-52308 August 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Waste-to-Energy Evaluation: U.S. Virgin Islands Jerry Davis, Scott Haase, and Adam Warren Prepared under Task No(s). IDVI.0000 and IDVI.0032 Technical Report NREL/TP-7A20-52308 August 2011 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

10

Waste-to-Energy Evaluation: U.S. Virgin Islands  

Broader source: Energy.gov (indexed) [DOE]

Waste-to-Energy Evaluation: U.S. Virgin Islands Jerry Davis, Scott Haase, and Adam Warren Technical Report NREL/TP-7A20-52308 August 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Waste-to-Energy Evaluation: U.S. Virgin Islands Jerry Davis, Scott Haase, and Adam Warren Prepared under Task No(s). IDVI.0000 and IDVI.0032 Technical Report NREL/TP-7A20-52308 August 2011 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

11

Energy Department Supports Clean Energy Development in the U.S. Virgin Islands  

Office of Energy Efficiency and Renewable Energy (EERE)

The U.S. Virgin Islands (USVI) is working with the Energy Department to transition from fossil fuel energy to the renewable resources that are abundant on the islands.

12

U.S. Virgin Islands Energy Road Map: Analysis | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Virgin Islands Energy Road Map: Analysis Virgin Islands Energy Road Map: Analysis U.S. Virgin Islands Energy Road Map: Analysis This report lays out the strategy envisioned by the stakeholders in the U.S. Virgin Islands, U.S. Department of Energy, and U.S. Department of Interior to achieve the ambitious goal of achieving a 60% reduction in business-as-usual fossil fuel demand by 2025 (60x25) within the electricity sector. Instead, this work and supporting analysis provides a framework within which decisions can begin to be made, a concrete vision of what the future might hold, and a guide to determine what questions should follow. 52360.pdf More Documents & Publications USVI Energy Road Map: Charting the Course to a Clean Energy Future (Brochure), EDIN (Energy Development in Island Nations), U.S. Virgin

13

U.S. Virgin Islands - Renewables Portfolio Targets | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

U.S. Virgin Islands - Renewables Portfolio Targets U.S. Virgin Islands - Renewables Portfolio Targets U.S. Virgin Islands - Renewables Portfolio Targets < Back Eligibility Utility Program Info Program Type Renewables Portfolio Standard In July 2009, the Virgin Islands passed Act 7075. Among other provisions, the legislation establishes that the "peak demanded generating capacity" of the Virgin Islands Water and Power Authority* must be from renewables according to the following schedule: * 20% by January 1, 2015 * 25% by January 1, 2020 * 30% by January 1, 2025 It further establishes that a "majority" of this generating capacity must come from renewables or alternative technologies beyond 2025. Joint rulemaking is to be undertaken by the Virgin Islands Energy Office and the Virgin Islands Water and Power Authority, although the rules are not yet

14

Energy Office Grant Helps the Virgin Islands Environmental Resource Station Install Solar Panels, Improve Efficiency, and Cut Monthly Energy Use Nearly 30% (Fact Sheet), Energy Development in Island Nations, U.S. Virgin Islands (EDIN)  

Broader source: Energy.gov (indexed) [DOE]

Office Grant Helps the Virgin Islands Environmental Office Grant Helps the Virgin Islands Environmental Resource Station Install Solar Panels, Improve Efficiency, and Cut Monthly Energy Use Nearly 30% Organization Virgin Islands Energy Office www.vienergy.org Industry/Sector Government/Nonprofit Deployment Location St. John, U.S. Virgin Islands This project is such a great learning tool, and I am excited about its progress and being able to show students visiting either VIERS or our website the impact of solar energy. -Randy Brown VIERS Administrator The Virgin Islands Environmental Resource Station developed a solar classroom to educate young people in the U.S. Virgin Islands about renewable energy technologies and their energy and environmental impacts. Photo from Don Buchanan, Virgin Islands Energy Office,

15

Publications on the U.S. Virgin Islands | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Publications on the U.S. Virgin Islands Publications on the U.S. Virgin Islands Publications on the U.S. Virgin Islands Find publications on deploying energy efficiency and renewable energy in the U.S. Virgin Islands (USVI) as part of an Energy Development in Island Nations (EDIN) pilot project. EDIN-USVI Clean Energy Quarterly This newsletter highlights progress the EDIN-USVI working groups are making in the areas of energy efficiency, renewable energy, transportation, community education and outreach, and energy policy to advance the territory's clean energy goals. Energy Department Helps Advance Island Clean Energy Goals This fact sheet highlights a June 2012 solar power purchase agreement between the Virgin Islands Water and Power Authority and three corporations. It describes how financial support from DOE and technical

16

U.S. Virgin Islands Energy Road Map: Analysis  

Broader source: Energy.gov (indexed) [DOE]

Energy Energy Road Map: Analysis Eric Lantz, Dan Olis, and Adam Warren Technical Report NREL/TP-7A20-52360 September 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 U.S. Virgin Islands Energy Road Map: Analysis Eric Lantz, Dan Olis, and Adam Warren Prepared under Task No. IDVI.0020 Technical Report NREL/TP-7A20-52360 September 2011 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

17

U.S. Virgin Islands - Search - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA) Indexed Site

US Virgin Islands US Virgin Islands Profile US Virgin Islands US Virgin Islands Profile Territory Profile and Energy Estimates Change State/Territory Choose a U.S. State or Territory United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming U.S. Territories American Samoa Guam Northern Mariana Islands Puerto Rico US Virgin Islands Overview Data State Profiles Economy Reserves & Supply Imports & Exports

18

Waste-to-Energy Evaluation: U.S. Virgin Islands  

SciTech Connect (OSTI)

This NREL technical report evaluates the environmental impact and fundamental economics of waste-to-energy (WTE) technology based on available data from commercially operating WTE facilities in the United States. In particular, it considers life-cycle impacts of WTE as compared to landfill disposal and various forms of electrical generation, as well as WTE impacts on source reduction or recycling programs. In addition, it evaluates the economics and potential environmental impact of WTE in the U.S. Virgin Islands (USVI) based on existing USVI waste stream characterization data, recycling challenges unique to the USVI, and the results of cost and environmental modeling of four municipal solid waste (MSW) management options, including landfill, refuse-derived fuel (RDF) production, recycling, and gassification plus RDF.

Davis, J.; Hasse, S.; Warren, A.

2011-08-01T23:59:59.000Z

19

USVI Energy Road Map: Charting the Course to a Clean Energy Future (Brochure), EDIN (Energy Development in Island Nations), U.S. Virgin Islands  

Broader source: Energy.gov (indexed) [DOE]

USVI Energy Road Map Charting the Course to a Clean Energy Future EDIN Energy Development in Island Nations U.S. Virgin Islands EDIN Energy Development in Island Nations U.S. Virgin Islands EDIN Energy Development in Island Nations EDIN Energy Development in Island Nations U.S. Virgin Islands EDIN Energy Development in Island Nations EDIN Energy Development in Island Nations 1 USVI Energy Road Map Energy transformation. It's an enormous undertaking. One that has been discussed for decades. Debated hotly. Pursued intermittently. And supported halfheartedly in response to various short-lived crises. Until now. Today, the need to move beyond the status quo is driven not by "doom-and-gloom" predictions but by realities on the ground. The global economy is under constant threat as

20

USVI Energy Road Map: Charting the Course to a Clean Energy Future (Brochure), EDIN (Energy Development in Island Nations), U.S. Virgin Islands  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

USVI Energy Road Map Charting the Course to a Clean Energy Future EDIN Energy Development in Island Nations U.S. Virgin Islands EDIN Energy Development in Island Nations U.S. Virgin Islands EDIN Energy Development in Island Nations EDIN Energy Development in Island Nations U.S. Virgin Islands EDIN Energy Development in Island Nations EDIN Energy Development in Island Nations 1 USVI Energy Road Map Energy transformation. It's an enormous undertaking. One that has been discussed for decades. Debated hotly. Pursued intermittently. And supported halfheartedly in response to various short-lived crises. Until now. Today, the need to move beyond the status quo is driven not by "doom-and-gloom" predictions but by realities on the ground. The global economy is under constant threat as

Note: This page contains sample records for the topic "virgin islands energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

NREL: News Feature - NREL Helping Virgin Islands Cut Fuel Use  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

- 450 kWh per month compared to 900 kWh. Moving Renewables onto the Grid Virgin Islands Energy Reduction Plan U.S. Virgin Islands Gov. John P. de Jongh, Jr., and other...

22

Recovery Act State Memos Virgin Islands  

Broader source: Energy.gov (indexed) [DOE]

Virgin Virgin Islands For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 For total Recovery Act jobs numbers in the U.S. Virgin Islands go to www.recovery.gov

23

EDIN-USVI Clean Energy Quarterly: Volume 1, Issue 2, March 2011, Energy Development in Island Nations, U.S. Virgin Islands (Newsletter)  

SciTech Connect (OSTI)

This quarterly newsletter provides timely news and information about the plans and progress of the Energy Development in Island Nations U.S. Virgin Islands pilot project, including significant events and milestones, work undertaken by each of the five working groups, and project-related renewable energy and energy efficiency projects.

Not Available

2011-03-01T23:59:59.000Z

24

Insular Area energy vulnerability, Puerto Rico, US Virgin Islands. Technical Appendix 1  

SciTech Connect (OSTI)

This report was prepared in response to Section 1406 of the Energy Policy Act of 1992 (P.L. 192-486). The Act directed the Department of Energy (DOE) to ``conduct a study of the implications of the unique vulnerabilities of the insular areas to an oil supply disruption,`` and to ``outline how the insular areas shall gain access to vital oil supplies during times of national emergency.`` The Act defines the insular areas to be the US Virgin Islands and Puerto Rico in the Caribbean, and Guam, American Samoa, the Commonwealth of the Northern Mariana Islands (CNMI), and Palau in the Pacific. This report is the analysis of Puerto Rico and the US Virgin Islands. In the study, ``unique vulnerabilities`` were defined as susceptibility to: (1) more frequent or more likely interruptions of oil supplies compared to the mainland, and/or (2) disproportionately larger or more likely economic losses in the event of an oil supply disruption. In order to asses unique vulnerabilities, the study examined in the insular areas` experience during past global disruptions of oil supplies and during local emergencies caused by natural disasters. The effects of several possible future global disruptions and local emergencies were also analyzed. Analyses were based on historical data, simulations using energy and economic models, and interviews with officials in the insular governments and the energy industry.

Stern, M.; Willard, E.E.; Efferding, S. [Ensys Energy & Systems, Inc., Flemington, NJ (United States)

1994-05-01T23:59:59.000Z

25

Waste-to-Energy Evaluation: U.S. Virgin Islands  

Office of Energy Efficiency and Renewable Energy (EERE)

This report evaluates the environmental impact and fundamental economics of waste-to-energy (WTE) technology based on available data from commercially operating WTE facilities in the United States.

26

Integrating Renewable Energy into the Transmission and Distribution System of the U.S. Virgin Islands  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Renewable Energy Renewable Energy into the Transmission and Distribution System of the U.S. Virgin Islands Kari Burman, Dan Olis, Vahan Gevorgian, Adam Warren, and Robert Butt National Renewable Energy Laboratory Peter Lilienthal and John Glassmire HOMER Energy LLC Technical Report NREL/TP-7A20-51294 September 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Contract No. DE-AC36-08GO28308 National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Technical Report NREL/TP-7A20-51294 September 2011 Integrating Renewable Energy into the Transmission and Distribution System of the

27

Integrating Renewable Energy into the Transmission and Distribution System of the U.S. Virgin Islands  

Broader source: Energy.gov (indexed) [DOE]

Integrating Renewable Energy Integrating Renewable Energy into the Transmission and Distribution System of the U.S. Virgin Islands Kari Burman, Dan Olis, Vahan Gevorgian, Adam Warren, and Robert Butt National Renewable Energy Laboratory Peter Lilienthal and John Glassmire HOMER Energy LLC Technical Report NREL/TP-7A20-51294 September 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Contract No. DE-AC36-08GO28308 National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Technical Report NREL/TP-7A20-51294 September 2011 Integrating Renewable Energy into the Transmission and

28

U.S. Virgin Islands Regional High School Science Bowl | U.S. DOE Office of  

Office of Science (SC) Website

U.S. Virgin Islands Regions » U.S. Virgin U.S. Virgin Islands Regions » U.S. Virgin Islands High School Regional Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov U.S. Virgin Islands Regions U.S. Virgin Islands High School Regional Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Gerald Walters Email: gwalters@sttj.k12.vi Regional Event Information

29

Energy Office Grant Helps the Virgin Islands Environmental Resource Station Install Solar Panels, Improve Efficiency, and Cut Monthly Energy Use Nearly 30% (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet highlights the energy challenges faced by the Virgin Islands Environmental Resource Station (VIERS), the renewable energy and energy efficiency solutions implemented, the resulting energy efficiency savings, and other project benefits. In 2011, VIERS installed a 9.4 kW solar system funded by a $50,000 American Recovery and Reinvestment Act (ARRA) grant, which was administered by VIEO. To identify additional energy-saving opportunities, VIERS performed an energy audit of appliances, which resulted in the removal of two water coolers and the installation of a water meter to monitor water use and how it relates to electric pump use. VIERS also added an educational component to the project, developing a solar classroom near the original solar system. By building on previous energy conservation measures and making additional investments in renewable energy technology, VIERS has lowered its average monthly energy consumption nearly 30%, even with an increase in guests. The VIERS efforts are not limited to the technology installations, however. They also serve to impact the youth of the U.S. Virgin Islands (USVI) by educating young people about energy efficiency and renewable energy technologies and their energy and environmental impacts. VIERS solar system is connected to the Web via a live feed that posts solar output data in real time, increasing the VIERS solar classroom's potential educational impact exponentially.

Not Available

2012-03-01T23:59:59.000Z

30

Energy Department Helps Advance Island Clean Energy Goals (Fact...  

Office of Environmental Management (EM)

Department Helps Advance Island Clean Energy Goals U.S. Virgin Islands Signs Solar Deal Worth 65 Million Like many islands around the world, the U.S. Virgin Islands (USVI) is...

31

U.S. Virgin Islands Wind Resources Update 2014  

Office of Environmental Management (EM)

Thanks to the students of University of the Virgin Islands and their advisor, Dr. David Smith, for monitoring and maintaining the wind measurement equipment and helping ensure...

32

Puerto Rico and U.S. Virgin Islands Wind Resource Map at 50 meters  

Wind Powering America (EERE)

% % % % % % % % % % % % % % % % % % % % % 19-JUN-2007 1.1.1 U.S. Department of Energy National Renewable Energy Laboratory Puerto Rico and U.S. Virgin Islands - 50 m Wind Power...

33

Virgin Islands Water Resources Research Institute Annual Technical Report  

E-Print Network [OSTI]

water is a concern, so too is proper disposal of wastewater. The Virgin Islands Water Resources Research with cistern water quality, treatment of wastewater from aquaponic systems and sediment export from watersheds is a major concern in the Territory of the US Virgin Islands. As part of our endeavour to do a detailed

34

U.S. Virgin Islands - Solar and Wind Easements and Rights Laws | Department  

Broader source: Energy.gov (indexed) [DOE]

U.S. Virgin Islands - Solar and Wind Easements and Rights Laws U.S. Virgin Islands - Solar and Wind Easements and Rights Laws U.S. Virgin Islands - Solar and Wind Easements and Rights Laws < Back Eligibility Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Solar Buying & Making Electricity Heating & Cooling Commercial Heating & Cooling Heating Water Heating Wind Program Info Program Type Solar/Wind Access Policy In the U.S. Virgin Islands, the owner of a solar or wind-energy system is permitted to negotiate for assurance of continued access to the system's energy source. "Solar or wind-energy system" is defined as "any system that converts, stores, collects, protects or distributes the kinetic energy of the sun or wind into mechanical, chemical or electrical energy to provide

35

U.S. Virgin Islands Regions | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

U.S. Virgin Islands Regions U.S. Virgin Islands Regions National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov High School Regionals U.S. Virgin Islands Regions Print Text Size: A A A RSS Feeds FeedbackShare Page U.S. Virgin Islands Coaches can review the high school regional locations listed below. Please note: Registrations are based on the location of your school. Please be sure to select the regional that is designated for your

36

U.S. Virgin Islands Transportation Petroleum Reduction Plan  

Broader source: Energy.gov (indexed) [DOE]

Transportation Petroleum Reduction Plan Caley Johnson Technical Report NREL/TP-7A40-52565 September 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 U.S. Virgin Islands Transportation Petroleum Reduction Plan Caley Johnson Prepared under Task No. IDVI.0070 Technical Report NREL/TP-7A40-52565 September 2011 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty,

37

U.S. Virgin Islands Transportation Petroleum Reduction Plan  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transportation Petroleum Reduction Plan Caley Johnson Technical Report NREL/TP-7A40-52565 September 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 U.S. Virgin Islands Transportation Petroleum Reduction Plan Caley Johnson Prepared under Task No. IDVI.0070 Technical Report NREL/TP-7A40-52565 September 2011 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty,

38

U.S. Virgin Islands - Solar Water Heating Requirement for New Construction  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » U.S. Virgin Islands - Solar Water Heating Requirement for New Construction U.S. Virgin Islands - Solar Water Heating Requirement for New Construction < Back Eligibility Commercial Construction Institutional Local Government Low-Income Residential Multi-Family Residential Residential State Government Savings Category Heating & Cooling Solar Water Heating Program Info Program Type Building Energy Code In July 2009, U.S. Virgin Islands enacted legislation Act 7075. This legislation requires all new developments, and substantial building modifications, must be installed with energy efficient solar water heaters to provide at least 70% of the building's water heating needs. This is for all building types: residential, commercial, and governmental.

39

Stakeholder Engagement and Outreach: Puerto Rico and U.S. Virgin Islands  

Wind Powering America (EERE)

Maps & Data Maps & Data Printable Version Bookmark and Share Utility-Scale Land-Based Maps Wind Resource Potential Offshore Maps Community-Scale Maps Residential-Scale Maps Anemometer Loan Programs & Data Puerto Rico and U.S. Virgin Islands 50-Meter Wind Resource Map Puerto Rico and U.S. Virgin Islands wind resource map. Click on the image to view a larger version. Enlarge image This Puerto Rico wind map and the U.S. Virgin Islands wind map shows the wind resource at 50 meters. Download a printable map. If you have a disability and need assistance reading the wind map, please email the webmaster. More Information High Resolution 50-Meter Wind Data Files The U.S. Department of Energy's Wind Program and the National Renewable Energy Laboratory (NREL) published a wind resource map for Puerto Rico and

40

U.S. Virgin Islands Petroleum Price-Spike Preparation  

SciTech Connect (OSTI)

This NREL technical report details a plan for the U.S. Virgin Islands (USVI) to minimize the economic damage caused by major petroleum price increases. The assumptions for this plan are that the USVI will have very little time and money to implement it and that the population will be highly motivated to follow it because of high fuel prices. The plan's success, therefore, is highly dependent on behavior change. This plan was derived largely from a review of the actions taken and behavior changes made by companies and commuters throughout the United States in response to the oil price spike of 2008. Many of these solutions were coordinated by or reported through the 88 local representatives of the U.S. Department of Energy's Clean Cities program. The National Renewable Energy Laboratory provides technical and communications support for the Clean Cities program and therefore serves as a de facto repository of these solutions. This plan is the first publication that has tapped this repository.

Johnson, C.

2012-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "virgin islands energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

NREL: Technology Deployment - NREL Helps U.S. Virgin Islands Install Wind  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NREL Helps U.S. Virgin Islands Install Wind Testing Equipment NREL Helps U.S. Virgin Islands Install Wind Testing Equipment Photo of wind turbines being erected. NREL's analysis and technical expertise is helping the U.S. Virgin Islands find ways to reduce fossil fuel use by 60% through the development of utility-scale wind opportunities. January 10, 2013 With the help of NREL, the U.S. Virgin Islands (USVI) recently marked a major milestone on the way toward its goal of a 60% reduction in fossil fuel use by 2025. In December, NREL experts assisted with the installation of wind anemometer towers and sonic detection and ranging (SODAR) equipment on the islands of St. Thomas and St. Croix to collect data that will be used for the development of a utility-scale wind project in the territory. The installation represents how the USVI is moving forward with NREL's

42

Virgin Green Fund | Open Energy Information  

Open Energy Info (EERE)

Virgin Green Fund Virgin Green Fund Jump to: navigation, search Name Virgin Green Fund Place London, Greater London, United Kingdom Zip WC2B 4AS Sector Efficiency, Renewable Energy Product The Virgin Green Fund has been established to invest in companies in the renewable energy and resource efficiency sectors, primarily in the United States and Europe. Coordinates 51.506325°, -0.127144° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.506325,"lon":-0.127144,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

43

Puerto Rico and U.S. Virgin Islands Wind Resource Map at 50 meters  

Wind Powering America (EERE)

% % % % % % % % % % % % % % % % % % % % % % 19-JUN-2007 1.1.1 U.S. Department of Energy National Renewable Energy Laboratory Puerto Rico and U.S. Virgin Islands - 50 m Wind Power Mayaguez 20 0 20 40 60 80 100 Kilometers 20 0 20 40 60 Miles Ponce San Juan Charlotte Amalie Cruz Bay PUERTO RICO VIRGIN ISLANDS Wind Power Class 1 2 3 4 5 Resource Potential Poor Marginal Fair Good Excellent Wind Power Density at 50 m W/m 0 - 200 200 - 300 300 - 400 400 - 500 500 - 600 2 Wind Speed at 50 m m/s 0.0 - 5.9 5.9 - 6.8 6.8 - 7.5 7.5 - 8.0 8.0 - 8.5 a Wind Speed at 50 m mph 0.0 - 13.2 13.2 - 15.2 15.2 - 16.8 16.8 - 17.9 17.9 - 19.0 a Wind speeds are based on a Weibull k of 2.5 at sea level. a Wind Power Classification The annual wind power estimates for this map were produced by AWS Truewind

44

Modeling the fate and transport of nitrogen and sediment within coastal embayments on St. John, U.S. Virgin Islands  

E-Print Network [OSTI]

The recent rises in resident and tourist populations on St. John in the U.S. Virgin Islands have spurred the construction of new roads and housing developments throughout much of the island. As a result, a number of ...

Walker, Jeffrey D. (Jeffrey Douglas)

2007-01-01T23:59:59.000Z

45

WINDExchange: Puerto Rico and U.S. Virgin Islands 50-Meter Wind...  

Wind Powering America (EERE)

Data Files The U.S. Department of Energy's Wind Program and the National Renewable Energy Laboratory (NREL) published a wind resource map for Puerto Rico and U.S. Virgin...

46

Energy Department Helps Advance Island Clean Energy Goals (Fact Sheet)  

SciTech Connect (OSTI)

This U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) fact sheet highlights a June 2012 solar power purchase agreement between the Virgin Islands Water and Power Authority and three corporations. The fact sheet describes how financial support from DOE and technical assistance from DOE's National Renewable Energy Laboratory enabled the U.S. Virgin Islands to realistically assess its clean energy resources and identify the most viable and cost-effective solutions to its energy challenges--resulting in a $65 million investment in solar energy in the territory.

Not Available

2012-10-01T23:59:59.000Z

47

Virgin Islands Water Resources Research Institute Annual Technical Report  

E-Print Network [OSTI]

to be a concern, though recently, major improvements have been made in the wastewater collection and treatment of the utility of an irrigation strategy, modeling of a possible impact of climate change, quantification of water for the islands' limited public water distribution systems. Wastewater disposal continues

48

Holocene Reef Development Along the Northeastern St. Croix Shelf, Buck Island, U.S. Virgin Islands  

Science Journals Connector (OSTI)

...Power is supplied from a 21 hp diesel engine and hydraulic pump on the pontoon...position of each sample and the general character of the reef interior. We tested...Buck Island reef through time. The general pattern is one of massive corals...

Dennis K. Hubbard; Heinrich Zankl; Ivor Van Heerden; Ivan P. Gill

49

Energy Department Helps Advance Island Clean Energy Goals  

Office of Energy Efficiency and Renewable Energy (EERE)

Highlights a solar power purchase agreement between the Virgin Islands Water and Power Authority and three corporations. It describes how financial support from DOE and technical assistance from...

50

Energy Department Supports Clean Energy Development in the U...  

Office of Environmental Management (EM)

Energy Department Supports Clean Energy Development in the U.S. Virgin Islands Energy Department Supports Clean Energy Development in the U.S. Virgin Islands July 25, 2014 -...

51

Northern Mariana Islands - Search - U.S. Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

Northern Mariana Islands Northern Mariana Islands Profile Northern Mariana Islands Northern Mariana Islands Profile Territory Profile and Energy Estimates Change State/Territory Choose a U.S. State or Territory United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming U.S. Territories American Samoa Guam Northern Mariana Islands Puerto Rico US Virgin Islands Overview Data State Profiles Economy Reserves & Supply Imports & Exports

52

Falkland Islands: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

nlineLabel":"","visitedicon":"" Country Profile Name Falkland Islands Population 2,932 GDP Unavailable Energy Consumption Quadrillion Btu 2-letter ISO code FK 3-letter ISO code...

53

Bainbridge Island Data Dashboard | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Data Dashboard Bainbridge Island Data Dashboard The data dashboard for Bainbridge Island, a partner in the U.S. Department of Energy's Better Buildings Neighborhood Program....

54

Energy Transition Initiative: Islands Playbook  

Office of Energy Efficiency and Renewable Energy (EERE)

The Island Energy Playbook provides an action-oriented guide to successfully initiating, planning, and completing a transition to an energy system that primarily relies on local resources to eliminate a dependence on one or two imported fuels. It is intended to serve as a readily available framework that any community can adapt to organize its own energy transition effort.

55

Monhegan Island | Open Energy Information  

Open Energy Info (EERE)

Monhegan Island Monhegan Island Jump to: navigation, search Name Monhegan Island Facility Monhegan Island Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Maine State Dept of Conservation Developer DeepCWind Consortium Location Atlantic Ocean ME Coordinates 43.713°, -69.317° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.713,"lon":-69.317,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

56

Evolution Solar | Open Energy Information  

Open Energy Info (EERE)

Town Tortola, United Kingdom Sector: Solar Product: British Virgin Islands-based solar energy company dedicated to establishing solar panel factories in the Middle East and...

57

Bristol, Rhode Island: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

County, Rhode Island.1 Registered Energy Companies in Bristol, Rhode Island Ocean Wave Energy Company OWECO References US Census Bureau Incorporated place and minor...

58

Island Energy Solutions | Open Energy Information  

Open Energy Info (EERE)

Island Energy Solutions Island Energy Solutions Jump to: navigation, search Name Island Energy Solutions Place Kailua, Hawaii Zip 96734 Product Island Energy Solutions, Inc. is an electrical contracting company, based out of Kailua, Oahu, Hawaii. Coordinates 21.396572°, -157.740068° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.396572,"lon":-157.740068,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

59

Faroe Islands: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

"inlineLabel":"","visitedicon":"" Country Profile Name Faroe Islands Population 48,351 GDP 2,450,000,000 Energy Consumption 0.01 Quadrillion Btu 2-letter ISO code FO 3-letter...

60

Rhode Island/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Rhode Island Rhode Island Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Rhode Island Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Rhode Island No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Rhode Island No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Rhode Island No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Rhode Island Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

Note: This page contains sample records for the topic "virgin islands energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Interconnection Guidelines (Rhode Island) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Interconnection Guidelines (Rhode Island) Interconnection Guidelines (Rhode Island) Interconnection Guidelines (Rhode Island) < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Multi-Family Residential Nonprofit Residential Schools State Government Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Solar Home Weatherization Wind Program Info State Rhode Island Program Type Interconnection Provider Rhode Island Public Utilities Commission Rhode Island enacted legislation (HB 6222) in June 2011 to standardize the application process for the interconnection of customer-sited renewable-energy systems to the state's distribution grid. Rhode Island's interconnection policy is not nearly as comprehensive as

62

Integrating Renewable Energy into the Transmission and Distribution System  

Broader source: Energy.gov (indexed) [DOE]

Integrating Renewable Energy into the Transmission and Distribution Integrating Renewable Energy into the Transmission and Distribution System of the U.S. Virgin Islands Integrating Renewable Energy into the Transmission and Distribution System of the U.S. Virgin Islands This report describes one area in which islands may lead: integrating a high percentage of renewable energy resources into an isolated grid. In addition, it explores the challenges, feasibility, and potential benefits of interconnecting the USVI grids with the much larger Puerto Rican grid. 51294.pdf More Documents & Publications USVI Energy Road Map: Charting the Course to a Clean Energy Future (Brochure), EDIN (Energy Development in Island Nations), U.S. Virgin Islands U.S. Virgin Islands Energy Road Map: Analysis Waste-to-Energy Evaluation: U.S. Virgin Islands

63

Energy Transition Initiative: Islands Playbook (Book) | OSTI...  

Office of Scientific and Technical Information (OSTI)

Energy Transition Initiative: Islands Playbook (Book) Re-direct Destination: Temp Data Fields Not Available Temp Data Storage 3: National Renewable Energy Laboratory (NREL),...

64

Cayman Islands: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Cayman Islands: Energy Resources Cayman Islands: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":19.5,"lon":-80.66667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

65

Rhode Island: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Rhode Island: Energy Resources Rhode Island: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.5800945,"lon":-71.4774291,"alt":0,"address":"Rhode

66

Marshall Islands: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Marshall Islands: Energy Resources Marshall Islands: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":10,"lon":167,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

67

Solomon Islands: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Solomon Islands: Energy Resources Solomon Islands: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-8,"lon":159,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

68

Northern Mariana Islands: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Mariana Islands: Energy Resources Mariana Islands: Energy Resources Jump to: navigation, search Name Northern Mariana Islands 2-letter ISO code MP 3-letter ISO code MNP Numeric ISO code 580 Equivalent URI DBpedia GeoNames ID 4041468 Advanced Economy[1] No References CIA World Factbook, Appendix D[2] Wikipedia[3] Geonames[4] This article is a stub. You can help OpenEI by expanding it. The Northern Mariana Islands is a commonwealth in political union with the United States of America. Energy Incentives for Northern Mariana Islands N. Mariana Islands - Building Energy Code (N. Mariana Islands) N. Mariana Islands - Energy Star Rebate Program (N. Mariana Islands) N. Mariana Islands - Renewables Portfolio Standard (N. Mariana Islands) References ↑ IMF World Economic Outlook Database April 2009 -- WEO Groups and

69

USVI Energy Road Map: Charting the Course to a Clean Energy Future  

Broader source: Energy.gov (indexed) [DOE]

USVI Energy Road Map: Charting the Course to a Clean Energy Future USVI Energy Road Map: Charting the Course to a Clean Energy Future (Brochure), EDIN (Energy Development in Island Nations), U.S. Virgin Islands USVI Energy Road Map: Charting the Course to a Clean Energy Future (Brochure), EDIN (Energy Development in Island Nations), U.S. Virgin Islands This brochure provides an overview of the integrated clean energy deployment process and progress of the Energy Development in Island Nations U.S. Virgin Islands pilot project road map, including over-arching goals, organization, strategy, technology-specific goals and accomplishments, challenges, solutions, and upcoming milestones. edinusvi_roadmap.pdf More Documents & Publications U.S. Virgin Islands Energy Road Map: Analysis Integrating Renewable Energy into the Transmission and Distribution System

70

USVI Energy Road Map: Charting the Course to a Clean Energy Future  

Broader source: Energy.gov (indexed) [DOE]

USVI Energy Road Map: Charting the Course to a Clean Energy Future USVI Energy Road Map: Charting the Course to a Clean Energy Future (Brochure), EDIN (Energy Development in Island Nations), U.S. Virgin Islands USVI Energy Road Map: Charting the Course to a Clean Energy Future (Brochure), EDIN (Energy Development in Island Nations), U.S. Virgin Islands This brochure provides an overview of the integrated clean energy deployment process and progress of the Energy Development in Island Nations U.S. Virgin Islands pilot project road map, including over-arching goals, organization, strategy, technology-specific goals and accomplishments, challenges, solutions, and upcoming milestones. edinusvi_roadmap.pdf More Documents & Publications U.S. Virgin Islands Energy Road Map: Analysis Integrating Renewable Energy into the Transmission and Distribution System

71

Energy Vulnerability Assessment for the US Pacific Islands. Technical Appendix 2  

SciTech Connect (OSTI)

The study, Energy Vulnerability Assessment of the US Pacific Islands, was mandated by the Congress of the United States as stated in House Resolution 776-220 of 1992, Section 1406. The resolution states that the US Secretary of Energy shall conduct a study of the implications of the unique vulnerabilities of the insular areas to an oil supply disruption. Such study shall outline how the insular areas shall gain access to vital oil supplies during times of national emergency. The resolution defines insular areas as the US Virgin Islands, Puerto Rico, Guam, American Samoa, the Commonwealth of the Northern Mariana Islands, and Palau. The US Virgin Islands and Puerto Rico are not included in this report. The US Department of Energy (USDOE) has broadened the scope of the study contained in the House Resolution to include emergency preparedness and response strategies which would reduce vulnerability to an oil supply disruption as well as steps to ameliorate adverse economic consequences. This includes a review of alternative energy technologies with respect to their potential for reducing dependence on imported petroleum. USDOE has outlined the four tasks of the energy vulnerability assessment as the following: (1) for each island, determine crude oil and refined product demand/supply, and characterize energy and economic infrastructure; (2) forecast global and regional oil trade flow patterns, energy demand/supply, and economic activities; (3) formulate oil supply disruption scenarios and ascertain the general and unique vulnerabilities of these islands to oil supply disruptions; and (4) outline emergency preparedness and response options to secure oil supplies in the short run, and reduce dependence on imported oil in the longer term.

Fesharaki, F.; Rizer, J.P.; Greer, L.S.

1994-05-01T23:59:59.000Z

72

Fox Islands Wind Project | Open Energy Information  

Open Energy Info (EERE)

Fox Islands Wind Project Fox Islands Wind Project Facility Fox Islands Wind Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Fox Islands Electric Cooperative Developer Fox Islands Electric Cooperative Energy Purchaser Fox Islands Electric Cooperative Location Vinalhaven Island ME Coordinates 44.088391°, -68.857802° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.088391,"lon":-68.857802,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

73

MWRA Deer Island Wind | Open Energy Information  

Open Energy Info (EERE)

MWRA Deer Island Wind MWRA Deer Island Wind Jump to: navigation, search Name MWRA Deer Island Wind Facility MWRA Deer Island Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner MWRA Deer Island Energy Purchaser MWRA Deer Island Location Deer Island MA Coordinates 42.346751°, -70.957006° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.346751,"lon":-70.957006,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

74

Energy Audits on Prince Edward Island  

E-Print Network [OSTI]

High energy costs and uncertain supplies force industrial operators to seek out energy waste to keep costs down. The Enersave for Industry and Commerce program assists Prince Edward Island industries through an energy audit and grant program. A...

Hall, N. G.; Gillis, D.

1980-01-01T23:59:59.000Z

75

Monomoscoy Island, Massachusetts: Energy Resources | Open Energy  

Open Energy Info (EERE)

Monomoscoy Island, Massachusetts: Energy Resources Monomoscoy Island, Massachusetts: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.5698322°, -70.505028° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.5698322,"lon":-70.505028,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

76

Cook Islands: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Cook Islands: Energy Resources Cook Islands: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-22.26876,"lon":-158.20312,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

77

Popponesset Island, Massachusetts: Energy Resources | Open Energy  

Open Energy Info (EERE)

Popponesset Island, Massachusetts: Energy Resources Popponesset Island, Massachusetts: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.584277°, -70.4591932° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.584277,"lon":-70.4591932,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

78

Rhode Island Renewable Energy Fund (RIREF) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Rhode Island Renewable Energy Fund (RIREF) Rhode Island Renewable Energy Fund (RIREF) Rhode Island Renewable Energy Fund (RIREF) < Back Eligibility Commercial Industrial Institutional Residential Utility Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Heating & Cooling Commercial Heating & Cooling Solar Heating Water Heating Wind Program Info State Rhode Island Program Type Public Benefits Fund Provider Rhode Island Economic Development Corporation Rhode Island's Public Utilities Restructuring Act of 1996 created the nation's first public benefits fund (PBF) for renewable energy and demand-side management (DSM). The Rhode Island Renewable Energy Fund's (RIREF) renewable-energy component is administered by the Rhode Island Economic Development Corporation (RIEDC), and the fund's demand-side

79

Rhode Island | Building Energy Codes Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Rhode Island Rhode Island Last updated on 2013-11-05 Current News 2012 IECC adopted July 1, 2013 Commercial Residential Code Change Current Code 2012 IECC Amendments / Additional State Code Information The Rhode Island commercial code is the 2012 IECC with reference to ASHRAE 90.1-2010. Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Rhode Island (BECP Report, Sept. 2009) Approximate Energy Efficiency Equivalent to 2012 IECC Effective Date 07/01/2013 Adoption Date 07/01/2013 Code Enforcement Mandatory DOE Determination ASHRAE 90.1-2007: Yes ASHRAE 90.1-2010: Yes Rhode Island DOE Determination Letter, May 31, 2013 Rhode Island State Certification of Commercial and Residential Building Energy Codes

80

Fire Island Wind Project | Open Energy Information  

Open Energy Info (EERE)

Island Wind Project Island Wind Project Jump to: navigation, search Name Fire Island Wind Project Facility Fire Island Wind Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner CIRI Developer Fire Island Wind LLC Energy Purchaser Chugach Location Fire Island AK Coordinates 61.144146°, -150.217652° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":61.144146,"lon":-150.217652,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "virgin islands energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Constellation NewEnergy, Inc (Rhode Island) | Open Energy Information  

Open Energy Info (EERE)

Rhode Island) Jump to: navigation, search Name: Constellation NewEnergy, Inc Place: Rhode Island References: EIA Form EIA-861 Final Data File for 2010 - File220101 EIA Form 861...

82

Block Island Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Block Island Wind Farm Block Island Wind Farm Jump to: navigation, search Name Block Island Wind Farm Facility Block Island Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status Proposed Developer Deepwater Wind Location Offshore from Block Island RI Coordinates 41.1°, -71.53° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.1,"lon":-71.53,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

83

Bainbridge Island Summary of Reported Data | Department of Energy  

Energy Savers [EERE]

Summary of Reported Data Bainbridge Island Summary of Reported Data Summary of data for Bainbridge Island, a partner in the U.S. Department of Energy's Better Buildings...

84

Energy Transition Initiative: Islands Playbook (Book)  

SciTech Connect (OSTI)

The Island Energy Playbook (the Playbook) provides an action-oriented guide to successfully initiating, planning, and completing a transition to an energy system that primarily relies on local resources to eliminate a dependence on one or two imported fuels. It is intended to serve as a readily available framework that any community can adapt to organize its own energy transition effort.

Not Available

2015-01-01T23:59:59.000Z

85

Bluewater Wind Rhode Island | Open Energy Information  

Open Energy Info (EERE)

Rhode Island Rhode Island Jump to: navigation, search Name Bluewater Wind Rhode Island Facility Bluewater Wind Rhode Island Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner NRG Bluewater Wind Developer NRG Bluewater Wind Location Atlantic Ocean RI Coordinates 41.357°, -71.152° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.357,"lon":-71.152,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

86

Energy Strategy (Prince Edward Island, Canada) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy Strategy (Prince Edward Island, Canada) Energy Strategy (Prince Edward Island, Canada) Energy Strategy (Prince Edward Island, Canada) < Back Eligibility Commercial Developer General Public/Consumer Industrial Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Schools State/Provincial Govt Utility Savings Category Buying & Making Electricity Solar Wind Program Info Start Date 2008 State Prince Edward Island Program Type Industry Recruitment/Support Renewables Portfolio Standards and Goals Solar/Wind Access Policy Without a local supply of natural gas and oil resources, Prince Edward Island is heavily reliant on imported sources of energy. Imported oil accounts for 76 percent of PEI's total energy supply, including transportation and heating. Wind

87

Block Island Power Co | Open Energy Information  

Open Energy Info (EERE)

Block Island Power Co Block Island Power Co Jump to: navigation, search Name Block Island Power Co Place Rhode Island Utility Id 1857 Utility Location Yes Ownership I NERC Location NPCC NERC NPCC Yes Operates Generating Plant Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.4450/kWh Commercial: $0.4670/kWh The following table contains monthly sales and revenue data for Block Island Power Co (Rhode Island). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS

88

N. Mariana Islands - Building Energy Code | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

N. Mariana Islands - Building Energy Code N. Mariana Islands - Building Energy Code N. Mariana Islands - Building Energy Code < Back Eligibility Commercial Multi-Family Residential Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info Program Type Building Energy Code Provider Department of Public Works ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] web sites.'' Building codes for the Commonwealth of the Northern Mariana Islands (CNMI)

89

Definition: Automated Islanding And Reconnection | Open Energy Information  

Open Energy Info (EERE)

Islanding And Reconnection Islanding And Reconnection Jump to: navigation, search Dictionary.png Automated Islanding And Reconnection Automated Islanding and Reconnection Automated islanding and reconnection is achieved by automated separation and subsequent reconnection (autonomous synchronization) of an independently operated portion of the T&D system (i.e., microgrid) from the interconnected electric grid. A microgrid is an integrated energy system consisting of interconnected loads and distributed energy resources which, as an integrated system, can operate in parallel with the grid or as an island.[1] View on Wikipedia Wikipedia Definition Islanding refers to the condition in which a distributed (DG) generator continues to power a location even though electrical grid power

90

Kauai Island Utility Cooperative | Open Energy Information  

Open Energy Info (EERE)

Island Utility Cooperative Island Utility Cooperative Jump to: navigation, search Name Kauai Island Utility Cooperative Place Hawaii Utility Id 10071 Utility Location Yes Ownership C NERC Location HICC Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png D Residential Service Residential General Light and Power Service Schedule G Commercial General Light and Power Service Schedule J Commercial Large Power Secondary Schedule P Industrial Large Power Service Schedule L Industrial

91

Energy Incentive Programs, Rhode Island | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Rhode Island Rhode Island Energy Incentive Programs, Rhode Island October 29, 2013 - 1:19pm Addthis Updated October 2012 What public-purpose-funded energy efficiency programs are available in my state? Rhode Island's restructuring law includes a system benefits charge of 2 mill/kWh for energy efficiency programs, and 0.3 mills/kWh for renewable energy programs, through 2012. Over $35 million was budgeted for energy efficiency across all program types (including low-income and residential) in 2010; figures for 2011 are not available. The programs are administered by the local utilities. Rebates are available state-wide through the Cool Choice program, which provides rebates for high-efficiency HVAC equipment, including split system and single packaged air conditions and heat pumps. Dual enthalpy economizer

92

Rhode Island's 2nd congressional district: Energy Resources ...  

Open Energy Info (EERE)

Registered Energy Companies in Rhode Island's 2nd congressional district Cookson Electronics Jefferson Renewable Energy Tomorrow BioFuels LLC Retrieved from "http:...

93

Your own energy "island"? ORNL microgrid could standardize small...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Your own energy "island"? ORNL microgrid could standardize small, self-sustaining electric grids (hi-res image) When Department of Energy and Oak Ridge National Laboratory...

94

Integrating Renewable Energy into the Transmission and Distribution...  

Office of Environmental Management (EM)

Renewable Energy into the Transmission and Distribution System of the U.S. Virgin Islands Integrating Renewable Energy into the Transmission and Distribution System of the U.S....

95

Rhode Island Recovery Act State Memo | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Rhode Island Recovery Act State Memo Rhode Island Recovery Act State Memo Rhode Island Recovery Act State Memo Rhode Island has substantial natural resources, including wind and biomass. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Rhode Island are supporting a broad range of clean energy projects, from weatherization to smart grid workforce training. Through these investments, Rhode Island's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning Rhode Island to play an important role in the new energy economy of the future. Rhode Island Recovery Act State Memo More Documents & Publications Slide 1 Guam Recovery Act State Memo

96

Hainan Green Islands Power | Open Energy Information  

Open Energy Info (EERE)

Green Islands Power Jump to: navigation, search Name: Hainan Green Islands Power Place: Hainan Province, China Sector: Solar Product: China-based JV developing on-grid solar...

97

Prince Edward Island: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Island: Energy Resources Island: Energy Resources Jump to: navigation, search Name Prince Edward Island, Canada Equivalent URI DBpedia GeoNames ID 6113358 Coordinates 46.333333°, -63.5° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.333333,"lon":-63.5,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

98

Dominica Island-NREL Cooperation | Open Energy Information  

Open Energy Info (EERE)

Dominica Island-NREL Cooperation Dominica Island-NREL Cooperation Jump to: navigation, search Logo: Dominica Island-NREL Cooperation Name Dominica Island-NREL Cooperation Agency/Company /Organization National Renewable Energy Laboratory Sector Energy Focus Area Wind Topics Background analysis Website http://www.nrel.gov/internatio Country Dominica Caribbean References NREL International Program[1] Abstract The National Renewable Energy Laboratory is cooperating with Dominica Island to develop small wind generation as part of the Low Carbon Communities of the Americas program The National Renewable Energy Laboratory is cooperating with Dominica Island to develop small wind generation as part of the Low Carbon Communities of the Americas program. References ↑ "NREL International Program"

99

N. Mariana Islands - Renewables Portfolio Standard | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

N. Mariana Islands - Renewables Portfolio Standard N. Mariana Islands - Renewables Portfolio Standard N. Mariana Islands - Renewables Portfolio Standard < Back Eligibility Utility Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Solar Heating & Cooling Commercial Heating & Cooling Heating Water Heating Wind Program Info Program Type Renewables Portfolio Standard The Commonwealth of the Northern Mariana Islands enacted its Renewables Portfolio Standard in September 2007, in which a certain percentage of its net electricity sales must come from renewable energy. Under the law, the Commonwealth Utilities Corporation (the Islands' only and semi-autonomous public utility provider) must meet the following benchmarks: * 10% of net electricity sales by December 31, 2008

100

Emerging Risks in the Biodiesel Production by Transesterification of Virgin and Renewable Oils  

Science Journals Connector (OSTI)

Emerging Risks in the Biodiesel Production by Transesterification of Virgin and Renewable Oils ... Energy Fuels, 2010, 24 (11), ... Cuiaba, Brazil ...

E. Salzano; M. Di Serio; E. Santacesaria

2010-10-21T23:59:59.000Z

Note: This page contains sample records for the topic "virgin islands energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Categorical Exclusion Determinations: Rhode Island | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Rhode Island Rhode Island Categorical Exclusion Determinations: Rhode Island Location Categorical Exclusion Determinations issued for actions in Rhode Island. DOCUMENTS AVAILABLE FOR DOWNLOAD August 15, 2013 CX-010757: Categorical Exclusion Determination The New England Solar cost-Reduction Challenge Partnership CX(s) Applied: A9, A11 Date: 08/15/2013 Location(s): Vermont, New Hampshire, Rhode Island, Massachusetts, Connecticut Offices(s): Golden Field Office February 4, 2013 CX-010572: Categorical Exclusion Determination Brown University - Marine Hydro-Kinetic Energy Harvesting Using Cyber-Physical Systems CX(s) Applied: B3.6 Date: 02/04/2013 Location(s): Rhode Island Offices(s): Advanced Research Projects Agency-Energy October 18, 2012 CX-009518: Categorical Exclusion Determination

102

Long Island Power Authority - Wind Energy Rebate Program | Department of  

Broader source: Energy.gov (indexed) [DOE]

Long Island Power Authority - Wind Energy Rebate Program Long Island Power Authority - Wind Energy Rebate Program Long Island Power Authority - Wind Energy Rebate Program < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Wind Buying & Making Electricity Maximum Rebate Lesser of 60% of installed cost or values below: Residential: $56,000 Commercial: $135,600 Gov't, School, Non-profit: $200,000 Program Info Funding Source LIPA Efficiency Long Island Program Start Date January 2009 State New York Program Type Utility Rebate Program Rebate Amount Varies by sector and system size Provider Long Island Power Authority '''''Note: The program web site listed above is for the residential wind energy program; however, LIPA also offers

103

Fremd Village-Padgett Island, Florida: Energy Resources | Open Energy  

Open Energy Info (EERE)

Fremd Village-Padgett Island, Florida: Energy Resources Fremd Village-Padgett Island, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 26.8026363°, -80.6576623° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.8026363,"lon":-80.6576623,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

104

Narragansett, Rhode Island: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Narragansett, Rhode Island: Energy Resources Narragansett, Rhode Island: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.4501021°, -71.4495005° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.4501021,"lon":-71.4495005,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

105

Chebeague Island, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Chebeague Island, Maine: Energy Resources Chebeague Island, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.7409154°, -70.1081034° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.7409154,"lon":-70.1081034,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

106

Providence County, Rhode Island: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Providence County, Rhode Island: Energy Resources Providence County, Rhode Island: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.8881582°, -71.4774291° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.8881582,"lon":-71.4774291,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

107

Cumberland Hill, Rhode Island: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Rhode Island: Energy Resources Rhode Island: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.9745431°, -71.4670043° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.9745431,"lon":-71.4670043,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

108

Burrillville, Rhode Island: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Burrillville, Rhode Island: Energy Resources Burrillville, Rhode Island: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.9810947°, -71.691066° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.9810947,"lon":-71.691066,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

109

Rock Island County, Illinois: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Island County, Illinois: Energy Resources Island County, Illinois: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.3998209°, -90.563609° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.3998209,"lon":-90.563609,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

110

Fire Island, New York: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Island, New York: Energy Resources Island, New York: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.6475997°, -73.1459474° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.6475997,"lon":-73.1459474,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

111

Bethel Island, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Island, California: Energy Resources Island, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 38.0149216°, -121.6405085° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.0149216,"lon":-121.6405085,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

112

Harrisville, Rhode Island: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Harrisville, Rhode Island: Energy Resources Harrisville, Rhode Island: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.9656539°, -71.6745112° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.9656539,"lon":-71.6745112,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

113

Fisher Island, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Fisher Island, Florida: Energy Resources Fisher Island, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 25.7609329°, -80.1400459° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":25.7609329,"lon":-80.1400459,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

114

Frye Island, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Frye Island, Maine: Energy Resources Frye Island, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.8472979°, -70.5189444° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.8472979,"lon":-70.5189444,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

115

Turks and Caicos Islands: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Turks and Caicos Islands: Energy Resources Turks and Caicos Islands: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.73333,"lon":-71.58333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

116

Penobscot Indian Island, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Indian Island, Maine: Energy Resources Indian Island, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.1218285°, -68.6290394° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.1218285,"lon":-68.6290394,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

117

Pascoag, Rhode Island: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Pascoag, Rhode Island: Energy Resources Pascoag, Rhode Island: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.9556539°, -71.7022899° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.9556539,"lon":-71.7022899,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

118

Seconsett Island, Massachusetts: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Seconsett Island, Massachusetts: Energy Resources Seconsett Island, Massachusetts: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.5662211°, -70.5116948° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.5662211,"lon":-70.5116948,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

119

Tiverton, Rhode Island: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Tiverton, Rhode Island: Energy Resources Tiverton, Rhode Island: Energy Resources (Redirected from Tiverton, RI) Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.6259357°, -71.2133801° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.6259357,"lon":-71.2133801,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

120

Glocester, Rhode Island: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Glocester, Rhode Island: Energy Resources Glocester, Rhode Island: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.9043113°, -71.691066° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.9043113,"lon":-71.691066,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "virgin islands energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Central Falls, Rhode Island: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Rhode Island: Energy Resources Rhode Island: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.8906553°, -71.3922785° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.8906553,"lon":-71.3922785,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

122

Tiki Island, Texas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Tiki Island, Texas: Energy Resources Tiki Island, Texas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 29.2957768°, -94.9169196° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.2957768,"lon":-94.9169196,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

123

Mercer Island, Washington: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Island, Washington: Energy Resources Island, Washington: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.5706548°, -122.2220673° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.5706548,"lon":-122.2220673,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

124

East Providence, Rhode Island: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Providence, Rhode Island: Energy Resources Providence, Rhode Island: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.8137116°, -71.3700545° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.8137116,"lon":-71.3700545,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

125

Woonsocket, Rhode Island: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Woonsocket, Rhode Island: Energy Resources Woonsocket, Rhode Island: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.0028761°, -71.5147839° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.0028761,"lon":-71.5147839,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

126

Kelleys Island, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Kelleys Island, Ohio: Energy Resources Kelleys Island, Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.5969932°, -82.7101823° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.5969932,"lon":-82.7101823,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

127

Valley Falls, Rhode Island: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Rhode Island: Energy Resources Rhode Island: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.9067663°, -71.3906119° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.9067663,"lon":-71.3906119,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

128

Pawtucket, Rhode Island: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Pawtucket, Rhode Island: Energy Resources Pawtucket, Rhode Island: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.878711°, -71.3825558° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.878711,"lon":-71.3825558,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

129

Bay Harbor Islands, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Harbor Islands, Florida: Energy Resources Harbor Islands, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 25.8875948°, -80.1311564° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":25.8875948,"lon":-80.1311564,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

130

Cranston, Rhode Island: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Cranston, Rhode Island: Energy Resources Cranston, Rhode Island: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.7798226°, -71.4372796° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.7798226,"lon":-71.4372796,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

131

renewable energy from waste 1730 RHODE ISLAND AVENUE, NW  

E-Print Network [OSTI]

renewable energy from waste 1730 RHODE ISLAND AVENUE, NW SUITE 700 WASHINGTON, DC 20036 WWW Energy and Security Act of 2009 that was released as a discussion draft on March 31. While waste-to-energy gas reductions and renewable energy provided by waste-to-energy and if it implemented policies

Columbia University

132

Saint Paul Island Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Island Wind Farm Island Wind Farm Jump to: navigation, search Name Saint Paul Island Wind Farm Facility Saint Paul Island Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Tanadgusix Corp. Developer Tanadgusix Corp. Energy Purchaser Tanadgusix Corp. Location St. Paul Island AK Coordinates 57.1761°, -170.269° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":57.1761,"lon":-170.269,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

133

Turks and Caicos Islands: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Turks and Caicos Islands: Energy Resources (Redirected from Turks & Caicos Islands) Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.73333,"lon":-71.58333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

134

Cool Roofs and Heat Islands | Open Energy Information  

Open Energy Info (EERE)

Cool Roofs and Heat Islands Cool Roofs and Heat Islands Jump to: navigation, search Tool Summary Name: Cool Roofs Agency/Company /Organization: Lawrence Berkeley National Laboratory Sector: Energy Focus Area: Energy Efficiency Topics: Resource assessment Website: eetd.lbl.gov/r-bldgsee-crhi.html References: [1] Logo: Cool Roofs "On warm summer days, a city can be 6 to 8°F warmer than its surrounding areas. This effect is called the urban heat island. Cool roof materials, pavements, and vegetation can reduce the heat island effect, save energy and reduce smog formation. The goal of this research is to develop cool materials to save energy and money." [1] The Cool Roof Calculator developed at the Oak Ridge National Laboratory is a useful tool for exploring the benefits of cool materials.

135

Renewable Energy and Inter-Island Power Transmission (Presentation)  

SciTech Connect (OSTI)

This presentation summarizes recent findings pertaining to inter-island connection of renewable and other energy sources, in particular, as these findings relate cable options, routing, specifications, and pros and cons.

Gevorgian, V.

2011-05-01T23:59:59.000Z

136

Rhode Island/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Rhode Island/Wind Resources Rhode Island/Wind Resources < Rhode Island Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Rhode Island Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid?

137

University of Rhode Island | Open Energy Information  

Open Energy Info (EERE)

Rhode Island Rhode Island Jump to: navigation, search Hydro | Hydrodynamic Testing Facilities Name University of Rhode Island Address Department of Ocean Engineering, Sheets Building, Bay Campus Place Narragansett, Rhode Island Zip 02882 Sector Hydro Phone number (401) 874-6139 Website http://www.oce.uri.edu/baycamp Coordinates 41.3983403°, -71.4893013° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.3983403,"lon":-71.4893013,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

138

Offshore Islands Ltd | Open Energy Information  

Open Energy Info (EERE)

Current Catcher Wave Catcher This article is a stub. You can help OpenEI by expanding it. Retrieved from "http:en.openei.orgwindex.php?titleOffshoreIslandsLtd&oldid76931...

139

Proc. the 17th Int'l Conf. Computer Communications and Networks (ICCCN), St. Thomas, Virgin Islands, Aug. 2008. PASS: Power-Aware Scheduling of Mixed  

E-Print Network [OSTI]

. The total energy cost for this single server would be $180/year [2]. Given that a cluster normally consists- efficient algorithm - CC-EDF, PASS saves up to 60 percent of energy dissipation. With respect to the number--low power, because data centers can consume as much electricity as a city" [16]. Such significant energy

Qin, Xiao

140

Page not found | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

31 - 2240 of 26,777 results. 31 - 2240 of 26,777 results. Rebate U.S. Virgin Islands- Solar and Wind Easements and Rights Laws In the U.S. Virgin Islands, the owner of a solar or wind-energy system is permitted to negotiate for assurance of continued access to the system's energy source. "Solar or wind-energy system" is... http://energy.gov/savings/us-virgin-islands-solar-and-wind-easements-and-rights-laws Download 36 ways to save energy and money- right now! Hawai'i Clean Energy Initiative (HCEI) (Fact Sheet) Fact sheet outlining top ways to save energy and money in Hawaii, in the office, at home, and in the car. http://energy.gov/eere/downloads/36-ways-save-energy-and-money-right-now-hawaii-clean-energy-initiative-hcei-fact Article Winter Fuels Season is Right Around the Corner

Note: This page contains sample records for the topic "virgin islands energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Qualifying RPS State Export Markets (Rhode Island) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Rhode Island) Rhode Island) Qualifying RPS State Export Markets (Rhode Island) < Back Eligibility Developer Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Rhode Island Program Type Renewables Portfolio Standards and Goals This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in Rhode Island as eligible sources towards their RPS targets or goals. For specific information with regard to eligible technologies or other restrictions which may vary by state, see the RPS policy entries for the individual states, shown below in the Authority listings. Typically energy must be delivered to an in-state utility or Load Serving Entity, and often only a portion of compliance

142

Mustang Island Offshore Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Mustang Island Offshore Wind Farm Mustang Island Offshore Wind Farm Jump to: navigation, search Name Mustang Island Offshore Wind Farm Facility Mustang Island Offshore Wind Farm Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Baryonyx Corporation Developer Baryonyx Corporation Location Offshore from Mustang Island TX Coordinates 27.66°, -97.01° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":27.66,"lon":-97.01,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

143

American Samoa's Rebate Program Brings ENERGY STAR to Island | Department  

Broader source: Energy.gov (indexed) [DOE]

American Samoa's Rebate Program Brings ENERGY STAR to Island American Samoa's Rebate Program Brings ENERGY STAR to Island American Samoa's Rebate Program Brings ENERGY STAR to Island August 13, 2010 - 12:00pm Addthis American Samoa is located in the South Pacific Ocean, with temperature around 80 degrees year round. | Photo courtesy of Maleleg American Samoa is located in the South Pacific Ocean, with temperature around 80 degrees year round. | Photo courtesy of Maleleg Lindsay Gsell American Samoa, a small island of 66,000 residents in the Pacific Ocean, is a warm 80 degrees almost year round, but during the summer, the humidity can make it feel downright hot. Because of its remote location, appliances and electricity are costly - and until recently, home air conditioning units were fairly rare. Now thanks to a $100,000 grant through the American Recovery and

144

Celebrating Asian American Pacific Islander Heritage Month at the Energy Department  

Broader source: Energy.gov [DOE]

Each May we celebrate Asian American and Pacific Islander Heritage Month, honoring the accomplishments of Asian Americans, Native Hawaiians, and Pacific Islanders at the Energy Department, in the...

145

Designing and Communicating Low Carbon Energy Roadmaps for Small Island  

Open Energy Info (EERE)

Designing and Communicating Low Carbon Energy Roadmaps for Small Island Designing and Communicating Low Carbon Energy Roadmaps for Small Island States of the Caribbean Jump to: navigation, search Name Designing and Communicating Low Carbon Energy Roadmaps for Small Island States of the Caribbean Agency/Company /Organization World Watch Institute Partner International Climate Initiative Sector Climate, Energy Focus Area Renewable Energy, Buildings, Economic Development, Energy Efficiency, Greenhouse Gas, Grid Assessment and Integration, People and Policy, Solar, Wind Topics Co-benefits assessment, - Macroeconomic, Finance, GHG inventory, Low emission development planning, -LEDS, -Roadmap, Policies/deployment programs, Resource assessment Website http://www.worldwatch.org/ener Program Start 2011 Program End 2013 Country Dominican Republic, Haiti, Jamaica

146

Wave Energy Resources Representative Sites Around the Hawaiian Islands  

E-Print Network [OSTI]

Wave Energy Resources for Representative Sites Around the Hawaiian Islands Prepared by: Luis A Foreword This report provides wave energy resource information required to select coastal segments for specific wave-energy-conversion (WEC) technology and to initiate engineering design incorporating

147

Long Island Power Authority - Commercial Energy Efficiency Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

Long Island Power Authority - Commercial Energy Efficiency Rebate Long Island Power Authority - Commercial Energy Efficiency Rebate Program Long Island Power Authority - Commercial Energy Efficiency Rebate Program < Back Eligibility Commercial Industrial Institutional Nonprofit Schools Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Manufacturing Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Insulation Maximum Rebate Whole Building: $400,000 per building annually ($500,000 for LEED-certified) Commissioning Incentive: Up to 100% of cost, up to $100,000 LEED Certification: Up to $25,000 Energy Modeling: 100% of cost of energy modeling, up to $50,000 Custom and Whole Building Additional Incentive: technical assistance up to

148

Local Option - Property-Assessed Clean Energy Financing (Rhode Island) |  

Broader source: Energy.gov (indexed) [DOE]

Property-Assessed Clean Energy Financing (Rhode Property-Assessed Clean Energy Financing (Rhode Island) Local Option - Property-Assessed Clean Energy Financing (Rhode Island) < Back Eligibility Residential Savings Category Other Alternative Fuel Vehicles Hydrogen & Fuel Cells Solar Buying & Making Electricity Program Info State Rhode Island Program Type PACE Financing '''''Note: The Federal Housing Financing Agency (FHFA) issued a statement in July 2010 concerning the senior lien status associated with most PACE programs. In response to the FHFA statement, most local PACE programs have been suspended until further clarification is provided. ''''' Property-Assessed Clean Energy (PACE) financing effectively allows property owners to borrow money to pay for energy improvements. The amount borrowed is typically repaid via a special assessment on the property over a period

149

Women @ Energy: Asian American and Pacific Islander Heritage Month 2013 |  

Broader source: Energy.gov (indexed) [DOE]

Women @ Energy: Asian American and Pacific Islander Heritage Month Women @ Energy: Asian American and Pacific Islander Heritage Month 2013 Women @ Energy: Asian American and Pacific Islander Heritage Month 2013 Addthis Xin Sun 1 of 12 Xin Sun Creativity, insight, and application are the hallmarks of Dr. Xin Sun's applied mechanics and computational materials research at Pacific Northwest National Laboratory. Her advances in lightweight and high-strength materials (including steels) and modeling are vital to energy efficiency and renewable energy and have led to notable weight savings in the U.S. automotive industry. Xin is developing simulation and modeling capabilities for solid oxide fuel cells. Her modeling of physics properties are included as part of the solid oxide fuel cell multiphysics modeling code, or SOFC-MP, a commercial software tool, developed at PNNL, used by fuel cell

150

Asian American and Pacific Islander Heritage Women @ Energy | Department of  

Broader source: Energy.gov (indexed) [DOE]

Asian American and Pacific Islander Heritage Women @ Energy Asian American and Pacific Islander Heritage Women @ Energy Asian American and Pacific Islander Heritage Women @ Energy May 3, 2013 - 11:49am Addthis Xin Sun 1 of 12 Xin Sun Creativity, insight, and application are the hallmarks of Dr. Xin Sun's applied mechanics and computational materials research at Pacific Northwest National Laboratory. Her advances in lightweight and high-strength materials (including steels) and modeling are vital to energy efficiency and renewable energy and have led to notable weight savings in the U.S. automotive industry. Xin is developing simulation and modeling capabilities for solid oxide fuel cells. Her modeling of physics properties are included as part of the solid oxide fuel cell multiphysics modeling code, or SOFC-MP, a commercial software tool, developed at PNNL, used by fuel cell

151

Long Island Power Authority | Open Energy Information  

Open Energy Info (EERE)

Long Island Power Authority Long Island Power Authority Address 333 Earle Ovington Blvd Place Uniondale, New York Zip 11553 Sector Services Product Green Power Marketer Website www.lipower.org/ Coordinates 40.720549°, -73.593524° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.720549,"lon":-73.593524,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

152

Page not found | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

71 - 12980 of 28,560 results. 71 - 12980 of 28,560 results. Rebate Montana Electric Cooperatives- Net Metering The Montana Electric Cooperatives' Association (MECA) adopted model interconnection guidelines in 2001 and a revised net-metering policy in September 2008. Net metering is available in whole or... http://energy.gov/savings/montana-electric-cooperatives-net-metering Rebate U.S. Virgin Islands- Net Metering In February 2007, the U.S. Virgin Islands Public Services Commission approved a limited net-metering program for residential and commercial photovoltaic (PV), wind-energy or other renewable energy... http://energy.gov/savings/us-virgin-islands-net-metering Download Microsoft Word- AL2005-16.doc http://energy.gov/management/downloads/microsoft-word-al2005-16doc Rebate MidAmerican Energy (Electric)- Commercial EnergyAdvantage Rebate

153

Long Island Power Authority Solar Project | Open Energy Information  

Open Energy Info (EERE)

Project Project Jump to: navigation, search Name Long Island Power Authority Solar Project Facility Long Island Power Authority Solar Project Sector Solar Facility Type Roof-mount Owner EnXco Developer EnXco Energy Purchaser Long Island Power Authority Location Long Island, New York Coordinates 40.8168025°, -73.0661493° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.8168025,"lon":-73.0661493,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

154

FUPWG Meeting Agenda - Providence, Rhode Island | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Providence, Rhode Island Providence, Rhode Island FUPWG Meeting Agenda - Providence, Rhode Island October 7, 2013 - 2:51pm Addthis Image of the FUPWG logo which displays an illustration of a sailboat on water. The logo reads Efficiency Promotion by the Ocean; FUPWG April 14-15, 2010; Providence, Rhode Island. April 14-15, 2010 Hosted by National Grid The following outlines sessions and presentations held during the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting. Some of the following documents are available as Adobe Acrobat PDFs. Download Adobe Reader. Tuesday, April 13, 2010 FUPWG held a utility energy service contract (UESC) workshop prior to the Spring 2010 meeting. The workshop materials are available (PDF 5.0 MB) Wednesday, April 14, 2010 8:30 am Welcome

155

Rhode Island Offshore Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Island Offshore Wind Farm Island Offshore Wind Farm Jump to: navigation, search Name Rhode Island Offshore Wind Farm Facility Rhode Island Offshore Wind Farm Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Developer Deepwater Wind Location Offshore from Sakonnet RI Coordinates 40.96°, -71.44° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.96,"lon":-71.44,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

156

FUPWG Meeting Agenda - Jekyll Island, Georgia | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Jekyll Island, Georgia Jekyll Island, Georgia FUPWG Meeting Agenda - Jekyll Island, Georgia October 7, 2013 - 2:42pm Addthis Logo for the FUPWG Spring 2012 meeting showing a crane, a lake, and wind turbines. The logo reads: Preserving our future with energy efficiency. April 11-12, 2012 Hosted by AGL Resources Wednesday, April 11, 2012 8:30 am Welcome Hank Linginfelter, EVP Distribution Operations - AGL Resources 8:45 am Chairman's Corner David McAndrew, FEMP 9:00 am Washington Update Tim Unruh, FEMP 9:30 am UESC Data Collection Update Evan Fuka, Energetics 9:45 am Networking Break 10:05 am Effective Use of Appropriations and Alternative Finance to Fund Energy Efficiency Projects John Shonder, Oak Ridge National Laboratory 10:45 am DOD Approaches to Utility Partnerships and UESCs Mike Rits, AFCESA

157

San Clemente Island Wind Farm | Open Energy Information  

Open Energy Info (EERE)

San Clemente Island Wind Farm San Clemente Island Wind Farm Jump to: navigation, search Name San Clemente Island Wind Farm Facility San Clemente Island Sector Wind energy Facility Type Community Wind Facility Status In Service Owner U.S. Navy Developer Pacific Industrial Electric Energy Purchaser U.S. Navy Location San Clemente Island CA Coordinates 32.986095°, -118.552138° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.986095,"lon":-118.552138,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

158

Page not found | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

11 - 25420 of 28,904 results. 11 - 25420 of 28,904 results. Rebate Grants to Green Program Grants to Green is a collaborative grant program of The Community Foundation, and Southface Enterprise Institute. The program offers grants to nonprofits for energy efficiency upgrades to existing... http://energy.gov/savings/grants-green-program Rebate U.S. Virgin Islands- Net Metering In February 2007, the U.S. Virgin Islands Public Services Commission approved a limited net-metering program for residential and commercial photovoltaic (PV), wind-energy or other renewable energy... http://energy.gov/savings/us-virgin-islands-net-metering Rebate USDA- Repowering Assistance Biorefinery Program (Federal) The Repowering Assistance Program provides payments to eligible biorefineries to replace fossil fuels used to produce heat or power to

159

Page not found | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

81 - 13190 of 28,905 results. 81 - 13190 of 28,905 results. Download U.S. Virgin Islands Energy Road Map: Analysis This report lays out the strategy envisioned by the stakeholders in the U.S. Virgin Islands, U.S. Department of Energy, and U.S. Department of Interior to achieve the ambitious goal of achieving a 60% reduction in business-as-usual fossil fuel demand by 2025 (60x25) within the electricity sector. Instead, this work and supporting analysis provides a framework within which decisions can begin to be made, a concrete vision of what the future might hold, and a guide to determine what questions should follow. http://energy.gov/eere/downloads/us-virgin-islands-energy-road-map-analysis Download Audit Report: IG-0524 Albuquerque Operations Office's Grant Administration http://energy.gov/ig/downloads/audit-report-ig-0524

160

Sustainable Development and Kish Island Environment Protection, using Wind Energy  

E-Print Network [OSTI]

AbstractKish Islands in South of Iran is located in coastal water near Hormozgan Province. Based on the wind 3-hour statistics in Kish station, the mean annual windspeed in this Island is 8.6 knot (4.3 m/s). The maximum windspeed recorded in this stations 47 knot (23.5 m/s). In 45.7 percent of recorded times, windspeed has been Zero or less than 8 knot which is not suitable to use the wind energy. But in 54.3 percent of recorded times, windspeed has been more than 8 knot and suitable to use wind energy to run turbines. In 40.2 percent of recorded times, windspeed has been between 8 to 16 knot, in 13 percent of times between 16 to 24 knot and in 1 percent of times it has been higher than 24 knot. In this station, the direction of winds higher than 8 is west and wind direction in Kish station is stable in most times of the year.With regard to high speed and stable direction winds during the year and also shallow coasts near this is land, it is possible to build offshore wind farms near Kish Island and utilize wind energy produce the electricity required in this Island during most of the year.

Amir Gandomkar

Note: This page contains sample records for the topic "virgin islands energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Page not found | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

91 - 25800 of 29,416 results. 91 - 25800 of 29,416 results. Rebate U.S. Virgin Islands- Net Metering In February 2007, the U.S. Virgin Islands Public Services Commission approved a limited net-metering program for residential and commercial photovoltaic (PV), wind-energy or other renewable energy... http://energy.gov/savings/us-virgin-islands-net-metering Rebate USDA- Repowering Assistance Biorefinery Program (Federal) The Repowering Assistance Program provides payments to eligible biorefineries to replace fossil fuels used to produce heat or power to operate the biorefineries with renewable biomass.... http://energy.gov/savings/usda-repowering-assistance-biorefinery-program-federal Rebate California Solar Initiative- PV Incentives '''Pacific Gas and Electric (PG&E) and San Diego Gas and Electric (SDG&E)

162

Renewable Energy Act (Prince Edward Island, Canada)  

Broader source: Energy.gov [DOE]

The Renewable Energy Act outlines the renewable portfolio goals, permitting for renewable projects, regulatory authority, net metering system regulations, purchase price regulations, and renewable...

163

Long Island Power Authority - Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov (indexed) [DOE]

Energy Efficiency Rebate Energy Efficiency Rebate Program Long Island Power Authority - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Heat Pumps Commercial Lighting Lighting Water Heating Other Ventilation Construction Maximum Rebate Cool Homes: $1000 Home Performance with Energy Star Program: $1500 Insulation/Duct Insulation: $1500 Air/Duct Sealing: $1500 Program Info State New York Program Type Utility Rebate Program Rebate Amount General Variable-Speed Pool Pumps: $400 Two-Speed Pool Pumps: $150 Refrigerator: $50 - $100 Refrigerator Recycling: $50 rebate plus up to $60 reward

164

Northern Mariana Islands: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

can help OpenEI by expanding it. The Northern Mariana Islands is a commonwealth in political union with the United States of America. References IMF World Economic Outlook...

165

Bristol County, Rhode Island: Energy Resources | Open Energy...  

Open Energy Info (EERE)

This article is a stub. You can help OpenEI by expanding it. Bristol County is a county in Rhode Island. Its FIPS County Code is 001. It is classified as ASHRAE 169-2006 Climate...

166

Energy Transition Initiative: Islands Playbook (Book)  

Office of Environmental Management (EM)

Transparency 4-11 Information Resources for Phase 4 4-15 Phase 5: Operations and Maintenance 5-1 5.1 Energy Efficiency Monitoring and Verification 5-1 5.2 End of Warranty...

167

Long Island Power Authority - Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Net Metering Net Metering Long Island Power Authority - Net Metering < Back Eligibility Agricultural Commercial Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Wind Solar Program Info State New York Program Type Net Metering Provider Long Island Power Authority : Note: In October 2012 the LIPA Board of Trustees adopted changes to the utility's net metering tariff that permit remote net metering for non-residential solar and wind energy systems, and farm-based biogas and wind energy systems. It also adopted a measure to increase the aggregate net metering cap for solar, agricultural biogas, residential micro-CHP and

168

U.S. Navy - San Clemente Island, California | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

San Clemente Island, California San Clemente Island, California U.S. Navy - San Clemente Island, California October 7, 2013 - 10:12am Addthis Photo of Wind Turbine on San Clemente Island, California San Clemente Island is one of the Channel Islands off the southern coast of California. The U.S. Navy owns the 21-mile long island, making it one of the Navy's largest real estate assets. The Navy uses the island for research, development, testing, evaluation, and training. Originally, the electrical needs of the island were provided by four diesel generators. In 1998 two wind turbines were installed through a joint project of the Department of Defense, the Department of Energy, and the Environmental Protection Agency working through the Federal Energy Management Program (FEMP). A third turbine was installed in 1999, allowing

169

Assessment of hydrokinetic energy near Rose Dhu Island, Georgia  

Science Journals Connector (OSTI)

The presented study reports on numerical simulations of flows in tidal channels near Rose Dhu Island GA which is used to identify hotspots of hydrokinetic energy and to assess the tidal stream energy potential at this site. The numerical simulations are complemented with field measurements of local currentvelocities and water surface heights which are used to validate the simulations. Both velocity distributions and water surface heights as predicted by the numerical model are in good agreement with observed data. The simulations reveal a tidal asymmetry in the encompassing Ogeechee estuary with the ebb tidecurrents dominating over the floodtide ones. The model is able to successfully predict the distribution of discharge into the smaller creeks around Rose Dhu Island and thereby capturing the location of local hotspots of hydrokinetic energy. It is found that local hotspots do exist near the island and the analysis suggests the maximum available annual power of 4.75?MW with a peak estimated extraction surpassing 4?KW during Spring tides.

Sandeep Bomminayuni; Brittany Bruder; Thorsten Stoesser; Kevin Haas

2012-01-01T23:59:59.000Z

170

EDIN-USVI Clean Energy Quarterly: Volume 2, Issue 1, June 2012 (Newsletter)  

SciTech Connect (OSTI)

This quarterly newsletter provides timely news and information about the plans and progress of the Energy Development in Island Nations-U.S. Virgin Islands pilot project, including significant events and milestones, work undertaken by each of the working groups, and project-related technology deployment efforts.

Not Available

2012-06-01T23:59:59.000Z

171

City of Grand Island, Nebraska (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Grand Island City of Grand Island City of Place Nebraska Utility Id 40606 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes RTO SPP Yes Operates Generating Plant Yes Activity Generation Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Area Flood Lighting Lighting Commercial Rate- Single Phase Commercial Commercial Rate- Three Phase Commercial Residential Rate Residential Three Phase Power Service Industrial

172

Fishers Island Utility Co Inc | Open Energy Information  

Open Energy Info (EERE)

Utility Co Inc Utility Co Inc Jump to: navigation, search Name Fishers Island Utility Co Inc Place New York Utility Id 6369 Utility Location Yes Ownership I NERC Location NPCC NERC NPCC Yes ISO NE Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Class 5 Commercial Residential Class 1 Residential Residential Class 2 Residential Residential Class 7 Residential Average Rates Residential: $0.3290/kWh Commercial: $0.2550/kWh The following table contains monthly sales and revenue data for Fishers Island Utility Co Inc (New York).

173

Bell Island Space Heating Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Bell Island Space Heating Low Temperature Geothermal Facility Facility Bell Island Sector Geothermal energy Type Space Heating Location Ketchikan, Alaska Coordinates 55.3422222°, -131.6461111° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

174

Newby Island I Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Island I Biomass Facility Facility Newby Island I Sector Biomass Facility Type Landfill Gas Location Santa Clara County, California Coordinates 37.2938907, -121.7195459...

175

Newby Island II Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Island II Biomass Facility Facility Newby Island II Sector Biomass Facility Type Landfill Gas Location Santa Clara County, California Coordinates 37.2938907, -121.7195459...

176

Commercial-Scale Renewable-Energy Grants (Rhode Island) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Commercial-Scale Renewable-Energy Grants (Rhode Island) Commercial-Scale Renewable-Energy Grants (Rhode Island) Commercial-Scale Renewable-Energy Grants (Rhode Island) < Back Eligibility Commercial Institutional Local Government Low-Income Residential Nonprofit Savings Category Biofuels Alternative Fuel Vehicles Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Hydrogen & Fuel Cells Solar Home Weatherization Water Maximum Rebate $75,000 Program Info Funding Source Rhode Island Renewable Energy Fund (RIREF); Alternative Compliance Payments (ACPs) Start Date 01/01/2013 Expiration Date 12/31/2013 State Rhode Island Program Type State Grant Program Rebate Amount 20% of project funding Provider Rhode Island Economic Development Corporation The Rhode Island Economic Development Corporation (RIEDC) provides

177

Shelter Island, New York: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

(Redirected from Shelter Island, NY) (Redirected from Shelter Island, NY) Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.0681549°, -72.3386939° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.0681549,"lon":-72.3386939,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

178

Harnessing Sun, Wind and Lava for Islands' Energy Needs | Department of  

Broader source: Energy.gov (indexed) [DOE]

Harnessing Sun, Wind and Lava for Islands' Energy Needs Harnessing Sun, Wind and Lava for Islands' Energy Needs Harnessing Sun, Wind and Lava for Islands' Energy Needs November 3, 2010 - 10:56am Addthis Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs Last month, the Energy Blog featured a read out of Assistant Secretary Patricia Hoffman's trip to Honolulu and the Hawaii Clean Energy Initiative (HCEI). Bolstered by HCEI, Hawaii is harnessing its indigenous sources of energy to achieve 70 percent clean energy usage by 2030. Islands across the world are similarly positioned to address their unique energy challenges with endemic resources: sun, wind, waves and lava. Cue in the Energy Development in Island Nations (EDIN) project - this international collaboration between the United States, Iceland and New

179

Hybrid energy system cost analysis: San Nicolas Island, California  

SciTech Connect (OSTI)

This report analyzes the local wind resource and evaluates the costs and benefits of supplementing the current diesel-powered energy system on San Nicolas Island, California (SNI), with wind turbines. In Section 2.0 the SNI site, naval operations, and current energy system are described, as are the data collection and analysis procedures. Section 3.0 summarizes the wind resource data and analyses that were presented in NREL/TP 442-20231. Sections 4.0 and 5.0 present the conceptual design and cost analysis of a hybrid wind and diesel energy system on SNI, with conclusions following in Section 6. Appendix A presents summary pages of the hybrid system spreadsheet model, and Appendix B contains input and output files for the HYBRID2 program.

Olsen, T.L.; McKenna, E.

1996-07-01T23:59:59.000Z

180

Islanded Grid Wind Power Conference | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Islanded Grid Wind Power Conference Islanded Grid Wind Power Conference March 4, 2015 8:00AM AKST to March 6, 2015 5:00PM AKST Alaska Pacific University 4101 University Drive...

Note: This page contains sample records for the topic "virgin islands energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Asian American Pacific Islander Heritage Month | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Asian American Pacific Islander Heritage Month Asian American Pacific Islander Heritage Month Asian American Pacific Islander Heritage Month May 1, 2013 11:45AM EDT to May 31, 2013 5:45PM EDT nationwide Generations of Asian Americans and Pacific Islanders (AAPIs) have helped make America what it is today. Their histories recall bitter hardships and proud accomplishments -- from the laborers who connected our coasts one-and-a-half centuries ago, to the patriots who fought overseas while their families were interned at home, from those who endured the harsh conditions of Angel Island, to the innovators and entrepreneurs who are driving our Nation's economic growth in Silicon Valley and beyond. Asian American and Pacific Islander Heritage Month offers us an opportunity to celebrate the vast contributions Asian Americans and Pacific Islanders have

182

Energy Incentive Programs, Rhode Island | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

energy efficiency programs, see the previous section. What load managementdemand response options are available to me? The Independent System Operator New England Inc....

183

Preliminary Research of Using Ocean Currents and Wind Energy to Support Lighthouse in Small Island, Indonesia  

Science Journals Connector (OSTI)

Abstract This study was aimed to get preliminary result, which review potential of utilizing ocean surface current and wind energy as energy source of lighthouse in Small Island. The data was acquired from field observation and from satellite. Ocean current speed in Berhala, Anambas, and Biawak island have their mean on 0.135 m/s, 0.055 m/s, and 0.272 m/s, meanwhile the ocean surface wind speed has its mean on 0.220 m/s and 3.032 m/s. Three years satellite data showed that Miangas island has the highest mean speed (0.835 m/s) of ocean current and Biawak island has the smallest one (0.154 m/s), whereas the highest mean speed (4.848 m/s) of ocean surface wind was in Rondo island and the smallest one (1.438 m/s) was in Berhala island.

Noir P. Purba; Jaya Kelvin; Muallimah Annisaa; Dessy Teliandi; K.G. Ghalib; I.P. Resti Ayu; Finri S. Damanik

2014-01-01T23:59:59.000Z

184

Identifying Cost-Effective Residential Energy Efficiency Opportunities for the Kauai Island Utility Cooperative  

Office of Energy Efficiency and Renewable Energy (EERE)

This analysis is an update to the Energy Efficiency Potential report completed by KEMA for the Kauai Island Utility Cooperative (KIUC) and identifies potential energy efficiency opportunities in the residential sector on Kauai (KEMA 2005).

185

Rhode Island Energy and Cost Savings for New Single- and Multifamily Homes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Rhode Island Rhode Island Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the 2009 IECC BUILDING TECHNOLOGIES PROGRAM 2 2012 IECC AS COMPARED TO THE 2009 IECC Rhode Island Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the 2009 IECC The 2012 International Energy Conservation Code (IECC) yields positive benefits for Rhode Island homeowners. Moving to the 2012 IECC from the 2009 IECC is cost-effective over a 30-year life cycle. On average, Rhode Island homeowners will save $11,011 with the 2012 IECC. Each year, the reduction to energy bills will significantly exceed increased mortgage costs. After accounting for up-front costs and additional costs financed in the mortgage, homeowners should

186

The Jobs Development Act (Rhode Island) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Jobs Development Act (Rhode Island) Jobs Development Act (Rhode Island) The Jobs Development Act (Rhode Island) < Back Eligibility Agricultural Commercial Construction Developer Fuel Distributor Industrial Installer/Contractor Institutional Retail Supplier Systems Integrator Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Rhode Island Program Type Corporate Tax Incentive Provider Rhode Island Economic Development Corporation The Jobs Development Act provides an incremental reduction in the corporate income tax rate (9%) to companies creating jobs in Rhode Island. For every ten new jobs created for companies with fewer than 100 employees, companies can reduce the tax by a quarter percentage point. For companies with more

187

Climate Action Plan (Rhode Island) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Rhode Island) Rhode Island) Climate Action Plan (Rhode Island) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Rhode Island Program Type Climate Policies Provider Department of Environmental Management In the fall of 2001, the Department of Environmental Management (DEM), the

188

Mystic Island, New Jersey: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Jersey: Energy Resources Jersey: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.565559°, -74.383286° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.565559,"lon":-74.383286,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

189

Shelter Island Heights, New York: Energy Resources | Open Energy  

Open Energy Info (EERE)

Heights, New York: Energy Resources Heights, New York: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.0839883°, -72.3559166° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.0839883,"lon":-72.3559166,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

190

Island Heights, New Jersey: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Jersey: Energy Resources Jersey: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.9420626°, -74.1498616° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.9420626,"lon":-74.1498616,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

191

Jupiter Island, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Florida: Energy Resources Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 27.0314437°, -80.1014311° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":27.0314437,"lon":-80.1014311,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

192

Island County, Washington: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Washington: Energy Resources Washington: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 48.19765°, -122.579457° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.19765,"lon":-122.579457,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

193

White Island Shores, Massachusetts: Energy Resources | Open Energy  

Open Energy Info (EERE)

Massachusetts: Energy Resources Massachusetts: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.8001045°, -70.6347549° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.8001045,"lon":-70.6347549,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

194

Kodiak Island Borough, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Borough, Alaska: Energy Resources Borough, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 57.5369343°, -153.2659352° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":57.5369343,"lon":-153.2659352,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

195

Page not found | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

31 - 19040 of 28,905 results. 31 - 19040 of 28,905 results. Download State Energy Program Assurances- Michigan Governor Granholm http://energy.gov/downloads/state-energy-program-assurances-michigan-governor-granholm Download State Energy Program Assurances- Virgin Islands Governor de Jongh http://energy.gov/downloads/state-energy-program-assurances-virgin-islands-governor-de-jongh Download Office of Weatherization and Intergovernmental Programs (OWIP) http://energy.gov/diversity/downloads/office-weatherization-and-intergovernmental-programs-owip Download Financial_Assistance_Certification-01.pdf http://energy.gov/management/downloads/financialassistancecertification-01pdf Download LPO_1.pdf http://energy.gov/downloads/lpo1pdf Download LETTER TEMPLATE TO PROJECTS ON HOLD http://energy.gov/downloads/letter-template-projects-hold

196

Scenario Prediction of Energy Demand and Development Status of Renewable Energy in Dunstan Area of Chongming Island  

Science Journals Connector (OSTI)

Based on the data of GDP and population during the period 20032008, the energy demand in 2020 for industrial and residential energy in Dunstan area of Chongming Island was ... research material, the development ...

Xuezhong Fan; Liquan Zhang

2013-01-01T23:59:59.000Z

197

H2RES: Energy Planning of Islands and Isolated Regions Website | Open  

Open Energy Info (EERE)

H2RES: Energy Planning of Islands and Isolated Regions Website H2RES: Energy Planning of Islands and Isolated Regions Website Jump to: navigation, search Tool Summary LAUNCH TOOL Name: H2RES: Energy Planning of Islands and Isolated Regions Website Focus Area: Crosscutting Topics: System & Application Design Website: www.powerlab.fsb.hr/h2RES/index.html Equivalent URI: cleanenergysolutions.org/content/h2res-energy-planning-islands-and-iso Language: English Policies: Regulations Regulations: "Net Metering & Interconnection,Resource Integration Planning" is not in the list of possible values (Agriculture Efficiency Requirements, Appliance & Equipment Standards and Required Labeling, Audit Requirements, Building Certification, Building Codes, Cost Recovery/Allocation, Emissions Mitigation Scheme, Emissions Standards, Enabling Legislation, Energy Standards, Feebates, Feed-in Tariffs, Fuel Efficiency Standards, Incandescent Phase-Out, Mandates/Targets, Net Metering & Interconnection, Resource Integration Planning, Safety Standards, Upgrade Requirements, Utility/Electricity Service Costs) for this property.

198

Analysis of Offshore Wind Energy Leasing Areas for the Rhode Island/Massachusetts Wind Energy Area  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Analysis of Offshore Wind Analysis of Offshore Wind Energy Leasing Areas for the Rhode Island/Massachusetts Wind Energy Area W. Musial, D. Elliott, J. Fields, Z. Parker, and G. Scott Produced under direction of the Bureau of Ocean Energy Management (BOEM) by the National Renewable Energy Laboratory (NREL) under Interagency Agreement M13PG00002 and Task No WFS3.1000. Technical Report NREL/TP-5000-58091 April 2013 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Contract No. DE-AC36-08GO28308 National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401 303-275-3000 * www.nrel.gov Analysis of Offshore Wind

199

Enhance energy transfer between quantum dots by the surface plasmon of Ag island film  

Science Journals Connector (OSTI)

We observed enhanced energy transfer between quantum dots which were spin coated on the surface of Ag island film. By adjusting the thickness of Al2O3 spacer...

Xu, Hui; Liu, Jiaming; Duan, Xiaoyu; Li, Jiahua; Xue, Jiancai; Sun, Xiye; Cai, Yefan; Zhou, Zhang-Kai; Wang, Xuehua

2014-01-01T23:59:59.000Z

200

Small Changes Help Long Island Homeowner Save Big on Energy Costs |  

Broader source: Energy.gov (indexed) [DOE]

Small Changes Help Long Island Homeowner Save Big on Energy Costs Small Changes Help Long Island Homeowner Save Big on Energy Costs Small Changes Help Long Island Homeowner Save Big on Energy Costs April 16, 2013 - 12:20pm Addthis Located near the Long Island Sound, Deborah Wetzel's condo is cold and drafty eight months out of the year. A home energy audit and small energy efficiency upgrades helped Wetzel improve the comfort of her home while saving money on energy bills. | Photo courtesy of Deborah Wetzel. Located near the Long Island Sound, Deborah Wetzel's condo is cold and drafty eight months out of the year. A home energy audit and small energy efficiency upgrades helped Wetzel improve the comfort of her home while saving money on energy bills. | Photo courtesy of Deborah Wetzel. Wetzel made small energy efficiency changes -- like sealing air leaks around her washer and dryer hookups -- and is seeing big results on her energy bills. | Photo courtesy of Deborah Wetzel.

Note: This page contains sample records for the topic "virgin islands energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

MHK Projects/Fishers Island Tidal Energy Project | Open Energy Information  

Open Energy Info (EERE)

Fishers Island Tidal Energy Project Fishers Island Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.2379,"lon":-72.0599,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

202

MHK Projects/Greenwave Rhode Island Ocean Wave Energy Project | Open Energy  

Open Energy Info (EERE)

Greenwave Rhode Island Ocean Wave Energy Project Greenwave Rhode Island Ocean Wave Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.4501,"lon":-71.4495,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

203

MHK Projects/Shelter Island Tidal Energy Project | Open Energy Information  

Open Energy Info (EERE)

Shelter Island Tidal Energy Project Shelter Island Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.0453,"lon":-72.3748,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

204

MHK Projects/Roosevelt Island Tidal Energy RITE | Open Energy Information  

Open Energy Info (EERE)

Roosevelt Island Tidal Energy RITE Roosevelt Island Tidal Energy RITE < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.7639,"lon":-73.9466,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

205

MHK Projects/Cape Islands Tidal Energy Project | Open Energy Information  

Open Energy Info (EERE)

Islands Tidal Energy Project Islands Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.4833,"lon":-70.7578,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

206

MHK Projects/Long Island Sound Tidal Energy Project | Open Energy  

Open Energy Info (EERE)

Long Island Sound Tidal Energy Project Long Island Sound Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.1674,"lon":-72.218,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

207

MHK Projects/Wavemill Energy Cape Breton Island NS CA | Open Energy  

Open Energy Info (EERE)

Energy Cape Breton Island NS CA Energy Cape Breton Island NS CA < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.2487,"lon":-60.8518,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

208

State & Federal Initiatives Energy and Waste- The Landmark Statue of Liberty and Ellis Island Energy Savings Performance Contract  

E-Print Network [OSTI]

STATE & FEDERAL INITIATIVES ENERGY AND WASTE THE LANDMARK STATUE OF LIBERTY AND ELLIS ISLAND ENERGY SAVINGS PERFORMANCE CONTRACT Michael D. Leach, P.E., C.E.M. Chairman and CEO CESlWay International, Inc. ABSTRACT The Statue... of Liberty and Ellis Island National Monument are perhaps the most visible Energy Savings Performance Contracts (ESPC) performed in the U.S. to date simply because of the international notoriety of the facilities themselves. While the technologies...

Leach, M. D.

209

Near zero energy islands in the Mediterranean: Supporting policies and local obstacles  

Science Journals Connector (OSTI)

Abstract Based on a recent technicaleconomical analysis on the island of Pantelleria, a policy feasibility study for a complete upgrading of the energy system of this Mediterranean Island is carried out. Pantelleria, situated between Sicily and Africa, owns a large potential in terms of renewable energy resources, although there are some obstacles in turning it into a Near Zero Energy system. Starting from a deep energy system audit, the study proposes the project for a near zero energy island, through the efficient transformation of the different existing natural energy resources into electrical energy and heat: the solar, the wind-based and the geothermal systems. In this way, the island can be turned into an almost autonomous system. The main difficulties connected to the implementation of the project can be identified in the national energy policies as well as in the specific local situation, characterized by a strong private monopole on generation and distribution of electrical energy which has no incentive for supporting the costs connected to the energy requalification of the island. On the other hand, the local administrations, involved in the project through bottom-up European policies, do not have the cultural and economic tools to go on with the implementation.

Eleonora Riva Sanseverino; Raffaella Riva Sanseverino; Salvatore Favuzza; Valentina Vaccaro

2014-01-01T23:59:59.000Z

210

New School Year Means New Energy Systems for Two Rhode Island Schools |  

Broader source: Energy.gov (indexed) [DOE]

New School Year Means New Energy Systems for Two Rhode Island New School Year Means New Energy Systems for Two Rhode Island Schools New School Year Means New Energy Systems for Two Rhode Island Schools August 16, 2010 - 4:00pm Addthis New energy recovery systems and occupancy sensors are greatly reducing energy costs at Woonsocket Middle School at Hamlet. | Photo courtesy of Woonsocket Education Department New energy recovery systems and occupancy sensors are greatly reducing energy costs at Woonsocket Middle School at Hamlet. | Photo courtesy of Woonsocket Education Department Kevin Craft What are the key facts? Systems and occupancy sensors save 172,365 kWh and $26,000 annually $181,000 Recovery Act grant funded installation Systems also monitor CO2 levels to provide optimal indoor air quality When city officials in Woonsocket, R.I. were planning the construction of

211

New School Year Means New Energy Systems for Two Rhode Island Schools |  

Broader source: Energy.gov (indexed) [DOE]

School Year Means New Energy Systems for Two Rhode Island School Year Means New Energy Systems for Two Rhode Island Schools New School Year Means New Energy Systems for Two Rhode Island Schools August 16, 2010 - 4:00pm Addthis New energy recovery systems and occupancy sensors are greatly reducing energy costs at Woonsocket Middle School at Hamlet. | Photo courtesy of Woonsocket Education Department New energy recovery systems and occupancy sensors are greatly reducing energy costs at Woonsocket Middle School at Hamlet. | Photo courtesy of Woonsocket Education Department Kevin Craft What are the key facts? Systems and occupancy sensors save 172,365 kWh and $26,000 annually $181,000 Recovery Act grant funded installation Systems also monitor CO2 levels to provide optimal indoor air quality When city officials in Woonsocket, R.I. were planning the construction of

212

Biomass Guidelines (Prince Edward Island, Canada) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » Biomass Guidelines (Prince Edward Island, Canada) Biomass Guidelines (Prince Edward Island, Canada) < Back Eligibility Agricultural Construction Developer Industrial Investor-Owned Utility Municipal/Public Utility Utility Program Info State Prince Edward Island Program Type Environmental Regulations PEI Biomass Guidelines identify two major pathways that biomass projects may follow: No Public Investment, and Public Investment. Projects with Public Investment include any project that has: * Grants or loans for start-up, capital, or operating costs; * Silvicultural or other land management incentives provided through Departmental programs (e.g. Forest Enhancement Program, ALUS); or * Green credits or certification from Government. Guidelines for No Public Investment projects must only comply with existing

213

The Geyser Bight Geothermal Area, Umnak Island, Alaska | Open Energy  

Open Energy Info (EERE)

Geyser Bight Geothermal Area, Umnak Island, Alaska Geyser Bight Geothermal Area, Umnak Island, Alaska Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: The Geyser Bight Geothermal Area, Umnak Island, Alaska Details Activities (2) Areas (1) Regions (0) Abstract: The Geyser Bight geothermal area contains one of the hottest and most extensive areas of thermal springs in Alaska, and is the only site in the state with geysers. Heat for the geothermal system is derived from crustal magma associated with Mt. Recheshnoi volcano. Successive injections of magma have probably heated the crust to near its minimum melting point and produced the only high-SiO2 rhyolites in the oceanic part of the Aleutian arc. At least two hydrothermal reservoirs are postulated to underlie the geothermal area and have temperatures of 165° and 200°C,

214

Washington Island El Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Washington Island El Coop, Inc Washington Island El Coop, Inc Place Wisconsin Utility Id 20153 Utility Location Yes Ownership C NERC Location RFC NERC RFC Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Electric Heat Residential General Service Commercial General Service Seasonal Commercial Average Rates Residential: $0.1820/kWh Commercial: $0.1330/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Washington_Island_El_Coop,_Inc&oldid=412150

215

Village of Green Island, New York (Utility Company) | Open Energy  

Open Energy Info (EERE)

Green Island Green Island Place New York Utility Id 7600 Utility Location Yes Ownership M NERC Location NPCC NERC NPCC Yes ISO NY Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial -- Non-Demand Rate Commercial Commercial with Demand Rate Commercial Residential and Religious Rate Residential Average Rates Residential: $0.0999/kWh Commercial: $0.1000/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Village_of_Green_Island,_New_York_(Utility_Company)&oldid=411997

216

MHK Projects/Vidal Island | Open Energy Information  

Open Energy Info (EERE)

Vidal Island Vidal Island < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

217

Author's personal copy Wave energy resources along the Hawaiian Island chain  

E-Print Network [OSTI]

Author's personal copy Wave energy resources along the Hawaiian Island chain Justin E. Stopa model Wave atlas Wave energy Wave power a b s t r a c t Hawaii's access to the ocean and remoteness from demand for sustainable energy. The wave resources include swells from distant storms and year-round seas

218

Rhode Island/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Rhode Island/Wind Resources/Full Version Rhode Island/Wind Resources/Full Version < Rhode Island‎ | Wind Resources Jump to: navigation, search Print PDF Rhode Island Wind Resources RhodeIslandMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

219

MHK Projects/Cow Island Bend | Open Energy Information  

Open Energy Info (EERE)

Island Bend Island Bend < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.0269,"lon":-90.2792,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

220

MHK Projects/Claiborne Island Project | Open Energy Information  

Open Energy Info (EERE)

Claiborne Island Project Claiborne Island Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.2055,"lon":-91.0732,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "virgin islands energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

MHK Projects/Turnbull Island | Open Energy Information  

Open Energy Info (EERE)

Turnbull Island Turnbull Island < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.0652,"lon":-91.711,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

222

MHK Projects/Davis Island Bend | Open Energy Information  

Open Energy Info (EERE)

Island Bend Island Bend < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.1299,"lon":-91.0636,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

223

MHK Projects/Willow Island | Open Energy Information  

Open Energy Info (EERE)

Island Island < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.3584,"lon":-81.3082,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

224

MHK Projects/Turkey Island | Open Energy Information  

Open Energy Info (EERE)

Island Island < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.8081,"lon":-91.3778,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

225

Long Island Power Authority LIPA | Open Energy Information  

Open Energy Info (EERE)

LIPA LIPA Jump to: navigation, search Name Long Island Power Authority (LIPA) Place Uniondale, New York Zip NY 11553 Product Long Island is a non-profit electric utility company. Coordinates 40.717935°, -73.593544° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.717935,"lon":-73.593544,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

226

MHK Projects/Tiger Island | Open Energy Information  

Open Energy Info (EERE)

Tiger Island Tiger Island < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.0297,"lon":-91.4933,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

227

MHK Projects/Island 14 Bend | Open Energy Information  

Open Energy Info (EERE)

Island 14 Bend Island 14 Bend < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.2837,"lon":-89.576,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

228

MHK Projects/Treat Island Tidal | Open Energy Information  

Open Energy Info (EERE)

Treat Island Tidal Treat Island Tidal < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.0234,"lon":-67.0672,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

229

MHK Projects/Stradbroke Island | Open Energy Information  

Open Energy Info (EERE)

Stradbroke Island Stradbroke Island < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-27.8883,"lon":153.421,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

230

MHK Projects/Raccourci Island | Open Energy Information  

Open Energy Info (EERE)

Island Island < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.9122,"lon":-91.5645,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

231

MHK Projects/Island 35 Bend | Open Energy Information  

Open Energy Info (EERE)

MHK Projects/Island 35 Bend MHK Projects/Island 35 Bend < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.5435,"lon":-89.9079,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

232

MHK Projects/CETO3 Garden Island | Open Energy Information  

Open Energy Info (EERE)

CETO3 Garden Island CETO3 Garden Island < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-32.2509,"lon":115.651,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

233

Long Island Power Authority - PV Rebate Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

PV Rebate Program PV Rebate Program Long Island Power Authority - PV Rebate Program < Back Eligibility Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Solar Buying & Making Electricity Maximum Rebate Residential (general customer-owned): Lesser of 50% of installed cost or $18,600; Residential (third-party owned): Lesser of 50% of installed cost or $17,200; Residential (non-profit owned): Lesser of 50% of installed costs or $22,500; Commercial: Lesser of 50% of installed cost or $145,000; Gov't, Schools, Nonprofits: Lesser of 65% of installed cost or $225,000 Program Info Funding Source LIPA Efficiency Long Island Program Start Date 2000 State New York Program Type Utility Rebate Program Rebate Amount

234

MHK Projects/Cat Island Project | Open Energy Information  

Open Energy Info (EERE)

Cat Island Project Cat Island Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.9431,"lon":-91.0932,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

235

Fox Islands Electric Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Fox Islands Electric Coop, Inc Fox Islands Electric Coop, Inc Place Maine Utility Id 8780 Utility Location Yes Ownership C NERC Location NPCC NERC NPCC Yes ISO NE Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Service Commercial Large Commercial Service Commercial Large Power Service Commercial Outdoor Lighting Service Lighting Residential Peak Period Service Residential Residential Service Residential Small Power Service Commercial Street Light Service 100HP sodium Lighting Street Light Service 175 Mercury Lighting Average Rates

236

MHK Projects/Pike Island | Open Energy Information  

Open Energy Info (EERE)

Island Island < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.3555,"lon":-81.7479,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

237

Progress in Extending the VIRGIN Program  

E-Print Network [OSTI]

The VIRGIN program will interpret pictures of simple scenes. This paper describes a program, SINNER, which will deal with picture which contain cracks and shadows. In addition to handling pictures of this richer world, ...

Dowson, Mark

238

Town of Babylon - Long Island Green Homes Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Town of Babylon - Long Island Green Homes Program Town of Babylon - Long Island Green Homes Program Town of Babylon - Long Island Green Homes Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Other Ventilation Appliances & Electronics Commercial Lighting Lighting Program Info Start Date 2008 State New York Program Type PACE Financing Provider Town of Bablyon The Long Island Green Homes Program is a self-financing residential retrofit program designed to support a goal of upgrading the energy efficiency of existing homes in the Town of Babylon. The program is a "benefit assessment" program, which allows the town to make a specific improvement that serves a public purpose on a parcel of property, and

239

Long Island New York City Offshore Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Island New York City Offshore Wind Farm Island New York City Offshore Wind Farm Jump to: navigation, search Name Long Island New York City Offshore Wind Farm Facility Long Island New York City Offshore Wind Farm Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Long Island-New York City Offshore Wind Collaborative Developer Long Island Power Authority (LIPA) / ConEdison (now part of LINYCOffshore Wind C Energy Purchaser New York Power Authority Location Offshore from the Rockaway Peninsula NY Coordinates 40.41°, -73.72° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.41,"lon":-73.72,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

240

Great Sitkin Island Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Sitkin Island Geothermal Area Sitkin Island Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Great Sitkin Island Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":52.06666667,"lon":-176.0833333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "virgin islands energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Korovin - Atka Island Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Korovin - Atka Island Geothermal Area Korovin - Atka Island Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Korovin - Atka Island Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":52.3494,"lon":-174.2472,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

242

Hot Spring On Umnak Island Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Hot Spring On Umnak Island Geothermal Area Hot Spring On Umnak Island Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Hot Spring On Umnak Island Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":53.2283,"lon":-168.308,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

243

Kluichef - Atka Island Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Kluichef - Atka Island Geothermal Area Kluichef - Atka Island Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Kluichef - Atka Island Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":52.3217,"lon":-174.1861,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

244

Bell Island Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Island Hot Springs Geothermal Area Island Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Bell Island Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":55.9321,"lon":-131.5672,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

245

Page not found | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

61 - 28770 of 28,904 results. 61 - 28770 of 28,904 results. Download MP_recovery_act_memo__updated.pdf http://energy.gov/downloads/mprecoveryactmemoupdatedpdf Download Virgin Islands Recovery Act State Memo http://energy.gov/downloads/virgin-islands-recovery-act-state-memo Download Inspection Report: INS-L-01-02 Letter Report on Security Incident at Technical Area 18, Los Alamos National Laboratory http://energy.gov/ig/downloads/inspection-report-ins-l-01-02 Download EA-1363: Finding of No Significant Impact Joint Environmental Assessment 2002-2006 of the California Department Of Food and Agriculture Curly Top Virus Control Program for Bureau Of Land Management and Department Of Energy http://energy.gov/nepa/downloads/ea-1363-finding-no-significant-impact Download Exelon response This letter constitutes the response of Exelon Generation Company, LLC and

246

Renewable Energy at Channel Islands National Park; Federal Energy Management Program: Technical Assistance, Case Study (Fact sheet)  

Broader source: Energy.gov (indexed) [DOE]

Visitors to Channel Islands National Visitors to Channel Islands National Park enjoy hiking, snorkeling, scuba diving, bird watching, and fishing. And now they'll also enjoy the benefits of renewable energy systems. The park is located off the coast of southern California and comprises Anacapa, Santa Barbara, Santa Cruz, San Miguel, and Santa Rosa Islands, and the surrounding mile of ocean. It has 249,353 acres (100,910 hectares) that teem with terrestrial and marine life. The park boasts more than 2000 species of land flora and fauna (145 of which are unique to the area), and is on a migration lane for gray, blue, and humpback whales. The National Park Service (NPS) pro- tects the pristine resources at Channel Islands by conserving, recycling, using alternative fuel vehicles, applying renewable energy, and using resources

247

Identifying Cost-Effective Residential Energy Efficiency Opportunities for the Kauai Island Utility Cooperative  

Broader source: Energy.gov (indexed) [DOE]

267 267 June 2010 Identifying Cost-Effective Residential Energy Efficiency Opportunities for the Kauai Island Utility Cooperative S. Busche and S. Hockett National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 Technical Report NREL/TP-7A2-48267 June 2010 Identifying Cost-Effective Residential Energy Efficiency Opportunities for the Kauai Island Utility Cooperative S. Busche and S. Hockett Prepared under Task No. IDHW9170 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

248

Identifying Cost-Effective Residential Energy Efficiency Opportunities for the Kauai Island Utility Cooperative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8267 8267 June 2010 Identifying Cost-Effective Residential Energy Efficiency Opportunities for the Kauai Island Utility Cooperative S. Busche and S. Hockett National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 Technical Report NREL/TP-7A2-48267 June 2010 Identifying Cost-Effective Residential Energy Efficiency Opportunities for the Kauai Island Utility Cooperative S. Busche and S. Hockett Prepared under Task No. IDHW9170 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

249

Distributed Wind Case Study: Cross Island Farms, Wellesley Island, New York (Fact Sheet), NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Distributed Wind Case Study: Cross Island Farms, Wellesley Island, New York Distributed Wind Case Study: Cross Island Farms, Wellesley Island, New York www.nrel.gov Baker and Belding installed a 10-kW Bergey Excel wind turbine in August 2011. Photo from Cross Island Farms, NREL/PIX 19923 Funding Summary * Total cost of wind turbine, including first developer: $82,000 * Total cost of wind turbine, excluding first developer: $73,000 * Total cost of solar: $40,000 * Propane generator: $8,000; including equipment, installation, and propane: $13,000 * USDA REAP grant: $20,506 (~25% of

250

Page not found | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

11 - 2520 of 28,905 results. 11 - 2520 of 28,905 results. Download CX-009135: Categorical Exclusion Determination Puerto Rico State Energy Program for Physical Year 2012 CX(s) Applied: A9, A11 Date: 08/30/2012 Location(s): Puerto Rico Offices(s): Golden Field Office http://energy.gov/nepa/downloads/cx-009135-categorical-exclusion-determination Download CX-009169: Categorical Exclusion Determination Virgin Islands State Energy Program CX(s) Applied: A9, A11 Date: 09/26/2012 Location(s): Virgin Islands Offices(s): Golden Field Office http://energy.gov/nepa/downloads/cx-009169-categorical-exclusion-determination Download CX-009581: Categorical Exclusion Determination Manufacturing Improvement Program for the Oil and Gas Industry Supply Chain CX(s) Applied: A9, A11, B3.6 Date: 12/14/2012 Location(s): Oklahoma

251

Page not found | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

51 - 25060 of 28,560 results. 51 - 25060 of 28,560 results. Download CX-009169: Categorical Exclusion Determination Virgin Islands State Energy Program CX(s) Applied: A9, A11 Date: 09/26/2012 Location(s): Virgin Islands Offices(s): Golden Field Office http://energy.gov/nepa/downloads/cx-009169-categorical-exclusion-determination Download Potential Health Hazards of Radiation Potential Health Hazards of Radiation http://energy.gov/lm/downloads/potential-health-hazards-radiation Article Secretary Chu Announces Six Projects to Convert Captured CO2 Emissions from Industrial Sources into Useful Products U.S. Energy Secretary Steven Chu announced today the selections of six projects that aim to find ways of converting captured carbon dioxide emissions from industrial sources into useful products such as fuel,

252

Page not found | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

31 - 12440 of 31,917 results. 31 - 12440 of 31,917 results. Download EIS-0285-SA-78: Supplement Analysis Transmission System Vegetation Management Program http://energy.gov/nepa/downloads/eis-0285-sa-78-supplement-analysis Download American Samoa Recovery Act State Memo http://energy.gov/downloads/american-samoa-recovery-act-state-memo Download Virgin Islands Recovery Act State Memo http://energy.gov/downloads/virgin-islands-recovery-act-state-memo Rebate Forestry Policies (Michigan) Michigan's 19 million acres of forests are managed by the Department of Natural Resources, Forestry and Water Division. The Department issued its Forest Resource Assessment and Strategy document... http://energy.gov/savings/forestry-policies-michigan Article New Research Center to Increase Safety and Power Output of U.S.

253

Long Island Power Authority Smart Grid Demonstration Project | Open Energy  

Open Energy Info (EERE)

Demonstration Project Demonstration Project Jump to: navigation, search Project Lead Long Island Power Authority Country United States Headquarters Location Uniondale, New York Recovery Act Funding $12,496,047.00 Total Project Value $25,293,735.00 Coordinates 40.7003793°, -73.5929056° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

254

Wind Energy Deployment in Isolated Islanded Power Systems: Challenges & Realities (Poster)  

SciTech Connect (OSTI)

Rising costs of fuels, energy surety, and the carbon impacts of diesel fuel are driving remote and islanded communities dependent on diesel power generation to look for alternatives. Over the past few years, interest in using wind energy to reduce diesel fuel consumption has increased dramatically, potentially providing economic, environmental, social, and security benefits to the energy supply of isolated and islanded communities. However, the task of implementing such systems has remained elusive and subject to many cases of lower-than-expected performance. This poster describes the current status of integrating higher contribution wind technology into islanded power systems, the progress of recent initiatives implemented by the U.S. Department of Energy and Interior, and some of the lingering technical and commercial challenges. Operating experience from a number of power systems is described. The worldwide market for wind development in islanded communities (some of these supplying large domestic loads) provides a strong market niche for the wind industry, even in the midst of a slow global recovery.

Baring-Gould, I.

2014-05-01T23:59:59.000Z

255

DOE Zero Energy Ready Home Case Study: Clifton View Homes, Whidbey Island, WA  

Broader source: Energy.gov [DOE]

Case study of a DOE Zero Energy Ready home on Whidbey Island, WA, that scores HERS 37 without PV or HERS -13 with 10 kW PV, enough to power the home and an electric car. The two-story custom home...

256

U.S. Virgin Islands Transportation Petroleum Reduction Plan  

SciTech Connect (OSTI)

This NREL technical report determines a way for USVI to meet its petroleum reduction goal in the transportation sector. It does so first by estimating current petroleum use and key statistics and characteristics of USVI transportation. It then breaks the goal down into subordinate goals and estimates the petroleum impacts of these goals with a wedge analysis. These goals focus on reducing vehicle miles, improving fuel economy, improving traffic flow, using electric vehicles, using biodiesel and renewable diesel, and using 10% ethanol in gasoline. The final section of the report suggests specific projects to achieve the goals, and ranks the projects according to cost, petroleum reduction, time frame, and popularity.

Johnson, C.

2011-09-01T23:59:59.000Z

257

U.S. Virgin Islands Transportation Petroleum Reduction Plan  

Office of Energy Efficiency and Renewable Energy (EERE)

This report, funded by DOE and prepared by EDINs Transportation Working Group (TWG), aims to build on the 2030 USVI Transportation Master Plan by describing how its recommended projects can be leveraged toward the 60% by 2025 goal.

258

NREL: Technology Deployment - U.S. Virgin Islands Cut Diesel...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

with developing distributed generation (DG) solar projects. Fifteen megawatts of DG solar projects have been installed over the past few years. In December 2012, NREL wind...

259

U.S. Virgin Islands Wind Resources Update 2014  

SciTech Connect (OSTI)

This report summarizes the data collected from two 60-meter meteorological towers and three sonic detection and ranging units on St. Thomas and St. Croix in 2012 and 2013. These results are an update to the previous feasibility study; the collected data are critical to the successful development of a wind project at either site.

Roberts, J. O.; Warren, A.

2014-12-01T23:59:59.000Z

260

U.S. Virgin Islands Wind Resources Update 2014  

Office of Energy Efficiency and Renewable Energy (EERE)

Summarizes the data collected from two 60-meter meteorological towers and three sonic detection and ranging units on St. Thomas and St. Croix in 2012 and 2013. The report leverages previous feasibility studies conducted at NREL, including Wind Power Opportunities in St. Thomas, USVI: A Site-Specific Analysis.

Note: This page contains sample records for the topic "virgin islands energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Virgin Islands Water Resources Research Institute Annual Technical Report  

E-Print Network [OSTI]

density areas. Studies have shown that populations near the coast may increase the chance of contamination is being prepared. 2. A paper is being prepared for presentation at a conference in South Africa. #12 related to exposure to these bacteria are respiratory and skin infections. At risk populations

262

Page not found | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

01 - 2110 of 26,777 results. 01 - 2110 of 26,777 results. Download Natural Gas Imports and Exports- Third Quarter Report 2012 Natural Gas Imports and Exports - Third Quarter Report 2012 http://energy.gov/fe/downloads/natural-gas-imports-and-exports-third-quarter-report-2012 Download U.S. Virgin Islands Transportation Petroleum Reduction Plan This report, funded by DOE and prepared by EDIN's Transportation Working Group (TWG), aims to build on the "2030 USVI Transportation Master Plan" by describing how its recommended projects can be leveraged toward the 60% by 2025 goal. http://energy.gov/eere/downloads/us-virgin-islands-transportation-petroleum-reduction-plan Photo Gallery SunShot Grand Challenge http://energy.gov/photos/sunshot-grand-challenge Download HSS Visiting Speaker Program - January 12, 2009

263

Bell Island Pool & Spa Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Bell Island Pool & Spa Low Temperature Geothermal Facility Bell Island Pool & Spa Low Temperature Geothermal Facility Facility Bell Island Sector Geothermal energy Type Pool and Spa Location Ketchikan, Alaska Coordinates 55.3422222°, -131.6461111° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

264

"1. Rhode Island State Energy Partners","Gas","FPL Energy Operating Serv Inc",528  

U.S. Energy Information Administration (EIA) Indexed Site

Rhode Island" Rhode Island" "1. Rhode Island State Energy Partners","Gas","FPL Energy Operating Serv Inc",528 "2. Manchester Street","Gas","Dominion Energy New England, LLC",447 "3. Tiverton Power Plant","Gas","Tiverton Power Inc",250 "4. Ocean State Power II","Gas","Ocean State Power II",219 "4. Ocean State Power","Gas","Ocean State Power Co",219 "6. Pawtucket Power Associates","Gas","Pawtucket Power Associates LP",63 "7. Ridgewood Providence Power","Other Renewables","Ridgewood Power Management LLC",24 "8. Central Power Plant","Gas","State of Rhode Island",10

265

Sustainable energy future via grid interactive operation of spv system at isolated remote island  

Science Journals Connector (OSTI)

This paper has analyzed the case of Moushuni Island at Sundarban of 24 Parganas South of West Bengal, India. The proposition is to find out the possibility of grid-connectivity of Isolated Remote Island which is under rural electrification scheme by hybrid renewable energies under Jawaharlal Nehru National Solar Mission of India. In these rural electrification program, grid extension can be the best option if the grid is reliable, the rural community rather big and in proximity to the grid. In many circumstances, a strong case for mini-grids based on hybrid systems can be made. Scattered communities and isolated houses are well served by solar and small hydro (where available) or small wind energy systems. By feeding renewable electricity to the utility grid through the grid-connected hybrid renewable energy system, during time of peak demand, sufficient electrical loads can be shed to prevent turning on a coal or natural gas-fired plant and therefore save CO2 emissions and potentially energy import costs, replacing fossil fuels. The Social, Economic, and Environmental Benefits can be achieved through this proposition. Also, the Grid Interactive Operation of SPV System at Moushuni Island is tested. Malda district of West Bengal, India is a vision towards smart-grid city towards sustainable future, where rural consumers can upgrade their quality of life through solar energy resource.

Aurobi Das; V. Balakrishnan

2012-01-01T23:59:59.000Z

266

Bainbridge Island Data Dashboard  

Broader source: Energy.gov [DOE]

The data dashboard for Bainbridge Island, a partner in the U.S. Department of Energy's Better Buildings Neighborhood Program.

267

Saving Energy and Improving Air Quality in Urban Heat Islands  

Science Journals Connector (OSTI)

Temperatures in urban areas have increased because solar energy is more strongly absorbed by additional roofs and pavements. Downtown Los Angles is now 2.5 Kelvin warmer than in the 1930s which requires 11.5 GWe more electricity to cool buildings on summer days costing an extra $100 million/year. Cool roof and pavement materials with increased reflectivity of 0.25 can lower surface temperatures by 10 K. If Los Angles urban temperatures could be reduced by 3 K ozone concentrations could be reduced considerably.

Hashem Akbari

2008-01-01T23:59:59.000Z

268

Amchitka Island, Alaska, Potential U.S. Department of Energy Site Responsibilities  

SciTech Connect (OSTI)

This historical records review report concerns the activities of the US Atomic Energy Commission (AEC) at Amchitka Island, Alaska, over a period extending from 1942 to 1993. The report focuses on AEC activities resulting in known or suspected contamination of the island environment by nonradiological hazardous or toxic materials as discerned through historical records. In addition, the information from historical records was augmented by an August 1998 sampling event. Both the records review and sampling were conducted by IT Corporation on behalf of the US Department of Energy (DOE), the predecessor agency to the AEC. The intent of this investigation was to identify all potentially contaminated sites for which DOE may be responsible, wholly or partially, including all official sites of concern as recognized by the US Fish and Wildlife Service (USFWS). Additionally, potential data gaps that the DOE will need to fill to support the ecological and human health risk assessments performed were identified. A review of the available historical information regarding AEC's activities on Amchitka Island indicates that the DOE is potentially responsible for 11 sites identified by USFWS and an additional 10 sites that are not included in the USFWS database of sites of potential concern.

U.S. Department of Energy, Nevada Operations Office

1999-01-22T23:59:59.000Z

269

Wind Energy Resource Atlas. Volume 11. Hawaii and Pacific Islands Region  

SciTech Connect (OSTI)

This atlas of the wind energy resource is composed of introductory and background information, and assessments of the wind resource in each division of the region. Background on how the wind resource is assessed and on how the results of the assessment should be inerpreted is presented. An introduction and outline to the descriptions of the wind resource for each division are provided. Assessments for individual divisions are presented as separate chapters. Much of the information in the division chapters is given in graphic or tabular form. The sequences for each chapter are similar, but some presentations used for Hawaii are inappropriate or impractical for presentation with the Pacific Islands. Hawaii chapter figure and tables are cited below and appropriate Pacific Islands figure and table numbers are included in brackets ().

Schroeder, T.A.; Hori, A.M.; Elliott, D.L.; Barchet, W.R.; George, R.L.

1981-02-01T23:59:59.000Z

270

Categorical Exclusion (CX) Determinations By Date | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

7, 2012 7, 2012 CX-009327: Categorical Exclusion Determination Gas Hydrate Dynamics on the Alaskan Beaufort Continental Slope: Modeling and Field Characterization CX(s) Applied: A9 Date: 09/27/2012 Location(s): Texas Offices(s): National Energy Technology Laboratory September 26, 2012 CX-009434: Categorical Exclusion Determination Deployable Commercial Rooftop Solar Electric System CX(s) Applied: B5.15 Date: 09/26/2012 Location(s): New York Offices(s): Golden Field Office September 26, 2012 CX-009169: Categorical Exclusion Determination Virgin Islands State Energy Program CX(s) Applied: A9, A11 Date: 09/26/2012 Location(s): Virgin Islands Offices(s): Golden Field Office September 26, 2012 CX-009331: Categorical Exclusion Determination High Resolution 3D Laser Imaging for Inspection, Maintenance, Repair and

271

Identifying Cost-Effective Residential Energy Efficiency Opportunities for the Kauai Island Utility Cooperative  

SciTech Connect (OSTI)

This analysis is an update to the 2005 Energy Efficiency Potential Study completed by KEMA for the Kauai Island Utility Cooperative (KIUC) and identifies potential energy efficiency opportunities in the residential sector on Kauai (KEMA 2005). The Total Resource Cost (TRC) test is used to determine which of the energy efficiency measures analyzed in the KEMA report are cost effective for KIUC to include in a residential energy efficiency program. This report finds that there remains potential energy efficiency savings that could be cost-effectively incentivized through a utility residential demand-side management program on Kauai if implemented in such a way that the program costs per measure are consistent with the current residential program costs.

Busche, S.; Hockett, S.

2010-06-01T23:59:59.000Z

272

Rhode Island to Build First Offshore Wind Farm | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Rhode Island to Build First Offshore Wind Farm Rhode Island to Build First Offshore Wind Farm Rhode Island to Build First Offshore Wind Farm March 15, 2010 - 6:38pm Addthis Rhode Island’s first offshore wind farm will be built in Block Island. | File photo Rhode Island's first offshore wind farm will be built in Block Island. | File photo Block Island, a small town with only 1,000 full-time, residents, is the site for a big project, when it will become home to Rhode Island's first offshore wind farm. Powerful ocean winds lie right off Block Island's south shore. That's the benefit of offshore wind farms - they can take advantage of the harder, stronger winds found a few miles off the coast Deepwater Wind LLC is leading the effort with plans to construct up to eight wind turbines three miles off of Block Island's shore.

273

Feasibility analysis of renewable energy powered tourism islandHainan, China  

Science Journals Connector (OSTI)

The current paper presents a feasibility analysis on a renewable energy dominated power structure in terms of both technological and economic considerations for Hainan Island China. To determine the optimal system configuration for a hybrid renewable energy system the software HOMER is used. The assessment criteria include net present cost cost of energy (COE) and carbon emission intensity (CEI). The modeling results demonstrate that renewable energy dominated power structures can meet the power demand of the island not only in 2010 but also in 2020 despite the almost doubled demand for electricity in 2020 assumed in our model. Thus building a nuclear power station in this location is unnecessary. The modeling results also show that the COE of the power system decreases from $0.074/kW h in 2010 to $0.051/kW h in 2020 as a result of the declining cost of renewable power equipment. Additionally CEI can be reduced by 69.2%74.9% against the current status. Sensitivity analysis shows that the correlation between interest rate and COE is linearly positive. However the relationship between gas prices and COE is not linearly positive because COE increases significantly faster than gas price does when it is less than $0.24/m3. A counter-intuitive phenomenon is found from the sensitivity analysis in which COE decreases with increasing carbon tax.

Ye Bin; Tang Jie; Lu Qiang

2012-01-01T23:59:59.000Z

274

Feasibility of Tidal and Ocean Current Energy in False Pass, Aleutian Islands, Alaska FINAL REPORT  

SciTech Connect (OSTI)

The Aleutian Pribilof Islands Association was awarded a U.S. Department of Energy Tribal Energy Program grant (DE-EE0005624) for the Feasibility of Tidal and Ocean Current Energy in False Pass, Aleutian Islands, Alaska (Project). The goal of the Project was to perform a feasibility study to determine if a tidal energy project would be a viable means to generate electricity and heat to meet long-term fossil fuel use reduction goals, specifically to produce at least 30% of the electrical and heating needs of the tribally-owned buildings in False Pass. The Project Team included the Aleut Region organizations comprised of the Aleutian Pribilof Island Association (APIA), and Aleutian Pribilof Island Community Development Association (APICDA); the University of Alaska Anchorage, ORPC Alaska a wholly-owned subsidiary of Ocean Renewable Power Company (ORPC), City of False Pass, Benthic GeoScience, and the National Renewable Energy Laboratory (NREL). The following Project objectives were completed: collected existing bathymetric, tidal, and ocean current data to develop a basic model of current circulation at False Pass, measured current velocities at two sites for a full lunar cycle to establish the viability of the current resource, collected data on transmission infrastructure, electrical loads, and electrical generation at False Pass, performed economic analysis based on current costs of energy and amount of energy anticipated from and costs associated with the tidal energy project conceptual design and scoped environmental issues. Utilizing circulation modeling, the Project Team identified two target sites with strong potential for robust tidal energy resources in Isanotski Strait and another nearer the City of False Pass. In addition, the Project Team completed a survey of the electrical infrastructure, which identified likely sites of interconnection and clarified required transmission distances from the tidal energy resources. Based on resource and electrical data, the Project Team developed a conceptual tidal energy project design utilizing ORPCs TidGen Power System. While the Project Team has not committed to ORPC technology for future development of a False Pass project, this conceptual design was critical to informing the Projects economic analysis. The results showed that power from a tidal energy project could be provided to the City of False at a rate at or below the cost of diesel generated electricity and sold to commercial customers at rates competitive with current market rates, providing a stable, flat priced, environmentally sound alternative to the diesel generation currently utilized for energy in the community. The Project Team concluded that with additional grants and private investment a tidal energy project at False Pass is well-positioned to be the first tidal energy project to be developed in Alaska, and the first tidal energy project to be interconnected to an isolated micro grid in the world. A viable project will be a model for similar projects in coastal Alaska.

Wright, Bruce Albert [Aleutian Pribilof Islands Association] [Aleutian Pribilof Islands Association

2014-05-07T23:59:59.000Z

275

Dynamic Mechanical Thermal Analysis of Virgin TR-55 Silicone Rubber  

SciTech Connect (OSTI)

Dynamic mechanical thermal analysis (DMTA) of virgin TR-55 silicone rubber specimens was conducted. Dynamic frequency/temperature sweep tests were conducted over the ranges 0.1-100 rad/s and 30-100 C using a parallel plate test geometry. A strain of 0.2% was used, which was near the upper limit of the linear viscoelastic region of the material based on initial dynamic strain sweep tests. Master curves of G{prime} and G{double_prime} as a function of frequency were generated using time-temperature superposition (horizontal shift with initial vertical correction). The activation energy calculated from an Arrhenius fit to the horizontal shift factors was 178-355 kJ/mol. The calculated percent load retention at {approx}50 years was 61-68%.

Small IV, W; Wilson, T S

2009-10-09T23:59:59.000Z

276

Small-Scale Solar Grants (Rhode Island)  

Broader source: Energy.gov [DOE]

The Rhode Island Economic Development Corporation (RIEDC) provides incentives for renewable-energy projects. Incentive programs are funded by the Rhode Island Renewable Energy Fund (RIREF) and...

277

GREEN HOMES LONG ISLAND  

E-Print Network [OSTI]

GREEN HOMES LONG ISLAND Town of Babylon Steve Bellone, Supervisor green your house, slash your to introduce Long Island Green Homes, an innovative program that will help residents make their homes more energy-efficient and reduce our community's carbon footprint. Why do we call it Long Island Green Homes

Kammen, Daniel M.

278

Energy reduction potential from the shift to electric vehicles: The Flores island case study  

Science Journals Connector (OSTI)

Abstract The increase of fossil fuel demand raises concerns on availability of resources for future energy demand and on potential environmental impacts. Electric vehicles (EVs) appear as one alternative to shift from fossil fuels to renewable energy resources. This research work analyzes the benefits of the introduction of \\{EVs\\} in a small energy system, the Flores island, Azores, in terms of primary energy and CO2 emissions. Four scenarios were designed considering different penetration rates of \\{EVs\\} (Low and High) and different time of recharging strategies (Fixed and Flexible). The high shares of RES in the electricity production system (6062%) did not guarantee a significant use of RES for the recharging of \\{EVs\\} (1040%), as the additional electricity required had to be produced mainly from the diesel generators. The flexible recharging strategies allowed doubling the share of RES in the recharging of the \\{EVs\\} when compared to fixed recharging, and consequently double the impact on the reduction of primary energy consumption and fossil fuels imports. While the reduction of primary energy ranged between 0.2% and 1.1%, for CO2 emissions there was a decrease between 0.3 and 1.7%, proving that \\{EVs\\} can help improve the sustainability of energy systems.

Andr Pina; Patrcia Baptista; Carlos Silva; Paulo Ferro

2014-01-01T23:59:59.000Z

279

Absolute orientation-dependent anisotropic TiN(111) island step energies and stiffnesses from shape fluctuation analyses  

Science Journals Connector (OSTI)

In situ high-temperature (11651248 K) scanning-tunneling microscopy was used to measure temporal fluctuations about the anisotropic equilibrium shape of two-dimensional TiN(111) adatom and vacancy islands on atomically smooth TiN(111) terraces. The equilibrium island shape was found to be a truncated hexagon bounded by alternating ?110? steps, which form [100] and [110] nanofacets with the terrace. Relative step energies ? as a function of step orientation ? were obtained from the inverse Legendre transformation of the equilibrium island shape to within an orientation-independent scale factor ?, the equilibrium chemical potential of the island per unit TiN area. We find that for alternating S1 and S2 ?110? steps, the ratio ?1/?2=0.720.02. The parameter ? and, hence, absolute orientation-dependent values of ?(?) and step stiffnesses ??(?) were extracted from quantitative shape fluctuation data using an exact theoretical approach valid for anisotropic islands. For the two ?110? steps, we obtain ?1=0.230.05 and ??1=1.91.1 eV/ with ?2=0.330.07 and ??2=0.080.02 eV/ over the observed temperature range. Due to the correspondingly high kink energies, TiN(111) step energies exhibit only a very weak temperature dependence between 0 K and the maximum measurement temperature 1248 K.

S. Kodambaka; S. V. Khare; V. Petrova; D. D. Johnson; I. Petrov; J. E. Greene

2003-01-16T23:59:59.000Z

280

Holocene Reef Development Along the Northeastern St. Croix Shelf, Buck Island, U.S. Virgin Islands  

Science Journals Connector (OSTI)

...decline in coral cover on the world's reefs, with fundamental questions being asked about the mechanisms that are...Lang Bank to the east. Power is supplied from a 21 hp diesel engine and hydraulic pump on the pontoon barge floating above...

Dennis K. Hubbard; Heinrich Zankl; Ivor Van Heerden; Ivan P. Gill

Note: This page contains sample records for the topic "virgin islands energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Holocene Reef Development Along the Northeastern St. Croix Shelf, Buck Island, U.S. Virgin Islands  

Science Journals Connector (OSTI)

...cover on the world's reefs, with fundamental questions being asked about the...of a natural boom-and-bust cycle that operates on a time scale longer...Power is supplied from a 21 hp diesel engine and hydraulic pump on the pontoon...

Dennis K. Hubbard; Heinrich Zankl; Ivor Van Heerden; Ivan P. Gill

282

Assessment of H2- and H2O-based renewable energy-buffering systems in minor islands  

Science Journals Connector (OSTI)

The paper assesses the energy and environmental performance of two solutions designed to complement renewable energy (RE) technologies, in stand-alone power system (SAPS) configuration typical of minor Mediterranean islands, by converting the available RE surplus. The studied SAPS, based on the Ventotene island demographic, meteorological and load data, features high renewable energy penetration onto the load power demand, i.e. up to 55.25% share of peak power capacity. Transient models have been developed to simulate the storage process of winter renewable energy surplus and the time-dependent matching among SAPS electric demand and the stochastic renewable power contributions combined with energy surplus conversion systems. The study compares a hydrogen-based system and a desalinated water-production system, proposed as two effective alternatives for renewable energy seasonal buffering in an island context. The comparative analysis of the time-dependent system's behaviour has been investigated with an hourly distribution over the period of one reference year, in terms of fuel consumption and hydrogen system energy storage or desalination capacity. The assessment is carried out by taking performance indicators, SAPS fuel savings, as well as stored and dump power data. The study demonstrates the suitability of both the models for the winter renewable energy buffer, in order to improve to the matching of peak energy and water demands.

Alessandro Corsini; Franco Rispoli; Mario Gamberale; Eileen Tortora

2009-01-01T23:59:59.000Z

283

National Grid Deep Energy Retrofit Pilot, Massachusetts and Rhode Island (Fact Sheet)  

SciTech Connect (OSTI)

Between December, 2009 and December, 2012 42 deep energy retrofit (DER) projects were completed through a DER pilot program sponsored by National Grid and conducted in Massachusetts and Rhode Island. 37 of these projects were comprehensive retrofits while 5 were partial DERs, meaning that high performance retrofit was implemented for a single major enclosure component or a limited number of major enclosure components. The 42 DER projects represent 60 units of housing. The comprehensive projects all implemented a consistent "package" of measures in terms of the performance targeted for major building components. Projects exhibited some variations in the approach to implementing the retrofit package. Pre- and post-retrofit air leakage measurements were performed for each of the projects. Each project also reported information about project costs including identification of energy-related costs. Post-retrofit energy-use data was obtained for 29 of the DER projects. Post-retrofit energy use was analyzed based on the net energy used by the DER project regardless of whether the energy was generated on site or delivered to the site. Homeowner surveys were returned by 12 of the pilot participants. Based on the community experience, this DER package is expected to result in yearly source energy use near 110 MMBtu/year or approximately 40% below the Northeast regional average. Larger to medium sized homes that successful implement these retrofits can be expected to achieve source EUI that is comparable to Passive House targets for new construction. The community of DER projects show post-retrofit airtightness below 1.5 ACH50 to be eminently achievable.

Not Available

2014-03-01T23:59:59.000Z

284

Performance Results for Massachusetts and Rhode Island Deep Energy Retrofit Pilot Community  

SciTech Connect (OSTI)

Between December, 2009 and December, 2012 42 deep energy retrofit (DER) projects were completed through a DER pilot program sponsored by National Grid and conducted in Massachusetts and Rhode Island. 37 of these projects were comprehensive retrofits while 5 were partial DERs, meaning that high performance retrofit was implemented for a single major enclosure component or a limited number of major enclosure components. The 42 DER projects represent 60 units of housing. The comprehensive projects all implemented a consistent 'package' of measures in terms of the performance targeted for major building components. Projects exhibited some variations in the approach to implementing the retrofit package. Pre- and post-retrofit air leakage measurements were performed for each of the projects. Each project also reported information about project costs including identification of energy-related costs. Post-retrofit energy-use data was obtained for 29 of the DER projects. Post-retrofit energy use was analyzed based on the net energy used by the DER project regardless of whether the energy was generated on site or delivered to the site. Homeowner surveys were returned by 12 of the pilot participants. Based on the community experience, this DER package is expected to result in yearly source energy use near 110 MMBtu/year or approximately 40% below the Northeast regional average. Larger to medium sized homes that successful implement these retrofits can be expected to achieve source EUI that is comparable to Passive House targets for new construction. The community of DER projects show post-retrofit airtightness below 1.5 ACH50 to be eminently achievable.

Gates, C.; Neuhauser, K.

2014-03-01T23:59:59.000Z

285

Offshore Wind Turbines - Estimated Noise from Offshore Wind Turbine, Monhegan Island, Maine: Environmental Effects of Offshore Wind Energy Development  

SciTech Connect (OSTI)

Deep C Wind, a consortium headed by the University of Maine will test the first U.S. offshore wind platforms in 2012. In advance of final siting and permitting of the test turbines off Monhegan Island, residents of the island off Maine require reassurance that the noise levels from the test turbines will not disturb them. Pacific Northwest National Laboratory, at the request of the University of Maine, and with the support of the U.S. Department of Energy Wind Program, modeled the acoustic output of the planned test turbines.

Aker, Pamela M.; Jones, Anthony M.; Copping, Andrea E.

2010-11-23T23:59:59.000Z

286

U.S. Navy - San Clemente Island, California | Department of Energy  

Energy Savers [EERE]

electrical needs of the island were provided by four diesel generators. In 1998 two wind turbines were installed through a joint project of the Department of Defense, the...

287

A guidebook to alternative energy projects on American Samoa, The Commonwealth of the Northern Mariana Islands, The Federated States of Micronesia, Guam, and The Republics of the Marshall Islands and Palau. [Contains bibliography  

SciTech Connect (OSTI)

The purpose of this guidebook is to help transfer information concerning alternative energy projects that have been tried on the Pacific islands affiliated with the US. These islands include those in American Samoa, the Commonwealth of the Northern Mariana Islands, the Federated States of Micronesia (Kosrae, Pohnpei, Truk, and Yap), Guam, and the Republics of the Marshall Islands and Palau. Distances are long between islands and populations are sparse, making communication and the transfer of information particularly difficult. A project that works on American Samoa might be appropriate for Yap, but to get this information to the proper people on Yap in a reasonable period of time is extremely difficult. This book describes 100 alternative energy projects that have been tried on the islands since the mid-1970's. This description and record of what has been done to date should be a source of ideas for energy workers, reduce duplication of work, and help encourage successes by describing other successes and failures. Alternative energy projects are projects that use indigenous, renewable resources in order to reduce local dependency on imported petroleum for electricity or liquid fuels. The islands have an apparent abundance of natural resources for this purpose such as the sun, rivers, vegetation, the ocean, and wind; and, ideally, it should be relatively simple to convert these resources to electricity or fuel. However, there are problems unique to the remote, tropical Pacific that often appear insurmountable, and successes to date are the results of unusual persistence, hard work, and ingenuity of those on the islands. Projects are confined to those that actually develop or demonstrate hardware. These projects use the complete spectrum of alternative technologies such as biomass conversion, wind electric, solar water heating, photovoltaics, wind water pumping, hydroelectric, water desalination, and integrated systems. 381 refs., 85 figs.

Case, C.W.

1987-05-01T23:59:59.000Z

288

Recovery Act | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

September 14, 2009 September 14, 2009 Obama Administration Delivers More than $60 Million for Weatherization Programs in Six States and Territories Recovery Act funding to expand weatherization assistance programs, create jobs and weatherize nearly 17,000 homes in American Samoa, Northern Arapahoe Tribe, Northern Mariana Islands, Puerto Rico, Tennessee and the U.S. Virgin Islands September 14, 2009 DOE Delivers More than $354 Million for Energy Efficiency and Conservation Projects in 22 States Washington, DC - Energy Secretary Steven Chu announced today that more than $354 million in funding from the American Recovery and Reinvestment Act is being awarded to 22 states to support energy efficiency and conservation activities. Under the Department of Energy's Efficiency and Conservation

289

Department of Energy Announces Quadrennial Energy Review Public Meeting in Rhode Island, Connecticut  

Broader source: Energy.gov [DOE]

Advisory of a two-part Quadrennial Energy Review public meeting in Providence, R.I. and Hartford, Conn.

290

EDIN-USVI Clean Energy Quarterly | Open Energy Information  

Open Energy Info (EERE)

EDIN-USVI Clean Energy Quarterly EDIN-USVI Clean Energy Quarterly Jump to: navigation, search Name EDIN-USVI Clean Energy Quarterly Agency/Company /Organization National Renewable Energy Laboratory Sector Energy, Water Focus Area Buildings, Energy Efficiency - Utility, Economic Development, Energy Efficiency, Grid Assessment and Integration, People and Policy, Transportation, Renewable Energy, Biomass, Solar, - Solar Hot Water, - Solar Pv, Biomass - Waste To Energy, Wind Phase Bring the Right People Together, Evaluate Options, Develop Finance and Implement Projects Resource Type Case studies/examples Availability Free; publicly available Website http://www.edinenergy.org/usvi Locality U.S. Virgin Islands References EDIN-USVI Clean Energy Quarterly[1] Contents 1 Overview 2 Highlights

291

Streamlined energy-savings calculations for heat-island reduction strategies  

SciTech Connect (OSTI)

We have developed summary tables (sorted by heating- and cooling-degree-days) to estimate the potential of Heat-Island Reduction (HIR) strategies (i.e., solar-reflective roofs, shade trees, reflective pavements, and urban vegetation) to reduce cooling-energy use in buildings. The tables provide estimates of savings for both direct effect (reducing heat gain through the building shell) and indirect effect (reducing the ambient air temperature). In this analysis, we considered three building types that offer the most savings potential : residences, offices, and retail stores. Each building type was characterized in detail by Pre-1980 (old) or 1980+ (new) construction vintage and with natural gas or electricity as heating fuel. We defined prototypical-building characteristics for each building type and simulated the effects of HIR strategies on building cooling and heating energy use and peak power demand using the DOE-2.1E model and weather data for about 240 locations in the U.S. A statistical analysis of previously completed simulations for five cities was used to estimate the indirect savings. Our simulations included the effect of (1) solar-reflective roofing material on building [direct effect], (2) placement of deciduous shade trees near south and west walls of building [direct effect], and (3) ambient cooling achieved by urban reforestation and reflective building surfaces and pavements [indirect effect]. Upon completion of estimating the direct and indirect energy savings for all the selected locations, we integrated the results in tables arranged by heating- and cooling-degree-days. We considered 15 bins for heating-degree-days, and 11 bins for cooling-degree-days. Energy use and savings are presented per 1000 ft2 of roof area. In residences heated with gas and in climates with greater than 1000 cooling-degree-days, the annual electricity savings in Pre-1980 stock ranged from 650 to 1300 kWh/1000ft2; for 1980+ stock savings ranged 300 to 600 kWh/1000 ft2. For residences heated with electricity, the savings ranged from 350 to 1300 kWh/1000ft2 for Pre-1980 stock and 190-600 kWh/1000ft2 for 1980+ stocks. In climates with less than 1000 cooling-degree-days, the electricity savings were not significantly higher than winter heating penalties. For gas-heated office buildings, simulations indicated electricity savings in the range of 1100-1500 kWh/1000ft2 and 360-700 kWh/1000ft2, for Pre-1980 and 1980+ stocks, respectively. For electrically heated office buildings, simulations indicated electricity savings in the range of 700-1400 kWh/1000ft2 and 100-700 kWh/1000ft2, for Pre-1980 and 1980+ stocks, respectively. Similarly, for gas-heated retail store buildings, simulations indicated electricity savings in the range of 1300-1700 kWh/1000ft2 and 370-750 kWh/1000ft2, for Pre-1980 and 1980+ stocks, respectively. For electrically heated retail store buildings, simulations indicated electricity savings in the range of 1200-1700 kWh/1000ft2 and 250-750 kW h/1000ft2, for Pre-1980 and 1980 + stocks, respectively.

Akbari, Hashem; Konopacki, Steven J.

2003-03-15T23:59:59.000Z

292

Crisis contained, The Department of Energy at Three Mile Island: a history  

SciTech Connect (OSTI)

An account is given of the response of US DOE to the Three Mile Island-2 accident on March 28, 1979. The accident is treated as though it was a military battle. A synoptic chronologgy of the accident events and of DOE and other responses is included. (DLC)

Cantelon, P L; Williams, R C

1980-12-01T23:59:59.000Z

293

American Samoa - Search - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA) Indexed Site

American Samoa American Samoa Profile American Samoa American Samoa Profile Territory Profile and Energy Estimates Change State/Territory Choose a U.S. State or Territory United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming U.S. Territories American Samoa Guam Northern Mariana Islands Puerto Rico US Virgin Islands Overview Data State Profiles Economy Reserves & Supply Imports & Exports Distribution & Marketing

294

Puerto Rico - Search - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA) Indexed Site

Puerto Rico Puerto Rico Profile Puerto Rico Puerto Rico Profile Territory Profile and Energy Estimates Change State/Territory Choose a U.S. State or Territory United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming U.S. Territories American Samoa Guam Northern Mariana Islands Puerto Rico US Virgin Islands Overview Data State Profiles Economy Reserves & Supply Imports & Exports Distribution & Marketing

295

Guam - Search - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA) Indexed Site

Guam Guam Profile Guam Guam Profile Territory Profile and Energy Estimates Change State/Territory Choose a U.S. State or Territory United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming U.S. Territories American Samoa Guam Northern Mariana Islands Puerto Rico US Virgin Islands Overview Data State Profiles Economy Reserves & Supply Imports & Exports Distribution & Marketing

296

AMCHITICA ISLAND, ALASKA  

Office of Legacy Management (LM)

Environment o Environment o f AMCHITICA ISLAND, ALASKA hlelvin L. hlerritt Sandia Laboratories Albuquerque, New Mexico Editors R. Glen Fuller Battelle Colu~nbus Laboratories Columbus, Ohio Prepared for Division of Military Application Energy Research and Development Administration Published by Technical Infor~nation Center Energy Research and Development Administration Library of Congress Cataloging in Pt~blication Data hlain entry under title: The Environment of Amchitka Island, Alaska "TlD-26712." Bibliography: p. Includrs indcx. 1. Eeology-Alarka-Amchirka Island. 2. Underground nuclear explorions-lIsland. 3. Cannikin Projcct. I. hlerritt, hlelvin Leroy, 1921- 11. Fuiler, Rtxeben Glen, 1910- 111. United Stater. Energy Research and Development

297

MHK Projects/The Engineering Business Ltd Shetland Islands UK | Open Energy  

Open Energy Info (EERE)

Engineering Business Ltd Shetland Islands UK Engineering Business Ltd Shetland Islands UK < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":60.5303,"lon":-1.26592,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

298

MHK Projects/Ward s Island Tidal Power Project | Open Energy Information  

Open Energy Info (EERE)

Ward s Island Tidal Power Project Ward s Island Tidal Power Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.7818,"lon":-73.9316,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

299

MHK Projects/GCK Technology Shelter Island NY US | Open Energy Information  

Open Energy Info (EERE)

Shelter Island NY US Shelter Island NY US < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.0682,"lon":-72.3387,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

300

MHK Projects/OpenHydro Alderney Channel Islands UK | Open Energy  

Open Energy Info (EERE)

OpenHydro Alderney Channel Islands UK OpenHydro Alderney Channel Islands UK < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":49.7222,"lon":-2.21003,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "virgin islands energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Bainbridge Island Summary of Reported Data  

Broader source: Energy.gov [DOE]

Summary of data for Bainbridge Island, a partner in the U.S. Department of Energy's Better Buildings Neighborhood Program.

302

NREL: Technology Deployment - Hawaii's First Net-Zero Energy...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Company Related Stories U.S. Virgin Islands A photo of a house in Kaupuni Village with solar panels on the roof Kaupuni Village is a thriving self-sufficient and sustainable...

303

Obama Administration Awards More than $153 Million for State Energy  

Broader source: Energy.gov (indexed) [DOE]

Awards More than $153 Million for State Energy Awards More than $153 Million for State Energy Programs in Seven States and Territories Obama Administration Awards More than $153 Million for State Energy Programs in Seven States and Territories July 6, 2009 - 12:00am Addthis WASHINGTON, DC - U.S. Department of Energy Secretary Steven Chu today announced more than $153 million in Recovery Act funding to support energy efficiency and renewable energy projects in Arkansas, Georgia, Kentucky, Mississippi, Montana, New York, and the U.S. Virgin Islands. Under DOE's State Energy Program, states and territories have proposed statewide plans that prioritize energy savings, create or retain jobs, increase the use of renewable energy, and reduce greenhouse gas emissions. This initiative is part of the Obama Administration's national strategy to support job growth,

304

Obama Administration Awards More than $153 Million for State Energy  

Broader source: Energy.gov (indexed) [DOE]

3 Million for State Energy 3 Million for State Energy Programs in Seven States and Territories Obama Administration Awards More than $153 Million for State Energy Programs in Seven States and Territories July 6, 2009 - 12:00am Addthis WASHINGTON, DC - U.S. Department of Energy Secretary Steven Chu today announced more than $153 million in Recovery Act funding to support energy efficiency and renewable energy projects in Arkansas, Georgia, Kentucky, Mississippi, Montana, New York, and the U.S. Virgin Islands. Under DOE's State Energy Program, states and territories have proposed statewide plans that prioritize energy savings, create or retain jobs, increase the use of renewable energy, and reduce greenhouse gas emissions. This initiative is part of the Obama Administration's national strategy to support job growth,

305

Page not found | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

61 - 20870 of 28,905 results. 61 - 20870 of 28,905 results. Download Financial Statement: WR-FS-00-01 Report on Matters Identified at The Hanford Site during the Audit of The Department of Energy's Consolidated Fiscal year 1999 Financial Statements http://energy.gov/ig/downloads/financial-statement-wr-fs-00-01 Page Methods & Practices Handbook What is Deactivation? http://energy.gov/em/methods-practices-handbook Download CRAD, Review of Safety Basis Development- January 31, 2013 Review of Safety Basis Development for the Savannah River Site Salt Waste Processing Facility - Inspection Criteria, Approach, and Lines of Inquiry (HSS CRAD 45-57, Rev. 0) http://energy.gov/hss/downloads/crad-review-safety-basis-development-january-31-2013 Page Publications on the U.S. Virgin Islands Find publications on deploying energy efficiency and renewable energy in

306

Page not found | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

51 - 14860 of 26,764 results. 51 - 14860 of 26,764 results. Download "Order Module--DOE-STD-3009-94, PREPARATION GUIDE FOR U.S. DEPARTMENT OF ENERGY NONREACTOR NUCLEAR FACILITY "The familiar level of this module is divided into three sections. The first section is an introduction to DOE-STD-3009-94. In the second section, we will introduce the 17 chapters of a documented... http://energy.gov/hss/downloads/order-module-doe-std-3009-94-preparation-guide-us-department-energy Download Microsoft Word- Chapter 05 a.doc http://energy.gov/nepa/downloads/microsoft-word-chapter-05-adoc Download Technical Standards Newsletter- January 2012 The Standards Forum and Standards Actions, January 2012 http://energy.gov/hss/downloads/technical-standards-newsletter-january-2012 Download U.S. Virgin Islands Energy Road Map: Analysis

307

Page not found | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

41 - 23750 of 28,905 results. 41 - 23750 of 28,905 results. Page Federal Employees' Group Life Insurance (FEGLI) Initial Enrollment Period http://energy.gov/hc/federal-employees-group-life-insurance-fegli Article Thousands of Students Prepare to Compete in the National Science Bowl Until March 9th, thousands of middle- and high-school students will compete in 120 regional competitions all across the country as well as Puerto Rico and the Virgin Islands. http://energy.gov/articles/thousands-students-prepare-compete-national-science-bowl Article Energy Department, Treasury Announce Availability of $150 Million in Tax Credits for Clean Energy Manufacturers The U.S. Departments of Energy and the Treasury announced the availability of $150 million in Advanced Energy Manufacturing Tax Credits for clean

308

Energy Saving Potentials and Air Quality Benefits of Urban Heat IslandMitigation  

E-Print Network [OSTI]

J. Hanford. 1997. Peak Power and Cooling Energy Savings ofJ. Hanford. 1997. "Peak Power and Cooling Energy Savings of1997) monitored peak-power and cooling-energy savings from

Akbari, Hashem

2005-01-01T23:59:59.000Z

309

Opportunities for Saving Energy and Improving Air Quality in Urban Heat Islands  

E-Print Network [OSTI]

J. Hanford. 1997a. Peak Power and Cooling Energy Savings ofJ. Hanford. 1997b. "Peak Power and Cooling Energy Savings of1993. Monitoring peak power and cooling energy savings of

Akbari, Hashem

2008-01-01T23:59:59.000Z

310

Rhode Island.indd  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Rhode Island Rhode Island www.effi cientwindows.org March 2013 1. Meet the Energy Code and Look for the ENERGY STAR ® Windows must comply with your local energy code. Windows that are ENERGY STAR qualifi ed typically meet or exceed energy code requirements. To verify if specific window energy properties comply with the local code requirements, go to Step 2. 2. Look for Effi cient Properties on the NFRC Label The National Fenestration Rating Council (NFRC) label is needed for verifi cation of energy code compliance (www.nfrc. org). The NFRC label displays whole- window energy properties and appears on all fenestration products which are part of the ENERGY STAR program.

311

U.S. States - Compare - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

U.S. States U.S. States Profile U.S. States U.S. States Profile State Profiles and Energy Estimates Change State/Territory Choose a U.S. State or Territory United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming U.S. Territories American Samoa Guam Northern Mariana Islands Puerto Rico US Virgin Islands Overview Data State Profiles Economy Prices Reserves & Supply Distribution & Marketing

312

Feasibility study and economic analysis of pumped hydro storage and battery storage for a renewable energy powered island  

Science Journals Connector (OSTI)

Abstract This study examined and compared two energy storage technologies, i.e. batteries and pumped hydro storage (PHS), for the renewable energy powered microgrid power supply system on a remote island in Hong Kong. The problems of energy storage for off-grid renewable energy were analyzed. The sizing methods and economic models were developed, and finally applied in the real project (case study). The results provide the most suitable energy storage scheme for local decision-makers. The two storage schemes were further divided into 4 options. Accordingly, the life-cycle costs (LCC), levelized costs for the renewable energy storage system (LCRES) and the LCC ratios between all options were calculated and compared. It was found that the employment of conventional battery (Option 2) had a higher LCC value than the advanced deep cycle battery (Option 1), indicating that using deep cycle batteries is more suitable for a standalone renewable power supply system. The pumped storage combined with battery bank option (Option 3) had only 55% LCC of that of Option 1, making this combined option more cost-competitive than the sole battery option. The economic benefit of pumped storage is even more significant in the case of purely pumped storage with a hydraulic controller (Option 4), with the lowest LCC among all options at 2948% of Option 1. Sensitivity analysis demonstrates that PHS is even more cost competitive by controlling some adjustments such as increasing energy storage capacity and days of autonomy. Therefore, the renewable energy system coupled with pumped storage presents technically feasible opportunities and practical potential for continuous power supply in remote areas.

Tao Ma; Hongxing Yang; Lin Lu

2014-01-01T23:59:59.000Z

313

Christmas Island  

Science Journals Connector (OSTI)

... HAVING read with much interest the description of Christmas Island by Captain Aldrich and Mr. Lister, I have endeavoured to interpret some of ... . Lister, I have endeavoured to interpret some of the facts there given in the light of my own examination of similar islands in the Western Pacific. As pointed out ...

H. B. GUPPY

1888-01-05T23:59:59.000Z

314

REAP Islanded Grid Wind Power Conference  

Office of Energy Efficiency and Renewable Energy (EERE)

Hosted by Renewable Energy Alaska Project, this three-day conference will show attendees how to learn, network, and share information on wind systems in island and islanded grid environments...

315

Selected Physical Characteristics of Polystyrene/High Density Polyethylene Composites Prepared from Virgin  

E-Print Network [OSTI]

Selected Physical Characteristics of Polystyrene/High Density Polyethylene Composites Prepared from: Mixtures of polystyrene and high density polyethylene were injection molded from recycled and virgin

316

State and Territory Projects | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

State and Territory Projects State and Territory Projects State and Territory Projects The U.S. Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL) are using the integrated deployment approach to help implement clean energy solutions and reduce fossil fuel use in the states of Alaska and Hawaii and the U.S. Virgin Islands territory. Alaska DOE and NREL are joining forces with key stakeholders, including the state of Alaska, tribal and community leaders, utilities, and developers, to help reach clean energy goals throughout Alaska. The majority of the state's energy consumption is from diesel heating fuel, which is used to provide electricity and heat for homes and businesses. The fuel must be shipped in on barges or flown in on planes in bulk during the summer and stored in large tanks in the villages. When the price of oil

317

The effect of development on nitrogen loading on St. John, U.S. Virgin Islands  

E-Print Network [OSTI]

The majority of St. John's land and coast is a National Park and is protected by the federal government. In spite of these restrictions, the population of St. John has risen in the past fifteen years as has the number of ...

Navato, Alfred Patrick

2007-01-01T23:59:59.000Z

318

Climate Stabilization Wedges in Action: A Systems Approach to Energy Sustainability for Hawaii Island  

Science Journals Connector (OSTI)

The energy sector has also proven to have a significant impact on the environment, with the combustion of fossil fuels releasing most of the anthropogenic greenhouse gases (2). ... Increasing renewable electricity supply was bound by the limits of intermittent renewable energy on this small grid, demonstrated economic performance of geothermal, wind, and solar technologies, plausible adoption schedules for distributed generation (e.g., solar photovoltaic), and technical and agricultural limitations on the use of biofuels in existing power plants. ... grids, and geoengineering. ...

Jeremiah Johnson; Marian Chertow

2009-03-02T23:59:59.000Z

319

Slide 1  

Broader source: Energy.gov (indexed) [DOE]

the U.S. Virgin the U.S. Virgin Islands go to www.recovery.gov DOE Recovery Act projects in U.S. Virgin Islands: 4 U.S. DEPARTMENT OF ENERGY * U.S. VIRGIN ISLANDS RECOVERY ACT SNAPSHOT The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in the U.S. Virgin Islands are supporting a broad range of clean energy projects from energy efficiency and the smart grid to solar power and biofuels. Through these investments, the U.S. Virgin Islands' businesses, universities, non-profits, and local governments are creating quality jobs today and positioning the U.S. Virgin Islands to play an important role in the new energy economy of the future. EXAMPLES OF U.S. VIRGIN ISLANDS FORMULA GRANTS Program Award

320

A comparison of the GHG emissions caused by manufacturing tissue paper from virgin pulp or recycled waste paper  

Science Journals Connector (OSTI)

The aim of this work is to compare greenhouse gas (GHG) emissions from producing tissue paper from virgin...

Eskinder Demisse Gemechu; Isabela Butnar

2013-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "virgin islands energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Long Island Solar Farm Project Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Island Solar Farm Island Solar Farm Project Overview The Long Island Solar Farm (LISF) is a 32-megawatt solar photovoltaic power plant built through a collaboration including BP Solar, the Long Island Power Authority (LIPA), and the Department of Energy. The LISF, located on the Brookhaven National Laboratory site, began delivering power to the LIPA grid in November 2011, and is currently the largest solar photovoltaic power plant in the Eastern United States. It is generating enough renewable

322

The legacy of Three Mile Island -- Implications for today`s U.S. Department of Energy challenges  

SciTech Connect (OSTI)

Over the course of the 16 year period following the accident at Three Mile Island-Unit-2, much has been learned and volumes have been written regarding the cause and massive cleanup activities of the incident. Because of these lessons learned, important changes have been made and the US commercial nuclear industry is safer and more reliable as a result. It is important to recognize that two major sources of information emerged from this event. First and foremost were the important safety issues that required immediate answers and the addition of the modifications to plants that these answers generated. Second and of considerable significance to the US Department of Energy (US DOE) in today`s post-cold war environment are the frequently hard-won lessons involved with the recovery, clean-up, and defueling of TMI-2 and its unprecedented transition into long-term, monitored storage. While the commercial industry, regulatory authorities, and the public saw an immediate need for instituting the important safety lessons from TMI-2, these new systems, improved training and operating practices have paid off in increased reliability and extended operations. However, there was no such immediate application for the second source of information, that being the application of the deactivation and long-term storage technology learned at TMI-2 to a current condition. The tasks and methods used in the TMI-2 recovery have strong parallels in the present-day DOE cleanup program.

Williams, M.S.; Conaway, W.T.; Coe, R.P. [General Public Utilities Nuclear, Parsippany, NJ (United States)

1996-11-01T23:59:59.000Z

323

The legacy of Three Mile Island: Implications for today`s U.S. Department of Energy challenges  

SciTech Connect (OSTI)

Over the course of the 16 year period following the accident at Three Mile Island-Unit-2, much has been learned and volumes have been written regarding the cause and massive cleanup activities of the incident. Because of these Lessons Learned, important changes have been made and the US commercial nuclear industry is safer and more reliable as a result. It is important to recognize that two major sources of information emerged from this event. First and foremost were the important safety issues that required immediate answers and the addition of the modifications to plants that these answers generated. Second and of considerable significance to the US Department of energy (US DOE) in today`s post-cold war environment are the frequently hard-won lessons involved with the recovery, clean-up, and defueling of TMI-2 and its unprecedented transition into long-term, monitored storage. While the commercial industry, regulatory authorities, and the public saw an immediate need for instituting the important safety lessons from TMI-2, these new systems, improved training and operating practices have paid off in increased reliability and extended operations. However, there was no such immediate application for the second source of information, that being the application of the deactivation and long-term storage technology learned at TMI-2 to a current condition. The tasks and methods used in the TMI-2 recovery have strong parallels in the present-day DOE cleanup program.

Coe, R.P.; Conaway, W.T.; Williams, M.S. [General Public Utilities Nuclear, Parsippany, NJ (United States)

1996-12-31T23:59:59.000Z

324

National Park Service- San Miguel Island, California  

Broader source: Energy.gov [DOE]

San Miguel Island is one of five islands that make up Channel Islands National Park on the coast of southern California. The islands comprise 249,353 acres (100,910 hectares) of land and ocean that teems with terrestrial and marine life. The National Park Service (NPS) protects the pristine resources at Channel Islands National Park by conserving, recycling, using alternative fuel vehicles, applying renewable energy, and using resources wisely. It also seeks to replace conventional fuels with renewable energy wherever possible. This applies especially to diesel fuel and petroleum, which must be shipped in from the mainland to generate electricity.

325

Cool Roofs Are Ready to Save Energy, Cool Urban Heat Islands, and Help Slow Global Warming  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

roofing is the fastest growing sector roofing is the fastest growing sector of the building industry, as building owners and facility managers realize the immediate and long-term benefits of roofs that stay cool in the sun. Studies exploring the energy efficiency, cost-effectiveness, and sustainability of cool roofs show that in warm or hot climates, substituting a cool roof for a conventional roof can: * Reduce by up to 15% the annual air-

326

Long Island | OpenEI  

Open Energy Info (EERE)

Long Island Long Island Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 79, and contains only the reference case. The data is broken down into electric power sector, cumulative planned additions,cumulative unplanned additions,cumulative retirements, end-use sector, electricity sales, net energy for load, generation by fuel type and price by service category. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Electric Power Long Island projections Data application/vnd.ms-excel icon AEO2011: Electric Power Projections for EMM Region - Northeast Power Coordinating Council / Long Island- Reference Case (xls, 258.6 KiB)

327

EIS-0006: Wind Turbine Generator System, Block Island, Rhode Island  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy prepared this EIS to evaluate the environmental impacts of installing and operating a large experimental wind turbine, designated the MOD-OA, which is proposed to be installed on a knoll in Rhode Island's New Meadow Hill Swamp, integrated with the adjacent Block Island Power Company power plant and operated to supply electricity to the existing utility network.

328

Long Island Solar Farm | Brookhaven National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Long Island Solar Farm Long Island Solar Farm Project Overview The Long Island Solar Farm (LISF) is a 32-megawatt solar photovoltaic power plant built through a collaboration including BP Solar, the Long Island Power Authority (LIPA), and the Department of Energy. The LISF, located on the Brookhaven National Laboratory site, began delivering power to the LIPA grid in November 2011, and is currently the largest solar photovoltaic power plant in the Eastern United States. It is generating enough renewable energy to power approximately 4,500 homes, and is helping New York State meet its clean energy and carbon reduction goals. Project Developer/Owner/Operator: Long Island Solar Farm, LLC (BP Solar & MetLife) Purchaser of Power: Long Island Power Authority (LIPA) purchases 100

329

E-Print Network 3.0 - ancient solomon islands Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Center Collection: Renewable Energy 5 Island area and species diversity in the southwest Pacific Ocean: is the lizard fauna of Vanuatu depauperate? Summary: , the Solomon Islands,...

330

Energy: Islands of light  

Science Journals Connector (OSTI)

... Husk Power has become one of the world's largest microgrid developers. And it is dreaming big, targeting 5 million customers within five years in ... covers payments on the loan it received from the government of New Zealand for the microgrid. We're very proud, Toloa says. We are challenging the world and ...

Jeff Tollefson

2014-03-11T23:59:59.000Z

331

21st Annual Department of Energy National Science Bowl April 30 - May 2 |  

Broader source: Energy.gov (indexed) [DOE]

21st Annual Department of Energy National Science Bowl April 30 - 21st Annual Department of Energy National Science Bowl April 30 - May 2 21st Annual Department of Energy National Science Bowl April 30 - May 2 April 25, 2011 - 12:00am Addthis WASHINGTON, D.C. - U.S. Department of Energy (DOE) Secretary Steven Chu announced today that on April 30 through May 2 the DOE will host 69 high school and 41 middle school teams to compete for championship titles at the 21st annual National Science Bowl competition in Washington, D.C. The 110 regional championship teams - from 44 states, the District of Columbia, Puerto Rico and the U.S. Virgin Islands - will be quizzed on various science topics including biology, chemistry, earth science, physics, astronomy, and energy, as well as math. "The U.S. needs the best and the brightest scientists and engineers to help

332

Department of Energy Announces 20th Annual National Science Bowl |  

Broader source: Energy.gov (indexed) [DOE]

th Annual National Science Bowl th Annual National Science Bowl Department of Energy Announces 20th Annual National Science Bowl April 23, 2010 - 12:00am Addthis WASHINGTON, D.C. - US Energy Secretary Steven Chu announced that students from sixty-eight high school teams and thirty-seven middle school teams will compete next weekend for championship titles in the U.S. Department of Energy's 20th annual National Science Bowl in Washington, D.C. The participating teams - ranging from forty-two states, the District of Columbia, Puerto Rico and the U.S. Virgin Islands - will be quizzed on a range of science disciplines including biology, chemistry, earth science, physics and astronomy, as well as math; and vie for trophies and prizes, including $1,000 for their school science programs as well as an

333

Carribean Islands | OpenEI  

Open Energy Info (EERE)

Carribean Islands Carribean Islands Dataset Summary Description (Abstract): Monthly Average Solar Resource for horizontal flat-plate collectors, for Mexico, Central America, and the Caribbean Islands. (Purpose): Provide information on the solar resource potential for the data domain. The insolation values represent the average solar energy available to a flat plate collector, such as a photovoltaic panel, oriented horizontally. Source NREL Date Released January 31st, 2004 (10 years ago) Date Updated October 30th, 2007 (7 years ago) Keywords Carribean Islands Central America GEF GHI GIS Mexico NREL solar SWERA UNEP Data text/csv icon Download Data (csv, 370.6 KiB) application/zip icon Download Shapefile (zip, 244 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage

334

Island Cosmology in the Landscape  

E-Print Network [OSTI]

In the eternally inflationary background driven by the metastable vacua of the landscape, it is possible that some local quantum fluctuations with the null energy condition violation can be large enough to stride over the barriers among different vacua, so that create some islands full of radiation in new vacua, and then these emergently thermalized islands will enter into the evolution of standard big bang cosmology. In this paper, we calculate the spectrum of curvature perturbation generated during the emergence of island. We find that generally the spectrum obtained is nearly scale invariant, which can be well related to that of slow roll inflation by a simple duality. This in some sense suggests a degeneracy between their scalar spectra. In addition, we also simply estimate the non-Gaussianity of perturbation, which is naturally large, yet, can lie well in the observational bound. The results shown here indicate that the island emergently thermalized in the landscape can be consistent with our observable universe.

Yun-Song Piao

2008-06-11T23:59:59.000Z

335

NUCLEAR ISLANDS International Leasing  

Broader source: Energy.gov (indexed) [DOE]

ISLANDS ISLANDS International Leasing of Nuclear Fuel Cycle Sites to Provide Enduring Assurance of Peaceful Use Christopher E. Paine and Thomas B. Cochran Current International Atomic Energy Agency safeguards do not provide adequate protection against the diversion to military use of materials or technology from certain types of sensitive nuclear fuel cycle facilities. In view of highly enriched uranium's relatively greater ease of use as a nuclear explosive material than plutonium and the significant diseconomies of commercial spent fuel reprocessing, this article focuses on the need for improved international controls over uranium enrichment facilities as the proximate justification for creation of an International Nuclear Fuel Cycle Association (INFCA). In principle, the proposal is equally applicable to alleviating the proliferation concerns provoked by nuclear fuel

336

Celebrating Asian American Pacific Islander Heritage Month at...  

Energy Savers [EERE]

Asian Americans, Native Hawaiians, and Pacific Islanders at the Energy Department, in the energy workforce, and throughout history. Headquarter employees and members of the general...

337

National Park Service - San Miguel Island, California | Department of  

Broader source: Energy.gov (indexed) [DOE]

San Miguel Island, California San Miguel Island, California National Park Service - San Miguel Island, California October 7, 2013 - 10:00am Addthis Photo of Wind/Photovoltaic Power System at San Miguel Island San Miguel Island is one of five islands that make up Channel Islands National Park on the coast of southern California. The islands comprise 249,353 acres (100,910 hectares) of land and ocean that teems with terrestrial and marine life. The National Park Service (NPS) protects the pristine resources at Channel Islands National Park by conserving, recycling, using alternative fuel vehicles, applying renewable energy, and using resources wisely. It also seeks to replace conventional fuels with renewable energy wherever possible. This applies especially to diesel fuel and petroleum, which must

338

U.S. DEP.~ThIENT OF ENERGY EERE PROJECT MANAGEMENT CENTER  

Broader source: Energy.gov (indexed) [DOE]

ENERGY ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETERMINATION RI!:CIPIENT:Virgin Islands Energy Office PROJECT TITl.E ; State Energy Program Page lof3 STATE: VI Funding Opportunity Announcement Number DE-FOA-0000643 Procurement Instrument Number NEPA Control Number CID Number EE0004394 GF0-0004394-001 Based on my review oflhe information concerning the proposed action, as NEPA Compliance Officer (authorb'.ed under DOE O,.der 451.1A), I have made the fo llowing dete rmination: ex, EA, EIS APPENDIX AND NUMBER: Description: A11 Technical advice and assistance to organizations A9 Information gathering, analysis, and dissemination Rational for detennination: Technical advice and planning assistance to international, national. state, and local organizations.

339

UNITED STATES OF AMERICA DEPARTMENT OF ENERGY Smart Grid RFI: Addressing Policy and Logistical Challenges  

Broader source: Energy.gov (indexed) [DOE]

DEPARTMENT OF ENERGY DEPARTMENT OF ENERGY Smart Grid RFI: Addressing Policy and Logistical Challenges The National Association of Regulatory Utility Commissioners (NARUC) appreciates the opportunity to provide comments to the Department of Energy (DOE) on this Request for Information (RFI) regarding the policy and logistical challenges of the smart grid. 75 Fed. Reg. 57006 (Sept. 17, 2010). INTRODUCTION NARUC is the national organization of State commissions responsible for economic and safety regulation of utilities. Our members in the fifty States, the District of Columbia, Puerto Rico, and the Virgin Islands have the obligation under State law to ensure the establishment and maintenance of such energy utility services as may be required by the public convenience and

340

Recovery Act State Memos Mariana Islands  

Broader source: Energy.gov (indexed) [DOE]

the the Northern Mariana Islands to play an important role in the new energy economy of the future. EXAMPLES OF NORTHERN MARIANA ISLANDS FORMULA GRANTS Program Award State Energy Program Weatherization Assistance Program Energy Efficiency Conservation Block Grants Energy Efficiency Appliance Rebate Program $18.7 million $29.4 million $9.6 million $0.1 million The Commonwealth of the Northern Mariana Islands has received $18.7 million in State Energy Program funds to invest in state- and territory- level energy efficiency and renewable energy priorities. The Commonwealth of the Northern Mariana Islands has received over $29.4 million in Weatherization Assistance Program funds to scale-up existing weatherization efforts in the

Note: This page contains sample records for the topic "virgin islands energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

A signature for turbulence driven magnetic islands  

SciTech Connect (OSTI)

We investigate the properties of magnetic islands arising from tearing instabilities that are driven by an interchange turbulence. We find that such islands possess a specific signature that permits an identification of their origin. We demonstrate that the persistence of a small scale turbulence maintains a mean pressure profile, whose characteristics makes it possible to discriminate between turbulence driven islands from those arising due to an unfavourable plasma current density gradient. We also find that the island poloidal turnover time, in the steady state, is independent of the levels of the interchange and tearing energy sources. Finally, we show that a mixing length approach is adequate to make theoretical predictions concerning island flattening in the island rotation frame.

Agullo, O.; Muraglia, M.; Benkadda, S. [Aix-Marseille Universit, CNRS, PIIM, UMR 7345 Marseille (France); France-Japan Magnetic Fusion Laboratory, LIA 336 CNRS, Marseille (France); Poy, A. [Univ. Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), UMR 5107, F-33405 Talence (France); Yagi, M. [Plasma Theory and Simulation Gr., JAEA, Rokkasho (Japan); Garbet, X. [IRFM, CEA, St-Paul-Lez-Durance 13108 (France); Sen, A. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)

2014-09-15T23:59:59.000Z

342

Impacts of Standard 90.1-2007 for Commercial Buildings at State Level - Rhode Island  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Rhode Island Rhode Island September 2009 Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Building Energy Codes Program BUILDING ENERGY CODES PROGRAM IMPACTS OF STANDARD 90.1-2007 FOR COMMERCIAL BUILDINGS IN RHODE ISLAND BUILDING ENERGY CODES PROGRAM IMPACTS OF STANDARD 90.1-2007 FOR COMMERCIAL BUILDINGS IN RHODE ISLAND Rhode Island Summary Standard 90.1-2007 contains improvements in energy efficiency over the current state code, the 2006 International Energy Conservation Code (IECC) with amendments. Standard 90.1-2007 would improve energy efficiency in commercial buildings in Rhode Island. The analysis of the impact of Standard 90.1-2007 resulted

343

Microsoft Word - rhode_island.doc  

Gasoline and Diesel Fuel Update (EIA)

Rhode Island Rhode Island NERC Region(s) ....................................................................................................... NPCC Primary Energy Source........................................................................................... Gas Net Summer Capacity (megawatts) ....................................................................... 1,782 49 Electric Utilities ...................................................................................................... 7 50 Independent Power Producers & Combined Heat and Power ................................ 1,775 37 Net Generation (megawatthours) ........................................................................... 7,738,719 47

344

Biofuel Feedstock Inter-Island Transportation  

E-Print Network [OSTI]

Biofuel Feedstock Inter-Island Transportation Prepared for the U.S. Department of Energy Office agency thereof. #12;A Comparison of Hawaii's Inter-Island Maritime Transportation of Solid Versus Liquid of Honolulu Advertiser ISO Tank Container, courtesy of Hawaii Intermodal Tank Transport Petroleum products

345

Recovery Act State Memos Rhode Island  

Broader source: Energy.gov (indexed) [DOE]

Rhode Island Rhode Island For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 4

346

Island Wide Management Corporation  

Office of Legacy Management (LM)

9 1986 9 1986 Island Wide Management Corporation 3000 Marcus Avenue Lake Success, New York 11042 Dear Sir or Madam: I am sending you this letter and the enclosed information as you have been identified by L. I. Trinin of Glick Construction Company as the representatives of the owners of the property that was formerly the site of the Sylvania-Corning Nuclear Corporation in Bayside, New York. The Department of Energy is evaluating the radiological condition of sites that were utilized under the Manhattan Engineer District and/or the Atomic Energy Commission in the early years of nuclear energy development to determine whether they need remedial action and whether the Department has authority to perform such action. As you may know, the former Sylvania-Corning Corporation Bayside site was identified as one such site.

347

Method for the addition of vulcanized waste rubber to virgin rubber products  

DOE Patents [OSTI]

The invention is a method of using enzymes from thiophyllic microbes for selectively breaking the sulfur rubber cross-link bonds in vulcanized rubber. The process is halted at the sulfoxide or sulfone step so that a devulcanized layer is reactive with virgin rubber.

Romine, Robert A. (Pasco, WA); Snowden-Swan, Lesley J. (Benton City, WA)

1997-01-01T23:59:59.000Z

348

A modified sorting task to investigate consumer perceptions of extra virgin olive oils Metta Santosa a  

E-Print Network [OSTI]

May 2010 Available online 19 May 2010 Keywords: Extra virgin olive oil Consumer perceptions of their perception of the products. ? 2010 Elsevier Ltd. All rights reserved. 1. Introduction Olive oil accounts increasing steadily for the past 18 years. Current olive oil consumption level is about 246,000­251,000 tons

Abdi, Hervé

349

The Determination of Virgin Strata Temperatures from Observations in Deep Survey Boreholes  

Science Journals Connector (OSTI)

......Hopton Pool Borehole changed in diameter...temperature of the drilling fluid for differentboreholes...effect of a larger hole in rock...the hole was large in diameter in the Hopton Pool Borehole at least 27...virgin strata and drilling fluid temperatures......

L. R. Cooper; C. Jones

1959-06-01T23:59:59.000Z

350

Method for the addition of vulcanized waste rubber to virgin rubber products  

DOE Patents [OSTI]

The invention is a method of using enzymes from thiophyllic microbes for selectively breaking the sulfur rubber cross-link bonds in vulcanized rubber. The process is halted at the sulfoxide or sulfone step so that a devulcanized layer is reactive with virgin rubber. 8 figs.

Romine, R.A.; Snowden-Swan, L.J.

1997-01-28T23:59:59.000Z

351

Absolute orientation-dependent anisotropic TiN,,111... island step energies and stiffnesses from shape fluctuation analyses  

E-Print Network [OSTI]

step energies exhibit only a very weak temperature dependence between 0 K and the maximum measurement-dimensional 2D analog of the surface free energy (n^), where n^ is a unit vector normal representing a facet- dependent step energies is difficult. An ``inverse'' Wulff plot5,6 constructed from direct measurements

Khare, Sanjay V.

352

Pacific Ocean Islands Editorial Introduction  

Science Journals Connector (OSTI)

Islands in the Pacific Ocean are of three kinds (Nunn 2005). ... Most of the islands lie in the SW Pacific, but the Galapagos, Clipperton, and Easter ... Island are volcanic islands rising from the East Pacific R...

2010-01-01T23:59:59.000Z

353

Northern Mariana Islands Recovery Act State Memo | Department...  

Energy Savers [EERE]

an important role in the new energy economy of the future. Northern Mariana Islands Recovery Act State Memo More Documents & Publications Slide 1 MPrecoveryactmemoupdated.pdf...

354

Arctic ice islands  

SciTech Connect (OSTI)

The development of offshore oil and gas resources in the Arctic waters of Alaska requires offshore structures which successfully resist the lateral forces due to moving, drifting ice. Ice islands are floating, a tabular icebergs, up to 60 meters thick, of solid ice throughout their thickness. The ice islands are thus regarded as the strongest ice features in the Arctic; fixed offshore structures which can directly withstand the impact of ice islands are possible but in some locations may be so expensive as to make oilfield development uneconomic. The resolution of the ice island problem requires two research steps: (1) calculation of the probability of interaction between an ice island and an offshore structure in a given region; and (2) if the probability if sufficiently large, then the study of possible interactions between ice island and structure, to discover mitigative measures to deal with the moving ice island. The ice island research conducted during the 1983-1988 interval, which is summarized in this report, was concerned with the first step. Monte Carlo simulations of ice island generation and movement suggest that ice island lifetimes range from 0 to 70 years, and that 85% of the lifetimes are less then 35 years. The simulation shows a mean value of 18 ice islands present at any time in the Arctic Ocean, with a 90% probability of less than 30 ice islands. At this time, approximately 34 ice islands are known, from observations, to exist in the Arctic Ocean, not including the 10-meter thick class of ice islands. Return interval plots from the simulation show that coastal zones of the Beaufort and Chukchi Seas, already leased for oil development, have ice island recurrences of 10 to 100 years. This implies that the ice island hazard must be considered thoroughly, and appropriate safety measures adopted, when offshore oil production plans are formulated for the Alaskan Arctic offshore. 132 refs., 161 figs., 17 tabs.

Sackinger, W.M.; Jeffries, M.O.; Lu, M.C.; Li, F.C.

1988-01-01T23:59:59.000Z

355

Recovery Act State Memos Mariana Islands  

Broader source: Energy.gov (indexed) [DOE]

Florida Florida to play an important role in the new energy economy of the future. EXAMPLES OF NORTHERN MARIANA ISLANDS FORMULA GRANTS Program Award State Energy Program Weatherization Assistance Program Energy Efficiency Conservation Block Grants Energy Efficiency Appliance Rebate Program $18.7 million $0.8 million $9.6 million $0.1 million The Commonwealth of the Northern Mariana Islands has received $18.7 million in State Energy Program funds to invest in state- and territory-level energy efficiency and renewable energy priorities. The Commonwealth of the Northern Mariana Islands has received over $790,000 in Weatherization Assistance Program funds to scale-up existing weatherization efforts in the

356

Paving materials for heat island mitigation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Paving materials for heat island mitigation Paving materials for heat island mitigation Title Paving materials for heat island mitigation Publication Type Report Year of Publication 1997 Authors Pomerantz, Melvin, Hashem Akbari, Allan Chen, Haider Taha, and Arthur H. Rosenfeld Keywords Cool Pavements, Heat Island Abstract This report summarizes paving materials suitable for urban streets, driveways, parking lots and walkways. The authors evaluate materials for their abilities to reflect sunlight, which will reduce their temperatures. This in turn reduces the excess air temperature of cities (the heat island effect). The report presents the compositions of the materials, their suitability for particular applications, and their approximate costs (in 1996). Both new and resurfacing are described. They conclude that, although light-colored materials may be more expensive than conventional black materials, a thin layer of light-colored pavement may produce energy savings and smog reductions whose long-term worth is greater than the extra cost.

357

Title: Sustainable Communities Based on a New Clean Energy Source -Marine & Hydrokinetic Power: Roosevelt Island and Beyond  

E-Print Network [OSTI]

Title: Sustainable Communities Based on a New Clean Energy Source - Marine & Hydrokinetic Power Earth Hour "a symbol of our commitment to sustainable energy for all," and underscored the need to "fuel hydrokinetic farm in the U.S. Verdant envisions marine & hydrokinetic (MHK) power as the basis of a new local

Angenent, Lars T.

358

The effect of anthropogenic development on sediment loading to bays on St. John, U.S. Virgin Islands  

E-Print Network [OSTI]

In order to assess the impact of anthropogenic development on sediment delivery rates to bays on St. John, U.S.V.I., I developed a sediment loading prediction model. Based on the modified universal soil loss equation, this ...

McCreery, Helen F

2007-01-01T23:59:59.000Z

359

Report to Congress on Insular Area energy vulnerability  

SciTech Connect (OSTI)

This report was prepared in response to Section 1406 of the Energy Policy Act of 1992 (Public Law 102-486), which directed the Department of Energy (DOE) to ``conduct a study of the implications of the unique vulnerabilities of the insular areas to an oil supply disruption,`` and to ``outline how the insular areas shall gain access to vital oil supplies during times of national emergency.`` The Act defines the insular areas to be the US Virgin Islands and Puerto Rico in the Caribbean, and Guam, American Samoa, the Commonwealth of the Northern Mariana Islands (CNMI), and Palau in the Pacific. In the study, ``unique vulnerabilities`` were defined as susceptibility to: (1) more frequent or more likely interruptions of oil supplies compared to the US Mainland, and/or (2) disproportionately larger or more likely economic losses in the event of an oil supply disruption. In order to assess unique vulnerabilities, the study examined the insular areas` experience during past global disruptions of oil supplies and during local emergencies caused by natural disasters. The effects of several possible future global disruptions and local emergencies were also analyzed. Analyses were based on historical data, simulations using energy and economic models, and interviews with officials in the insular governments and the energy industry.

Not Available

1994-05-01T23:59:59.000Z

360

Dethroning the Madonna: Greta Knutson, Julia Kristeva and the Search for a Post-Virginal Discourse on Jouissance  

E-Print Network [OSTI]

for solace. The particular icon that she chooses, however,of dark-skinned Virgin icons, there is no consensus on whyblackness, and celebrate the icon as proof of the debt that

Politano, Cristina

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "virgin islands energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Cults Disrupted and Memories Recaptured: Events in the Life of the Icon of the Virgin Hodegetria in Constantinople  

Science Journals Connector (OSTI)

The icon of the Virgin Hodegetria was one of ... been interpreted as if the history of the icon were linear. A careful consideration of the ... image was subject to considerable change. The icon of the Hodegetria...

Barbara Zeitler

1999-01-01T23:59:59.000Z

362

Emergently Thermalized Islands in the Landscape  

E-Print Network [OSTI]

In this note, we point out that in the eternal inflation driven by the metastable vacua of the landscape, it might be possible that some large and local quantum fluctuations with the null energy condition violation can stride over the barriers between different vacua and straightly create some islands with radiation and matter in new vacua. Then these thermalized islands will evolve with the standard cosmology. We show that such islands may be consistent with our observable universe, while has some distinctly observable signals, which may be tested in coming observations.

Yun-Song Piao

2008-01-08T23:59:59.000Z

363

Syntactic Islands in Uyghur  

E-Print Network [OSTI]

negative NON.PST non-past tense NP noun phrase PART participle PL plural POSS possessive SCO Strong Crossover SG singular TP tense phrase VP verb phrase WCO Weak Crossover 1 1. Introduction In this thesis, I... provide a survey of island effects in Modern Standard Uyghur (ISO 639-3: uig)1, consisting of complex noun phrases, wh-islands, coordinate structures, and crossover effects. This investigation includes restrictions on scrambling out of islands and covert...

Major, Travis

2014-05-31T23:59:59.000Z

364

Transgressive facies sequence of a high energy, wave-tide-storm-influenced shoreface: A case study of the east Frisian Barrier Islands (Southern North Sea)  

Science Journals Connector (OSTI)

Published information and recent observation of physical and biogenic structures as well as grain size patterns along the East Frisian barrier islands (southern North Sea) have been synthesized to develop a facie...

Dr. Effiom Antia; Prof. Dr. Burghard Flemming; Prof. Dr. Gerold Wefer

1994-01-01T23:59:59.000Z

365

FINAL ENVIRONMENTAL ASSESSMENT FOR THE RHODE ISLAND LFG GENCO, LLC  

Broader source: Energy.gov (indexed) [DOE]

RHODE ISLAND LFG GENCO, LLC RHODE ISLAND LFG GENCO, LLC COMBINED CYCLE ELECTRICITY GENERATION PLANT FUELED BY LANDFILL GAS JOHNSTON, RHODE ISLAND U.S. Department of Energy National Energy Technology Laboratory August 2010 DOE/EA-1742 FINAL ENVIRONMENTAL ASSESSMENT FOR THE RHODE ISLAND LFG GENCO, LLC COMBINED CYCLE ELECTRICITY GENERATION PLANT FUELED BY LANDFILL GAS JOHNSTON, RHODE ISLAND U.S. Department of Energy National Energy Technology Laboratory August 2010 DOE/EA-1742 ACRONYMS AND ABBREVIATIONS CFR Code of Federal Regulations CHP combined heat and power dBA A-weighted decibel DOE U.S. Department of Energy (also called the Department) EA environmental assessment EPA U.S. Environmental Protection Agency MW megawatt NAAQS National Ambient Air Quality Standards

366

Tidal energy site resource assessment in the East River tidal strait, near Roosevelt Island, New York, New York  

Science Journals Connector (OSTI)

Abstract This study demonstrates a site resource assessment to examine the temporal variation of the current speeds, current directions, turbulence intensities, and power densities for a tidal energy site in the East River tidal strait. These variables were derived from two months of acoustic Doppler velocimeter (ADV) measurements at the design hub height of the Verdant Power Gen5 hydrokinetic turbine. The study site is a tidal strait that exhibits semi-diurnal tidal current characteristics, with a mean horizontal current speed of 1.4ms?1, and a turbulence intensity of 15% at a reference mean current of 2ms?1. Flood and ebb flow directions are nearly bi-directional, with a higher current speed during flood tide, which skews the power production towards the flood tide period. The tidal hydrodynamics at the site are highly regular, as indicated by the tidal current time series that resembles a sinusoidal function. This study also shows that the theoretical force and the power densities derived from the current measurements can be significantly influenced by the length of the time window used for averaging the current speed data. Furthermore, the theoretical power density at the site, derived from the current speed measurements, is one order of magnitude greater than that reported in the U.S. national resource assessment. This discrepancy highlights the importance of conducting site resource assessments based on measurements at the tidal energy converter device scale.

Budi Gunawan; Vincent S. Neary; Jonathan Colby

2014-01-01T23:59:59.000Z

367

TWP Island Cloud Trail Studies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Pacific Island Cloud Trail Studies Pacific Island Cloud Trail Studies W. M. Porch Los Alamos National Laboratory Los Alamos, New Mexico S. Winiecki University of Chicago Chicago, Illinois Introduction Images and surface temperature measurements from the U.S. Department of Energy (DOE) Multi- spectral Thermal Imaging (MTI) satellite are combined with geostationary meteorological satellite (GMS) images during 2000 and 2001 to better understand cloud trail formation characteristics from the Atmospheric Radiation Measurement (ARM) Tropical Western Pacific (TWP) site. Figure 1 shows a comparison on two consecutive days in December 2000. The day for which a cloud trail developed was more moist and cooler at the altitude the cloud developed (about 600 m) and there was very little

368

The Long Island Solar Farm  

Broader source: Energy.gov [DOE]

This technical report provides an in-depth look at the one SunShot Initiative success story, the Long Island Solar Farm project, which is a utility-scale solar array located at Brookhaven National Laboratory in Eastern Long Island, New York. Three aspects of this project make it remarkable: first, it is the largest utility-scale solar power plant in the Eastern United States; second, it is a commercial project built on federally administered public lands; and third, the project was very unlikely to have started in the first place. It is a valuable resource for solar energy research, which will greatly inform large-scale PV solar development in the East.

369

A new approach for optimal sizing of battery energy storage system for primary frequency control of islanded Microgrid  

Science Journals Connector (OSTI)

Abstract This paper presents a method for determining optimal size of a battery energy storage system (BESS) for primary frequency control of a Microgrid. A Microgrid is assumed to be portion of a low voltage distribution feeder including sources such as microturbine, diesel generator, fuel cell and photovoltaic system with slow response for frequency control. A BESS due to its very fast dynamic response can play an important role in restoring balance between supply and demand. In this paper, overloading capacity of the BESS is employed for fast handling of the primary frequency control of a MG. To achieve this purpose, by considering overloading characteristics and limitations of the state of charge (SOC) of battery, a control scheme of dc/ac converter for the BESS is developed. Based on this scheme, overloading capacity of the BESS and its permissible duration for participating in primary frequency control is determined. Simulation studies are carried out using PSCAD/EMTDC software package to evaluate the performance of the proposed control scheme.

Mohammad Reza Aghamohammadi; Hajar Abdolahinia

2014-01-01T23:59:59.000Z

370

Evaluation of Potential Genotoxicity of Virgin Olive Oil (VOO) Using the Drosophila Wing-Spot Test  

Science Journals Connector (OSTI)

In this view, recently, two olive oil samples, one virgin and one refined, were comparatively studied with a series of vegetable oils (sesame, sunflower, wheat germ, flax, and soy oil) employing the Drosophila melanogaster somatic mutation and recombination test (SMART) (3). ... HPLC analysis was carried out on a system consisting of two Marathon IV series HPLC pumps (Rigas Laboratories, Thessaloniki, Greece) and a Rheodyne injection valve (model 7125) with a 20 ?L fixed loop (Rheodyne, Cotati, CA). ... Frankel, E. N. Lipid Oxidation; Frankel, E. N., Ed.; The Oily Press: Dundee, U.K., 1998. ...

Ilias Kounatidis; Vassiliki T. Papoti; Nikolaos Nenadis; Gerasimos Franzios; Mariangella Oikonomou; Fedra Partheniou; Maria Tsimidou; Penelope Mavragani-Tsipidou

2009-08-13T23:59:59.000Z

371

Photovoltaic applications for remote-island needs  

SciTech Connect (OSTI)

Electric power supply options available to many of the central and south Pacific island governments are severely constrained by remoteness, limited infrastructures, a corrosive natural environment, and the high delivered costs of many conventional energy sources. Photovoltaic energy systems offer a currently available, practical, and cost-effective source of electricity for many stand-alone applications in remote areas of the Pacific. Photovoltaic system definitions and cost analyses are provided for selected applications in the Republic of Palau, the Federated States of Micronesia, the Republic of the Marshall Islands, and the Territory of American Samoa.

Schaller, D.A.

1983-01-01T23:59:59.000Z

372

Sustainability of remote communities: 100% renewable island of Hvar  

Science Journals Connector (OSTI)

Island communities require in-detail mapping of resources available for exploitation for energy purposes since infrastructure and connections to the mainland present in most cases a weak point of the island energy supply. As the present energy supply on Croatian islands relies mostly on fossil fuels and electricity from the mainland it becomes obvious that exploitation of renewable energy sources is the only solution that leads towards self-sufficiency and sustainable development. In order to design a self-sufficient and sustainable island three major technological changes are needed: integration of renewable energy sources alongside with energy savings and improvements in energy efficiency in the energy production. Analyses for several other Croatian islands have been performed using Renewislands/ADEG methodology in order to assess all possible outcomes. The scenarios in these cases have shown that islands can become self-sufficient through combining renewable technologies and energy storage systems. Energy storage systems will be crucial for achieving desired objectives in terms of energy independence from the mainland and in general import of fossil fuels. The analysis conducted for the island of Hvar will result in creation of several scenarios which will clearly point out the favorable solutions for improvement of both security of energy supply and covering the majority of energy demand with renewable energy sources and storage technologies. Also when talking about implementation of renewable technologies on island of Hvar an optimal mix of technologies must be applied in order to avoid excess costs and to achieve minimal impact on environment in terms of visual pollution.

2013-01-01T23:59:59.000Z

373

TIMES model for the Reunion Island: addressing reliability of electricity supply  

E-Print Network [OSTI]

energy sources. In 2008, the total primary energy consumption was 1295 ktoe, and as most of small islands% on renewable energy sources [1]. In 2008, the total primary energy consumption was 1295 ktoe, and as most 2010 Abstract The Reunion Island aims to have in 2030 an energy consumption based to 100% on renewable

Paris-Sud XI, Université de

374

Oahu Wind Integration and Transmission Study (OWITS): Hawaiian Islands  

Broader source: Energy.gov (indexed) [DOE]

Oahu Wind Integration and Transmission Study (OWITS): Hawaiian Oahu Wind Integration and Transmission Study (OWITS): Hawaiian Islands Transmission Interconnection Project Oahu Wind Integration and Transmission Study (OWITS): Hawaiian Islands Transmission Interconnection Project This report provides an independent review included an initial evaluation of the technical configuration and capital costs of establishing an undersea cable system and examining impacts to the existing electric transmission systems as a result of interconnecting the islands. 50411.pdf More Documents & Publications Phase 2 Report: Oahu Wind Integration and Transmission Study (OWITS); Hawaiian Islands Transmission Interconnection Project OAHU Wind Integration And Transmission Study: Summary Report, NREL (National Renewable Energy Laboratory)

375

Gene expression changes in mononuclear cells from patients with metabolic syndrome after acute intake of phenol-rich virgin olive oil  

E-Print Network [OSTI]

Abstract Background Previous studies have shown that acute intake of high-phenol virgin olive oil reduces pro-inflammatory, pro-oxidant and pro-thrombotic markers compared with low phenols virgin olive oil, but it still remains unclear whether...

Camargo, Antonio; Ruano, Juan; Fernandez, Juan M; Parnell, Laurence D; Jimenez, Anabel; Santos-Gonzalez, Monica; Marin, Carmen; Perez-Martinez, Pablo; Uceda, Marino; Lopez-Miranda, Jose; Perez-Jimenez, Francisco

2010-04-20T23:59:59.000Z

376

Alternative Fuels Data Center: Rhode Island Laws and Incentives for Climate  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Climate Change / Energy Initiatives to someone by E-mail Climate Change / Energy Initiatives to someone by E-mail Share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Climate Change / Energy Initiatives on Facebook Tweet about Alternative Fuels Data Center: Rhode Island Laws and Incentives for Climate Change / Energy Initiatives on Twitter Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Climate Change / Energy Initiatives on Google Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Climate Change / Energy Initiatives on Delicious Rank Alternative Fuels Data Center: Rhode Island Laws and Incentives for Climate Change / Energy Initiatives on Digg Find More places to share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Climate Change / Energy Initiatives on

377

Virgin territory  

Science Journals Connector (OSTI)

... said in the British newspaper The Guardian last week that the maiden flight of his private suborbital space-plane will blast off later this year and that he and his ...

2014-02-25T23:59:59.000Z

378

29 Virgins  

E-Print Network [OSTI]

." "Hnmm," said McCoy, reaching for the bottom drawer of his desk. He lifted out two glasses. The bottle followed, and the amber bouquet of pungent liquor bloomed almost visibly 1n the small room as he poured. "Start at the beginning," he suggested... forward and closed a switch on McCoy's desk. Her cheekbones showed a flush that rapidly covered her whole face as she said, "I heard. With the captain's permission, there may be a solution. "I'd be glad to hear one." Chapel kept her chin up and her...

Ferguson, Syn

1982-01-01T23:59:59.000Z

379

 

U.S. Energy Information Administration (EIA) Indexed Site

US Virgin Islands US Virgin Islands Profile US Virgin Islands US Virgin Islands Profile Territory Profile and Energy Estimates Change State/Territory Choose a U.S. State or Territory United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming U.S. Territories American Samoa Guam Northern Mariana Islands Puerto Rico US Virgin Islands Overview Data State Profiles Economy Reserves & Supply Imports & Exports

380

Impacts of the 2009 IECC for Residential Buildings at State Level - Rhode Island  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Rhode Island Rhode Island September 2009 Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Building Energy Codes Program BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN RHODE ISLAND BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN RHODE ISLAND Analysis of 2009 International Energy Conservation Code Requirements for Residential Buildings in Rhode Island Summary Rhode Island has adopted the 2009 International Energy Conservation Code (IECC). Overview of the 2009 IECC The IECC scope includes residential single-family housing and multifamily housing three stories or less above- grade intended for permanent living (hotel/motel is not "residential"). The code applies to new buildings and

Note: This page contains sample records for the topic "virgin islands energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Hydrothermal exploration drilling on the island of Akutan, Alaska...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Near a volcano in a remote part of the Alaskan Aleutian Island chain, the largest seafood producer in North America could be completely powered by geothermal energy. A new...

382

Detection of adulteration in virgin olive oil using a fiber optic long period grating based sensor  

Science Journals Connector (OSTI)

A fiber optic sensing system for the detection of adulteration of virgin olive oil by less expensive sunflower oil is presented. The fundamental principle of detection is the sensitive dependence of the resonance peaks of a long period grating (LPG) on the changes in the refractive index of the environmental medium surrounding the cladding surface of the grating. The performance of the sensor has been tested by monitoring the amplitude changes of the attenuation bands of the LPG in response to variation of adulteration level. With good repeatability, the detection limit of adulteration is 4% and the sensor sensitivity is around 0.07dBvol%?1 of adulterant in the measurement range. The developed sensor is user-friendly, reusable and allows instantaneous measurement of the amount of adulteration without involving any reagents.

T M Libish; M C Bobby; J Linesh; S Mathew; C Pradeep; V P N Nampoori; P Biswas; S Bandyopadhyay; K Dasgupta; P Radhakrishnan

2013-01-01T23:59:59.000Z

383

Evaluation of the State Energy Conservation Program from program initiation to September 1978. Final report  

SciTech Connect (OSTI)

The State Energy Conservation Program was established in 1975 to promote energy conservation and to help states develop and implement their own conservation programs. Base (5) and supplemental (3) programs required states to implement programs including: mandatory thermal-efficiency standards and insulation requirements for new and renovated buildings; mandatory lighting efficiency standards for public buildings; mandatory standards and policies affecting the procurement practices of the state and its political subdivisions; program measures to promote the availability and use of carpools, vanpools, and public transportation; a traffic law or regulation which permits a right turn-on-red; and procedures to carry out a continuing public education effort to increase awareness of energy conservation; procedures which promote effective coordination among local, state, and Federal energy conservation programs; and procedures for carrying out energy audits on buildings and industrial plants. All 50 states and Puerto Rico, Guam, the Virgin Islands, American Samoa, and the District of Columbia participated in the program. The total 1980 energy savings projected by the states is about 5.9 quadrillion Btu's or about 7% of the DOE projected 1980 baseline consumption of just under 83 quads. The detailed summary is presented on the following: information the SECP evaluation; DOE response to the SECP; DOE's role in the program management process; the effectiveness of the states in managing the SECP; the status of program measure implementation; innovative state energy conservation programs; and the evaluation methodology.

None

1980-03-01T23:59:59.000Z

384

Using Cool Roofs to Reduce Energy Use, Greenhouse Gas Emissions, and Urban Heat-island Effects: Findings from an India Experiment  

E-Print Network [OSTI]

the demand for cooling energy, urban trees indirectly reducesurfaces and shade trees to reduce energy use and improvethe energy savings and GHG benefits of cool roofs and tree

Akbari, Hashem

2011-01-01T23:59:59.000Z

385

DOE - Office of Legacy Management -- Amchitka Island Test Center - AK 01  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Amchitka Island Test Center - AK 01 Amchitka Island Test Center - AK 01 FUSRAP Considered Sites Site: Amchitka Island Test Center (AK.01) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: Also see Amchitka Island Test Center Documents Related to Amchitka Island Test Center Draft Long-Term Surveillance Plan for the Amchitka Island, Alaska, Project Site (September 2013) An Assessment of the Reported Leakage of Anthropogenic Radionuclides From the Underground Nuclear Test Sites at Amchitka Island, Alaska, USA to the Surface Environment. Conceptual Site Models as a Tool in Evaluation Ecological health; The Case of the Department of Energys Amchitka Island Nuclear Test Site.

386

Energy for Hawaii:Energy for Hawaii:Energy for Hawaii:Energy for Hawaii:Energy for Hawaii:Energy for Hawaii:Energy for Hawaii:Energy for Hawaii: Mandates, Facts & Best OptionsMandates, Facts & Best OptionsMandates, Facts & Best OptionsMandates, Facts & Be  

E-Print Network [OSTI]

Island SustainabilityIsland SustainabilityIsland Sustainability Rank GDP per capita Tourists per capita Infra- structureEnergy for Hawaii:Energy for Hawaii:Energy for Hawaii:Energy for Hawaii:Energy for Hawaii:Energy for Hawaii:Energy for Hawaii:Energy for Hawaii: Mandates, Facts & Best OptionsMandates, Facts & Best Options

Prevedouros, Panos D.

387

Qualifying RPS Market States (Prince Edward Island, Canada) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Prince Edward Island, Canada) Prince Edward Island, Canada) Qualifying RPS Market States (Prince Edward Island, Canada) < Back Eligibility Developer Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Prince Edward Island Program Type Renewables Portfolio Standards and Goals This entry lists the states with RPS policies that accept generation located in Prince Edward Island, Canada as eligible sources towards their Renewable Portfolio Standard targets or goals. For specific information with regard to eligible technologies or other restrictions which may vary by state, see the RPS policy entries for the individual states, shown below in the Authority listings. Typically energy must be delivered to an

388

Heat Island Research at the University of Athens  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Heat Island Research at the University of Athens Heat Island Research at the University of Athens Speaker(s): Mattheos Santamouris Date: June 4, 2008 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Hashem Akbari Athens, as many other metropolitan areas, is experiencing a severe summer heat island. We will present measurements of urban canyon heat islands in Athens and discuss the effects on building energy use, urban environment, and air quality. Appropriate heat-island mitigation technologies include use of cool materials for urban surfaces (roofs and pavements) and shade trees. Advances in development of cool roofing and paving materials including traditional cool surfaces (white and light-colored materials), near-infrared cool colored materials, and experimental highly reflecting thermochromic coatings will be discussed. Finally, we will discuss the

389

Midway Islands: Language Situation  

Science Journals Connector (OSTI)

The Midway Islands, a coral atoll in the North Pacific Ocean, is a U.S.-administered wildlife refuge currently closed to the public. The population now consists of about 40 people, the staff of the U.S. Fish and Wildlife Service, a division of the Department of the Interior. The official language of Midway is English.

2006-01-01T23:59:59.000Z

390

KIUC- Energy Wise Commercial Energy Efficiency Program  

Broader source: Energy.gov [DOE]

Kauai Island Utility Cooperative, a Touchstone Energy Cooperative, offers incentives to its commercial customers for installing energy efficient equipment. The eligible replacements are identified...

391

Technological Implementation of Renewable Energy in Rural?Isolated Areas and Small?Medium Islands in Indonesia: Problem Mapping And Preliminary Surveys of Total People Participation in a Local Wind Pump Water Supply  

Science Journals Connector (OSTI)

This article discusses a formulation of problem mapping and preliminary surveys of total people participation in a local wind pump (LWP) water supply in term of technological implementation of renewable energy (RE) in rural?isolated areas and small?medium islands in Indonesia. The formulation was constructed in order to enhance and to promote the local product of RE across Indonesia. It was also addressed to accommodate local potencies barriers and opportunities into a priority map. Moreover it was designed into five aspects such as (1) local technology of the RE: a case of pilot project of the LWP; (2) environmental?cultural aspects related to global issues of energy?renewable energy; (3) potencies and barriers corresponding to local national regional and international contents; (4) education and training and (5) gender participation. To focus the formulation serial preliminary surveys were conducted in five major areas namely: (1) survey on support and barrier factors of the aspects; (2) strategic planning model a concept A?B?G which stands for Academician?Business people?Government; (3) survey on background based knowledge on energy conservation; (4) survey on gender participation in energy conservation and (5) survey on local stakeholder involvement. Throughout the surveys it has been notified that the concept needs to be developed to any level of its component since its elements were identified in tolerance values such as high potency value of the LWP development (95%); a strong potency of rural area application (88%); a medium background of energy energy conservation (EC) identified in a range of 56%?72% sufficient support from local stakeholders and gender participation.

Ahmad Taufik

2007-01-01T23:59:59.000Z

392

Federal Energy Management Program: National Park Service - San Miguel  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

National Park National Park Service - San Miguel Island, California to someone by E-mail Share Federal Energy Management Program: National Park Service - San Miguel Island, California on Facebook Tweet about Federal Energy Management Program: National Park Service - San Miguel Island, California on Twitter Bookmark Federal Energy Management Program: National Park Service - San Miguel Island, California on Google Bookmark Federal Energy Management Program: National Park Service - San Miguel Island, California on Delicious Rank Federal Energy Management Program: National Park Service - San Miguel Island, California on Digg Find More places to share Federal Energy Management Program: National Park Service - San Miguel Island, California on AddThis.com... Energy-Efficient Products

393

Wind characteristics and mapping for power production in the Island of Lesvos, Greece  

Science Journals Connector (OSTI)

This study investigated the wind characteristics of the island of Lesvos, Greece, with the objective of providing the necessary data for identifying the wind power production capabilities of the island. Weather patterns were examined using weather data ... Keywords: GIS, Renewable energy sources, Resource assessment, WAsP, Wind energy, Wind speed

P. Palaiologou; K. Kalabokidis; D. Haralambopoulos; H. Feidas; H. Polatidis

2011-07-01T23:59:59.000Z

394

Bill, Waugama, Smart Power Infrastructure Demonstration for Energy...  

Broader source: Energy.gov (indexed) [DOE]

cost SPIDERS primary objective is mission assurance Page-4 SPIDERS Program Summary CAMP SMITH ENERGY ISLAND * Entire Installation Smart Microgrid * Islanded Installation * High...

395

Department of Energy Announces Quadrennial Energy Review Public...  

Broader source: Energy.gov (indexed) [DOE]

effort to make recommendations regarding key infrastructure needed for transmission, storage and distribution of energy. The Rhode Island and Connecticut...

396

State of Rhode Island and Providence Plantations State House  

Broader source: Energy.gov (indexed) [DOE]

Rhode Island and Providence Plantations Rhode Island and Providence Plantations State House Providence, Rhode Island 02903-1 196 401 -222-2080 Donald L. Carcieri Governor February 26,2009 The Honorable Steven Chu Secretary U.S. Department of Energy 1000 Independence Avenue, S.W. Washington, D.C. 20585 Re: State Energy Program Assurances Dear Secretary Chu: As a condition of receiving our State's share of the 53.1 billion funding for the State Energy Program (SEP) under the American Recovery and Renewal Act of 2009 (H.R.l) (ARRA), 1 am providing the following assurances. I have written to our public utilities commission and requested that they consider additional actions to promote energy efficiency, consistent with the Federal statutory language contained in H.R. 1 and their obligations to maintain just and reasonable

397

First Regional Super ESPC a Success on Kodiak Island, Alaska | Department  

Broader source: Energy.gov (indexed) [DOE]

First Regional Super ESPC a Success on Kodiak Island, Alaska First Regional Super ESPC a Success on Kodiak Island, Alaska First Regional Super ESPC a Success on Kodiak Island, Alaska October 7, 2013 - 2:01pm Addthis Photo of new boiler at Kodiak Island facility The first delivery order included upgrades to the steam plant and boilers Jerry Reilley, ERI Services, Inc. Overview By taking a leadership role in a pilot program to streamline Federal financing and procurement for energy-saving projects, the Coast Guard is saving more than $220,000 a year in energy costs at their facility at Kodiak Island, Alaska. The project was the first under the Regional Super Energy Saving Performance Contract (ESPC) program run by the U.S. Department of Energy's Federal Energy Management Program (FEMP). Coast Guard staff completed $1.1 million of work, without needing Congressional appropriations, by

398

Galveston Island and erosion  

E-Print Network [OSTI]

GALVESTON ISLAND AND EROSION A Thesis by JIM MASON BOLLETER Approved as to styIe and content by: . R. Benton (Chairman of Com sttee) Rooert E. Randa (Member) hris opher . Mathewson (Member) Dona d M1cDona d (Head of Department) May 1985... of the seawal 1, a reduced longshore sediment supply from the Mississippi River and, possibly, accelerated sea-level rise. ACKNOWLEDGEMENTS This thesis is the end result of a study funded by the Sea Grant College Program of the National Dceanic...

Bolleter, Jim Mason

2012-06-07T23:59:59.000Z

399

Islands in the landscape  

E-Print Network [OSTI]

The string theory landscape consists of many metastable de Sitter vacua, populated by eternal inflation. Tunneling between these vacua gives rise to a dynamical system, which asymptotically settles down to an equilibrium state. We investigate the effects of sinks to anti-de Sitter space, and show how their existence can change probabilities in the landscape. Sinks can disturb the thermal occupation numbers that would otherwise exist in the landscape and may cause regions that were previously in thermal contact to be divided into separate, thermally isolated islands.

T. Clifton; Andrei Linde; Navin Sivanandam

2007-01-10T23:59:59.000Z

400

Thematic Review Conservation of Biodiversity on Islands  

E-Print Network [OSTI]

Thematic Review Conservation of Biodiversity on Islands: The contribution of the United Kingdom............................................................................................. 11 3. THE BIODIVERSITY OF ISLANDS INVOLVED WITH DI PROJECTS ........................................................................................... 49 6. THE DARWIN INITIATIVE'S CONTRIBUTION TO THE CBD'S ISLAND BIODIVERSITY PROGRAMME OF WORK

Note: This page contains sample records for the topic "virgin islands energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Promoting Independence in Rhode Island: Weatherization Assistance Close-Up Fact Sheet  

SciTech Connect (OSTI)

Rhode Island demonstrates its commitment to technology and efficiency through the Weatherization Program. Weatherization uses advanced technologies and techniques to reduce energy costs for low-income families by increasing the energy efficiency of their homes.

D& R International

2001-10-10T23:59:59.000Z

402

An assessment of energy balance from sugar-based ethanol for fuel-saving and climate policy - the case of an island economy  

Science Journals Connector (OSTI)

The study assesses the efficiency of sugar-based ethanol production in Mauritius using the net energy balance and energy ratio. The findings indicate a positive net energy balance. For every one unit of fossil fuel used, the system returns more than six times in terms of renewable energy from ethanol. The fuel savings and other economic benefits which may be accrued to Mauritius are discussed. The sensitivity analysis shows that the fossil energy consumed in the production of fertilisers and in the transportation of feedstock to factory represents the main components which influence efficiency indicators. Greening the supply chain may enhance the efficiency and sustainability of bio-ethanol production systems. Green strategies may include the use of organic fertilisers, clean technology, and sustainable transportation and land use. The efficiency indicators can also be used to guide the CDM for sugar-based ethanol project.

Riad Sultan; Abdel Khoodaruth

2013-01-01T23:59:59.000Z

403

Project Fact Sheet Long Island HTS Power Cable Superconducting  

Broader source: Energy.gov (indexed) [DOE]

Long Long Island HTS Power Cable Superconducting Power Equipment www.oe.energy.gov Phone: 202-586-1411 Office of Electricity Delivery and Energy Reliability, OE-1 U.S. Department of Energy - 1000 Independence Avenue, SW - Washington, DC 20585 Plugging America Into the Future of Power What is the status of the Project? The cable was energized April 22, 2008 and serves the equivalent of 300,000 homes. It is the first HTS power cable to operate at transmission voltage in the grid. LIPA plans to retain the superconductor as a permanent part of it's grid. This project involves the demonstration of a high- temperature superconducting (HTS) power cable in the Long Island Power grid, spanning nearly half a mile and serving as a permanent link in the Long Island Power

404

Island Wide Management Corporation  

Office of Legacy Management (LM)

the Manhattan Engineer District andor the Atomic Energy Commission in the early years of nuclear energy development to determine whether they need remedial action and whether the...

405

Building America Whole-House Solutions for Existing Homes: National Grid Deep Energy Retrofit Pilot, Massachusetts and Rhode Island (Fact Sheet)  

Broader source: Energy.gov [DOE]

Building Science Corporation developed a package of high-efficiency measures for retrofit of 42 homes sponsored by National Grid, resulting in energy use of approximately 40% below the Northeast regional average

406

Religion, Archaeology, and Social Relations: A Study of the Practice of Quakerism and Caribbean Slavery in the Eighteenth-Century British Virgin Islands  

E-Print Network [OSTI]

Slave Community in Suriname. In African Sites Archaeology ina slave cemetery in Suriname, and found that in addition to

Chenoweth, John Martin

2011-01-01T23:59:59.000Z

407

Seasonal variability in the vertical attenuation coefficient at 490 nm (K490) in waters around Puerto Rico and US Virgin Islands.  

E-Print Network [OSTI]

ecosystems. KEYWORDS: Water Diffuse Attenuation Coefficient, Kd, Remote Sensing, Ocean Color, Puerto Rico, US this affected sediment resuspension, intense water column mixing, and increased delivery of terrestrialSeasonal variability in the vertical attenuation coefficient at 490 nm (K490) in waters around

Gilbes, Fernando

408

Religion, Archaeology, and Social Relations: A Study of the Practice of Quakerism and Caribbean Slavery in the Eighteenth-Century British Virgin Islands  

E-Print Network [OSTI]

Chapter Eight Creamware teapot spout collected in Area Eto be clearly the spout of a teapot. Several other potentialFigure 8.1: Creamware teapot spout surface collected in Area

Chenoweth, John Martin

2011-01-01T23:59:59.000Z

409

Stability of an hexagonal array of coherently strained conical islands against Ostwald ripening  

SciTech Connect (OSTI)

We present a linear stability analysis of an hexagonal array of coherently strained islands against the exchange of material between islands. Surprisingly, ultra-dense arrays are found to be metastable due to the short-range stabilizing effect of elastic interactions which overcome the destabilizing contribution of surface energy. Mean-field simulations are used to investigate the ripening kinetics of local volume defects in arrays which are found to equilibrate through island volume oscillations. Simulations of global perturbations directly verify the existence of the metastable regime and confirm the nature of the most unstable mode as derived from the stability analysis for sub-critical island coverage.

Shchukin, V.A. [Institut fuer Festkoerperphysik, Technische Universitaet Berlin, D-10623 Berlin (Germany)]. E-mail: shchukin@sol.physik.tu-berlin.de; Bimberg, D. [Institut fuer Festkoerperphysik, Technische Universitaet Berlin, D-10623 Berlin (Germany); Munt, T.P. [Department of Physics, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Jesson, D.E. [School of Physics, Monash University, Vic. 3800 (Australia)]. E-mail: david.jesson@sci.monash.edu.au

2005-11-01T23:59:59.000Z

410

Better Buildings Neighborhood Program: Bainbridge Island, Washington  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bainbridge Bainbridge Island, Washington to someone by E-mail Share Better Buildings Neighborhood Program: Bainbridge Island, Washington on Facebook Tweet about Better Buildings Neighborhood Program: Bainbridge Island, Washington on Twitter Bookmark Better Buildings Neighborhood Program: Bainbridge Island, Washington on Google Bookmark Better Buildings Neighborhood Program: Bainbridge Island, Washington on Delicious Rank Better Buildings Neighborhood Program: Bainbridge Island, Washington on Digg Find More places to share Better Buildings Neighborhood Program: Bainbridge Island, Washington on AddThis.com... Better Buildings Residential Network Progress Stories Interviews Videos Events Quick Links to Partner Information AL | AZ | CA | CO | CT FL | GA | IL | IN | LA ME | MD | MA | MI | MO

411

Long Island Power Authority - Renewable Electricity Goal | Department of  

Broader source: Energy.gov (indexed) [DOE]

Renewable Electricity Goal Renewable Electricity Goal Long Island Power Authority - Renewable Electricity Goal < Back Eligibility Municipal Utility Savings Category Bioenergy Biofuels Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Solar Wind Program Info State New York Program Type Renewables Portfolio Standard Provider Long Island Power Authority As a municipal utility, the Long Island Power Authority (LIPA) is not obligated to comply with the [http://www.dsireusa.org/library/includes/incentive2.cfm?Incentive_Code=N... New York Renewable Portfolio Standard (RPS)]. The LIPA Board of Trustees has nevertheless decided to make their own renewable energy commitment mirroring the requirements for New York's investor owned utilities. The initiative is outlined in LIPA's 2004-2013 Energy Plan, approved in June

412

Alternative Fuels Data Center: Rhode Island Information  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Rhode Island Rhode Island Information to someone by E-mail Share Alternative Fuels Data Center: Rhode Island Information on Facebook Tweet about Alternative Fuels Data Center: Rhode Island Information on Twitter Bookmark Alternative Fuels Data Center: Rhode Island Information on Google Bookmark Alternative Fuels Data Center: Rhode Island Information on Delicious Rank Alternative Fuels Data Center: Rhode Island Information on Digg Find More places to share Alternative Fuels Data Center: Rhode Island Information on AddThis.com... Rhode Island Information This state page compiles information related to alternative fuels and advanced vehicles in Rhode Island and includes new incentives and laws, alternative fueling station locations, truck stop electrification sites, fuel prices, and local points of contact.

413

Chikurachki volcano (Kurile Islands, Russia)  

E-Print Network [OSTI]

Chikurachki volcano (Kurile Islands, Russia) the unique volcano with frequent basaltic plinian-Kamchatsky, Russia #12;#12;Historical eruptions of Chikurachki Year 1853-59 1958 1961 1964 1973 1986 2002 Column

Belousov, Alexander

414

Energy and Environmental Considerations in Recycling  

E-Print Network [OSTI]

Energy and Environmental Considerations in Recycling Griffin Hosseinzadeh 11 April 2012 Physics H materials from recyclables · Carbon emissions & water pollution from production of virgin materials vs. recycling · Methane from decomposing materials in landfill · Depletion of natural resources (trees, minerals

Budker, Dmitry

415

Wind turbine generator interaction with conventional diesel generators on Block Island, Rhode Island. Volume 1. Executive summary  

SciTech Connect (OSTI)

This report summarizes the primary results of a three-part study involving the effects of connecting a MOD-OA wind turbine generator to an isolated diesel power system. The subject utility is that owned and operated by the Block Island Power Company (BIPCO). The MOD-OA installation here was the third of four experimental nominal 200 kW wind turbines connected to various utilities under the Federal Wind Energy Program. The BIPCO installation was characterized by the highest wind energy penetration levels of four sites and, as such, was adjudged the best candidate for conducting the data acquisition and analysis effort that is the subject of this study. The three-phases of the study analysis address: (1) fuel displacement, (2) dynamic interaction, and (3) three modes of reactive power control. These analyses all have as their basis the results of the data acquisition program conducted during 1982 from February into April on Block Island, Rhode Island.

Wilreker, V.F.; Stiller, P.H.; Scott, G.W.; Kruse, V.J.; Smith, R.F.

1984-02-01T23:59:59.000Z

416

Wind turbine generator interaction with conventional diesel generators on Block Island, Rhode Island. Volume II. Data analysis  

SciTech Connect (OSTI)

In order to assess the performance of a MOD-OA horizontal axis wind turbine when connected to an isolated diesel utility, a comprehensive data measurement program was conducted on the Block Island Power Company installation on Block Island, Rhode Island. This report presents the detailed results of that program focusing on three principal areas of (1) fuel displacement (savings), (2) dynamic interaction between the diesel utility and the wind turbine, (3) effects of three modes of wind turbine reactive power control. The approximate two month duration of the data acquisition program conducted in the winter months (February into April 1982) revealed performance during periods of highest wind energy penetration and hence severity of operation. It is concluded that even under such conditions fuel savings were significant resulting in a fuel reduction of 6.7% while the MOD-OA was generating 10.7% of the total electrical energy. Also, electrical disturbance and interactive effects were of an acceptable level.

Wilreker, V.F.; Stiller, P.H.; Scott, G.W.; Kruse, V.J.; Smith, R.F.

1984-02-01T23:59:59.000Z

417

Air Quality and Emissions Impacts of Heat Island Mitigation Strategies  

E-Print Network [OSTI]

considerations, implementation plans, and an initial evaluation of solar energy systems' potential air quality in state implementation plans for air quality improvement. · Analyze the potential effects of largescaleAir Quality and Emissions Impacts of Heat Island Mitigation Strategies ENVIRONMENTAL AREA RESEARCH

418

Remedial Action Work Plan Amchitka Island Mud Pit Closures  

SciTech Connect (OSTI)

This remedial action work plan presents the project organization and construction procedures developed for the performance of the remedial actions at U.S. Department of Energy (DOE's) sites on Amchitka Island, Alaska. During the late1960s and early 1970s, the U.S. Department of Defense and the U.S. Atomic Energy Commission (the predecessor agency to DOE) used Amchitka Island as a site for underground nuclear tests. A total of nine sites on the Island were considered for nuclear testing; however, tests were only conducted at three sites (i.e., Long Shot in 1965, Milrow in 1969, and Cannikin in 1971). In addition to these three sites, large diameter emplacement holes were drilled in two other locations (Sites D and F) and an exploratory hole was in a third location (Site E). It was estimated that approximately 195 acres were disturbed by drilling or preparation for drilling in conjunction with these activities. The disturbed areas include access roads, spoil-disposal areas, mud pits which have impacted the environment, and an underground storage tank at the hot mix plant which was used to support asphalt-paving operations on the island. The remedial action objective for Amchitka Island is to eliminate human and ecological exposure to contaminants by capping drilling mud pits, removing the tank contents, and closing the tank in place. The remedial actions will meet State of Alaska regulations, U.S. Fish and Wildlife Service refuge management goals, address stakeholder concerns, and address the cultural beliefs and practices of the native people. The U.S. Department of Energy, Nevada Operations Office will conduct work on Amchitka Island under the authority of the Comprehensive Emergency Response, Compensation, and Liability Act. Field activities are scheduled to take place May through September 2001. The results of these activities will be presented in a subsequent Closure Report.

DOE/NV

2001-04-05T23:59:59.000Z

419

Our Commitment to Asian American and Pacific Islanders at the Department of  

Broader source: Energy.gov (indexed) [DOE]

Our Commitment to Asian American and Pacific Islanders at the Our Commitment to Asian American and Pacific Islanders at the Department of Energy Our Commitment to Asian American and Pacific Islanders at the Department of Energy July 20, 2011 - 9:58am Q&A How Do You Celebrate Diversity? Ask Us Addthis Today we were honored to celebrate Asian American and Pacific Islander (AAPI) month, recognizing the significant contributions of AAPI individuals in securing our clean energy future, and the work yet to be done to improve the quality of life and opportunities for AAPIs. Representatives from American Government Executives Network (AAGEN), the Federal Asian Pacific American Council (FAPAC), and the Department of Energy celebrated the event with inspirational stories from AAPI entrepreneurs, an update on AAPI initiatives at the Department from

420

Techno-economic analysis of a hybrid mini-grid system for Fiji islands  

Science Journals Connector (OSTI)

Renewable energy technologies can help mitigate the twin problems mentioned above significantly as there are abundant natural resources like solar, wind, biomass and small hydro in most of the islands. The disper...

Sandeep Lal; Atul Raturi

2012-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "virgin islands energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

E-Print Network 3.0 - ag111 island coarsening Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

; Materials Science 43 Absolute orientation-dependent TiN(001) step energies from two-dimensional equilibrium island shape and Summary: then use quantitative TiN(0 0 1) adatom...

422

COMMONWEALTH OF THE NORTHERN MARIANA ISLANDS Benigno R. Fitial  

Broader source: Energy.gov (indexed) [DOE]

THE NORTHERN MARIANA ISLANDS THE NORTHERN MARIANA ISLANDS Benigno R. Fitial Governor The Honorable Steven Chu Secretary U.S. Department of Energy 1 000 Independence Avenue, S. W. Washington, D.C. 20585 Re: State Energy Program Assurances Timothy P. Villagomez Lieutenant Governor MAR 1 0 2009 Dear Secretary Chu: As a condition of receiving our State's share of the $3.1 billion funding for the State Energy Program (SEP) under the American Recovery and Renewal Act of 2009 (H.R. l)(ARRA), I am providing the following assurances. I have written to our public utility commission and requested that they consider additional actions to promote energy efficiency, consistent with the Federal statutory language contained in H.R. 1 and their obligations to maintain just and reasonable rates, while

423

Long Island STEM Hub Summit  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Questionnaire Questionnaire Event Information pulldown Registered Attendees Directions to Event Campus Map (pdf) Local Weather Visiting Brookhaven Disclaimer Event Date December 6, 2011 Event Location SUNY Farmingdale State College 2350 Broadhollow Road Farmingdale, NY 11735-1021 USA Roosevelt Hall Directions | Campus Map (pdf) Event Coordinator Ken White Bus: 631-344-7171 Fax: 631-344-5832 Email: stemhub@bnl.gov Long Island STEM Hub Summit Join us for the Launch of the Long Island Regional STEM Hub Motivation The LI Regional STEM Hub, one of ten forming in the Empire State STEM Learning Network, will focus on preparing students for the Long Island workforce through enhanced science, technology, engineering, and mathematics (STEM) experiences for students and teachers. Academic relevance will serve as the major theme by making it easy for

424

Energy Efficiency Resource Standard | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Efficiency Resource Standard Efficiency Resource Standard Energy Efficiency Resource Standard < Back Eligibility Investor-Owned Utility Utility Program Info State Rhode Island Program Type Energy Efficiency Resource Standard Provider Rhode Island Public Utilities Commission Rhode Island enacted legislation in 2006 requiring the state Public Utilities Commission (PUC) to establish standards for system reliability, energy efficiency and conservation procurement, including standards for energy supply diversification, distributed generation, demand response, and "prudent and reliable" energy efficiency and energy conservation measures. These standards and guidelines, which were adopted by the PUC in 2008, must be reviewed at least once every three years. Each electric and natural gas

425

Coastal mesoscale changes on Matagorda Island  

E-Print Network [OSTI]

on the coastal geomorphology of Matagorda Island. Based on the statistical and morphometric analysis of the coastal landforms, the island was divided into three distinct sub-environments: an erosional eastern zone, a transitional mixed zone, and a depositional...

Lariscy, Kevin William

2001-01-01T23:59:59.000Z

426

Peralkaline acid tendencies in Gran Canaria (Canary Islands)  

Science Journals Connector (OSTI)

The study of a volcanic series from the island of Gran Canaria (Canary Islands) in which alkaline and...

Vicente Araa; Eduardo R. Badiola

427

Late Quaternary pollen records from Easter Island  

Science Journals Connector (OSTI)

... , K. The Mystery of Easter Island: The Story of an Expedition 165199 (Sifton, Praed, London, 1919).

J. R. Flenley; Sarah M. King

1984-01-05T23:59:59.000Z

428

Southern California Channel Islands Bibliography, through 1992  

E-Print Network [OSTI]

pollution San Nicolas Island Atmospheric Sciences/Meteorology/Nuclear Science/Radioactivity/Atmospheric Sciences/Radioactivity/Radioactive Wastes/pollution/

Channel Islands National Marine Sanctuary

1992-01-01T23:59:59.000Z

429

Remote Sensing Observations from MTI Satellites and GMS Over Tropical Island of Nauru  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Remote Sensing Observations from MTI Satellites and Remote Sensing Observations from MTI Satellites and GMS Over Tropical Island of Nauru W. M. Porch, P. Chylek, and B. Henderson Los Alamos National Laboratory Los Alamos, New Mexico Introduction The observations of island cloud trails have revealed a strong relationship between the character and frequency of occurrence of island cloud trails and the Tropical Ocean Southern Oscillation (MacFarlane et al. 2004 a, b). Island cloud trails from the U.S. Department of Energy's (DOE) Atmospheric and Radiation Measurement (ARM) facility of Nauru persist for more than 50 km (Nordeen et al. 2001) and resemble ship trail clouds found in the Eastern Ocean Margins (Porch et al. 1999). Island trail clouds are much more frequently observed during La Niña periods than El Niño periods (Figure 1). This

430

Chapter 25 - Intentional Islanding of Distribution Network Operation with Mini Hydrogeneration  

Science Journals Connector (OSTI)

Abstract The abundant presence of large river basins made Brazil a worldwide powerhouse of hydroelectricity. To maintain its long-tradition of clean energy producer, Brazil also is investing in mini hydro plants, of few megawatts, able to supply small towns in rural areas. This chapter focuses on a real case study of a mini hydro power plant connected to a rural distribution feeder. The investigations presented in this chapter highlight important stages for a successful intentional islanding operation. Those are the detection of the islanding, the necessary change in the control modes of voltage and frequency regulation, the islanding formation with load/generation balancing, the islanding autonomous operation and the reconnection to the main grid. Although, not yet established as a common practice in Brazil, islanding operation of renewable DG can improve reliability indices and help the human effort in diminishing global warming, if technically sound solutions are applied.

Glauco Nery Taranto; Tatiana M.L. Assis

2014-01-01T23:59:59.000Z

431

NETL: News Release - DOE Transfers Steel Casting Technology to Rock Island  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

31, 2007 31, 2007 DOE Transfers Steel Casting Technology to Rock Island Arsenal Army Facility to Produce Improved Armor in War on Terrorism WASHINGTON, DC - A steel casting technology developed by the U.S. Department of Energy has been transferred to the U.S. Army's Rock Island Arsenal to manufacture improved armor for vehicles used in the global war on terrorism. MORE INFO Learn more about NETL's cooperative research with the Army The Office of Fossil Energy's National Energy Technology Laboratory (NETL) provided the Rock Island Arsenal with process guidelines, parameters, expertise, and patterns to set up and operate a facility for making steel castings using an NETL-developed process called loose-bonded sand, lost-foam technology. The facilities at the arsenal, in Rock Island, Ill.,

432

Oahu Wind Integration and Transmission Study (OWITS): Hawaiian Islands Transmission Interconnection Project  

Broader source: Energy.gov (indexed) [DOE]

Oahu Wind Integration and Oahu Wind Integration and Transmission Study (OWITS) Hawaiian Islands Transmission Interconnection Project Dennis Woodford Electranix Corporation Winnipeg, Manitoba Canada Subcontract Report NREL/SR-5500-50411 February 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Oahu Wind Integration and Transmission Study (OWITS) Hawaiian Islands Transmission Interconnection Project Dennis Woodford Electranix Corporation Winnipeg, Manitoba Canada NREL Technical Monitor: David Corbus

433

Energy Transition Initiative: Islands Playbook (Book)  

Office of Environmental Management (EM)

work to be accomplished. Solution The governor's office appointed VIEO Director Bevan Smith and WAPA Chief Executive Officer Hugo Hodge Jr. to co-lead the project with the...

434

Prairie Island Indian Community | Department of Energy  

Office of Environmental Management (EM)

& Publications Shipping Radioactive Waste by Rail from Brookhaven National Laboratory Nuclear Fuel Storage and Transportation Planning Project Overview Indiana Department of...

435

Amelia Island 2008  

Broader source: Energy.gov (indexed) [DOE]

Contracting Opportunities Office of Environmental Management John Evett Small Business Program Manager Office of Environmental Management Business Opportunity Session (BOS) Workshop July 29, 2013 www.energy.gov/EM 2 EM Organization SRS RL ORP PPPO CBFO ID OR CBC (Small Sites) MISSION SUPPORT 1. Safety, Security, & Quality Programs 1. Safety Management 2. Operational Safety 3. Standards & Quality Assurance 4. Safeguards, Security, & Emergency Prep. 2. Acquisition & Project Management 1. Procurement Planning 2. Contract Assistance 3. Project Assessment 4. Recovery Act Program 3. Program Planning & Budget 1. Budget 2. Strategic Planning & Analysis 3. Management Systems & Analysis 4. Human Capital & Corporate Services Human Capital, Corporate IT, Business Services

436

Public Displays of Efficiency | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

by displaying the collective energy savings of two island neighborhoods. In Connecticut, the Neighbor to Neighbor Energy Challenge encourages homeowners in 14 towns to...

437

Magnetic island evolution in hot ion plasmas  

SciTech Connect (OSTI)

Effects of finite ion temperature on magnetic island evolution are studied by means of numerical simulations of a reduced set of two-fluid equations which include ion as well as electron diamagnetism in slab geometry. The polarization current is found to be almost an order of magnitude larger in hot than in cold ion plasmas, due to the strong shear of ion velocity around the separatrix of the magnetic islands. As a function of the island width, the propagation speed decreases from the electron drift velocity (for islands thinner than the Larmor radius) to values close to the guiding-center velocity (for islands of order 10 times the Larmor radius). In the latter regime, the polarization current is destabilizing (i.e., it drives magnetic island growth). This is in contrast to cold ion plasmas, where the polarization current is generally found to have a healing effect on freely propagating magnetic island.

Ishizawa, A.; Nakajima, N. [National Institute for Fusion Science, Toki 509-5292 (Japan); Waelbroeck, F. L.; Fitzpatrick, R.; Horton, W. [Institute for Fusion Studies, University of Texas at Austin, Austin, Texas 78712 (United States)

2012-07-15T23:59:59.000Z

438

SEA TURTLES Sea Turtles  

E-Print Network [OSTI]

, Suriname, French Guiana Hawksbill Endangered U.S. Virgin Islands, Puerto Rico Pacific region Loggerhead

439

Three Mile Island: the financial fallout  

SciTech Connect (OSTI)

The nuclear accident at Three Mile Island raised serious questions about the financial ability of the electric utility company owners to clean up and repair the damaged reactor facilities while continuing to provide reliable electric service to customers. Financial insolvency of the companies is not imminent and power supplies are assured for the immediate future. However, the loss of earnings capability by the Metropolitan Edison Company makes it questionable whether it can fund its share of the clean-up costs and maintain system reliability without large rate increases or some external financial assistance. The accident has shown that the utilities and Federal and State regulatory agencies were not prepared to deal with recovery from such a large financial loss. The Department of Energy should move swiftly to assess the financial needs of the affected utilities and develop plans for meeting them.

Not Available

1980-07-07T23:59:59.000Z

440

Simulation of electricity supply of an Atlantic island by offshore wind turbines and wave  

E-Print Network [OSTI]

Simulation of electricity supply of an Atlantic island by offshore wind turbines and wave energy community. Key words: Wave energy, offshore wind turbines, marine energy 1 Introduction Marine renewables installations of a few kW like small wind turbines or photovoltaic cells installed to provide electricity

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "virgin islands energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Preliminary interpretation of the upper crustal structure beneath Prince Edward Island  

E-Print Network [OSTI]

during 1983 to aid in the assessment of the geothermal energy potential of the province. At ten locations gravity anomaly in the region. Key words: magnetotelluric method, geothermal energy, Prince Edward Island of the geothermal energy potential of Atlantic Canada is now in its fifth year and has entered its final phase

Jones, Alan G.

442

Study of the change of electron temperature inside magnetic island caused by localized radio frequency heating  

SciTech Connect (OSTI)

The change in the electron temperature inside magnetic island caused by localized radio frequency (rf) heating is studied numerically by solving the two-dimensional energy transport equation, to investigate the dependence of the temperature change on the location and width of the rf power deposition along the minor radius and the helical angle, the island width, and the ratio between the parallel and the perpendicular heat conductivity. Based on obtained numerical results, suggestions for optimizing the island stabilization by localized rf heating are made.

Yang, J.; Zhu, S. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Center for Magnetic Fusion Theory, Chinese Academy of Sciences, Hefei 230031 (China); Yu, Q. [Max-Planck-Institute fuer Plasmaphysik, EURATOM Association, Garching 85748 (Germany); Zhuang, G. [College of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

2010-05-15T23:59:59.000Z

443

Modelling the local climate in island environments: water balance applications  

Science Journals Connector (OSTI)

In small volcanic islands the local scale climate is influenced by the regional scale climate and by the orography and orientation of air masses movement over the islands. A model was developed in a GIS environment to generate local scale climate variables from those observed at the synoptic scale, from coastal weather stations. An advective submodel, based on the Foehn effect and assuming the conservation of mass and energy, computes local scale air temperature, relative humidity, clouds occurrence and precipitation. A radiative submodel, using information generated by the advective submodel, computes local scale global radiation. A rotational terrain model allows that computations be performed according to the direction of wind. Because the model works within a GIS, results concern the spatial distribution of all climatic variables on the island territory. Results of the validation of temperature, relative humidity, global radiation and rainfall are presented. For agro-meteorological purposes, an application of generated data to perform the sequential water balance is also analysed by comparing results from computations using simulated and observed data at a control weather station located at medium altitude. Results support assumptions utilised in the model and the further use of generated local climate fields for water management and environmental studies in small island environments.

Eduardo Brito de Azevedo; Lu??s Santos Pereira; Bernard Itier

1999-01-01T23:59:59.000Z

444

Crystallization Behavior of Virgin TR-55 Silicone Rubber Measured Using Dynamic Mechanical Thermal Analysis with Liquid Nitrogen Cooling  

SciTech Connect (OSTI)

Dynamic mechanical thermal analysis (DMTA) of virgin TR-55 silicone rubber specimens was conducted. Two dynamic temperature sweep tests, 25 to -100 C and 25 to -70 to 0 C (ramp rate = 1 C/min), were conducted at a frequency of 6.28 rad/s (1 Hz) using a torsion rectangular test geometry. A strain of 0.1% was used, which was near the upper limit of the linear viscoelastic region of the material based on an initial dynamic strain sweep test. Storage (G{prime}) and loss (G{double_prime}) moduli, the ratio G{double_prime}/G{prime} (tan {delta}), and the coefficient of linear thermal expansion ({alpha}) were determined as a function of temperature. Crystallization occurred between -40 and -60 C, with G{prime} increasing from {approx}6 x 10{sup 6} to {approx}4 x 10{sup 8} Pa. The value of {alpha} was fairly constant before ({approx}4 x 10{sup -4} mm/mm- C) and after ({approx}3 x 10{sup -4} mm/mm- C) the transition, and peaked during the transition ({approx}3 x 10{sup -3} mm/mm- C). Melting occurred around -30 C upon heating.

Small IV, W; Wilson, T S

2010-02-11T23:59:59.000Z

445

National Grid Energy Efficiency Plans  

Broader source: Energy.gov [DOE]

Presentation covers the National Grid Energy Efficiency plans and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Providence, Rhode Island.

446

Case Closed on Nauru Island Effect  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Closed on Nauru Island Effect Closed on Nauru Island Effect For original submission and image(s), see ARM Research Highlights http://www.arm.gov/science/highlights/ Research Highlight The tiny 4-kilometer-by-6-kilometer island of Nauru is isolated in the equatorial Pacific Ocean with naught but a few small scattered islands for thousands of kilometers around. Thus, the ARM measurements made there are intended to represent the larger surrounding oceanic area. But decades of phosphate mining have left large barren karst fields as the predominant land surface over most of the center of the island, making it much more susceptible to solar heating than typical tropical vegetated surfaces. During the Nauru99 campaign, small cumulus clouds were observed at times forming over the center of the island, advecting over the ARM site

447

Two-fluid magnetic island dynamics in slab geometry: I -Isolated islands  

E-Print Network [OSTI]

that there be zero net electromagnetic force acting on the island. Finally, the ion polarization current correction determination of the island phase-velocity, and the calculation of the ion and electron fluid flow profiles

Fitzpatrick, Richard

448

Three Mile Island: then and now  

SciTech Connect (OSTI)

A review of the Three Mile Island Unit 2 accident is presented. Current activities to clean up the reactor are described.

Trauger, D.B.

1980-01-01T23:59:59.000Z

449

Nauru Island Effect Detection Data Set  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

During Nauru99 it was noted that the island was producing small clouds that advected over the ARM site. The Nauru Island Effect Study was run for 1.5 years and the methodology developed to detect the occurrence. Nauru ACRF downwelling SW, wind direction, and air temperature data are used, along with downwelling SW data from Licor radiometers located on the southern end of the island near the airport landing strip. A statistical analysis and comparison of data from the two locations is used to detect the likely occurrence of an island influence on the Nauru ACRF site data

Long, Chuck

450

The Energy Impact of Industrial Recycling and Waste Exchange  

E-Print Network [OSTI]

THE ENERGY IMPACT OF INDUSTRIAL RECYCLING AND WASTE EXCHANGE W. CURTIS PHILLIPS, SYSTEMS ENGINEER/INDUSTRIAL PROJECT MANAGER, N.C. ENERGY DIVISION, RALEIGH, NC ABSTRACT Recycling and waste exchange, particularly in the industrial sector, has a... products from virgin materials. Process energy reduction possible by recycling is estimated to be as high is 95% for aluminum and 88% for plastics. Industrial waste exchange is facilit~ted by having an independent agency to publicize and coordinate...

Phillips, W. C.

451

Physicochemical and sensory characteristics of virgin olive oils in relation to cultivar, extraction system and storage conditions  

Science Journals Connector (OSTI)

Abstract This research was carried out to evaluate the effects of variety, extraction system and storage conditions such as packaging type and temperature variation on the quality of virgin olive oil. Several parameters were studied, namely, quality indices, polyphenols, tocopherols, volatile compounds and sensory properties. Thus, two olive varieties Chemlali (Tunisia) and Coratina (Italy) were selected. The olive oils were extracted by different industrial processes (super press, dual and triple phase decanter) then stored in the established conditions (ambient and refrigerator temperature) in the following packaging materials: clear and dark glass bottles and metal bottles. The oils were analyzed before and after being stored for 9months. Principal Component Analysis and Graphical Modeling were applied to fully explore the influence of the studied factors. Results revealed that among samples, oils from Coratina cultivar were the richest in ?-tocopherol while Chemlali oils contained the highest amount of ?-tocopherol. Quality indices namely K232 and K270 values were mainly influenced by the storage date and packaging material. Meanwhile, free acidity and peroxide value were mainly influenced by the extraction system. Concerning tocopherols, ?-tocopherol content was mainly influenced by the packaging material, ?-tocopherol was mainly affected by the storage date, for ?-tocopherol content the main influencing factor was the cultivar whereas for ?-tocopherol the main influencing factor was the extraction system. Regarding volatile compounds their amounts were influenced mainly by the storage date, that was influenced by the packaging material, where a considerable decrease was observed after storage which was reflected by the change of sensory characteristics of stored oils: loss of positive attributes fruitiness, bitterness and pungency and onset of defects which were mainly influenced by the storage date (fruity and bitter attributes), packaging material (pungent, rancid and fusty attributes) and extraction system (musty attribute).

Kaouther Ben-Hassine; Amani Taamalli; Sana Ferchichi; Anis Mlaouah; Cinzia Benincasa; Elvira Romano; Guido Flamini; Aida Lazzez; Naziha Grati-kamoun; Enzo Perri; Dhafer Malouche; Mohamed Hammami

2013-01-01T23:59:59.000Z

452

Contradiction and grammar : the case of weak islands  

E-Print Network [OSTI]

This thesis is about weak islands. Weak islands are contexts that are transparent to some but not all operator-variable dependencies. For this reason, they are also sometimes called selective islands. Some paradigmatic ...

Abrusn, Mrta

2007-01-01T23:59:59.000Z

453

Rhode Island Regions | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Rhode Island Regions Rhode Island Regions National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov High School Regionals Rhode Island Regions Print Text Size: A A A RSS Feeds FeedbackShare Page Rhode Island Coaches can review the high school regional locations listed below. Please note: Registrations are based on the location of your school. Please be sure to select the regional that is designated for your

454

Rhode Island Regions | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Rhode Island Regions Rhode Island Regions National Science Bowl® (NSB) NSB Home About High School Middle School Middle School Students Middle School Coaches Middle School Regionals Middle School Rules, Forms, and Resources Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Middle School Regionals Rhode Island Regions Print Text Size: A A A RSS Feeds FeedbackShare Page Rhode Island Coaches can review the middle school regional locations listed below. Please note: Registrations are based on the location of your school. Please be sure to select the regional that is designated for your

455

Hard-and software implementation and verification of an Islanded House  

E-Print Network [OSTI]

-fired high-efficiency boil- ers producing next to heat also electricity [United States Department of EnergyCHP, a replacement of a boiler producing heat and electricity. We investigated whether it is possible to use a micro. Keywords: Islanded House, energy efficiency, microCHP, control algorithms, system engineering 1

Al Hanbali, Ahmad

456

Mass Wasting in the Western Galapagos Islands  

E-Print Network [OSTI]

. RESULTS .............................................................................................................. 12 3.1 Cerro Azul Region ........................................................................................ 20 3.2 Le Cumbre... of the western Galapagos Islands ......................................................................... 7 3 Map of the Galapagos Islands with locations of Figures 4-33 ................... 11 4 Cerro Azul sidescan sonar data interpreted...

Hall, Hillary

2012-10-19T23:59:59.000Z

457

Marine Algae of the Solomon Islands  

Science Journals Connector (OSTI)

10 September 1970 research-article Marine Algae of the Solomon Islands H. B. S. Womersley A. Bailey An account is given of the benthic marine algae (and sea grasses) collected on the 1965 Royal Society Expedition to the Solomon Islands...

1970-01-01T23:59:59.000Z

458

YOU ARE CORDIALLY INVITED 2011 Long Island  

E-Print Network [OSTI]

and success of the green industry on Long Island. Thanks to Fred Soviero, this year's Leader's Forum, country sausage, seasoned potatoes, coffee, tea, and assorted fruit juices. Following breakfast, the two, and announcements to New York's green industry. Thanks to the Friends of Long Island Horticulture and the NSLGA

Danforth, Bryan Nicholas

459

Island-finding ability of marine turtles  

E-Print Network [OSTI]

of the equatorial Atlantic. To test the hypothesis that turtles use wind-borne cues to locate Ascension Island we back to the island. These find- ings strongly support the hypothesis that wind-borne cues are used that hatch- ling loggerhead turtles (Caretta caretta) have the ability to perceive the inclination

Hays, Graeme

460

DOE Zero Energy Ready Home Case Study: Clifton View Homes, Whidbey...  

Energy Savers [EERE]

Study: Clifton View Homes, Whidbey Island, WA DOE Zero Energy Ready Home Case Study: Clifton View Homes, Whidbey Island, WA Case study of a DOE Zero Energy Ready home on Whidbey...

Note: This page contains sample records for the topic "virgin islands energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Power Plant Options Report for Thompson Island prepared by the  

E-Print Network [OSTI]

....................................................................... 2 2.2. Thompson Island electric load.......................................................................... 4 2.3. Thompson Island heating load....................................................................... 7 3. Grid-connected and Autonomous Renewable Power Systems ................................ 9 3

Massachusetts at Amherst, University of

462

Anatahan, Northern Mariana Islands- Reconnaissance Geological Observations  

Open Energy Info (EERE)

Anatahan, Northern Mariana Islands- Reconnaissance Geological Observations Anatahan, Northern Mariana Islands- Reconnaissance Geological Observations During And After The Volcanic Crisis Of Spring 1990, And Monitoring Prior To The May 2003 Eruption Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Anatahan, Northern Mariana Islands- Reconnaissance Geological Observations During And After The Volcanic Crisis Of Spring 1990, And Monitoring Prior To The May 2003 Eruption Details Activities (0) Areas (0) Regions (0) Abstract: Anatahan island is 9.5 km east-west by 3.5 km north-south and truncated by an elongate caldera 5 km east-west by 2.5 km north-south. A steep-walled pit crater ~1 km across and ~200 m deep occupies the eastern part of the caldera. The island is the summit region of a mostly submarine stratovolcano. The oldest subaerial rocks (stage 1) are exposed low on the

463

Living on Long Island | Brookhaven National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Careers at Brookhaven Careers at Brookhaven Home For Job Seekers Job List Life at Brookhaven Benefits Family Programs Recreation & Fitness Why Brookhaven? For New Hires For Employees Living on Long Island Stretching 118 miles from end to end and measuring no more than 20 miles at its widest point, Long Island was aptly named by Dutch traders who circum-navigated it in the early 1600s. Those early Dutchmen discovered what the native Indians had known for centuries: The temperate climate, the bountiful seas and the fertile land made Long Island a most hospitable home. Local Area Information Long Island Schools Parks Beaches Wineries New York City Today, Brookhaven National Laboratory sits in the geographical center of Long Island. To the west, New York City boasts Broadway shows, museums,

464

Ge atom distribution in buried dome islands  

SciTech Connect (OSTI)

Laser-assisted atom probe tomography microscopy is used to provide direct and quantitative compositional measurements of tri-dimensional Ge distribution in Ge dome islands buried by Si. Sub-nanometer spatial resolution 3D imaging shows that islands keep their facets after deposition of the Si cap, and that the island/substrate/Si cap interfaces are abrupt. The core of the domes contains 55% of Ge, while the island shell exhibits a constant composition of 15% of Ge. The {l_brace}113{r_brace} facets of the islands present a Ge enrichment up to 35%. The wetting layer composition is not homogeneous, varying from 9.5% to 30% of Ge.

Portavoce, A.; Berbezier, I.; Ronda, A.; Mangelinck, D. [CNRS, IM2NP, Case 142, 13397 Marseille Cedex 20 (France); Hoummada, K. [Aix-Marseille Universite, IM2NP, Case 142, 13397 Marseille Cedex 20 (France)

2012-04-16T23:59:59.000Z

465

Asia-Pacific Partnerships and Projects | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

renewable energy and energy efficient technologies on selected islands and remote electricity grids. With U.S. private sector partners, the project will demonstrate the...

466

Bimodal Island Size Distribution in Heteroepitaxial Growth  

Science Journals Connector (OSTI)

A bimodal size distribution of two-dimensional islands is inferred during interface formation in heteroepitaxial growth of bismuth ferrite on (001) oriented SrTiO3 by sputter deposition. Features observed by in situ x-ray scattering are explained by a model where coalescence of islands determines the growth kinetics with negligible surface diffusion on SrTiO3. Small clusters maintain a compact shape as they coalesce, while clusters beyond a critical size impinge to form large irregular connected islands and a population of smaller clusters forms in the spaces between the larger ones.

P.?V. Chinta and R.?L. Headrick

2014-02-20T23:59:59.000Z

467

Juvenile marine fishes of Harbor Island, Texas  

E-Print Network [OSTI]

(December, 1977) Robert Eugene Bonin, B. S. , Heidelberg College Chairman of Advisory Committee: Dr. Thomas Bright A one-year study was made of juvenile marine fishes in the shallow water grass flats of Harbor Island, Texas. Samples were taken at each... the flats of llarbor Island . 91 vi 1 1 LIST OF FIGURES FIGURE PME Location of Harbor Island Location of collection sites. Beam trawl used in study. Seasonal changes in average salinity on the flats 17 Seasonal changes in average water temperature...

Bonin, Robert Eugene

2012-06-07T23:59:59.000Z

468

Oscillatory behavior of the agglomeration rate in island copper films  

Science Journals Connector (OSTI)

The post-deposition dc electrical-resistance increase of island copper films deposited on glass substrates at room temperature and at a pressure of 210-5 torr is studied. Films in the resistance range 1095 M?/? were studied under different conditions to ascertain the role of residual gases and substrate-surface contaminants on the agglomeration rate. Mobility coalescence of small islands of Cu giving rise to an agglomerated film structure is assumed to explain the post-deposition resistance increase. It was found that the logarithm of the normalized resistance [ln(R/R0); R0 is the initial resistance of the film at a time t=0] varies linearly as the logarithm of the time elapsed after the cessation of deposition. The constant of proportionality in the above relationship, termed the agglomeration rate m, shows an interesting oscillatory dependence on the initial resistance of the film and the condition of study. Nearly all the maxima and minima of m for two of the conditions studied in detail as a function of the initial resistance occur at about the same initial resistance values with the films having almost the same structure at these points. An argument is put forward based on the oscillatory nature of the effective tunneling barrier as a function of the island size to explain this unusual behavior. It is found that the presence of a thin film of water vapor on the substrate surface impedes the agglomeration rate to a great extent while the presence of adsorbed O2 and N2 decreases the energy for surface migration of islands of copper thereby increasing the agglomeration rate.

V. Damodara Das and M. S. Murali Sastry

1986-05-15T23:59:59.000Z

469

Territorial energy assessment. Final report  

SciTech Connect (OSTI)

This assessment is concerned with energy planning for the governments of the American territories of Guam and American Samoa, and of the four nations that are now emerging from the United Nations Trust Territory of the Pacific Islands: the Commonwealth of the Northern Mariana Islands, the Republic of the Marshall Islands, the Republic of Palau, and the Federated States of Micronesia. This study was directed by the United States Congress under Public Law 96-597, and carried out by the United States Department of Energy in cooperation with the respective island governments. This report addressed the current and future energy needs of the island governments and considers the feasibility of employing alternate sources of energy, especially indigenous renewable energy resources, to reduce dependence on petroleum-based fuels.

Not Available

1982-12-01T23:59:59.000Z

470

U.S. Navy- San Clemente Island, California  

Broader source: Energy.gov [DOE]

San Clemente Island is one of the Channel Islands off the southern coast of California. The U.S. Navy owns the 21-mile long island, making it one of the Navy's largest real estate assets. The Navy uses the island for research, development, testing, evaluation, and training.

471

Tax Credits, Rebates & Savings | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Puerto Rico's adaptation of renewable energy and to reduce the island's reliance on fossil fuels. This is especially... Eligibility: Commercial, General PublicConsumer,...

472

Integrated Deployment Success Stories | Department of Energy  

Office of Environmental Management (EM)

stories about how DOE has helped states, cities, tribes, islands, campuses, and utilities apply an integrated technology deployment approach to achieve clean energy goals....

473

Newport County, Rhode Island: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

969°, -71.2399037° 969°, -71.2399037° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.5016969,"lon":-71.2399037,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

474

Johnston, Rhode Island: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

268401°, -71.5130445° 268401°, -71.5130445° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.8268401,"lon":-71.5130445,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

475

North Providence, Rhode Island: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

00997°, -71.4661703° 00997°, -71.4661703° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.8500997,"lon":-71.4661703,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

476

North Smithfield, Rhode Island: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

2°, -71.5495071° 2°, -71.5495071° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.9667652,"lon":-71.5495071,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

477

Kent County, Rhode Island: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

7°, -71.7147951° 7°, -71.7147951° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.6579147,"lon":-71.7147951,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

478

Green Island, New York: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

449°, -73.6915073° 449°, -73.6915073° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.7442449,"lon":-73.6915073,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

479

Scituate, Rhode Island: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

964495°, -71.6198686° 964495°, -71.6198686° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.7964495,"lon":-71.6198686,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}