National Library of Energy BETA

Sample records for vii energy plug

  1. Suzlon Project VII | Open Energy Information

    Open Energy Info (EERE)

    Project VII Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Suzlon Developer Suzlon Energy Purchaser QF on SPP Location Dumas TX...

  2. Energy Department Announces Funding to Develop "Plug-and-Play...

    Office of Environmental Management (EM)

    Develop "Plug-and-Play" Solar Energy Systems for Homeowners Energy Department Announces Funding to Develop "Plug-and-Play" Solar Energy Systems for Homeowners April 24, 2012 - ...

  3. Power to the Plug: An Introduction to Energy, Electricity, Consumption...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to the Plug: An Introduction to Energy, Electricity, Consumption, and Efficiency Power to the Plug: An Introduction to Energy, Electricity, Consumption, and Efficiency Below is...

  4. Plug Smart | Open Energy Information

    Open Energy Info (EERE)

    Ohio Zip: 43212 Sector: Efficiency, Renewable Energy, Services Product: Consulting; Manufacturing; Research and development Phone Number: 614-247-1610 Website: www.plugsmart.com...

  5. Plug in America | Open Energy Information

    Open Energy Info (EERE)

    in America Jump to: navigation, search Name: Plug-in America Place: El Segundo, California Zip: 90245 Product: Plug In America advocates the use of plug-in cars, trucks and SUVs...

  6. Plug-In Hybrid Electric Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plug-In Hybrid Electric Vehicles Plug-In Hybrid Electric Vehicles A new study released on Plug-in Hybrid Electric Vehicles (PHEVs) found there is enough electric capacity to power plug-in vehicles across much of the nation. The Office of Electricity Delivery and Energy Reliability supported researchers at the Pacific Northwest National Laboratory to develop this study that found "off-peak" electricity production and transmission capacity could fuel 84 percent of the 198 million cars,

  7. Power to the Plug: An Introduction to Energy, Electricity, Consumption...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Grades: All Topics: Biomass, Wind Energy, Hydropower, Solar, Geothermal Owner: The NEED Project Power to the Plug: An Introduction to Energy, Electricity, Consumption, and...

  8. Equal Employment Opportunity -Title VII | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Equal Employment Opportunity -Title VII Equal Employment Opportunity -Title VII The Department of Energy does not discriminate on the basis of race, color, sex (including sexual harassment), religion, national origin, age, disability (physical or mental), sexual orientation, reprisal, parental status, protected genetic information, or any other non-merit factor. We are committed to equal employment opportunity principles and practices in all of our management decisions and personnel practices.

  9. Equal Employment Opportunity -Title VII | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Equal Employment Opportunity -Title VII Equal Employment Opportunity -Title VII The Department of Energy does not discriminate on the basis of race, color, sex (including sexual harassment), religion, national origin, age, disability (physical or mental), sexual orientation, reprisal, parental status, protected genetic information, or any other non-merit factor. We are committed to equal employment opportunity principles and practices in all of our management decisions and personnel practices.

  10. Oregon Plugging Record Form | Open Energy Information

    Open Energy Info (EERE)

    Topic Plugging Record - Geothermal Well Organization State of Oregon Department of Geology and Mineral Industries Published Publisher Not Provided, 42012 DOI Not Provided...

  11. Plug In Partners | Open Energy Information

    Open Energy Info (EERE)

    Zip: 78704 Sector: Vehicles Product: Focused on promotion of flexible-fuel Plug-in Hybrid Electric Vehicles (PHEV). Coordinates: 30.267605, -97.742984 Show Map Loading...

  12. Addressing Plug and Process Loads | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    1, 2015 3:00PM to 4:00PM EST Presenters: Rois Langer, National Renewable Energy Laboratory (NREL); Moira Hafer, Stanford University; Jason Sielcken, U.S. General Services Administration (GSA) Plug and process loads become a larger piece of the building energy pie as the low hanging fruits of energy efficiency, such as lighting retrofits, are harvested. This webinar will include a discussion by NREL on simple low-cost and portable plug and process loads interventions. Stanford University will

  13. Energy Saver Tax Tips: Get Money Back for Buying, Charging Plug...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Saver Tax Tips: Get Money Back for Buying, Charging Plug-in Electric Vehicles March 21, 2016 - 4:58pm Addthis All-electric and plug-in hybrid cars purchased in 2015 may be ...

  14. Alternative Fuels Data Center: Plug-In Vehicles to Harness Renewable Energy

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    in Hawaii Plug-In Vehicles to Harness Renewable Energy in Hawaii to someone by E-mail Share Alternative Fuels Data Center: Plug-In Vehicles to Harness Renewable Energy in Hawaii on Facebook Tweet about Alternative Fuels Data Center: Plug-In Vehicles to Harness Renewable Energy in Hawaii on Twitter Bookmark Alternative Fuels Data Center: Plug-In Vehicles to Harness Renewable Energy in Hawaii on Google Bookmark Alternative Fuels Data Center: Plug-In Vehicles to Harness Renewable Energy in

  15. Plug-and-Play Photovoltaics Funding Opportunity | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plug-and-Play Photovoltaics Funding Opportunity Plug-and-Play Photovoltaics Funding Opportunity PNP vision2.png Through the Plug-and-Play Photovoltaics program, DOE will advance the development of a commercial plug-and-play photovoltaic (PV) system, an off-the-shelf product that is fully inclusive with little need for individual customization. Homeowners can install the new plug-and-play PV system without special training or tools. The homeowner simply plugs the system into a PV-ready circuit,

  16. Communities Plug In To Electric Vehicle Readiness | Department of Energy

    Office of Environmental Management (EM)

    Communities Plug In To Electric Vehicle Readiness Communities Plug In To Electric Vehicle Readiness September 16, 2014 - 4:24pm Addthis The City of Auburn Hills, Michigan, participated in one of 16 Clean Cities plug-in electric vehicle (PEV) community-readiness projects across the country. | Photo courtesy of City of Auburn Hills. The City of Auburn Hills, Michigan, participated in one of 16 Clean Cities plug-in electric vehicle (PEV) community-readiness projects across the country. | Photo

  17. Going Solar in Record Time with Plug-and-Play PV | Department of Energy

    Office of Environmental Management (EM)

    Going Solar in Record Time with Plug-and-Play PV Going Solar in Record Time with Plug-and-Play PV April 24, 2012 - 6:10pm Addthis A plug-and-play PV system is envisioned as a consumer friendly solar technology that uses an automatic detection system to initiate communication between the solar energy system and the utility when plugged into a PV-ready circuit. | Photo by iStock. A plug-and-play PV system is envisioned as a consumer friendly solar technology that uses an automatic detection system

  18. Dynamic Programming Applied to Investigate Energy Management Strategies for a Plug-in HEV

    SciTech Connect (OSTI)

    O'Keefe. M. P.; Markel, T.

    2006-11-01

    This paper explores two basic plug-in hybrid electric vehicle energy management strategies: an electric vehicle centric control strategy and an engine-motor blended control strategy.

  19. Plug IN Hybrid Vehicle Bus | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plug IN Hybrid Vehicle Bus Plug IN Hybrid Vehicle Bus 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon vss023_friesner_2010_o.pdf More Documents & Publications Development and Deployment of Generation 3 Plug-In Hybrid Electric School Buses Medium and Heavy-Duty Vehicle Field Evaluations Alameda-Contra Costa Transit District (AC Transit) Fuel Cell Transit Buses: Preliminary Evaluation Result

  20. Fun Fact Friday: Plug-in Hybrid Edition | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fun Fact Friday: Plug-in Hybrid Edition Fun Fact Friday: Plug-in Hybrid Edition September 27, 2013 - 11:50am Addthis Plug-in electric vehicles, such as the Chevrolet Volt, run on electricity for short trips but use gasoline for longer trips. | Department of Energy photo Plug-in electric vehicles, such as the Chevrolet Volt, run on electricity for short trips but use gasoline for longer trips. | Department of Energy photo Paul Lester Paul Lester Digital Content Specialist, Office of Public

  1. Energy Department Announces Funding to Develop "Plug-and-Play" Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Systems for Homeowners | Department of Energy Develop "Plug-and-Play" Solar Energy Systems for Homeowners Energy Department Announces Funding to Develop "Plug-and-Play" Solar Energy Systems for Homeowners April 24, 2012 - 10:15am Addthis Washington, D.C. - As part of the Energy Department's SunShot Initiative, U.S. Energy Secretary Steven Chu today announced up to $5 million available this year to develop "plug-and-play" photovoltaic (PV) systems that can

  2. Results from the Plug-and-Play Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Results from the Plug-and-Play Workshop Results from the Plug-and-Play Workshop On October 27, 2011, the SunShot Initiative held a workshop in Washington, D.C., focused on the development of plug-and-play solar technologies in the residential sector. PDF icon solar_plug_play_2011.pdf More Documents & Publications Systems Integration (Fact Sheet), SunShot Initiative, U.S. Department of Energy (DOE) Revitalizing American Competitiveness in Solar Technologies 2014 SunShot Initiative Portfolio

  3. Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Vehicles | Department of Energy Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Presented at the U.S. Department of EnergyLight Duty Vehicle Workshop in Washington, D.C. on July 26, 2010. PDF icon wtw_analysis_phevs.pdf More Documents & Publications Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles System

  4. Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Well-to-Wheels ... More Documents & Publications Well-to-Wheels Analysis of Energy Use and Greenhouse Gas ...

  5. Plugging of Exhaust Gas Recirculation Coolers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plugging of Exhaust Gas Recirculation Coolers Plugging of Exhaust Gas Recirculation Coolers EGR coolers donated by industry and analyzed at ORNL contained lacquer-like deposits, which can be prevented by maintaining the cooler above the dew point of the hydrocarbons. PDF icon deer12_lance.pdf More Documents & Publications Materials Issues Associated with EGR Systems Vehicle Technologies Office Merit Review 2014: Materials Issues Associated with EGR Systems (Agreement ID:18571) Project

  6. NREL: Energy Storage - Battery Second Use for Plug-In Electric...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    into a secondary market-could help overcome lithium-ion battery cost barriers to the deployment of both plug-in electric vehicles (PEVs) and grid-connected energy storage. ...

  7. Honey, Did You Plug in the Prius? | Department of Energy

    Office of Environmental Management (EM)

    Honey, Did You Plug in the Prius? Honey, Did You Plug in the Prius? July 7, 2009 - 5:07pm Addthis Francis X. Vogel Executive Director and Coordinator of the Wisconsin Clean Cities coalition An unexpected snowfall in late March prompted me to take my two daughters, Paloma and Ava, for a memorable afternoon of sledding and hot chocolate. However, before leaving home, I unplugged a cord from the standard 110-volt wall socket in my garage and did likewise from the port on the back of my 2007 Toyota

  8. Autonomie Plug&Play Software Architecture | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    10 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon vss009_rousseau_2010_o.pdf More Documents & Publications Autonomie Large Scale Deployment Autonomie Plug&Play Software Architecture

  9. Autonomie Plug&Play Software Architecture | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon vss_11_rousseau.pdf More Documents & Publications Autonomie Plug&Play Software Architecture Autonomie Large Scale Deployment

  10. Plug and Play Solar PV for American Homes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plug and Play Solar PV for American Homes Plug and Play Solar PV for American Homes logo-fraunhofer.gif The Fraunhofer Center for Sustainable Energy Systems (CSE) will develop a new plug-and-play PV system that self-checks for proper installation and safety and communicates with the local utility and local jurisdiction to request permission to feed power into its smart meter. The utility and locality will remotely grant permission to the system to connect, and the PV system will immediately

  11. Plug-in Hybrid Battery Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Hybrid Battery Development Plug-in Hybrid Battery Development 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon es_05_ashtiani.pdf More Documents & Publications USABC PHEV Battery Development Project USABC HEV and PHEV Programs Vehicle Technologies Office Merit Review 2014: Electric Drive and Advanced Battery and Components Testbed (EDAB)

  12. Hybrid and Plug-In Electric Vehicles (Brochure), Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electric-drive vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: * Hybrid electric vehicles (HEVs) * Plug-in hybrid electric vehicles (PHEVs) * All-electric vehicles (EVs). Together, they have great potential to cut U.S. petroleum use and vehicle emissions. Hybrid Electric Vehicles HEVs are powered by an internal combustion engine (ICE) and by an electric motor that uses energy stored

  13. Preliminary Assessment of Plug-in Hybrid Electric Vehicles on Wind Energy Markets

    SciTech Connect (OSTI)

    Short, W.; Denholm, P.

    2006-04-01

    This report examines a measure that may potentially reduce oil use and also more than proportionately reduce carbon emissions from vehicles. The authors present a very preliminary analysis of plug-in hybrid electric vehicles (PHEVs) that can be charged from or discharged to the grid. These vehicles have the potential to reduce gasoline consumption and carbon emissions from vehicles, as well as improve the viability of renewable energy technologies with variable resource availability. This paper is an assessment of the synergisms between plug-in hybrid electric vehicles and wind energy. The authors examine two bounding cases that illuminate this potential synergism.

  14. Comparing Hybrid and Plug-in Electric Vehicles | Department of Energy

    Office of Environmental Management (EM)

    Comparing Hybrid and Plug-in Electric Vehicles Comparing Hybrid and Plug-in Electric Vehicles June 6, 2013 - 11:02am Addthis A variety of hybrid and all-electric vehicles are available for consumers. | Photo courtesy of Andrew Hudgins, NREL 17078. A variety of hybrid and all-electric vehicles are available for consumers. | Photo courtesy of Andrew Hudgins, NREL 17078. Elizabeth Spencer Communicator, National Renewable Energy Laboratory How can I participate? If you're shopping for a new hybrid

  15. Energy Department Announces Funding to Develop "Plug-and-Play...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of clean energy technologies and diversifying America's energy portfolio." As the costs of solar PV modules continue to come down, "soft" costs and other non-module...

  16. Reducing Plug and Process Loads for a Large Scale, Low Energy Office Building: NREL's Research Support Facility; Preprint

    SciTech Connect (OSTI)

    Lobato, C.; Pless, S.; Sheppy, M.; Torcellini, P.

    2011-02-01

    This paper documents the design and operational plug and process load energy efficiency measures needed to allow a large scale office building to reach ultra high efficiency building goals. The appendices of this document contain a wealth of documentation pertaining to plug and process load design in the RSF, including a list of equipment was selected for use.

  17. General Merchandise 2009 TSD Chicago Low Plug Load 50% Energy...

    Open Energy Info (EERE)

    90.1 2004 Model Year 2009 IDF file http:apps1.eere.energy.govbuildingsenergyplusmodelsMiami2009TSDGeneralMerchLPL50percent.idf XML file http:apps1.eere.energy.gov...

  18. General Merchandise 2009 TSD Miami High Plug Load 50% Energy...

    Open Energy Info (EERE)

    90.1 2004 Model Year 2009 IDF file http:apps1.eere.energy.govbuildingsenergyplusmodelsMiami2009TSDGeneralMerchHPL50percent.idf XML file http:apps1.eere.energy.gov...

  19. General Merchandise 2009 TSD Chicago High Plug Load 50% Energy...

    Open Energy Info (EERE)

    90.1 2004 Model Year 2009 IDF file http:apps1.eere.energy.govbuildingsenergyplusmodelsChicago2009TSDGeneralMerchHPL50percent.idf XML file http:apps1.eere.energy.gov...

  20. Reducing Plug Loads in Office Spaces: Hawaii and Guam Energy Improvement Technology Demonstration Project

    SciTech Connect (OSTI)

    Sheppy, M.; Metzger, I.; Cutler, D.; Holland, G.; Hanada, A.

    2014-01-01

    As part of its overall strategy to meet its energy goals, the Naval Facilities Engineering Command (NAVFAC) partnered with the Department of Energy's National Renewable Energy Laboratory (NREL) to rapidly demonstrate and deploy cost-effective renewable energy and energy efficiency technologies. This project was one of several demonstrations of new or underutilized commercial energy technologies. The common goal was to demonstrate and measure the performance and economic benefit of the system while monitoring any ancillary impacts to related standards of service and operation and maintenance (O&M) practices. In short, demonstrations at naval facilities simultaneously evaluate the benefits and compatibility of the technology with the U.S. Department of Defense (DOD) mission, and with NAVFAC's design, construction, operations, and maintenance practices, in particular. This project demonstrated the performance of commercially available advanced power strips (APSs) for plug load energy reductions in building A4 at Joint Base Pearl Harbor-Hickam (JBPHH), Hawaii.

  1. Hybrid and Plug-In Electric Vehicles (Spanish Version); Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect (OSTI)

    2015-08-01

    This is a Spanish-language brochure about hybrid and plug-in electric vehicles, which use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), all-electric vehicles (EVs). Together, they have great potential to cut U.S. petroleum use and vehicle emissions.

  2. Plug valve

    DOE Patents [OSTI]

    Wordin, John J. (Shelley, ID)

    1989-01-01

    An improved plug valve wherein a novel shape for the valve plug and valve chamber provide mating surfaces for improved wear characteristics. The novel shape of the valve plug is a frustum of a body of revolution of a curved known as a tractrix, a solid shape otherwise known as a peudosphere.

  3. Plug-in Electric Vehicles Charge Forward in Oregon | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plug-in Electric Vehicles Charge Forward in Oregon Plug-in Electric Vehicles Charge Forward in Oregon March 10, 2015 - 12:00am Addthis Plug-in Electric Vehicles Charge Forward in Oregon Plug-in electric vehicles (PEVs) are charging forward in Oregon, with the help of EERE's Vehicle Technologies Office. A Clean Cities community readiness award provided a major step forward, helping the state develop a comprehensive market analysis and statewide strategy. To develop the strategy, the Oregon

  4. Charging Your Plug-in Electric Vehicle at Home | Department of Energy

    Office of Environmental Management (EM)

    Charging Your Plug-in Electric Vehicle at Home Charging Your Plug-in Electric Vehicle at Home May 13, 2013 - 3:45pm Addthis Consider the convenient options for plugging in an electric vehicle at home. | Photo courtesy of Tony Markel , NREL 18488. Consider the convenient options for plugging in an electric vehicle at home. | Photo courtesy of Tony Markel , NREL 18488. Chart showing EV Level 2 electricity compared with other home appliances. | Image courtesy of Pecan Street Research Institute.

  5. Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-in Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Elgowainy, A.; Han, J.; Poch, L.; Wang, M.; Vyas, A.; Mahalik, M.; Rousseau, A.

    2010-06-01

    This report examines energy use and emissions from primary energy source through vehicle operation to help researchers understand the impact of the upstream mix of electricity generation technologies for recharging plug-in hybrid electric vehicles (PHEVs), as well as the powertrain technology and fuel sources for PHEVs.

  6. Energy Saver Tax Tips: Get Money Back for Buying, Charging Plug-in Electric Vehicles

    Broader source: Energy.gov [DOE]

    Find out if your plug-in electric vehicle, charging station, or other alternative fueling infrastructure qualify you for federal or state tax credits.

  7. Plug-In Electric Vehicle Handbook for Consumers (Brochure), Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Consumers Plug-In Electric Vehicle Handbook for Consumers 2 Table of Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Plug-in Electric Vehicle Basics . . . . . . . . . . . . . . . . . . . . . 4 Plug-in Electric Vehicle Benefits . . . . . . . . . . . . . . . . . . . 5 Buying the Right Vehicle . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Driving and Maintaining Your Vehicle . . . . . . . . . . . . . . . 8 Charging Your Vehicle . . . . . . .

  8. Hybrid and Plug-In Electric Vehicle Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles & Fuels » Vehicles » Hybrid and Plug-In Electric Vehicle Basics Hybrid and Plug-In Electric Vehicle Basics August 20, 2013 - 9:13am Addthis Text Version Photo of hands holding a battery pack (grey rectangular box) for a hybrid electric vehicle. Hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and all-electric vehicles (EVs)-also called electric drive vehicles collectively-use electricity either as their primary fuel or to improve the efficiency of

  9. Light Duty Plug-in Hybrid Vehicle Systems Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light Duty Plug-in Hybrid Vehicle Systems Analysis Light Duty Plug-in Hybrid Vehicle Systems Analysis 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon vss_08_markel.pdf More Documents & Publications Real-World PHEV Fuel Economy Prediction Advanced HEV/PHEV Concepts Heavy-Duty Vehicle Field Evaluations

  10. EcoCAR 2 Plugging into the Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Plugging into the Future EcoCAR 2 Plugging into the Future 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ti013_delarosa_2013_o.pdf More Documents & Publications Vehicle Technologies Office Merit Review 2015: Collegiate Programs: Advanced Vehicle Technology Competitions (AVTC), Graduate Research Assistants (GRAs), and Clean Cities University Workforce Development Program (CCUWDP) EcoCAR the Next Generatio

  11. Q&A: Plugging In with a Power Lineman | Department of Energy

    Energy Savers [EERE]

    A: Plugging In with a Power Lineman Q&A: Plugging In with a Power Lineman October 18, 2012 - 4:17pm Addthis To commemorate what BPA considers a 75-year partnership with the Columbia River, which is the cornerstone of BPA's relationship with the people and utilities of the Northwest, BPA releases the second video of a series detailing its history. You can see the rest of the series on BPA's 75th Anniversary YouTube channel. Teresa Waugh Public Affairs Specialist, Bonneville Power

  12. Vehicle Technologies Office: Plug-In Electric Vehicles and Batteries |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Plug-In Electric Vehicles and Batteries Vehicle Technologies Office: Plug-In Electric Vehicles and Batteries Vehicle Technologies Office: Plug-In Electric Vehicles and Batteries With their immense potential for increasing the country's energy, economic, and environmental security, plug-in electric vehicles (PEVs, including plug-in hybrid electric and all-electric) will play a key role in the country's transportation future. In fact, transitioning to a mix of plug-in

  13. Plug Flow Reactor Simulator

    Energy Science and Technology Software Center (OSTI)

    1996-07-30

    PLUG is a computer program that solves the coupled steady state continuity, momentum, energy, and species balance equations for a plug flow reactor. Both homogeneous (gas-phase) and heterogenous (surface) reactions can be accommodated. The reactor may be either isothermal or adiabatic or may have a specified axial temperature or heat flux profile; alternatively, an ambient temperature and an overall heat-transfer coefficient can be specified. The crosssectional area and surface area may vary with axial position,more » and viscous drag is included. Ideal gas behavior and surface site conservation are assumed.« less

  14. First-principles electronic structure and formation energies of group V and VII impurities in the ?-Fe{sub 2}O{sub 3} alloys

    SciTech Connect (OSTI)

    Xia, Congxin; Jia, Yu; Zhang, Qiming

    2014-09-21

    Based on density functional theory, the electronic structures, formation energy, and transition level of the selected group V and VII impurities in ?-Fe{sub 2}O{sub 3} are investigated by means of first-principles methods. Numerical results show that the group V and VII atoms-doped ?-Fe{sub 2}O{sub 3} can be energetically favorable under the Fe-rich condition. Group V atom substituting O atom can induce the acceptor impurity level, while the deep donor impurity states are formed inside the band gap when group VII atom substitute O atom in the ?-Fe{sub 2}O{sub 3}. Moreover, our results show that halogen atom F substituting O atom should be very easy in the ?-Fe{sub 2}O{sub 3}. In addition, our results also show that for both group V and VII atom-doped ?-Fe{sub 2}O{sub 3}, the upper sides of valence band are modified obviously, while the conduction band edge does not change.

  15. ESIF Plugs Utility-Scale Hardware into Simulated Grids to Assess Integration Effects (Fact Sheet), Energy Systems Integration (ESI), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ENERGY SYSTEMS INTEGRATION ESI optimizes the design and performance of electrical, thermal, fuel, and water pathways at all scales. ESIF Plugs Utility-Scale Hardware into Simulated Grids to Assess Integration Effects At NREL's Energy Systems Integration Facility (ESIF), integrated, megawatt- scale power hardware-in-the-loop (PHIL) capability allows researchers and manufacturers to test new energy technologies at full power in real-time simulations-safely evaluating component and system

  16. Plug-In Electric Vehicle Handbook for Workplace Charging Hosts (Brochure), Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Workplace Charging Hosts Plug-In Electric Vehicle Handbook for Workplace Charging Hosts 2 Table of Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 PEV Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Charging Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Benefits of Workplace Charging . . . . . . . . . . . . . . . . . . . . . . 8 Evaluating and Planning for

  17. Costs and Emissions Associated with Plug-In Hybrid Electric Vehicle Charging in the Xcel Energy Colorado Service Territory

    SciTech Connect (OSTI)

    Parks, K.; Denholm, P.; Markel, T.

    2007-05-01

    The combination of high oil costs, concerns about oil security and availability, and air quality issues related to vehicle emissions are driving interest in plug-in hybrid electric vehicles (PHEVs). PHEVs are similar to conventional hybrid electric vehicles, but feature a larger battery and plug-in charger that allows electricity from the grid to replace a portion of the petroleum-fueled drive energy. PHEVs may derive a substantial fraction of their miles from grid-derived electricity, but without the range restrictions of pure battery electric vehicles. As of early 2007, production of PHEVs is essentially limited to demonstration vehicles and prototypes. However, the technology has received considerable attention from the media, national security interests, environmental organizations, and the electric power industry. The use of PHEVs would represent a significant potential shift in the use of electricity and the operation of electric power systems. Electrification of the transportation sector could increase generation capacity and transmission and distribution (T&D) requirements, especially if vehicles are charged during periods of high demand. This study is designed to evaluate several of these PHEV-charging impacts on utility system operations within the Xcel Energy Colorado service territory.

  18. Plug Load Behavioral Change Demonstration Project

    SciTech Connect (OSTI)

    Metzger, I.; Kandt, A.; VanGeet, O.

    2011-08-01

    This report documents the methods and results of a plug load study of the Environmental Protection Agency's Region 8 Headquarters in Denver, Colorado, conducted by the National Renewable Energy Laboratory. The study quantified the effect of mechanical and behavioral change approaches on plug load energy reduction and identified effective ways to reduce plug load energy. Load reduction approaches included automated energy management systems and behavioral change strategies.

  19. Plug Loads Conservation Measures

    Energy Science and Technology Software Center (OSTI)

    2010-12-31

    This software requires inputs of simple plug loads inventory information and calculates the energy and cost benefits of various retrofit opportunities. This tool includes energy conservation measures for: Vending Machine Misers, Delamp Vending Machine, Desktop to Laptop retrofit, CRT to LCD monitors retrofit, Computer Power Management Settings, and Energy Star Refrigerator retrofit. This tool calculates energy savings, demand reduction, cost savings, building life cycle costs including: simple payback, discounted payback, net-present value, and savings tomore » investment ratio. In addition this tool also displays the environmental benefits of a project.« less

  20. U.S. Department of Energys EV Everywhere Workplace Charging Challenge, Mid-Program Review: Employees Plug In (Brochure), U.S. Department of Energy (DOE), Energy Efficiency & Renewable Energy (EERE)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Mid-Program Review: Employees Plug In U.S. Department of Energy's EV Everywhere Workplace 2 Almost three years ago, we kicked off the Workplace Charging Challenge with the goal of having 500 U.S. employers commit to installing workplace plug-in electric vehicle (PEV) charging and joining the Challenge by 2018. I am pleased to share that with more than 250 participants in the Challenge, we are more than halfway there, and the adoption of workplace charging as a sustainable business practice is

  1. Plug-In Electric Vehicle Handbook for Fleet Managers (Brochure), Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fleet Managers Plug-In Electric Vehicle Handbook for Fleets 2 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the ac- curacy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not

  2. U.S. Department of Energy Vehicle Technologies Program: Battery Test Manual For Plug-In Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Jon P. Christophersen

    2014-09-01

    This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office. It is based on technical targets for commercial viability established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEVs. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, future revisions including some modifications and clarifications of these procedures are expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices. The DOE-United States Advanced Battery Consortium (USABC), Technical Advisory Committee (TAC) supported the development of the manual. Technical Team points of contact responsible for its development and revision are Renata M. Arsenault of Ford Motor Company and Jon P. Christophersen of the Idaho National Laboratory. The development of this manual was funded by the Unites States Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Technical direction from DOE was provided by David Howell, Energy Storage R&D Manager and Hybrid Electric Systems Team Leader. Comments and questions regarding the manual should be directed to Jon P. Christophersen at the Idaho National Laboratory (jon.christophersen@inl.gov).

  3. Power to the Plug: An Introduction to Energy, Electricity, Consumption and Efficiency

    SciTech Connect (OSTI)

    DOE / EERE / NEED Project

    2011-06-07

    The NEED Project and the U.S. Department of Energy have collaborated to bring you this educational four-page guide to energy, electricity, consumption and efficiency. It includes, on the last page, a home energy survey to help you analyze your home energy use.

  4. Power to the Plug: An Introduction to Energy, Electricity, Consumption, and Efficiency

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    The NEED Project and the U.S. Department of Energy have collaborated to bring you this educational four-page guide to energy, electricity, consumption and efficiency. It includes, on the last page, a home energy survey to help you analyze your home energy use.

  5. The Department of Energy`s Rocky Flats Plant: A guide to record series useful for health-related research. Volume VII. Employee occupational exposure and health

    SciTech Connect (OSTI)

    1995-08-01

    This is the seventh in a series of seven volumes which constitute a guide to records of the Rocky Flats Plant useful for conducting health-related research. The primary purpose of Volume VII is to describe record series pertaining to employee occupational exposure and health at the Department of Energy`s (DOE) Rocky Flats Plant, now named the Rocky Flats Environmental Technology Site, near Denver, Colorado. History Associates Incorporated (HAI) prepared this guide as part of its work as the support services contractor for DOE`s Epidemiologic Records Inventory Project. This introduction briefly describes the Epidemiologic Records Inventory Project and HAI`s role in the project, provides a history of occupational exposure monitoring and health practices at Rocky Flats, and identifies organizations contributing to occupational exposure monitoring and health policies and activities. Other topics include the scope and arrangement of the guide and the organization to contact for access to these records. Comprehensive introductory and background information is available in Volume 1. Other volumes in the guide pertain to administrative and general subjects, facilities and equipment, production and materials handling, environmental and workplace monitoring, and waste management. In addition, HAI has produced a subject-specific guide, titled The September 1957 Rocky Flats Fire: A Guide to Record Series of the Department of Energy and Its Contractors, which researchers should consult for further information about records related to this incident.

  6. General Merchandise 2009 TSD Miami Low Plug Load 50% Energy Savings...

    Open Energy Info (EERE)

    90.1 2004 Model Year 2009 IDF file http:apps1.eere.energy.govbuildingsenergyplusmodelsMiami2009TSDGeneralMerchLPL50percent.idf XML file http:apps1.eere.energy.gov...

  7. Rotating arc spark plug

    DOE Patents [OSTI]

    Whealton, John H.; Tsai, Chin-Chi

    2003-05-27

    A spark plug device includes a structure for modification of an arc, the modification including arc rotation. The spark plug can be used in a combustion engine to reduce emissions and/or improve fuel economy. A method for operating a spark plug and a combustion engine having the spark plug device includes the step of modifying an arc, the modifying including rotating the arc.

  8. Reducing Plug and Process Loads for a Large Scale, Low Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Proposals (RFP) set a whole-building demand-side energy use requirement of a nominal 25 ... IT and management put in place policies that have eliminated shared and personal ...

  9. Assessing Energy Impact of Plug-In Hybrid Electric Vehicles: Significance of Daily Distance Variation over Time and Among Drivers

    SciTech Connect (OSTI)

    Lin, Zhenhong [ORNL; Greene, David L [ORNL

    2012-01-01

    Accurate assessment of the impact of plug-in hybrid electric vehicles (PHEVs) on petroleum and electricity consumption is a necessary step toward effective policies. Variations in daily vehicle miles traveled (VMT) over time and among drivers affect PHEV energy impact, but the significance is not well understood. This paper uses a graphical illustration, a mathematical derivation, and an empirical study to examine the cause and significance of such an effect. The first two methods reveal that ignoring daily variation in VMT always causes underestimation of petroleum consumption and overestimation of electricity consumption by PHEVs; both biases increase as the assumed PHEV charge-depleting (CD) range moves closer to the average daily VMT. The empirical analysis based on national travel survey data shows that the assumption of uniform daily VMT over time and among drivers causes nearly 68% underestimation of expected petroleum use and nearly 48% overestimation of expected electricity use by PHEVs with a 40-mi CD range (PHEV40s). Also for PHEV40s, consideration of daily variation in VMT over time but not among drivers similar to the way the utility factor curve is derived in SAE Standard SAE J2841 causes underestimation of expected petroleum use by more than 24% and overestimation of expected electricity use by about 17%. Underestimation of petroleum use and overestimation of electricity use increase with larger-battery PHEVs.

  10. Impact of Component Sizing in Plug-In Hybrid Electric Vehicles for Energy Resource and Greenhouse Emissions Reduction

    SciTech Connect (OSTI)

    Malikopoulos, Andreas

    2013-01-01

    Widespread use of alternative hybrid powertrains currently appears inevitable and many opportunities for substantial progress remain. The necessity for environmentally friendly vehicles, in conjunction with increasing concerns regarding U.S. dependency on foreign oil and climate change, has led to significant investment in enhancing the propulsion portfolio with new technologies. Recently, plug-in hybrid electric vehicles (PHEVs) have attracted considerable attention due to their potential to reduce petroleum consumption and greenhouse gas (GHG) emissions in the transportation sector. PHEVs are especially appealing for short daily commutes with excessive stop-and-go driving. However, the high costs associated with their components, and in particular, with their energy storage systems have been significant barriers to extensive market penetration of PEVs. In the research reported here, we investigated the implications of motor/generator and battery size on fuel economy and GHG emissions in a medium duty PHEV. An optimization framework is proposed and applied to two different parallel powertrain configurations, pre-transmission and post-transmission, to derive the Pareto frontier with respect to motor/generator and battery size. The optimization and modeling approach adopted here facilitates better understanding of the potential benefits from proper selection of motor/generator and battery size on fuel economy and GHG emissions. This understanding can help us identify the appropriate sizing of these components and thus reducing the PHEV cost. Addressing optimal sizing of PHEV components could aim at an extensive market penetration of PHEVs.

  11. U.S. Department of Energy -- Advanced Vehicle Testing Activity: Plug-in Hybrid Electric Vehicle Testing and Demonstration Activities

    SciTech Connect (OSTI)

    James E. Francfort; Donald Karner; John G. Smart

    2009-05-01

    The U.S. Department of Energys (DOE) Advanced Vehicle Testing Activity (AVTA) tests plug-in hybrid electric vehicles (PHEV) in closed track, dynamometer and onroad testing environments. The onroad testing includes the use of dedicated drivers on repeated urban and highway driving cycles that range from 10 to 200 miles, with recharging between each loop. Fleet demonstrations with onboard data collectors are also ongoing with PHEVs operating in several dozen states and Canadian Provinces, during which trips- and miles-per-charge, charging demand and energy profiles, and miles-per-gallon and miles-per-kilowatt-hour fuel use results are all documented, allowing an understanding of fuel use when vehicles are operated in charge depleting, charge sustaining, and mixed charge modes. The intent of the PHEV testing includes documenting the petroleum reduction potential of the PHEV concept, the infrastructure requirements, and operator recharging influences and profiles. As of May 2008, the AVTA has conducted track and dynamometer testing on six PHEV conversion models and fleet testing on 70 PHEVs representing nine PHEV conversion models. A total of 150 PHEVs will be in fleet testing by the end of 2008, all with onboard data loggers. The onroad testing to date has demonstrated 100+ miles per gallon results in mostly urban applications for approximately the first 40 miles of PHEV operations. The primary goal of the AVTA is to provide advanced technology vehicle performance benchmark data for technology modelers, research and development programs, and technology goal setters. The AVTA testing results also assist fleet managers in making informed vehicle purchase, deployment and operating decisions. The AVTA is part of DOEs Vehicle Technologies Program. These AVTA testing activities are conducted by the Idaho National Laboratory and Electric Transportation Engineering Corporation, with Argonne National Laboratory providing dynamometer testing support. The proposed paper and presentation will discuss PHEV testing activities and results. INL/CON-08-14333

  12. An Innovative Pressure Sensor Glow Plug Offers Improved Diesel Engine

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Closed-loop Control | Department of Energy An Innovative Pressure Sensor Glow Plug Offers Improved Diesel Engine Closed-loop Control An Innovative Pressure Sensor Glow Plug Offers Improved Diesel Engine Closed-loop Control Describes glow plug with integrated pressure sensor for closed-loop control of diesel engine combustion PDF icon p-20_ramond.pdf More Documents & Publications Glow Plug Integrated Piezo-Ceramic Combustion Sensor for Diesel Engines Diesel Combustion Control with

  13. Plug-In Electric Vehicle Handbook for Public Charging Station Hosts (Brochure), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Public Charging Station Hosts Plug-In Electric Vehicle Handbook for Public Charging Station Hosts 2 Table of Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3 PEV Basics . . . . . . . . . . . . . . . . . . . . . . . . . 4 Charging Basics . . . . . . . . . . . . . . . . . . . . . 6 Benefits and Costs of Hosting a Charging Station . . . . . . . . . . . 9 Charging Station Locations and Hosts . . . . . . . . . . . . . . . . . 12 Ownership and Payment Models . . . . . . 14

  14. Plug-In Electric Vehicle Handbook for Public Charging Station Hosts (Brochure), NREL (National Renewable Energy Laboratory)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Public Charging Station Hosts Plug-In Electric Vehicle Handbook for Public Charging Station Hosts 2 Table of Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3 PEV Basics . . . . . . . . . . . . . . . . . . . . . . . . . 4 Charging Basics . . . . . . . . . . . . . . . . . . . . . 6 Benefits and Costs of Hosting a Charging Station . . . . . . . . . . . 9 Charging Station Locations and Hosts . . . . . . . . . . . . . . . . . 12 Ownership and Payment Models . . . . . . 14

  15. Well-to-wheels energy use and greenhouse gas emissions analysis of plug-in hybrid electric vehicles.

    SciTech Connect (OSTI)

    Elgowainy, A.; Burnham, A.; Wang, M.; Molburg, J.; Rousseau, A.; Energy Systems

    2009-03-31

    Researchers at Argonne National Laboratory expanded the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model and incorporated the fuel economy and electricity use of alternative fuel/vehicle systems simulated by the Powertrain System Analysis Toolkit (PSAT) to conduct a well-to-wheels (WTW) analysis of energy use and greenhouse gas (GHG) emissions of plug-in hybrid electric vehicles (PHEVs). The WTW results were separately calculated for the blended charge-depleting (CD) and charge-sustaining (CS) modes of PHEV operation and then combined by using a weighting factor that represented the CD vehicle-miles-traveled (VMT) share. As indicated by PSAT simulations of the CD operation, grid electricity accounted for a share of the vehicle's total energy use, ranging from 6% for a PHEV 10 to 24% for a PHEV 40, based on CD VMT shares of 23% and 63%, respectively. In addition to the PHEV's fuel economy and type of on-board fuel, the marginal electricity generation mix used to charge the vehicle impacted the WTW results, especially GHG emissions. Three North American Electric Reliability Corporation regions (4, 6, and 13) were selected for this analysis, because they encompassed large metropolitan areas (Illinois, New York, and California, respectively) and provided a significant variation of marginal generation mixes. The WTW results were also reported for the U.S. generation mix and renewable electricity to examine cases of average and clean mixes, respectively. For an all-electric range (AER) between 10 mi and 40 mi, PHEVs that employed petroleum fuels (gasoline and diesel), a blend of 85% ethanol and 15% gasoline (E85), and hydrogen were shown to offer a 40-60%, 70-90%, and more than 90% reduction in petroleum energy use and a 30-60%, 40-80%, and 10-100% reduction in GHG emissions, respectively, relative to an internal combustion engine vehicle that used gasoline. The spread of WTW GHG emissions among the different fuel production technologies and grid generation mixes was wider than the spread of petroleum energy use, mainly due to the diverse fuel production technologies and feedstock sources for the fuels considered in this analysis. The PHEVs offered reductions in petroleum energy use as compared with regular hybrid electric vehicles (HEVs). More petroleum energy savings were realized as the AER increased, except when the marginal grid mix was dominated by oil-fired power generation. Similarly, more GHG emissions reductions were realized at higher AERs, except when the marginal grid generation mix was dominated by oil or coal. Electricity from renewable sources realized the largest reductions in petroleum energy use and GHG emissions for all PHEVs as the AER increased. The PHEVs that employ biomass-based fuels (e.g., biomass-E85 and -hydrogen) may not realize GHG emissions benefits over regular HEVs if the marginal generation mix is dominated by fossil sources. Uncertainties are associated with the adopted PHEV fuel consumption and marginal generation mix simulation results, which impact the WTW results and require further research. More disaggregate marginal generation data within control areas (where the actual dispatching occurs) and an improved dispatch modeling are needed to accurately assess the impact of PHEV electrification. The market penetration of the PHEVs, their total electric load, and their role as complements rather than replacements of regular HEVs are also uncertain. The effects of the number of daily charges, the time of charging, and the charging capacity have not been evaluated in this study. A more robust analysis of the VMT share of the CD operation is also needed.

  16. Plugged In: Understanding How and Where Plug-in Electric Vehicle Drivers

    Energy Savers [EERE]

    Charge Up | Department of Energy Plugged In: Understanding How and Where Plug-in Electric Vehicle Drivers Charge Up Plugged In: Understanding How and Where Plug-in Electric Vehicle Drivers Charge Up December 2, 2015 - 12:15pm Addthis A Chevrolet Volt charges in Rhode Island thanks to a ChargePoint station installed using funding from the American Reinvestment and Recovery Act. | Photo courtesy of NREL A Chevrolet Volt charges in Rhode Island thanks to a ChargePoint station installed using

  17. Plug-to-plug gas transfer system

    DOE Patents [OSTI]

    Poindexter, Allan M. (Pleasant Hills, PA)

    1978-01-01

    A system for conducting a fluid from one component to another component of a nuclear reactor wherein at least one such component is a rotatable closure head plug capable of movement relative to the other component. The conducting system utilizes the annulus located between the components as a connecting passageway for the fluid.

  18. Well-to-wheels analysis of energy use and greenhouse gas emissions of plug-in hybrid electric vehicles.

    SciTech Connect (OSTI)

    Elgowainy, A.; Han, J.; Poch, L.; Wang, M.; Vyas, A.; Mahalik, M.; Rousseau, A.

    2010-06-14

    Plug-in hybrid electric vehicles (PHEVs) are being developed for mass production by the automotive industry. PHEVs have been touted for their potential to reduce the US transportation sector's dependence on petroleum and cut greenhouse gas (GHG) emissions by (1) using off-peak excess electric generation capacity and (2) increasing vehicles energy efficiency. A well-to-wheels (WTW) analysis - which examines energy use and emissions from primary energy source through vehicle operation - can help researchers better understand the impact of the upstream mix of electricity generation technologies for PHEV recharging, as well as the powertrain technology and fuel sources for PHEVs. For the WTW analysis, Argonne National Laboratory researchers used the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model developed by Argonne to compare the WTW energy use and GHG emissions associated with various transportation technologies to those associated with PHEVs. Argonne researchers estimated the fuel economy and electricity use of PHEVs and alternative fuel/vehicle systems by using the Powertrain System Analysis Toolkit (PSAT) model. They examined two PHEV designs: the power-split configuration and the series configuration. The first is a parallel hybrid configuration in which the engine and the electric motor are connected to a single mechanical transmission that incorporates a power-split device that allows for parallel power paths - mechanical and electrical - from the engine to the wheels, allowing the engine and the electric motor to share the power during acceleration. In the second configuration, the engine powers a generator, which charges a battery that is used by the electric motor to propel the vehicle; thus, the engine never directly powers the vehicle's transmission. The power-split configuration was adopted for PHEVs with a 10- and 20-mile electric range because they require frequent use of the engine for acceleration and to provide energy when the battery is depleted, while the series configuration was adopted for PHEVs with a 30- and 40-mile electric range because they rely mostly on electrical power for propulsion. Argonne researchers calculated the equivalent on-road (real-world) fuel economy on the basis of U.S. Environmental Protection Agency miles per gallon (mpg)-based formulas. The reduction in fuel economy attributable to the on-road adjustment formula was capped at 30% for advanced vehicle systems (e.g., PHEVs, fuel cell vehicles [FCVs], hybrid electric vehicles [HEVs], and battery-powered electric vehicles [BEVs]). Simulations for calendar year 2020 with model year 2015 mid-size vehicles were chosen for this analysis to address the implications of PHEVs within a reasonable timeframe after their likely introduction over the next few years. For the WTW analysis, Argonne assumed a PHEV market penetration of 10% by 2020 in order to examine the impact of significant PHEV loading on the utility power sector. Technological improvement with medium uncertainty for each vehicle was also assumed for the analysis. Argonne employed detailed dispatch models to simulate the electric power systems in four major regions of the US: the New England Independent System Operator, the New York Independent System Operator, the State of Illinois, and the Western Electric Coordinating Council. Argonne also evaluated the US average generation mix and renewable generation of electricity for PHEV and BEV recharging scenarios to show the effects of these generation mixes on PHEV WTW results. Argonne's GREET model was designed to examine the WTW energy use and GHG emissions for PHEVs and BEVs, as well as FCVs, regular HEVs, and conventional gasoline internal combustion engine vehicles (ICEVs). WTW results are reported for charge-depleting (CD) operation of PHEVs under different recharging scenarios. The combined WTW results of CD and charge-sustaining (CS) PHEV operations (using the utility factor method) were also examined and reported. According to the utility factor method, the share of vehicle miles traveled during CD operation is 25% for PHEV10 and 51% for PHEV40. Argonne's WTW analysis of PHEVs revealed that the following factors significantly impact the energy use and GHG emissions results for PHEVs and BEVs compared with baseline gasoline vehicle technologies: (1) the regional electricity generation mix for battery recharging and (2) the adjustment of fuel economy and electricity consumption to reflect real-world driving conditions. Although the analysis predicted the marginal electricity generation mixes for major regions in the United States, these mixes should be evaluated as possible scenarios for recharging PHEVs because significant uncertainties are associated with the assumed market penetration for these vehicles. Thus, the reported WTW results for PHEVs should be directly correlated with the underlying generation mix, rather than with the region linked to that mix.

  19. Development of an Innovative Plug and Play Photovoltaic Electric System |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Development of an Innovative Plug and Play Photovoltaic Electric System Development of an Innovative Plug and Play Photovoltaic Electric System logo_freedm.jpg North Carolina State University FREEDM Systems Engineering Center and its partners, under the Plug-and-Play Photovoltaics FOA, are performing analysis, design, and innovation to address each stage in the value chain of grid-interactive residential photovoltaic (PV) systems, while taking a broader systems

  20. Microsoft Word - Plug-in Hybrids.doc

    Office of Environmental Management (EM)

    Study Released on the Potential of Plug- In Hybrid Electric Vehicles JANUARY 2007 A new study released on Plug-in Hybrid Electric Vehicles (PHEVs) found there is enough electric capacity to power plug-in vehicles across much of the nation. The Office of Electricity Delivery and Energy Reliability supported researchers at the Pacific Northwest National Laboratory to develop this study that found "off-peak" electricity production and transmission capacity could fuel 84 percent of the 198

  1. Mechanically balanced tapered plug valve

    DOE Patents [OSTI]

    Anaya, Jose R. (Coacalco, MX)

    1985-01-01

    The invention is a novel hermetic tapered plug valve having a spring-like resilient mechanism for providing axial balance to the plug and thereby prevent valve lock up.

  2. Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-in Hybrid Electric Vehicles

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report examines energy use and emissions from primary energy source through vehicle operation to help researchers understand the impact of the upstream mix of electricity generation technologies

  3. California Statewide Plug-In Electric Vehicle Infrastructure Assessment

    SciTech Connect (OSTI)

    Melaina, Marc; Helwig, Michael

    2014-05-01

    The California Statewide Plug-In Electric Vehicle Infrastructure Assessment conveys to interested parties the Energy Commission’s conclusions, recommendations, and intentions with respect to plug-in electric vehicle (PEV) infrastructure development. There are several relatively low-risk and high-priority electric vehicle supply equipment (EVSE) deployment options that will encourage PEV sales and

  4. Plug and Play: Purchase, Install, and Connect Residential Solar Power in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hours | Department of Energy Plug and Play: Purchase, Install, and Connect Residential Solar Power in Hours Plug and Play: Purchase, Install, and Connect Residential Solar Power in Hours March 16, 2015 - 5:58pm Addthis Fraunhofer CSE demonstrates Plug and Play PV System installation and commissioning in just 75 minutes at the Massachusetts Clean Energy Center’s Wind Technology Testing Center. Photo Credit: Fraunhofer CSE Fraunhofer CSE demonstrates Plug and Play PV System installation

  5. Fact #878: June 22, 2015 Plug-in Vehicle Penetration in Selected Countries,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2014 | Department of Energy 8: June 22, 2015 Plug-in Vehicle Penetration in Selected Countries, 2014 Fact #878: June 22, 2015 Plug-in Vehicle Penetration in Selected Countries, 2014 The International Energy Agency released the 2015 report Hybrid and Electric Vehicles, The Electric Drive Delivers which shows the total number of plug-in electric vehicles (PEVs) in selected countries. PEVs include both battery electric vehicles (BEVs) and plug-in hybrid electric vehicles or PHEVs. The United

  6. Plug and Play: Purchase, Install, and Connect Residential Solar Power in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hours | Department of Energy Plug and Play: Purchase, Install, and Connect Residential Solar Power in Hours Plug and Play: Purchase, Install, and Connect Residential Solar Power in Hours March 16, 2015 - 5:58pm Addthis Fraunhofer CSE demonstrates Plug and Play PV System installation and commissioning in just 75 minutes at the Massachusetts Clean Energy Center’s Wind Technology Testing Center. Photo Credit: Fraunhofer CSE Fraunhofer CSE demonstrates Plug and Play PV System installation

  7. Fact #752: November 5, 2012 Western Europe Plug-in Car Sales, 2012 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 2: November 5, 2012 Western Europe Plug-in Car Sales, 2012 Fact #752: November 5, 2012 Western Europe Plug-in Car Sales, 2012 Using data for the first seven months of 2012, Norway has the highest plug-in car market share at 2.55%. The Netherlands has the second highest plug-in market share (0.59%) and despite its small size, accounts for 16.1% of all plug-ins sold in Western Europe (see pie chart). France accounted for 22.3% of Western European plug-in car sales,

  8. Plug-in Electric Vehicle Outreach

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plug-in Electric Vehicle Outreach Resources for Employees After you've installed plug-in electric vehicle (PEV) charging stations at your work site, you'll want to educate your employees on why and how they can take advantage of this employee benefit. This collection of resources by the U.S. Department of Energy (DOE) Workplace Charging Challenge provides tools, tips, and networks to support employer efforts to engage PEV- and non-PEV driving employees alike. From PEV incentives to Ride and

  9. Fact #878: June 22, 2015 Plug-in Vehicle Penetration in Selected Countries,

    Broader source: Energy.gov (indexed) [DOE]

    2014 - Dataset | Department of Energy Plug-in Vehicle Penetration in Selected Countries, 2014 File fotw#878_web.xlsx More Documents & Publications Fact #876: June 8, 2015 Plug-in Electric Vehicle Penetration by State, 2014 - Dataset Fact #877: June 15, 2015 Which States Have More Battery Electric Vehicles than Plug-in Hybrids? - Dataset Fact #892: September 28, 2015 Over One-Million in Plug-in Vehicle Sales Worldwide

  10. AVTA: Plug-in Hybrid Electric Vehicle Specifications and Test Procedures |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Plug-in Hybrid Electric Vehicle Specifications and Test Procedures AVTA: Plug-in Hybrid Electric Vehicle Specifications and Test Procedures Plug-in Hybrid Electric Vehicle Test Plan PDF icon DRAFT - Integrated Test Plan and Evaluation Program for Review for Plug-in Hybrid Electric Vehicles (PHEVs) More Documents & Publications AVTA: Hybrid Electric Vehicle Specifications and Test Procedures Vehicle Technologies Office: 2010 Vehicle and Systems Simulation and Testing

  11. Study Released on the Potential of Plug-In Hybrid Electric Vehicles |

    Energy Savers [EERE]

    Department of Energy Study Released on the Potential of Plug-In Hybrid Electric Vehicles Study Released on the Potential of Plug-In Hybrid Electric Vehicles January 19, 2007 - 10:44am Addthis Study Released on the Potential of Plug-In Hybrid Electric Vehicles A new study released on Plug-in Hybrid Electric Vehicles (PHEVs) found there is enough electric capacity to power plug-in vehicles across much of the nation. The Office of Electricity Delivery and Energy Reliability supported

  12. U.S. Department of Energy's EV Everywhere Workplace Charging Challenge, Mid-Program Review: Employees Plug In

    SciTech Connect (OSTI)

    2015-12-01

    This Program Review takes an unprecedented look at the state of workplace charging in the United States -- a report made possible by U.S. Department of Energy leadership and valuable support from our partners as they share their progress in developing robust workplace charging programs. Through the Workplace Charging Challenge, more than 250 participants are accelerating the development the nation's worksite PEV charging infrastructure and are supporting cleaner, more convenient transportation options within their communities. Challenge partners are currently providing access to PEV charging stations at more than 440 worksites across the country and are influencing countless other organizations to do the same.

  13. Sample Employee Newsletter Articles: Plug-In Electric Vehicles 101

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles 101 This document introduces the basics of Plug-In Electric Vehicles (PEV) and includes a list of engaging top 10 facts about PEVs that will peak the interest of your employees.  Vehicle Basics: Hybrid and Plug-In Electric Vehicles Use this article to explain the difference between various ways of referring to electric drive vehicles.  Energy 101: Plug-In Electric Vehicles (with video) Your employees have seen your workplace charging installation, now use this article and video to

  14. Fact #892: September 28, 2015 Over One-Million in Plug-in Vehicle Sales

    Office of Environmental Management (EM)

    Worldwide - Dataset | Department of Energy 2: September 28, 2015 Over One-Million in Plug-in Vehicle Sales Worldwide - Dataset Fact #892: September 28, 2015 Over One-Million in Plug-in Vehicle Sales Worldwide - Dataset Excel file and dataset for Over One-Million in Plug-in Vehicle Sales Worldwide File fotw#892_web.xlsx More Documents & Publications Fact #856 January 19, 2015 Plug-in and Hybrid Cars Receive High Scores for Owner Satisfaction - Dataset Fact #914: February 29, 2016 Plug-in

  15. Project Profile: Plug-and-Play Solar Photovoltaics for American Homes

    Broader source: Energy.gov [DOE]

    Fraunhofer USA, Inc., Center for Sustainable Energy Systems and its partners, under the Plug-and-Play Photovoltaics FOA, are developing technologies, components, systems, and standards that enable...

  16. Battery Choices and Potential Requirements for Plug-In Hybrids (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A.

    2007-02-13

    Plug-in Hybrid vehicles energy storage and drive cycle impacts presentation given at the 7th Advanced Automotive Battery Conference.

  17. EV Everywhere: Electric Drive Systems Bring Power to Plug-in Electric Vehicles

    Broader source: Energy.gov [DOE]

    Find out how the Energy Department's Vehicles Technologies Office is helping reduce the cost of plug-in electric vehicles through research and development of electric drive technologies.

  18. Orlando Plugs into Electric Vehicle Charging Stations | Department of

    Energy Savers [EERE]

    Energy Orlando Plugs into Electric Vehicle Charging Stations Orlando Plugs into Electric Vehicle Charging Stations September 8, 2010 - 2:00pm Addthis Nearly 300 electric vehicle charging stations are scheduled to be available throughout the Orlando area next year. File photo Nearly 300 electric vehicle charging stations are scheduled to be available throughout the Orlando area next year. File photo Lindsay Gsell What are the key facts? Coulomb highlighted in the Vice President's report on

  19. Guidable pipe plug

    DOE Patents [OSTI]

    Glassell, Richard L. (Knoxville, TN); Babcock, Scott M. (Farragut, TN); Lewis, Benjamin E. (Farragut, TN)

    2001-01-01

    A plugging device for closing an opening defined by an end of a pipe with sealant comprises a cap, an extension, an inner seal, a guide, and at least one stop. The cap has an inner surface which defines a chamber adapted for retaining the sealant. The chamber is dimensioned slightly larger than the end so as to receive the end. The chamber and end define a gap therebetween. The extension has a distal end and is attached to the inner surface opposite the distal end. The inner seal is attached to the extension and sized larger than the opening. The guide is positioned forward of the inner seal and attached to the distal end. The guide is also dimensioned to be inserted into the opening. The stop is attached to the extender, and when the stop is disposed in the pipe, the stop is movable with respect to the conduit in one direction and also prevents misalignment of the cap with the pipe. A handle can also be included to allow the cap to be positioned robotically.

  20. Plug-and-Play Photovoltaics

    Broader source: Energy.gov [DOE]

    On December 7, 2012,DOE announced $21 million in funding for the Plug-and-Play Photovoltaics funding opportunity. Part of the SunShot Systems Integration efforts, the following projects were...

  1. EERE Success Story-Plug and Play: Purchase, Install, and Connect

    Office of Environmental Management (EM)

    Residential Solar Power in Hours | Department of Energy Plug and Play: Purchase, Install, and Connect Residential Solar Power in Hours EERE Success Story-Plug and Play: Purchase, Install, and Connect Residential Solar Power in Hours March 16, 2015 - 5:58pm Addthis Fraunhofer CSE demonstrates Plug and Play PV System installation and commissioning in just 75 minutes at the Massachusetts Clean Energy Center’s Wind Technology Testing Center. Photo Credit: Fraunhofer CSE Fraunhofer CSE

  2. Strategies for Controlling Plug Loads. A Tool for Reducing Plug Loads in Commercial Buildings

    SciTech Connect (OSTI)

    Torcellini, Paul; Bonnema, Eric; Sheppy, Michael; Pless, Shanti

    2015-09-01

    Plug loads are often not considered as part of the energy savings measures in Commercial Buildings; however, they can account for up to 50% of the energy used in the building. These loads are numerous and often scattered throughout a building. Some of these loads are purchased by the owner and some designed into the building or the tenant finishes for a space. This document provides a strategy and a tool for minimizing these loads.

  3. NREL: Transportation Research - Electric and Plug-In Hybrid Electric Fleet

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicle Testing Electric and Plug-In Hybrid Electric Fleet Vehicle Testing How Electric and Plug-In Hybrid Electric Vehicles Work EVs use batteries to store the electric energy that powers the motor. EV batteries are charged by plugging the vehicle into an electric power source. PHEVs are powered by an internal combustion engine that can run on conventional or alternative fuels and an electric motor that uses energy stored in batteries. The vehicle can be plugged into an electric power

  4. Chapter VII Appendix D FEDERAL EMERGENCY AUTHORITIES AND POLICY DIRECTIVES

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    VII Appendix D FEDERAL EMERGENCY AUTHORITIES AND POLICY DIRECTIVES FE-2 QER Report: Energy Transmission, Storage, and Distribution Infrastructure | April 2015 Appendix D: FEDERAL EMERGENCY AUTHORITIES AND POLICY DIRECTIVES Federal Statutes Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), 42 U.S.C. § 9601 et seq.: Authorizes removal, arrangement for removal, or any other necessary response measure due to (a) the release of any hazardous substance, or the threat of

  5. Vehicle Technologies Office: AVTA - Plug-in Electric Vehicle On-Road

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration Data | Department of Energy Plug-in Electric Vehicle On-Road Demonstration Data Vehicle Technologies Office: AVTA - Plug-in Electric Vehicle On-Road Demonstration Data Through the American Recovery and Reinvestment Act, the Vehicle Technologies Office (VTO) accelerated the electrification of the nation's vehicle fleet. VTO invested $400 million in 18 projects to demonstrate plug-in electric vehicles (PEVs, also known as electric cars) and infrastructure, including 10

  6. Glow Plug Integrated Piezo-Ceramic Combustion Sensor for Diesel Engines |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Glow Plug Integrated Piezo-Ceramic Combustion Sensor for Diesel Engines Glow Plug Integrated Piezo-Ceramic Combustion Sensor for Diesel Engines 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters PDF icon 2005_deer_troy.pdf More Documents & Publications An Innovative Pressure Sensor Glow Plug Offers Improved Diesel Engine Closed-loop Control Vehicle Technologies Office: 2013 Propulsion Materials R&D Annual Progress Report Complete

  7. Development and Deployment of Generation 3 Plug-In Hybrid Electric School

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buses | Department of Energy Generation 3 Plug-In Hybrid Electric School Buses Development and Deployment of Generation 3 Plug-In Hybrid Electric School Buses 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon vss023_friesner_2011_o.pdf More Documents & Publications Navistar-Driving efficiency with integrated technology Plug IN Hybrid Vehicle Bus The Business of Near Zero

  8. Plug-and-Play Photovoltaics Funding Opportunity

    Broader source: Energy.gov [DOE]

    Through the Plug-and-Play Photovoltaics program, DOE will advance the development of a commercial plug-and-play photovoltaic (PV) system, an off-the-shelf product that is fully inclusive with...

  9. Fiscal year 1996 well plugging and abandonment program Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    1997-04-01

    This report is a synopsis of the progress of the well plugging and abandonment program at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee, from August 1995 through August 1996. A total of 27 wells, piezometers, and borings were plugged and abandoned during the period of time covered in this report. All wells and borings were plugged and abandoned in accordance with the Monitoring Well Plugging and Abandonment Plan for the U.S. Department of Energy, Y-12 Plant, Oak Ridge, Tennessee (HSW, Inc. 1991).

  10. EERE Success Story-Plug-in Electric Vehicles Charge Forward in Oregon |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy Plug-in Electric Vehicles Charge Forward in Oregon EERE Success Story-Plug-in Electric Vehicles Charge Forward in Oregon March 10, 2015 - 12:00am Addthis EERE Success Story—Plug-in Electric Vehicles Charge Forward in Oregon Plug-in electric vehicles (PEVs) are charging forward in Oregon, with the help of EERE's Vehicle Technologies Office. A Clean Cities community readiness award provided a major step forward, helping the state develop a comprehensive market

  11. Fact #796: September 9, 2013 Electric Vehicle and Plug-In Hybrid Electric

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Sales History | Department of Energy 6: September 9, 2013 Electric Vehicle and Plug-In Hybrid Electric Vehicle Sales History Fact #796: September 9, 2013 Electric Vehicle and Plug-In Hybrid Electric Vehicle Sales History Electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) have been available in the U.S. in limited numbers for many years. The introduction of the Nissan Leaf and Chevrolet Volt at the end of 2010 mark the beginning of mainstream plug-in vehicle sales in

  12. Fact #798: September 23, 2013 Plug-in Hybrid Vehicle Driving Range |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 8: September 23, 2013 Plug-in Hybrid Vehicle Driving Range Fact #798: September 23, 2013 Plug-in Hybrid Vehicle Driving Range For the 2013 model year (MY) there are four plug-in hybrid electric vehicles (PHEVs) available to consumers. PHEVs offer a limited amount of all-electric driving range that is drawn from a plug and uses a gasoline engine to provide additional range when the battery is depleted. The automakers have taken different approaches to employing this

  13. Fact #876: June 8, 2015 Plug-in Electric Vehicle Penetration by State, 2014

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy 6: June 8, 2015 Plug-in Electric Vehicle Penetration by State, 2014 Fact #876: June 8, 2015 Plug-in Electric Vehicle Penetration by State, 2014 Plug-in electric vehicles (PEVs) include battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs). The first mass marketed PEVs were introduced in 2010 with the Nissan Leaf, which is a BEV, and the Chevrolet Volt, which is a PHEV. After four years of sales, California had the most PEV registrations of any

  14. DOE Supports PG&E Development of Next Generation Plug-in Hybrid Electric

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Trucks | Department of Energy DOE Supports PG&E Development of Next Generation Plug-in Hybrid Electric Trucks DOE Supports PG&E Development of Next Generation Plug-in Hybrid Electric Trucks February 25, 2015 - 1:04pm Addthis DOE Supports PG&E Development of Next Generation Plug-in Hybrid Electric Trucks With support from EERE's Vehicle Technologies Office (VTO), Pacific Gas and Electric (PG&E) is demonstrating that plug-in electric vehicles can provide significant benefits to

  15. Clean Cities Coalitions Charge Up Plug-In Electric Vehicles | Department of

    Office of Environmental Management (EM)

    Energy Coalitions Charge Up Plug-In Electric Vehicles Clean Cities Coalitions Charge Up Plug-In Electric Vehicles May 9, 2013 - 4:22pm Addthis Workers put the finishing touches on installing a plug-in electric vehicle charger that is part of the West Coast Electric Highway. | Photo courtesy of Columbia-Willamette Clean Cities Coalition. Workers put the finishing touches on installing a plug-in electric vehicle charger that is part of the West Coast Electric Highway. | Photo courtesy of

  16. U.S. Department of Energy Vehicle Technologies Program -- Advanced Vehicle Testing Activity -- Plug-in Hybrid Electric Vehicle Charging Infrastructure Review

    SciTech Connect (OSTI)

    Kevin Morrow; Donald Darner; James Francfort

    2008-11-01

    Plug-in hybrid electric vehicles (PHEVs) are under evaluation by various stake holders to better understand their capability and potential benefits. PHEVs could allow users to significantly improve fuel economy over a standard HEV and in some cases, depending on daily driving requirements and vehicle design, have the ability to eliminate fuel consumption entirely for daily vehicle trips. The cost associated with providing charge infrastructure for PHEVs, along with the additional costs for the on-board power electronics and added battery requirements associated with PHEV technology will be a key factor in the success of PHEVs. This report analyzes the infrastructure requirements for PHEVs in single family residential, multi-family residential and commercial situations. Costs associated with this infrastructure are tabulated, providing an estimate of the infrastructure costs associated with PHEV deployment.

  17. Fact #856 January 19, 2015 Plug-in and Hybrid Cars Receive High Scores for

    Broader source: Energy.gov (indexed) [DOE]

    Owner Satisfaction - Dataset | Department of Energy Plug-in and Hybrid Cars Receive High Scores for Owner Satisfaction File fotw#856_web.xlsx More Documents & Publications Fact #881: July 13, 2015 Powertrain Efficiency Improvements, 2005 to 2013 - Dataset Fact #892: September 28, 2015 Over One-Million in Plug-in Vehicle Sales Worldwide - Dataset Quarterly Analysis Review February 2015

  18. Hot cell shield plug extraction apparatus

    DOE Patents [OSTI]

    Knapp, Philip A. (Moore, ID); Manhart, Larry K. (Pingree, ID)

    1995-01-01

    An apparatus is provided for moving shielding plugs into and out of holes in concrete shielding walls in hot cells for handling radioactive materials without the use of external moving equipment. The apparatus provides a means whereby a shield plug is extracted from its hole and then swung approximately 90 degrees out of the way so that the hole may be accessed. The apparatus uses hinges to slide the plug in and out and to rotate it out of the way, the hinge apparatus also supporting the weight of the plug in all positions, with the load of the plug being transferred to a vertical wall by means of a bolting arrangement.

  19. Amber Plug-In for Protein Shop

    Energy Science and Technology Software Center (OSTI)

    2004-05-10

    The Amber Plug-in for ProteinShop has two main components: an AmberEngine library to compute the protein energy models, and a module to solve the energy minimization problem using an optimization algorithm in the OPTI-+ library. Together, these components allow the visualization of the protein folding process in ProteinShop. AmberEngine is a object-oriented library to compute molecular energies based on the Amber model. The main class is called ProteinEnergy. Its main interface methods are (1) "init"more » to initialize internal variables needed to compute the energy. (2) "eval" to evaluate the total energy given a vector of coordinates. Additional methods allow the user to evaluate the individual components of the energy model (bond, angle, dihedral, non-bonded-1-4, and non-bonded energies) and to obtain the energy of each individual atom. The Amber Engine library source code includes examples and test routines that illustrate the use of the library in stand alone programs. The energy minimization module uses the AmberEngine library and the nonlinear optimization library OPT++. OPT++ is open source software available under the GNU Lesser General Public License. The minimization module currently makes use of the LBFGS optimization algorithm in OPT++ to perform the energy minimization. Future releases may give the user a choice of other algorithms available in OPT++.« less

  20. Final Report: Design & Evaluation of Energy Efficient Modular Classroom Structures Phase II / Volume I-VII, January 17, 1995 - October 30, 1999

    SciTech Connect (OSTI)

    1999-10-30

    We are developing innovations to enable modular builders to improve the energy performance of their classrooms with no increase in first cost. The Modern Building Systems' (MBS) classroom building conforms to the stringent Oregon energy code, and at $18/ft{sup 2} ($1.67/m{sup 2}) (FOB the factory) it is at the low end of the cost range for modular classrooms. We have investigated daylighting, cross-ventilation, solar preheat of ventilation air, air-to-air heat exchanger, electric lighting controls, and down-sizing HVAC systems as strategies to improve energy performance. We were able to improve energy performance with no increase in first cost in all climates examined. Two papers and a full report on Phase I of this study are available. The work described in this report is from the second phase of the project. In the first phase we redesigned the basic modular classroom to incorporate energy strategies including daylighting, cross-ventilation, solar preheating of ventilation air, and insulation. We also explored thermal mass but determined that it was not a cost-effective strategy in the five climates we examined. Energy savings ranged from 6% to 49% with an average of 23%. Paybacks ranged from 1.3 years to 23.8 years, an average of 12.1 years. In Phase II the number of baseline buildings was expanded by simulating buildings that would be typical of those produced by Modern Building Systems, Inc. (MBS) for each of the seven locations/climates. A number of parametric simulations were performed for each energy strategy. Additionally we refined our previous algorithm for a solar ventilation air wall preheater and developed an algorithm for a roof preheater configuration. These algorithms were coded as functions in DOE 2.1E. We were striving for occupant comfort as well as energy savings. We performed computer analyses to verify adequate illumination on vertical surfaces and acceptable glare levels when using daylighting. We also used computational fluid dynamics software to determine air distribution from cross-ventilation and used the resulting interior wind speeds to calculate occupant comfort and allowable outside air temperatures for cross-ventilation.

  1. Workplace Charging Challenge Mid-Program Review: Employees Plug In

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mid-Program Review: Employees Plug In U.S. Department of Energy's EV Everywhere Workplace 2 Almost three years ago, we kicked off the Workplace Charging Challenge with the goal of having 500 U.S. employers commit to installing workplace plug-in electric vehicle (PEV) charging and joining the Challenge by 2018. I am pleased to share that with more than 250 participants in the Challenge, we are more than halfway there, and the adoption of workplace charging as a sustainable business practice is

  2. Plug-Load Control and Behavioral Change Research in GSA Office Buildings

    SciTech Connect (OSTI)

    Metzger, I.; Cutler, D.; Sheppy, M.

    2012-10-01

    The U.S. General Services Administration (GSA) owns and leases over 354 million square feet (ft2) of space in over 9,600 buildings [1]. GSA is a leader among federal agencies in aggressively pursuing energy efficiency (EE) opportunities for its facilities and installing renewable energy (RE) systems to provide heating, cooling, and power to these facilities. According to several energy assessments of GSA's buildings conducted by the National Renewable Energy Laboratory (NREL), plug-loads account for approximately 21% of the total electricity consumed within a standard GSA Region 3 office building. This study aims to provide insight on how to effectively manage plug-load energy consumption and attain higher energy and cost savings for plug-loads. As GSA improves the efficiency of its building stock, plug-loads will become an even greater portion of its energy footprint.

  3. Illinois: High-Energy, Concentration-Gradient Cathode Material for Plug-in Hybrids and All-Electric Vehicles Could Reduce Batteries' Cost and Size

    Broader source: Energy.gov [DOE]

    Batteries for electric drive vehicles and renewable energy storage will reduce petroleum usage, improving energy security and reducing harmful emissions.

  4. Plug-In Hybrid Electric Vehicles | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plug-In Hybrid Electric Vehicles 2014 BMW i3-REX 2013 Chevrolet Volt 2013 Ford Cmax Energi 2013 Ford Fusion Energi 2013 Toyota Prius 2012 Chevrolet Volt 2012 Toyota Prius Electric Vehicles Conventional Vehicles Conventional Start-Stop Vehicles Alternative Fuel Vehicles Facilities Publications News About Us For ES Employees Staff Directory About Us For ES Employees Staff Directory Argonne National Laboratory Energy Systems Research Facilities Publications News Research Advanced Combustion

  5. Learning About the Equal Employment Opportunity- Title VII- Complaint Process

    Broader source: Energy.gov [DOE]

    Learn about what is unlawful under Title VII, the legislation behind it, the steps before filing a complaint (mediation), how an individual files an official Title VII complaint, the acceptance or...

  6. Non-plugging injection valve

    DOE Patents [OSTI]

    Carey, Jr., Henry S. (Wilsonville, AL)

    1985-01-01

    A valve for injecting fluid into a conduit carrying a slurry subject to separation to form deposits capable of plugging openings into the conduit. The valve comprises a valve body that is sealed to the conduit about an aperture formed through the wall of the conduit to receive the fluid to be injected and the valve member of the valve includes a punch portion that extends through the injection aperture to the flow passage, when the valve is closed, to provide a clear channel into the conduit, when the valve is opened, through deposits which might have formed on portions of the valve adjacent the conduit.

  7. Plug-In Hybrid Electric Vehicles (Presentation)

    SciTech Connect (OSTI)

    Markel, T.

    2006-05-08

    Provides an overview on the current status, long-term prospects, and key challenges in the development of plug-in hybrid electric vehicle technology.

  8. The Status of USITER Diagnostic Port Plug Neutronics Analysis Using Attila

    SciTech Connect (OSTI)

    Feder, Russell; Youssef, Mahamoud; Klabacha, Jonathan

    2013-11-01

    USITER is one of seven partner domestic agencies (DA) contributing components to the ITER project. Four diagnostic port plug packages (two equatorial ports and two upper ports) will be engineered and fabricated by Princeton Plasma Physics Lab (PPPL). Diagnostic port plugs as illustrated in Fig. 1 are large primarily stainless steel structures that serve several roles on ITER. The port plugs are the primary vacuum seal and tritium confinement barriers for the vessel. The port plugs also house several plasma diagnostic systems and other machine service equipment. Finally, each port plug must shield high energy neutrons and gamma photons from escaping and creating radiological problems in maintenance areas behind the port plugs. The optimization of the balance between adequate shielding and the need for high performance, high throughput diagnostics systems is the focus of this paper. Neutronics calculations are also needed for assessing nuclear heating and nuclear damage in the port plug and diagnostic components. Attila, the commercially available discrete-ordinates software package, is used for all diagnostic port plug neutronics analysis studies at PPPL.

  9. Sample Employee Newsletter Articles for Plug-In Electric Vehicle Engagement

    Energy Savers [EERE]

    | Department of Energy Newsletter Articles for Plug-In Electric Vehicle Engagement Sample Employee Newsletter Articles for Plug-In Electric Vehicle Engagement These sample articles on plug-in electric vehicles (PEVs) can be customized and used in your employee newsletters, blog or intranet. Use these articles as-is with a credit to the U.S. Department of Energy or use them as a starter for developing your own content. Accompany articles with images from your archives or source content from

  10. EV Everywhere: Electric Drive Systems Bring Power to Plug-in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the first time a domestic automaker is building electric motors for an electric vehicle ... electric drive system in a plug-in electric vehicle bridges two different types of energy. ...

  11. EV Everywhere: Innovative Battery Research Powering Up Plug-In Electric Vehicles

    Broader source: Energy.gov [DOE]

    Find out how the Energy Department, in partnership with industry and national laboratories, is helping to improve the efficiency and affordability of plug-in electric vehicles through battery research.

  12. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    resources to explore energy options. http:energy.goveereeducationdownloadsenergy-production Download Power to the Plug: An Introduction to Energy, Electricity,...

  13. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    energy.goveereeducationdownloadspower-plug-introduction-energy-electricity-consumption-and-efficiency Download Geothermal Energy: A Geothermal Teacher Guide for Grades...

  14. Plug-in Hybrid Initiative

    SciTech Connect (OSTI)

    Goodman, Angie; Moore, Ray; Rowden, Tim

    2013-09-27

    Our main project objective was to implement Plug-in Electric Vehicles (PEV) and charging infrastructure into our electric distribution service territory and help reduce barriers in the process. Our research demonstrated the desire for some to be early adopters of electric vehicles and the effects lack of education plays on others. The response of early adopters was tremendous: with the initial launch of our program we had nearly 60 residential customers interested in taking part in our program. However, our program only allowed for 15 residential participants. Our program provided assistance towards purchasing a PEV and installation of Electric Vehicle Supply Equipment (EVSE). The residential participants have all come to love their PEVs and are more than enthusiastic about promoting the many benefits of driving electric.

  15. Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Plug-In Hybrid Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles on Digg Find More places to share

  16. Fact #892: September 28, 2015 Over One-Million in Plug-in Vehicle Sales

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Worldwide | Department of Energy 892: September 28, 2015 Over One-Million in Plug-in Vehicle Sales Worldwide Fact #892: September 28, 2015 Over One-Million in Plug-in Vehicle Sales Worldwide SUBSCRIBE to the Fact of the Week As of mid-September 2015 there have been about 1,004,000 plug-in vehicles (PEV) sold worldwide according to HybridCars.com. The pace of PEV sales has quickened - global PEV sales reached half a million in July 2014, and just one year and two months later, reached the one

  17. Fact #562: March 16, 2009 Carbon Reduction of Plug-in Hybrid Electric

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles | Department of Energy 2: March 16, 2009 Carbon Reduction of Plug-in Hybrid Electric Vehicles Fact #562: March 16, 2009 Carbon Reduction of Plug-in Hybrid Electric Vehicles Estimates from the GREET model (see Argonne National Laboratory's information on GREET) show that passenger car PHEV10s produce about 29% fewer carbon emissions than a conventional vehicle, when plugged into an outlet connected to the typical U.S. grid. Even when PHEV10s are charged using power generated

  18. Fact #595: November 2, 2009 Plug-in Hybrid Vehicle Purchases May Depend on

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Savings and Incremental Cost | Department of Energy 5: November 2, 2009 Plug-in Hybrid Vehicle Purchases May Depend on Fuel Savings and Incremental Cost Fact #595: November 2, 2009 Plug-in Hybrid Vehicle Purchases May Depend on Fuel Savings and Incremental Cost The recently released results of a 2008 survey on plug-in hybrid vehicles (PHEVs) show that 42% of respondents said there was some chance that they would buy a PHEV sometime in the future. Questions were also asked that gave an

  19. Fact #665: March 7, 2011 Garage Availability for Plug-in Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 5: March 7, 2011 Garage Availability for Plug-in Vehicles Fact #665: March 7, 2011 Garage Availability for Plug-in Vehicles According to the 2009 American Housing Survey, two-thirds of all housing units in the U.S. have a garage or carport. The access to electricity that a garage or carport may provide is important for the light vehicle manufacturers who are selling or planning to sell electric vehicles or plug-in hybrid vehicles. The good news for those manufacturers is

  20. Fact #685: July 25, 2011 Reasons for Buying a Plug-in Hybrid Vehicle |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 5: July 25, 2011 Reasons for Buying a Plug-in Hybrid Vehicle Fact #685: July 25, 2011 Reasons for Buying a Plug-in Hybrid Vehicle General Motors has been gathering feedback from customers who purchased the 2011 Chevrolet Volt, which is the only plug-in hybrid vehicle (PHEV) on the market today. Through May 2011, about 2,100 Volts have been sold. The top reason cited for purchasing a Volt is to reduce America's dependence on foreign oil. A desire to buy American and the

  1. Fact #788: July 15, 2013 State and Private Consumer Incentives for Plug-In

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles | Department of Energy 8: July 15, 2013 State and Private Consumer Incentives for Plug-In Vehicles Fact #788: July 15, 2013 State and Private Consumer Incentives for Plug-In Vehicles Many states offer their own consumer incentives for plug-in vehicles, such as HOV lane exemptions and tax credits/rebates, as shown in the table below. In some states there are also private incentives offered, typically by utility companies that offer lower electric rates for vehicle charging through

  2. Fact #789: July 22, 2013 Comparison of State Incentives for Plug-In

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Vehicle Purchases | Department of Energy 9: July 22, 2013 Comparison of State Incentives for Plug-In Electric Vehicle Purchases Fact #789: July 22, 2013 Comparison of State Incentives for Plug-In Electric Vehicle Purchases In addition to a Federal government tax credit up to $7,500, consumers who purchase plug-in electric vehicles (PEVs) may also receive state government incentives which are different for each state. Shown below are state incentives that can be quantified, such as

  3. Fact #891: September 21, 2015 Comparison of State Incentives for Plug-In

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Vehicle Purchases | Department of Energy 1: September 21, 2015 Comparison of State Incentives for Plug-In Electric Vehicle Purchases Fact #891: September 21, 2015 Comparison of State Incentives for Plug-In Electric Vehicle Purchases SUBSCRIBE to the Fact of the Week In addition to a Federal government tax credit up to $7,500, consumers who purchase plug-in electric vehicles (PEVs) may also receive state government incentives which vary by state. Shown below are state incentives that

  4. Selecting a Control Strategy for Plug and Process Loads

    SciTech Connect (OSTI)

    Lobato, C.; Sheppy, M.; Brackney, L.; Pless, S.; Torcellini, P.

    2012-09-01

    Plug and Process Loads (PPLs) are building loads that are not related to general lighting, heating, ventilation, cooling, and water heating, and typically do not provide comfort to the building occupants. PPLs in commercial buildings account for almost 5% of U.S. primary energy consumption. On an individual building level, they account for approximately 25% of the total electrical load in a minimally code-compliant commercial building, and can exceed 50% in an ultra-high efficiency building such as the National Renewable Energy Laboratory's (NREL) Research Support Facility (RSF) (Lobato et al. 2010). Minimizing these loads is a primary challenge in the design and operation of an energy-efficient building. A complex array of technologies that measure and manage PPLs has emerged in the marketplace. Some fall short of manufacturer performance claims, however. NREL has been actively engaged in developing an evaluation and selection process for PPLs control, and is using this process to evaluate a range of technologies for active PPLs management that will cap RSF plug loads. Using a control strategy to match plug load use to users' required job functions is a huge untapped potential for energy savings.

  5. Glow Plug Integrated Piezo-Ceramic Combustion Sensor for Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Glow Plug Integrated Piezo-Ceramic Combustion Sensor for Diesel Engines Glow Plug Integrated Piezo-Ceramic Combustion Sensor for Diesel Engines 2005 Diesel Engine Emissions ...

  6. Technology Roadmap - Electric and Plug-in Hybrid Electric Vehicles...

    Open Energy Info (EERE)

    Roadmap - Electric and Plug-in Hybrid Electric Vehicles Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Technology Roadmap - Electric and Plug-in Hybrid Electric...

  7. Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications SCAQMD:Plug-In Hybrid Electric Medium-Duty Commercial Fleet Demonstration and Evaluation Plug-In Hybrid Electric Medium Duty Commercial Fleet ...

  8. Environmental Assessment of Plug-In Hybrid Electric Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environmental Assessment of Plug-In Hybrid Electric Vehicles Volume 1: Nationwide Greenhouse Gas Emissions Environmental Assessment of Plug-In Hybrid Electric Vehicles Volume 1: ...

  9. Plug and Process Loads Capacity and Power Requirements Analysis

    SciTech Connect (OSTI)

    Sheppy, M.; Gentile-Polese, L.

    2014-09-01

    This report addresses gaps in actionable knowledge that would help reduce the plug load capacities designed into buildings. Prospective building occupants and real estate brokers lack accurate references for plug and process load (PPL) capacity requirements, so they often request 5-10 W/ft2 in their lease agreements. Limited initial data, however, suggest that actual PPL densities in leased buildings are substantially lower. Overestimating PPL capacity leads designers to oversize electrical infrastructure and cooling systems. Better guidance will enable improved sizing and design of these systems, decrease upfront capital costs, and allow systems to operate more energy efficiently. The main focus of this report is to provide industry with reliable, objective third-party guidance to address the information gap in typical PPL densities for commercial building tenants. This could drive changes in negotiations about PPL energy demands.

  10. Plug-In Electric Vehicle Handbook for Workplace Charging Hosts

    SciTech Connect (OSTI)

    2013-08-01

    Plug-in electric vehicles (PEVs) have immense potential for increasing the country's energy, economic, and environmental security, and they will play a key role in the future of U.S. transportation. By providing PEV charging at the workplace, employers are perfectly positioned to contribute to and benefit from the electrification of transportation. This handbook answers basic questions about PEVs and charging equipment, helps employers assess whether to offer workplace charging for employees, and outlines important steps for implementation.

  11. Chapter VII: Addressing Environmental Aspects of TS&D Infrastructure

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    36 QER Report: Energy Transmission, Storage, and Distribution Infrastructure | April 2015 Chapter VII: Addressing Environmental Aspects of TS&D Infrastructure QER Report: Energy Transmission, Storage, and Distribution Infrastructure | April 2015 8-1 Chapter VIII This chapter gives an overview of current and projected employment in and related to the energy sector and discusses programs to assist in meeting the demand for new workers going forward. The first section provides estimates of jobs

  12. Ford Plug-In Project: Bringing PHEVs to Market Demonstration and Validation Project

    SciTech Connect (OSTI)

    2013-12-31

    This project is in support of our national goal to reduce our dependence on fossil fuels. By supporting efforts that contribute toward the successful mass production of plug-in hybrid electric vehicles, our nation’s transportation-related fuel consumption can be offset with energy from the grid. Over four and a half years ago, when this project was originally initiated, plug-in electric vehicles were not readily available in the mass marketplace. Through the creation of a 21 unit plug-in hybrid vehicle fleet, this program was designed to demonstrate the feasibility of the technology and to help build cross-industry familiarity with the technology and interface of this technology with the grid. Ford Escape PHEV Demonstration Fleet 3 March 26, 2014 Since then, however, plug-in vehicles have become increasingly more commonplace in the market. Ford, itself, now offers an all-electric vehicle and two plug-in hybrid vehicles in North America and has announced a third plug-in vehicle offering for Europe. Lessons learned from this project have helped in these production vehicle launches and are mentioned throughout this report. While the technology of plugging in a vehicle to charge a high voltage battery with energy from the grid is now in production, the ability for vehicle-to-grid or bi-directional energy flow was farther away than originally expected. Several technical, regulatory and potential safety issues prevented progressing the vehicle-to-grid energy flow (V2G) demonstration and, after a review with the DOE, V2G was removed from this demonstration project. Also proving challenging were communications between a plug-in vehicle and the grid or smart meter. While this project successfully demonstrated the vehicle to smart meter interface, cross-industry and regulatory work is still needed to define the vehicle-to-grid communication interface.

  13. City of Las Vegas Plug-in Hybrid Electric Vehicle Demonstration Program

    SciTech Connect (OSTI)

    2013-12-31

    The City of Las Vegas was awarded Department of Energy (DOE) project funding in 2009, for the City of Las Vegas Plug-in Hybrid Electric Vehicle Demonstration Program. This project allowed the City of Las Vegas to purchase electric and plug-in hybrid electric vehicles and associated electric vehicle charging infrastructure. The City anticipated the electric vehicles having lower overall operating costs and emissions similar to traditional and hybrid vehicles.

  14. Advancing Plug In Hybrid Technology and Flex Fuel Application on a Chrysler

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mini-Van PHEV DOE Funded Project | Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon vss063_bazzi_2011_o.pdf More Documents & Publications Advancing Plug In Hybrid Technology and Flex Fuel Application on a Chrysler Mini-Van PHEV DOE Funded Project Advancing Transportation Through Vehicle Electrification - PHEV Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity

  15. Utilizing the Traction Drive Power Electronics System to Provide Plug-in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Capability for PHEVs | Department of Energy Traction Drive Power Electronics System to Provide Plug-in Capability for PHEVs Utilizing the Traction Drive Power Electronics System to Provide Plug-in Capability for PHEVs 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon ape_04_su.pdf More Documents & Publications Current Source Inverters for HEVs and FCVs Inverter Using Current Source

  16. Electro-thermal-mechanical Simulation and Reliability for Plug-in Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Converters and Inverters | Department of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ape026_hefner_2012_o.pdf More Documents & Publications Electro-thermal-mechanical Simulation and Reliability for Plug-in Vehicle Converters and Inverters Electro-thermal-mechanical Simulation and Reliability for Plug-in Vehicle Converters and Inverters Vehicle Technologies Office Merit Review 2014:

  17. Environmental Assessment of Plug-In Hybrid Electric Vehicles Volume 1:

    Office of Environmental Management (EM)

    Nationwide Greenhouse Gas Emissions | Department of Energy Environmental Assessment of Plug-In Hybrid Electric Vehicles Volume 1: Nationwide Greenhouse Gas Emissions Environmental Assessment of Plug-In Hybrid Electric Vehicles Volume 1: Nationwide Greenhouse Gas Emissions In the most comprehensive environmental assessment of electric transportation to date, the Electric Power Research Institute (EPRI) and the Natural Resources Defense Council (NRDC) are examining the greenhouse gas emissions

  18. DOE to Provide Nearly $20 Million to Further Development of Advanced Batteries for Plug-in Hybrid Electric Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE)

    ANN ARBOR, MI - U.S. Department of Energy (DOE) Assistant Secretary for Electricity Delivery and Energy Reliability Kevin M. Kolevar today announced DOE will invest nearly $20 million in plug-in...

  19. DOE and Sweden Sign MOU to Advance Market Integration of Plug-in Hybrid

    Energy Savers [EERE]

    Vehicles | Department of Energy Sweden Sign MOU to Advance Market Integration of Plug-in Hybrid Vehicles DOE and Sweden Sign MOU to Advance Market Integration of Plug-in Hybrid Vehicles July 7, 2008 - 2:15pm Addthis GOTLAND, SWEDEN - U.S. Department of Energy's (DOE) Assistant Secretary for Energy Efficiency and Renewable Energy Alexander Karsner and Director General of the Swedish Energy Agency, Tomas Kåberger today signed a memorandum of understanding (MOU) to collaboratively work on

  20. Hybrid and Plug-in Electric Vehicles

    SciTech Connect (OSTI)

    2014-05-20

    Hybrid and plug-in electric vehicles use electricity either as their primary fuel or to improve the efficiency of conventional vehicle designs. This new generation of vehicles, often called electric drive vehicles, can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles(PHEVs), and all-electric vehicles (EVs). Together, they have great potential to reduce U.S. petroleum use.

  1. Ch. VII, Temperature, heat flow maps and temperature gradient...

    Open Energy Info (EERE)

    Report: Ch. VII, Temperature, heat flow maps and temperature gradient holes Author T. G. Zacharakis Editor T. G. Zacharakis Published Colorado Geological Survey in Cooperation...

  2. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    http:energy.goveereeducationdownloadspower-plug-introduction-energy-electricity-consumption-and-efficiency Download Plants in Your Gas Tank: From Photosynthesis to...

  3. Plug-In Hybrid Vehicle Analysis (Milestone Report)

    SciTech Connect (OSTI)

    Markel, T.; Brooker, A.; Gonder, J.; O'Keefe, M.; Simpson, A.; Thornton, M.

    2006-11-01

    NREL's plug-in hybrid electric vehicle (PHEV) analysis activities made great strides in FY06 to objectively assess PHEV technology, support the larger U.S. Department of Energy PHEV assessment effort, and share technical knowledge with the vehicle research community and vehicle manufacturers. This report provides research papers and presentations developed in FY06 to support these efforts. The report focuses on the areas of fuel economy reporting methods, cost and consumption benefit analysis, real-world performance expectations, and energy management strategies.

  4. Nozzle dam having a unitary plug

    DOE Patents [OSTI]

    Veronesi, L.; Wepfer, R.M.

    1992-12-15

    Apparatus for sealing the primary-side coolant flow nozzles of a nuclear steam generator is disclosed. The steam generator has relatively small diameter manway openings for providing access to the interior of the steam generator including the inside surface of each nozzle, the manway openings having a diameter substantially less than the inside diameter of each nozzle. The apparatus includes a bracket having an outside surface for matingly sealingly engaging the inside surface of the nozzle. The bracket also has a plurality of openings longitudinally therethrough and a plurality of slots transversely therein in communication with each opening. A plurality of unitary plugs sized to pass through the manway opening are matingly sealingly disposed in each opening of the bracket for sealingly plugging each opening. Each plug includes a plurality of arms operable to engage the slots of the bracket for connecting each plug to the bracket, so that the nozzle is sealed as the plugs seal the openings and are connected to the bracket. 16 figs.

  5. Nozzle dam having a unitary plug

    DOE Patents [OSTI]

    Veronesi, Luciano (O'Hara Twp., Allegheny County, PA); Wepfer, Robert M. (Export, PA)

    1992-01-01

    Apparatus for sealing the primary-side coolant flow nozzles of a nuclear steam generator. The steam generator has relatively small diameter manway openings for providing access to the interior of the steam generator including the inside surface of each nozzle, the manway openings having a diameter substantially less than the inside diameter of each nozzle. The apparatus includes a bracket having an outside surface for matingly sealingly engaging the inside surface of the nozzle. The bracket also has a plurality of openings longitudinally therethrough and a plurality of slots transversely therein in communication with each opening. A plurality of unitary plugs sized to pass through the manway opening are matingly sealingly disposed in each opening of the bracket for sealingly plugging each opening. Each plug includes a plurality of arms operable to engage the slots of the bracket for connecting each plug to the bracket, so that the nozzle is sealed as the plugs seal the openings and are connected to the bracket.

  6. Plug Power Inc | Open Energy Information

    Open Energy Info (EERE)

    York Zip: 12110 Product: Designs, manufactures and markets proton exchange membrane (PEM) fuel cells for stationary applications and for forklifts. Coordinates: 39.098856,...

  7. UnPlug Stuff | Open Energy Information

    Open Energy Info (EERE)

    Country: United States Web Application Link: www.unplugstuff.comindex.html Cost: Free OpenEI Keyword(s): Green Button Apps, Challenge Generated Northern America References:...

  8. Secretary Chu Announces up to $10 Million to Support Plug-In Hybrid

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric School Buses | Department of Energy up to $10 Million to Support Plug-In Hybrid Electric School Buses Secretary Chu Announces up to $10 Million to Support Plug-In Hybrid Electric School Buses April 17, 2009 - 12:00am Addthis WASHINGTON, DC -- As part of the Department of Energy's commitment to advancing the next generation of electric vehicles in the United States, Energy Secretary Steven Chu today announced the selection of a new demonstration and testing project to develop a

  9. Toyota Prius Plug-In HEV: A Plug-In Hybrid Electric Car in NREL's Advanced Technology Vehicle Fleet (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This fact sheet highlights the Toyota Prius plug-in HEV, a plug-in hybrid electric car in the advanced technology vehicle fleet at the National Renewable Energy Laboratory (NREL). In partnership with the University of Colorado, NREL uses the vehicle for grid-integration studies and for testing new hardware and charge-management algorithms. NREL's advanced technology vehicle fleet features promising technologies to increase efficiency and reduce emissions without sacrificing safety or comfort. The fleet serves as a technology showcase, helping visitors learn about innovative vehicles that are available today or are in development. Vehicles in the fleet are representative of current, advanced, prototype, and emerging technologies.

  10. Maximizing the Benefits of Plug-in Electric Vehicles - Continuum Magazine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | NREL Skip to main content In This Issue In This Issue Dan Says From Our Director Features More than a Dream-a Renewable Electricity Future A Living Laboratory for Energy Systems Integration Integrated Solutions for a Complex Energy World Stories NREL's Energy Systems Integration Supporting Facilities Hydrogen: A Promising Fuel and Energy Storage Solution High Performance Computing Meets Energy Efficiency Sustainability through Dynamic Energy Management Maximizing the Benefits of Plug-in

  11. AVTA: Plug-In Hybrid Electric School Buses

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following set of reports describes data collected from testing several plug-in hybrid electric school buses in locations in three different states. This research was conducted by the National Renewable Energy Laboratory (NREL).

  12. Getting Ready for Electric Drive: the Plug-In Vehicle and Infrastructure

    Office of Environmental Management (EM)

    Workshop | Department of Energy Ready for Electric Drive: the Plug-In Vehicle and Infrastructure Workshop Getting Ready for Electric Drive: the Plug-In Vehicle and Infrastructure Workshop August 18, 2010 - 5:30pm Addthis Matt Rogers Matt Rogers McKinsey & Company Blogs have been abuzz on electric vehicles and advanced batteries recently, and likely in no small part due to some of the programs that are kicking into high gear at the Department of Energy right now. On July 22, we hosted a

  13. Statement of Secretaries Salazar and Chu on the Permanent Plugging...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Chu on the Permanent Plugging of Macondo well Statement of Secretaries Salazar and Chu on the Permanent Plugging of Macondo well September 19, 2010 - 12:00am Addthis ...

  14. EV Everywhere: Innovative Battery Research Powering Up Plug-In...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovative Battery Research Powering Up Plug-In Electric Vehicles EV Everywhere: Innovative Battery Research Powering Up Plug-In Electric Vehicles January 24, 2014 - 1:14pm Addthis...

  15. Plug-in hybrid electric vehicle R&D plan

    SciTech Connect (OSTI)

    None, None

    2007-06-01

    FCVT, in consultation with industry and other appropriate DOE offices, developed the Draft Plug-In Hybrid Electric Vehicle R&D Plan to accelerate the development and deployment of technologies critical for plug-in hybrid vehicles.

  16. Plug-In Demo Charges up Clean Cities Coalitions

    Broader source: Energy.gov [DOE]

    Clean Cities Coordinators across the country highlight the benefits of plug-in hybrids and help collect valuable usage data as part of a demonstration project for the upcoming plug-in hybrid model of the Toyota Prius.

  17. Battery Test Manual For Plug-In Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Jeffrey R. Belt

    2010-12-01

    This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Program. It is based on technical targets established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEVs. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, a revision including some modifications and clarifications of these procedures is expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices.

  18. Geothermal Well Site Restoration and Plug and Abandonment of Wells

    SciTech Connect (OSTI)

    Rinehart, Ben N.

    1994-08-01

    A report is presented on the final phase of an energy research program conducted by the U.S. Department of Energy (DOE) involving two geothermal well sites in the State of Louisiana-the Gladys McCall site and the Willis Hulin site. The research program was intended to improve geothermal technology and to determine the efficacy of producing electricity commercially from geopressured resource sites. The final phase of the program consisted of plug and abandonment (P&A) of the wells and restoration of the well sites. Restoration involved (a) initial soil and water sampling and analysis; (b) removal and disposal of well pads, concrete, utility poles, and trash; (c) plugging of monitor and freshwater wells; and (d) site leveling and general cleanup. Restoration of the McCall site required removal of naturally occurring radioactive material (NORM), which was costly and time-consuming. Exhibits are included that provide copies of work permits and authorizations, P&A reports and procedures, daily workover and current conditions report, and cost and salvage reports. Site locations, grid maps, and photographs are provided.

  19. Wireless Electric Charging: The Future of Plug-In Electric Vehicles is

    Office of Environmental Management (EM)

    Going Cordless | Department of Energy Wireless Electric Charging: The Future of Plug-In Electric Vehicles is Going Cordless Wireless Electric Charging: The Future of Plug-In Electric Vehicles is Going Cordless March 7, 2016 - 3:50pm Addthis Researchers from Oak Ridge National Laboratory test a wireless charger on the fully-electric Toyota Scion iQ at a demonstration site. | Photo courtesy of Oak Ridge National Laboratory Researchers from Oak Ridge National Laboratory test a wireless charger

  20. Xcel/NREL study: With a smart grid, plug-in hybrid electric vehicles could

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    have system benefits - News Releases | NREL Xcel/NREL study: With a smart grid, plug-in hybrid electric vehicles could have system benefits February 21, 2007 Xcel Energy today announced the results of a six-month study related to plug-in hybrid electric vehicles (PHEVs) and how an increase in their popularity may affect Colorado. The study found that PHEVs may result in a reduction of the overall expense of owning a vehicle and, with the help of smart-grid technologies, eliminate harmful

  1. EERE Success Story-Battery Cathode Developed by Argonne Powers Plug-in

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electric Vehicles | Department of Energy Cathode Developed by Argonne Powers Plug-in Electric Vehicles EERE Success Story-Battery Cathode Developed by Argonne Powers Plug-in Electric Vehicles August 13, 2015 - 12:12pm Addthis The 2011 Chevrolet Volt at a charging station. Its battery is based on a cathode technology developed at Argonne National Laboratory, which will make the battery safer, longer-lived and more powerful. Photo courtesy of General Motors The 2011 Chevrolet Volt at a

  2. EV Everywhere: America's Plug-In Electric Vehicle Market Charges Forward

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Department of Energy America's Plug-In Electric Vehicle Market Charges Forward EV Everywhere: America's Plug-In Electric Vehicle Market Charges Forward January 22, 2014 - 6:35pm Addthis Hyundai Fuel Cell 1 of 14 Hyundai Fuel Cell Pictured here is Secretary Moniz looking at the fuel cell and motor used to power Hyundai's Tucson fuel cell vehicle. Fuel cell vehicles use hydrogen to produce electricity, which powers an electric motor to make the vehicle and its accessories work. Image: Sarah

  3. Fact #815: February 3, 2014 Global Sales of Top 10 Plug-In Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 5: February 3, 2014 Global Sales of Top 10 Plug-In Vehicles Fact #815: February 3, 2014 Global Sales of Top 10 Plug-In Vehicles Global sales are important in the context of new automotive technologies because each vehicle sold, regardless of the market, provides the automakers with data and experience necessary for adapting their vehicle technologies to a wide range of real-world conditions. In the first 11 months of 2013, the Nissan Leaf had by far the highest sales of

  4. Fact #823: June 2, 2014 Hybrid Vehicles use more Battery Packs but Plug-in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles use More Battery Capacity | Department of Energy 3: June 2, 2014 Hybrid Vehicles use more Battery Packs but Plug-in Vehicles use More Battery Capacity Fact #823: June 2, 2014 Hybrid Vehicles use more Battery Packs but Plug-in Vehicles use More Battery Capacity Of the battery packs used for electrified vehicle powertrains in model year 2013, the greatest number went into conventional hybrid vehicles which use battery packs that average about 1.3 kilowatt-hours (kWh). However, far

  5. Fact #843: October 20, 2014 Cumulative Plug-in Electric Vehicle Sales are

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Two and a Half Times Higher than Hybrid Electric Vehicle Sales in the First 45 Months since Market Introduction | Department of Energy 3: October 20, 2014 Cumulative Plug-in Electric Vehicle Sales are Two and a Half Times Higher than Hybrid Electric Vehicle Sales in the First 45 Months since Market Introduction Fact #843: October 20, 2014 Cumulative Plug-in Electric Vehicle Sales are Two and a Half Times Higher than Hybrid Electric Vehicle Sales in the First 45 Months since Market

  6. Fact #856 January 19, 2015 Plug-in and Hybrid Cars Receive High Scores for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Owner Satisfaction | Department of Energy 6 January 19, 2015 Plug-in and Hybrid Cars Receive High Scores for Owner Satisfaction Fact #856 January 19, 2015 Plug-in and Hybrid Cars Receive High Scores for Owner Satisfaction The annual owner-satisfaction survey from Consumer Reports in 2014 covered 350,000 vehicles from one to three years old. They asked subscribers if they would purchase the same vehicle again knowing what they know now. The respondents were asked to consider styling, comfort,

  7. Battery Cathode Developed by Argonne Powers Plug-in Electric Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Cathode Developed by Argonne Powers Plug-in Electric Vehicles Battery Cathode Developed by Argonne Powers Plug-in Electric Vehicles August 13, 2015 - 12:12pm Addthis The 2011 Chevrolet Volt at a charging station. Its battery is based on a cathode technology developed at Argonne National Laboratory, which will make the battery safer, longer-lived and more powerful. Photo courtesy of General Motors The 2011 Chevrolet Volt at a charging station. Its battery is based on a

  8. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a home energy survey to help you analyze your home energy use. http:energy.goveereeducationdownloadspower-plug-introduction-energy-electricity-consumption-and-efficiency...

  9. Compact Fluorescent Plug-In Ballast-in-a-Socket

    SciTech Connect (OSTI)

    Rebecca Voelker

    2001-12-21

    The primary goal of this program was to develop a ballast system for plug-in CFLs (compact fluorescent lamps) that will directly replace standard metal shell, medium base incandescent lampholders (such as Levition No. 6098) for use with portable lamp fixtures, such as floor, table and desk lamps. A secondary goal was to identify a plug-in CFL that is optimized for use with this ballast. This Plug-in CFL Ballastin-a-Socket system will allow fixture manufacturers to easily manufacture CFL-based high-efficacy portable fixtures that provide residential and commercial consumers with attractive, cost-effective, and energy-efficient fixtures for use wherever portable incandescent fixtures are used today. The advantages of this proposed system over existing CFL solutions are that the fixtures can only be used with high-efficacy CFLs, and they will be more attractive and will have lower life-cycle costs than screw-in or adapter-based CFL retrofit solutions. These features should greatly increase the penetration of CFL's into the North American market. Our work has shown that using integrated circuits it is quite feasible to produce a lamp-fixture ballast of a size comparable to the current Edison-screw 3-way incandescent fixtures. As for price points for BIAS-based fixtures, end-users polled by the Lighting Research Institute at RPI indicated that they would pay as much as an additional $10 for a lamp containing such a ballast. The ballast has been optimized to run with a 26 W amalgam triple biax lamp in the base-down position, yet can accept non-amalgam versions of the lamp. With a few part alterations, the ballast can be produced to support 32 W lamps as well. The ballast uses GE's existing L-Comp[1] power topology in the circuit so that the integrated circuit design would be a design that could possibly be used by other CFL and EFL products with minor modifications. This gives added value by reducing cost and size of not only the BIAS, but also possibly other integral CFL and future dimmable integral and plug-in versions of the EFL products.

  10. EV Everywhere Grand Challenge: DOE's 10-Year Vision for Plug-in Electric Vehicles

    Broader source: Energy.gov [DOE]

    EV Everywhere is a Clean Energy Grand Challenge to have the U.S. become the first nation in the world to produce plug-in electric vehicles that are as affordable for the average American family as today's gasoline-powered vehicles within the next 10 years.

  11. ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data

    SciTech Connect (OSTI)

    G. Palmiotti

    2011-12-01

    The ENDF/B-VII.1 library is our latest recommended evaluated nuclear data file for use in nuclear science and technology applications, and incorporates advances made in the five years since the release of ENDF/B-VII.0. These advances focus on neutron cross sections, covariances, fission product yields and decay data, and represent work by the US Cross Section Evaluation Working Group (CSEWG) in nuclear data evaluation that utilizes developments in nuclear theory, modeling, simulation, and experiment. The principal advances in the new library are: (1) An increase in the breadth of neutron reaction cross section coverage, extending from 393 nuclides to 418 nuclides; (2) Covariance uncertainty data for 185 of the most important nuclides, as documented in companion papers in this edition; (3) R-matrix analyses of neutron reactions on light nuclei, including isotopes of He, Li, and Be; (4) Resonance parameter analyses at lower energies and statistical high energy reactions at higher energies for isotopes of F, Cl, K, Ti, V, Mn, Cr, Ni, Zr and W; (5) Modifications to thermal neutron reactions on fission products (isotopes of Mo, Tc, Rh, Ag, Cs, Nd, Sm, Eu) and neutron absorber materials (Cd, Gd); (6) Improved minor actinide evaluations for isotopes of U, Np, Pu, and Am (we are not making changes to the major actinides 235,238U and 239Pu at this point, except for delayed neutron data, and instead we intend to update them after a further period of research in experiment and theory), and our adoption of JENDL-4.0 evaluations for isotopes of Cm, Bk, Cf, Es, Fm, and some other minor actinides; (7) Fission energy release evaluations; (8) Fission product yield advances for fission-spectrum neutrons and 14 MeV neutrons incident on 239Pu; and (9) A new Decay Data sublibrary. Integral validation testing of the ENDF/B-VII.1 library is provided for a variety of quantities: For nuclear criticality, the VII.1 library maintains the generally-good performance seen for VII.0 for a wide range of MCNP simulations of criticality benchmarks, with improved performance coming from new structural material evaluations, especially for Ti, Mn, Cr, Zr and W. For Be we see some improvements although the fast assembly data appear to be mutually inconsistent. Actinide cross section updates are also assessed through comparisons of fission and capture reaction rate measurements in critical assemblies and fast reactors. We describe the cross section evaluations that have been updated for ENDF/B-VII.1 and the measured data and calculations that motivated the changes, and therefore this paper augments the ENDF/B-VII.0 publication [1].

  12. Fact #751: October 29, 2012 Plug-in Car Sales Higher in the U.S. Compared

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Western Europe and China | Department of Energy 1: October 29, 2012 Plug-in Car Sales Higher in the U.S. Compared to Western Europe and China Fact #751: October 29, 2012 Plug-in Car Sales Higher in the U.S. Compared to Western Europe and China In 2011, plug-in car sales in the U.S. were 0.28% of the U.S. car market, and grew to 0.44% of the U.S. car market in the first eight months of 2012. Western Europe has also increased their plug-in market share from 2011 to 2012. In China, however,

  13. An Innovative Pressure Sensor Glow Plug Offers Improved Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Glow Plug Integrated Piezo-Ceramic Combustion Sensor for Diesel Engines Diesel Combustion Control with Closed-Loop Control of the Injection Strategy ...

  14. Hybrid and Plug-In Electric Vehicles (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-05-01

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  15. Hybrid and Plug-In Electric Vehicles (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  16. Vehicle Technologies Office: AVTA - Plug-in Electric Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    VTO invested 400 million in 18 projects to demonstrate plug-in electric vehicles (PEVs, also known as electric cars) and infrastructure, including 10 educational and workforce ...

  17. Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration and Evaluation Vehicle Technologies Office Merit Review 2015: Medium and Heavy-Duty Vehicle Field Evaluations ...

  18. Electro-thermal-mechanical Simulation and Reliability for Plug...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Electro-thermal-mechanical Simulation and Reliability for Plug-in Vehicle Converters and Inverters Electro-thermal-mechanical Simulation...

  19. AVTA: Plug-in Hybrid Electric Vehicle Specifications and Test...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon DRAFT - Integrated Test Plan and Evaluation Program for Review for Plug-in Hybrid Electric Vehicles (PHEVs) More Documents & Publications AVTA: Hybrid Electric Vehicle ...

  20. Plug-In Electric Vehicle Handbook for Electrical Contractors (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01

    This handbook answers basic questions about plug-in electric vehicles, charging stations, charging equipment, charging equipment installation, and training for electrical contractors.

  1. Plug-in electric vehicle market penetration and incentives: a...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Book Title Mitigation and Adaptation Strategies for Global Change Volume 20 Publisher Springer Keywords global vehicle sales, government incentive policies, plug-in electric...

  2. New subsea wiper plugs hold down deepwater cementing costs

    SciTech Connect (OSTI)

    Stringer, R.; Sonnefeld, A.; Minge, J.

    1997-02-01

    British Petroleum Exploration (BPX) achieved top-quality cementing performance at significantly lower costs in a deepwater area 45 miles offshore Louisiana by using a new method of launching subsea wiper plugs. The method is based on a newly designed subsea casing wiper plug release system, which uses up to three solid wiper plugs loaded in a basket and released by individual darts launched from a surface tool. This design has eliminated the problems sometimes associated with the latching, unlatching and sealing of conventional subsea casing wiper plugs.

  3. Advancing Plug In Hybrid Technology and Flex Fuel Application...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mini-Van PHEV DOE Funded Project Advancing Transportation Through Vehicle Electrification - PHEV Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity...

  4. AWEA O&M Recommended Practices Series Part VII: Wind Turbine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AWEA O&M Recommended Practices Series Part VII: Wind Turbine Gear Lubricant Flushing Procedures AWEA O&M Recommended Practices Series Part VII: Wind Turbine Gear Lubricant Flushing...

  5. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    solar energy to elementary students. http:energy.goveereeducationdownloadswonders-sun-8-activities Download Power to the Plug: An Introduction to Energy, Electricity,...

  6. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to help you analyze your home energy use. http:energy.goveereeducationdownloadspower-plug-introduction-energy-electricity-consumption-and-efficiency Download What Does...

  7. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    analyze your home energy use. http:energy.goveereeducationdownloadspower-plug-introduction-energy-electricity-consumption-and-efficiency Download Cell Wall Chemistry of...

  8. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to help you analyze your home energy use. http:energy.goveereeducationdownloadspower-plug-introduction-energy-electricity-consumption-and-efficiency Download Get...

  9. Nay Chehab | Department of Energy

    Office of Environmental Management (EM)

    Nay Chehab About Us Nay Chehab - Program Analyst, Office of Energy Efficiency and Renewable Energy Most Recent Wireless Electric Charging: The Future of Plug-In Electric Vehicles is Going Cordless March 7 Plugged In: Understanding How and Where Plug-in Electric Vehicle Drivers Charge Up December 2 Last Flag of the 2015 Green Racing Season October 15

  10. DOE Office of Science Releases Journal of Undergraduate Research Volume VII

    Office of Science (SC) Website

    | U.S. DOE Office of Science (SC) DOE Office of Science Releases Journal of Undergraduate Research Volume VII News News Home Featured Articles Science Headlines 2015 2014 2013 2016 2012 2011 2010 2009 2008 2007 2006 2005 Science Highlights Presentations & Testimony News Archives Communications and Public Affairs Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 11.20.07 DOE Office of Science Releases Journal

  11. Plug-in Electric Vehicle Infrastructure: A Foundation for Electrified Transportation: Preprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    40-47951 April 2010 Plug-in Electric Vehicle Infrastructure: A Foundation for Electrified Transportation Preprint T. Markel To be presented at the MIT Energy Initiative Transportation Electrification Symposium Cambridge, Massachusetts April 8, 2010 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (ASE), a contractor of the US Government under Contract No. DE-AC36-08-GO28308. Accordingly, the US Government and ASE retain a nonexclusive

  12. EV Everywhere: All-Electric and Plug-in Hybrid Electric Cars | Department

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Energy EV Everywhere: All-Electric and Plug-in Hybrid Electric Cars Find Electric Vehicle Models Vehicle Charging Saving Fuel & Vehicle Costs Electric Vehicle Stories Benefits of Electric Vehicles Electric Vehicle Basics Find the best electric car to meet your needs! Search for makes and models, learn about electric vehicle (EV) charging stations, find tax incentives, explore how an EV can save you money, and discover other benefits of EVs. EV Everywhere is a Clean Energy Grand

  13. NREL, Industry Leaders Join Forces to Help Consumers Plug In - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL NREL, Industry Leaders Join Forces to Help Consumers Plug In Partnership with Google and providers will improve access to information about electric vehicle charging stations April 19, 2011 U.S. Department of Energy's National Renewable Energy Laboratory (NREL), Google Inc., and more than 80 leading organizations in electric vehicle (EV) deployment will collaborate to provide consumers and industry with accurate and up-to-date information on the locations of electric vehicle

  14. EV Everywhere: All-Electric and Plug-in Hybrid Electric Cars | Department

    Energy Savers [EERE]

    of Energy EV Everywhere: All-Electric and Plug-in Hybrid Electric Cars Find Electric Vehicle Models Vehicle Charging Saving Fuel & Vehicle Costs Electric Vehicle Stories Benefits of Electric Vehicles Electric Vehicle Basics Find the best electric car to meet your needs! Search for makes and models, learn about electric vehicle (EV) charging stations, find tax incentives, explore how an EV can save you money, and discover other benefits of EVs. EV Everywhere is a Clean Energy Grand

  15. Plug-in Electric Vehicle Infrastructure: A Foundation for Electrified Transportation: Preprint

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    951 April 2010 Plug-in Electric Vehicle Infrastructure: A Foundation for Electrified Transportation Preprint T. Markel To be presented at the MIT Energy Initiative Transportation Electrification Symposium Cambridge, Massachusetts April 8, 2010 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (ASE), a contractor of the US Government under Contract No. DE-AC36-08-GO28308. Accordingly, the US Government and ASE retain a nonexclusive

  16. Consumer Views on Plug-in Electric Vehicles … National Benchmark Report

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Consumer Views on Plug-in Electric Vehicles - National Benchmark Report Mark Singer National Renewable Energy Laboratory Technical Report NREL/TP-5400-65279 January 2016 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Contract No. DE-AC36-08GO28308 National

  17. POINT 2011: ENDF/B-VII.1 Beta2 Temperature Dependent Cross Section Library

    SciTech Connect (OSTI)

    Cullen, D E

    2011-04-07

    This report is one in the series of 'POINT' reports that over the years have presented temperature dependent cross sections for the then current version of ENDF/B. In each case I have used my personal computer at home and publicly available data and codes. I have used these in combination to produce the temperature dependent cross sections used in applications and presented in this report. I should mention that today anyone with a personal computer can produce these results. The latest ENDF/B-VII.1 beta2 data library was recently and is now freely available through the National Nuclear Data Center (NNDC), Brookhaven National Laboratory. This release completely supersedes all preceding releases of ENDF/B. As distributed the ENDF/B-VII.1 data includes cross sections represented in the form of a combination of resonance parameters and/or tabulated energy dependent cross sections, nominally at 0 Kelvin temperature. For use in our applications the ENDF/B-VII.1 library has been processed into cross sections at eight neutron reactor like temperatures, between 0 and 2100 Kelvin, in steps of 300 Kelvin (the exception being 293.6 Kelvin, for exact room temperature at 20 Celsius). It has also been processed to five astrophysics like temperatures, 1, 10, 100 eV, 1 and 10 keV. For reference purposes, 300 Kelvin is approximately 1/40 eV, so that 1 eV is approximately 12,000 Kelvin. At each temperature the cross sections are tabulated and linearly interpolable in energy. All results are in the computer independent ENDF-6 character format [R2], which allows the data to be easily transported between computers. In its processed form the POINT 2011 library is approximately 16 gigabyte in size and is distributed on one compressed DVDs (see, below for the details of the contents of each DVD).

  18. California Statewide Plug-In Electric Vehicle Infrastructure...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... vii APPENDIX B: Technical Excursion - Demand Charge Management and Mitigation ...... 83 ... PEVs in the region by 2024 (51,000) are identified on the left side of the figure. ...

  19. Electrically heated particulate matter filter with recessed inlet end plugs

    DOE Patents [OSTI]

    Gonze, Eugene V. (Pinckney, MI); Ament, Frank (Troy, MI)

    2012-02-21

    A particulate matter (PM) filter includes filter walls having inlet ends and outlet ends. First adjacent pairs of the filter walls define inlet channels. Second adjacent pairs of the filter walls define outlet channels. Outlet end plugs are arranged in the inlet channels adjacent to the output ends. Inlet end plugs arranged in the outlet channels spaced from the inlet ends.

  20. Hybrid and Plug-In Electric Vehicles (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-05-01

    Hybrid and plug-in electric vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), all-electric vehicles (EVs). Together, they have great potential to cut U.S. petroleum use and vehicle emissions.

  1. Space Heaters, Computers, Cell Phone Chargers: How Plugged In AreCommercial Buildings?

    SciTech Connect (OSTI)

    Sanchez, Marla; Webber, Carrie; Brown, Richard; Busch, John; Pinckard, Margaret; Roberson, Judy

    2007-02-28

    Evidenceof electric plug loads in commercial buildings isvisible everyday: space heaters, portable fans, and the IT technician'stwo monitors connected to one PC. The Energy Information Administrationestimates that office and miscellaneous equipment together will consume2.18 quads in 2006, nearly 50 percent of U.S. commercial electricity use.Although the importance of commercial plug loads is documented, its verynature (diverse product types, products not installed when buildinginitially constructed, and products often hidden in closets) makes itdifficult to accurately count and categorize the end use.We auditedsixteen buildings in three cities (San Francisco, Atlanta, Pittsburgh)including office, medical and education building types. We inventoriedthe number and types of office and miscellaneous electric equipment aswell as estimated total energy consumption due to these product types. Intotal, we audited approximately 4,000 units of office equipment and 6,000units of miscellaneous equipment and covered a diverse range of productsranging from electric pencil sharpeners with a unit energy consumption(UEC) of 1 kWh/yr to a kiln with a UEC of 7,000 kWh/yr. Our paperpresents a summary of the density and type of plug load equipment foundas well as the estimated total energy consumption of the equipment.Additionally, we present equipment trends observed and provide insightsto how policy makers can target energy efficiency for this growing enduse.

  2. Field Trial of a Low-Cost, Distributed Plug Load Monitoring System

    SciTech Connect (OSTI)

    Auchter, B.; Cautley, D.; Ahl, D.; Earle, L.; Jin, X.

    2014-03-01

    Researchers have struggled to inventory and characterize the energy use profiles of the ever-growing category of so-called miscellaneous electric loads (MELs) because plug-load monitoring is cost-prohibitive to the researcher and intrusive to the homeowner. However, these data represent a crucial missing link to understanding how homes use energy. Detailed energy use profiles would enable the nascent automated home energy management (AHEM) industry to develop effective control algorithms that target consumer electronics and other plug loads. If utility and other efficiency programs are to incent AHEM devices, they need large-scale datasets that provide statistically meaningful justification of their investments by quantifying the aggregate energy savings achievable. To address this need, NREL researchers investigated a variety of plug-load measuring devices available commercially and tested them in the laboratory to identify the most promising candidates for field applications. This report centers around the lessons learned from a field validation of one proof-of-concept system, called Smartenit (formerly SimpleHomeNet). The system was evaluated based on the rate of successful data queries, reliability over a period of days to weeks, and accuracy. This system offers good overall performance when deployed with up to 10 end nodes in a residential environment, although deployment with more nodes and in a commercial environment is much less robust. NREL concludes that the current system is useful in selected field research projects, with the recommendation that system behavior is observed over time.

  3. Pulse-actuated fuel-injection spark plug

    DOE Patents [OSTI]

    Murray, Ian; Tatro, Clement A.

    1978-01-01

    A replacement spark plug for reciprocating internal combustion engines that functions as a fuel injector and as a spark plug to provide a "stratified-charge" effect. The conventional carburetor is retained to supply the main fuel-air mixture which may be very lean because of the stratified charge. The replacement plug includes a cylindrical piezoelectric ceramic which contracts to act as a pump whenever an ignition pulse is applied to a central rod through the ceramic. The rod is hollow at its upper end for receiving fuel, it is tapered along its lower length to act as a pump, and it is flattened at its lower end to act as a valve for fuel injection from the pump into the cylinder. The rod also acts as the center electrode of the plug, with the spark jumping from the plug base to the lower end of the rod to thereby provide spark ignition that has inherent proper timing with the fuel injection.

  4. Assessing and Reducing Plug and Process Loads in Retail Buildings (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-06-01

    Plug and process loads (PPLs) in commercial buildings account for almost 5% of U.S. primary energy consumption. Minimizing these loads is a primary challenge in the design and operation of an energy-efficient building. PPLs are not related to general lighting, heating, ventilation, cooling, and water heating, and typically do not provide comfort to the occupants. They use an increasingly large fraction of the building energy use pie because the number and variety of electrical devices have increased along with building system efficiency. Reducing PPLs is difficult because energy efficiency opportunities and the equipment needed to address PPL energy use in retail spaces are poorly understood.

  5. Retail Buildings: Assessing and Reducing Plug and Process Loads in Retail Buildings (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-04-01

    Plug and process loads (PPLs) in commercial buildings account for almost 5% of U.S. primary energy consumption. Minimizing these loads is a primary challenge in the design and operation of an energy-efficient building. PPLs are not related to general lighting, heating, ventilation, cooling, and water heating, and typically do not provide comfort to the occupants. They use an increasingly large fraction of the building energy use pie because the number and variety of electrical devices have increased along with building system efficiency. Reducing PPLs is difficult because energy efficiency opportunities and the equipment needed to address PPL energy use in retail spaces are poorly understood.

  6. Office Buildings: Assessing and Reducing Plug and Process Loads in Office Buildings (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-04-01

    Plug and process loads (PPLs) in commercial buildings account for almost 5% of U.S. primary energy consumption. Minimizing these loads is a primary challenge in the design and operation of an energy-efficient building. PPLs are not related to general lighting, heating, ventilation, cooling, and water heating, and typically do not provide comfort to the occupants. They use an increasingly large fraction of the building energy use pie because the number and variety of electrical devices have increased along with building system efficiency. Reducing PPLs is difficult because energy efficiency opportunities and the equipment needed to address PPL energy use in office spaces are poorly understood.

  7. Mitigation of Syngas Cooler Plugging and Fouling

    SciTech Connect (OSTI)

    Bockelie, Michael J.

    2015-06-29

    This Final Report summarizes research performed to develop a technology to mitigate the plugging and fouling that occurs in the syngas cooler used in many Integrated Gasification Combined Cycle (IGCC) plants. The syngas cooler is a firetube heat exchanger located downstream of the gasifier. It offers high thermal efficiency, but its’ reliability has generally been lower than other process equipment in the gasification island. The buildup of ash deposits that form on the fireside surfaces in the syngas cooler (i.e., fouling) lead to reduced equipment life and increased maintenance costs. Our approach to address this problem is that fouling of the syngas cooler cannot be eliminated, but it can be better managed. The research program was funded by DOE using two budget periods: Budget Period 1 (BP1) and Budget Period 2 (BP2). The project used a combination of laboratory scale experiments, analysis of syngas cooler deposits, modeling and guidance from industry to develop a better understanding of fouling mechanisms and to develop and evaluate strategies to mitigate syngas cooler fouling and thereby improve syngas cooler performance. The work effort in BP 1 and BP 2 focused on developing a better understanding of the mechanisms that lead to syngas cooler plugging and fouling and investigating promising concepts to mitigate syngas cooler plugging and fouling. The work effort focused on the following: • analysis of syngas cooler deposits and fuels provided by an IGCC plant collaborating with this project; • performing Jet cleaning tests in the University of Utah Laminar Entrained Flow Reactor to determine the bond strength between an ash deposit to a metal plate, as well as implementing planned equipment modifications to the University of Utah Laminar Entrained Flow Reactor and the one ton per day, pressurized Pilot Scale Gasifier; • performing Computational Fluid Dynamic modeling of industrially relevant syngas cooler configurations to develop a better understanding of deposit formation mechanisms; • performing Techno-Economic-Analysis for a representative IGCC plant to investigate the impact on plant economics, in particular the impacts on the Cost of Electricity (COE), due to plant shutdowns caused by syngas cooler plugging and fouling and potential benefits to plant economics of developing strategies to mitigate syngas cooler fouling; and • performing modeling and pilot scale tests to investigate the potential benefits of using a sorbent (fuel additive) to capture the vaporized metals that result in syngas cooler fouling. All project milestones for BP 1 and BP 2 were achieved. DOE was provided a briefing on our accomplishments in BP1 and BP2 and our proposed plans for Budget Period 3 (BP 3). Based on our research the mitigation technology selected to investigate in BP 3 was the use of a sorbent that can be injected into the gasifier with the fuel slurry to capture vaporized metals that lead to the deposit formation in the syngas cooler. The work effort proposed for BP 3 would have focused on addressing concerns raised by gasification industry personnel for the impacts on gasifier performance of sorbent injection, so that at the end of BP 3 the use of sorbent injection would be at “pre-commercial” stage and ready for use in a Field Demonstration that could be funded by industry or DOE. A Budget Continuation Application (BCA) was submitted to obtain funding for BP3 DOE but DOE chose to not fund the proposed BP3 effort.

  8. A Special Application Coiled Tubing Applied Plug for Geothermal Well Casing Remediation

    SciTech Connect (OSTI)

    Knudsen, S.D.; Sattler, A.R.; Staller, G.E.

    1999-05-13

    Casing deformation in wells is a common problem in many geothermal fields. Casing remediation is necessary to keep wells in production and occasionally, to even enter the well for an approved plug and abandonment procedure. The costly alternative to casing remediation is to incur the expense of drilling a new well to maintain production or drilling a well to intersect a badly damaged well below the deformation for abandonment purposes. The U.S. Department of Energy and the Geothermal Drilling Organization sponsor research and development work at Sandia National Laboratories in an effort to reduce these remediation expenditures. Sandia, in cooperation with Halliburton Energy Services, has developed a low cost, commercially available, bridge-plug-type packer for use in geothermal well environments. This report documents the development and testing of this tool for use in casing remediation work.

  9. Better Building Alliance, Plug and Process Loads in Commercial Buildings: Capacity and Power Requirement Analysis (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-09-01

    This brochure addresses gaps in actionable knowledge that can help reduce the plug load capacities designed into buildings. Prospective building occupants and real estate brokers lack accurate references for plug and process load (PPL) capacity requirements, so they often request 5-10 W/ft2 in their lease agreements. This brochure should be used to make these decisions so systems can operate more energy efficiently; upfront capital costs will also decrease. This information can also be used to drive changes in negotiations about PPL energy demands. It should enable brokers and tenants to agree about lower PPL capacities. Owner-occupied buildings will also benefit. Overestimating PPL capacity leads designers to oversize electrical infrastructure and cooling systems.

  10. NREL: Energy Storage - Energy Storage Systems Evaluation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Systems Evaluation Photo of man standing between two vehicles and plugging the vehicle on the right into a charging station. NREL system evaluation has confirmed ...

  11. Fact #891: September 21, 2015 Comparison of State Incentives for Plug-In

    Broader source: Energy.gov (indexed) [DOE]

    Electric Vehicle Purchases - Dataset | Department of Energy Comparison of State Incentives for Plug-In Electric Vehicle Purchases File fotw#891_web.xlsx More Documents & Publications Vehicle Technologies Office Merit Review 2014: Consumer-Segmented Vehicle Choice Modeling: the MA3T Model P Fact Sheet: Accelerating the Development and Deployment of Advanced Technology Vehicles, including Battery Electric and Fuel Cell Electric Vehicles

  12. Plug-In Electric Vehicle Fast Charge Station Operational Analysis with Integrated Renewables: Preprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plug-in Electric Vehicle Fast Charge Station Operational Analysis with Integrated Renewables Preprint M. Simpson and T. Markel Presented at the International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 26 (EVS26) Los Angeles, California May 6 - 9, 2012 Conference Paper NREL/CP-5400-53914 August 2012 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No.

  13. Economics of Plug-In Hybrid Electric Vehicles (released in AEO2009)

    Reports and Publications (EIA)

    2009-01-01

    Plug-In hybrid electric vehicles (PHEVs) have gained significant attention in recent years, as concerns about energy, environmental, and economic securityincluding rising gasoline prices have prompted efforts to improve vehicle fuel economy and reduce petroleum consumption in the transportation sector. PHEVs are particularly well suited to meet these objectives, because they have the potential to reduce petroleum consumption both through fuel economy gains and by substituting electric power for gasoline use.

  14. Advancing Plug In Hybrid Technology and Flex Fuel Application on a Chrysler

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mini-Van PHEV DOE Funded Project | Department of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon vss063_bazzi_2012_o.pdf More Documents & Publications Advancing Plug In Hybrid Technology and Flex Fuel Application on a Chrysler Mini-Van PHEV DOE Funded Project Advancing Transportation Through Vehicle Electrification - PHEV Advancing Transportation Through Vehicle Electrification - PHEV

  15. Analysis of Plug Load Capacities and Power Requirements in Commercial Buildings: Preprint

    SciTech Connect (OSTI)

    Sheppy, M.; Torcellini, P.; Gentile-Polese, L.

    2014-08-01

    Plug and process load power requirements are frequently overestimated because designers often use estimates based on 'nameplate' data, or design assumptions are high because information is not available. This generally results in oversized heating, ventilation, and air-conditioning systems; increased initial construction costs; and increased energy use caused by inefficiencies at low, part-load operation. Rightsizing of chillers in two buildings reduced whole-building energy use by 3%-4%. If an integrated design approach could enable 3% whole-building energy savings in all U.S. office buildings stock, it could save 34 TBtu of site energy per year.

  16. Correlating Dynamometer Testing to In-Use Fleet Results of Plug-In Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    John G. Smart; Sera White; Michael Duoba

    2009-05-01

    Standard dynamometer test procedures are currently being developed to determine fuel and electrical energy consumption of plug-in hybrid vehicles (PHEV). To define a repeatable test procedure, assumptions were made about how PHEVs will be driven and charged. This study evaluates these assumptions by comparing results of PHEV dynamometer testing following proposed procedures to actual performance of PHEVs operating in the US Department of Energys (DOE) North American PHEV Demonstration fleet. Results show PHEVs in the fleet exhibit a wide range of energy consumption, which is not demonstrated in dynamometer testing. Sources of variation in performance are identified and examined.

  17. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Sources Search results Search results Enter terms Search Showing 1 - 1 of 1 result. Download Power to the Plug: An Introduction to Energy, Electricity, Consumption, and...

  18. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Download Power to the Plug: An Introduction to Energy, Electricity, Consumption, and Efficiency The NEED Project and the U.S. Department of Energy have...

  19. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    energy-conservation-contract-4-activities Download Power to the Plug: An Introduction to Energy, Electricity, Consumption, and Efficiency The NEED Project and the U.S. Department...

  20. Monthly Energy Review, June 1997

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Monthly Energy Review June 1997 ii Contents Page Energy Plug: An Analysis of U.S. Propane Markets: Winter 1996-1997 . . . . . . . . . . . . . . . . . . . . . . . . . . . ....

  1. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    http:energy.goveereeducationdownloadspower-plug-introduction-energy-electricity-consumption-and-efficiency Download Cell Wall Chemistry of Biofuel This module focuses on...

  2. Drum plug piercing and sampling device and method

    DOE Patents [OSTI]

    Counts, Kevin T. (Aiken, SC)

    2011-04-26

    An apparatus and method for piercing a drum plug of a drum in order to sample and/or vent gases that may accumulate in a space of the drum is provided. The drum is not damaged and can be reused since the pierced drum plug can be subsequently replaced. The apparatus includes a frame that is configured for engagement with the drum. A cylinder actuated by a fluid is mounted to the frame. A piercer is placed into communication with the cylinder so that actuation of the cylinder causes the piercer to move in a linear direction so that the piercer may puncture the drum plug of the drum.

  3. NREL: Learning - Plug-In Hybrid Electric Vehicle Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plug-In Hybrid Electric Vehicle Basics Photo of a parked blue compact car with large decals on the doors stating that it is a plug-in hybrid achieving more than 120 miles per gallon. This Toyota Prius hybrid electric car was converted to a plug-in hybrid for research purposes. Credit: Keith Wipke Image of the cutaway top view of a passenger vehicle showing the drive train that contains an electric motor and a small internal combustion engine side by side in front. The motors are connected by

  4. VII-14 INSTITUTE COLLOQUIA AND SEMINARS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    11-March 31, 2012 2011 April 21 Dr. Pibero Djawotho, Cyclotron Institute, Texas A&M University, College Station, Texas Gluon Polarization Measurements with STAR May 2 Professor G. Wolschin, University of Heidelberg, Heidelberg, Germany Heavy Ion at LHC Energies: Selected Predictions vs. First Data May 10 Professor J. Stone, Oxford University, United Kingdom and University of Tennessee, Knoxville, Tennessee Nuclear Matter and Giant Resonance Constraints on Models of Nucleon-Nucleon

  5. Sample Employee Newsletter Articles for Plug-In Electric Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    These sample articles on plug-in electric vehicles (PEVs) can be customized and used in your employee newsletters, blog or intranet. Use these articles as-is with a credit to the ...

  6. Control and shim rod arrangement with moveable plugs

    DOE Patents [OSTI]

    Smith, Montford H.

    1976-03-30

    This invention relates to a control and shim rod arrangement for a nuclear reactor. A second shield of concrete completely encloses a biological shield. Moveable plugs are mounted in said shield.

  7. Advancing Plug In Hybrid Technology and Flex Fuel Application...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Meeting vss063bazzi2012o.pdf More Documents & Publications Advancing Plug In Hybrid Technology and Flex Fuel Application on a Chrysler Mini-Van PHEV DOE Funded Project...

  8. Sample Employee Newsletter Articles: Plug-In Electric Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    employees in determining if driving a plug-in electric vehicle (PEV) is right for them. ... results, users enter their driving habits, local price of fuel, and available tax credits. ...

  9. Slurry Retrieval, Pipeline Transport & Plugging and Mixing Workshop

    Office of Environmental Management (EM)

    Gary L. Smith - Office of Waste Processing (EM-21) Slurry Retrieval, Pipeline Transport & Plugging and Mixing Workshop 1 Dr. Gary L. Smith - Office of Waste Processing (EM-21) Dr. ...

  10. Vehicle Technologies Office: AVTA- Plug-In Hybrid Electric Vehicles Performance and Testing Data

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Data on the plug-in hybrid electric version of the following vehicles is available: 2013 Ford Fusion Energi, 2013 Ford C-Max Energi Fleet, 2013 Ford C-Max Energi, 2012 Chevrolet Volt, 2012 Toyota Prius, 2013 Toyota Prius, 2013 Chevrolet Volt, 2011 Chrysler Town & Country, 2010 Quantum Escape, and 2010 Ford Escape Advanced Research Vehicle.

  11. Development of a Special Application Coiled Tubing Applied Plug for Geothermal Well Casing Remediation

    SciTech Connect (OSTI)

    STALLER,GEORGE E.; KNUDSEN,STEVEN D.; SATTLER,ALLAN R.

    1999-10-01

    Casing deformation in producing geothermal wells is a common problem in many geothermal fields, mainly due to the active geologic formations where these wells are typically located. Repairs to deformed well casings are necessary to keep the wells in production and to occasionally enter a well for approved plugging and abandonment procedures. The costly alternative to casing remediation is to drill a new well to maintain production and/or drill a well to intersect the old well casing below the deformation for abandonment purposes. The U.S. Department of Energy and the Geothermal Drilling Organization sponsored research and development work at Sandia National Laboratories in an effort to reduce these casing remediation expenditures. Sandia, in cooperation with Halliburton Energy Services, developed a low cost, bridge-plug-type, packer for use in casing remediation work in geothermal well environments. This report documents the development and testing of this commercially available petal-basket packer called the Special Application Coiled Tubing Applied Plug (SACTAP).

  12. Results from the Plug-and-Play Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Results from the Plug-and-Play Workshop  What are the barriers to Plug-and-Play? - Structural Permitting and Inspection - Electrical Permitting and Inspection - Utility interconnection and system reliability  What are potential solutions?  What is DOE's role?  What are the next steps? Outline 2  Why are inspections necessary? - NEC 90.1: The purpose of this Code is the practical safeguarding of persons and property from hazards arising from the use of electricity  Solutions

  13. NEMS International Energy Module

    Gasoline and Diesel Fuel Update (EIA)

    EIA NEMS International Energy Module Model Documentation Report vii Mr. G. Daniel Butler U.S. Department of Energy EI-812 1000 Independence Ave., SW Washington, DC 20585 Tel:...

  14. International Energy Module

    Gasoline and Diesel Fuel Update (EIA)

    EIA NEMS International Energy Module Model Documentation Report vii Mr. G. Daniel Butler U.S. Department of Energy EI-812 1000 Independence Ave., SW Washington, DC 20585 Tel:...

  15. Small-Scale Spray Releases: Orifice Plugging Test Results

    SciTech Connect (OSTI)

    Mahoney, Lenna A.; Gauglitz, Phillip A.; Blanchard, Jeremy; Kimura, Marcia L.; Kurath, Dean E.

    2012-09-01

    One of the events postulated in the hazard analysis at the Waste Treatment and Immobilization Plant (WTP) and other U.S. Department of Energy (DOE) nuclear facilities, is a breach in process piping that produces aerosols with droplet sizes in the respirable range. The current approach for predicting the size and concentration of aerosols produced in a spray leak involves extrapolating from correlations published in the literature. These correlations are based on results obtained from small engineered spray nozzles using pure liquids with Newtonian fluid behavior. The narrow ranges of physical properties on which the correlations are based do not cover the wide range of slurries and viscous materials present in the WTP and across processing facilities in the DOE complex. Two key technical areas were identified where testing results were needed to improve the technical basis by reducing the uncertainty introduced by extrapolating existing literature results. The first technical need was to quantify the role of slurry particles in small breaches in which the slurry particles may plug and result in substantially reduced, or even negligible, respirable fraction formed by high pressure sprays. The second technical need was to determine the aerosol droplet size distribution and volume from prototypic breaches and fluids, specifically including sprays from larger breaches with slurries where data from the literature are largely absent. To address these technical areas, small- and large-scale test stands were constructed and operated with simulants to determine the aerosol release fractions and aerosol generation rates from a range of breach sizes and geometries. The properties of the simulants represented the range of properties expected in the WTP process streams and included water, sodium salt solutions, slurries containing boehmite or gibbsite, and a hazardous chemical simulant. The effect of anti-foam agents (AFA) was assessed with most of the simulants. Orifices included round holes and rectangular slots. Much of the testing was conducted at pressures of 200 and 380 psi, but some tests were conducted at 100 psi. Testing the largest postulated breaches was deemed impractical because of the large size of some of the WTP equipment. The purpose of the study described in this report is to provide experimental data for the first key technical area, potential plugging of small breaches, by performing small-scale tests with a range of orifice sizes and orientations representative of the WTP conditions. The simulants used were chosen to represent the range of process stream properties in the WTP. Testing conducted after the plugging tests in the small- and large-scale test stands addresses the second key technical area, aerosol generation. The results of the small-scale aerosol generation tests are included in Mahoney et al. 2012. The area of spray generation from large breaches is covered by large-scale testing in Schonewill et al. 2012.

  16. SEGS VII Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    This article is a stub. You can help OpenEI by expanding it. References http:ewh.ieee.orgr6lasvegasIEEELASVEGASMAY2006.pdf Retrieved from "http:en.openei.orgw...

  17. Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electricity Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles on

  18. Alternative Fuels Data Center: Availability of Hybrid and Plug-In Electric

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicles Availability of Hybrid and Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Availability of Hybrid and Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Availability of Hybrid and Plug-In Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Availability of Hybrid and Plug-In Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Availability of Hybrid and Plug-In Electric Vehicles on

  19. Alternative Fuels Data Center: Charging Plug-In Electric Vehicles in Public

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Charging Plug-In Electric Vehicles in Public to someone by E-mail Share Alternative Fuels Data Center: Charging Plug-In Electric Vehicles in Public on Facebook Tweet about Alternative Fuels Data Center: Charging Plug-In Electric Vehicles in Public on Twitter Bookmark Alternative Fuels Data Center: Charging Plug-In Electric Vehicles in Public on Google Bookmark Alternative Fuels Data Center: Charging Plug-In Electric Vehicles in Public on Delicious Rank Alternative Fuels Data Center: Charging

  20. Alternative Fuels Data Center: Emissions from Hybrid and Plug-In Electric

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicles Emissions from Hybrid and Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Emissions from Hybrid and Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Emissions from Hybrid and Plug-In Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Emissions from Hybrid and Plug-In Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Emissions from Hybrid and Plug-In Electric Vehicles on Delicious

  1. Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Conversions Hybrid and Plug-In Electric Vehicle Conversions to someone by E-mail Share Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Conversions on Google Bookmark Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Conversions on Delicious Rank Alternative

  2. Battery Requirements for Plug-In Hybrid Electric Vehicles: Analysis and Rationale (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A.

    2007-12-01

    Slide presentation to EVS-23 conference describing NREL work to help identify appropriate requirements for batteries to be useful for plug-in hybrid-electric vehicles (PHEVs). Suggested requirements were submitted to the U.S. Advanced Battery Consortium, which used them for a 2007 request for proposals. Requirements were provided both for charge-depleting mode and charge-sustaining mode and for high power/energy ratio and hige energy/power ration batteries for each (different modes of PHEV operation), along with battery and system level requirements.

  3. QER Report: Energy Transmission, Storage, and Distribution Infrastruct...

    Broader source: Energy.gov (indexed) [DOE]

    NG-1 Chapter VII Appendix B NATURAL GAS NG-2 QER Report: Energy Transmission, Storage, and Distribution Infrastructure | April 2015 Appendix B: NATURAL GAS Highlights Increasing...

  4. QER Report: Energy Transmission, Storage, and Distribution Infrastruct...

    Broader source: Energy.gov (indexed) [DOE]

    LF-1 Chapter VII Appendix A LIQUID FUELS LF-2 QER Report: Energy Transmission, Storage, and Distribution Infrastructure | April 2015 Appendix A: LIQUID FUELS Introduction The...

  5. Field Trial of a Low-Cost, Distributed Plug Load Monitoring System

    SciTech Connect (OSTI)

    Auchter, B.; Cautley, D.; Ahl, D.; Earle, L.; Jin, X.

    2014-03-01

    Researchers have struggled to inventory and characterize the energy use profiles of the ever-growing category of so-called miscellaneous electric loads (MELs) because plug-load monitoring is cost-prohibitive to the researcher and intrusive to the homeowner. However, these data represent a crucial missing link to our understanding of how homes use energy, and we cannot control what we do not understand. Detailed energy use profiles would enable the nascent automated home energy management (AHEM) industry to develop effective control algorithms that target consumer electronics and other plug loads. If utility and other efficiency programs are to incent AHEM devices, they need large-scale datasets that provide statistically meaningful justification of their investments by quantifying the aggregate energy savings achievable. To address this need, we have investigated a variety of plug-load measuring devices available commercially and tested them in the laboratory to identify the most promising candidates for field applications. The scope of this report centers around the lessons learned from a field validation of one proof-of-concept system, called Smartenit (formerly SimpleHomeNet). The system was evaluated based on the rate of successful data queries, reliability over a period of days to weeks, and accuracy. This system offers good overall performance when deployed with up to ten end nodes in a residential environment, although deployment with more nodes and in a commercial environment is much less robust. We conclude that the current system is useful in selected field research projects, with the recommendation that system behavior is observed over time.

  6. IEA Technology Roadmaps | Open Energy Information

    Open Energy Info (EERE)

    Plug-in Hybrid Vehicles Energy Efficient Buildings: heating & cooling systems Geothermal Nuclear Power Smart Grids Solar Photovoltaic Wind Energy" References "IEA Technology...

  7. DTE Energy Video (Text Version) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DTE Energy Video (Text Version) DTE Energy Video (Text Version) Slide Presentation: DTE Energy is PEV Ready. Plug-in electric vehicles are now available from many major auto manufacturers. DTE Energy provides the "electric fuel" plug-in electric vehicles need. Benefits of Plug-in Electric Vehicles: Electricity costs less than $1.00 per gallon of gasoline equivalent; Electric vehicles have a lower carbon footprint; Electricity is a domestic fuel source. Plugging in a vehicle is simple.

  8. Alternative Fuels Data Center: Charging Plug-In Electric Vehicles at Home

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Charging Plug-In Electric Vehicles at Home to someone by E-mail Share Alternative Fuels Data Center: Charging Plug-In Electric Vehicles at Home on Facebook Tweet about Alternative Fuels Data Center: Charging Plug-In Electric Vehicles at Home on Twitter Bookmark Alternative Fuels Data Center: Charging Plug-In Electric Vehicles at Home on Google Bookmark Alternative Fuels Data Center: Charging Plug-In Electric Vehicles at Home on Delicious Rank Alternative Fuels Data Center: Charging Plug-In

  9. Ice plug employed on subsea pipeline bend during repair

    SciTech Connect (OSTI)

    1997-12-22

    The first controlled-temperature ice plug in the bend of an offshore gas trunkline has been carried out for Phillips Petroleum Co. Norway on its Norpipe A.S. platform in the German sector of the North Sea. The procedure was part of a subsea valve repair operation. The ice plug was successfully formed offshore and tested to a differential pressure of 1,450 psi. Repair of two valves required only 5 days during which time gas production was operating at close to 50--60% via the platform bypass, says the service company. The paper discusses the procedure.

  10. Kansas Consortium Plug-in Hybrid Medium Duty

    SciTech Connect (OSTI)

    None, None

    2012-03-31

    On September 30, 2008, the US Department of Energy (DoE), issued a cooperative agreement award, DE-FC26-08NT01914, to the Metropolitan Energy Center (MEC), for a project known as Kansas Consortium Plug-in Hybrid Medium Duty Certification project. The cooperative agreement was awarded pursuant to H15915 in reference to H. R. 2764 Congressionally Directed Projects. The original agreement provided funding for The Consortium to implement the established project objectives as follows: (1) to understand the current state of the development of a test protocol for PHEV configurations; (2) to work with industry stakeholders to recommend a medium duty vehicle test protocol; (3) to utilize the Phase 1 Eaton PHEV F550 Chassis or other appropriate PHEV configurations to conduct emissions testing; (4) and to make an industry PHEV certification test protocol recommendation for medium duty trucks. Subsequent amendments to the initial agreement were made, the most significant being a revised Scope of Project Objectives (SOPO) that did not address actual field data since it was not available as originally expected. This project was mated by DOE with a parallel project award given to the South Coast Air Quality Management District (SCAQMD) in California. The SCAQMD project involved designing, building and testing of five medium duty plug-in hybrid electric trucks. SCAQMD had contracted with the Electric Power Research Institute (EPRI) to manage the project. EPRI provided the required match to the federal grant funds to both the SCAQMD project and the Kansas Consortium project. The rational for linking the two projects was that the data derived from the SCAQMD project could be used to validate the protocols developed by the Kansas Consortium team. At the same time, the consortium team would be a useful resource to SCAQMD in designating their test procedures for emissions and operating parameters and determining vehicle mileage. The years between award of the cooperative agreements and their completion were problematic for the US and world economies. This resulted in the President and Congress implementing the American Recovery and Reinvestment Act of 2009, abbreviated ARRA (Pub.L. 111-5), commonly referred to as the Stimulus or The Recovery Act. The stimulus money available for transportation projects encouraged the SCAQMD to seek additional funds. In August of 2009, they eventually were awarded an additional $45.5 M, and the scope of their project was expanded to 378 vehicles. However, as a consequence of the stimulus money and the inundation of DOE with applications for new project under the ARRA, the expected time table for producing and testing vehicles was significantly delayed. As a result, these vehicles were not available for validating the protocols developed by the Kansas Consortium. Therefore, in April of 2011, the Scope of Project Objectives (SOPO) for the project was revised, and limited to producing the draft protocol for PHEV certification as its deliverable.

  11. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Consumption Search results Search results Enter terms Search Showing 1 - 1 of 1 result. Download Power to the Plug: An Introduction to Energy, Electricity, Consumption, and...

  12. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Elementary (K-5) Teachers Search results Search results Enter terms Search Showing 1 - 1 of 1 result. Download Power to the Plug: An Introduction to Energy, Electricity,...

  13. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Search results Search results Enter terms Search Showing 1 - 2 of 2 results. Download Power to the Plug: An Introduction to Energy, Electricity, Consumption, and...

  14. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    educationdownloadsenergy-production Download Power to the Plug: An Introduction to Energy, Electricity, Consumption, and Efficiency The NEED Project and the U.S. Department...

  15. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -plug-introduction-energy-electricity-consumption-and-efficiency Download Green Fuel This activity allows students the opportunity to explore different methods for collecting solar...

  16. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Search results Search results Enter terms Search Showing 1 - 6 of 6 results. Download Power to the Plug: An Introduction to Energy, Electricity, Consumption, and...

  17. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    downloadsenergy-production Download Power to the Plug: An Introduction to Energy, Electricity, Consumption, and Efficiency The NEED Project and the U.S. Department of...

  18. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    conservation-contract-4-activities Download Power to the Plug: An Introduction to Energy, Electricity, Consumption, and Efficiency The NEED Project and the U.S. Department of...

  19. ITP Industrial Distributed Energy: Distributed Energy Program Project Profile: Verizon Central Office Building

    Broader source: Energy.gov [DOE]

    Keeping the High-Tech Industry Plugged-In with Onsite Energy: CHP System Provides Reliable Energy for a Verizon Telecommunications Switching Center

  20. MT71x: Multi-Temperature Library Based on ENDF/B-VII.1

    SciTech Connect (OSTI)

    Conlin, Jeremy Lloyd; Parsons, Donald Kent; Gray, Mark Girard; Lee, Mary Beth; White, Morgan Curtis

    2015-12-16

    The Nuclear Data Team has released a multitemperature transport library, MT71x, based upon ENDF/B-VII.1 with a few modifications as well as additional evaluations for a total of 427 isotope tables. The library was processed using NJOY2012.39 into 23 temperatures. MT71x consists of two sub-libraries; MT71xMG for multigroup energy representation data and MT71xCE for continuous energy representation data. These sub-libraries are suitable for deterministic transport and Monte Carlo transport applications, respectively. The SZAs used are the same for the two sub-libraries; that is, the same SZA can be used for both libraries. This makes comparisons between the two libraries and between deterministic and Monte Carlo codes straightforward. Both the multigroup energy and continuous energy libraries were verified and validated with our checking codes checkmg and checkace (multigroup and continuous energy, respectively) Then an expanded suite of tests was used for additional verification and, finally, verified using an extensive suite of critical benchmark models. We feel that this library is suitable for all calculations and is particularly useful for calculations sensitive to temperature effects.

  1. Opportunity to Plug Your Car Into the Electric Grid is Arriving

    SciTech Connect (OSTI)

    Griego, G.

    2010-06-01

    Plug-in hybrid electric vehicles are hitting the U.S. market for the first time this year. Similar to hybrid electric vehicles, they feature a larger battery and plug-in charger that allows consumers to replace a portion of their fossil fuel by simply plugging their cars into standard 110-volt outlets at home or wherever outlets are available. If these vehicles become widely accepted, consumers and the environment will benefit, according to a computer modeling study by Xcel Energy and the Department of Energy's National Renewable Energy Laboratory. Researchers found that each PHEV would cut carbon dioxide emissions in half and save owners up to $450 in annual fuel costs and up to 240 gallons of gasoline. The study also looked at the impact of PHEVs on the electric grid in Colorado if used on a large scale. Integrating large numbers of these vehicles will depend on the adoption of smart-grid technology - adding digital elements to the electric power system to improve efficiency and enable more dynamic communication between consumers and producers of electricity. Using an intelligent monitoring system that keeps track of all electricity flowing in the system, a smart grid could enable optimal PHEV battery-charging much the same way it would enable users to manage their energy use in household appliances and factory processes to reduce energy costs. When a smart grid is implemented, consumers will have many low-cost opportunities to charge PHEVs at different times of the day. Plug-in vehicles could contribute electricity at peak times, such as summer evenings, while taking electricity from the grid at low-use times such as the middle of the night. Electricity rates could offer incentives for drivers to 'give back' electricity when it is most needed and to 'take' it when it is plentiful. The integration of PHEVs, solar arrays and wind turbines into the grid at larger scales will require a more modern electricity system. Technology already exists to allow customers to feed excess power from their own renewable energy systems back to the grid. As more homes and businesses find opportunities to plan power flows to and from the grid for economic gain using their renewable energy systems and PHEVs, more sophisticated systems will be needed. A smart grid will improve the efficiency of energy consumption, manage real-time power flows and provide two-way metering needed to compensate small power producers. Many states are working toward the smart-grid concept, particularly to incorporate renewable sources into their utility grids. According to the Department of Energy, 30 states have developed and adopted renewable portfolio standards, which require up to 20 percent of a state's energy portfolio to come exclusively from renewable sources by this year, and up to 30 percent in the future. NREL has been laying the foundation for both PHEVs and the smart grid for many years with work including modifying hybrid electric cars with plug-in technology; studying fuel economy, batteries and power electronics; exploring options for recharging batteries with solar and wind technologies; and measuring reductions in greenhouse gas emissions. The laboratory participated in development of smart-grid implementation standards with industry, utilities, government and others to guide the integration of renewable and other small electricity generation and storage sources. Dick DeBlasio, principal program manager for electricity programs, is now leading the Institute of Electrical and Electronics Engineers Standards efforts to connect the dots regarding power generation, communication and information technologies.

  2. Fact #914: February 29, 2016 Plug-in Vehicle Sales Climb as Battery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact 914: February 29, 2016 Plug-in Vehicle Sales Climb as Battery Costs Decline - Dataset Excel file and dataset for Plug-in Vehicle Sales Climb as Battery Costs Decline File ...

  3. Fact #856 January 19, 2015 Plug-in and Hybrid Cars Receive High...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact 856 January 19, 2015 Plug-in and Hybrid Cars Receive High Scores for Owner Satisfaction - Dataset Excel file with dataset for Plug-in and Hybrid Cars Receive High Scores for ...

  4. Fact #892: September 28, 2015 Over One-Million in Plug-in Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact 892: September 28, 2015 Over One-Million in Plug-in Vehicle Sales Worldwide - Dataset Excel file and dataset for Over One-Million in Plug-in Vehicle Sales Worldwide File ...

  5. Fact #918: March 28, 2016 Global Plug-in Light Vehicle Sales...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact 918: March 28, 2016 Global Plug-in Light Vehicle Sales Increased by About 80% in 2015 - Dataset Excel file and dataset for Global Plug-in Light Vehicle Sales Increased by ...

  6. Fact #856 January 19, 2015 Plug-in and Hybrid Cars Receive High...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plug-in cars including plug-in hybrids and all-electric cars scored 82%, well above conventional cars which averaged 70% responding that they would buy the same car again. The ...

  7. Fact #562: March 16, 2009 Carbon Reduction of Plug-in Hybrid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2: March 16, 2009 Carbon Reduction of Plug-in Hybrid Electric Vehicles Fact 562: March 16, 2009 Carbon Reduction of Plug-in Hybrid Electric Vehicles Estimates from the GREET model ...

  8. Fact #892: September 28, 2015 Over One-Million in Plug-in Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Of those vehicles sold, 62% were all-electric vehicles and 38% were plug-in hybrid vehicles. The United States was responsible for the largest share of plug-in vehicle sales (36%), ...

  9. DOE Supports PG&E Development of Next Generation Plug-in Hybrid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plug-in Hybrid Electric Trucks With support from EERE's Vehicle Technologies Office (VTO), Pacific Gas and Electric (PG&E) is demonstrating that plug-in electric vehicles can ...

  10. Fact #796: September 9, 2013 Electric Vehicle and Plug-In Hybrid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact 796: September 9, 2013 Electric Vehicle and Plug-In Hybrid Electric Vehicle Sales History Electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) have been ...

  11. V-184: Google Chrome Flash Plug-in Lets Remote Users Conduct...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4: Google Chrome Flash Plug-in Lets Remote Users Conduct Clickjacking Attacks V-184: Google Chrome Flash Plug-in Lets Remote Users Conduct Clickjacking Attacks June 24, 2013 -...

  12. Exxon Mobil QuestAir Plug Power Ben Gurion University Hydrogen...

    Open Energy Info (EERE)

    Exxon Mobil QuestAir Plug Power Ben Gurion University Hydrogen JV Jump to: navigation, search Name: Exxon Mobil, QuestAir, Plug Power , & Ben Gurion University Hydrogen JV Place:...

  13. Plug-In Electric Vehicle Handbook for Fleet Managers (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01

    Plug-in electric vehicles (PEVs) are entering the automobile market and are viable alternatives to conventional vehicles. This guide for fleet managers describes the basics of PEV technology, PEV benefits for fleets, how to select the right PEV, charging a PEV, and PEV maintenance.

  14. Plug-In Electric Vehicle Handbook for Consumers (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-09-01

    Plug-in electric vehicles (PEVs) are entering the automobile market and are viable alternatives to conventional vehicles. This guide for consumers describes the basics of PEV technology, PEV benefits, how to select the right PEV, charging a PEV, and PEV maintenance.

  15. A mixed plug flow anaerobic digester for dairy manure

    SciTech Connect (OSTI)

    Cournoyer, M.S.; Delisle, U.; Ferland, D.; Chagnon, R.

    1985-01-01

    In 1982, a ''mixed plug-flow'' anaerobic digester has been built to produce biogas from the manure of 350 dairy cows and, subsequently, to produce electricity for on-farm use only. This paper describes the digester and presents the main results of one year of technical follow-up.

  16. Alternative Fuels Data Center: Developing Infrastructure to Charge Plug-In

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electric Vehicles Developing Infrastructure to Charge Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Developing Infrastructure to Charge Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Developing Infrastructure to Charge Plug-In Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Developing Infrastructure to Charge Plug-In Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Developing

  17. Alternative Fuels Data Center: Maintenance and Safety of Hybrid and Plug-In

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electric Vehicles Maintenance and Safety of Hybrid and Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Maintenance and Safety of Hybrid and Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Maintenance and Safety of Hybrid and Plug-In Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Maintenance and Safety of Hybrid and Plug-In Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Maintenance

  18. Alternative Fuels Data Center: Fisher Coachworks Develops Plug-In Electric

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Bus in Michigan Fisher Coachworks Develops Plug-In Electric Bus in Michigan to someone by E-mail Share Alternative Fuels Data Center: Fisher Coachworks Develops Plug-In Electric Bus in Michigan on Facebook Tweet about Alternative Fuels Data Center: Fisher Coachworks Develops Plug-In Electric Bus in Michigan on Twitter Bookmark Alternative Fuels Data Center: Fisher Coachworks Develops Plug-In Electric Bus in Michigan on Google Bookmark Alternative Fuels Data Center: Fisher Coachworks Develops

  19. Alternative Fuels Data Center: Houston Energizes Deployment of Plug-In

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electric Vehicles Houston Energizes Deployment of Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Houston Energizes Deployment of Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Houston Energizes Deployment of Plug-In Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Houston Energizes Deployment of Plug-In Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Houston Energizes Deployment of

  20. Alternative Fuels Data Center: North Carolina Airport Advances With Plug-In

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electric Buses North Carolina Airport Advances With Plug-In Electric Buses to someone by E-mail Share Alternative Fuels Data Center: North Carolina Airport Advances With Plug-In Electric Buses on Facebook Tweet about Alternative Fuels Data Center: North Carolina Airport Advances With Plug-In Electric Buses on Twitter Bookmark Alternative Fuels Data Center: North Carolina Airport Advances With Plug-In Electric Buses on Google Bookmark Alternative Fuels Data Center: North Carolina Airport

  1. Alternative Fuels Data Center: Oregon Leads the Charge for Plug-In Electric

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicles and Infrastructure Oregon Leads the Charge for Plug-In Electric Vehicles and Infrastructure to someone by E-mail Share Alternative Fuels Data Center: Oregon Leads the Charge for Plug-In Electric Vehicles and Infrastructure on Facebook Tweet about Alternative Fuels Data Center: Oregon Leads the Charge for Plug-In Electric Vehicles and Infrastructure on Twitter Bookmark Alternative Fuels Data Center: Oregon Leads the Charge for Plug-In Electric Vehicles and Infrastructure on Google

  2. Alternative Fuels Data Center: Plug-In Electric Vehicle Deployment Policy

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Tools: Zoning, Codes, and Parking Ordinances Plug-In Electric Vehicle Deployment Policy Tools: Zoning, Codes, and Parking Ordinances to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle Deployment Policy Tools: Zoning, Codes, and Parking Ordinances on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle Deployment Policy Tools: Zoning, Codes, and Parking Ordinances on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric

  3. Alternative Fuels Data Center: UC Davis Pioneers Research for Plug-In

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Hybrid Electric Vehicles UC Davis Pioneers Research for Plug-In Hybrid Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: UC Davis Pioneers Research for Plug-In Hybrid Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: UC Davis Pioneers Research for Plug-In Hybrid Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: UC Davis Pioneers Research for Plug-In Hybrid Electric Vehicles on Google Bookmark Alternative Fuels Data Center:

  4. Alternative Fuels Data Center: Utility Initiatives Foster Plug-In Electric

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicle Charging at Home and Work Utility Initiatives Foster Plug-In Electric Vehicle Charging at Home and Work to someone by E-mail Share Alternative Fuels Data Center: Utility Initiatives Foster Plug-In Electric Vehicle Charging at Home and Work on Facebook Tweet about Alternative Fuels Data Center: Utility Initiatives Foster Plug-In Electric Vehicle Charging at Home and Work on Twitter Bookmark Alternative Fuels Data Center: Utility Initiatives Foster Plug-In Electric Vehicle Charging at

  5. Self-learning control system for plug-in hybrid vehicles

    DOE Patents [OSTI]

    DeVault, Robert C [Knoxville, TN

    2010-12-14

    A system is provided to instruct a plug-in hybrid electric vehicle how optimally to use electric propulsion from a rechargeable energy storage device to reach an electric recharging station, while maintaining as high a state of charge (SOC) as desired along the route prior to arriving at the recharging station at a minimum SOC. The system can include the step of calculating a straight-line distance and/or actual distance between an orientation point and the determined instant present location to determine when to initiate optimally a charge depleting phase. The system can limit extended driving on a deeply discharged rechargeable energy storage device and reduce the number of deep discharge cycles for the rechargeable energy storage device, thereby improving the effective lifetime of the rechargeable energy storage device. This "Just-in-Time strategy can be initiated automatically without operator input to accommodate the unsophisticated operator and without needing a navigation system/GPS input.

  6. Extending lean operating limit and reducing emissions of methane spark-ignited engines using a microwave-assisted spark plug

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rapp, Vi H.; DeFilippo, Anthony; Saxena, Samveg; Chen, Jyh-Yuan; Dibble, Robert W.; Nishiyama, Atsushi; Moon, Ahsa; Ikeda, Yuji

    2012-01-01

    Amore » microwave-assisted spark plug was used to extend the lean operating limit (lean limit) and reduce emissions of an engine burning methane-air. In-cylinder pressure data were collected at normalized air-fuel ratios of λ = 1.46, λ = 1.51, λ = 1.57, λ = 1.68, and λ = 1.75. For each λ, microwave energy (power supplied to the magnetron per engine cycle) was varied from 0 mJ (spark discharge alone) to 1600 mJ. At lean conditions, the results showed adding microwave energy to a standard spark plug discharge increased the number of complete combustion cycles, improving engine stability as compared to spark-only operation. Addition of microwave energy also increased the indicated thermal efficiency by 4% at λ = 1.68. At λ = 1.75, the spark discharge alone was unable to consistently ignite the air-fuel mixture, resulting in frequent misfires. Although microwave energy produced more consistent ignition than spark discharge alone at λ = 1.75, 59% of the cycles only partially burned. Overall, the microwave-assisted spark plug increased engine performance under lean operating conditions (λ = 1.68) but did not affect operation at conditions closer to stoichiometric.« less

  7. Going Solar in Record Time with Plug-and-Play PV | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Going Solar in Record Time with Plug-and-Play PV Going Solar in Record Time with Plug-and-Play PV April 24, 2012 - 6:10pm Addthis A plug-and-play PV system is envisioned as a...

  8. Plug-in Hybrid Electric Vehicle (PHEV) Integrated Test Plan and Evaluation Program - DRAFT 3-29-07

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1-12335 U.S. Department of Energy FreedomCAR & Vehicle Technologies Program Advanced Vehicle Testing Activity Plug-in Hybrid Electric Vehicle (PHEV) Integrated Test Plan and Evaluation Program DRAFT 3-29-07 Donald Karner Roberta Brayer Derek Peterson Mindy Kirkpatrick James Francfort March 2007 The Idaho National Laboratory is a U.S. Department of Energy National Laboratory Operated by Battelle Energy Alliance INL/EXT-01-12335 U.S. Department of Energy FreedomCAR & Vehicle Technologies

  9. Property:Buildings/ModelXmlFile | Open Energy Information

    Open Energy Info (EERE)

    Merchandise 2009 TSD Chicago High Plug Load 50% Energy Savings + http:apps1.eere.energy.govbuildingsenergyplusmodelsChicago2009TSDGeneralMerchHPL50percent.xml +...

  10. Property:Buildings/ModelIdfFile | Open Energy Information

    Open Energy Info (EERE)

    Merchandise 2009 TSD Chicago High Plug Load 50% Energy Savings + http:apps1.eere.energy.govbuildingsenergyplusmodelsChicago2009TSDGeneralMerchHPL50percent.idf +...

  11. Illinois: High-Energy, Concentration-Gradient Cathode Material...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Energy, Concentration-Gradient Cathode Material for Plug-in Hybrids and All-Electric Vehicles Could Reduce Batteries' Cost and Size Illinois: High-Energy,...

  12. Reducing Plug Loads in Office Spaces: Hawaii and Guam Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    inspection, and overhead SIR savings to investment ratio TRL technology readiness level UL Underwriters Laboratories W Watt vi This report is available at no cost from the...

  13. Plug In Hybrid Development Consortium | Open Energy Information

    Open Energy Info (EERE)

    Hybrid Development Consortium Sector: Vehicles Product: US-based consortium of automotive suppliers, manufacturers and other organizations working together to accelerate the...

  14. Plug-In Hybrid Medium-Duty Truck Demonstration and Evaluation

    SciTech Connect (OSTI)

    Miyasato, Matt; Kosowski, Mark

    2015-10-01

    The Plug-In Hybrid Medium-Duty Truck Demonstration and Evaluation Program was sponsored by the United States Department of Energy (DOE) using American Recovery and Reinvestment Act of 2009 (ARRA) funding. The purpose of the program is to develop a path to migrate plug-in hybrid electric vehicle (PHEV) technology to medium-duty vehicles by demonstrating and evaluating vehicles in diverse applications. The program also provided three production-ready PHEV systems—Odyne Systems, Inc. (Odyne) Class 6 to 8 trucks, VIA Motors, Inc. (VIA) half-ton pickup trucks, and VIA three-quarter-ton vans. The vehicles were designed, developed, validated, produced, and deployed. Data were gathered and tests were run to understand the performance improvements, allow cost reductions, and provide future design changes. A smart charging system was developed and produced during the program. The partnerships for funding included the DOE; the California Energy Commission (CEC); the South Coast Air Quality Management District (SCAQMD); the Electric Power Research Institute (EPRI); Odyne; VIA; Southern California Edison; and utility and municipal industry participants. The reference project numbers are DOE FOA-28 award number EE0002549 and SCAQMD contract number 10659.

  15. Plug-in Hybrid Electric Vehicle Fuel Use Reporting Methods and Results

    SciTech Connect (OSTI)

    James E. Francfort

    2009-07-01

    The Plug-in Hybrid Electric Vehicle (PHEV) Fuel Use Reporting Methods and Results report provides real world test results from PHEV operations and testing in 20 United States and Canada. Examples are given that demonstrate the significant variations operational parameters can have on PHEV petroleum use. In addition to other influences, PHEV mpg results are significantly impacted by driver aggressiveness, cold temperatures, and whether or not the vehicle operator has charged the PHEV battery pack. The U.S. Department of Energys (DOEs) Advanced Vehicle Testing Activity (AVTA) has been testing plug-in hybrid electric vehicles (PHEVs) for several years. The AVTA http://avt.inl.gov/), which is part of DOEs Vehicle Technology Program, also tests other advanced technology vehicles, with 12 million miles of total test vehicle and data collection experience. The Idaho National Laboratory is responsible for conducting the light-duty vehicle testing of PHEVs. Electric Transportation Engineering Corporation also supports the AVTA by conducting PHEV and other types of testing. To date, 12 different PHEV models have been tested, with more than 600,000 miles of PHEV operations data collected.

  16. Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicles Batteries for Hybrid and Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric Vehicles on Delicious Rank

  17. Alternative Fuels Data Center: Deployment of Hybrid and Plug-In Electric

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicles Deployment of Hybrid and Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Deployment of Hybrid and Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Deployment of Hybrid and Plug-In Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Deployment of Hybrid and Plug-In Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Deployment of Hybrid and Plug-In Electric Vehicles on Delicious Rank

  18. Alternative Fuels Data Center: Georgia Sets the Pace for Plug-In Electric

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicles Georgia Sets the Pace for Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Georgia Sets the Pace for Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Georgia Sets the Pace for Plug-In Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Georgia Sets the Pace for Plug-In Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Georgia Sets the Pace for Plug-In Electric Vehicles on Delicious

  19. Alternative Fuels Data Center: San Diego Dealers Plug-In to Electric

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicle Progress San Diego Dealers Plug-In to Electric Vehicle Progress to someone by E-mail Share Alternative Fuels Data Center: San Diego Dealers Plug-In to Electric Vehicle Progress on Facebook Tweet about Alternative Fuels Data Center: San Diego Dealers Plug-In to Electric Vehicle Progress on Twitter Bookmark Alternative Fuels Data Center: San Diego Dealers Plug-In to Electric Vehicle Progress on Google Bookmark Alternative Fuels Data Center: San Diego Dealers Plug-In to Electric Vehicle

  20. ICSBEP Criticality Benchmark Eigenvalues with ENDF/B-VII.1 Cross Sections

    SciTech Connect (OSTI)

    Kahler, Albert C. III; MacFarlane, Robert

    2012-06-28

    We review MCNP eigenvalue calculations from a suite of International Criticality Safety Benchmark Evaluation Project (ICSBEP) Handbook evaluations with the recently distributed ENDF/B-VII.1 cross section library.

  1. Development of all-ceramic glow plugs for heavy-duty engines: Phase 2

    SciTech Connect (OSTI)

    Johar, S.; Das Gupta, S.

    1997-12-31

    Details the development work performed in phase 2 of a project to develop all-ceramic glow plugs for heavy-duty diesel engines. All-ceramic glow plugs, compared to traditional metallic plugs, offer a number of advantages including high corrosion resistance, operation at higher temperatures allowing for quicker start and improved engine performance, low power use, high dimensional stability, and longer service life. Work in phase 2 focused on increasing the operational voltage ratings of the proof-of-concept plugs developed in phase 1 in order to meet all commercial expectations in terms of performance, reliability, durability, and economic manufacture. The work involved optimization of the material composition to meet design specifications, development of a manufacturing process, fabrication of plugs, and bench and engine tests. Results compare the all-ceramic plugs to conventional plugs.

  2. MICROX-2 cross section library based on ENDF/B-VII

    SciTech Connect (OSTI)

    Hou, J.; Ivanov, K.; Choi, H.

    2012-07-01

    New cross section libraries of a neutron transport code MICROX-2 have been generated for advanced reactor design and fuel cycle analyses. A total of 386 nuclides were processed, including 10 thermal scattering nuclides, which are available in ENDF/B-VII release 0 nuclear data. The NJOY system and MICROR code were used to process nuclear data and convert them into MICROX-2 format. The energy group structure of the new library was optimized for both the thermal and fast neutron spectrum reactors based on Contributon and Point-wise Cross Section Driven (CPXSD) method, resulting in a total of 1173 energy groups. A series of lattice cell level benchmark calculations have been performed against both experimental measurements and Monte Carlo calculations for the effective/infinite multiplication factor and reaction rate ratios. The results of MICROX-2 calculation with the new library were consistent with those of 15 reference cases. The average errors of the infinite multiplication factor and reaction rate ratio were 0.31% {delta}k and 1.9%, respectively. The maximum error of reaction rate ratio was 8% for {sup 238}U-to-{sup 235}U fission of ZEBRA lattice against the reference calculation done by MCNP5. (authors)

  3. Stratified-charge glow plug ignition engine experiments. Topical report

    SciTech Connect (OSTI)

    Thring, R.H.; Leet, J.A.

    1991-05-01

    An investigation was conducted to study the feasibility of operating a natural gas two-stroke engine using glow plug ignition with very lean mixtures. The term Stratified-Charge Glow Plus Ignition (SCGI) was coined to describe the engine. A JLO DL 365 single-cylinder, two-stroke, diesel engine was converted first to a natural gas fueled spark-ignited engine for the baseline tests, and then to the SCGI engine. The engine was successfully run, but was found to be sensitive to various conditions such as the glow plug temperature. The engine ran very lean, to an equivalence ratio of 0.33, offering the potential of good fuel economy and low NOx emissions. Numerous photographs, diagrams, and charts are included.

  4. ITER Generic Diagnostic Upper Port Plug Nuclear Heating and Personnel Dose Rate Assesment

    SciTech Connect (OSTI)

    Russell E. Feder and Mahmoud Z. Youssef

    2009-01-28

    Neutronics analysis to find nuclear heating rates and personnel dose rates were conducted in support of the integration of diagnostics in to the ITER Upper Port Plugs. Simplified shielding models of the Visible-Infrared diagnostic and of a large aperture diagnostic were incorporated in to the ITER global CAD model. Results for these systems are representative of typical designs with maximum shielding and a small aperture (Vis-IR) and minimal shielding with a large aperture. The neutronics discrete-ordinates code ATTILA and SEVERIAN (the ATTILA parallel processing version) was used. Material properties and the 500 MW D-T volume source were taken from the ITER Brand Model MCNP benchmark model. A biased quadrature set equivelant to Sn=32 and a scattering degree of Pn=3 were used along with a 46-neutron and 21-gamma FENDL energy subgrouping. Total nuclear heating (neutron plug gamma heating) in the upper port plugs ranged between 380 and 350 kW for the Vis-IR and Large Aperture cases. The Large Aperture model exhibited lower total heating but much higher peak volumetric heating on the upper port plug structure. Personnel dose rates are calculated in a three step process involving a neutron-only transport calculation, the generation of activation volume sources at pre-defined time steps and finally gamma transport analyses are run for selected time steps. ANSI-ANS 6.1.1 1977 Flux-to-Dose conversion factors were used. Dose rates were evaluated for 1 full year of 500 MW DT operation which is comprised of 3000 1800-second pulses. After one year the machine is shut down for maintenance and personnel are permitted to access the diagnostic interspace after 2-weeks if dose rates are below 100 ?Sv/hr. Dose rates in the Visible-IR diagnostic model after one day of shutdown were 130 ?Sv/hr but fell below the limit to 90 ?Sv/hr 2-weeks later. The Large Aperture style shielding model exhibited higher and more persistent dose rates. After 1-day the dose rate was 230 ?Sv/hr but was still at 120 ?Sv/hr 4-weeks later.

  5. Determining PHEV Performance Potential User and Environmental Influences on A123 Systems Hymotion Plug-In Conversion Module for the Toyota Prius

    SciTech Connect (OSTI)

    John G. Smart; Huang Iu

    2009-05-01

    A123Systemss HymotionTM L5 Plug-in Conversion Module (PCM) is a supplemental battery system that converts the Toyota Prius hybrid electric vehicle (HEV) into a plug-in hybrid electric vehicle (PHEV). The Hymotion system uses a lithium ion battery pack with 4.5 kWh of useable energy capacity and recharges by plugging into a standard 110/120V outlet. The system is designed to more than double the Prius fuel efficiency for 30-50km of charge depleting range. This paper will cover efforts by A123 Systems and the Idaho National Laboratory in studying the on-road performance of this PHEV fleet. The performance potentials of various fleets will be compared in order to determine the major influences on overall performance.

  6. Category:Building Models | Open Energy Information

    Open Energy Info (EERE)

    category "Building Models" The following 12 pages are in this category, out of 12 total. G General Merchandise 2009 TSD Chicago High Plug Load 50% Energy Savings General...

  7. Rotary engine with dual spark plugs and fuel injectors

    SciTech Connect (OSTI)

    Abraham, J.; Bracco, F.V.

    1991-06-11

    This patent describes a stratified charge rotary combustion engine having a housing having a running surface surrounding a working chamber, the running surface having a two-lobed profile, the lobes forming a junction in a top-dead-center region of the housing, a rotor mounted for rotation in the working chamber, a fuel injection and ignition system placed in the top-dead center region. It includes a pilot fuel injector fuel into the working chamber; a first spark plug located upstream of the pilot fuel injector for igniting fuel injected by the pilot fuel injector, the pilot fuel injector and the first spark plug being located on a downstream side of the junction; a main fuel injector for injecting fuel into the working chamber, the ignited pilot fuel acting to ignite fuel injected by the main injector; and a second spark plug located upstream of the main fuel injector and located upstream of the junction for igniting fuel/air mixture in the working chamber.

  8. Assessing the Battery Cost at Which Plug-In Hybrid Medium-Duty Parcel Delivery Vehicles Become Cost-Effective

    SciTech Connect (OSTI)

    Ramroth, L. A.; Gonder, J. D.; Brooker, A. D.

    2013-04-01

    The National Renewable Energy Laboratory (NREL) validated diesel-conventional and diesel-hybrid medium-duty parcel delivery vehicle models to evaluate petroleum reductions and cost implications of hybrid and plug-in hybrid diesel variants. The hybrid and plug-in hybrid variants are run on a field data-derived design matrix to analyze the effect of drive cycle, distance, engine downsizing, battery replacements, and battery energy on fuel consumption and lifetime cost. For an array of diesel fuel costs, the battery cost per kilowatt-hour at which the hybridized configuration becomes cost-effective is calculated. This builds on a previous analysis that found the fuel savings from medium duty plug-in hybrids more than offset the vehicles' incremental price under future battery and fuel cost projections, but that they seldom did so under present day cost assumptions in the absence of purchase incentives. The results also highlight the importance of understanding the application's drive cycle specific daily distance and kinetic intensity.

  9. Report on the Field Performance of A123Systemss HymotionTM Plug-in Conversion Module for the Toyota Prius

    SciTech Connect (OSTI)

    Huang Iu; John Smart

    2009-04-01

    A123Systemss HymotionTM L5 Plug-in Conversion Module (PCM) is a supplemental battery system that converts the Toyota Prius hybrid electric vehicle (HEV) into a plug-in hybrid electric vehicle (PHEV). The Hymotion system uses a lithium ion battery pack with 4.5 kWh of useable energy capacity. It recharges by plugging into a standard 110/120V outlet. The system is designed to more than double the Prius fuel efficiency for 30-40 miles of charge depleting range. If the Hymotion pack is fully depleted, the Prius operates as a normal HEV in charge sustaining mode. The Hymotion L5 PCM is the first commercially available aftermarket product complying with CARB emissions and NHTSA impact standards. Since 2006, over 50 initial production Hymotion Plug-in Conversion Modules have been installed in private fleet vehicles across the United States and Canada. With the help of the Idaho National Laboratory, which conducts the U.S. Department of Energys (DOE) Advanced Vehicle Testing Activity (AVTA), A123Systems collects real-time vehicle data from each fleet vehicle using on-board data loggers. These data are analyzed to determine vehicle performance. This paper presents the results of this field evaluation. Data to be presented includes the L5 Prius charge depleting range, gasoline fuel efficiency, and electrical energy efficiency. Effects of driving conditions, driving style, and charging patterns on fuel efficiency are also presented. Data show the Toyota Prius equipped with the Hymotion Plug-in Conversion Module is capable of achieving over 100 mpg in certain driving conditions when operating in charge depleting mode.

  10. Plug-In Hybrid Electric Vehicle Penetration Scenarios

    SciTech Connect (OSTI)

    Balducci, Patrick J.

    2008-04-03

    This report examines the economic drivers, technology constraints, and market potential for plug-in hybrid electric vehicles (PHEVs) in the U.S. A PHEV is a hybrid vehicle with batteries that can be recharged by connecting to the grid and an internal combustion engine that can be activated when batteries need recharging. The report presents and examines a series of PHEV market penetration scenarios. Based on input received from technical experts and industry representative contacted for this report and data obtained through a literature review, annual market penetration rates for PHEVs are presented from 2013 through 2045 for three scenarios. Each scenario is examined and implications for PHEV development are explored.

  11. Search tool plug-in: imploements latent topic feedback

    Energy Science and Technology Software Center (OSTI)

    2011-09-23

    IRIS is a search tool plug-in that is used to implement latent topic feedback for enhancing text navigation. It accepts a list of returned documents from an information retrieval wywtem that is generated from keyword search queries. Data is pulled directly from a topic information database and processed by IRIS to determine the most prominent and relevant topics, along with topic-ngrams, associated with the list of returned documents. User selected topics are then used tomoreexpand the query and presumabley refine the search results.less

  12. Flame Arrival Measurement By Instrumented Spark Plug or Head Gasket

    Energy Science and Technology Software Center (OSTI)

    1995-04-10

    PLUGBIN was developed to support Sandia technologies involving instrumented head gaskets and spark plugs for engine research and development. It acquires and processes measurements of flame arrival and pressure from a spark ignition. Flame arrival is determined from analog ionization-probe or visible-emission signals, and/or digitial signals from a dedicated flame arrival measurement processor. The pressure measurements are analyzed to determine the time of peak pressure and the time to burn 10 and 90 percent ofmore » the charge. Histograms are then calculated and displayed for each measurement.« less

  13. Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Emissions Data Sources and Assumptions Electricity Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Emissions Data Sources and Assumptions to someone by E-mail Share Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Emissions Data Sources and Assumptions on Facebook Tweet about Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Emissions Data Sources and Assumptions on Twitter Bookmark

  14. Self-Learning Controller for Plug-in Hybrid Vehicles Learns Recharge...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Controller for Plug-in Hybrid Vehicles Learns Recharge Stations for Optimal Battery Charge Oak Ridge National Laboratory Contact ORNL About This Technology Technology...

  15. Emissions and Fuel Consumption Test Results from a Plug-In Hybrid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications AVTA: Plug-In Hybrid Electric School Buses Medium and Heavy Duty Vehicle and Engine Testing Medium- and Heavy-Duty Electric Drive Vehicle Simulation ...

  16. U-225: Citrix Access Gateway Plug-in for Windows nsepacom ActiveX Control Vulnerabilities

    Broader source: Energy.gov [DOE]

    Two vulnerabilities in Citrix Access Gateway Plug-in for Windows can be exploited by malicious people to compromise a user's system.

  17. Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP)

    Broader source: Energy.gov [DOE]

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  18. Plug-In Electric Vehicle Handbook for Public Charging Station Hosts (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01

    This handbook answers basic questions about plug-in electric vehicles, charging stations, charging equipment, and considerations for station owners, property owners, and station hosts.

  19. Plug-in Hybrid Modeling and Application: Cost/Benefit Analysis (Presentation)

    SciTech Connect (OSTI)

    Simpson, A.

    2006-08-24

    Presents data from a simulation of plug-in hybrid electric vehicle efficiency and cost, including baseline vehicle assumptions, powertrain technology scenarios, and component modeling.

  20. Measuring and Reporting Fuel Economy of Plug-In Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Gonder, J.; Simpson, A.

    2006-11-01

    This paper reviews techniques used to characterize plug-in hybrid electric vehicle fuel economy, discussing their merits, limitations, and best uses.

  1. Battery Requirements for Plug-In Hybrid Electric Vehicles -- Analysis and Rationale

    SciTech Connect (OSTI)

    Pesaran, A. A.; Markel, T.; Tataria, H. S.; Howell, D.

    2009-07-01

    Presents analysis, discussions, and resulting requirements for plug-in hybrid electric vehicle batteries adopted by the US Advanced Battery Consortium.

  2. Clean Cities Plug-In Electric Vehicle Handbook for Electrical Contractors

    SciTech Connect (OSTI)

    2012-04-01

    This handbook answers basic questions about plug-in electric vehicles, charging stations, charging equipment, charging equipment installation, and training for electrical contractors.

  3. Plug-In Electric Vehicle Handbook for Public Charging Station Hosts

    SciTech Connect (OSTI)

    2012-04-01

    This handbook answers basic questions about plug-in electric vehicles, charging stations, charging equipment, and considerations for station owners, property owners, and station hosts.

  4. Cost-Benefit Analysis of Plug-In Hybrid Electric Vehicle Technology...

    Open Energy Info (EERE)

    URI: cleanenergysolutions.orgcontentcost-benefit-analysis-plug-hybrid-ele Language: English Policies: "Regulations,Financial Incentives" is not in the list of possible...

  5. Alternative Fuels Data Center: Los Angeles Saves With Hybrid and Plug-In

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electric Vehicles Los Angeles Saves With Hybrid and Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Los Angeles Saves With Hybrid and Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Los Angeles Saves With Hybrid and Plug-In Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Los Angeles Saves With Hybrid and Plug-In Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Los Angeles Saves With

  6. Alternative Fuels Data Center: Los Angeles Sets the Stage for Plug-In

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electric Vehicles Los Angeles Sets the Stage for Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Los Angeles Sets the Stage for Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Los Angeles Sets the Stage for Plug-In Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Los Angeles Sets the Stage for Plug-In Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Los Angeles Sets the Stage for

  7. 2011 Chevrolet Volt VIN 0815 Plug-In Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Matthew Shirk; Jeffrey Wishart

    2013-07-01

    The U.S. Department of Energy (DOE) Advanced Vehicle Testing Activity (AVTA) program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on plug-in hybrid electric vehicles (PHEVs), including testing the PHEV batteries when both the vehicles and batteries are new and at the conclusion of 12,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Chevrolet Volt PHEV (VIN 1G1RD6E48BU100815). The battery testing was performed by the Electric Transportation Engineering Corporation (eTec) dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

  8. Potential Impacts of Plug-in Hybrid Electric Vehicles on Regional Power Generation

    SciTech Connect (OSTI)

    Hadley, Stanton W; Tsvetkova, Alexandra A

    2008-01-01

    Plug-in hybrid electric vehicles (PHEVs) are being developed around the world, with much work aiming to optimize engine and battery for efficient operation, both during discharge and when grid electricity is available for recharging. However, the general expectation has been that the grid will not be greatly affected by the use of PHEVs because the recharging will occur during off-peak hours, or the number of vehicles will grow slowly enough so that capacity planning will respond adequately. This expectation does not consider that drivers will control the timing of recharging, and their inclination will be to plug in when convenient, rather than when utilities would prefer. It is important to understand the ramifications of adding load from PHEVs onto the grid. Depending on when and where the vehicles are plugged in, they could cause local or regional constraints on the grid. They could require the addition of new electric capacity and increase the utilization of existing capacity. Usage patterns of local distribution grids will change, and some lines or substations may become overloaded sooner than expected. Furthermore, the type of generation used to meet the demand for recharging PHEVs will depend on the region of the country and the timing of recharging. This paper analyzes the potential impacts of PHEVs on electricity demand, supply, generation structure, prices, and associated emission levels in 2020 and 2030 in 13 regions specified by the North American Electric Reliability Corporation (NERC) and the U.S. Department of Energy's (DOE's) Energy Information Administration (EIA), and on which the data and analysis in EIA's Annual Energy Outlook 2007 are based (Figure ES-1). The estimates of power plant supplies and regional hourly electricity demand come from publicly available sources from EIA and the Federal Energy Regulatory Commission. Electricity requirements for PHEVs are based on analysis from the Electric Power Research Institute, with an optimistic projection of 25% market penetration by 2020, involving a mixture of sedans and sport utility vehicles. The calculations were done using the Oak Ridge Competitive Electricity Dispatch (ORCED) model, a model developed over the past 12 years to evaluate a wide variety of critical electricity sector issues. Seven scenarios were run for each region for 2020 and 2030, for a total of 182 scenarios. In addition to a base scenario of no PHEVs, the authors modeled scenarios assuming that vehicles were either plugged in starting at 5:00 p.m. (evening) or at 10:00 p.m.(night) and left until fully charged. Three charging rates were examined: 120V/15A (1.4 kW), 120V/20A (2 kW), and 220V/30A (6 kW). Most regions will need to build additional capacity or utilize demand response to meet the added demand from PHEVs in the evening charging scenarios, especially by 2030 when PHEVs have a larger share of the installed vehicle base and make a larger demand on the system. The added demands of evening charging, especially at high power levels, can impact the overall demand peaks and reduce the reserve margins for a region's system. Night recharging has little potential to influence peak loads, but will still influence the amount and type of generation.

  9. Advancing Plug-In Hybrid Technology and Flex Fuel Application on a Chrysler Minivan

    SciTech Connect (OSTI)

    Bazzi, Abdullah; Barnhart, Steven

    2014-12-31

    FCA US LLC viewed this DOE funding as a historic opportunity to begin the process of achieving required economies of scale on technologies for electric vehicles. The funding supported FCA US LLCs light-duty electric drive vehicle and charging infrastructure-testing activities and enabled FCA US LLC to utilize the funding on advancing Plug-in Hybrid Electric Vehicle (PHEV) technologies to future programs. FCA US LLC intended to develop the next generations of electric drive and energy batteries through a properly paced convergence of standards, technology, components, and common modules, as well as first-responder training and battery recycling. To support the development of a strong, commercially viable supplier base, FCA US LLC also used this opportunity to evaluate various designated component and sub-system suppliers. The original project proposal was submitted in December 2009 and selected in January 2010. The project ended in December 2014.

  10. Technetium (VII) Co-precipitation with Framework Aluminosilicates

    SciTech Connect (OSTI)

    Harsh, James B.; Dickson, Johnbull Otah; Pierce, Eric M.; Bargar, John

    2015-07-13

    Technetium-99 (99Tc), a long-lived radionuclide, is one of the most widespread contaminants within the Hanford subsurface. At some depths, it is only extractable with strong acids, suggesting incorporation into a solid phase. We hypothesized that Tc may have coprecipitated with feldspathoid aluminosilicates under waste tanks that had leaked caustic solutions into the vadose zone. Our objectives were to determine if Tc could be incorporated into the feldspathoids cancrinite and sodalite and under what conditions coprecipitation could occur. Our hypothesis was that sodalite was more likely to incorporate and retain Tc. Our approach was to use known methods of feldspathoid formation in solutions resembling those in Hanford waste tanks contacting sediments in terms of major ion (Na, NO3, OH, Al(OH)4, and Si(OH)4 concentrations. In some cases, Al and Si were supplied from zeolite. We used perrhenate (ReO4) as a surrogate for pertechnetate (TcO4) to avoid the radioactivity. The major findings of this study were 1) ReO4 could be incorporated into either sodalite or cancrinite but the concentration in the solid was < 1% of the competing ion Cl, NO3, or NO2. 2) The small amount of ReO4 incorporated was not exchangeable with NO3 or NO2. 3) In sodalite, NO3 was highly preferred over ReO4 but significant Re-sodalite was formed when the mole fraction in solution (Re/Re+N) exceeded 0.8. 4) A nonlinear relation between the unit cell parameter and amount of Re incorporated suggested that a separate Re-sodalite phase was formed rather than a solid solution. 5) We determined that sodalite preference for sodalite in the presence of different anions increased with the ionic size of the competing anion: Cl < CO3 < NO3 < SO4 < MnO4 < WO4 and significant incorporation did not occur unless the difference in anion radii was less than 12%. 6) Re(VII) was not significantly reduced to Re(IV) under the conditions of this experiment and Re appeared to be a good surrogate for Tc under oxidizing conditions as both oxyanions have the same size. In conclusion, incorporation of TcO4 is unlikely in the close proximity to the tanks where sodalite is likely to form in the presence of high NO3 and other anions much smaller than TcO4.

  11. Composition, apparatus, and process, for sorption of gaseous compounds of group II-VII elements

    DOE Patents [OSTI]

    Tom, Glenn M. (New Milford, CT); McManus, James V. (Danbury, CT); Luxon, Bruce A. (Stamford, CT)

    1991-08-06

    Scavenger compositions are disclosed, which have utility for effecting the sorptive removal of hazardous gases containing Group II-VII elements of the Periodic Table, such as are widely encountered in the manufacture of semiconducting materials and semiconductor devices. Gas sorption processes including the contacting of Group II-VII gaseous compounds with such scavenger compositions are likewise disclosed, together with critical space velocity contacting conditions pertaining thereto. Further described are gas contacting apparatus, including mesh structures which may be deployed in gas contacting vessels containing such scavenger compositions, to prevent solids from being introduced to or discharged from the contacting vessel in the gas stream undergoing treatment. A reticulate heat transfer structure also is disclosed, for dampening localized exothermic reaction fronts when gas mixtures comprising Group II-VII constituents are contacted with the scavenger compositions in bulk sorption contacting vessels according to the invention.

  12. Chapter VII Appendix D FEDERAL EMERGENCY AUTHORITIES AND POLICY...

    Office of Environmental Management (EM)

    Gasoline Supply Reserve, and provides for the presidentially directed drawdown of the reserves through the Secretary of Energy. It also authorizes the Secretary of Energy to...

  13. Chapter VII: Addressing Environmental Aspects of TS&D Infrastructure

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of jobs in energy transmission and distribution and ... demands related to electricity, natural gas, and shared ... Jobs Significant new investment in U.S. energy ...

  14. EV Everywhere Workplace Charging Challenge | Department of Energy

    Energy Savers [EERE]

    Plug-in Electric Vehicles & Batteries EV Everywhere Workplace Charging Challenge EV Everywhere Workplace Charging Challenge energy.govnode955366">Join the...

  15. batteries and energy storage | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Batteries and Energy Storage Improving the batteries for electric drive vehicles, including hybrid electric (HEV) and plug-in electric (PEV) vehicles, is key to improving vehicles' ...

  16. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Usage High School (9-12) Teachers Search results Search results Enter terms Search Showing 1 - 1 of 1 result. Download Power to the Plug: An Introduction to Energy,...

  17. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 of 2 results. Download Power to the Plug: An Introduction to Energy, Electricity, Consumption, and Efficiency The NEED Project and the U.S. Department of Energy have...

  18. Study on plasma parameters and dust charging in an electrostatically plugged multicusp plasma device

    SciTech Connect (OSTI)

    Kakati, B.; Kausik, S. S.; Saikia, B. K. [Centre of Plasma Physics, Institute for Plasma Research, Nazirakhat, Sonapur-782 402, Kamrup, Assam (India); Bandyopadhyay, M. [ITER-India, Institute for Plasma Research, Bhat, Gandhinagar- 382 428 (India)

    2011-06-15

    The effect of the electrostatic confinement potential on the charging of dust grains and its relationship with the plasma parameters has been studied in an electrostatically plugged multicusp dusty plasma device. Electrostatic plugging is implemented by biasing the electrically isolated magnetic multicusp channel walls. The experimental results show that voltage applied to the channel walls can be a controlling parameter for dust charging.

  19. Healthcare Energy End-Use Monitoring | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Healthcare Energy End-Use Monitoring Healthcare Energy End-Use Monitoring NREL partnered with two hospitals (MGH and SUNY UMU) to collect data on the energy used for multiple thermal and electrical end-use categories, including preheat, heating, and reheat; humidification; service water heating; cooling; fans; pumps; lighting; and select plug and process loads. Additional data from medical office buildings were provided for an analysis focused on plug loads. Facility managers, energy managers,

  20. Healthcare Energy: Spotlight on Medical Equipment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Medical Equipment Healthcare Energy: Spotlight on Medical Equipment The Building Technologies Office conducted a healthcare energy end-use monitoring project in partnership with two hospitals. Additional plug load data from medical office buildings were provided by Mazzetti, Inc. See below for a few highlights from monitoring large medical imaging equipment and medical office building plug loads. Graphic showing the average weekday energy use of a CT machine. Graph showing average weekday energy

  1. Self locking drive system for rotating plug of a nuclear reactor

    DOE Patents [OSTI]

    Brubaker, James E.

    1979-01-01

    This disclosure describes a self locking drive system for rotating the plugs on the head of a nuclear reactor which is able to restrain plug motion if a seismic event should occur during reactor refueling. A servomotor is engaged via a gear train and a bull gear to the plug. Connected to the gear train is a feedback control system which allows the motor to rotate the plug to predetermined locations for refueling of the reactor. The gear train contains a self locking double enveloping worm gear set. The worm gear set is utilized for its self locking nature to prevent unwanted rotation of the plugs as the result of an earthquake. The double enveloping type is used because its unique contour spreads the load across several teeth providing added strength and allowing the use of a conventional size worm.

  2. Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of

    Broader source: Energy.gov (indexed) [DOE]

    Plug-In Hybrid Electric Vehicles | Department of Energy This report examines energy use and emissions from primary energy source through vehicle operation to help researchers understand the impact of the upstream mix of electricity generation technologies for recharging plug-in hybrid electric vehicles (PHEVs), as well as the powertrain technology and fuel sources for PHEVs. PDF icon Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles More

  3. Part VII: Section J - List of Documents, Exhibits, and Other...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy of the United States of America and the Government of the Republic of India of November 4, 2010 for Cooperation on a Joint Clean Energy Research and Development ...

  4. Mechanistic Understanding of Microbial Plugging for Improved Sweep Efficiency

    SciTech Connect (OSTI)

    Steven Bryant; Larry Britton

    2008-09-30

    Microbial plugging has been proposed as an effective low cost method of permeability reduction. Yet there is a dearth of information on the fundamental processes of microbial growth in porous media, and there are no suitable data to model the process of microbial plugging as it relates to sweep efficiency. To optimize the field implementation, better mechanistic and volumetric understanding of biofilm growth within a porous medium is needed. In particular, the engineering design hinges upon a quantitative relationship between amount of nutrient consumption, amount of growth, and degree of permeability reduction. In this project experiments were conducted to obtain new data to elucidate this relationship. Experiments in heterogeneous (layered) beadpacks showed that microbes could grow preferentially in the high permeability layer. Ultimately this caused flow to be equally divided between high and low permeability layers, precisely the behavior needed for MEOR. Remarkably, classical models of microbial nutrient uptake in batch experiments do not explain the nutrient consumption by the same microbes in flow experiments. We propose a simple extension of classical kinetics to account for the self-limiting consumption of nutrient observed in our experiments, and we outline a modeling approach based on architecture and behavior of biofilms. Such a model would account for the changing trend of nutrient consumption by bacteria with the increasing biomass and the onset of biofilm formation. However no existing model can explain the microbial preference for growth in high permeability regions, nor is there any obvious extension of the model for this observation. An attractive conjecture is that quorum sensing is involved in the heterogeneous bead packs.

  5. Plug-in Electric Vehicle Interactions with a Small Office Building: An Economic Analysis using DER-CAM

    SciTech Connect (OSTI)

    Momber, Ilan; Gomez, Toms; Venkataramanan, Giri; Stadler, Michael; Beer, Sebastian; Lai, Judy; Marnay, Chris; Battaglia, Vincent

    2010-06-01

    It is generally believed that plug-in electric vehicles (PEVs) offer environmental and energy security advantages compared to conventional vehicles. Policies are stimulating electric transportation deployment, and PEV adoption may grow significantly. New technology and business models are being developed to organize the PEV interface and their interaction with the wider grid. This paper analyzes the PEVs' integration into a building's Energy Management System (EMS), differentiating between vehicle to macrogrid (V2M) and vehicle to microgrid (V2m) applications. This relationship is modeled by the Distributed Energy Resources Customer Adoption Model (DER-CAM), which finds optimal equipment combinations to meet microgrid requirements at minimum cost, carbon footprint, or other criteria. Results derive battery value to the building and the possibility of a contractual affiliation sharing the benefit. Under simple annual fixed payments and energy exchange agreements, vehicles are primarily used to avoid peak demand charges supplying cheaper off-peak electricity to the building during workdays.

  6. Linkages of DOE's Energy Storage R&D to Batteries and Ultracapacitors for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybrid, Plug-In Hybrid, and Electric Vehicles | Department of Energy of DOE's Energy Storage R&D to Batteries and Ultracapacitors for Hybrid, Plug-In Hybrid, and Electric Vehicles Linkages of DOE's Energy Storage R&D to Batteries and Ultracapacitors for Hybrid, Plug-In Hybrid, and Electric Vehicles This report traces the connections between DOE energy storage research and downstream energy storage systems used in hybrid electric, plug-in hybrid electric, and fully electric vehicles.

  7. COMBINE7.1 - A Portable ENDF/B-VII.0 Based Neutron Spectrum and Cross-Section Generation Program

    SciTech Connect (OSTI)

    Woo Y. Yoon; David W. Nigg

    2009-08-01

    COMBINE7.1 is a FORTRAN 90 computer code that generates multigroup neutron constants for use in the deterministic diffusion and transport theory neutronics analysis. The cross-section database used by COMBINE7.1 is derived from the Evaluated Nuclear Data Files (ENDF/B-VII.0). The neutron energy range covered is from 20 MeV to 1.0E-5 eV. The Los Alamos National Laboratory NJOY code is used as the processing code to generate a 167 fine-group cross-section library in MATXS format for Bondarenko self-shielding treatment. Resolved resonance parameters are extracted from ENDF/B-VII.0 File 2 for a separate library to be used in an alternate Nordheim self-shielding treatment in the resolved resonance energy range. The equations solved for energy dependent neutron spectrum in the 167 fine-group structure are the B-3 or B-1 approximations to the transport equation. The fine group cross sections needed for the spectrum calculation are first prepared by Bondarenko self-shielding interpolation in terms of background cross section and temperature. The geometric lump effect, when present, is accounted for by augmenting the background cross section. Nordheim self-shielded fine group cross sections for a material having resolved resonance parameters overwrite correspondingly the existing self-shielded fine group cross sections when this option is used. The fine group cross sections in the thermal energy range are replaced by those self-shielded with the Amouyal/Benoist/Horowitz method in the three region geometry when this option is requested. COMBINE7.1 coalesces fine group cross sections into broad group macroscopic and microscopic constants. The coalescing is performed by utilizing fine-group fluxes and/or currents obtained by spectrum calculation as the weighting functions. The multigroup constant may be output in any of several standard formats including ANISN 14** free format, CCCC ISOTXS format, and AMPX working library format. ANISN-PC, a one-dimensional, discrete-ordinate transport code, is incoprated into COMBINE7.1. As an option, the 167 fine-group constants generated by COMBINE portion in the program can be used to cacluate regionwise spectra in the ANISN portion, all internally to reflect the one-dimensional transport correction. Results for the criticality validation calculations are included as a part of verification and validation.

  8. COMBINE7.0 - A Portable ENDF/B-VII.0 Based Neutron Spectrum and Cross-Section Generation Program

    SciTech Connect (OSTI)

    Woo Y. Yoon; David W. Nigg

    2008-09-01

    COMBINE7.0 is a FORTRAN 90 computer code that generates multigroup neutron constants for use in the deterministic diffusion and transport theory neutronics analysis. The cross-section database used by COMBINE7.0 is derived from the Evaluated Nuclear Data Files (ENDF/B-VII.0). The neutron energy range covered is from 20 MeV to 1.0E-5 eV. The Los Alamos National Laboratory NJOY code is used as the processing code to generate a 167 finegroup cross-section library in MATXS format for Bondarenko self-shielding treatment. Resolved resonance parameters are extracted from ENDF/B-VII.0 File 2 for a separate library to be used in an alternate Nordheim self-shielding treatment in the resolved resonance energy range. The equations solved for energy dependent neutron spectrum in the 167 fine-group structure are the B-3 or B-1 approximations to the transport equation. The fine group cross sections needed for the spectrum calculation are first prepared by Bondarenko selfshielding interpolation in terms of background cross section and temperature. The geometric lump effect, when present, is accounted for by augmenting the background cross section. Nordheim self-shielded fine group cross sections for a material having resolved resonance parameters overwrite correspondingly the existing self-shielded fine group cross sections when this option is used. The fine group cross sections in the thermal energy range are replaced by those selfshielded with the Amouyal/Benoist/Horowitz method in the three region geometry when this option is requested. COMBINE7.0 coalesces fine group cross sections into broad group macroscopic and microscopic constants. The coalescing is performed by utilizing fine-group fluxes and/or currents obtained by spectrum calculation as the weighting functions. The multigroup constant may be output in any of several standard formats including ANISN 14** free format, CCCC ISOTXS format, and AMPX working library format. ANISN-PC, a onedimensional, discrete-ordinate transport code, is incoprated into COMBINE7.0. As an option, the 167 fine-group constants generated by COMBINE portion in the program can be used to cacluate regionwise spectra in the ANISN portion, all internally to reflect the one-dimensional transport correction. Results for the criticality validation calculations are included as a part of verification and validation.

  9. Department of Energy to Invest Up To $30 Million to Accelerate Development

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Deployment of Plug-In Hybrid Electric Vehicle Technology | Department of Energy Department of Energy to Invest Up To $30 Million to Accelerate Development and Deployment of Plug-In Hybrid Electric Vehicle Technology Department of Energy to Invest Up To $30 Million to Accelerate Development and Deployment of Plug-In Hybrid Electric Vehicle Technology January 17, 2008 - 10:38am Addthis DOE also partners with the State of Michigan and industry to advance vehicle technologies DETROIT, MI

  10. Monthly Energy Review

    SciTech Connect (OSTI)

    1996-05-28

    This publication presents an overview of the Energy information Administration`s recent monthly energy statistics. The statistics cover the major activities of US production, consumption, trade, stocks, and prices for petroleum, natural gas, coal, electricity, and nuclear energy. Also included are international energy and thermal and metric conversion factors. Two brief ``energy plugs`` (reviews of EIA publications) are included, as well.

  11. Part VII: Section J - List of Documents, Exhibits, and Other...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Privacy Program Approved: 011609 CRD applicable in whole DOE O 206.2 CRD Identity, Credential, and Access Management (ICAM) 021913 CRD applicable in part DOE O ...

  12. Part VII: Section J - List of Documents, Exhibits, and Other...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Energy, and Economic Performance CODE OF COLORADO REGULATIONS (CCR) 2 CCR ... Regulations 7 CCR 1101-5, Colorado Boiler and Pressure Vessel Rule 7 CCR 1101-14 - Underground ...

  13. A Plug-in Hybrid Consumer Choice Model with Detailed Market Segmentation

    SciTech Connect (OSTI)

    Lin, Zhenhong; Greene, David L

    2010-01-01

    This paper describes a consumer choice model for projecting U.S. demand for plug-in hybrid electric vehicles (PHEV) in competition among 13 light-duty vehicle technologies over the period 2005-2050. New car buyers are disaggregated by region, residential area, attitude toward technology risk, vehicle usage intensity, home parking and work recharging. The nested multinomial logit (NMNL) model of vehicle choice incorporates daily vehicle usage distributions, refueling and recharging availability, technology learning by doing, and diversity of choice among makes and models. Illustrative results are presented for a Base Case, calibrated to the Annual Energy Outlook (AEO) 2009 Reference Updated Case, and an optimistic technology scenario reflecting achievement of U.S. Department of Energy s (DOE s) FreedomCAR goals. PHEV market success is highly dependent on the degree of technological progress assumed. PHEV sales reach one million in 2037 in the Base Case but in 2020 in the FreedomCARGoals Case. In the FreedomCARGoals Case, PHEV cumulative sales reach 1.5 million by 2015. Together with efficiency improvements in other technologies, petroleum use in 2050 is reduced by about 45% from the 2005 level. After technological progress, PHEV s market success appears to be most sensitive to recharging availability, consumers attitudes toward novel echnologies, and vehicle usage intensity. Successful market penetration of PHEVs helps bring down battery costs for electric vehicles (EVs), resulting in a significant EV market share after 2040.

  14. Impact Assessment of Plug-in Hybrid Vehicles on the U.S. Power Grid

    SciTech Connect (OSTI)

    Kintner-Meyer, Michael CW; Nguyen, Tony B.; Jin, Chunlian; Balducci, Patrick J.; Secrest, Thomas J.

    2010-09-30

    The US electricity grid is a national infrastructure that has the potential to deliver significant amounts of the daily driving energy of the US light duty vehicle (cars, pickups, SUVs, and vans) fleet. This paper discusses a 2030 scenario with 37 million plug-in hybrid electric vehicles (PHEVs) on the road in the US demanding electricity for an average daily driving distance of about 33 miles (53 km). The paper addresses the potential grid impacts of the PHEVs fleet relative to their effects on the production cost of electricity, and the emissions from the electricity sector. The results of this analysis indicate significant regional difference on the cost impacts and the CO2 emissions. Battery charging during the day may have twice the cost impacts than charging during the night. The CO2 emissions impacts are very region-dependent. In predominantly coal regions (Midwest), the new PHEV load may reduce the CO2 emission intensity (ton/MWh), while in others regions with significant clean generation (hydro and renewable energy) the CO2 emission intensity may increase. Discussed will the potential impact of the results with the valuation of carbon emissions.

  15. AVTA: 2013 Ford C-Max Energi Fleet PHEV Testing Results

    Broader source: Energy.gov [DOE]

    VTO's National Laboratories have tested and collected both dynamometer and fleet data for the Ford CMAX Energi (a plug-in hybrid electric vehicle).

  16. Operating and Maintaining Energy Smart Schools Action Plan Template - All Action Plans

    SciTech Connect (OSTI)

    none,

    2009-07-01

    EnergySmart Schools action plan templates for benchmarking, lighting, HVAC, water heating, building envelope, transformer, plug loads, kitchen equipment, swimming pool, building automation system, other.

  17. Fact #595: November 2, 2009 Plug-in Hybrid Vehicle Purchases...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    released results of a 2008 survey on plug-in hybrid vehicles (PHEVs) show that 42% of respondents said there was some chance that they would buy a PHEV sometime in the future. ...

  18. Secretary Chu Announces up to $10 Million to Support Plug-In...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Today's announcement will also help meet President Obama's goal of putting one million plug-in hybrid vehicles on the road by 2015. "These projects will help move technologies from ...

  19. Project Profile: Development of a Low-Cost Residential Plug-and-Play Photovoltaic System

    Broader source: Energy.gov [DOE]

    North Carolina State University FREEDM Systems Engineering Center and its partners, under the Plug-and-Play Photovoltaics FOA, are performing analysis, design, and innovation to address each stage...

  20. Development and Deployment of Generation 3 Plug-In Hybrid Electric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon vss023friesner2011o.pdf More Documents & Publications Navistar-Driving efficiency with integrated technology Plug IN Hybrid Vehicle Bus The Business of Near Zero...

  1. Grid-Integrated Fleet & Workplace Charging for Plug-in Electric Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Grid-Integrated Fleet & Workplace Charging for ! Plug-in Electric Vehicles ! J.C. Martin Workplace Charging Challenge - Summit 2014 November 18, 2014 © 2011San Diego Gas & Electric Company. All copyright and trademark rights reserved. SDG&E Goal - Grid Integrated Charging ! Create an excellent customer experience and accelerate the growth of electric transportation by ensuring the safe, reliable and efficient integration of EV loads with the grid * More plug-in electric vehicles *

  2. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    terms Search Showing 1 - 6 of 6 results. Download Power to the Plug: An Introduction to Energy, Electricity, Consumption, and Efficiency The NEED Project and the U.S. Department...

  3. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    terms Search Showing 1 - 10 of 12 results. Download Power to the Plug: An Introduction to Energy, Electricity, Consumption, and Efficiency The NEED Project and the U.S. Department...

  4. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    terms Search Showing 1 - 2 of 2 results. Download Power to the Plug: An Introduction to Energy, Electricity, Consumption, and Efficiency The NEED Project and the U.S. Department...

  5. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Search Showing 21 - 30 of 65 results. Download Power to the Plug: An Introduction to Energy, Electricity, Consumption, and Efficiency The NEED Project and the U.S. Department...

  6. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    terms Search Showing 1 - 1 of 1 result. Download Power to the Plug: An Introduction to Energy, Electricity, Consumption, and Efficiency The NEED Project and the U.S. Department...

  7. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Search Showing 1 - 3 of 3 results. Download Power to the Plug: An Introduction to Energy, Electricity, Consumption, and Efficiency The NEED Project and the U.S. Department of...

  8. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Search Showing 1 - 2 of 2 results. Download Power to the Plug: An Introduction to Energy, Electricity, Consumption, and Efficiency The NEED Project and the U.S. Department of...

  9. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Search Showing 1 - 1 of 1 result. Download Power to the Plug: An Introduction to Energy, Electricity, Consumption, and Efficiency The NEED Project and the U.S. Department of...

  10. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Search Showing 1 - 6 of 6 results. Download Power to the Plug: An Introduction to Energy, Electricity, Consumption, and Efficiency The NEED Project and the U.S. Department of...

  11. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Showing 1 - 10 of 12 results. Download Power to the Plug: An Introduction to Energy, Electricity, Consumption, and Efficiency The NEED Project and the U.S. Department of...

  12. Fiscal year 1995 well plugging and abandonment program Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    1995-09-01

    This report is a synopsis of the progress of the well plugging and abandonment program at the Y-12 Plant, Oak Ridge, Tennessee, from September 1994 through August 1995. A total of 67 wells, piezometers, and borings were plugged and abandoned during the period of time covered in this report. All wells and borings were plugged and abandoned if (1) its construction did not meet current standards (substandard construction); (2) it was irreparably damaged or had deteriorated beyond practical repair; (3) its location interfered with or otherwise impeded site operations, construction, or closure activities; or (4) special circumstances existed as defined on a case-by-case basis and approved by the Y-12 Plant Groundwater Protection Program (GWPP) Manager. This summary report contains: general geologic setting of the Y-12 Plant and vicinity; discussion of well plugging and abandonment methods, grouting procedures, and waste management practices (a Waste Management Plan for Drilling Activities is included in Appendix C); summaries of plugging and abandonment activities at each site; and quality assurance/quality control (QA/QC) and health and safety protocols used during the FY 1995 Plugging and Abandonment Program.

  13. MENDF71x. Multigroup Neutron Cross Section Data Tables Based upon ENDF/B-VII.1

    SciTech Connect (OSTI)

    Conlin, Jeremy Lloyd; Parsons, Donald Kent; Gardiner, Steven J.; Gray, Mark Girard; Lee, Mary Beth; White, Morgan Curtis

    2015-12-17

    A new multi-group neutron cross section library has been released along with the release of NDI version 2.0.20. The library is named MENDF71x and is based upon the evaluations released in ENDF/B-VII.1 which was made publicly available in December 2011. ENDF/B-VII.1 consists of 423 evaluations of which ten are excited states evaluations and 413 are ground state evaluations. MENDF71x was created by processing the 423 evaluations into 618-group, downscatter only NDI data tables. The ENDF/B evaluation files were processed using NJOY version 99.393 with the exception of 35Cl and 233U. Those two isotopes had unique properties that required that we process the evaluation using NJOY version 2012. The MENDF71x library was only processed to room temperature, i.e., 293.6 K. In the future, we plan on producing a multi-temperature library based on ENDF/B-VII.1 and compatible with MENDF71x.

  14. Equations of state of ice VI and ice VII at high pressure and high temperature

    SciTech Connect (OSTI)

    Bezacier, Lucile; Hanfland, Michael; Journaux, Baptiste; Perrillat, Jean-Philippe; Cardon, Herv; Daniel, Isabelle

    2014-09-14

    High-pressure H{sub 2}O polymorphs among which ice VI and ice VII are abundant in the interiors of large icy satellites and exo-planets. Knowledge of the elastic properties of these pure H{sub 2}O ices at high-temperature and high-pressure is thus crucial to decipher the internal structure of icy bodies. In this study we assess for the first time the pressure-volume-temperature (PVT) relations of both polycrystalline pure ice VI and ice VII at high pressures and temperatures from 1 to 9 GPa and 300 to 450 K, respectively, by using in situ synchrotron X-ray diffraction. The PVT data are adjusted to a second-order Birch-Murnaghan equation of state and give V{sub 0} = 14.17(2) cm{sup 3}?mol{sup ?1}, K{sub 0} = 14.05(23) GPa, and ?{sub 0} = 14.6(14) 10{sup ?5} K{sup ?1} for ice VI and V{sub 0} = 12.49(1) cm{sup 3}?mol{sup ?1}, K{sub 0} = 20.15(16) GPa, and ?{sub 0} = 11.6(5) 10{sup ?5} K{sup ?1} for ice VII.

  15. Evaluation of Utility System Impacts and Benefits of Optimally Dispatched Plug-In Hybrid Electric Vehicles (Revised)

    SciTech Connect (OSTI)

    Denholm, P.; Short, W.

    2006-10-01

    Hybrid electric vehicles with the capability of being recharged from the grid may provide a significant decrease in oil consumption. These ''plug-in'' hybrids (PHEVs) will affect utility operations, adding additional electricity demand. Because many individual vehicles may be charged in the extended overnight period, and because the cost of wireless communication has decreased, there is a unique opportunity for utilities to directly control the charging of these vehicles at the precise times when normal electricity demand is at a minimum. This report evaluates the effects of optimal PHEV charging, under the assumption that utilities will indirectly or directly control when charging takes place, providing consumers with the absolute lowest cost of driving energy. By using low-cost off-peak electricity, PHEVs owners could purchase the drive energy equivalent to a gallon of gasoline for under 75 cents, assuming current national average residential electricity prices.

  16. Magnitude and Variability of Controllable Charge Capacity Provided by Grid Connected Plug-in Electric Vehicles

    SciTech Connect (OSTI)

    Scoffield, Don R; Smart, John; Salisbury, Shawn

    2015-03-01

    As market penetration of plug-in electric vehicles (PEV) increases over time, the number of PEVs charging on the electric grid will also increase. As the number of PEVs increases, their ability to collectively impact the grid increases. The idea of a large body of PEVs connected to the grid presents an intriguing possibility. If utilities can control PEV charging, it is possible that PEVs could act as a distributed resource to provide grid services. The technology required to control charging is available for modern PEVs. However, a system for wide-spread implementation of controllable charging, including robust communication between vehicles and utilities, is not currently present. Therefore, the value of controllable charging must be assessed and weighed against the cost of building and operating such as system. In order to grasp the value of PEV charge control to the utility, the following must be understood: 1. The amount of controllable energy and power capacity available to the utility 2. The variability of the controllable capacity from day to day and as the number of PEVs in the market increases.

  17. Plug-In Electric Vehicle Fast Charge Station Operational Analysis with Integrated Renewables: Preprint

    SciTech Connect (OSTI)

    Simpson, M.; Markel, T.

    2012-08-01

    The growing, though still nascent, plug-in electric vehicle (PEV) market currently operates primarily via level 1 and level 2 charging in the United States. Fast chargers are still a rarity, but offer a confidence boost to oppose 'range anxiety' in consumers making the transition from conventional vehicles to PEVs. Because relatively no real-world usage of fast chargers at scale exists yet, the National Renewable Energy Laboratory developed a simulation to help assess fast charging needs based on real-world travel data. This study documents the data, methods, and results of the simulation run for multiple scenarios, varying fleet sizes, and the number of charger ports. The grid impact of this usage is further quantified to assess the opportunity for integration of renewables; specifically, a high frequency of fast charging is found to be in demand during the late afternoons and evenings coinciding with grid peak periods. Proper integration of a solar array and stationary battery thus helps ease the load and reduces the need for new generator construction to meet the demand of a future PEV market.

  18. Solar Technology Assessment Project. Volume VII. A review of OTEC

    SciTech Connect (OSTI)

    Yuen, P.C.

    1981-04-01

    The Ocean Thermal Energy Conversion (OTEC) principle is discussed along with general system and cycle types, specific OTEC designs, applications, and the ocean thermal resource. the historic development and present status of OTEC are reviewed. Power system components of the more technically advanced closed-cycle OTEC concept are discussed: heat exchangers, corrosion and biofouling countermeasures, working fluids, ammonia power systems, and on-platform seawater sytems. Several open-cycle features are also discussed. A critical review of the ocean engineering aspects of the OTEC power system is presented. Major subsystems such as platform, cold water pipe, mooring system, dynamic positioning system and power transmission cable system are assessed for their relationships with the ocean environment and with each other. Nine available studies of OTEC costs are reviewed, and tentative comparisons are made between OTEC and traditional fuel costs. OTEC products and markets are considered. Possible environmental and social effects of OTEC development are discussed. International and national laws regulating OTEC plants are reviewed, specifically, the United Nations Third Conference on the Law of the Sea and the Ocean Thermal Energy Conversion Act of 1980. Coast Guard regulations, OSHA laws, and state and local government regulations are also considered as well as attitudes of the utilities. (LEW)

  19. Demonstration of a Piston Plug feed System for Feeding Coal/Biomass Mixtures across a Pressure Gradient for Application to a Commercial CBTL System

    SciTech Connect (OSTI)

    Santosh Gangwal

    2011-06-30

    Producing liquid transportation fuels and power via coal and biomass to liquids (CBTL) and integrated gasification combined cycle (IGCC) processes can significantly improve the nation's energy security. The Energy Independence and Security Act of 2007 mandates increasing renewable fuels nearly 10-fold to >2.3 million barrels per day by 2022. Coal is abundantly available and coal to liquids (CTL) plants can be deployed today, but they will not become sustainable without large scale CO{sub 2} capture and storage. Co-processing of coal and biomass in CBTL processes in a 60 to 40 ratio is an attractive option that has the potential to produce 4 million barrels of transportation fuels per day by 2020 at the same level of CO{sub 2} emission as petroleum. In this work, Southern Research Institute (Southern) has made an attempt to address one of the major barriers to the development of large scale CBTL processes - cost effective/reliable dry-feeding of coal-biomass mixtures into a high pressure vessel representative of commercial entrained-flow gasifiers. Present method for dry coal feeding involves the use of pressurized lock-hopper arrangements that are not only very expensive with large space requirements but also have not been proven for reliably feeding coal-biomass mixtures without the potential problems of segregation and bridging. The project involved the development of a pilot-scale 250 lb/h high pressure dry coal-biomass mixture feeder provided by TKEnergi and proven for feeding biomass at a scale up to 6 ton/day. The aim of this project is to demonstrate cost effective feeding of coal-biomass mixtures (50:50 to 70:30) made from a variety of coals (bituminous, lignite) and biomass (wood, corn stover, switch grass). The feeder uses a hydraulic piston-based approach to produce a series of plugs of the mixture that act as a seal against high back-pressure of the gasification vessel in to which the mixture is being fed. The plugs are then fed one by one via a plug breaker into the high pressure gasification vessel. A number of runs involving the feeding of coal and biomass mixtures containing 50 to 70 weight % coal into a high pressure gasification vessel simulator have shown that plugs of sufficient density can be formed to provide a seal against pressures up to 450 psig if homogeneity of the mixture can be maintained. However, the in-homogeneity of coal-biomass mixtures can occur during the mixing process because of density, particle size and moisture differences. Also, the much lower compressibility of coal as opposed to biomass can contribute to non-uniform plug formation which can result in weak plugs. Based on present information, the piston plug feeder offered marginal economic advantages over lock-hoppers. The results suggest a modification to the piston feeder that can potentially seal against pressure without the need for forming plugs. This modified design could result in lower power requirements and potentially better economics.

  20. Hybrid Electric and Plug-in Hybrid Electric Vehicle Testing Activities

    SciTech Connect (OSTI)

    Donald Karner

    2007-12-01

    The Advanced Vehicle Testing Activity (AVTA) conducts hybrid electric vehicle (HEV) and plug-in hybrid electric vehicle (PHEV) testing in order to provide benchmark data for technology modeling and research and development programs, and to be an independent source of test data for fleet managers and other early adaptors of advanced-technology vehicles. To date, the AVTA has completed baseline performance testing on 12 HEV models and accumulated 2.7 million fleet testing miles on 35 HEVs. The HEV baseline performance testing includes dynamometer and closed-track testing to document HEV performance in a controlled environment. During fleet testing, two of each HEV model accumulate 160,000 test miles within 36 months, during which maintenance and repair events and fuel use were recorded. Three models of PHEVs, from vehicle converters Energy CS and Hymotion and the original equipment manufacturer Renault, are currently in testing. The PHEV baseline performance testing includes 5 days of dynamometer testing with a minimum of 26 test drive cycles, including the Urban Dynamometer Driving Schedule, the Highway Fuel Economy Driving Schedule, and the US06 test cycle, in charge-depleting and charge-sustaining modes. The PHEV accelerated testing is conducted with dedicated drivers for 4,240 miles, over a series of 132 driving loops that range from 10 to 200 miles over various combinations of defined 10-mile urban and 10-mile highway loops, with 984 hours of vehicle charging. The AVTA is part of the U.S. Department of Energys FreedomCAR and Vehicle Technologies Program. These AVTA testing activities were conducted by the Idaho National Laboratory and Electric Transportation Applications, with dynamometer testing conducted at Argonne National Laboratory. This paper discusses the testing methods and results.

  1. Methodology for Mechanical Property Testing of Fuel Cladding Using a Expanded Plug Wedge Test

    SciTech Connect (OSTI)

    Jiang, Hao; Wang, Jy-An John

    2014-01-01

    An expanded plug method was developed earlier for determining the tensile properties of irradiated fuel cladding. This method tests fuel rod cladding ductility by utilizing an expandable plug to radially stretch a small ring of irradiated cladding material. The circumferential or hoop strain is determined from the measured diametrical expansion of the ring. A developed procedure is used to convert the load circumferential strain data from the ring tests into material pseudo-stress-strain curves, from which material properties of the cladding can be extracted. However, several deficiencies existed in this expanded-plug test that can impact the accuracy of test results, such as that the large axial compressive stress resulted from the expansion plug test can potentially induce the shear failure mode of the tested specimen. Moreover, highly nonuniform stress and strain distribution in the deformed clad gage section and significant compressive stresses, induced by bending deformation due to clad bulging effect, will further result in highly nonconservative estimates of the mechanical properties for both strength and ductility of the tested clad. To overcome the aforementioned deficiencies associated with the current expansion plug test, systematic studies have been conducted. By optimizing the specific geometry designs, selecting the appropriate material for the expansion plug, and adding new components into the testing system, a modified expansion plug testing protocol has been developed. A general procedure was also developed to determine the hoop stress in the tested ring specimen. A scaling factor, -factor, was used to convert the ring load Fring into hoop stress , and is written as _ = F_ring/tl , where t is the clad thickness and l is the clad length. The generated stress-strain curve agrees well with the associated tensile test data in both elastic and plastic deformation regions.

  2. Plug-In Hybrid Electric Vehicle Market Introduction Study: Final Report

    SciTech Connect (OSTI)

    Sikes, Karen; Gross, Thomas; Lin, Zhenhong; Sullivan, John; Cleary, Timothy; Ward, Jake

    2010-02-01

    Oak Ridge National Laboratory (ORNL), Sentech, Inc., Pacific Northwest National Laboratory (PNNL)/University of Michigan Transportation Research Institute (UMTRI), and the U.S. Department of Energy (DOE) have conducted a Plug-in Hybrid Electric Vehicle (PHEV) Market Introduction Study to identify and assess the effect of potential policies, regulations, and temporary incentives as key enablers for a successful market debut. The timeframe over which market-stimulating incentives would be implemented - and the timeframe over which they would be phased out - are suggested. Possible sources of revenue to help fund these mechanisms are also presented. In addition, pinch points likely to emerge during market growth are identified and proposed solutions presented. Finally, modeling results from ORNL's Market Acceptance of Advanced Automotive Technologies (MA3T) Model and UMTRI's Virtual AutoMotive MarketPlace (VAMMP) Model were used to quantify the expected effectiveness of the proposed policies and to recommend a consensus strategy aimed at transitioning what begins as a niche industry into a thriving and sustainable market by 2030. The primary objective of the PHEV Market Introduction Study is to identify the most effective means for accelerating the commercialization of PHEVs in order to support national energy and economic goals. Ideally, these mechanisms would maximize PHEV sales while minimizing federal expenditures. To develop a robust market acceleration program, incentives and policies must be examined in light of: (1) clarity and transparency of the market signals they send to the consumer; (2) expenditures and resources needed to support them; (3) expected impacts on the market for PHEVs; (4) incentives that are compatible and/or supportive of each other; (5) complexity of institutional and regulatory coordination needed; and (6) sources of funding.

  3. General Merchandise 2009 TSD Miami Low Plug Load Baseline | Open...

    Open Energy Info (EERE)

    90.1 2004 Model Year 2009 IDF file http:apps1.eere.energy.govbuildingsenergyplusmodelsMiami2009TSDGeneralMerchLPLbaseline.idf XML file http:apps1.eere.energy.gov...

  4. General Merchandise 2009 TSD Chicago Low Plug Load Baseline ...

    Open Energy Info (EERE)

    90.1 2004 Model Year 2009 IDF file http:apps1.eere.energy.govbuildingsenergyplusmodelsMiami2009TSDGeneralMerchLPLBaseline.idf XML file http:apps1.eere.energy.gov...

  5. General Merchandise 2009 TSD Chicago High Plug Load Baseline...

    Open Energy Info (EERE)

    90.1 2004 Model Year 2009 IDF file http:apps1.eere.energy.govbuildingsenergyplusmodelsChicago2009TSDGeneralMerchHPLBaseline.idf XML file http:apps1.eere.energy.gov...

  6. General Merchandise 2009 TSD Miami High Plug Load Baseline |...

    Open Energy Info (EERE)

    90.1 2004 Model Year 2009 IDF file http:apps1.eere.energy.govbuildingsenergyplusmodelsMiami2009TSDGeneralMerchHPLbaseline.idf XML file http:apps1.eere.energy.gov...

  7. Optimizing Cr(VI) and Tc(VII) remediation through nano-scale biomineral engineering

    SciTech Connect (OSTI)

    Cutting, R. S.; Coker, V. S.; Telling, N. D.; Kimber, R. L.; Pearce, C. I.; Ellis, B.; Lawson, R; van der Laan, G.; Pattrick, R.A.D.; Vaughan, D.J.; Arenholz, E.; Lloyd, J. R.

    2009-09-09

    To optimize the production of biomagnetite for the bioremediation of metal oxyanion contaminated waters, the reduction of aqueous Cr(VI) to Cr(III) by two biogenic magnetites and a synthetic magnetite was evaluated under batch and continuous flow conditions. Results indicate that nano-scale biogenic magnetite produced by incubating synthetic schwertmannite powder in cell suspensions of Geobacter sulfurreducens is more efficient at reducing Cr(VI) than either biogenic nano-magnetite produced from a suspension of ferrihydrite 'gel' or synthetic nano-scale Fe{sub 3}O{sub 4} powder. Although X-ray Photoelectron Spectroscopy (XPS) measurements obtained from post-exposure magnetite samples reveal that both Cr(III) and Cr(VI) are associated with nanoparticle surfaces, X-ray Magnetic Circular Dichroism (XMCD) studies indicate that some Cr(III) has replaced octahedrally coordinated Fe in the lattice of the magnetite. Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) measurements of total aqueous Cr in the associated solution phase indicated that, although the majority of Cr(III) was incorporated within or adsorbed to the magnetite samples, a proportion ({approx}10-15 %) was released back into solution. Studies of Tc(VII) uptake by magnetites produced via the different synthesis routes also revealed significant differences between them as regards effectiveness for remediation. In addition, column studies using a {gamma}-camera to obtain real time images of a {sup 99m}Tc(VII) radiotracer were performed to visualize directly the relative performances of the magnetite sorbents against ultra-trace concentrations of metal oxyanion contaminants. Again, the magnetite produced from schwertmannite proved capable of retaining more ({approx}20%) {sup 99m}Tc(VII) than the magnetite produced from ferrihydrite, confirming that biomagnetite production for efficient environmental remediation can be fine-tuned through careful selection of the initial Fe(III) mineral substrate supplied to Fe(III)-reducing bacteria.

  8. VII Zw 403: H I STRUCTURE IN A BLUE COMPACT DWARF GALAXY

    SciTech Connect (OSTI)

    Simpson, Caroline E.; Ashley, Trisha; Hunter, Deidre A.; Nordgren, Tyler E.; Brinks, Elias; Elmegreen, Bruce G.; Lynds, Roger; O'Neil, Earl J.; McIntyre, Vince J.; Oestlin, Goeran; Westpfahl, David J.; Wilcots, Eric M.

    2011-09-15

    We present optical (UBVJ), ultraviolet (FUV, NUV), and high-resolution atomic hydrogen (H I) observations of the nearby blue compact dwarf (BCD), VII Zw 403. We find that VII Zw 403 has a relatively high H I mass-to-light ratio for a BCD. The rotation velocity is nominally 10-15 km s{sup -1}, but rises to {approx}20 km s{sup -1} after correction for the {approx}8-10 km s{sup -1} random motions present in the gas. The velocity field is complex, including a variation in the position angle of the major axis going from the northeast to the southwest parts of the galaxy. Our high-resolution H I maps reveal structure in the central gas, including a large, low-density H I depression or hole between the southern and northern halves of the galaxy, coincident with an unresolved X-ray source. Although interactions have been proposed as the triggering mechanism for the vigorous star formation occurring in BCDs, VII Zw 403 does not seem to have been tidally triggered by an external interaction, as we have found no nearby possible perturbers. It also does not appear to fall in the set of galaxies that exhibit a strong central mass density concentration, as its optical scale length is large in comparison to similar systems. However, there are some features that are compatible with an accretion event: optical/H I axis misalignment, a change in position angle of the kinematic axis, and a complex velocity field.

  9. Underground Test Area Subproject Phase I Data Analysis Task. Volume VII - Tritium Transport Model Documentation Package

    SciTech Connect (OSTI)

    1996-12-01

    Volume VII of the documentation for the Phase I Data Analysis Task performed in support of the current Regional Flow Model, Transport Model, and Risk Assessment for the Nevada Test Site Underground Test Area Subproject contains the tritium transport model documentation. Because of the size and complexity of the model area, a considerable quantity of data was collected and analyzed in support of the modeling efforts. The data analysis task was consequently broken into eight subtasks, and descriptions of each subtask's activities are contained in one of the eight volumes that comprise the Phase I Data Analysis Documentation.

  10. COMBINE7.1 - A Portable ENDF/B-VII.0 Based Neutron Spectrum and Cross-Section Generation Program

    SciTech Connect (OSTI)

    Woo Y. Yoon; David W. Nigg

    2011-09-01

    COMBINE7.1 is a FORTRAN 90 computer code that generates multigroup neutron constants for use in the deterministic diffusion and transport theory neutronics analysis. The cross-section database used by COMBINE7.1 is derived from the Evaluated Nuclear Data Files (ENDF/B-VII.0). The neutron energy range covered is from 20 MeV to 1.0E-5 eV. The Los Alamos National Laboratory NJOY code is used as the processing code to generate a 167 fine-group cross-section library in MATXS format for Bondarenko self-shielding treatment. Resolved resonance parameters are extracted from ENDF/B-VII.0 File 2 for a separate library to be used in an alternate Nordheim self-shielding treatment in the resolved resonance energy range. The equations solved for energy dependent neutron spectrum in the 167 fine-group structure are the B3 or B1 zero-dimensional approximations to the transport equation. The fine group cross sections needed for the spectrum calculation are first prepared by Bondarenko self-shielding interpolation in terms of background cross section and temperature. The geometric lump effect, when present, is accounted for by augmenting the background cross section. Nordheim self-shielded fine group cross sections for a material having resolved resonance parameters overwrite correspondingly the existing self-shielded fine group cross sections when this option is used. COMBINE7.1 coalesces fine group cross sections into broad group macroscopic and microscopic constants. The coalescing is performed by utilizing fine-group fluxes and/or currents obtained by spectrum calculation as the weighting functions. The multigroup constants may be output in any of several standard formats including INL format, ANISN 14** free format, CCCC ISOTXS format, and AMPX working library format. ANISN-PC, a one-dimensional (1-D) discrete-ordinate transport code, is incorporated into COMBINE7.1. As an option, the 167 fine-group constants generated by zero-dimensional COMBINE portion in the program can be used to calculate regionwise spectra in the 1-D ANISN portion, all internally to reflect the 1-D transport correction. The regionwise spectra are then used to generate mutigroup regionwise neutron constants. The 1-D neutron transport can be performed up to three stages, e.g., from a TRISO fuel to PEBBLE to 1-D full core wedge. In addition, COMBINE7.1 has now the capability of adjoint flux calculation through the 1-D ANISN transport. Photon transport capability is also added. For this, a photon production and photo-atomic cross section library, MATNG.LIB, was generated in MATXS format through NJOY code. The photon production cross section matrix is of 167 neutron - 18 photon groups. Photo-atomic cross sections, including heating, are in 18 energy groups.

  11. Alternative Fuels Data Center: Plug-In Electric Vehicle Readiness...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    option that has the potential to benefit a community's economy, energy security, and environment. As local and regional leaders know, PEV readiness is a community-wide effort,...

  12. Electromagnetic Analysis For The Design Of ITER Diagnostic Port Plugs During Plasma Disruptions

    SciTech Connect (OSTI)

    Zhai, Y

    2014-03-03

    ITER diagnostic port plugs perform many functions including structural support of diagnostic systems under high electromagnetic loads while allowing for diagnostic access to plasma. The design of diagnotic equatorial port plugs (EPP) are largely driven by electromagnetic loads and associate response of EPP structure during plasma disruptions and VDEs. This paper summarizes results of transient electromagnetic analysis using Opera 3d in support of the design activities for ITER diagnostic EPP. A complete distribution of disruption loads on the Diagnostic First Walls (DFWs). Diagnostic Shield Modules (DSMs) and the EPP structure, as well as impact on the system design integration due to electrical contact among various EPP structural components are discussed.

  13. AVTA: Reports on Plug-in Electric Vehicle Readiness at 3 DOD Facilities

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports analyze data and survey results on readiness for the use of plug-in electric vehicles on the Naval Air Station Jacksonville, Naval Station Mayport, and Joint Base Lewis McChord, as informed by the AVTA's testing on plug-in electric vehicle charging equipment. This research was conducted by Idaho National Laboratory.

  14. Robert Graham | Department of Energy

    Energy Savers [EERE]

    Robert Graham About Us Robert Graham - Director, EV Everywhere Challenge Director, EV Everywhere Challenge, US Department of Energy, responsible for the DOE's initiatives to increase market penetration of plug-in electric vehicles. Upon retirement from Southern California Edison in January 2014, where he served as a member of the SCE transportation electrification program, Bob has supported the market expansion of plug in electric vehicles as a part time consultant. Engagement in the PEV market

  15. Ford Debuts Solar Energy Concept Car

    Broader source: Energy.gov [DOE]

    The Ford Motor Company unveiled the C-MAX Solar Energi Concept, a sun-powered vehicle with the potential to deliver what a plug-in hybrid offers without depending on the electric grid for fuel.

  16. Vehicle Technologies Office News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Energi Concept, a sun-powered vehicle with the potential to deliver what a plug-in hybrid offers without depending on the electric grid for fuel. January 15, 2014 Help...

  17. About EV Everywhere | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    About EV Everywhere EV Everywhere is the umbrella effort of the U.S. Department of Energy (DOE) to increase the adoption and use of plug-in electric vehicles (EVs). EV Everywhere...

  18. Monthly Energy Review, February 1996

    SciTech Connect (OSTI)

    1996-02-26

    This monthly publication presents an overview of EIA`s recent monthly energy statistics, covering the major activities of U.S. production, consumption, trade, stocks, and prices for petroleum, natural gas, coal, electricity, and nuclear energy. Also included are international energy and thermal and metric conversion factors. Two brief descriptions (`energy plugs`) on two EIA publications are presented at the start.

  19. Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Activity | Department of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon vss018_cesiel_2012

  20. Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Activity | Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon vss018_cesiel_2011

  1. Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Activity | Department of Energy 0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon vss018_cesiel_2010

  2. NREL: Energy Systems Integration Facility - Research Electrical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Distribution Bus Electrical Distribution Bus The Research Electrical Distribution Bus is the Energy Systems Integration Facility's internal utility infrastructure interconnecting its laboratories. It facilitates complex integrated system testing of both AC and DC systems up to a 1-MW scale across the laboratories. Photo of laboratory equipment with four different color-coded wires plugged into it. Equipment and experiments throughout the Energy Systems Integration Facility can plug into the

  3. National Drive Electric Week | Department of Energy

    Energy Savers [EERE]

    National Drive Electric Week National Drive Electric Week September 16, 2014 - 4:00pm Addthis Celebrate National Drive Electric Week with ways to make your all-electric or plug-in hybrid cars even greener! | Photo courtesy of Dennis Schroeder, National Renewable Energy Laboratory Celebrate National Drive Electric Week with ways to make your all-electric or plug-in hybrid cars even greener! | Photo courtesy of Dennis Schroeder, National Renewable Energy Laboratory Paige Terlip Paige Terlip Former

  4. Plug-in Hybrid Electric Vehicle Value Proposition Study - Final Report

    SciTech Connect (OSTI)

    Sikes, Karen; Hadley, Stanton W; McGill, Ralph N; Cleary, Timothy

    2010-07-01

    PHEVs have been the subject of growing interest in recent years because of their potential for reduced operating costs, oil displacement, national security, and environmental benefits. Despite the potential long-term savings to consumers and value to stakeholders, the initial cost of PHEVs presents a major market barrier to their widespread commercialization. The study Objectives are: (1) To identify and evaluate value-added propositions for PHEVs that will help overcome the initial price premium relative to comparable ICEs and HEVs and (2) to assess other non-monetary benefits and barriers associated with an emerging PHEV fleet, including environmental, societal, and grid impacts. Study results indicate that a single PHEV-30 on the road in 2030 will: (1) Consume 65% and 75% less gasoline than a comparable HEV and ICE, respectively; (2) Displace 7.25 and 4.25 barrels of imported oil each year if substituted for equivalent ICEs and HEVs, respectively, assuming 60% of the nation's oil consumed is imported; (3) Reduce net ownership cost over 10 years by 8-10% relative to a comparable ICE and be highly cost competitive with a comparable HEV; (4) Use 18-22% less total W2W energy than a comparable ICE, but 8-13% more than a comparable HEV (assuming a 70/30 split of E10 and E85 use in 2030); and (5) Emit 10% less W2W CO{sub 2} than equivalent ICEs in southern California and emits 13% more W2W CO{sub 2} than equivalent ICEs in the ECAR region. This also assumes a 70/30 split of E10 and E85 use in 2030. PHEVs and other plug-in vehicles on the road in 2030 may offer many valuable benefits to utilities, business owners, individual consumers, and society as a whole by: (1) Promoting national energy security by displacing large volumes of imported oil; (2) Supporting a secure economy through the expansion of domestic vehicle and component manufacturing; (3) Offsetting the vehicle's initial price premium with lifetime operating cost savings (e.g., lower fuel and maintenance costs); (4) Supporting the use of off-peak renewable energy through smart charging practices. However, smart grid technology is not a prerequisite for realizing the benefits of PHEVs; and (5) Potentially using its bidirectional electricity flow capability to aid in emergency situations or to help better manage a building's or entire grid's load.

  5. Expanded plug method for developing circumferential mechanical properties of tubular materials

    DOE Patents [OSTI]

    Hendrich, William Ray; McAfee, Wallace Jefferson; Luttrell, Claire Roberta

    2006-11-28

    A method for determining the circumferential properties of a tubular product, especially nuclear fuel cladding, utilizes compression of a polymeric plug within the tubular product to determine strain stress, yield stress and other properties. The process is especially useful in the determination of aging properties such as fuel rod embrittlement after long burn-down.

  6. Clean Cities Plug-In Electric Vehicle Handbook for Fleet Managers

    SciTech Connect (OSTI)

    2012-04-01

    Plug-in electric vehicles (PEVs) are entering the automobile market and are viable alternatives to conventional vehicles. This guide for fleet managers describes the basics of PEV technology, PEV benefits for fleets, how to select the right PEV, charging a PEV, and PEV maintenance.

  7. Fact #822: May 26, 2014 Battery Capacity Varies Widely for Plug-In Vehicles

    Broader source: Energy.gov [DOE]

    Battery-electric vehicles have capacities ranging from 12 kilowatt-hours (kWh) in the Scion iQ EV to 85 kWh in the Tesla Model S. Plug-in hybrid-electric vehicles typically have smaller battery...

  8. Department of Energy Announces Advanced Vehicle Technology Competition,

    Energy Savers [EERE]

    EcoCar2: Plugging into the Future | Department of Energy Advanced Vehicle Technology Competition, EcoCar2: Plugging into the Future Department of Energy Announces Advanced Vehicle Technology Competition, EcoCar2: Plugging into the Future April 13, 2011 - 12:00am Addthis Washington, DC - Today, at the SAE 2011 World Congress in Detroit, Mich., U.S. Department of Energy's Assistant Secretary for Policy and International Affairs, David Sandalow, announced the official launch of the EcoCar2:

  9. Lab Tests Demonstrate Effectiveness of Advanced Power Strips (Fact Sheet), NREL Highlights, Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL engineers evaluate the functionalities of advanced power strips (APS) and help consumers choose the right one for their plug loads. Many consumer electronics devices waste energy even after they are turned off via "vampire" loads, mean- ing they continue to draw current as long as they remain plugged into receptacles. In a typical home with 40 plug loads, vampire loads can account for nearly 10% of household electricity use. Advanced power strips (APS) are a convenient and

  10. High-speed laser-induced fluorescence and spark plug absorption sensor diagnostics for mixing and combustion studies in engines

    SciTech Connect (OSTI)

    Cundy, Michael; Schucht, Torsten; Thiele, Olaf; Sick, Volker

    2009-02-01

    Simultaneous high-speed in-cylinder measurements of laser-induced fluorescence of biacetyl as a fuel tracer and mid-infrared broadband absorption of fuel and combustion products (water and carbon dioxide) using a spark plug probe are compared in an optical engine. The study addresses uncertainties and the applicability of absorption measurements at a location slightly offset to the spark plug when information about mixing at the spark plug is desired. Absorbance profiles reflect important engine operation events, such as valve opening and closing, mixing, combustion, and outgassing from crevices.

  11. Workplace Charging Challenge Partner: DTE Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DTE Energy Workplace Charging Challenge Partner: DTE Energy Workplace Charging Challenge Partner: DTE Energy DTE Energy seeks to be a premier, full-service, energy and energy-technology company providing solutions to meet the needs of 21st century customers including the installation of plug-in electric vehicle (PEV) charging stations. DTE Energy has installed or facilitated the installation of 78 charging stations across southeast Michigan, all of which provide free electricity. Fifty-four of

  12. Plug-In Hybrid Electric Vehicle Value Proposition Study: Interim Report: Phase I Scenario Evaluation

    SciTech Connect (OSTI)

    Sikes, Karen R; Markel, Lawrence C; Hadley, Stanton W; Hinds, Shaun; DeVault, Robert C

    2009-01-01

    Plug-in hybrid electric vehicles (PHEVs) offer significant improvements in fuel economy, convenient low-cost recharging capabilities, potential environmental benefits, and decreased reliance on imported petroleum. However, the cost associated with new components (e.g., advanced batteries) to be introduced in these vehicles will likely result in a price premium to the consumer. This study aims to overcome this market barrier by identifying and evaluating value propositions that will increase the qualitative value and/or decrease the overall cost of ownership relative to the competing conventional vehicles and hybrid electric vehicles (HEVs) of 2030 During this initial phase of this study, business scenarios were developed based on economic advantages that either increase the consumer value or reduce the consumer cost of PHEVs to assure a sustainable market that can thrive without the aid of state and Federal incentives or subsidies. Once the characteristics of a thriving PHEV market have been defined for this timeframe, market introduction steps, such as supportive policies, regulations and temporary incentives, needed to reach this level of sustainability will be determined. PHEVs have gained interest over the past decade for several reasons, including their high fuel economy, convenient low-cost recharging capabilities, potential environmental benefits and reduced use of imported petroleum, potentially contributing to President Bush's goal of a 20% reduction in gasoline use in ten years, or 'Twenty in Ten'. PHEVs and energy storage from advanced batteries have also been suggested as enabling technologies to improve the reliability and efficiency of the electric power grid. However, PHEVs will likely cost significantly more to purchase than conventional or other hybrid electric vehicles (HEVs), in large part because of the cost of batteries. Despite the potential long-term savings to consumers and value to stakeholders, the initial cost of PHEVs presents a major market barrier to their widespread commercialization. The purpose of this project is to identify and evaluate value-added propositions for PHEVs that will help overcome this market barrier. Candidate value propositions for the initial case study were chosen to enhance consumer acceptance of PHEVs and/or compatibility with the grid. Potential benefits of such grid-connected vehicles include the ability to supply peak load or emergency power requirements of the grid, enabling utilities to size their generation capacity and contingency resources at levels below peak. Different models for vehicle/battery ownership, leasing, financing and operation, as well as the grid, communications, and vehicle infrastructure needed to support the proposed value-added functions were explored during Phase 1. Rigorous power system, vehicle, financial and emissions modeling were utilized to help identify the most promising value propositions and market niches to focus PHEV deployment initiatives.

  13. Plug-in Electric Vehicle Infrastructure: A Foundation for Electrified Transportation: Preprint

    SciTech Connect (OSTI)

    Markel, T.

    2010-04-01

    Plug-in electric vehicles (PEVs)--which include all-electric vehicles and plug-in hybrid electric vehicles--provide a new opportunity for reducing oil consumption by drawing power from the electric grid. To maximize the benefits of PEVs, the emerging PEV infrastructure--from battery manufacturing to communication and control between the vehicle and the grid--must provide access to clean electricity, satisfy stakeholder expectations, and ensure safety. Currently, codes and standards organizations are collaborating on a PEV infrastructure plan. Establishing a PEV infrastructure framework will create new opportunities for business and job development initiating the move toward electrified transportation. This paper summarizes the components of the PEV infrastructure, challenges and opportunities related to the design and deployment of the infrastructure, and the potential benefits.

  14. ITER Generic Diagnostic Upper Port Plug Nuclear Heating and Personnel Dose Rate Assesment Neutronics Analysis using the ATTILA Discrete Ordinates Code

    SciTech Connect (OSTI)

    Russell Feder and Mahmoud Z. Yousef

    2009-05-29

    Neutronics analysis to find nuclear heating rates and personnel dose rates were conducted in support of the integration of diagnostics in to the ITER Upper Port Plugs. Simplified shielding models of the Visible-Infrared diagnostic and of the ECH heating system were incorporated in to the ITER global CAD model. Results for these systems are representative of typical designs with maximum shielding and a small aperture (Vis-IR) and minimal shielding with a large aperture (ECH). The neutronics discrete-ordinates code ATTILA and SEVERIAN (the ATTILA parallel processing version) was used. Material properties and the 500 MW D-T volume source were taken from the ITER Brand Model MCNP benchmark model. A biased quadrature set equivelant to Sn=32 and a scattering degree of Pn=3 were used along with a 46-neutron and 21-gamma FENDL energy subgrouping. Total nuclear heating (neutron plug gamma heating) in the upper port plugs ranged between 380 and 350 kW for the Vis-IR and ECH cases. The ECH or Large Aperture model exhibited lower total heating but much higher peak volumetric heating on the upper port plug structure. Personnel dose rates are calculated in a three step process involving a neutron-only transport calculation, the generation of activation volume sources at pre-defined time steps and finally gamma transport analyses are run for selected time steps. ANSI-ANS 6.1.1 1977 Flux-to-Dose conversion factors were used. Dose rates were evaluated for 1 full year of 500 MW DT operation which is comprised of 3000 1800-second pulses. After one year the machine is shut down for maintenance and personnel are permitted to access the diagnostic interspace after 2-weeks if dose rates are below 100 ?Sv/hr. Dose rates in the Visible-IR diagnostic model after one day of shutdown were 130 ?Sv/hr but fell below the limit to 90 ?Sv/hr 2-weeks later. The Large Aperture or ECH style shielding model exhibited higher and more persistent dose rates. After 1-day the dose rate was 230 ?Sv/hr but was still at 120 ?Sv/hr 4-weeks later. __________________________________________________

  15. 12 Days of Energy Savings | Department of Energy

    Energy Savers [EERE]

    12 Days of Energy Savings 12 Days of Energy Savings Addthis Day 12: Drive Your Way to Fuel Savings 1 of 12 Day 12: Drive Your Way to Fuel Savings Save money on fuel costs by emptying your car after all your shopping trips -- an extra 100 pounds in your vehicle could increase gas costs by up to $.08 a gallon. Image: Sarah Gerrity, Energy Department Day 11: Plug Holiday Decorations into Power Strips 2 of 12 Day 11: Plug Holiday Decorations into Power Strips Stop phantom loads -- which cost

  16. TECO Energy Video (Text Version) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    TECO Energy Video (Text Version) TECO Energy Video (Text Version) Hi. I'm Kenneth Hernandez, program manager for TECO Energy's alternative fuel vehicles. During this short video, I'll introduce you to plug-in electric vehicles and will touch a little bit on the technology that's available on the market, charging the vehicle at home versus a public station, savings from plugging in versus filling at the pump, and where to get additional information. So let's talk a little bit about the

  17. 12 Days of Energy Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Days of Energy Savings 12 Days of Energy Savings December 24, 2012 - 9:30am Addthis Day 12: Drive Your Way to Fuel Savings 1 of 12 Day 12: Drive Your Way to Fuel Savings Save money on fuel costs by emptying your car after all your shopping trips -- an extra 100 pounds in your vehicle could increase gas costs by up to $.08 a gallon. Image: Sarah Gerrity, Energy Department Day 11: Plug Holiday Decorations into Power Strips 2 of 12 Day 11: Plug Holiday Decorations into Power Strips Stop phantom

  18. An Integrated Onboard Charger and Accessary Power Converter for Plug-in Electric Vehicles

    SciTech Connect (OSTI)

    Su, Gui-Jia; Tang, Lixin

    2013-01-01

    Abstract: In this paper, an integrated onboard battery charger and accessary dc-dc converter for plug-in electric vehicles (PEVs) is presented. The idea is to utilize the already available traction drive inverters and motors of a PEV as the frond converter of the charger circuit and the transformer of the 14 V accessary dc-dc converter to provide galvanic isolation. The topology was verified by modeling and experimental results on a 5 kW charger prototype

  19. Asia/ITS | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Asia/ITS Asia/ITS EV Policy Landscape in the US PDF icon Asia/ITS More Documents & Publications Vehicle Technologies Office: AVTA - Evaluating National Parks and Forest Service Fleets for Plug-in Electric Vehicles Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Battery Pack Requirements and Targets Validation FY 2009 DOE Vehicle Technologies Program

  20. Sustainable Federal Fleets | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sustainable Federal Fleets Sustainable Federal Fleets Plug-in hybrid electric vehicles charge at a rapid charging system powered by a solar canopy. Plug-in hybrid electric vehicles charge at a rapid charging system powered by a solar canopy. The Federal Energy Management Program's (FEMP) Sustainable Federal Fleets section provides guidance and assistance to help agencies implement federal legislative and regulatory requirements mandating reduced petroleum consumption and increased alternative

  1. Vehicle Technologies Office Merit Review 2015: Plug-In Hybrid Medium-Duty Truck Demonstration and Evaluation Program

    Broader source: Energy.gov [DOE]

    Presentation given by SCAQMD at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about plug-in hybrid medium-duty truck...

  2. Sefaira Serves A Double Helping of EnergyPlus with Collaboration on Top |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Sefaira Serves A Double Helping of EnergyPlus with Collaboration on Top Sefaira Serves A Double Helping of EnergyPlus with Collaboration on Top November 19, 2015 - 10:52am Addthis Sefaira’s Real-Time Analysis plug-ins for Trimble SketchUp and Autodesk Revit give the user instant feedback on design changes. As of two weeks ago, these plug-ins now let the user select EnergyPlus as the simulation engine. Image credit: Sefaira. Sefaira's Real-Time Analysis plug-ins for

  3. Illinois: High-Energy, Concentration-Gradient Cathode Material...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a high-energy, concentration-gradient cathode material for plug-in hybrid and all-electric vehicles. ... market growth, leading to reductions in carbon pollution and imported oil. ...

  4. NREL Economic Impact Summary and Clean Energy Case Studies 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    11, 2013 - NREL engineers Mike Simpson, left and Tony Markel, run tests on Plug-In Hybrid Electric Vehicles (PHEV) at the Medium Voltage Outdoor Test Area (MVOTA) at the Energy...

  5. Variability of Battery Wear in Light Duty Plug-In Electric Vehicles Subject to Ambient Temperature, Battery Size, and Consumer Usage: Preprint

    SciTech Connect (OSTI)

    Wood, E.; Neubauer, J.; Brooker, A. D.; Gonder, J.; Smith, K. A.

    2012-08-01

    Battery wear in plug-in electric vehicles (PEVs) is a complex function of ambient temperature, battery size, and disparate usage. Simulations capturing varying ambient temperature profiles, battery sizes, and driving patterns are of great value to battery and vehicle manufacturers. A predictive battery wear model developed by the National Renewable Energy Laboratory captures the effects of multiple cycling and storage conditions in a representative lithium chemistry. The sensitivity of battery wear rates to ambient conditions, maximum allowable depth-of-discharge, and vehicle miles travelled is explored for two midsize vehicles: a battery electric vehicle (BEV) with a nominal range of 75 mi (121 km) and a plug-in hybrid electric vehicle (PHEV) with a nominal charge-depleting range of 40 mi (64 km). Driving distance distributions represent the variability of vehicle use, both vehicle-to-vehicle and day-to-day. Battery wear over an 8-year period was dominated by ambient conditions for the BEV with capacity fade ranging from 19% to 32% while the PHEV was most sensitive to maximum allowable depth-of-discharge with capacity fade ranging from 16% to 24%. The BEV and PHEV were comparable in terms of petroleum displacement potential after 8 years of service, due to the BEV?s limited utility for accomplishing long trips.

  6. Workplace Charging Challenge Partner: Xcel Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Xcel Energy Workplace Charging Challenge Partner: Xcel Energy Workplace Charging Challenge Partner: Xcel Energy Xcel Energy delivers clean, renewable energy and is committed to supporting the use of plug-in electric vehicles (PEVs). The company is an active partner with local governments, business and nonprofits in their efforts to bring PEVs and charging infrastructure into the communities it serves. Xcel Energy offers workplace charging stations to employees at a number of its facilities and

  7. ENDF/B-VII.0, ENDF/B-VI, JEFF-3.1, AND JENDL-3.3 RESULTS FOR UNREFLECTED PLUTONIUM SOLUTIONS AND MOX LATTICES (U)

    SciTech Connect (OSTI)

    MOSTELLER, RUSSELL D.

    2007-02-09

    Previous studies have indicated that ENDF/B-VII preliminary releases {beta}-2 and {beta}-3, predecessors to the recent initial release of ENDF/B-VII.0, produce significantly better overall agreement with criticality benchmarks than does ENDF/B-VI. However, one of those studies also suggests that improvements still may be needed for thermal plutonium cross sections. The current study substantiates that concern by examining criticality benchmarks for unreflected spheres of plutonium-nitrate solutions and for slightly and heavily borated mixed-oxide (MOX) lattices. Results are presented for the JEFF-3.1 and JENDL-3.3 nuclear data libraries as well as ENDF/B-VII.0 and ENDF/B-VI. It is shown that ENDF/B-VII.0 tends to overpredict reactivity for thermal plutonium benchmarks over at least a portion of the thermal range. In addition, it is found that additional benchmark data are needed for the deep thermal range.

  8. Investigation of inconsistent ENDF/B-VII.1 independent and cumulative fission product yields with proposed revisions

    SciTech Connect (OSTI)

    Pigni, Marco T; Francis, Matthew W; Gauld, Ian C

    2015-01-01

    A recent implementation of ENDF/B-VII. independent fission product yields and nuclear decay data identified inconsistencies in the data caused by the use of updated nuclear scheme in the decay sub-library that is not reflected in legacy fission product yield data. Recent changes in the decay data sub-library, particularly the delayed neutron branching fractions, result in calculated fission product concentrations that are incompatible with the cumulative fission yields in the library, and also with experimental measurements. A comprehensive set of independent fission product yields was generated for thermal and fission spectrum neutron induced fission for 235,238U and 239,241Pu in order to provide a preliminary assessment of the updated fission product yield data consistency. These updated independent fission product yields were utilized in the ORIGEN code to evaluate the calculated fission product inventories with experimentally measured inventories, with particular attention given to the noble gases. An important outcome of this work is the development of fission product yield covariance data necessary for fission product uncertainty quantification. The evaluation methodology combines a sequential Bayesian method to guarantee consistency between independent and cumulative yields along with the physical constraints on the independent yields. This work was motivated to improve the performance of the ENDF/B-VII.1 library in the case of stable and long-lived cumulative yields due to the inconsistency of ENDF/B-VII.1 fission p;roduct yield and decay data sub-libraries. The revised fission product yields and the new covariance data are proposed as a revision to the fission yield data currently in ENDF/B-VII.1.

  9. Department of Energy to Invest Up To $30 Million to Accelerate Development

    Energy Savers [EERE]

    and Deployment of Plug-In Hybrid Electric Vehicle Technology | Department of Energy Up To $30 Million to Accelerate Development and Deployment of Plug-In Hybrid Electric Vehicle Technology Department of Energy to Invest Up To $30 Million to Accelerate Development and Deployment of Plug-In Hybrid Electric Vehicle Technology January 17, 2008 - 10:38am Addthis DOE also partners with the State of Michigan and industry to advance vehicle technologies DETROIT, MI -U.S. Department of Energy (DOE)

  10. EERE Success Story-Illinois: High-Energy, Concentration-Gradient Cathode

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Material for Plug-in Hybrids and All-Electric Vehicles Could Reduce Batteries' Cost and Size | Department of Energy Illinois: High-Energy, Concentration-Gradient Cathode Material for Plug-in Hybrids and All-Electric Vehicles Could Reduce Batteries' Cost and Size EERE Success Story-Illinois: High-Energy, Concentration-Gradient Cathode Material for Plug-in Hybrids and All-Electric Vehicles Could Reduce Batteries' Cost and Size February 10, 2014 - 12:00am Addthis With support from EERE, Argonne

  11. Are Energy Vampires Sucking You Dry? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Are Energy Vampires Sucking You Dry? Are Energy Vampires Sucking You Dry? October 29, 2015 - 10:22am Addthis Max Schreck in Nosferatu, presumably climbing the stairs to plug in some unused appliances. | Photo from Wikipedia, Public Domain in the U.S. Max Schreck in Nosferatu, presumably climbing the stairs to plug in some unused appliances. | Photo from Wikipedia, Public Domain in the U.S. John Schueler John Schueler Former New Media Specialist, Office of Public Affairs What does this mean for

  12. Systems Integration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems Integration Systems Integration Hawaii DREAMS of New Solar Technologies Hawaii DREAMS of New Solar Technologies Read more Plug and Play Solar PV for American Homes Plug and Play Solar PV for American Homes Read more Watt-Sun: A Multi-Scale, Multi-Modal, Machine-Learning Solar Forecasting Technology Watt-Sun: A Multi-Scale, Multi-Modal, Machine-Learning Solar Forecasting Technology Read more High PV Penetration with Energy Storage in Flagstaff, AZ High PV Penetration with Energy Storage

  13. Workplace Charging Challenge Partner: Duke Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Duke Energy Workplace Charging Challenge Partner: Duke Energy Workplace Charging Challenge Partner: Duke Energy Duke Energy is committed to advancing the technology and infrastructure necessary to support the widespread use of all types of plug-in electric vehicles (PEVs). Duke Energy has extensive experience operating PEVs within its company fleet and evaluating charging infrastructure technology. The company is actively engaged with key stakeholders to support community PEV readiness planning.

  14. Workplace Charging Challenge Partner: NRG Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NRG Energy Workplace Charging Challenge Partner: NRG Energy Workplace Charging Challenge Partner: NRG Energy NRG Energy is a Fortune 500 company and a leader in changing how people think about and use energy. NRG offers workplace charging to its employees, alongside a corporate incentive for employees to drive plug-in electric vehicles (PEVs). NRG employee charging stations are currently installed or under construction at NRG's corporate headquarters in Princeton, New Jersey as well as locations

  15. Plug Load

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Commercial Program Development Commercial Current Promotions Industrial Federal Agriculture Smart Power Strips Smart Power Strips are a conservation measure aimed at reducing...

  16. The added economic and environmental value of plug-in electric vehicles connected to commercial building microgrids

    SciTech Connect (OSTI)

    Stadler, Michael; Momber, Ilan; Megel, Olivier; Gomez, Toms; Marnay, Chris; Beer, Sebastian; Lai, Judy; Battaglia, Vincent

    2010-08-25

    Connection of electric storage technologies to smartgrids or microgrids will have substantial implications for building energy systems. In addition to potentially supplying ancillary services directly to the traditional centralized grid (or macrogrid), local storage will enable demand response. As an economically attractive option, mobile storage devices such as plug-in electric vehicles (EVs) are in direct competition with conventional stationary sources and storage at the building. In general, it is assumed that they can improve the financial as well as environmental attractiveness of renewable and fossil based on-site generation (e.g. PV, fuel cells, or microturbines operating with or without combined heat and power). Also, mobile storage can directly contribute to tariff driven demand response in commercial buildings. In order to examine the impact of mobile storage on building energy costs and carbon dioxide (CO2) emissions, a microgrid/distributed-energy-resources (DER) adoption problem is formulated as a mixed-integer linear program with minimization of annual building energy costs applying CO2 taxes/CO2 pricing schemes. The problem is solved for a representative office building in the San Francisco Bay Area in 2020. By using employees' EVs for energy management, the office building can arbitrage its costs. But since the car battery lifetime is reduced, a business model that also reimburses car owners for the degradation will be required. In general, the link between a microgrid and an electric vehicle can create a win-win situation, wherein the microgrid can reduce utility costs by load shifting while the electric vehicle owner receives revenue that partially offsets his/her expensive mobile storage investment. For the California office building with EVs connected under a business model that distributes benefits, it is found that the economic impact is very limited relative to the costs of mobile storage for the site analyzed, i.e. cost reductions from electric vehicle connections are modest. Nonetheless, this example shows that some economic benefit is created because of avoided demand charges and on-peak energy. The strategy adopted by the office building is to avoid these high on-peak costs by using energy from the mobile storage in the business hours. CO2 emission reduction strategy results indicate that EVs' contribution at the selected office building are minor.

  17. Public Services | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Public Services Public Services Find out more about our work with our National Labs Saving Energy Saves You Money Find out more about how technologies move from the lab to the market For Consumers Homes Energy Efficiency 6 Smart Energy Resolutions for 2016 Max Schreck in Nosferatu, presumably climbing the stairs to plug in some unused appliances. | Photo from Wikipedia, Public Domain in the U.S. Appliances & Electronics Are Energy Vampires Sucking You Dry? Now's your chance to ask Energy

  18. Plugging micro-leaks in multi-component, ceramic tubesheets with material leached therefrom

    DOE Patents [OSTI]

    Bieler, Barrie H. (Walnut Creek, CA); Tsang, Floris Y. (Walnut Creek, CA)

    1985-03-19

    Cracks, in ceramic wall members, on the order of 1 micron or less in width are plugged helium-tight by selectively leaching a component of the wall member with a solvent, letting the resultant leach form a liquid bridge within the crack, removing the solvent and sintering the resultant residue. This method is of particular value for remedying microcracks or channels in a cell member constituting a tubesheet in a hollow fiber type, high temperature battery cell, such as a sodium/sulfur cell, for example.

  19. Ford Plug-In Project: Bringing PHEVs to Market | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon vss_02_frenette

  20. Wireless Plug-in Electric Vehicle (PEV) Charging | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon vss061_miller_2012

  1. Wireless Plug-in Electric Vehicle (PEV) Charging | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon vss061_miller_2011

  2. Well-To-Wheels Energy and Greenhouse Gas Analysis of Plug-In Hybrid Electric Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    ii This page intentionally left blank. iii CONTENTS ACKNOWLEDGMENTS ........................................................................................................ xi NOTATION .............................................................................................................................. xiii EXECUTIVE SUMMARY ...................................................................................................... 1 ES.1 CD Operation of Gasoline PHEVs and BEVs

  3. Electric Vehicle Preparedness Task 3: Detailed Assessment of Charging Infrastructure for Plug-in Electric Vehicles at Joint Base Lewis McChord

    SciTech Connect (OSTI)

    Steve Schey; Jim Francfort

    2014-10-01

    This report provides an assessment of charging infrastructure required to support the suggested plug-in electric vehicle replacements at Joint Base Lewis McChord.

  4. Fact #913: February 22, 2016 The Most Common Warranty for Plug-In Vehicle Batteries is 8 Years/100,000 Miles- Dataset

    Broader source: Energy.gov [DOE]

    Excel file and dataset for The Most Common Warranty for Plug-In Vehicle Batteries is 8 Years/100,000 Miles

  5. Fact #909: January 25, 2016 Workplace Charging Accounts for About a Third of All Plug-in Vehicle Charging Sessions in the INL EV Project Study- Dataset

    Broader source: Energy.gov [DOE]

    Excel file and dataset for Workplace Charging Accounts for About a Third of All Plug-in Vehicle Charging Sessions in the INL EV Project Study

  6. A novel plug-flow digester for biogasification of conventional and hazardous organics

    SciTech Connect (OSTI)

    Ghosh, S.; Kato, Y.; Liu, T.; Fukushi, K.

    1996-12-31

    A novel plug-flow digestion system of simple construction was designed, fabricated and operated for several years with a synthetic mixture of solid and liquid wastes simulating conditions south of the US-Mexican border and other developing countries. Benzene, toluene, and o-xylene (BTX) were mixed with the synthetic feed in several phases of this research to simulate field conditions where these solvents are discharged to public sewers and mixed with non-hazardous pollutants. The mesophilic plug-flow digester exhibited a high gas yield of 0.46 SCM /kg VS added, a methane content of 77 mol%, and a VS reduction of 75% at an HRT of 13 days with a 96% biodegradation of the feed toluene. At a feed concentration of 50 mg/l, toluene did not inhibit anaerobic fermentation. Gas and methane yields, and VS and COD conversion efficiencies were about the same with or without toluene present in the feed. At a reduced HRT of 8 days, a high feed COD concentration of 50,000 mg/l, and a loading rate of 0.48 kg VS/m{sup 3}-day, the digester afforded a gas yield of 3.1 SCM /kg VS added, and a methane content of 67 mol%. Benzene, toluene, and o-xylene were biodegraded at efficiencies of 94%, 90%, and 88%, respectively. The degradation kinetics of the xenobiotic compound could be described by a model based on cometabolic degradation of these secondary substrates.

  7. Cost Effectiveness Analysis of Quasi-Static Wireless Power Transfer for Plug-In Hybrid Electric Transit Buses: Preprint

    SciTech Connect (OSTI)

    Wang, Lijuan; Gonder, Jeff; Burton, Evan; Brooker, Aaron; Meintz, Andrew; Konan, Arnaud

    2015-11-11

    This study evaluates the costs and benefits associated with the use of a plug-in hybrid electric bus and determines the cost effectiveness relative to a conventional bus and a hybrid electric bus. A sensitivity sweep analysis was performed over a number of a different battery sizes, charging powers, and charging stations. The net present value was calculated for each vehicle design and provided the basis for the design evaluation. In all cases, given present day economic assumptions, the conventional bus achieved the lowest net present value while the optimal plug-in hybrid electric bus scenario reached lower lifetime costs than the hybrid electric bus. The study also performed parameter sensitivity analysis under low market potential assumptions and high market potential assumptions. The net present value of plug-in hybrid electric bus is close to that of conventional bus.

  8. Workplace Charging Challenge Partner: TECO Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    TECO Energy Workplace Charging Challenge Partner: TECO Energy Workplace Charging Challenge Partner: TECO Energy TECO Energy, the parent company of Tampa Electric, has made the advancement of electric transportation one of its top strategic initiatives. In support of this effort, Tampa Electric has added plug-in electric vehicles (PEVs) to its "green fleet." In addition, the company has also installed 15 Level 2 chargers and multiple Level 1 chargers for fleet and employee PEV charging.

  9. NREL: Energy Systems Integration - Commonwealth Scientific and Industrial

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Organisation Commonwealth Scientific and Industrial Research Organisation Photo of a large piece of laboratory equipment labeled "CSIRO Renewable Energy Integration Facility." NREL is collaborating with CSIRO on an innovative new plug-and-play solar technology for distributed generation applications. Photo from CSIRO NREL has joined forces with Australia's Commonwealth Scientific and Industrial Research Organisation (CSIRO) to develop a plug-and-play technology that will

  10. Healthcare Energy End-Use Monitoring

    SciTech Connect (OSTI)

    Sheppy, M.; Pless, S.; Kung, F.

    2014-08-01

    NREL partnered with two hospitals (MGH and SUNY UMU) to collect data on the energy used for multiple thermal and electrical end-use categories, including preheat, heating, and reheat; humidification; service water heating; cooling; fans; pumps; lighting; and select plug and process loads. Additional data from medical office buildings were provided for an analysis focused on plug loads. Facility managers, energy managers, and engineers in the healthcare sector will be able to use these results to more effectively prioritize and refine the scope of investments in new metering and energy audits.

  11. U.S. Department of Energy Announces Two Utility Companies Join...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    June 20, 2008 - 1:29pm Addthis Group to Accelerate the Delivery of Plug-in Hybrid Electric Vehicles to Market DEARBORN, Mich. - U.S. Department of Energy (DOE) Assistant Secretary ...

  12. Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Plug-In Hybrid Electric Vehicles Well-to-Wheels Analysis of Energy Use and ... vehicles (PHEVs), as well as the powertrain technology and fuel sources for PHEVs. ...

  13. Impact of Plug-in Hybrid Vehicles on the Electric Grid

    SciTech Connect (OSTI)

    Hadley, Stanton W

    2006-11-01

    Plug-in hybrid vehicles (PHEVs) are being developed around the world; much work is going on to optimize engine and battery operations for efficient operation, both during discharge and when grid electricity is available for recharging. However, there has generally been the expectation that the grid will not be greatly affected by the use of the vehicles, because the recharging would only occur during offpeak hours, or the number of vehicles will grow slowly enough that capacity planning will respond adequately. But this expectation does not incorporate that endusers will have control of the time of recharging and the inclination for people will be to plug in when convenient for them, rather than when utilities would prefer. It is important to understand the ramifications of introducing a number of plug-in hybrid vehicles onto the grid. Depending on when and where the vehicles are plugged in, they could cause local or regional constraints on the grid. They could require both the addition of new electric capacity along with an increase in the utilization of existing capacity. Local distribution grids will see a change in their utilization pattern, and some lines or substations may become overloaded sooner than expected. Furthermore, the type of generation used to recharge the vehicles will be different depending on the region of the country and timing when the PHEVs recharge. We conducted an analysis of what the grid impact may be in 2018 with one million PHEVs added to the VACAR sub-region of the Southeast Electric Reliability Council, a region that includes South Carolina, North Carolina, and much of Virginia. To do this, we used the Oak Ridge Competitive Electricity Dispatch model, which simulates the hourly dispatch of power generators to meet demand for a region over a given year. Depending on the vehicle, its battery, the charger voltage level, amperage, and duration, the impact on regional electricity demand varied from 1,400 to 6,000 MW. If recharging occurred in the early evening, then peak loads were raised and demands were met largely by combustion turbines and combined cycle plants. Nighttime recharging had less impact on peak loads and generation adequacy, but the increased use of coal-fired generation changed the relative amounts of air emissions. Costs of generation also fluctuated greatly depending on the timing. However, initial analysis shows that even charging at peak times may be less costly than using gasoline to operate the vehicles. Even if the overall region may have sufficient generating power, the region's transmission system or distribution lines to different areas may not be large enough to handle this new type of load. A largely residential feeder circuit may not be sized to have a significant proportion of its customers adding 1.4 to 6 kW loads that would operate continuously for two to six hours beginning in the early evening. On a broader scale, the transmission lines feeding the local substations may be similarly constrained if they are not sized to respond to this extra growth in demand. This initial analysis identifies some of the complexities in analyzing the integrated system of PHEVs and the grid. Depending on the power level, timing, and duration of the PHEV connection to the grid, there could be a wide variety of impacts on grid constraints, capacity needs, fuel types used, and emissions generated. This paper provides a brief description of plug-in hybrid vehicle characteristics in Chapter 2. Various charging strategies for vehicles are discussed, with a consequent impact on the grid. In Chapter 3 we describe the future electrical demand for a region of the country and the impact on this demand with a number of plug-in hybrids. We apply that demand to an inventory of power plants for the region using the Oak Ridge Competitive Electricity Dispatch (ORCED) model to evaluate the change in power production and emissions. In Chapter 4 we discuss the impact of demand increases on local distribution systems. In Chapter 5 we conclude and provide insights into the impacts of plug-ins. Future

  14. Teresa Waugh | Department of Energy

    Energy Savers [EERE]

    Teresa Waugh About Us Teresa Waugh - Public Affairs Specialist, Bonneville Power Administration Most Recent Q&A: Plugging In with a Power Lineman October 18 BPA Turns 75: A Look Back and a Look Ahead September 28 Secrets of a Tribal Energy Auditor March 15

  15. Mass transport, corrosion, plugging, and their reduction in solar dish/Stirling heat pipe receivers

    SciTech Connect (OSTI)

    Adkins, D.R.; Andraka, C.E.; Bradshaw, R.W.; Goods, S.H.; Moreno, J.B.; Moss, T.A.

    1996-07-01

    Solar dish/Stirling systems using sodium heat pipe receivers are being developed by industry and government laboratories here and abroad. The unique demands of this application lead to heat pipe wicks with very large surface areas and complex three-dimensional flow patterns. These characteristics can enhance the mass transport and concentration of constituents of the wick material, resulting in wick corrosion and plugging. As the test times for heat pipe receivers lengthen, we are beginning to see these effects both indirectly, as they affect performance, and directly in post-test examinations. We are also beginning to develop corrective measures. In this paper, we report on our test experiences, our post-test examinations, and on our initial effort to ameliorate various problems.

  16. Integration Issues of Cells into Battery Packs for Plug-in and Hybrid Electric Vehicles: Preprint

    SciTech Connect (OSTI)

    Pesaran, A. A.; Kim, G. H.; Keyser, M.

    2009-05-01

    The main barriers to increased market share of hybrid electric vehicles (HEVs) and commercialization of plug-in HEVs are the cost, safety, and life of lithium ion batteries. Significant effort is being directed to address these issues for lithium ion cells. However, even the best cells may not perform as well when integrated into packs for vehicles because of the environment in which vehicles operate. This paper discusses mechanical, electrical, and thermal integration issues and vehicle interface issues that could impact the cost, life, and safety of the system. It also compares the advantages and disadvantages of using many small cells versus a few large cells and using prismatic cells versus cylindrical cells.

  17. Fact #873: May 18, 2015 Plug-In Vehicle Sales Total Nearly 120,000 Units in 2014

    Broader source: Energy.gov [DOE]

    The number of plug-in vehicles sold in the United States in 2014 grew to nearly 120,000, up from 97,000 the year before. Nissan and Chevrolet had the best sellers in 2011 with the Leaf and the Volt...

  18. Neil Schuldenfrei | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Neil Schuldenfrei About Us Neil Schuldenfrei - Deputy Director, Office of Civil Rights Neil Schuldenfrei Neil Schuldenfrei is the Deputy Director of the Department of Energy's Office of Civil Rights. In this capacity, he oversees the Department's efforts with respect to Title VI and Title IX Federal Financial Assistance reviews, Title VII Equal Employment Opportunity (EEO) complaints, and Employee Concerns. Before serving as Deputy Director, Mr. Schuldenfrei served as an Attorney-Advisor in the

  19. Clean energy growing part of Oak Ridge's reindustrialization efforts |

    Energy Savers [EERE]

    Department of Energy Clean energy growing part of Oak Ridge's reindustrialization efforts Clean energy growing part of Oak Ridge's reindustrialization efforts April 22, 2015 - 5:12pm Addthis Leadership from the DOE’s Oak Ridge Office of EM, UCOR, RSI, and Vis Solis plug in the site’s third solar array development. The newest addition adds 1 megawatt of clean, renewable energy to the grid. Leadership from the DOE's Oak Ridge Office of EM, UCOR, RSI, and Vis Solis plug in the site's

  20. Part VII: Section J: List of Documents, Exhibits, and Other Attachment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy of the United States of America and the Government of the Republic of India of November 4, 2010 for Cooperation on a Joint Clean Energy Research and Development...

  1. Home Office and Electronics | Department of Energy

    Energy Savers [EERE]

    Home Office and Electronics Home Office and Electronics Addthis Keep Your Home Office Efficient with ENERGY STAR. 1 of 2 Keep Your Home Office Efficient with ENERGY STAR. Laptops are far more efficient than desktop computers, especially ENERGY STAR qualified models. Use Smart Power Strips to Save Energy. 2 of 2 Use Smart Power Strips to Save Energy. Many electronics go into standby mode when you turn them off. Reduce wasted (vampire) power by plugging electronics into a smart power strip, which

  2. Plug-In Electric Vehicle Handbook for Consumers (Spanish Version); Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect (OSTI)

    2015-08-01

    This is a Spanish-language handbook designed to answer a consumer's basic questions, as well as point them to additional information they need, to make the best decision about whether an electric-drive vehicle is right for them.

  3. Hybrid and Plug-In Electric Vehicles (Spanish Version) (Brochure), Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Los vehículos de accionamiento eléctrico se valen de la electricidad como fuente principal de energía o la utilizan para mejorar la efciencia de diseños vehiculares convencionales. Estos vehículos se pueden dividir en tres categorías: * Vehículos eléctricos híbridos (HEV, por sus siglas en inglés) * Vehículos eléctricos híbridos enchufables (PHEV, por sus siglas en inglés) * Vehículos totalmente eléctricos (EV, por sus siglas en inglés) Juntos, tienen el enorme potencial de

  4. Plug-In Electric Vehicle Handbook for Consumers (Spanish Version) (Brochure), Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Manual del vehículo eléctrico enchufable para consumidores Manual del vehículo eléctrico enchufable para consumidores 2 Aviso legal Este informe fue preparado en el marco de un trabajo patrocinado por una agencia del gobierno de los Estados Unidos. Ni el gobierno de los Estados Unidos ni ninguna de sus agencias, ni ninguno de sus empleados, otorgan ninguna garantía, ya sea expresa o implícita, ni asumen ninguna obligación ni responsabilidad legal por la exactitud, integridad o utilidad de

  5. Optimizing and Diversifying the Electric Range of Plug-in Hybrid Electric Vehicles for U.S. Drivers

    SciTech Connect (OSTI)

    Lin, Zhenhong

    2012-01-01

    To provide useful information for automakers to design successful plug-in hybrid electric vehicle (PHEV) products and for energy and environmental analysts to understand the social impact of PHEVs, this paper addresses the question of how many of the U.S. consumers, if buying a PHEV, would prefer what electric ranges. The Market-oriented Optimal Range for PHEV (MOR-PHEV) model is developed to optimize the PHEV electric range for each of 36,664 sampled individuals representing U.S. new vehicle drivers. The optimization objective is the minimization of the sum of costs on battery, gasoline, electricity and refueling hassle. Assuming no battery subsidy, the empirical results suggest that: 1) the optimal PHEV electric range approximates two thirds of one s typical daily driving distance in the near term, defined as $450/kWh battery delivered price and $4/gallon gasoline price. 2) PHEVs are not ready to directly compete with HEVs at today s situation, defined by the $600/kWh battery delivered price and the $3-$4/gallon gasoline price, but can do so in the near term. 3) PHEV10s will be favored by the market over longer-range PHEVs in the near term, but longer-range PHEVs can dominate the PHEV market if gasoline prices reach as high as $5-$6 per gallon and/or battery delivered prices reach as low as $150-$300/kWh. 4) PHEVs can become much more attractive against HEVs in the near term if the electric range can be extended by only 10% with multiple charges per day, possible with improved charging infrastructure or adapted charging behavior. 5) the impact of a $100/kWh decrease in battery delivered prices on the competiveness of PHEVs against HEVs can be offset by about $1.25/gallon decrease in gasoline prices, or about 7/kWh increase in electricity prices. This also means that the impact of a $1/gallon decrease in gasoline prices can be offset by about 5/kWh decrease in electricity prices.

  6. TESLA | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    TESLA TESLA TESLA TESLA TESLA TESLA TESLA TESLA TESLA TESLA TESLA TESLA TESLA TESLA TESLA PROJECT SUMMARY In January 2010, the Department of Energy issued a $465 million loan to Tesla Motors to produce specially designed, all-electric plug-in vehicles and to develop a manufacturing facility in Fremont, California to produce battery packs, electric motors, and other powertrain components for powering specially designed all-electric vehicles. TECHNOLOGY INNOVATION Tesla manufactures the Model S,

  7. Residential Energy Efficiency Demonstration: Hawaii and Guam Energy Improvement Technology Demonstration Project

    SciTech Connect (OSTI)

    Earle, L.; Sparn, B.; Rutter, A.; Briggs, D.

    2014-03-01

    In order to meet its energy goals, the Department of Defense (DOD) has partnered with the Department of Energy (DOE) to rapidly demonstrate and deploy cost-effective renewable energy and energy-efficiency technologies. The scope of this project was to demonstrate tools and technologies to reduce energy use in military housing, with particular emphasis on measuring and reducing loads related to consumer electronics (commonly referred to as 'plug loads'), hot water, and whole-house cooling.

  8. Semi-flexible gas-insulated transmission line using protection tube in conductor plug-in joint

    DOE Patents [OSTI]

    Kommineni, P.R.

    1983-01-25

    A gas-insulated transmission line includes an outer sheath, an inner conductor, an insulating gas electrically insulating the inner conductor from the outer sheath, and insulating supports insulatably supporting the inner conductor within the outer sheath. The inner conductor is provided with flexibility by main conductor sections which are joined together through a conductor hub section and flexible flexing elements. Stress shields are provided to control the electric field at the locations of the conductor hub sections where the insulating supports are contacting the inner conductor. A plug and socket arrangement is utilized for joining adjacent sections of the inner conductor, and a protection tube is utilized inside the hollow plug to maintain proper alignment of the joint when the transmission line is bent. 3 figs.

  9. Semi-flexible gas-insulated transmission line using protection tube in conductor plug-in joint

    DOE Patents [OSTI]

    Kommineni, Prasad R. (Westboro, MA)

    1983-01-25

    A gas-insulated transmission line includes an outer sheath, an inner conductor, an insulating gas electrically insulating the inner conductor from the outer sheath, and insulating supports insulatably supporting the inner conductor within the outer sheath. The inner conductor is provided with flexibility by main conductor sections which are joined together through a conductor hub section and flexible flexing elements. Stress shields are provided to control the electric field at the locations of the conductor hub sections where the insulating supports are contacting the inner conductor. A plug and socket arrangement is utilized for joining adjacent sections of the inner conductor, and a protection tube is utilized inside the hollow plug to maintain proper alignment of the joint when the transmission line is bent.

  10. Socially optimal electric driving range of plug-in hybrid electric vehicles

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kontou, Eleftheria; Yin, Yafeng; Lin, Zhenhong

    2015-07-25

    This study determines the optimal electric driving range of plug-in hybrid electric vehicles (PHEVs) that minimizes the daily cost borne by the society when using this technology. An optimization framework is developed and applied to datasets representing the US market. Results indicate that the optimal range is 16 miles with an average social cost of 3.19 per day when exclusively charging at home, compared to 3.27 per day of driving a conventional vehicle. The optimal range is found to be sensitive to the cost of battery packs and the price of gasoline. When workplace charging is available, the optimal electricmore » driving range surprisingly increases from 16 to 22 miles, as larger batteries would allow drivers to better take advantage of the charging opportunities to achieve longer electrified travel distances, yielding social cost savings. If workplace charging is available, the optimal density is to deploy a workplace charger for every 3.66 vehicles. Moreover, the diversification of the battery size, i.e., introducing a pair and triple of electric driving ranges to the market, could further decrease the average societal cost per PHEV by 7.45% and 11.5% respectively.« less

  11. An Investigation of the Applicability and Limitations of the ORNL Expanded Plug Test

    SciTech Connect (OSTI)

    McAfee, Wallace J.; Hemrick, James G.

    2014-01-15

    The expanded plug test technique for measuring the circumferential tensile properties of irradiated nuclear fuel cladding was developed at Oak Ridge National Laboratory (ORNL) and has been used successfully in several applications. The primary advantage of this technique over other procedures is its simplicity for application in the complex hot cell environment. During the development stage, efforts were made to both qualify the technique as much as possible regarding its experimental application and to develop and validate the data reduction procedures. However, since this is a new technique, the technical community is cautious in adopting a procedure that has not been fully vetted. The purpose of this effort was to address several baseline issues regarding the applicability of the technique and the precision of the use of experimental expanded ring load-deformation data to calculate material circumferential stress-strain properties. The tests performed, in conjunction with the developed data reduction procedures, demonstrate good reliability in the prediction of ring material stress-strain behavior for several materials of widely different strengths.

  12. Socially optimal electric driving range of plug-in hybrid electric vehicles

    SciTech Connect (OSTI)

    Kontou, Eleftheria; Yin, Yafeng; Lin, Zhenhong

    2015-07-25

    This study determines the optimal electric driving range of plug-in hybrid electric vehicles (PHEVs) that minimizes the daily cost borne by the society when using this technology. An optimization framework is developed and applied to datasets representing the US market. Results indicate that the optimal range is 16 miles with an average social cost of 3.19 per day when exclusively charging at home, compared to 3.27 per day of driving a conventional vehicle. The optimal range is found to be sensitive to the cost of battery packs and the price of gasoline. When workplace charging is available, the optimal electric driving range surprisingly increases from 16 to 22 miles, as larger batteries would allow drivers to better take advantage of the charging opportunities to achieve longer electrified travel distances, yielding social cost savings. If workplace charging is available, the optimal density is to deploy a workplace charger for every 3.66 vehicles. Moreover, the diversification of the battery size, i.e., introducing a pair and triple of electric driving ranges to the market, could further decrease the average societal cost per PHEV by 7.45% and 11.5% respectively.

  13. Endovascular Broad-Neck Aneurysm Creation in a Porcine Model Using a Vascular Plug

    SciTech Connect (OSTI)

    Muehlenbruch, Georg Nikoubashman, Omid; Steffen, Bjoern; Dadak, Mete; Palmowski, Moritz; Wiesmann, Martin

    2013-02-15

    Ruptured cerebral arterial aneurysms require prompt treatment by either surgical clipping or endovascular coiling. Training for these sophisticated endovascular procedures is essential and ideally performed in animals before their use in humans. Simulators and established animal models have shown drawbacks with respect to degree of reality, size of the animal model and aneurysm, or time and effort needed for aneurysm creation. We therefore aimed to establish a realistic and readily available aneurysm model. Five anticoagulated domestic pigs underwent endovascular intervention through right femoral access. A total of 12 broad-neck aneurysms were created in the carotid, subclavian, and renal arteries using the Amplatzer vascular plug. With dedicated vessel selection, cubic, tubular, and side-branch aneurysms could be created. Three of the 12 implanted occluders, two of them implanted over a side branch of the main vessel, did not induce complete vessel occlusion. However, all aneurysms remained free of intraluminal thrombus formation and were available for embolization training during a surveillance period of 6 h. Two aneurysms underwent successful exemplary treatment: one was stent-assisted, and one was performed with conventional endovascular coil embolization. The new porcine aneurysm model proved to be a straightforward approach that offers a wide range of training and scientific applications that might help further improve endovascular coil embolization therapy in patients with cerebral aneurysms.

  14. Battery Jobs Coming to Michigan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Jobs Coming to Michigan Battery Jobs Coming to Michigan March 22, 2010 - 3:01pm Addthis Advanced batteries will enable electricity generated through renewable energy sources to be used in plug-in vehicles. | File photo Advanced batteries will enable electricity generated through renewable energy sources to be used in plug-in vehicles. | File photo Joshua DeLung A123 Systems, of Watertown, Mass., was awarded a $249 million Recovery Act grant from the U.S. Department of Energy in August that will

  15. Detecting bacteria and Determining Their Susceptibility to Antibiotics by Stochastic Confinement in Nanoliter Droplets using Plug-Based Microfluidics

    SciTech Connect (OSTI)

    Boedicker, J.; Li, L; Kline, T; Ismagilov, R

    2008-01-01

    This article describes plug-based microfluidic technology that enables rapid detection and drug susceptibility screening of bacteria in samples, including complex biological matrices, without pre-incubation. Unlike conventional bacterial culture and detection methods, which rely on incubation of a sample to increase the concentration of bacteria to detectable levels, this method confines individual bacteria into droplets nanoliters in volume. When single cells are confined into plugs of small volume such that the loading is less than one bacterium per plug, the detection time is proportional to plug volume. Confinement increases cell density and allows released molecules to accumulate around the cell, eliminating the pre-incubation step and reducing the time required to detect the bacteria. We refer to this approach as stochastic confinement. Using the microfluidic hybrid method, this technology was used to determine the antibiogram - or chart of antibiotic sensitivity - of methicillin-resistant Staphylococcus aureus (MRSA) to many antibiotics in a single experiment and to measure the minimal inhibitory concentration (MIC) of the drug cefoxitin (CFX) against this strain. In addition, this technology was used to distinguish between sensitive and resistant strains of S. aureus in samples of human blood plasma. High-throughput microfluidic techniques combined with single-cell measurements also enable multiple tests to be performed simultaneously on a single sample containing bacteria. This technology may provide a method of rapid and effective patient-specific treatment of bacterial infections and could be extended to a variety of applications that require multiple functional tests of bacterial samples on reduced timescales.

  16. AVTA: Battery Testing- Best Practices for Responding to Emergency Incidents in Plug-in Electric Vehicles (EV)

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following report describes best practices for responding to emergency incidents involving plug-in electric vehicle batteries, based on the AVTA's testing of PEV batteries. This research was conducted by Idaho National Laboratory.

  17. Electrochemical Energy Storage Technical Team Roadmap

    SciTech Connect (OSTI)

    2013-06-01

    This U.S. DRIVE electrochemical energy storage roadmap describes ongoing and planned efforts to develop electrochemical energy storage technologies for plug-in electric vehicles (PEVs). The Energy Storage activity comprises a number of research areas (including advanced materials research, cell level research, battery development, and enabling R&D which includes analysis, testing and other activities) for advanced energy storage technologies (batteries and ultra-capacitors).

  18. Reducing Idle Power Consumption in Office Spaces Saves U.S. Navy in Energy Costs (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-04-01

    As part of a two-year project to demonstrate energy efficiency measures, renewable energy generation, and energy systems integration, the National Renewable Energy Laboratory (NREL) has identified advanced plug load controls as a promising technology for reducing energy use and related costs in the U.S. Navy's Naval Facilities Engineering Command (NAVFAC) office spaces.

  19. US DRIVE Electrochemical Energy Storage Technical Team Roadmap | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Electrochemical Energy Storage Technical Team Roadmap US DRIVE Electrochemical Energy Storage Technical Team Roadmap This U.S. DRIVE electrochemical energy storage roadmap describes ongoing and planned efforts to develop electrochemical energy storage technologies for plug-in electric vehicles (PEVs). The Energy Storage activity comprises a number of research areas (including advanced materials research, cell level research, battery development, and enabling R&D which includes

  20. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear