Sample records for view history sulfur

  1. THE HISTORY OF US PRESIDENTIAL ELECTIONS FROM SIBERIAH HC POIHT OF VIEW

    E-Print Network [OSTI]

    Gorban, Alexander N.

    THE HISTORY OF US PRESIDENTIAL ELECTIONS FROM SIBERIAH HC POIHT OF VIEW Cory Waxman Krasnoyarsk, Krasnoyarsk-36, Russia Az. 8 5 0 2 0 U. S. A. Tests were performed with the program "US Presidential Elections systems, and may permit i t t o t r a i n tens of thousands of times f a s t e r i n c e r t a i n

  2. History

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) Harmonicbetand ModelingHigh-LevelHistory History A

  3. History

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) Harmonicbetand ModelingHigh-LevelHistory History

  4. History

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHallNot Logged3EducationCenter forHistory

  5. Sulfuric acid-sulfur heat storage cycle

    DOE Patents [OSTI]

    Norman, John H. (LaJolla, CA)

    1983-12-20T23:59:59.000Z

    A method of storing heat is provided utilizing a chemical cycle which interconverts sulfuric acid and sulfur. The method can be used to levelize the energy obtained from intermittent heat sources, such as solar collectors. Dilute sulfuric acid is concentrated by evaporation of water, and the concentrated sulfuric acid is boiled and decomposed using intense heat from the heat source, forming sulfur dioxide and oxygen. The sulfur dioxide is reacted with water in a disproportionation reaction yielding dilute sulfuric acid, which is recycled, and elemental sulfur. The sulfur has substantial potential chemical energy and represents the storage of a significant portion of the energy obtained from the heat source. The sulfur is burned whenever required to release the stored energy. A particularly advantageous use of the heat storage method is in conjunction with a solar-powered facility which uses the Bunsen reaction in a water-splitting process. The energy storage method is used to levelize the availability of solar energy while some of the sulfur dioxide produced in the heat storage reactions is converted to sulfuric acid in the Bunsen reaction.

  6. Future Sulfur Dioxide Emissions

    SciTech Connect (OSTI)

    Smith, Steven J.; Pitcher, Hugh M.; Wigley, Tom M.

    2005-12-01T23:59:59.000Z

    The importance of sulfur dioxide emissions for climate change is now established, although substantial uncertainties remain. This paper presents projections for future sulfur dioxide emissions using the MiniCAM integrated assessment model. A new income-based parameterization for future sulfur dioxide emissions controls is developed based on purchasing power parity (PPP) income estimates and historical trends related to the implementation of sulfur emissions limitations. This parameterization is then used to produce sulfur dioxide emissions trajectories for the set of scenarios developed for the Special Report on Emission Scenarios (SRES). We use the SRES methodology to produce harmonized SRES scenarios using the latest version of the MiniCAM model. The implications, and requirements, for IA modeling of sulfur dioxide emissions are discussed. We find that sulfur emissions eventually decline over the next century under a wide set of assumptions. These emission reductions result from a combination of emission controls, the adoption of advanced electric technologies, and a shift away from the direct end use of coal with increasing income levels. Only under a scenario where incomes in developing regions increase slowly do global emission levels remain at close to present levels over the next century. Under a climate policy that limits emissions of carbon dioxide, sulfur dioxide emissions fall in a relatively narrow range. In all cases, the relative climatic effect of sulfur dioxide emissions decreases dramatically to a point where sulfur dioxide is only a minor component of climate forcing by the end of the century. Ecological effects of sulfur dioxide, however, could be significant in some developing regions for many decades to come.

  7. ADVANCED SULFUR CONTROL CONCEPTS

    SciTech Connect (OSTI)

    Apostolos A. Nikolopoulos; Santosh K. Gangwal; William J. McMichael; Jeffrey W. Portzer

    2003-01-01T23:59:59.000Z

    Conventional sulfur removal in integrated gasification combined cycle (IGCC) power plants involves numerous steps: COS (carbonyl sulfide) hydrolysis, amine scrubbing/regeneration, Claus process, and tail-gas treatment. Advanced sulfur removal in IGCC systems involves typically the use of zinc oxide-based sorbents. The sulfides sorbent is regenerated using dilute air to produce a dilute SO{sub 2} (sulfur dioxide) tail gas. Under previous contracts the highly effective first generation Direct Sulfur Recovery Process (DSRP) for catalytic reduction of this SO{sub 2} tail gas to elemental sulfur was developed. This process is currently undergoing field-testing. In this project, advanced concepts were evaluated to reduce the number of unit operations in sulfur removal and recovery. Substantial effort was directed towards developing sorbents that could be directly regenerated to elemental sulfur in an Advanced Hot Gas Process (AHGP). Development of this process has been described in detail in Appendices A-F. RTI began the development of the Single-step Sulfur Recovery Process (SSRP) to eliminate the use of sorbents and multiple reactors in sulfur removal and recovery. This process showed promising preliminary results and thus further process development of AHGP was abandoned in favor of SSRP. The SSRP is a direct Claus process that consists of injecting SO{sub 2} directly into the quenched coal gas from a coal gasifier, and reacting the H{sub 2}S-SO{sub 2} mixture over a selective catalyst to both remove and recover sulfur in a single step. The process is conducted at gasifier pressure and 125 to 160 C. The proposed commercial embodiment of the SSRP involves a liquid phase of molten sulfur with dispersed catalyst in a slurry bubble-column reactor (SBCR).

  8. Elemental sulfur recovery process

    DOE Patents [OSTI]

    Flytzani-Stephanopoulos, M.; Zhicheng Hu.

    1993-09-07T23:59:59.000Z

    An improved catalytic reduction process for the direct recovery of elemental sulfur from various SO[sub 2]-containing industrial gas streams. The catalytic process provides combined high activity and selectivity for the reduction of SO[sub 2] to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over certain catalyst formulations based on cerium oxide. The process is a single-stage, catalytic sulfur recovery process in conjunction with regenerators, such as those used in dry, regenerative flue gas desulfurization or other processes, involving direct reduction of the SO[sub 2] in the regenerator off gas stream to elemental sulfur in the presence of a catalyst. 4 figures.

  9. DSRP, direct sulfur production

    SciTech Connect (OSTI)

    McMichael, W.J.; Agarwal, S.K.; Jang, B.L.; Howe, G.B. [Research Triangle Institute, Research Triangle Park, NC (United States); Chen, D.H.; Hopper, J.R. [Lamar Univ., Beaumont, TX (United States)

    1993-06-01T23:59:59.000Z

    The objective of this work is to demonstrate on a bench-scale the Direct Sulfur Recovery Process (DSRP) for up to 99 percent or higher recovery of sulfur (as elemental sulfur) from regeneration off-gases and coal-gas produced in integrated gasification combined cycle (IGCC) power generating systems. Fundamental kinetic and thermodynamic studies will also be conducted to enable development of a model to predict DSRP performance in large-scale reactors and to shed light on the mechanism of DSRP reactions. The ultimate goal of the project is to advance the DSRP technology to the point where industry is willing to support its further development.

  10. Sulfur Dioxide Regulations (Ohio)

    Broader source: Energy.gov [DOE]

    This chapter of the law establishes that the Ohio Environmental Protection Agency provides sulfur dioxide emission limits for every county, as well as regulations for the emission, monitoring and...

  11. Catalyst for the reduction of sulfur dioxide to elemental sulfur

    DOE Patents [OSTI]

    Jin, Yun (Peking, CN); Yu, Qiquan (Peking, CN); Chang, Shih-Ger (El Cerrito, CA)

    1996-01-01T23:59:59.000Z

    The inventive catalysts allow for the reduction of sulfur dioxide to elemental sulfur in smokestack scrubber environments. The catalysts have a very high sulfur yield of over 90% and space velocity of 10,000 h.sup.-1. They also have the capacity to convert waste gases generated during the initial conversion into elemental sulfur. The catalysts have inexpensive components, and are inexpensive to produce. The net impact of the invention is to make this technology practically available to industrial applications.

  12. Sulfur Content, Weighted Average Refinery Crude Oil Input Qualities

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions,

  13. Catalyst for the reduction of sulfur dioxide to elemental sulfur

    DOE Patents [OSTI]

    Jin, Y.; Yu, Q.; Chang, S.G.

    1996-02-27T23:59:59.000Z

    The inventive catalysts allow for the reduction of sulfur dioxide to elemental sulfur in smokestack scrubber environments. The catalysts have a very high sulfur yield of over 90% and space velocity of 10,000 h{sup {minus}1}. They also have the capacity to convert waste gases generated during the initial conversion into elemental sulfur. The catalysts have inexpensive components, and are inexpensive to produce. The net impact of the invention is to make this technology practically available to industrial applications. 21 figs.

  14. Method of removing and recovering elemental sulfur from highly reducing gas streams containing sulfur gases

    DOE Patents [OSTI]

    Gangwal, Santosh K.; Nikolopoulos, Apostolos A.; Dorchak, Thomas P.; Dorchak, Mary Anne

    2005-11-08T23:59:59.000Z

    A method is provided for removal of sulfur gases and recovery of elemental sulfur from sulfur gas containing supply streams, such as syngas or coal gas, by contacting the supply stream with a catalyst, that is either an activated carbon or an oxide based catalyst, and an oxidant, such as sulfur dioxide, in a reaction medium such as molten sulfur, to convert the sulfur gases in the supply stream to elemental sulfur, and recovering the elemental sulfur by separation from the reaction medium.

  15. Sugar yields from dilute sulfuric acid and sulfur dioxide pretreatments and subsequent enzymatic hydrolysis of switchgrass

    E-Print Network [OSTI]

    California at Riverside, University of

    Sugar yields from dilute sulfuric acid and sulfur dioxide pretreatments and subsequent enzymatic Dilute sulfuric acid Sulfur dioxide Biofuels Switchgrass a b s t r a c t Dacotah switchgrass was pretreated with sulfuric acid concentrations of 0.5, 1.0, and 2.0 wt.% at 140, 160, and 180 °C and with 1

  16. Graphene-sulfur nanocomposites for rechargeable lithium-sulfur battery electrodes

    SciTech Connect (OSTI)

    Liu, Jun; Lemmon, John P; Yang, Zhenguo; Cao, Yuiliang; Li, Xiaolin

    2014-06-17T23:59:59.000Z

    Rechargeable lithium-sulfur batteries having a cathode that includes a graphene-sulfur nanocomposite can exhibit improved characteristics. The graphene-sulfur nanocomposite can be characterized by graphene sheets with particles of sulfur adsorbed to the graphene sheets. The sulfur particles have an average diameter less than 50 nm..

  17. Sulfur-Free Selective Pulping

    E-Print Network [OSTI]

    Dimmel, D. R.; Bozell, J. J.

    A joint research effort is being conducted on ways to produce cost-effective pulping catalysts from lignin. This project addresses improving selectivities and reducing the levels of sulfur chemicals used in pulping. Improved selectivity means...

  18. Selective catalytic reduction of sulfur dioxide to elemental sulfur

    SciTech Connect (OSTI)

    Liu, Wei; Flytzani-Stephanopoulos, M.; Sarofim, A.F.

    1992-01-01T23:59:59.000Z

    Elemental sulfur recovery from SO[sub 2]-containing gas streams is highly attractive as it produces a saleable. Product and no waste to dispose of. However, commercially available schemes are complex and involve multi-stage reactors, such as, most notably in the Resox (reduction of SO[sub 2] with coke) and Claus plants(reaction of SO[sub 2] with H[sub 2]S over catalyst). This project win investigate a cerium oxide catalyst for the single-stage selective reduction SO[sub 2] to elemental sulfur by a reductant, such as carbon monoxide. Cerium oxide has been identified as a superior catalyst for SO[sub 2] reduction by CO to elemental sulfur because of its high activity and high selectivity to sulfur over COS over a wide temperature range(400--650C). Kinetic and parametric studies of SO[sub 2] reduction planned over various CeO[sub 2]-formulations will provide the necessary basis for development of a simplified process, a single-stage elemental sulfur recovery scheme from variable concentration gas streams. A first apparent application is treatment of regenerator off-gases in power plants using regenerative flue gas desulfurization. Such a simple catalytic converter may offer the long-sought Claus-alternative'' for coal-fired power plant applications.

  19. analyzing organic sulfur: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fiord sulfur deposits were best modeled as containing two sub-populations: sulfur on ice and sulfur on rock; 2) as expected, classifiers using Gaussian kernels outperformed...

  20. On the Origin of Sulfur

    E-Print Network [OSTI]

    Nils Ryde; David L. Lambert

    2005-10-05T23:59:59.000Z

    We present our work on the halo evolution of sulfur, based on observations of the S I lines around 9220 A for ten stars for which the S abundance was obtained previously from much weaker S I lines at 8694 A. We cannot confirm the rise and the high [S/Fe] abundances for low [Fe/H], as claimed in the literature from analysis of the 8694 A lines. The reasons for claims of an increase in [S/Fe] with decreasing [Fe/H] are probably twofold: uncertainties in the measurements of the weak 8694 A lines, and systematic errors in metallicity determinations from Fe I lines. The near-infrared sulfur triplet at 9212.9, 9228.1, and 9237.5 A are preferred for an abundance analysis of sulfur for metal-poor stars. Our work was presented in full by Ryde & Lambert (2004).

  1. Revisit Carbon/Sulfur Composite for Li-S Batteries

    SciTech Connect (OSTI)

    Zheng, Jianming; Gu, Meng; Wagner, Michael J.; Hays, Kevin; Li, Xiaohong S.; Zuo, Pengjian; Wang, Chong M.; Zhang, Jiguang; Liu, Jun; Xiao, Jie

    2013-07-23T23:59:59.000Z

    To correlate the carbon properties e.g. surface area and porous structure, with the electrochemical behaviors of carbon/sulfur (C/S) composite cathodes for lithium-sulfur (Li-S) batteries, four different carbon frameworks including Ketjen Black (KB, high surface area and porous), Graphene (high surface area and nonporous), Acetylene Black (AB, low surface area and nonporous) and Hollow Carbon Nano Sphere (HCNS, low surface area and porous) are employed to immobilize sulfur (80 wt.%). It has been revealed that high surface area of carbon improves the utilization rate of active sulfur and decreases the real current density during the electrochemical reactions. Accordingly, increased reversible capacities and reduced polarization are observed for high surface area carbon hosts such as KB/S and graphene/S composites. The porous structure of KB or HCNS matrix promotes the long-term cycling stability of C/S composites but only at relatively low rate (0.2 C). Once the current density increases, the pore effect completely disappears and all Li-S batteries show similar trend of capacity degradation regardless of the different carbon hosts used in the cathodes. The reason has been assigned to the formation of reduced amount of irreversible Li2S on the cathode as well as shortened time for polysulfides to transport towards lithium anode at elevated current densities. This work provides valuable information for predictive selection on carbon materials to construct C/S composite for practical applications from the electrochemical point of view.

  2. Molecular Structures of Polymer/Sulfur Composites for Lithium...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structures of PolymerSulfur Composites for Lithium-Sulfur Batteries with Long Cycle Life. Molecular Structures of PolymerSulfur Composites for Lithium-Sulfur Batteries with Long...

  3. HISTORY GALLERY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    History Gallery Inside the Museum Exhibitions Norris Bradbury Museum Lobby Defense Gallery Research Gallery History Gallery TechLab Virtual Exhibits invisible utility element...

  4. New insights into Archean sulfur cycle from mass-independent sulfur isotope records from the

    E-Print Network [OSTI]

    of Archean sulfur reservoirs and to trace pathways in the Archean sulfur cycle. Our data are explained S/33 S/32 S) for sulfide sulfur in shale and carbonate lithofacies from the Hamersley Basin, Western of the lower Mount McRae Shale (V2.5 Ga). Likewise, sulfide sulfur analyses of the Jeerinah Formation (V2.7 Ga

  5. Fermentation, Hydrogen, and Sulfur Metabolism in Multiple Uncultivated...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fermentation, Hydrogen, and Sulfur Metabolism in Multiple Uncultivated Bacterial Phyla. Fermentation, Hydrogen, and Sulfur Metabolism in Multiple Uncultivated Bacterial Phyla....

  6. Sulfur hexafluoride as a surrogate

    SciTech Connect (OSTI)

    Taylor, P.H.; Chadbourne, J.F.

    1987-06-01T23:59:59.000Z

    A viable chemical surrogate for monitoring the effectiveness of hazardous waste incinerators must include high thermal stability and low toxicity among its characteristics. The relationship between sulfur hexafluoride (SF6) and hazardous constituent thermal stability for a mixture of chlorinated hydrocarbons indicates that SF6 has the potential to satisfy the basic requirements of a chemical surrogate for hazardous waste incineration.

  7. Recovering sulfur from gas streams

    SciTech Connect (OSTI)

    NONE

    1997-11-01T23:59:59.000Z

    Linde AG (Hoellriegeiskreuth, Germany) has developed ClinSulf-SDP process, a two-reactor system that offers better than 99.5% sulfur recovery at low capital and operating costs. In a traditional Claus plant, sulfur-recovery rates of 99.3% can be achieved by combining a two- or three-stage Claus plant with a separate tail-gas cleanup unit (TGCU). Common TGCU methods include H{sub 2}S scrubbing, subdewpoint condensation and direct oxidation. Such combined units are not only costly and complicated to build and maintain, but many of today`s operators require higher sulfur-recovery rates--on the order of 99.3%--99.8%. The Clin-Sulf-SDP combines several catalytic stages of a Claus plant with a subdewpoint, tailgas-treatment system, and the process uses only two reactors. At the heart of the process are two identical, internally cooled reactors. Two four-way valves periodically reverse the sequence of the matching reactors, allowing them to alternate between sulfur-adsorption and catalyst-regeneration modes.

  8. Inside ITER seminar on History of Fusion Page 1 History of Fusion

    E-Print Network [OSTI]

    Union thermonuclear explosion 400kT #12;Inside ITER seminar on History of Fusion Page 4 Big IvanInside ITER seminar on History of Fusion Page 1 History of Fusion Personal view V. Chuyanov 9 July 2009 Special thanks to ITER Communication Division. #12;Inside ITER seminar on History of Fusion Page 2

  9. HYDROCARBON AND SULFUR SENSORS FOR SOFC SYSTEMS

    SciTech Connect (OSTI)

    A.M. Azad; Chris Holt; Todd Lesousky; Scott Swartz

    2003-11-01T23:59:59.000Z

    The following report summarizes work conducted during the Phase I program Hydrocarbon and Sulfur Sensors for SOFC Systems under contract No. DE-FC26-02NT41576. For the SOFC application, sensors are required to monitor hydrocarbons and sulfur in order to increase the operation life of SOFC components. This report discusses the development of two such sensors, one based on thick film approach for sulfur monitoring and the second galvanic based for hydrocarbon monitoring.

  10. Natural Gas Processing Plant- Sulfur (New Mexico)

    Broader source: Energy.gov [DOE]

    This regulation establishes sulfur emission standards for natural gas processing plants. Standards are stated for both existing and new plants. There are also rules for stack height requirements,...

  11. Sulfur determination in blood from inhabitants of Brazil using neutron activation analysis

    SciTech Connect (OSTI)

    Oliveira, Laura C.; Zamboni, Cibele B. [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP) Av. Professor Lineu Prestes 2242 05508-000 Sao Paulo, SP (Brazil)

    2013-05-06T23:59:59.000Z

    In this study the NAA technique was applied to analyze sulfur in blood from inhabitants of Brazil for the proposition of an indicative interval. The measurements were performed considering lifestyle factors (non-smokers, non-drinkers and no history of toxicological exposure) of Brazilian inhabitants. The influence of gender was also investigated considering several age ranges (18-29, 30-39, 40-49, >50 years). These data are useful in clinical investigations, to identify or prevent diseases caused by inadequate sulfur ingestion and for nutritional evaluation of Brazilian population.

  12. Transition metal-catalyzed oxidation of atmospheric sulfur: Global implications for the sulfur budget

    E-Print Network [OSTI]

    Alexander, Becky

    processes, volca- noes) or produced within the atmosphere by oxidation of re- duced sulfur speciesTransition metal-catalyzed oxidation of atmospheric sulfur: Global implications for the sulfur importance of sulfate production by Fe(III)- and Mn(II)-catalyzed oxidation of S(IV) by O2. We scale

  13. Sulfurization of a carbon surface for vapor phase mercury removal II: Sulfur forms and mercury uptake

    E-Print Network [OSTI]

    Borguet, Eric

    promote the formation of organic sulfur and the presence of H2S during the cooling process increased in the presence of H2S was very effective towards Hg uptake in nitrogen. Corre- lation of mercury uptake capacitySulfurization of a carbon surface for vapor phase mercury removal II: Sulfur forms and mercury

  14. Massive atmospheric sulfur loading of the AD 1600 Huaynaputina eruption and implications for petrologic sulfur estimates

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    for petrologic sulfur estimates Fidel Costa1 and Bruno Scaillet Institut des Sciences de la Terre d'Orleans, UMR petrological, analytical, and thermodyna- mical data to constrain the sulfur yield of the AD 1600 Huaynaputina loading of the AD 1600 Huaynaputina eruption and implications for petrologic sulfur estimates, Geophys

  15. The Better Buildings Neighborhood View - July 2013 | Department...

    Energy Savers [EERE]

    Better Buildings Neighborhood View - October 2012 Better Buildings Neighborhood Program Home Accomplishments History Better Buildings Partners Stories Interviews Videos Contact Us...

  16. Sulfur oxide adsorbents and emissions control

    DOE Patents [OSTI]

    Li, Liyu (Richland, WA); King, David L. (Richland, WA)

    2006-12-26T23:59:59.000Z

    High capacity sulfur oxide absorbents utilizing manganese-based octahedral molecular sieve (Mn--OMS) materials are disclosed. An emissions reduction system for a combustion exhaust includes a scrubber 24 containing these high capacity sulfur oxide absorbents located upstream from a NOX filter 26 or particulate trap.

  17. atmospheric sulfur deposition: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    desert dust Paytan, Adina 8 Effects of sulfuric acid and nitrogen deposition on mineral nutrition of Picea abies (L.) Karst. Physics Websites Summary: Effects of sulfuric...

  18. Manipulating the Surface Reactions in Lithium Sulfur Batteries...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manipulating the Surface Reactions in Lithium Sulfur Batteries Using Hybrid Anode Structures. Manipulating the Surface Reactions in Lithium Sulfur Batteries Using Hybrid Anode...

  19. Method for Determining Performance of Sulfur Oxide Adsorbents...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Method for Determining Performance of Sulfur Oxide Adsorbents for Diesel Emission Control Using Online Measurement of SO2 and Method for Determining Performance of Sulfur Oxide...

  20. Comparative Study on the Sulfur Tolerance and Carbon Resistance...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on the Sulfur Tolerance and Carbon Resistance of Supported Noble Metal Catalysts in Steam Reforming of Liquid Comparative Study on the Sulfur Tolerance and Carbon Resistance of...

  1. Method of removal of sulfur from coal and petroleum products

    DOE Patents [OSTI]

    Verkade, John G. (Ames, IA); Mohan, Thyagarajan (Ames, IA); Angelici, Robert J. (Ames, IA)

    1995-01-01T23:59:59.000Z

    A method for the removal of sulfur from sulfur-bearing materials such as coal and petroleum products using organophosphine and organophosphite compounds is provided.

  2. History Images

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) Harmonicbetand ModelingHigh-LevelHistoryHistoryHistory

  3. Catalyst for elemental sulfur recovery process

    DOE Patents [OSTI]

    Flytzani-Stephanopoulos, M.; Liu, W.

    1995-01-24T23:59:59.000Z

    A catalytic reduction process is described for the direct recovery of elemental sulfur from various SO[sub 2]-containing industrial gas streams. The catalytic process provides high activity and selectivity, as well as stability in the reaction atmosphere, for the reduction of SO[sub 2] to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over a metal oxide composite catalyst having one of the following empirical formulas: [(FO[sub 2])[sub 1[minus]n](RO)[sub n

  4. Heat Transfer Characteristics of Sulfur and Sulfur Diluted with Hydrogen Sulfide Flowing Through Circular Tubes

    E-Print Network [OSTI]

    Stone, Porter Walwyn

    1960-01-01T23:59:59.000Z

    concentrations of hydrogen sulfide, using water as a basis of comparison. For identical tube sizes and the same fluid velocity, both pure and dilute sulfur were found to have a film conductance ~- I less than ten percent that of water over most... the v x d curves for each concentration of diluent. Sulfur is diluted with H2S, added as persulfide Sulfur is diluted with H S, added as liquid 34 35 10. A Ratio of film conductance of pure sulfur to that of water versus temperature. The flow...

  5. Definition of Non-Conventional Sulfur Utilization in Western Kazakhstan for Sulfur Concrete (Phase 1)

    SciTech Connect (OSTI)

    Kalb, Paul

    2007-05-31T23:59:59.000Z

    Battelle received a contract from Agip-KCO, on behalf a consortium of international oil and gas companies with exploration rights in the North Caspian Sea, Kazakhstan. The objective of the work was to identify and help develop new techniques for sulfur concrete products from waste, by-product sulfur that will be generated in large quantitites as drilling operations begin in the near future. BNL has significant expertise in the development and use of sulfur concrete products and has direct experience collaborating with the Russian and Kazakh partners that participated. Feasibility testing was successfully conducted for a new process to produce cost-effective sulfur polymer cement that has broad commerical applications.

  6. Method for reducing the sulfur content of a sulfur-containing hydrocarbon stream

    DOE Patents [OSTI]

    Mahajan, Devinder

    2004-12-28T23:59:59.000Z

    The sulfur content of a liquid hydrocarbon stream is reduced under mild conditions by contracting a sulfur-containing liquid hydrocarbon stream with transition metal particles containing the transition metal in a zero oxidation state under conditions sufficient to provide a hydrocarbon product having a reduced sulfur content and metal sulfide particles. The transition metal particles can be produced in situ by adding a transition metal precursor, e.g., a transition metal carbonyl compound, to the sulfur-containing liquid feed stream and sonicating the feed steam/transition metal precursor combination under conditions sufficient to produce the transition metal particles.

  7. Process for removing sulfur from coal

    DOE Patents [OSTI]

    Aida, Tetsuo (Ames, IA); Squires, Thomas G. (Gilbert, IA); Venier, Clifford G. (Ames, IA)

    1985-02-05T23:59:59.000Z

    A process for the removal of divalent organic and inorganic sulfur compounds from coal and other carbonaceous material. A slurry of pulverized carbonaceous material is contacted with an electrophilic oxidant which selectively oxidizes the divalent organic and inorganic compounds to trivalent and tetravalent compounds. The carbonaceous material is then contacted with a molten caustic which dissolves the oxidized sulfur compounds away from the hydrocarbon matrix.

  8. Process for removing sulfur from coal

    DOE Patents [OSTI]

    Aida, T.; Squires, T.G.; Venier, C.G.

    1983-08-11T23:59:59.000Z

    A process is disclosed for the removal of divalent organic and inorganic sulfur compounds from coal and other carbonaceous material. A slurry of pulverized carbonaceous material is contacted with an electrophilic oxidant which selectively oxidizes the divalent organic and inorganic compounds to trivalent and tetravalent compounds. The carbonaceous material is then contacted with a molten caustic which dissolves the oxidized sulfur compounds away from the hydrocarbon matrix.

  9. World copper smelter sulfur balance-1988

    SciTech Connect (OSTI)

    Towle, S.W. (Bureau of Mines, Denver, CO (United States))

    1993-01-01T23:59:59.000Z

    In 1989, the US Bureau of Mines initiated a contract to gather engineering, operating, and environmental cost data for 1988 for 30 major foreign primary copper smelters in market economy countries. Data were collected for 29 of the designated smelters together with information on applicable environmental regulations. Materials balance data obtained were used with available data for the eight US smelters to determine the approximate extent of copper smelter sulfur emission control in 1988. A broad characterization of the status of sulfur emission control regulation was made. The 37 US and foreign smelters represented roughly 73.2% of world and 89.3% of market economy primary copper production in 1988. The 29 non-US smelters attained 55.3% control of their input sulfur in 1988. Combined with the 90.4% control of US smelters, an aggregate 63.4% sulfur control existed. Roughly 1,951,100 mt of sulfur was emitted from the 37 market economy smelters in 1988. Identifiable SO[sub 2] control regulations covered 72.4% of the 29 foreign smelters, representing 65.5% of smelting capacity. Including US smelters, 78.4% of the major market economy smelters were regulated, representing 73.1% of smelting capacity. Significant changes since 1988 that may increase sulfur emission control are noted.

  10. History Gallery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) Harmonicbetand ModelingHigh-LevelHistoryHistory

  11. Workshop History

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsingWhat isJoin the ChallengeHistory Workshop History The

  12. Sulfur capture by oil shale ashes under atmospheric and pressurized FBC conditions

    SciTech Connect (OSTI)

    Yrjas, K.P.; Hupa, M. [Aabo Akademi Univ., Turku (Finland). Dept. of Chemical Engineering; Kuelaots, I.; Ots, A. [Tallinn Technical Univ. (Estonia). Thermal Engineering Dept.

    1995-12-31T23:59:59.000Z

    When oil shale contains large quantities of limestone, a significant auto-absorption of sulfur is possible under suitable conditions. The sulfur capture by oil shale ashes has been studied using a pressurized thermogravimetric apparatus. The chosen experimental conditions were typical for atmospheric and pressurized fluidized bed combustion. The Ca/S molar ratios in the two oil shales studied were 8 (Estonian) and 10 (Israeli). The samples were first burned in a gas atmosphere containing O{sub 2} and N{sub 2} (and CO{sub 2} if pressurized). After the combustion step, SO{sub 2} was added and sulfation started. The results with the oil shales were compared to those obtained with an oil shale cyclone ash from the Narva power plant in Estonia. In general, the results from the sulfur capture experiments under both atmospheric and pressurized conditions showed that the oil shale cannot only capture its own sulfur but also significant amounts of additional sulfur of another fuel if the fuels are mixed together. For example from the runs at atmospheric pressure, the conversion of CaO to CaSO{sub 4} was about 70% for Israeli oil shale and about 55% for Estonian oil shale (850 C). For the cyclone ash the corresponding conversion was about 20%. In comparison it could be mentioned that under the same conditions the conversions of natural limestones are about 30%. The reason the cyclone ash was a poor sulfur absorbent was probably due to its temperature history. In Narva the oil shale was burned at a significantly higher temperature (1,400 C) than was used in the experiments (750 C and 850 C). This caused the ash to sinter and the reactive surface area of the cyclone ash was therefore decreased.

  13. Direct Observation of Sulfur Radicals as Reaction Media in Lithium Sulfur Batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Qiang [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Zheng, Jianming [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Walter, Eric [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Pan, Huilin [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Lv, Dongping [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Zuo, Pengjian [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Chen, Honghao [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Deng, Z. D. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Liaw, Bor Y. [School of Ocean and Earth Science and Technology, Hawaii Natural Energy Institute, (United States); Yu, Xiqian [Brookhaven National Laboratory, Upton, NY (United States); Yang, Xiao-Qing [Brookhaven National Laboratory, Upton, NY (United States); Zhang, Ji-Guang [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Liu, Jun [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Xiao, Jie [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)

    2014-12-09T23:59:59.000Z

    Lithium sulfur (Li-S) battery has been regaining tremendous interest in recent years because of its attractive attributes such as high gravimetric energy, low cost and environmental benignity. However, it is still not conclusively known how polysulfide ring/chain participates in the whole cycling and whether the discharge and charge processes follow the same pathway. Herein, we demonstrate the direct observation of sulfur radicals by using in situ electron paramagnetic resonance (EPR) technique. Based on the concentration changes of sulfur radicals at different potentials and the electrochemical characteristics of the cell, it is revealed that the chemical and electrochemical reactions in Li-S cell are driving each other to proceed through sulfur radicals, leading to two completely different reaction pathways during discharge and charge. The proposed radical mechanism may provide new perspectives to investigate the interactions between sulfur species and the electrolyte, inspiring novel strategies to develop Li-S battery technology.

  14. Direct Observation of Sulfur Radicals as Reaction Media in lithium Sulfur Batteries

    SciTech Connect (OSTI)

    Wang, Qiang; Zheng, Jianming; Walter, Eric D.; Pan, Huilin; Lu, Dongping; Zuo, Pengjian; Chen, Honghao; Deng, Zhiqun; Liaw, Bor Yann; Yu, Xiqian; Yang, Xiaoning; Zhang, Jiguang; Liu, Jun; Xiao, Jie

    2014-12-09T23:59:59.000Z

    Lithium sulfur (Li-S) battery has been regaining tremendous interest in recent years because of its attractive attributes such as high gravimetric energy, low cost and environmental benignity. However, it is still not conclusively known how polysulfide ring/chain participates in the whole cycling and whether the discharge and charge process follow the same pathway. Herein, we demonstrate the direct observation of sulfur radicals by using in situ electron paramagnetic resonance (EPR) technique. Based on the concentration changes of sulfur radicals at different potentials, it is revealed that the chemical and electrochemical reactions in Li-S cell are driven each other to proceed through sulfur radicals, leading to two completely different reaction pathways during discharge and charge. The proposed radical mechanism may provide new insights to investigate the interactions between sulfur species and the electrolyte, inspiring novel strategies to develop Li-S battery technology.

  15. Direct Observation of Sulfur Radicals as Reaction Media in Lithium Sulfur Batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Qiang; Zheng, Jianming; Walter, Eric; Pan, Huilin; Lv, Dongping; Zuo, Pengjian; Chen, Honghao; Deng, Z. D.; Liaw, Bor Y.; Yu, Xiqian; et al

    2014-12-09T23:59:59.000Z

    Lithium sulfur (Li-S) battery has been regaining tremendous interest in recent years because of its attractive attributes such as high gravimetric energy, low cost and environmental benignity. However, it is still not conclusively known how polysulfide ring/chain participates in the whole cycling and whether the discharge and charge processes follow the same pathway. Herein, we demonstrate the direct observation of sulfur radicals by using in situ electron paramagnetic resonance (EPR) technique. Based on the concentration changes of sulfur radicals at different potentials and the electrochemical characteristics of the cell, it is revealed that the chemical and electrochemical reactions in Li-Smorecell are driving each other to proceed through sulfur radicals, leading to two completely different reaction pathways during discharge and charge. The proposed radical mechanism may provide new perspectives to investigate the interactions between sulfur species and the electrolyte, inspiring novel strategies to develop Li-S battery technology.less

  16. Carbon/Sulfur Nanocomposites and Additives for High-Energy Lithium...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Publications Additives and Cathode Materials for High-Energy Lithium Sulfur Batteries CarbonSulfur Nanocomposites and Additives for High-Energy Lithium Sulfur Batteries Vehicle...

  17. An Aerosol Condensation Model for Sulfur Trioxide

    SciTech Connect (OSTI)

    Grant, K E

    2008-02-07T23:59:59.000Z

    This document describes a model for condensation of sulfuric acid aerosol given an initial concentration and/or source of gaseous sulfur trioxide (e.g. fuming from oleum). The model includes the thermochemical effects on aerosol condensation and air parcel buoyancy. Condensation is assumed to occur heterogeneously onto a preexisting background aerosol distribution. The model development is both a revisiting of research initially presented at the Fall 2001 American Geophysical Union Meeting [1] and a further extension to provide new capabilities for current atmospheric dispersion modeling efforts [2]. Sulfuric acid is one of the most widely used of all industrial chemicals. In 1992, world consumption of sulfuric acid was 145 million metric tons, with 42.4 Mt (mega-tons) consumed in the United States [10]. In 2001, of 37.5 Mt consumed in the U.S., 74% went into producing phosphate fertilizers [11]. Another significant use is in mining industries. Lawuyi and Fingas [7] estimate that, in 1996, 68% of use was for fertilizers and 5.8% was for mining. They note that H{sub 2}SO{sub 4} use has been and should continue to be very stable. In the United States, the elimination of MTBE (methyl tertiary-butyl ether) and the use of ethanol for gasoline production are further increasing the demand for petroleum alkylate. Alkylate producers have a choice of either a hydrofluoric acid or sulfuric acid process. Both processes are widely used today. Concerns, however, over the safety or potential regulation of hydrofluoric acid are likely to result in most of the growth being for the sulfuric acid process, further increasing demand [11]. The implication of sulfuric acid being a pervasive industrial chemical is that transport is also pervasive. Often, this is in the form of oleum tankers, having around 30% free sulfur trioxide. Although sulfuric acid itself is not a volatile substance, fuming sulfuric acid (referred to as oleum) is [7], the volatile product being sulfur trioxide. Sulfate aerosols and mist may form in the atmosphere on tank rupture. From chemical spill data from 1990-1996, Lawuyi02 and Fingas [7] prioritize sulfuric acid as sixth most serious. During this period, they note 155 spills totaling 13 Mt, out of a supply volume of 3700 Mt. Lawuyi and Fingas [7] summarize information on three major sulfuric acid spills. On 12 February 1984, 93 tons of sulfuric acid were spilled when 14 railroad cars derailed near MacTier, Parry Sound, Ontario. On 13 December 1978, 51 railroad cars derailed near Springhill, Nova Scotia. One car, containing 93% sulfuric acid, ruptured, spilling nearly its entire contents. In July 1993, 20 to 50 tons of fuming sulfuric acid spilled at the General Chemical Corp. plant in Richmond, California, a major industrial center near San Francisco. The release occurred when oleum was being loaded into a nonfuming acid railroad tank car that contained only a rupture disk as a safety device. The tank car was overheated and this rupture disk blew. The resulting cloud of sulfuric acid drifted northeast with prevailing winds over a number of populated areas. More than 3,000 people subsequently sought medical attention for burning eyes, coughing, headaches, and nausea. Almost all were treated and released on the day of the spill. By the day after the release, another 5,000 people had sought medical attention. The spill forced the closure of five freeways in the region as well as some Bay Area Rapid Transit System stations. Apart from corrosive toxicity, there is the additional hazard that the reactions of sulfur trioxide and sulfuric acid vapors with water are extremely exothermic [10, 11]. While the vapors are intrinsically denser than air, there is thus the likelihood of strong, warming-induced buoyancy from reactions with ambient water vapor, water-containing aerosol droplets, and wet environmental surface. Nordin [12] relates just such an occurrence following the Richmond, CA spill, with the plume observed to rise to 300 m. For all practical purposes, sulfur trioxide was the constituent released from the heated tank

  18. Views of the solar system

    SciTech Connect (OSTI)

    Hamilton, C.

    1995-02-01T23:59:59.000Z

    Views of the Solar System has been created as an educational tour of the solar system. It contains images and information about the Sun, planets, moons, asteroids and comets found within the solar system. The image processing for many of the images was done by the author. This tour uses hypertext to allow space travel by simply clicking on a desired planet. This causes information and images about the planet to appear on screen. While on a planet page, hyperlinks travel to pages about the moons and other relevant available resources. Unusual terms are linked to and defined in the Glossary page. Statistical information of the planets and satellites can be browsed through lists sorted by name, radius and distance. History of Space Exploration contains information about rocket history, early astronauts, space missions, spacecraft and detailed chronology tables of space exploration. The Table of Contents page has links to all of the various pages within Views Of the Solar System.

  19. Method of making a sodium sulfur battery

    DOE Patents [OSTI]

    Elkins, P. E.

    1981-09-22T23:59:59.000Z

    A method of making a portion of a sodium sulfur battery is disclosed. The battery portion made is a portion of the container which defines the volume for the cathodic reactant materials which are sulfur and sodium polysulfide materials. The container portion is defined by an outer metal casing with a graphite liner contained therein, the graphite liner having a coating on its internal diameter for sealing off the porosity thereof. The steel outer container and graphite pipe are united by a method which insures that at the operating temperature of the battery, relatively low electrical resistance exists between the two materials because they are in intimate contact with one another. 3 figs.

  20. Development of High Energy Density Lithium-Sulfur Cells

    Broader source: Energy.gov (indexed) [DOE]

    for increased sulfur loading Cathode Anode Investigatingoptimizing Li and Si composite anodes Exploring polymer electrolytes Electrolyte Determining new...

  1. Posting type Advisory update Subject Inconstant bias in XRF sulfur

    E-Print Network [OSTI]

    Fischer, Emily V.

    Posting type Advisory update Subject Inconstant bias in XRF sulfur Module/Species A/ S Sites entire attention to observable discontinuities in XRF sulfur data. Shifts in the sulfur/sulfate ratio during 2003-4 were shown to coincide with recalibrations of the XRF system and to correlate with other XRF biases

  2. On the galactic chemical evolution of sulfur

    E-Print Network [OSTI]

    N. Ryde; D. L. Lambert

    2003-12-02T23:59:59.000Z

    Sulfur abundances have been determined for ten stars to resolve a debate in the literature on the Galactic chemical evolution of sulfur in the halo phase of the Milky Way. Our analysis is based on observations of the S I lines at 9212.9, 9228.1, and 9237.5 A for stars for which the S abundance was obtained previously from much weaker S I lines at 8694.0 and 8694.6 A. In contrast to the previous results showing [S/Fe] to rise steadily with decreasing [Fe/H], our results show that [S/Fe] is approximately constant for metal-poor stars ([Fe/H] < -1) at [S/Fe] = +0.3. Thus, sulfur behaves in a similar way to the other alpha elements, with an approximately constant [S/Fe] for metallicities lower than [Fe/H] = -1. We suggest that the reason for the earlier claims of a rise of [S/Fe] is partly due to the use of the weak S I 8694.0 and 8694.6 A lines and partly uncertainties in the determination of the metallicity when using Fe I lines. The S I 9212.9, 9228.1, and 9237.5 A lines are preferred for an abundance analysis of sulfur for metal-poor stars.

  3. Process for removing sulfur from sulfur-containing gases: high calcium fly-ash

    DOE Patents [OSTI]

    Rochelle, Gary T. (Austin, TX); Chang, John C. S. (Cary, NC)

    1991-01-01T23:59:59.000Z

    The present disclosure relates to improved processes for treating hot sulfur-containing flue gas to remove sulfur therefrom. Processes in accordance with the present invention include preparing an aqueous slurry composed of a calcium alkali source and a source of reactive silica and/or alumina, heating the slurry to above-ambient temperatures for a period of time in order to facilitate the formation of sulfur-absorbing calcium silicates or aluminates, and treating the gas with the heat-treated slurry components. Examples disclosed herein demonstrate the utility of these processes in achieving improved sulfur-absorbing capabilities. Additionally, disclosure is provided which illustrates preferred configurations for employing the present processes both as a dry sorbent injection and for use in conjunction with a spray dryer and/or bagfilter. Retrofit application to existing systems is also addressed.

  4. Our History

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Astrophysics One ofSpeedingthisOur History

  5. ORISE: History

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE ProjectCrisis andExercise GoldenHistory The Oak

  6. Safety considerations for the use of sulfur in sulfur-modified pavement materials

    E-Print Network [OSTI]

    Jacobs, Carolyn Yuriko

    1980-01-01T23:59:59.000Z

    when equipped with accessories for remote multipoint (choice of sequential or simultaneous systems) sampling systems, 3) General Monitors Hydrogen Sulfide Monitors Model Z150, a single channel system, and Model 2200, either 2 or 4 channel systems... situations are gaseous emissions of hydrogen sulfide (H2S) and sulfur dioxide (S02), as well as airborne particulate sulfur. These hazards can usually be gauged in terms of temperature, time duration of temperature, and dispersion factors. Hydrogen...

  7. Sulfur removal from high-sulfur Illinois coal by low-temperature perchloroethylene (PCE) extraction

    SciTech Connect (OSTI)

    Chou, M.I.M.

    1991-01-01T23:59:59.000Z

    A pre-combustion coal desulfurization process at 120{degree}C using perchloroethylene (PCE) to remove up to 70% of the organic sulfur has been developed by the Midwest Ore Processing Co. (MWOPC). However, this process has not yet proven to be as successful with Illinois coals as it has for Ohio and Indiana coals. The organic sulfur removal has been achieved only with highly oxidized Illinois coals containing high sulfatic sulfur. A logical explanation for this observation is vital to successful process optimization for the use of Illinois coals. In addition, the high levels of organic sulfur removals observed by the MWOPC may be due to certain errors involved in the ASTM data interpretation; this needs verification. For example, elemental sulfur extracted by the PCE may be derived from pyrite oxidation during coal pre-oxidation, but it may be interpreted as organic sulfur removed by the PCE using ASTM analysis. The goals of this research are: (1) to independently confirm and possibly to improve the organic sulfur removal from Illinois coals with the PCE desulfurization process reported by the MWOPC, (2) to verify the forms-of-sulfur determination using the ASTM method for the PCE process evaluation, and (3) to determine the suitability of Illinois coals for use in the PCE desulfurization process. This project involves the Illinois State Geological Survey (ISGS), Eastern Illinois University (EIU), the University of Illinois-Urbana/Champaign (UI-UC), and the University of Kentucky, Lexington (UK). This is the first year of a two-year project.

  8. Jefferson and Hamilton as viewed by historians

    E-Print Network [OSTI]

    Jungmeyer, Paul Edward

    1970-01-01T23:59:59.000Z

    JEFFERSON AND HAMILTON AS VIEHED BY HISTORIANS A Thesis Paul Edward Jungmeyer Submitted to the Graduate College of Texas A&M University in ' partial fulfillment of the requirement for the degree of MASTER OF ARTS August, 1970 Major Subject...: History JEFFERSON AND HAMILTON AS VIEWED BY HISTORIANS A Thesis by Paul Edward Jungmeyer Approved as to style and content by: (Chairman of Committee d i~) (Member) (M er) August, 1970 ABSTRACT JEFFERSON AND HAMILTON AS VIEWED BY HISTORIANS...

  9. Method to prevent sulfur accumulation in membrane electrode assembly

    DOE Patents [OSTI]

    Steimke, John L; Steeper, Timothy J; Herman, David T

    2014-04-29T23:59:59.000Z

    A method of operating a hybrid sulfur electrolyzer to generate hydrogen is provided that includes the steps of providing an anolyte with a concentration of sulfur dioxide, and applying a current. During steady state generation of hydrogen a plot of applied current density versus concentration of sulfur dioxide is below a boundary line. The boundary line may be linear and extend through the origin of the graph with a slope of 0.001 in which the current density is measured in mA/cm2 and the concentration of sulfur dioxide is measured in moles of sulfur dioxide per liter of anolyte.

  10. The Automobile in American History History 392

    E-Print Network [OSTI]

    Abolmaesumi, Purang

    1 The Automobile in American History History 392 Consider Resources Primary Resources: letters. popular), theses, the Web Check subject guide: How-to & Help Research by Subject History American History Find Background Information The following titles are shelved in the Stauffer Library Reference

  11. Sulfur capture in an atmospheric fluidized-bed combustor

    SciTech Connect (OSTI)

    Baars, D.M.; Hunter, C.A.; Keitelman, E.N.

    1981-06-01T23:59:59.000Z

    Sulfur capture in an atmospheric fluidized-bed combustor (AFBC) both with and without recycle of fines elutriated from the bed was studied. Two empirical correlations, one by Babcock and Wilcox and the other by Westinghouse, correlate sulfur capture as a function of the calcium-to-sulfur mole ratio and gas residence time. Both correlations fit the experimental no-recycle results quite well. Of the limestones tested with no recycle, Vulcan Materials exhibits the best sulfur-capture performance. Data collected with Reed limestone indicates that recycle improves sulfur-capture compared with once-through performance. However, there is a decreasing effect on sulfur capture as the recycle rate is increased to large values. At 90% sulfur capture, the fractional reduction of fresh limestone feed attributable to recycle is 24 to 35% over a gas-residence time range of 0.7 to 0.4 s.

  12. Costs to reduce sulfur dioxide emissions

    SciTech Connect (OSTI)

    None

    1982-03-01T23:59:59.000Z

    Central to the resolution of the acid rain issue are debates about the costs and benefits of controlling man-made emissions of chemicals that may cause acid rain. In this briefing, the position of those who are calling for immediate action and implicating coal-fired powerplants as the cause of the problem is examined. The costs of controlling sulfur dioxide emissions using alternative control methods available today are presented. No attempt is made to calculate the benefits of reducing these emissions since insufficient information is available to provide even a rough estimate. Information is presented in two steps. First, costs are presented as obtained through straightforward calculations based upon simplifying but realistic assumptions. Next, the costs of sulfur dioxide control obtained through several large-scale analyses are presented, and these results are compared with those obtained through the first method.

  13. Development of the Hybrid Sulfur Thermochemical Cycle

    SciTech Connect (OSTI)

    Summers, William A.; Steimke, John L

    2005-09-23T23:59:59.000Z

    The production of hydrogen via the thermochemical splitting of water is being considered as a primary means for utilizing the heat from advanced nuclear reactors to provide fuel for a hydrogen economy. The Hybrid Sulfur (HyS) Process is one of the baseline candidates identified by the U.S. Department of Energy [1] for this purpose. The HyS Process is a two-step hybrid thermochemical cycle that only involves sulfur, oxygen and hydrogen compounds. Recent work has resulted in an improved process design with a calculated overall thermal efficiency (nuclear heat to hydrogen, higher heating value basis) approaching 50%. Economic analyses indicate that a nuclear hydrogen plant employing the HyS Process in conjunction with an advanced gas-cooled nuclear reactor system can produce hydrogen at competitive prices. Experimental work has begun on the sulfur dioxide depolarized electrolyzer, the major developmental component in the cycle. Proof-of-concept tests have established proton-exchange-membrane cells (a state-of-the-art technology) as a viable approach for conducting this reaction. This is expected to lead to more efficient and economical cell designs than were previously available. Considerable development and scale-up issues remain to be resolved, but the development of a viable commercial-scale HyS Process should be feasible in time to meet the commercialization schedule for Generation IV gas-cooled nuclear reactors.

  14. Catalyst for elemental sulfur recovery process

    DOE Patents [OSTI]

    Flytzani-Stephanopoulos, Maria (Winchester, MA); Liu, Wei (Cambridge, MA)

    1995-01-01T23:59:59.000Z

    A catalytic reduction process for the direct recovery of elemental sulfur from various SO.sub.2 -containing industrial gas streams. The catalytic process provides high activity and selectivity, as well as stability in the reaction atmosphere, for the reduction of SO.sub.2 to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over a metal oxide composite catalyst having one of the following empirical formulas: [(OF.sub.2).sub.1-n (RO.sub.1)n].sub.1-k M.sub.k, [(FO.sub.2).sub.1-n (RO.sub.1.5).sub.n ].sub.1-k M.sub.k, or [Ln.sub.x Zr.sub.1-x O.sub.2-0.5x ].sub.1-k M.sub.k wherein FO.sub.2 is a fluorite-type oxide; RO represents an alkaline earth oxide; RO.sub.1.5 is a Group IIIB or rare earth oxide; Ln is a rare earth element having an atomic number from 57 to 65 or mixtures thereof; M is a transition metal or a mixture of transition metals; n is a number having a value from 0.0 to 0.35; k is a number having a value from 0.0 to about 0.5; and x is a number having a value from about 0.45 to about 0.55.

  15. Prarie View RDF

    Energy Savers [EERE]

    PRAIRIE VIEW RDF 2 Prairie View RDF Located at JAAP (approx. 40 miles southwest of Chicago), 223 acres on 455 Acre Parcel Will County Owner; Waste Management, Operator ...

  16. Concept of history in the theology of Karl Barth

    E-Print Network [OSTI]

    Wu, Kuo-An

    2011-07-01T23:59:59.000Z

    This thesis provides a complete, chronological view of Barths concept of history throughout his theological career. The purpose of undertaking this hitherto unattempted task is to demonstrate that, ever since his full ...

  17. Sulfur control in ion-conducting membrane systems

    DOE Patents [OSTI]

    Stein, VanEric Edward; Richards, Robin Edward; Brengel, David Douglas; Carolan, Michael Francis

    2003-08-05T23:59:59.000Z

    A method for controlling the sulfur dioxide partial pressure in a pressurized, heated, oxygen-containing gas mixture which is contacted with an ion-conducting metallic oxide membrane which permeates oxygen ions. The sulfur dioxide partial pressure in the oxygen-depleted non-permeate gas from the membrane module is maintained below a critical sulfur dioxide partial pressure, p.sub.SO2 *, to protect the membrane material from reacting with sulfur dioxide and reducing the oxygen flux of the membrane. Each ion-conducting metallic oxide material has a characteristic critical sulfur dioxide partial pressure which is useful in determining the required level of sulfur removal from the feed gas and/or from the fuel gas used in a direct-fired feed gas heater.

  18. Process for production of synthesis gas with reduced sulfur content

    DOE Patents [OSTI]

    Najjar, Mitri S. (Hopewell Junction, NY); Corbeels, Roger J. (Wappingers Falls, NY); Kokturk, Uygur (Wappingers Falls, NY)

    1989-01-01T23:59:59.000Z

    A process for the partial oxidation of a sulfur- and silicate-containing carbonaceous fuel to produce a synthesis gas with reduced sulfur content which comprises partially oxidizing said fuel at a temperature in the range of 1800.degree.-2200.degree. F. in the presence of a temperature moderator, an oxygen-containing gas and a sulfur capture additive which comprises an iron-containing compound portion and a sodium-containing compound portion to produce a synthesis gas comprising H.sub.2 and CO with a reduced sulfur content and a molten slag which comprises (i) a sulfur-containing sodium-iron silicate phase and (ii) a sodium-iron sulfide phase. The sulfur capture additive may optionally comprise a copper-containing compound portion.

  19. Nitrogen dioxide, sulfur dioxide, and ammonia detector for remote sensing of vehicle emissions

    E-Print Network [OSTI]

    Denver, University of

    with sulfuric and nitric acids formed from at- mospheric oxidations of sulfur dioxide SO2 and nitrogen oxides mobile sources comes from the combustion of sulfur compounds in fuel. The U.S. is in the process of reducing sulfur in fuel for all mobile sources. This process begins with ultralow sulfur on-road diesel

  20. alum rock sulfur: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    -resolution carbon and sulfur isotope profiles from Early to Middle Ordovician carbonate rocks from the Argentine Investigation of isotopic compositions recorded in...

  1. aromatic sulfur heterocycles: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alkylating agent Skin MMP inhibitor MMP Matrix metalloproteinase Sulfur mustard (HD, SM), is a chemical warfare agent that within hours causes extensive blistering Androulakis,...

  2. Additives and Cathode Materials for High-Energy Lithium Sulfur...

    Broader source: Energy.gov (indexed) [DOE]

    of long cycle-life in half cells and expand the synthesis of sulfurcarbon composite materials of various sulfur loadings 2. Compare the performance for different...

  3. Sulfur Isotopes as Indicators of Amended Bacterial Sulfate Reduction...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Amended Bacterial Sulfate Reduction Processes Influencing Field Scale Uranium Bioremediation. Sulfur Isotopes as Indicators of Amended Bacterial Sulfate Reduction Processes...

  4. Fundamental Studies of Lithium-Sulfur Cell Chemistry

    Broader source: Energy.gov (indexed) [DOE]

    Studies of Lithium-Sulfur Cell Chemistry PI: Nitash Balsara LBNL June 17, 2014 Project ID ESS224 This presentation does not contain any proprietary, confidential, or otherwise...

  5. LARGE-SCALE MEASUREMENT OF AIRBORNE PARTICULATE SULFUR

    E-Print Network [OSTI]

    Loo, B.W.

    2010-01-01T23:59:59.000Z

    dispersive x-ray fluorescence (XRF) analysis. Concentrationsvalida- tion studies of XRF measurements have establishedelemental sulfur measurement by XRF can be closely related

  6. anaerobic green sulfur: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: Carbon Flow of Heliobacteria Is Related More to Clostridia than to the Green Sulfur Bacteria, Chemistry, and Energy, Environment, and Chemical...

  7. National Women's History Month

    Broader source: Energy.gov [DOE]

    NATIONAL WOMENS HISTORY MONTH is an annual declared month that highlights the contributions of women to events in history and contemporary society.

  8. JOB INFORMATION AND EARNINGS HISTORY General Information

    E-Print Network [OSTI]

    Guenther, Frank

    JOB INFORMATION AND EARNINGS HISTORY General Information Student Job Information and Earnings information for each job held by a student. This information can be accessed either through the Student to view all students hired under that mail code. By clicking on a student's specific job number, you

  9. Sulfur removal and comminution of carbonaceous material

    DOE Patents [OSTI]

    Narain, Nand K. (Bethel Park, PA); Ruether, John A. (McMurray, PA); Smith, Dennis N. (Herminie, PA)

    1988-01-01T23:59:59.000Z

    Finely divided, clean coal or other carbonaceous material is provided by forming a slurry of coarse coal in aqueous alkali solution and heating the slurry under pressure to above the critical conditions of steam. The supercritical fluid penetrates and is trapped in the porosity of the coal as it swells in a thermoplastic condition at elevated temperature. By a sudden, explosive release of pressure the coal is fractured into finely divided particles with release of sulfur-containing gases and minerals. The finely divided coal is recovered from the minerals for use as a clean coal product.

  10. Sulfur removal and comminution of carbonaceous material

    DOE Patents [OSTI]

    Narain, N.K.; Ruether, J.A.; Smith, D.N.

    1987-10-07T23:59:59.000Z

    Finely divided, clean coal or other carbonaceous material is provided by forming a slurry of coarse coal in aqueous alkali solution and heating the slurry under pressure to above the critical conditions of steam. The supercritical fluid penetrates and is trapped in the porosity of the coal as it swells in a thermoplastic condition at elevated temperature. By a sudden, explosive release of pressure the coal is fractured into finely divided particles with release of sulfur-containing gases and minerals. The finely divided coal is recovered from the minerals for use as a clean coal product. 2 figs.

  11. Sodium-tetravalent sulfur molten chloroaluminate cell

    DOE Patents [OSTI]

    Mamantov, Gleb (Knoxville, TN)

    1985-04-02T23:59:59.000Z

    A sodium-tetravalent sulfur molten chloroaluminate cell with a .beta."-alumina sodium ion conductor having a S-Al mole ratio of above about 0.15 in an acidic molten chloroaluminate cathode composition is disclosed. The cathode composition has an AlCl.sub.3 -NaCl mole percent ratio of above about 70-30 at theoretical full charge. The cell provides high energy densities at low temperatures and provides high energy densities and high power densities at moderate temperatures.

  12. Chemistry of Sulfur Oxides on Transition Metals. II. Thermodynamics of Sulfur Oxides on Platinum(111)

    E-Print Network [OSTI]

    Lin, Xi

    J/mol from temperature-programmed desorption (TPD) experiments.4 Having some energetic data or, moreover, having substantial data on the thermodynamics of adsorption and interconversion of sulfur oxide species obtained several new vibrational features by pretreating the Pt(111) surface with the gas-phase oxygen

  13. Sulfurization of carbon surface for vapor phase mercury removal I: Effect of temperature and sulfurization protocol

    E-Print Network [OSTI]

    Borguet, Eric

    with the decomposition of surface functionalities, which creates active sites for sulfur bonding. The presence of H2S2S adsorption, and that surface chemistry played a significant role in the uptake of H2S. Mikhalovsky and Zaitsev [9] showed that H2S adsorption from an inert atmosphere on activated carbons resulted

  14. SYNTHESIS OF SULFUR-BASED WATER TREATMENT AGENT FROM SULFUR DIOXIDE WASTE STREAMS

    SciTech Connect (OSTI)

    Robert C. Brown; Maohong Fan

    2001-12-01T23:59:59.000Z

    We propose a process that uses sulfur dioxide from coal combustion as a raw material to synthesize polymeric ferric sulfate (PFS), a water treatment agent. The process uses sodium chlorate as an oxidant and ferrous sulfate as an absorbent. The major chemical mechanisms in this reaction system include oxidation, hydrolysis, and polymerization. Oxidation determines sulfur conversion efficiency while hydrolysis and polymerization control the quality of product. Many factors, including SO{sub 2} inlet concentration, flow rate of simulated flue gas, reaction temperature, addition rate of oxidant and stirring rate, may affect the efficiencies of SO{sub 2} removal. Currently, the effects of SO{sub 2} inlet concentration, the flow rate of simulated flue gas and addition rate of flue gas on removal efficiencies of SO{sub 2}, are being investigated. Experiments shown in this report have demonstrated that the conversion efficiencies of sulfur dioxide with ferrous sulfate as an absorbent are in the range of 60-80% under the adopted process conditions. However, the conversion efficiency of sulfur dioxide may be improved by optimizing reaction conditions to be investigated. Partial quality indices of the synthesized products, including Fe{sup 2+} concentration and total iron concentration, have been evaluated.

  15. Correlation for the total sulfur content in char after devolatilization

    SciTech Connect (OSTI)

    Vasilije Manovic; Borislav Grubor [University of Belgrade, Belgrade (Serbia & Montenegro)

    2006-02-01T23:59:59.000Z

    The overall process of coal combustion takes place in two successive steps: devolatilization and char combustion. The fate of sulfur during the devolatilization of coal of different rank was investigated. The significance of the investigation is in fact that a major part of sulfur release occurs during devolatilization of coal, (i.e., emission of sulfur oxides during combustion of coal largely depends on sulfur release during devolatilization). The experimental investigations were conducted to obtain the data about the quantitative relation between sulfur content in the coal and sulfur content in the char. Standard procedures were used for obtaining the chars in a laboratory oven and determining the sulfur forms in the coal and char samples. The experiments were done with ground coal samples ({lt}0.2 mm), at the temperatures in the range of 500-1000{sup o}C. We showed that the amount of sulfur remaining in the char decreases, but not significantly in the temperature range 600-900{sup o}C. On the basis of the theoretical consideration of behavior of sulfur forms during devolatilization, certain simplifying assumptions, and obtained experimental data, we propose two correlations to associate the content of sulfur in the coal and in the char. The correlations are based on the results of the proximate analysis and sulfur forms in coal. Good agreement was found when the proposed correlations were compared with the experimental results obtained for investigated coals. Moreover, the correlations were verified by results found in the literature for numerous Polish, Albanian, and Turkish coals. Significant correlations (P {lt}0.05) between observed and calculated data with correlation coefficient, R {gt}0.9, were noticed in the case of all coals. 25 refs., 3 figs., 2 tabs.

  16. Long-term history of chemosynthetic molluscan assemblages at Gulf of Mexico hydrocarbons seep sites

    E-Print Network [OSTI]

    Warren, Kenneth Anderson

    1995-01-01T23:59:59.000Z

    , Vesicomya cordata, and Calyptogena ponderosa, harbor sulfur-oxidizing symbionts. Seep assemblages from three sites, GB-386, GB-425, and GC-234, were sampled by piston core, in order to determine the long-term history of these assemblages from their preserved...

  17. Sulfuric acid deposition from stratospheric geoengineering with sulfate aerosols

    E-Print Network [OSTI]

    Robock, Alan

    aerosols can potentially result in an increase in acid deposition. [4] Acid rain has been studiedSulfuric acid deposition from stratospheric geoengineering with sulfate aerosols Ben Kravitz,1 Alan limit of hydration of all sulfate aerosols into sulfuric acid. For annual injection of 5 Tg of SO2

  18. Historical Sulfur Dioxide Emissions 1850-2000: Methods and Results

    E-Print Network [OSTI]

    Hultman, Nathan E.

    PNNL-14537 Historical Sulfur Dioxide Emissions 1850-2000: Methods and Results S.J. Smith E;PNNL-14537 Historical Sulfur Dioxide Emissions 1850-2000: Methods and Results PNNL Research Report Joint Global Change Research Institute 8400 Baltimore Avenue College Park, Maryland 20740 #12;PNNL-14537

  19. Process for removing pyritic sulfur from bituminous coals

    DOE Patents [OSTI]

    Pawlak, Wanda (Edmonton, CA); Janiak, Jerzy S. (Edmonton, CA); Turak, Ali A. (Edmonton, CA); Ignasiak, Boleslaw L. (Edmonton, CA)

    1990-01-01T23:59:59.000Z

    A process is provided for removing pyritic sulfur and lowering ash content of bituminous coals by grinding the feed coal, subjecting it to micro-agglomeration with a bridging liquid containing heavy oil, separating the microagglomerates and separating them to a water wash to remove suspended pyritic sulfur. In one embodiment the coal is subjected to a second micro-agglomeration step.

  20. Integrated boiler, superheater, and decomposer for sulfuric acid decomposition

    DOE Patents [OSTI]

    Moore, Robert (Edgewood, NM); Pickard, Paul S. (Albuquerque, NM); Parma, Jr., Edward J. (Albuquerque, NM); Vernon, Milton E. (Albuquerque, NM); Gelbard, Fred (Albuquerque, NM); Lenard, Roger X. (Edgewood, NM)

    2010-01-12T23:59:59.000Z

    A method and apparatus, constructed of ceramics and other corrosion resistant materials, for decomposing sulfuric acid into sulfur dioxide, oxygen and water using an integrated boiler, superheater, and decomposer unit comprising a bayonet-type, dual-tube, counter-flow heat exchanger with a catalytic insert and a central baffle to increase recuperation efficiency.

  1. SUSCEPTIBILIT MAGNTIQUE DE QUELQUES SULFURES ET OXYDES DE PLUTONIUM

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    261. SUSCEPTIBILIT MAGNTIQUE DE QUELQUES SULFURES ET OXYDES DE PLUTONIUM Par GEORGES RAPHAEL et CHARLES DE NOVION, S.E.C.P.E.R., Section d'tudes des Cramiques base de Plutonium, Centre d susceptibilite magntique des sulfures de plutonium : PuS, Pu3S4, PU2S3CXI PuS2. Ces composes non conduc- teurs

  2. High-sulfur coals in the eastern Kentucky coal field

    SciTech Connect (OSTI)

    Hower, J.C.; Graham, U.M. (Univ. of Kentucky Center for Applied Energy Research, Lexington, KY (United States)); Eble, C.F. (Kentucky Geological Survey, Lexington, KY (United States))

    1993-08-01T23:59:59.000Z

    The Eastern Kentucky coal field is notable for relatively low-sulfur, [open quotes]compliance[close quotes] coals. Virtually all of the major coals in this area do have regions in which higher sulfur lithotypes are common, if not dominant, within the lithologic profile. Three Middle Pennsylvanian coals, each representing a major resource, exemplify this. The Clintwood coal bed is the stratigraphically lowest coal bed mined throughout the coal field. In Whitley County, the sulfur content increase from 0.6% at the base to nearly 12% in the top lithotype. Pyrite in the high-sulfur lithotype is a complex mixture of sub- to few-micron syngenetic forms and massive epigenetic growths. The stratigraphically higher Pond Creek coal bed is extensively mined in portions of the coal field. Although generally low in sulfur, in northern Pike and southern Martin counties the top one-third can have up to 6% sulfur. Uniformly low-sulfur profiles can occur within a few hundred meters of high-sulfur coal. Pyrite occurs as 10-50 [mu]m euhedra and coarser massive forms. In this case, sulfur distribution may have been controlled by sandstone channels in the overlying sediments. High-sulfur zones in the lower bench of the Fire Clay coal bed, the stratigraphically highest coal bed considered here, are more problematical. The lower bench, which is of highly variable thickness and quality, generally is overlain by a kaolinitic flint clay, the consequence of a volcanic ash fall into the peat swamp. In southern Perry and Letcher counties, a black, illite-chlorite clay directly overlies the lower bench. General lack of lateral continuity of lithotypes in the lower bench suggests that the precursor swamp consisted of discontinuous peat-forming environments that were spatially variable and regularly inundated by sediments. Some of the peat-forming areas may have been marshlike in character.

  3. Molecular Structures of Polymer/Sulfur Composites for Lithium-Sulfur Batteries with Long Cycle Life

    SciTech Connect (OSTI)

    Xiao, Lifen; Cao, Yuliang; Xiao, Jie; Schwenzer, Birgit; Engelhard, Mark H.; Saraf, Laxmikant V.; Nie, Zimin; Exarhos, Gregory J.; Liu, Jun

    2013-04-26T23:59:59.000Z

    Vulcanizedpolyaniline/sulfur (SPANI/S) nanostructures were investigated for Li-S battery applications, but the detailed molecular structures of such composites have not been fully illustrated. In this paper, we synthesize SPANI/S composites with different S content in a nanorod configuration. FTIR, Raman, XPS, XRD, SEM and elemental analysis methods are used to characterize the molecular structure of the materials. We provide clear evidence that a portion of S was grafted on PANI during heating and connected the PANI chains with disulfide bonds to form a crosslinked network and the rest of S was encapsulated within it.. Polysulfides and elementary sulfur nanoparticles are physically trapped inside the polymer network and are not chemically bound to the polymer. The performance of the composites is further improved by reducing the particle size. Even after 500 cycles a capacity retention rate of 68.8% is observed in the SPANI/S composite with 55% S content.

  4. Autothermal reforming of sulfur-free and sulfur-containing hydrocarbon liquids

    SciTech Connect (OSTI)

    Not Available

    1981-10-01T23:59:59.000Z

    The mechanisms by which various fuel component hydrocarbons related to both heavy petroleum and coal-derived liquids are converted to hydrogen without forming carbon were investigated. Reactive differences between paraffins and aromatics in autothermal reforming (ATR) were shown to be responsible for the observed fuel-specific carbon formation characteristics. The types of carbon formed in the reformer were identified by SEM and XRD analyses of catalyst samples and carbon deposits. From tests with both light and heavy paraffins and aromatics, it is concluded that high boiling point hydrocarbons and polynuclear aromatics enhance the propensity for carbon formation. The effects of propylene addition on the ATR performance of benzene are described. In ATR tests with mixtures of paraffins and aromatics, synergistic effects on conversion characteristics were identified. Indications that the sulfur content of the fuel may be the limiting factor for efficient ATR operation were found. The conversion and degradation effects of the sulfur additive (thiophene) were examined.

  5. High pressure sulfuric acid decomposition experiments for the sulfur-iodine thermochemical cycle.

    SciTech Connect (OSTI)

    Velasquez, Carlos E; Reay, Andrew R.; Andazola, James C.; Naranjo, Gerald E.; Gelbard, Fred

    2005-09-01T23:59:59.000Z

    A series of three pressurized sulfuric acid decomposition tests were performed to (1) obtain data on the fraction of sulfuric acid catalytically converted to sulfur dioxide, oxygen, and water as a function of temperature and pressure, (2) demonstrate real-time measurements of acid conversion for use as process control, (3) obtain multiple measurements of conversion as a function of temperature within a single experiment, and (4) assess rapid quenching to minimize corrosion of metallic components by undecomposed acid. All four of these objectives were successfully accomplished. This report documents the completion of the NHI milestone on high pressure H{sub 2}SO{sub 4} decomposition tests for the Sulfur-Iodine (SI) thermochemical cycle project. All heated sections of the apparatus, (i.e. the boiler, decomposer, and condenser) were fabricated from Hastelloy C276. A ceramic acid injection tube and a ceramic-sheathed thermocouple were used to minimize corrosion of hot liquid acid on the boiler surfaces. Negligible fracturing of the platinum on zirconia catalyst was observed in the high temperature decomposer. Temperature measurements at the exit of the decomposer and at the entry of the condenser indicated that the hot acid vapors were rapidly quenched from about 400 C to less than 20 C within a 14 cm length of the flow path. Real-time gas flow rate measurements of the decomposition products provided a direct measurement of acid conversion. Pressure in the apparatus was preset by a pressure-relief valve that worked well at controlling the system pressure. However, these valves sometimes underwent abrupt transitions that resulted in rapidly varying gas flow rates with concomitant variations in the acid conversion fraction.

  6. Performance and cost models for the direct sulfur recovery process. Task 1 Topical report, Volume 3

    SciTech Connect (OSTI)

    Frey, H.C. [North Carolina State Univ., Raleigh, NC (United States); Williams, R.B. [Carneigie Mellon Univ., Pittsburgh, PA (United States)

    1995-09-01T23:59:59.000Z

    The purpose of this project is to develop performance and cost models of the Direct Sulfur Recovery Process (DSRP). The DSRP is an emerging technology for sulfur recovery from advanced power generation technologies such as Integrated Gasification Combined Cycle (IGCC) systems. In IGCC systems, sulfur present in the coal is captured by gas cleanup technologies to avoid creating emissions of sulfur dioxide to the atmosphere. The sulfur that is separated from the coal gas stream must be collected. Leading options for dealing with the sulfur include byproduct recovery as either sulfur or sulfuric acid. Sulfur is a preferred byproduct, because it is easier to handle and therefore does not depend as strongly upon the location of potential customers as is the case for sulfuric acid. This report describes the need for new sulfur recovery technologies.

  7. OIL & GAS HISTORY 1 History in California

    E-Print Network [OSTI]

    OIL & GAS HISTORY 1 History in California 4 Superior figures refer to references at the end of the essay. OIL AND GAS PRODUCTION California oil was always a valued commodity. When the Spanish explorers landed in California in the 1500s, they found Indians gathering asphaltum (very thick oil) from natural

  8. Iran in History Iran in History

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    1 Iran in History Iran in History by Bernard Lewis In attempting to attain some perspective on Iran. These events have been variously seen in Iran: by some as a blessing, the advent of the true faith, the end remarkable difference between what happened in Iran and what happened in all the other countries

  9. Terpolymerization of ethylene, sulfur dioxide and carbon monoxide

    DOE Patents [OSTI]

    Johnson, Richard (Shirley, NY); Steinberg, Meyer (Huntington Station, NY)

    1981-01-01T23:59:59.000Z

    This invention relates to a high molecular weight terpolymer of ethylene, sulfur dioxide and carbon monoxide stable to 280.degree. C. and containing as little as 36 mol % ethylene and about 41-51 mol % sulfur dioxide; and to the method of producing said terpolymer by irradiation of a liquid and gaseous mixture of ethylene, sulfur dioxide and carbon monoxide by means of Co-60 gamma rays or an electron beam, at a temperature of about 10.degree.-50.degree. C., and at a pressure of about 140 to 680 atmospheres, to initiate polymerization.

  10. Janice Bryant Oral History

    E-Print Network [OSTI]

    Bryant, Janice; Helmer, Lauren

    2010-12-29T23:59:59.000Z

    Oral history interview with Janice Bryant conducted by Lauren Helmer in Marion, Kansas, on December 29, 2010. In this interview, Janice Bryant, a former church secretary for Valley Methodist Church, discusses the history, organization, and programs...

  11. National Women's History Month

    Broader source: Energy.gov [DOE]

    During Women's History Month, we recall that the pioneering legacy of our grandmothers and great-grandmothers is revealed not only in our museums and history books, but also in the fierce...

  12. BLACK HISTORY MONTH

    Broader source: Energy.gov [DOE]

    Black History Month is an annual celebration of achievements by black Americans and a time for recognizing the central role of African Americans in U.S. history. The event grew out of Negro History Week, created by historian Carter G. Woodson and other prominent African Americans. Other countries around the world, including Canada and the United Kingdom, also devote a month to celebrating black history.

  13. Low Temperature Sorbents for removal of Sulfur Compounds from fluid feed Streams

    SciTech Connect (OSTI)

    Siriwardane, Ranjan

    1999-09-30T23:59:59.000Z

    A sorbent material is provided comprising a material reactive with sulfur, a binder unreactive with sulfur and an inert material, wherein the sorbent absorbs the sulfur at temperatures between 30 and 200 C. Sulfur absorption capacity as high as 22 weight percent has been observed with these materials.

  14. Low Temperature Sorbents for Removal of Sulfur Compounds from Fluid Feed Streams

    DOE Patents [OSTI]

    Siriwardane, Ranjani

    2004-06-01T23:59:59.000Z

    A sorbent material is provided comprising a material reactive with sulfur, a binder unreactive with sulfur and an inert material, wherein the sorbent absorbs the sulfur at temperatures between 30 and 200 C. Sulfur absorption capacity as high as 22 weight percent has been observed with these materials.

  15. Synergistic capture mechanisms for alkali and sulfur species from combustion. Final report

    SciTech Connect (OSTI)

    Peterson, T.W.; Shadman, F.; Wendt, J.O.L.; Mwabe, P.O.

    1994-02-01T23:59:59.000Z

    Experimental work was carried out on a 17 kW, 600 cm long, gas laboratory combustor, to investigate the post flame reactive capture of alkali species by kaolinite. Emphasis was on alkali/sorbent interactions occurring in flue gas at temperatures above the alkali dewpoint and on the formation of water insoluble reaction products. Time-temperature studies were carried out by injecting kaolinite at different axial points along the combustor. The effect of chlorine and sulfur on alkali capture was investigated by doping the flame with SO{sub 2} and Cl{sub 2} gases to simulate coal flame environments. Particle time and temperature history was kept as close as possible to that which would ordinarily be found in a practical boiler. Experiments designed to extract apparent initial reaction rates were carried using a narrow range, 1-2 {mu}m modal size sorbent, while, a coarse, multi size sorbent was used to investigate the governing transport mechanisms. The capture reaction has been proposed to be between alkali hydroxide and activated kaolinite, and remains so in the presence of sulfur and chlorine. The presence of sulfur reduces sodium capture by under 10% at 1300{degree}C. Larger reductions at lower temperatures are attributed to the elevated dewpoint of sodium ({approximately}850{degree}C) with subsequent reduction in sorbent residence time in the alkali gas phase domain. Chlorine reduces sodium capture by 30% across the temperature range covered by the present experiments. This result has been linked to thermodynamic equilibria between sodium hydroxide, sodium chloride and water.

  16. System for adding sulfur to a fuel cell stack system for improved fuel cell stability

    DOE Patents [OSTI]

    Mukerjee, Subhasish; Haltiner, Jr., Karl J; Weissman, Jeffrey G

    2013-08-13T23:59:59.000Z

    A system for adding sulfur to a reformate stream feeding a fuel cell stack, having a sulfur source for providing sulfur to the reformate stream and a metering device in fluid connection with the sulfur source and the reformate stream. The metering device injects sulfur from the sulfur source to the reformate stream at a predetermined rate, thereby providing a conditioned reformate stream to the fuel cell stack. The system provides a conditioned reformate stream having a predetermined sulfur concentration that gives an acceptable balance of minimal drop in initial power with the desired maximum stability of operation over prolonged periods for the fuel cell stack.

  17. Sulfur Dioxide Treatment from Flue Gases Using a Biotrickling

    E-Print Network [OSTI]

    ), and several episodes in London (1). All fuels used by humans such as coal, oil, natural gas, peat, wood of absorbing sulfur dioxide either in water or in aqueous slurries

  18. Abatement of Air Pollution: Control of Sulfur Compound Emissions (Connecticut)

    Broader source: Energy.gov [DOE]

    These regulations set limits on the sulfur content of allowable fuels (1.0% by weight, dry basis) for combustion, as well as for the heat input of any fuel burning equipment (250,000 Btu/hour)....

  19. Sulfurized olefin lubricant additives and compositions containing same

    SciTech Connect (OSTI)

    Braid, M.

    1980-03-25T23:59:59.000Z

    Lubricant additives having substantially improved extreme pressure characteristics are provided by modifying certain sulfurized olefins by reacting said olefins with a cyclic polydisulfide under controlled reaction conditions and at a temperature of at least about 130/sup 0/ C.

  20. aqueous organic sulfur: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kaufman, Alan Jay 352 Using ISC & GIS to predict sulfur deposition from coal-fired power plants Texas A&M University - TxSpace Summary: positioning system was also used...

  1. adenylation sulfur transfer: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chatterjee, A. 264 SO2 impacts on forage and soil sulfur concentrations near coal-fired power plants Texas A&M University - TxSpace Summary: The goal of this research was to...

  2. Physiology of multiple sulfur isotope fractionation during microbial sulfate reduction

    E-Print Network [OSTI]

    Sim, Min Sub

    2012-01-01T23:59:59.000Z

    Microbial sulfate reduction (MSR) utilizes sulfate as an electron acceptor and produces sulfide that is depleted in heavy isotopes of sulfur relative to starting sulfate. The fractionation of S-isotopes is commonly used ...

  3. Hydrogen and Sulfur Production from Hydrogen Sulfide Wastes

    E-Print Network [OSTI]

    Harkness, J.; Doctor, R. D.

    A new hydrogen sulfide waste-treatment process that uses microwave plasma-chemical technology is currently under development in the Soviet Union and in the United States. Whereas the present waste treatment process only recovers sulfur at best...

  4. Novel Sulfur-Tolerant Anodes for Solid Oxide Fuel Cells

    SciTech Connect (OSTI)

    Lei Yang; Meilin Liu

    2008-12-31T23:59:59.000Z

    One of the unique advantages of SOFCs over other types of fuel cells is the potential for direct utilization of hydrocarbon fuels (it may involve internal reforming). Unfortunately, most hydrocarbon fuels contain sulfur, which would dramatically degrade SOFC performance at parts-per-million (ppm) levels. Low concentration of sulfur (ppm or below) is difficult to remove efficiently and cost-effectively. Therefore, knowing the exact poisoning process for state-of-the-art anode-supported SOFCs with Ni-YSZ cermet anodes, understanding the detailed anode poisoning mechanism, and developing new sulfur-tolerant anodes are essential to the promotion of SOFCs that run on hydrocarbon fuels. The effect of cell operating conditions (including temperature, H{sub 2}S concentration, cell voltage/current density, etc.) on sulfur poisoning and recovery of nickel-based anode in SOFCs was investigated. It was found that sulfur poisoning is more severe at lower temperature, higher H{sub 2}S concentration or lower cell current density (higher cell voltage). In-situ Raman spectroscopy identified the nickel sulfide formation process on the surface of a Ni-YSZ electrode and the corresponding morphology change as the sample was cooled in H{sub 2}S-containing fuel. Quantum chemical calculations predicted a new S-Ni phase diagram with a region of sulfur adsorption on Ni surfaces, corresponding to sulfur poisoning of Ni-YSZ anodes under typical SOFC operating conditions. Further, quantum chemical calculations were used to predict the adsorption energy and bond length for sulfur and hydrogen atoms on various metal surfaces. Surface modification of Ni-YSZ anode by thin Nb{sub 2}O{sub 5} coating was utilized to enhance the sulfur tolerance. A multi-cell testing system was designed and constructed which is capable of simultaneously performing electrochemical tests of 12 button cells in fuels with four different concentrations of H{sub 2}S. Through systematical study of state-of-the-art anode-supported SOFC button cells, it is seen that the long-term sulfur poisoning behavior of those cells indicate that there might be a second-stage slower degradation due to sulfur poisoning, which would last for a thousand hour or even longer. However, when using G-18 sealant from PNNL, the 2nd stage poisoning was effectively prohibited.

  5. An electrochemical Claus process for sulfur recovery

    SciTech Connect (OSTI)

    Pujare, N.U.; Tsai, K.J.; Sammuells, A.F. (Eltron Research, Inc., Aurora, IL (US))

    1989-12-01T23:59:59.000Z

    Electrochemical oxidation of H{sub 2}S to give sulfur and water was achieved at 900{degrees}C using fuel cells possessing the general configuration where anode electrocatalysts experimentally investigated for promoting the subject oxidation reaction included WS{sub 2} and the thiospinels CuNi{sub 2}S{sub 4}, CuCo{sub 2}S{sub 4}, CuFe{sub 2}S{sub 4}, and NiFe{sub 2}S{sub 4}. The predominant oxidizable electroactive species present in the fuel cell anode compartment was suggested to be hydrogen originating from the initial thermal dissociation of H{sub 2}S (H{sub 2}S {r reversible} H{sub 2} + 1/2 S{sub 2}) at fuel cell operating temperatures. Rapid anode kinetics were found for the anodic reaction with the empirical trend for exchange currents (i{sub o}) per geometric area being found to be NiFe{sub 2}S{sub 4}{gt}WS{sub 2}{gt}CuCo{sub 2}S{sub 4}{gt}CuFe{sub 2}S{sub 4}{approx equal}NiCo{sub 2}S{sub 4}{gt}CuNi{sub 2}S{sub 4}.

  6. World Views From fragmentation

    E-Print Network [OSTI]

    .......................................................11 2. The Seven Components of a World View...................................................... 20 3. The Unity of the Seven Sub........................................... 25 5. The Purpose of the group `Worldviews

  7. HISTORY NEWSLETTER Historical Division (EH)

    E-Print Network [OSTI]

    Historian Workshop and for the development of an Apollo History Plan resulted in the Apollo History Workshop

  8. Lithium-Sulfur Batteries: Development of High Energy Lithium-Sulfur Cells for Electric Vehicle Applications

    SciTech Connect (OSTI)

    None

    2010-10-01T23:59:59.000Z

    BEEST Project: Sion Power is developing a lithium-sulfur (Li-S) battery, a potentially cost-effective alternative to the Li-Ion battery that could store 400% more energy per pound. All batteries have 3 key partsa positive and negative electrode and an electrolytethat exchange ions to store and release electricity. Using different materials for these components changes a batterys chemistry and its ability to power a vehicle. Traditional Li-S batteries experience adverse reactions between the electrolyte and lithium-based negative electrode that ultimately limit the battery to less than 50 charge cycles. Sion Power will sandwich the lithium- and sulfur-based electrode films around a separator that protects the negative electrode and increases the number of charges the battery can complete in its lifetime. The design could eventually allow for a battery with 400% greater storage capacity per pound than Li-Ion batteries and the ability to complete more than 500 recharge cycles.

  9. NEWS & VIEWS Glass dynamics

    E-Print Network [OSTI]

    Weeks, Eric R.

    NEWS & VIEWS Glass dynamics Diverging views on glass transition Gregory B. mc.mckenna@ttu.edu T he glass transition is one of the most intriguing phenomena in the world of soft condensed matter. Despite decades of study, many aspects of the behaviour of glass-forming liquids remain elusive

  10. Hybrid Sulfur Thermochemical Process Development Annual Report

    SciTech Connect (OSTI)

    Summers, William A.; Buckner, Melvin R.

    2005-07-21T23:59:59.000Z

    The Hybrid Sulfur (HyS) Thermochemical Process is a means of producing hydrogen via water-splitting through a combination of chemical reactions and electrochemistry. Energy is supplied to the system as high temperature heat (approximately 900 C) and electricity. Advanced nuclear reactors (Generation IV) or central solar receivers can be the source of the primary energy. Large-scale hydrogen production based on this process could be a major contributor to meeting the needs of a hydrogen economy. This project's objectives include optimization of the HyS process design, analysis of technical issues and concerns, creation of a development plan, and laboratory-scale proof-of-concept testing. The key component of the HyS Process is the SO2-depolarized electrolyzer (SDE). Studies were performed that showed that an electrolyzer operating in the range of 500-600 mV per cell can lead to an overall HyS cycle efficiency in excess of 50%, which is superior to all other currently proposed thermochemical cycles. Economic analysis indicated hydrogen production costs of approximately $1.60 per kilogram for a mature nuclear hydrogen production plant. However, in order to meet commercialization goals, the electrolyzer should be capable of operating at high current density, have a long operating lifetime , and have an acceptable capital cost. The use of proton-exchange-membrane (PEM) technology, which leverages work for the development of PEM fuel cells, was selected as the most promising route to meeting these goals. The major accomplishments of this project were the design and construction of a suitable electrolyzer test facility and the proof-of-concept testing of a PEM-based SDE.

  11. Sulfur Poisoning and Regeneration of NOx Storage-Reduction Cu/K2Ti2O5 Qiang Wang,*,

    E-Print Network [OSTI]

    Guo, John Zhanhu

    a maximum value of 15 ppm sulfur content in diesel fuel, and this ultra-low-sulfur fuel is expectedSulfur Poisoning and Regeneration of NOx Storage-Reduction Cu/K2Ti2O5 Catalyst Qiang Wang,*, Jiahua of sulfur has not been investigated. In this article, the sulfur poisoning of the NOx storage

  12. CLOSEOUT REPORT FOR HYBRID SULFUR PRESSURIZED BUTTON CELL TEST FACILITY

    SciTech Connect (OSTI)

    Steeper, T.

    2010-09-15T23:59:59.000Z

    This document is the Close-Out Report for design and partial fabrication of the Pressurized Button Cell Test Facility at Savannah River National Laboratory (SRNL). This facility was planned to help develop the sulfur dioxide depolarized electrolyzer (SDE) that is a key component of the Hybrid Sulfur Cycle for generating hydrogen. The purpose of this report is to provide as much information as possible in case the decision is made to resume research. This report satisfies DOE Milestone M3GSR10VH030107.0. The HyS Cycle is a hybrid thermochemical cycle that may be used in conjunction with advanced nuclear reactors or centralized solar receivers to produce hydrogen by watersplitting. The HyS Cycle utilizes the high temperature (>800 C) thermal decomposition of sulfuric acid to produce oxygen and regenerate sulfur dioxide. The unique aspect of HyS is the generation of hydrogen in a water electrolyzer that is operated under conditions where dissolved sulfur dioxide depolarizes the anodic reaction, resulting in substantial voltage reduction. Low cell voltage is essential for both high thermodynamic efficiency and low hydrogen cost. Sulfur dioxide is oxidized at the anode, producing sulfuric acid that is sent to the high temperature acid decomposition portion of the cycle. Sulfur dioxide from the decomposer is cycled back to electrolyzers. The electrolyzer cell uses the membrane electrode assembly (MEA) concept. Anode and cathode are formed by spraying a catalyst, typically platinized carbon, on both sides of a Proton Exchange Membrane (PEM). SRNL has been testing SDEs for several years including an atmospheric pressure Button Cell electrolyzer (2 cm{sup 2} active area) and an elevated temperature/pressure Single Cell electrolyzer (54.8 cm{sup 2} active area). SRNL tested 37 MEAs in the Single Cell electrolyzer facility from June 2005 until June 2009, when funding was discontinued. An important result of the final months of testing was the development of a method that prevents the formation of a sulfur layer previously observed in MEAs used in the Hybrid Sulfur Cycle electrolyzer. This result is very important because the sulfur layer increased cell voltage and eventually destroyed the MEA that is the heart of the cell. Steimke and Steeper [2005, 2006, 2007, 2008] reported on testing in the Single Cell Electrolyzer test facility in several periodic reports. Steimke et. al [2010] issued a final facility close-out report summarizing all the testing in the Single Cell Electrolyzer test facility. During early tests, significant deterioration of the membrane occurred in 10 hours or less; the latest tests ran for at least 200 hours with no sign of deterioration. Ironically, the success with the Single Cell electrolyzer meant that it became dedicated to long runs and not available for quick membrane evaluations. Early in this research period, the ambient pressure Button Cell Electrolyzer test facility was constructed to quickly evaluate membrane materials. Its small size allowed testing of newly developed membranes that typically were not available in sizes large enough to test in the Single Cell electrolyzer. The most promising membranes were tested in the Single Cell Electrolyzer as soon as sufficient large membranes could be obtained. However, since the concentration of SO{sub 2} gas in sulfuric acid decreases rapidly with increasing temperature, the ambient pressure Button Cell was no longer able to achieve the operating conditions needed to evaluate the newer improved high temperature membranes. Significantly higher pressure operation was required to force SO{sub 2} into the sulfuric acid to obtain meaningful concentrations at increased temperatures. A high pressure (200 psig), high temperature (120 C) Button Cell was designed and partially fabricated just before funding was discontinued in June 2009. SRNL completed the majority of the design of the test facility, including preparation of a process and instrument drawing (P&ID) and preliminary designs for the major components. SRNL intended to complete the designs and procu

  13. LOW SULFUR HOME HEATING OIL DEMONSTRATION PROJECT SUMMARY REPORT.

    SciTech Connect (OSTI)

    BATEY, J.E.; MCDONALD, R.J.

    2005-06-01T23:59:59.000Z

    This project was funded by NYSERDA and has clearly demonstrated many advantages of using low sulfur content heating oil to provide thermal comfort in homes. Prior laboratory research in the United States and Canada had indicated a number of potential benefits of using lower sulfur (0.05%) heating oil. However, this prior research has not resulted in the widespread use of low sulfur fuel oil in the marketplace. The research project described in this report was conducted with the assistance of a well-established fuel oil marketer in New York State (NYS) and has provided clear proof of the many real-world advantages of marketing and using low sulfur content No. 2 fuel oil. The very positive experience of the participating marketer over the past three years has already helped to establish low sulfur heating oil as a viable option for many other fuel marketers. In large part, based on the initial findings of this project and the experience of the participating NYS oilheat marketer, the National Oilheat Research Alliance (NORA) has already fully supported a resolution calling for the voluntary use of low sulfur (0.05 percent) home heating oil nationwide. The NORA resolution has the goal of converting eighty percent of all oil-heated homes to the lower sulfur fuel (0.05 percent by weight) by the year 2007. The Oilheat Manufacturers Association (OMA) has also passed a resolution fully supporting the use of lower sulfur home heating oil in the equipment they manufacture. These are important endorsements by prominent national oil heat associations. Using lower sulfur heating oil substantially lowers boiler and furnace fouling rates. Laboratory studies had indicated an almost linear relationship between sulfur content in the oil and fouling rates. The completed NYSERDA project has verified past laboratory studies in over 1,000 occupied residential homes over the course of three heating seasons. In fact, the reduction in fouling rates so clearly demonstrated by this project is almost the same as predicted by past laboratory studies. Fouling deposition rates are reduced by a factor of two to three by using lower sulfur oil. This translates to a potential for substantial service cost savings by extending the interval between labor-intensive cleanings of the internal surfaces of the heating systems in these homes. In addition, the time required for annual service calls can be lowered, reducing service costs and customer inconvenience. The analyses conducted as part of this field demonstration project indicates that service costs can be reduced by up to $200 million a year nationwide by using lower sulfur oil and extending vacuum cleaning intervals depending on the labor costs and existing cleaning intervals. The ratio of cost savings to added fuel costs is economically attractive based on past fuel price differentials for the lower sulfur product. The ratio of cost savings to added costs vary widely as a function of hourly service rates and the additional cost for lower sulfur oil. For typical values, the expected benefit is a factor of two to four higher than the added fuel cost. This means that for every dollar spent on higher fuel cost, two to four dollars can be saved by lowered vacuum cleaning costs when the cleaning intervals are extended. Information contained in this report can be used by individual oil marketers to estimate the benefit to cost ratio for their specific applications. Sulfur oxide and nitrogen oxide air emissions are reduced substantially by using lower sulfur fuel oil in homes. Sulfur oxides emissions are lowered by 75 percent by switching from fuel 0.20 percent to 0.05 percent sulfur oil. This is a reduction of 63,000 tons a year nationwide. In New York State, sulfur oxide emissions are reduced by 13,000 tons a year. This translates to a total value of $12 million a year in Sulfur Oxide Emission Reduction Credits for an emission credit cost of $195 a ton. While this ''environmental cost'' dollar savings is smaller than the potential service costs reduction, it is very significant. It represents an important red

  14. International Global Atmospheric Chemistry Programme global emissions inventory activity: Sulfur emissions from volcanoes, current status

    SciTech Connect (OSTI)

    Benkovitz, C.M.

    1995-07-01T23:59:59.000Z

    Sulfur emissions from volcanoes are located in areas of volcanic activity, are extremely variable in time, and can be released anywhere from ground level to the stratosphere. Previous estimates of global sulfur emissions from all sources by various authors have included estimates for emissions from volcanic activity. In general, these global estimates of sulfur emissions from volcanoes are given as global totals for an ``average`` year. A project has been initiated at Brookhaven National Laboratory to compile inventories of sulfur emissions from volcanoes. In order to complement the GEIA inventories of anthropogenic sulfur emissions, which represent conditions circa specific years, sulfur emissions from volcanoes are being estimated for the years 1985 and 1990.

  15. Process and system for removing sulfur from sulfur-containing gaseous streams

    DOE Patents [OSTI]

    Basu, Arunabha (Aurora, IL); Meyer, Howard S. (Hoffman Estates, IL); Lynn, Scott (Pleasant Hill, CA); Leppin, Dennis (Chicago, IL); Wangerow, James R. (Medinah, IL)

    2012-08-14T23:59:59.000Z

    A multi-stage UCSRP process and system for removal of sulfur from a gaseous stream in which the gaseous stream, which contains a first amount of H.sub.2S, is provided to a first stage UCSRP reactor vessel operating in an excess SO.sub.2 mode at a first amount of SO.sub.2, producing an effluent gas having a reduced amount of SO.sub.2, and in which the effluent gas is provided to a second stage UCSRP reactor vessel operating in an excess H.sub.2S mode, producing a product gas having an amount of H.sub.2S less than said first amount of H.sub.2S.

  16. Art History Contemporary Germany

    E-Print Network [OSTI]

    Reyle, Uwe

    Art History Contemporary Germany 20th Century Architecture German Film & Literature Winter.007 Contemporary Germany Gnter Seeger Room -1.019 German Film & Literature Dr. Klaus Rhm Room -1.022 #12;6 Monday Architecture Art History Contemporary Germany German Film and Literature after 1990 Notes: #12;9 Thursday 16

  17. Microscale acceleration history discriminators

    DOE Patents [OSTI]

    Polosky, Marc A. (Albuquerque, NM); Plummer, David W. (Albuquerque, NM)

    2002-01-01T23:59:59.000Z

    A new class of micromechanical acceleration history discriminators is claimed. These discriminators allow the precise differentiation of a wide range of acceleration-time histories, thereby allowing adaptive events to be triggered in response to the severity (or lack thereof) of an external environment. Such devices have applications in airbag activation, and other safety and surety applications.

  18. Negotiating authenticity: a negotiated order study of Valley View Summer Camp

    E-Print Network [OSTI]

    Free, Rebecca J

    1999-01-01T23:59:59.000Z

    the negotiated order of Valley View's summer camp from June 1998 until August 1998. Economic needs, organizational growth, the increasing violent behavior of children, and the mission and history of the camp were aspects of the structural context impacting...

  19. NEWS AND VIEWS PERSPECTIVE

    E-Print Network [OSTI]

    Mahler, D. Luke

    NEWS AND VIEWS PERSPECTIVE Niche diversification follows key innovation in Antarctic fish radiation Oxford Street, Cambridge MA 02138, USA Antarctic notothenioid fishes provide a fascinating evolu- tionary diversification has occurred repeatedly and in parallel. Keywords: community ecology, fish, macroevolution, phylo

  20. Forward viewing OCT endomicroscopy

    E-Print Network [OSTI]

    Liang, Kaicheng

    2014-01-01T23:59:59.000Z

    A forward viewing fiber optic-based imaging probe device was designed and constructed for use with ultrahigh speed optical coherence tomography in the human gastrointestinal tract. The light source was a MEMS-VCSEL at 1300 ...

  1. Preliminary Investigation of Sulfur Loading in Hanford LAW Glass

    SciTech Connect (OSTI)

    Vienna, John D.; Hrma, Pavel R.; Buchmiller, William C.; Ricklefs, Joel S.

    2004-04-01T23:59:59.000Z

    A preliminary estimate was developed for loading limits for high-sulfur low-activity waste (LAW) feeds that will be vitrified into borosilicate glass at the Hanford Site in the waste-cleanup effort. Previous studies reported in the literature were consulted to provide a basis for the estimate. The examination of previous studies led to questions about sulfur loading in Hanford LAW glass, and scoping tests were performed to help answer these questions. These results of these tests indicated that a formulation approach developed by Vienna and colleagues shows promise for maximizing LAW loading in glass. However, there is a clear need for follow-on work. The potential for significantly lowering the amount of LAW glass produced at Hanford (after the initial phase of processing) because of higher sulfur tolerances may outweigh the cost and effort required to perform the necessary testing.

  2. Advanced byproduct recovery: Direct catalytic reduction of sulfur dioxide to elemental sulfur. Fourth quarterly technical progress report

    SciTech Connect (OSTI)

    NONE

    1997-01-01T23:59:59.000Z

    The team of Arthur D. Little, Tufts University and Engelhard Corporation are conducting Phase 1 of a four and a half year, two-phase effort to develop and scale-up an advanced byproduct recovery technology that is a direct, single-stage, catalytic process for converting sulfur dioxide to elemental sulfur. This catalytic process reduces SO{sub 2} over a fluorite-type oxide (such as ceria and zirconia). The catalytic activity can be significantly promoted by active transition metals, such as copper. More than 95% elemental sulfur yield, corresponding to almost complete sulfur dioxide conversion, was obtained over a Cu-Ce-O oxide catalyst as part of an on-going DOE-sponsored, University Coal Research Program. This type of mixed metal oxide catalyst has stable activity, high selectivity for sulfur production, and is resistant to water and carbon dioxide poisoning. Tests with CO and CH{sub 4} reducing gases indicate that the catalyst has the potential for flexibility with regard to the composition of the reducing gas, making it attractive for utility use. The performance of the catalyst is consistently good over a range of SO{sub 2} inlet concentration (0.1 to 10%) indicating its flexibility in treating SO{sub 2} tail gases as well as high concentration streams.

  3. Selective catalytic reduction of sulfur dioxide to elemental sulfur. Quarterly technical progress report No. 2, October--December 1992

    SciTech Connect (OSTI)

    Liu, Wei; Flytzani-Stephanopoulos, M.; Sarofim, A.F.

    1992-12-31T23:59:59.000Z

    Elemental sulfur recovery from SO{sub 2}-containing gas streams is highly attractive as it produces a saleable. Product and no waste to dispose of. However, commercially available schemes are complex and involve multi-stage reactors, such as, most notably in the Resox (reduction of SO{sub 2} with coke) and Claus plants(reaction of SO{sub 2} with H{sub 2}S over catalyst). This project win investigate a cerium oxide catalyst for the single-stage selective reduction SO{sub 2} to elemental sulfur by a reductant, such as carbon monoxide. Cerium oxide has been identified as a superior catalyst for SO{sub 2} reduction by CO to elemental sulfur because of its high activity and high selectivity to sulfur over COS over a wide temperature range(400--650C). Kinetic and parametric studies of SO{sub 2} reduction planned over various CeO{sub 2}-formulations will provide the necessary basis for development of a simplified process, a single-stage elemental sulfur recovery scheme from variable concentration gas streams. A first apparent application is treatment of regenerator off-gases in power plants using regenerative flue gas desulfurization. Such a simple catalytic converter may offer the long-sought ``Claus-alternative`` for coal-fired power plant applications.

  4. Sulfur gas geochemical detection of hydrothermal systems. Final report

    SciTech Connect (OSTI)

    Rouse, G.E.

    1984-01-01T23:59:59.000Z

    The purpose of this investigation was to determine whether a system of exploration using sulfur gases was capable of detecting convecting hydrothermal systems. Three surveying techniques were used at the Roosevelt Hot Springs KGRA in Utah. These were (a) a sniffing technique, capable of instantaneous determinations of sulfur gas concentration, (b) an accumulator technique, capable of integrating the sulfur gas emanations over a 30 day interval, and (c) a method of analyzing the soils for vaporous sulfur compounds. Because of limitations in the sniffer technique, only a limited amount of surveying was done with this method. The accumulator and soil sampling techniques were conducted on a 1000 foot grid at Roosevelt Hot Springs, and each sample site was visited three times during the spring of 1980. Thus, three soil samples and two accumulator samples were collected at each site. The results are shown as averages of three soil and two accumulator determinations of sulfur gas concentrations at each site. Soil surveys and accumulator surveys were conducted at two additional KGRA's which were chosen based on the state of knowledge of these hydrothermal systems and upon their differences from Roosevelt Hot Springs in an effort to show that the exploration methods would be effective in detecting geothermal reservoirs in general. The results at Roosevelt Hot Springs, Utah show that each of the three surveying methods was capable of detecting sulfur gas anomalies which can be interpreted to be related to the source at depth, based on resistivity mapping of that source, and also correlatable with major structural features of the area which are thought to be controlling the geometry of the geothermal reservoir. The results of the surveys at Roosevelt did not indicate that either the soil sampling technique or the accumulator technique was superior to the other.

  5. Direct sulfur recovery during sorbent regeneration. Final report

    SciTech Connect (OSTI)

    Nelson, S.G.; Little, R.C. [Sorbent Technologies Corp., Twinsburg, OH (United States)

    1993-08-01T23:59:59.000Z

    The objective of this research project was to improve the direct elemental sulfur yields that occur during the regeneration of SO{sub 2}-saturated MgO-vermiculite sorbents (MagSorbents) by examining three approaches or strategies. The three approaches were regeneration-gas recycle, high-pressure regeneration, and catalytic reduction of the SO{sub 2} gas using a new catalyst developed by Research Triangle Institute (RTI). Prior to the project, Sorbent Technologies Corporation (Sorbtech) had developed a sorbent-regeneration process that yielded directly a pure elemental sulfur product. In the process, typically about 25 to 35 percent of the liberated S0{sub 2} was converted directly to elemental sulfur. The goal of this project was to achieve a conversion rate of over 90 percent. Good success was attained in the project. About 90 percent or more conversion was achieved with two of the approaches that were examined, regeneration-gas recycle and use of the RTI catalyst. Of these approaches, regeneration-gas recycle gave the best results (essentially 100 percent conversion in some cases). In the regeneration-gas recycle approach, saturated sorbent is simply heated to about 750{degree}C in a reducing gas (methane) atmosphere. During heating, a gas containing elemental sulfur, water vapor, H{sub 2}S, S0{sub 2}, and C0{sub 2} is evolved. The elemental sulfur and water vapor in the gas stream are condensed and removed, and the remaining gas is recycled back through the sorbent bed. After several recycles, the S0{sub 2} and H{sub 2}S completely disappear from the gas stream, and the stream contains only elemental sulfur, water vapor and C0{sub 2}.

  6. Improving fractionation lowers butane sulfur level at Saudi gas plant

    SciTech Connect (OSTI)

    Harruff, L.G.; Martinie, G.D.; Rahman, A. [Saudi Arabian Oil Co., Dhahran (Saudi Arabia)

    1998-10-12T23:59:59.000Z

    Increasing the debutanizer reflux/feed ratio to improve fractionation at an eastern Saudi Arabian NGL plant reduced high sulfur in the butane product. The sulfur resulted from dimethyl sulfide (DMS) contamination in the feed stream from an offshore crude-oil reservoir in the northern Arabian Gulf. The contamination is limited to two northeastern offshore gas-oil separation plants operated by Saudi Arabian Oil Co. (Saudi Aramco) and, therefore, cannot be transported to facilities outside the Eastern Province. Two technically acceptable solutions for removing this contaminant were investigated: 13X molecular-sieve adsorption of the DMS and increased fractionation efficiency. The latter would force DMS into the debutanizer bottoms.

  7. Hydrogen and sulfur recovery from hydrogen sulfide wastes

    DOE Patents [OSTI]

    Harkness, John B. L. (Naperville, IL); Gorski, Anthony J. (Woodridge, IL); Daniels, Edward J. (Oak Lawn, IL)

    1993-01-01T23:59:59.000Z

    A process for generating hydrogen and elemental sulfur from hydrogen sulfide waste in which the hydrogen sulfide is associated under plasma conditions and a portion of the hydrogen output is used in a catalytic reduction unit to convert sulfur-containing impurities to hydrogen sulfide for recycle, the process also including the addition of an ionizing gas such as argon to initiate the plasma reaction at lower energy, a preheater for the input to the reactor and an internal adjustable choke in the reactor for enhanced coupling with the microwave energy input.

  8. Hydrogen and sulfur recovery from hydrogen sulfide wastes

    DOE Patents [OSTI]

    Harkness, J.B.L.; Gorski, A.J.; Daniels, E.J.

    1993-05-18T23:59:59.000Z

    A process is described for generating hydrogen and elemental sulfur from hydrogen sulfide waste in which the hydrogen sulfide is [dis]associated under plasma conditions and a portion of the hydrogen output is used in a catalytic reduction unit to convert sulfur-containing impurities to hydrogen sulfide for recycle, the process also including the addition of an ionizing gas such as argon to initiate the plasma reaction at lower energy, a preheater for the input to the reactor and an internal adjustable choke in the reactor for enhanced coupling with the microwave energy input.

  9. The Quantitation of Sulfur Mustard By-Products, Sulfur-Containing Herbicides, and Organophosphonates in Soil and Concrete

    SciTech Connect (OSTI)

    Tomkins, B.A., Sega, G.A. [Oak Ridge National Lab., TN (United States)], Macnaughton, S.J. [Microbial Insights, Inc., Rockford, TN (United States)

    1997-12-31T23:59:59.000Z

    Over the past fifty years, the facilities at Rocky Mountain Arsenal have been used for the manufacturing, bottling, and shipping sulfur- containing herbicides, sulfur mustard, and Sarin. There is a need for analytical methods capable of determining these constituents quickly to determine exactly how specific waste structural materials should be handled, treated, and landfilled.These species are extracted rapidly from heated samples of soil or crushed concrete using acetonitrile at elevated pressure, then analyzed using a gas chromatograph equipped with a flame photometric detector. Thiodiglycol, the major hydrolysis product of sulfur mustard, must be converted to a silylated derivative prior to quantitation. Detection limits, calculated using two statistically-unbiased protocols, ranged between 2-13 micrograms analyte/g soil or concrete.

  10. System for adding sulfur to a fuel cell stack system for improved fuel cell stability

    DOE Patents [OSTI]

    Mukerjee, Subhasish (Pittsford, NY); Haltiner, Jr., Karl J (Fairport, NY); Weissman, Jeffrey G. (West Henrietta, NY)

    2012-03-06T23:59:59.000Z

    A system for adding sulfur to a fuel cell stack, having a reformer adapted to reform a hydrocarbon fuel stream containing sulfur contaminants, thereby providing a reformate stream having sulfur; a sulfur trap fluidly coupled downstream of the reformer for removing sulfur from the reformate stream, thereby providing a desulfurized reformate stream; and a metering device in fluid communication with the reformate stream upstream of the sulfur trap and with the desulfurized reformate stream downstream of the sulfur trap. The metering device is adapted to bypass a portion of the reformate stream to mix with the desulfurized reformate stream, thereby producing a conditioned reformate stream having a predetermined sulfur concentration that gives an acceptable balance of minimal drop in initial power with the desired maximum stability of operation over prolonged periods for the fuel cell stack.

  11. A design strategy applied to sulfur resistant lean NOx̳ automotive catalysts

    E-Print Network [OSTI]

    Tang, Hairong

    2005-01-01T23:59:59.000Z

    Catalyst poisoning due to sulfur compounds derived from fuel sulfur presents a major challenge, intractable thus far, to development of many advanced technologies for automotive catalysts such as the lean NOx, trap. Under ...

  12. Revisit Carbon/Sulfur Composite for Li-S Batteries. | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Revisit CarbonSulfur Composite for Li-S Batteries. Revisit CarbonSulfur Composite for Li-S Batteries. Abstract: To correlate the carbon properties e.g. surface area and porous...

  13. Carbon/Sulfur Nanocomposites and Additives for High-Energy Lithium...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Merit Review and Peer Evaluation es105liang2011o.pdf More Documents & Publications CarbonSulfur Nanocomposites and Additives for High-Energy Lithium Sulfur Batteries Additives...

  14. Andrew Case "American Environmental History"

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    Andrew Case History "American Environmental History" Spring 2008 Advisor: William Cronon Classics, Richard. "It's Your Misfortune and None of My Own": A New History of the American West. (Norman

  15. Chromium modified nickel-iron aluminide useful in sulfur bearing environments

    DOE Patents [OSTI]

    Cathcart, John V. (Knoxville, TN); Liu, Chain T. (Oak Ridge, TN)

    1989-06-13T23:59:59.000Z

    An improved nickel-iron aluminide containing chromium and molybdenum additions to improve resistance to sulfur attack.

  16. Earth System History Announcements

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    Earth System History GEOL 1020 [35] Announcements The demise of the Paleozoic (extinction, Nova Scotia. #12;The Carboniferous was marked by the progressive formation of the supercontinent Pangea, there is evidence of significant cooling and drying in the sedimentologi

  17. Vince Krische Oral History

    E-Print Network [OSTI]

    Krische, Vince; Miller, Timothy

    2010-10-05T23:59:59.000Z

    Oral history interview with Father Vince Krische conducted by Timothy Miller in Lawrence, Kansas, on October 5, 2010. Father Krische served as the priest at the St. Lawrence Catholic Campus Center in Lawrence for 28 years, as the chaplain...

  18. Phil Friedl Oral History

    E-Print Network [OSTI]

    Friedl, Phil; Vestal, Sara; Gadd-Nelson, Rachel

    2009-11-11T23:59:59.000Z

    Oral history interview with Phil Friedl conducted by Sara Vestal and Rachel Gadd-Nelson in Delia, Kansas, on November 11, 2009. Phil Friedl is a follower of David Bawden, who is also known as Pope Michael. In this interview, ...

  19. Departmental History Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1992-03-26T23:59:59.000Z

    The order describes the DOE history program and establishes policy and objectives for the preservation of historical records and institutional memory for DOE and its predecessor agencies. Cancels DOE 1324.7.

  20. Kahler Wiebe Oral History

    E-Print Network [OSTI]

    Wiebe, Kahler; Roane, Jordan

    2014-01-01T23:59:59.000Z

    Oral history interview of Kahler Wiebe conducted by Jordan Roane in Lawrence, Kansas, on November 11, 2014. Kahler is 15 years old and the youngest member of the Wiebe family. The Wiebe family regularly attends Grace ...

  1. Warren Wiebe Oral History

    E-Print Network [OSTI]

    Wiebe, Warren; Roane, Jordan

    2014-01-01T23:59:59.000Z

    Oral history interview of Warren Wiebe conducted by Jordan Roane in Lawrence, Kansas, on November 12, 2014. Warren grew up in the small western Kansas town of Hillsboro. Hillsboro is known for its Mennonite community as ...

  2. Black History Month

    Broader source: Energy.gov [DOE]

    During National African American History Month, we pay tribute to the contributions of past generations and reaffirm our commitment to keeping the American dream alive for the next generation. In...

  3. Jim Ryan Oral History

    E-Print Network [OSTI]

    Ryan, Jim; Heidrick, Sarah

    2009-11-09T23:59:59.000Z

    Oral history interview with Jim Ryan conducted by Sarah Heidrick in Salina, Kansas, on November 9, 2009. In this interview, Jim Ryan discusses his childhood in a Catholic household, and his transition to the Methodist Church upon marriage. He...

  4. Velda Sloan Oral History

    E-Print Network [OSTI]

    Sloan, Velda; Heidrick, Sarah

    2009-11-09T23:59:59.000Z

    Oral history interview with Velda Sloan conducted by Sarah Heidrick in Salina, Kansas, on November 9, 2009. In this interview, Velda Sloan discusses her experiences attending Methodist and Presybterian churches in a variety of locations during...

  5. Mike Rose Oral History

    E-Print Network [OSTI]

    Rose, Mike; Helmer, Lauren

    2010-12-31T23:59:59.000Z

    Oral history interview with Mike Rose conducted by Lauren Helmer in Salina, Kansas, on December 31, 2010. In this interview, Mike Rose, pastor of the University United Methodist Church in Salina, describes his experiences growing up Methodist...

  6. Sulfur Impregnation on Activated Carbon Fibers through H2S Oxidation for Vapor Phase

    E-Print Network [OSTI]

    Borguet, Eric

    surface in a fixed-bed reactor. By changing the temperature and duration of the sulfur impregnation mercury adsorption experiments were carried out in a fixed-bed reactor. Sulfur was impregnated mainly a fixed-bed adsorber at room temperature decreased with an increase in sulfur content. Such behavior

  7. Transport Properties and Performance of Polymer Electrolyte Membranes for the Hybrid Sulfur Electrolyzer

    E-Print Network [OSTI]

    Weidner, John W.

    to the cathode.4 However, increased water transport also results in more dilute sulfuric acid, which affectsTransport Properties and Performance of Polymer Electrolyte Membranes for the Hybrid Sulfur and SO2 crossover in the hybrid sulfur cycle electrolyzer were quantified for a poly phenylene -based

  8. Effect of Water Transport on the Production of Hydrogen and Sulfuric Acid in a PEM Electrolyzer

    E-Print Network [OSTI]

    Weidner, John W.

    Effect of Water Transport on the Production of Hydrogen and Sulfuric Acid in a PEM Electrolyzer, large-scale production of hydrogen. A key step in the process is the oxidation of sulfur dioxide determines the product sulfuric acid concentration, iii affects SO2 crossover rate, and iv serves to hydrate

  9. REGULAR PAPER Photoproduction of hydrogen by sulfur-deprived C. reinhardtii

    E-Print Network [OSTI]

    Meier, Iris

    dramatic was the effect of sulfur deprivation on the H2-production process, which depends both on the presREGULAR PAPER Photoproduction of hydrogen by sulfur-deprived C. reinhardtii mutants with impaired+Business Media B.V. 2007 Abstract Photoproduction of H2 was examined in a series of sulfur-deprived Chlamydomonas

  10. Dissociation of Import of the Rieske Iron-Sulfur Protein into Saccharomyces cerevisiae Mitochondria from Proteolytic

    E-Print Network [OSTI]

    Trumpower, Bernard L.

    processing peptidase was investigated using high concentrations of metal chelators and iron-sulfur protein- sulfur protein into the mitochondrial matrix is inde- pendent of proteolytic processing first removes a 22-amino acid peptide from the prese- quence of the precursor iron-sulfur protein (p

  11. Vapor phase elemental sulfur amendment for sequestering mercury in contaminated soil

    DOE Patents [OSTI]

    Looney, Brian B.; Denham, Miles E.; Jackson, Dennis G.

    2014-07-08T23:59:59.000Z

    The process of treating elemental mercury within the soil is provided by introducing into the soil a heated vapor phase of elemental sulfur. As the vapor phase of elemental sulfur cools, sulfur is precipitated within the soil and then reacts with any elemental mercury thereby producing a reaction product that is less hazardous than elemental mercury.

  12. Paper 2008-01-0434 Effects of Sulfur Level and Anisotropy of Sulfide Inclusions on

    E-Print Network [OSTI]

    Fatemi, Ali

    to fatigue strength, the high sulfur material had up to 25% lower fatigue strength than the ultra low sulfur, monotonic tensile and CVN impact behavior of SAE 4140 steel with high (0.077% S), low (0.012% S) and ultra low (0.004% S) sulfur contents at two hardness levels (40 HRC and 50 HRC). The longitudinally oriented

  13. Global Anthropogenic Sulfur Emissions for 1985 and 1990 Carmen M. Benkovitz

    E-Print Network [OSTI]

    the refining process, most of the sulfur i n the crude o i l may be recovered; what i s not #12;recovered remains mainly in the residual sulfur-containing materials (e.g., roast oil fraction. ing of ores), and the use of sulfur compounds to produce other industrial goods (e.g., cellulose production) generate large

  14. Sulfur tolerant molten carbonate fuel cell anode and process

    DOE Patents [OSTI]

    Remick, Robert J. (Naperville, IL)

    1990-01-01T23:59:59.000Z

    Molten carbonate fuel cell anodes incorporating a sulfur tolerant carbon monoxide to hydrogen water-gas-shift catalyst provide in situ conversion of carbon monoxide to hydrogen for improved fuel cell operation using fuel gas mixtures of over about 10 volume percent carbon monoxide and up to about 10 ppm hydrogen sulfide.

  15. The Hybrid Sulfur Cycle for Nuclear Hydrogen Production

    SciTech Connect (OSTI)

    Summers, William A.; Gorensek, Maximilian B.; Buckner, Melvin R.

    2005-09-08T23:59:59.000Z

    Two Sulfur-based cycles--the Sulfur-Iodine (SI) and the Hybrid Sulfur (HyS)--have emerged as the leading thermochemical water-splitting processes for producing hydrogen utilizing the heat from advanced nuclear reactors. Numerous international efforts have been underway for several years to develop the SI Cycle, but development of the HyS Cycle has lagged. The purpose of this paper is to discuss the background, current status, recent development results, and the future potential for this thermochemical process. Savannah River National Laboratory (SRNL) has been supported by the U.S. Department of Energy Office of Nuclear Energy, Science, and Technology since 2004 to evaluate and to conduct research and development for the HyS Cycle. Process design studies and flowsheet optimization have shown that an overall plant efficiency (based on nuclear heat converted to hydrogen product, higher heating value basis) of over 50% is possible with this cycle. Economic studies indicate that a nuclear hydrogen plant based on this process can be economically competitive, assuming that the key component, the sulfur dioxide-depolarized electrolyzer, can be successfully developed. SRNL has recently demonstrated the use of a proton-exchange-membrane electrochemical cell to perform this function, thus holding promise for economical and efficient hydrogen production.

  16. Sodium and sulfur release and recapture during black liquor burning

    SciTech Connect (OSTI)

    Frederick, W.J.; Iisa, K.; Wag, K.; Reis, V.V.; Boonsongsup, L.; Forssen, M.; Hupa, M.

    1995-08-01T23:59:59.000Z

    The objective of this study was to provide data on sulfur and sodium volatilization during black liquor burning, and on SO2 capture by solid sodium carbonate and sodium chloride. This data was interpreted and modeled into rate equations suitable for use in computational models for recovery boilers.

  17. Argonne Electrochemical Technology Program Sulfur removal from reformate

    E-Print Network [OSTI]

    Argonne Electrochemical Technology Program Sulfur removal from reformate Xiaoping Wang, Theodore Krause, and Romesh Kumar Chemical Engineering Division Argonne National Laboratory Hydrogen, Fuel Cells, and Infrastructure Technologies 2003 Merit Review Berkeley, CA May 19-22, 2003 #12;Argonne Electrochemical Technology

  18. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    SciTech Connect (OSTI)

    Gary M. Blythe

    2000-12-01T23:59:59.000Z

    This document summarizes progress on the Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period April 1, 2000 through September 30, 2000. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid will also be determined, as will the removal of arsenic, a known poison for NOX selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), First Energy Corporation, and the Dravo Lime Company are project co-funders. URS Corporation is the prime contractor. This is the second reporting period for the subject Cooperative Agreement. During this period, the first of four short-term sorbent injection tests were conducted at the First Energy Bruce Mansfield Plant. This test determined the effectiveness of dolomite injection through out-of-service burners as a means of controlling sulfuric acid emissions from this unit. The tests showed that dolomite injection could achieve up to 95% sulfuric acid removal. Balance of plant impacts on furnace slagging and fouling, air heater fouling, ash loss-on-ignition, and the flue gas desulfurization system were also determined. These results are presented and discussed in this report.

  19. Sulfur controls edge closer in acid-rain debate

    SciTech Connect (OSTI)

    Not Available

    1984-10-04T23:59:59.000Z

    The role of airborne sulfur emissions from midwestern and southern coal-fired power plants in exacerbating the acid rain problem is discussed. This problem is discussed from the standpoint of legislation, compliance costs, scrubber performance and cost, and chemistry of acid rains.

  20. Auction design and the market for sulfur dioxide emissions

    E-Print Network [OSTI]

    Joskow, Paul L.

    1996-01-01T23:59:59.000Z

    Title IV of the Clean Air Act Amendments of 1990 created a market for electric utility emissions of sulfur dioxide (SO2). Recent papers have argued that flaws in the design of the auctions that are part of this market have ...

  1. ADVANCED SULFUR CONTROL CONCEPTS FOR HOT-GAS DESULFURIZATION TECHNOLOGY

    SciTech Connect (OSTI)

    A. LOPEZ ORTIZ; D.P. HARRISON; F.R. GROVES; J.D. WHITE; S. ZHANG; W.-N. HUANG; Y. ZENG

    1998-10-31T23:59:59.000Z

    This research project examined the feasibility of a second generation high-temperature coal gas desulfurization process in which elemental sulfur is produced directly during the sorbent regeneration phase. Two concepts were evaluated experimentally. In the first, FeS was regenerated in a H2O-O2 mixture. Large fractions of the sulfur were liberated in elemental form when the H2O-O2 ratio was large. However, the mole percent of elemental sulfur in the product was always quite small (<<1%) and a process based on this concept was judged to be impractical because of the low temperature and high energy requirements associated with condensing the sulfur. The second concept involved desulfurization using CeO2 and regeneration of the sulfided sorbent, Ce2O2S, using SO2 to produce elemental sulfur directly. No significant side reactions were observed and the reaction was found to be quite rapid over the temperature range of 500C to 700C. Elemental sulfur concentrations (as S2) as large as 20 mol% were produced. Limitations associated with the cerium sorbent process are concentrated in the desulfurization phase. High temperature and highly reducing coal gas such as produced in the Shell gasification process are required if high sulfur removal efficiencies are to be achieved. For example, the equilibrium H2S concentration at 800C from a Shell gas in contact with CeO2 is about 300 ppmv, well above the allowable IGCC specification. In this case, a two-stage desulfurization process using CeO2 for bulk H2S removal following by a zinc sorbent polishing step would be required. Under appropriate conditions, however, CeO2 can be reduced to non-stoichiometric CeOn (n<2) which has significantly greater affinity for H2S. Pre-breakthrough H2S concentrations in the range of 1 ppmv to 5 ppmv were measured in sulfidation tests using CeOn at 700C in highly reducing gases, as measured by equilibrium O2 concentration, comparable to the Shell gas. Good sorbent durability was indicated in a twenty-five-cycle test. The sorbent was exposed for 58 consecutive days to temperatures between 600C and 800C and gas atmospheres from highly reducing to highly oxidizing without measurable loss of sulfur capacity or reactivity. In the process analysis phase of this study, a two-stage desulfurization process using cerium sorbent with SO2 regeneration followed by zinc sorbent with dilute O2 regeneration was compared to a single-stage process using zinc sorbent and O2 regeneration with SO2 in the regeneration product gas converted to elemental sulfur using the direct sulfur recovery process (DSRP). Material and energy balances were calculated using the process simulation package PRO/II. Major process equipment was sized and a preliminary economic analysis completed. Sorbent replacement rate, which is determined by the multicycle sorbent durability, was found to be the most significant factor in both processes. For large replacement rates corresponding to average sorbent lifetimes of 250 cycles or less, the single-stage zinc sorbent process with DSRP was estimated to be less costly. However, the cost of the two-stage cerium sorbent process was more sensitive to sorbent replacement rate, and, as the required replacement rate decreased, the economics of the two-stage process improved. For small sorbent replacement rates corresponding to average sorbent lifetimes of 1000 cycles or more, the two-stage cerium process was estimated to be less costly. In the relatively wide middle range of sorbent replacement rates, the relative economics of the two processes depends on other factors such as the unit cost of sorbents, oxygen, nitrogen, and the relative capital costs.

  2. Sulfur removal from high-sulfur Illinois coal by low-temperature perchloroethylene (PCE) extraction. Technical report, December 1, 1991--February 29, 1992

    SciTech Connect (OSTI)

    Chou, M.I.M; Lytle, J.M.; Ruch, R.R.; Kruse, C.W.; Chaven, C.; Hackley, K.C.; Hughes, R.E.; Harvey, R.D.; Frost, J.K. [Illinois State Geological Survey, Champaign, IL (United States); Buchanan, D.H. [Eastern Illinois Univ., Charleston, IL (United States); Stucki, J.W. [Illinois Univ., Urbana, IL (United States); Huffman, G.; Huggins, F.E. [Kentucky Univ., Lexington, KY (United States)

    1992-09-01T23:59:59.000Z

    A pre-combustion coal desulfurization process at 120{degree}C using perchloroethylene (PCE) to remove up to 70% of the organic sulfur has been developed by the Midwest Ore Processing Co. (MWOPC). However, this process has not yet proven to be as successful with Illinois coals as it has for Ohio and Indiana coals. In addition, the high levels of organic sulfur removals observed by the MWOPC may be due to certain errors involved in the ASTM data interpretation; this needs verification. For example, elemental sulfur extracted by the PCE may be derived from pyrite oxidation during coal preoxidation, but it may be interpreted as organic sulfur removed by the PCE using ASTM analysis. The purposes of this research are to independently confirm and possibly to improve the organic sulfur removal from Illinois coals with the PCE desulfurization process reported by the MWOPC and to verify the forms-of-sulfur determination using the ASTM method for the PCE process evaluation.

  3. Reconstructing the Star Formation Histories of Galaxies

    E-Print Network [OSTI]

    Uta Fritze; Thomas Lilly

    2007-01-15T23:59:59.000Z

    We present a methodological study to find out how far back and to what precision star formation histories of galaxies can be reconstructed from CMDs, from integrated spectra and Lick indices, and from integrated multi-band photometry. Our evolutionary synthesis models GALEV allow to describe the evolution of galaxies in terms of all three approaches and we have assumed typical observational uncertainties for each of them and then investigated to what extent and accuracy different star formation histories can be discriminated. For a field in the LMC bar region with both a deep CMD from HST observations and a trailing slit spectrum across exactly the same field of view we could test our modelling results against real data.

  4. Mass-dependent fractionation of quadruple stable sulfur isotope system as a new tracer of sulfur biogeochemical cycles

    E-Print Network [OSTI]

    Long, Bernard

    - ing rare isotopes for Earth materials was the discovery of anomalous 17 O abundance in a wide variety, USA b Department of Geology and Earth System Science Interdisciplinary Center, University of Maryland and extraterrestrial materials. ? 2006 Elsevier Inc. All rights reserved. 1. Introduction Sulfur (32 S, 33 S, 34 S

  5. Engineering Aerial view of

    E-Print Network [OSTI]

    Yang, Junfeng

    -neutral Torus 2 Climate Change 4 Combustion and Catalysis Laboratory #12;4 5 1Engineering Revolution 5 #12;6 7Columbia Engineering Plus #12;1 1 2 3 4 5 6 Aerial view of Columbia campus with Columbia Engineering-a liated buildings highlighted in blue Columbia Engineering Plus Engineering Revolution 4

  6. Training History Report Training Services, Organizational Effectiveness/OHR 612-626-1373 UMReports

    E-Print Network [OSTI]

    Thomas, David D.

    Training History Report Training Services, Organizational Effectiveness/OHR 612-626-1373 UMReports www.umn.edu/ohr/trainingservices 1-30-13 Following are the steps to view one's training history. A report will be run in UMReports which displays training courses for one Emplid or by department

  7. Sandia National Laboratories: About Sandia: History

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear PressLaboratorySoftware100 ResilientHistory View as list

  8. Sulfur Based Thermochemical Heat Storage for Baseload Concentrated Solar Power Generation

    SciTech Connect (OSTI)

    wong, bunsen

    2014-11-20T23:59:59.000Z

    This project investigates the engineering and economic feasibility of supplying baseload power using a concentrating solar power (CSP) plant integrated with sulfur based thermochemical heat storage. The technology stores high temperature solar heat in the chemical bonds of elemental sulfur. Energy is recovered as high temperature heat upon sulfur combustion. Extensive developmental and design work associated with sulfur dioxide (SO2) disproportionation and sulfuric acid (H2SO4) decomposition chemical reactions used in this technology had been carried out in the two completed phases of this project. The feasibility and economics of the proposed concept was demonstrated and determined.

  9. Method of burning sulfur-containing fuels in a fluidized bed boiler

    DOE Patents [OSTI]

    Jones, Brian C. (Windsor, CT)

    1982-01-01T23:59:59.000Z

    A method of burning a sulfur-containing fuel in a fluidized bed of sulfur oxide sorbent wherein the overall utilization of sulfur oxide sorbent is increased by comminuting the bed drain solids to a smaller average particle size, preferably on the order of 50 microns, and reinjecting the comminuted bed drain solids into the bed. In comminuting the bed drain solids, particles of spent sulfur sorbent contained therein are fractured thereby exposing unreacted sorbent surface. Upon reinjecting the comminuted bed drain solids into the bed, the newly-exposed unreacted sorbent surface is available for sulfur oxide sorption, thereby increasing overall sorbent utilization.

  10. Advanced byproduct recovery: Direct catalytic reduction of sulfur dioxide to elemental sulfur. Quarterly report, April 1--June 30, 1997

    SciTech Connect (OSTI)

    NONE

    1997-12-31T23:59:59.000Z

    The team of Arthur D. Little, Tufts University and Engelhard Corporation are conducting Phase 1 of a four and a half year, two-phase effort to develop and scale-up an advanced byproduct recovery technology that is a direct, single-stage, catalytic process for converting sulfur dioxide to elemental sulfur. This catalytic process reduces SO{sub 2} over a fluorite-type oxide (such as ceria and zirconia). The catalytic activity can be significantly promoted by active transition metals, such as copper. More than 95% elemental sulfur yield, corresponding to almost complete sulfur dioxide conversion, was obtained over a Cu-Ce-O oxide catalyst as part of an on-going DOE-sponsored, University Coal Research Program. This type of mixed metal oxide catalyst has stable activity, high selectivity for sulfur production, and is resistant to water and carbon dioxide poisoning. Tests with CO and CH{sub 4} reducing gases indicate that the catalyst has the potential for flexibility with regard to the composition of the reducing gas, making it attractive for utility use. The performance of the catalyst is consistently good over a range of SO{sub 2} inlet concentration (0.1 to 10%) indicating its flexibility in treating SO{sub 2} tail gases as well as high concentration streams. The principal objective of the Phase 1 program is to identify and evaluate the performance of a catalyst which is robust and flexible with regard to choice of reducing gas. In order to achieve this goal, the authors have planned a structured program including: Market/process/cost/evaluation; Lab-scale catalyst preparation/optimization studies; Lab-scale, bulk/supported catalyst kinetic studies; Bench-scale catalyst/process studies; and Utility review. Progress is reported from all three organizations.

  11. Michael Johnson Oral History

    E-Print Network [OSTI]

    Johnson, Michael; Albin, Tami

    2009-12-16T23:59:59.000Z

    support groups or whatever like that and then it just turned into, Well there's Michael Johnson January 4, 2009 5 Under the Rainbow: Oral Histories of GLBTIQ People in Kansas porn online too. (laugh) So it's likeit's like you just kind... stepmother had found my Xanga site as well. Along with that she had found, on his computer, links to porn sitelike gay porn Michael Johnson January 4, 2009 7 Under the Rainbow: Oral Histories of GLBTIQ People in Kansas sites, right...

  12. History - 88-Inch Cyclotron

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHallNot Logged3EducationCenter forHistoryHistory

  13. History | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov.Energy02.pdf7 OPAM Flash2011-37Energy Highlights from the 2014History History

  14. History | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football High SchoolBundles toHiring-TP59.01HistoryHistory

  15. Stereoscopic optical viewing system

    DOE Patents [OSTI]

    Tallman, Clifford S. (Walnut Creek, CA)

    1987-01-01T23:59:59.000Z

    An improved optical system which provides the operator a stereoscopic viewing field and depth of vision, particularly suitable for use in various machines such as electron or laser beam welding and drilling machines. The system features two separate but independently controlled optical viewing assemblies from the eyepiece to a spot directly above the working surface. Each optical assembly comprises a combination of eye pieces, turning prisms, telephoto lenses for providing magnification, achromatic imaging relay lenses and final stage pentagonal turning prisms. Adjustment for variations in distance from the turning prisms to the workpiece, necessitated by varying part sizes and configurations and by the operator's visual accuity, is provided separately for each optical assembly by means of separate manual controls at the operator console or within easy reach of the operator.

  16. Stereoscopic optical viewing system

    DOE Patents [OSTI]

    Tallman, C.S.

    1986-05-02T23:59:59.000Z

    An improved optical system which provides the operator with a stereoscopic viewing field and depth of vision, particularly suitable for use in various machines such as electron or laser beam welding and drilling machines. The system features two separate but independently controlled optical viewing assemblies from the eyepiece to a spot directly above the working surface. Each optical assembly comprises a combination of eye pieces, turning prisms, telephoto lenses for providing magnification, achromatic imaging relay lenses and final stage pentagonal turning prisms. Adjustment for variations in distance from the turning prisms to the workpiece, necessitated by varying part sizes and configurations and by the operator's visual accuity, is provided separately for each optical assembly by means of separate manual controls at the operator console or within easy reach of the operator.

  17. Method of making sulfur-resistant composite metal membranes

    DOE Patents [OSTI]

    Way, J. Douglas (Boulder, CO) [Boulder, CO; Lusk, Mark (Golden, CO) [Golden, CO; Thoen, Paul (Littleton, CO) [Littleton, CO

    2012-01-24T23:59:59.000Z

    The invention provides thin, hydrogen-permeable, sulfur-resistant membranes formed from palladium or palladium-alloy coatings on porous, ceramic or metal supports. Also disclosed are methods of making these membranes via sequential electroless plating techniques, wherein the method of making the membrane includes decomposing any organic ligands present on the substrate, reducing the palladium crystallites on the substrate to reduced palladium crystallites, depositing a film of palladium metal on the substrate and then depositing a second, gold film on the palladium film. These two metal films are then annealed at a temperature between about 200.degree. C. and about 1200.degree. C. to form a sulfur-resistant, composite PdAu alloy membrane.

  18. ADVANCED SULFUR CONTROL CONCEPTS FOR HOT GAS DESULFURIZATION TECHNOLOGY

    SciTech Connect (OSTI)

    Unknown

    1999-04-01T23:59:59.000Z

    The objective of this project is to develop a hot-gas desulfurization process scheme for control of H{sub 2}S in HTHP coal gas that can be more simply and economically integrated with known regenerable sorbents in DOE/METC-sponsored work than current leading hot-gas desulfurization technologies. In addition to being more economical, the process scheme to be developed must yield an elemental sulfur byproduct.

  19. Sulfur Isotopes as Indicators of Amended Bacterial Sulfate

    E-Print Network [OSTI]

    Hubbard, Susan

    Scale Uranium Bioremediation J E N N I F E R L . D R U H A N , * , M A R K E . C O N R A D , K E N N E September 5, 2008. Accepted September 8, 2008. Aqueous uranium (U(VI)) concentrations in a contaminated(II), sulfate, sulfide, acetate, U(VI), and 34S of sulfate and sulfide to explore the utility of sulfur isotopes

  20. Intensities of electronic transitions in sulfur dioxide vapor

    E-Print Network [OSTI]

    McCray, James Arthur

    1955-01-01T23:59:59.000Z

    . Relation between Oscillator Strength and Probability Coefficient of Absorption . . . . . . . . . . . . . . . . 20 V. The Ultraviolet Spectrum of Sulfur Dioxide Gas . . . . . . 22 ) VI. Experimental Procedure and Computations . . . . . . . . . 23 U A... where )(e is defined as the dielectric constant of the medium. This equation holds for radiation which has a frequency sufficiently dif- ferent from that of the resonant frequencies of'the molecules of the medium, The polarizability o( of a molecule...

  1. Posting type Informational Subject Changed reporting of XRF sulfur

    E-Print Network [OSTI]

    Fischer, Emily V.

    Posting type Informational Subject Changed reporting of XRF sulfur Module/Species A/ S Sites entire network Period Starting 1/1/05 Submitter W.H. White, white@crocker.ucdavis.edu Supporting information XRF and 2005 seen in Figure 1. 0.9 1 1.1 1.2 1.3 1.4 12/1/04 1/1/05 2/1/05 3S/SO4 = ADJUSTMENT REPORTED XRF

  2. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    SciTech Connect (OSTI)

    Gary M. Blythe

    2000-12-01T23:59:59.000Z

    A test program is being sponsored by the US Department of Energy (DOE), EPRI, FirstEnergy, and TVA to investigate furnace injection of alkaline sorbents as a means of reducing sulfuric acid concentrations in the flue gas from coal-fired boilers. This test program is being conducted at the FirstEnergy Bruce Mansfield Plant (BMP), although later testing will be conducted at a TVA plant. A sorbent injection test was conducted the week of April 18, 2000. The test was the first of several short-term (one- to two-week duration) tests to investigate the effectiveness of various alkaline sorbents for sulfuric acid control and the effects of these sorbents on boiler equipment performance. This first short-term test investigated the effect of injecting dry dolomite powder (CaCO{sub 3} {center_dot} MgCO{sub 3}), a mineral similar to limestone, into the furnace of Unit 2. During the test program, various analytical techniques were used to assess the effects of sorbent injection. These primarily included sampling with the controlled condensation system (CCS) for determining flue gas SO{sub 3} content and an acid dew-point (ADP) meter for determining the sulfuric acid dew point (and, indirectly, the concentration of sulfuric acid) of the flue gas. EPA Reference Method 26a was used for determining hydrochloric acid (HCl) and hydrofluoric acid (HF), as well and chlorine (Cl{sub 2}) and fluorine (F{sub 2}) concentrations in the flue gas. Fly ash resistivity was measured using a Southern Research Institute (SRI) point-to-plane resistivity probe, and unburned carbon in fly ash was determined by loss on ignition (LOI). Coal samples were also collected and analyzed for a variety of parameters. Finally, visual observations were made of boiler furnace and convective pass surfaces prior to and during sorbent injection.

  3. Brian Hamilton History Department

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    Trade. Albuquerque: University of New Mexico Press, 2000. Calloway, Colin G. New Worlds for All: Indians and Antislavery Reform. Amherst: University of Massachusetts Press, 1991. Andrews, Thomas G. Killing for Coal Revolution: A History of Capitalism. New York: W. W. Norton & Company, 2010. Appleby, Joyce Oldham. "The

  4. Oil Quantity : The histori

    E-Print Network [OSTI]

    Lin, C.-Y. Cynthia

    model for Prudhoe Bay. Figure 11: Historical Prudhoe Bay oil production data, modeled economically Production (million bbl per Month) Historical Production Best Fit (Hist. Tax w/ELF, Ref. P) High Price 120 140 160 19 Oil Quantity Con Wel N E A N N ng Results e Bay : The histori Bay over tim : Prudhoe Ba

  5. Brian Hamilton History Department

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    , Nasty Wenches, and Anxious Patriarchs: Gender, Race, and Power in Colonial Virginia. Chapel Hill. Gomez, Michael A. Exchanging Our Country Marks: The Transformation of African Identities in the Colonial of Social History 37, no. 1 (2003): 113-124. Johnson, Walter. Soul by Soul: Life inside the Antebellum Slave

  6. Process for recovery of sulfur from acid gases

    DOE Patents [OSTI]

    Towler, Gavin P. (Kirkbymoorside, GB2); Lynn, Scott (Pleasant Hill, CA)

    1995-01-01T23:59:59.000Z

    Elemental sulfur is recovered from the H.sub.2 S present in gases derived from fossil fuels by heating the H.sub.2 S with CO.sub.2 in a high-temperature reactor in the presence of a catalyst selected as one which enhances the thermal dissociation of H.sub.2 S to H.sub.2 and S.sub.2. The equilibrium of the thermal decomposition of H.sub.2 S is shifted by the equilibration of the water-gas-shift reaction so as to favor elemental sulfur formation. The primary products of the overall reaction are S.sub.2, CO, H.sub.2 and H.sub.2 O. Small amounts of COS, SO.sub.2 and CS.sub.2 may also form. Rapid quenching of the reaction mixture results in a substantial increase in the efficiency of the conversion of H.sub.2 S to elemental sulfur. Plant economy is further advanced by treating the product gases to remove byproduct carbonyl sulfide by hydrolysis, which converts the COS back to CO.sub.2 and H.sub.2 S. Unreacted CO.sub.2 and H.sub.2 S are removed from the product gas and recycled to the reactor, leaving a gas consisting chiefly of H.sub.2 and CO, which has value either as a fuel or as a chemical feedstock and recovers the hydrogen value from the H.sub.2 S.

  7. How to Obtain Reproducible Results for Lithium Sulfur Batteries

    SciTech Connect (OSTI)

    Zheng, Jianming; Lu, Dongping; Gu, Meng; Wang, Chong M.; Zhang, Jiguang; Liu, Jun; Xiao, Jie

    2013-01-01T23:59:59.000Z

    The basic requirements for getting reliable Li-S battery data have been discussed in this work. Unlike Li-ion batteries, electrolyte-rich environment significantly affects the cycling stability of Li-S batteries prepared and tested under the same conditions. The reason has been assigned to the different concentrations of polysulfide-containing electrolytes in the cells, which have profound influences on both sulfur cathode and lithium anode. At optimized S/E ratio of 50 g L-1, a good balance among electrolyte viscosity, wetting ability, diffusion rate dissolved polysulfide and nucleation/growth of short-chain Li2S/Li2S2 has been built along with largely reduced contamination on the lithium anode side. Accordingly, good cyclability, high reversible capacity and Coulombic efficiency are achieved in Li-S cell with controlled S/E ratio without any additive. Other factors such as sulfur content in the composite and sulfur loading on the electrode also need careful concern in Li-S system in order to generate reproducible results and gauge the various methods used to improve Li-S battery technology.

  8. Removal of nitrogen and sulfur from oil-shale

    SciTech Connect (OSTI)

    Olmstead, W.N.

    1986-01-28T23:59:59.000Z

    This patent describes a process for enhancing the removal of nitrogen and sulfur from oil-shale. The process consists of: (a) contacting the oil-shale with a sufficient amount of an aqueous base solution comprised of at least a stoichiometric amount of one or more alkali metal or alkaline-earth metal hydroxides based on the total amount of nitrogen and sulfur present in the oil-shale. Also necessary is an amount sufficient to form a two-phase liquid, solid system, a temperature from about 50/sup 0/C to about 350/sup 0/C., and pressures sufficient to maintain the solution in liquid form; (b) separating the effluents from the treated oil-shale, wherein the resulting liquid effluent contains nitrogen moieties and sulfur moieties from the oil-shale and any resulting gaseous effluent contains nitrogen moieties from the oil-shale, and (c) converting organic material of the treated oil-shale to shale-oil at a temperature from about 450/sup 0/C to about 550/sup 0/C.

  9. Sibley station low-sulfur coal conversion program

    SciTech Connect (OSTI)

    Rupinskas, R.L. [Sargent & Lundy LLC, Chicago, IL (United States); Rembold, D.F. [Missouri Public Service, Kansas City, MO (United States)

    1995-03-01T23:59:59.000Z

    After embarking on an upgrade project in 1986 that was designed to allow efficient and reliable operation of its coal-fired Sibley station through 2010, Missouri Public Service (MPS) faced the uncertainty of impending acid-rain legislation. To protect its investment in the Sibley Rebuild Program, the utility evaluated compliance options based on the emerging legislation and concluded that switching to low-sulfur coal offered the least-cost compliance approach. Compared to installing a scrubber, switching to a low-sulfur coal was also more straightforward, although not without challenges and complications. This paper reviews the Sibley low-sulfur coal conversion program. At Sibley, fuel switching was chosen only after numerous internal and external studies; it withstood late challenges from natural gas and allowance trading. Switching demanded additional equipment to blend Power River Basin coals and other coals, and demanded additional and upgraded protective equipment in the areas of fire protection, dust collection, and explosion prevention. In the year since the coal conversion project was completed the facility has operated reliably, the economic benefits of the lower cost Powder River Basin coals have been realized, and the station has also met the requirements of both phases of the acid rain legislation. Fuel switching at Sibley required a team approach and careful analysis. The coal conversion project also required attention and dedication by team members in order to minimize fuel costs while maintaining optimum plant efficiency and availability.

  10. RECENT ADVANCES IN THE DEVELOPMENT OF THE HYBRID SULFUR PROCESS FOR HYDROGEN PRODUCTION

    SciTech Connect (OSTI)

    Hobbs, D.

    2010-07-22T23:59:59.000Z

    Thermochemical processes are being developed to provide global-scale quantities of hydrogen. A variant on sulfur-based thermochemical cycles is the Hybrid Sulfur (HyS) Process, which uses a sulfur dioxide depolarized electrolyzer (SDE) to produce the hydrogen. In the HyS Process, sulfur dioxide is oxidized in the presence of water at the electrolyzer anode to produce sulfuric acid and protons. The protons are transported through a cation-exchange membrane electrolyte to the cathode and are reduced to form hydrogen. In the second stage of the process, the sulfuric acid by-product from the electrolyzer is thermally decomposed at high temperature to produce sulfur dioxide and oxygen. The two gases are separated and the sulfur dioxide recycled to the electrolyzer for oxidation. The Savannah River National Laboratory (SRNL) has been exploring a fuel-cell design concept for the SDE using an anolyte feed comprised of concentrated sulfuric acid saturated with sulfur dioxide. The advantages of this design concept include high electrochemical efficiency and small footprint compared to a parallel-plate electrolyzer design. This paper will provide a summary of recent advances in the development of the SDE for the HyS process.

  11. Quantitative Chromatographic Determination of Dissolved Elemental Sulfur in the Non-aqueous Electrolyte for Lithium-Sulfur Batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zheng, Dong [Univ. of Massachusetts, Boston, MA (United States). Dept. of Chemistry; Yang, Xiao-Qing [Brookhaven National Laboratory (BNL), Upton, NY (United States). Chemistry Dept.; Zhang, Xuran [Wuhan Univ. of Technology, Hubei (China); Dept. of Chemistry; Li, Chao [Univ. of Massachusetts, Boston, MA (United States). Dept. of Chemistry; McKinnon, Meaghan E. [Univ. of Massachusetts, Boston, MA (United States). Dept. of Chemistry; Sadok, Rachel G. [Univ. of Massachusetts, Boston, MA (United States). Dept. of Chemistry; Qu, Deyu [Wuhan Univ. of Technology, Hubei (China); Dept. of Chemistry; Yu, Xiqian [Brookhaven National Laboratory (BNL), Upton, NY (United States). Chemistry Dept.; Lee, Hung-Sui [Brookhaven National Laboratory (BNL), Upton, NY (United States). Chemistry Dept.; Qu, Deyang [Univ. of Massachusetts, Boston, MA (United States). Dept. of Chemistry

    2014-11-01T23:59:59.000Z

    A fast and reliable analytical method is reported for the quantitative determination of dissolved elemental sulfur in non-aqueous electrolytes for Li-S batteries. By using high performance liquid chromatography with a UV detector, the solubility of S in 12 different pure solvents and in 22 different electrolytes was determined. It was found that the solubility of elemental sulfur is dependent on the Lewis basicity, the polarity of solvents and the salt concentration in the electrolytes. In addition, the S content in the electrolyte recovered from a discharged Li-S battery was successfully determined by the proposed HPLC/UV method. Thus, the feasibility of the method to the online analysis for a Li-S battery is demonstrated. Interestingly, the S was found super-saturated in the electrolyte recovered from a discharged Li-S cell.

  12. Quantitative Chromatographic Determination of Dissolved Elemental Sulfur in the Non-aqueous Electrolyte for Lithium-Sulfur Batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zheng, Dong; Yang, Xiao-Qing; Zhang, Xuran; Li, Chao; McKinnon, Meaghan E.; Sadok, Rachel G.; Qu, Deyu; Yu, Xiqian; Lee, Hung-Sui; Qu, Deyang

    2014-11-01T23:59:59.000Z

    A fast and reliable analytical method is reported for the quantitative determination of dissolved elemental sulfur in non-aqueous electrolytes for Li-S batteries. By using high performance liquid chromatography with a UV detector, the solubility of S in 12 different pure solvents and in 22 different electrolytes was determined. It was found that the solubility of elemental sulfur is dependent on the Lewis basicity, the polarity of solvents and the salt concentration in the electrolytes. In addition, the S content in the electrolyte recovered from a discharged Li-S battery was successfully determined by the proposed HPLC/UV method. Thus, the feasibility ofmorethe method to the online analysis for a Li-S battery is demonstrated. Interestingly, the S was found super-saturated in the electrolyte recovered from a discharged Li-S cell.less

  13. Multi-view kernel construction

    E-Print Network [OSTI]

    Sa, Virginia R.; Gallagher, Patrick W.; Lewis, Joshua M.; Malave, Vicente L.

    2010-01-01T23:59:59.000Z

    5157-z Multi-view kernel construction Virginia R. de Sa multiple different graph construction algorithms. The Ng et

  14. Abundances of sulfur, chlorine, and trace elements in Illinois Basin coals, USA

    SciTech Connect (OSTI)

    Chou, C.L. [Illinois State Geological Survey, Champaign, IL (United States)

    1997-12-31T23:59:59.000Z

    Abundances of sulfur, chlorine and 52 trace elements in 220 channel and drill-core samples of high volatile bituminous coals (Pennsylvanian age) from the Illinois Basin, USA, are evaluated for the purpose of better understanding geologic processes affecting trace element variation in the coal seams. Mean elemental abundances in Illinois Basin coals are listed in a table. Most Illinois Basin coals are high-sulfur (> 3% total sulfur). Peat was influenced by seawater during early diagenesis. However, low-medium sulfur coal (<3% total sulfur) occurs in restricted areas along the Walshville Channel, which is a contemporaneous river in the peat swamp. A comparison of trace element abundances between high-sulfur and low-medium sulfur coals showed that only seven elements (boron, sulfur, iron, molybdenum, mercury, thallium, and uranium) are clearly more abundant in high-sulfur coal than in low-medium sulfur coal. Apparently, boron, sulfur, molybdenum, and uranium in high-sulfur coals were derived from seawater that inundated the peat swamp and terminated peat accumulation. Iron, mercury, and thallium had a terrestrial source and were incorporated in pyrite during diagenesis. Their enrichment in high-sulfur coal is related to pyrite formation in a reducing environment. The chlorine content in Illinois Basin coals, including channel and drill core samples, varies from 0.01% to 0.8% (on a dry basis). Coal samples from surface mines (< 50 meter depth) are usually low in chlorine content (<0.1%). Samples from underground mines (> 50 meter depth) have a chlorine content ranging between 0.1% to 0.5%. Variation of chlorine content in each of the two coal seams shows that chlorine content increases with depth because the chloride in coal is in equilibrium with the chloride in the groundwater, which is also depth dependent. A low chlorine content in shallow regions of a coal seam is a result of leaching by fresh groundwater.

  15. Direct observation of the redistribution of sulfur and polysufides in Li-S batteries during first cycle by in situ X-Ray fluorescence microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yu, Xiquian [Brookhaven National Laboratory (BNL), Upton, NY (United States); Pan, Huilin [Pacific Northwest National Laboratory, Joint Center for Energy Storage Research, Richland, WA (United States); Zhou, Yongning [Brookhaven National Laboratory (BNL), Upton, NY (United States); Northrup, Paul [Brookhaven National Laboratory (BNL), Upton, NY (United States); Xiao, Jie [Pacific Northwest National Laboratory, Joint Center for Energy Storage Research, Richland, WA (United States); Bak, Seongmin [Brookhaven National Laboratory (BNL), Upton, NY (United States); Liu, Mingzhao [Brookhaven National Laboratory (BNL), Upton, NY (United States); Nam, Kyung-Wan [Dongguk University-Seoul, Department of Energy and Materials Engineering, (Republic of Korea); Qu, Deyang [Univ. of Massachusetts at Boston, Dept. of Chemistry, MA (United States); Liu, Jun [Pacific Northwest National Laboratory, Joint Center for Energy Storage Research, Richland, WA (United States); Wu, Tianpin [Argonne National Laboratory, X-ray Science Division, Lemont, IL (United States); Yang, Xiao-Qing [Brookhaven National Laboratory (BNL), Upton, NY (United States)

    2015-03-25T23:59:59.000Z

    The demands on low cost and high energy density rechargeable batteries for both transportation and large-scale stationary energy storage are stimulating more and more research toward new battery systems. Since sulfur is an earth-abundant material with low cost, research on the high energy density LiS batteries (2600 W h kg?) are getting more and more attention. The reactions between sulfur and lithium during chargedischarge cycling are quite complicated, going through multiple electron transfer process associated with chemical and electrochemical equilibrium between long- and short-chain polysulfide Li?Sx intermediates (1 < x ? 8). It is reported that the long-chain polysulfides can be dissolved into electrolyte with aprotic organic solvents and migrated to the Li anode side. This so-called shuttle effect is believed to be the main reason for capacity loss and low columbic efficiency of the LiS batteries. In the past few years, a great deal of efforts have been made on how to overcome the problem of polysulfide dissolution through new sulfur electrode construction and cell designs, as well as the modification of the electrolyte. Although it has been reported by several publications that some LiS cells can sustain more than a thousand cycles based on the thin film electrode configurations, the long-term cycling stability is still one of the major barriers for the real application of LiS batteries. More in-depth studies on the fundamental understanding of the sulfur reaction mechanism and interactions among the different polysulfide species, the electrolyte and the electrodes are still greatly needed. Various in situ techniques have been developed and applied to study the mechanism of the sulfur chemistry in LiS batteries during electrochemical cycling, such as transmission X-ray microscopy (TXM), X-ray absorption spectroscopy (XAS), X-ray diffraction (XRD), UVvisible spectroscopy, and electron paramagnetic resonance (EPR). The applications of these characterization techniques have demonstrated their power in probing the structure changes, morphology evolutions, and coordination of sulfur and polysulfides with the electrolyte in LiS cells, providing complementary information to each other thus enhancing the understanding in LiS battery systems. In this communication, in situ X-ray fluorescence (XRF) microscopy was combined with XAS to directly probe the morphology changes of LiS batteries during first cycle. The morphology changes of the sulfur electrode and the redistribution of sulfur and polysulfides were monitored in real time through the XRF images, while the changes of the sulfur containing compounds were characterized through the XAS spectra simultaneously. In contrast to other studies using ex situ or single characterization technique as reported in the literatures, the in situ technique used in this work has the unique feature of probing the LiS cell under operating conditions, as well as the combination of XRF imaging with spectroscopy data. By doing this, the morphology evolution and redistribution of specific sulfur particles during cycling can be tracked and identified at certain locations in a real time. In addition, this technique allows us to select the field-of-view (FOV) area from micrometer to centimeter size, providing the capability to study the LiS reactions not just at the material level, but also at the electrode level. This is very important for both understanding LiS chemistry and designing effective strategies for LiS batteries.

  16. Direct observation of the redistribution of sulfur and polysufides in Li-S batteries during first cycle by in situ X-Ray fluorescence microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yu, Xiquian; Pan, Huilin; Zhou, Yongning; Northrup, Paul; Xiao, Jie; Bak, Seongmin; Liu, Mingzhao; Nam, Kyung-Wan; Qu, Deyang; Liu, Jun; et al

    2015-03-25T23:59:59.000Z

    The demands on low cost and high energy density rechargeable batteries for both transportation and large-scale stationary energy storage are stimulating more and more research toward new battery systems. Since sulfur is an earth-abundant material with low cost, research on the high energy density LiS batteries (2600 W h kg?) are getting more and more attention. The reactions between sulfur and lithium during chargedischarge cycling are quite complicated, going through multiple electron transfer process associated with chemical and electrochemical equilibrium between long- and short-chain polysulfide Li?Sx intermediates (1 morebe dissolved into electrolyte with aprotic organic solvents and migrated to the Li anode side. This so-called shuttle effect is believed to be the main reason for capacity loss and low columbic efficiency of the LiS batteries. In the past few years, a great deal of efforts have been made on how to overcome the problem of polysulfide dissolution through new sulfur electrode construction and cell designs, as well as the modification of the electrolyte. Although it has been reported by several publications that some LiS cells can sustain more than a thousand cycles based on the thin film electrode configurations, the long-term cycling stability is still one of the major barriers for the real application of LiS batteries. More in-depth studies on the fundamental understanding of the sulfur reaction mechanism and interactions among the different polysulfide species, the electrolyte and the electrodes are still greatly needed. Various in situ techniques have been developed and applied to study the mechanism of the sulfur chemistry in LiS batteries during electrochemical cycling, such as transmission X-ray microscopy (TXM), X-ray absorption spectroscopy (XAS), X-ray diffraction (XRD), UVvisible spectroscopy, and electron paramagnetic resonance (EPR). The applications of these characterization techniques have demonstrated their power in probing the structure changes, morphology evolutions, and coordination of sulfur and polysulfides with the electrolyte in LiS cells, providing complementary information to each other thus enhancing the understanding in LiS battery systems. In this communication, in situ X-ray fluorescence (XRF) microscopy was combined with XAS to directly probe the morphology changes of LiS batteries during first cycle. The morphology changes of the sulfur electrode and the redistribution of sulfur and polysulfides were monitored in real time through the XRF images, while the changes of the sulfur containing compounds were characterized through the XAS spectra simultaneously. In contrast to other studies using ex situ or single characterization technique as reported in the literatures, the in situ technique used in this work has the unique feature of probing the LiS cell under operating conditions, as well as the combination of XRF imaging with spectroscopy data. By doing this, the morphology evolution and redistribution of specific sulfur particles during cycling can be tracked and identified at certain locations in a real time. In addition, this technique allows us to select the field-of-view (FOV) area from micrometer to centimeter size, providing the capability to study the LiS reactions not just at the material level, but also at the electrode level. This is very important for both understanding LiS chemistry and designing effective strategies for LiS batteries.less

  17. Diesel Emission Control -- Sulfur Effects (DECSE) Program; Phase I Interim Date Report No. 3: Diesel Fuel Sulfur Effects on Particulate Matter Emissions

    SciTech Connect (OSTI)

    DOE; ORNL; NREL; EMA; MECA

    1999-11-15T23:59:59.000Z

    The Diesel Emission Control-Sulfur Effects (DECSE) is a joint government/industry program to determine the impact of diesel fuel sulfur levels on emission control systems whose use could lower emissions of nitrogen oxides (NO{sub x}) and particulate matter (PM) from on-highway trucks in the 2002--2004 model years. Phase 1 of the program was developed with the following objectives in mind: (1) evaluate the effects of varying the level of sulfur content in the fuel on the emission reduction performance of four emission control technologies; and (2) measure and compare the effects of up to 250 hours of aging on selected devices for multiple levels of fuel sulfur content. This interim report covers the effects of diesel fuel sulfur level on particulate matter emissions for four technologies.

  18. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    SciTech Connect (OSTI)

    Gary M. Blythe

    2002-04-29T23:59:59.000Z

    This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period October 1, 2001 through March 31, 2002. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub X} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, American Electric Power (AEP) and the Dravo Lime Company are project co-funders. URS Corporation is the prime contractor. This is the fifth reporting period for the subject Cooperative Agreement. During the previous (fourth) period, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Plant. Those tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Plant) and a byproduct magnesium hydroxide slurry (at both Gavin and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70-75% overall sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Plant, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO{sub X} control than at removing SO{sub 3} formed in the furnace. The SO{sub 3} removal results were presented in the previous semi-annual technical progress report (April 1, 2001 through September 30, 2001). During the current reporting period, additional balance of plant impact information was determined for one of the two tests. These additional balance-of-plant results are presented and discussed in this report. There was no other technical progress to report, because all planned testing as part of this project has been completed.

  19. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    SciTech Connect (OSTI)

    Gary M. Blythe

    2001-11-06T23:59:59.000Z

    This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period April 1, 2001 through September 30, 2001. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub x} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, and the Dravo Lime Company are project co-funders. URS Corporation is the prime contractor. During the current period, American Electric Power (AEP) joined the project as an additional co-funder and as a provider of a host site for testing. This is the fourth reporting period for the subject Cooperative Agreement. During this period, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Station. These tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Station), and a byproduct magnesium hydroxide slurry (both Gavin Station and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70 to 75% sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Station, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO{sub x} control than at removing SO{sub 3} formed in the furnace. Balance of plant impacts, primarily on the ESP particulate control device, were also determined during both tests. These results are presented and discussed in this report.

  20. ENERGY EFFICIENCY LIMITS FOR A RECUPERATIVE BAYONET SULFURIC ACID DECOMPOSITION REACTOR FOR SULFUR CYCLE THERMOCHEMICAL HYDROGEN PRODUCTION

    SciTech Connect (OSTI)

    Gorensek, M.; Edwards, T.

    2009-06-11T23:59:59.000Z

    A recuperative bayonet reactor design for the high-temperature sulfuric acid decomposition step in sulfur-based thermochemical hydrogen cycles was evaluated using pinch analysis in conjunction with statistical methods. The objective was to establish the minimum energy requirement. Taking hydrogen production via alkaline electrolysis with nuclear power as the benchmark, the acid decomposition step can consume no more than 450 kJ/mol SO{sub 2} for sulfur cycles to be competitive. The lowest value of the minimum heating target, 320.9 kJ/mol SO{sub 2}, was found at the highest pressure (90 bar) and peak process temperature (900 C) considered, and at a feed concentration of 42.5 mol% H{sub 2}SO{sub 4}. This should be low enough for a practical water-splitting process, even including the additional energy required to concentrate the acid feed. Lower temperatures consistently gave higher minimum heating targets. The lowest peak process temperature that could meet the 450-kJ/mol SO{sub 2} benchmark was 750 C. If the decomposition reactor were to be heated indirectly by an advanced gas-cooled reactor heat source (50 C temperature difference between primary and secondary coolants, 25 C minimum temperature difference between the secondary coolant and the process), then sulfur cycles using this concept could be competitive with alkaline electrolysis provided the primary heat source temperature is at least 825 C. The bayonet design will not be practical if the (primary heat source) reactor outlet temperature is below 825 C.

  1. Production of low-sulfur binder pitch from high-sulfur Illinois coals. Technical report, September 1--November 30, 1994

    SciTech Connect (OSTI)

    Knight, R.A. [Inst. of Gas Technology, Chicago, IL (United States)

    1994-12-31T23:59:59.000Z

    The objective of this project is to produce electrode binder pitch with sulfur content below 0.6 wt% from high-sulfur Illinois coal mild gasification liquids. In this project, two approaches to sulfur reduction are being explored in conjunction with thermocracking: (1) the use of conventionally cleaned coal with low ({approximately}1%) sulfur as a mild gasification feedstock, and (2) direct biodesulfurization of the liquids prior to thermocracking. In Case 1, the crude pitch is being produced by mild gasification of IBC-109 coal in an existing IGT bench-scale reactor, followed by distillation of the scrubbing solvent and light-to-middle oils to isolate the crude pitch. In Case 2, the crude pitch for biodesulfurization is the same material previously studied, which was obtained from Illinois No. 6 coal tests conducted in the IGT mild gasification PRU in 1990. Biodesulfurization is to be performed by contacting the pitch with Rhodococcus Rhodochrous either as live cultures or in the form of concentrated biocatalyst. Following preparation of the crude pitches, pitch upgrading experiments are to be conducted in a continuous flash thermocracker (FTC) constructed in previous ICCI-sponsored studies. The finished pitch is then characterized for physical and chemical properties (density, softening point, QI, TI, coking value, and elemental composition), and compared to typical specifications for binder pitches. This quarter, 45 kg of IBC-109 coal was obtained and sized to 40 x 80 mesh for mild gasification. Laboratory experiments were conducted to identify means of dispersing or emulsifying pitch in water to render is accessible to biocatalysts, and exploratory desulfurization tests on one-gram pitch samples were begun.

  2. Lithium Polysulfidophosphates: A Family of Lithium-Conducting Sulfur-Rich Compounds for Lithium-Sulfur Batteries

    SciTech Connect (OSTI)

    Lin, Zhan [ORNL] [ORNL; Liu, Zengcai [ORNL] [ORNL; Fu, Wujun [ORNL] [ORNL; Dudney, Nancy J [ORNL] [ORNL; Liang, Chengdu [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    Given the great potential for improving the energy density of state-of-the-art lithium-ion batteries by a factor of 5, a breakthrough in lithium-sulfur (Li-S) batteries will have a dramatic impact in a broad scope of energy related fields. Conventional Li-S batteries that use liquid electrolytes are intrinsically short-lived with low energy efficiency. The challenges stem from the poor electronic and ionic conductivities of elemental sulfur and its discharge products. We report herein lithium polysulfidophosphates (LPSP), a family of sulfur-rich compounds, as the enabler of long-lasting and energy-efficient Li-S batteries. LPSP have ionic conductivities of 3.0 10-5 S cm-1 at 25 oC, which is 8 orders of magnitude higher than that of Li2S (~10-13 S cm-1). The high Li-ion conductivity of LPSP is the salient characteristic of these compounds that impart the excellent cycling performance to Li-S batteries. In addition, the batteries are configured in an all-solid state that promises the safe cycling of high-energy batteries with metallic lithium anodes.

  3. TotalView Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesisAppliances » Top InnovativeTopoisomeraseTotalView

  4. Star Formation Histories in the Local Group

    E-Print Network [OSTI]

    Thomas M. Brown

    2004-07-09T23:59:59.000Z

    Deep color magnitude diagrams extending to the main sequence provide the most direct measure of the detailed star formation history in a stellar population. With large investments of observing time, HST can obtain such data for populations out to 1 Mpc, but its field of view is extremely small in comparison to the size of Local Group galaxies. This limitation severely constrains our understanding of galaxy formation. For example, the largest galaxy in the Local Group, Andromeda, offers an ideal laboratory for studying the formation of large spiral galaxies, but the galaxy shows substructure on a variety of scales, presumably due to its violent merger history. Within its remaining lifetime, HST can only sample a few sight-lines through this complex galaxy. In contrast, a wide field imager could provide a map of Andromeda's halo, outer disk, and tidal streams, revealing the spatially-dependent star formation history in each structure. The same data would enable many secondary studies, such as the age variation in Andromeda's globular cluster system, gigantic samples of variable stars, and microlensing tracers of the galaxy's dark matter distribution.

  5. Protective laser beam viewing device

    DOE Patents [OSTI]

    Neil, George R.; Jordan, Kevin Carl

    2012-12-18T23:59:59.000Z

    A protective laser beam viewing system or device including a camera selectively sensitive to laser light wavelengths and a viewing screen receiving images from the laser sensitive camera. According to a preferred embodiment of the invention, the camera is worn on the head of the user or incorporated into a goggle-type viewing display so that it is always aimed at the area of viewing interest to the user and the viewing screen is incorporated into a video display worn as goggles over the eyes of the user.

  6. A quantum of history

    E-Print Network [OSTI]

    Peter Holland

    2014-09-21T23:59:59.000Z

    With reference to primary sources it is shown that key claims made regarding the history of the pilot wave theory in Quantum Theory at the Crossroads are not supported by the historical record. It is also argued that the association of de Broglie with just a first-order law of particle motion, and Bohm with a second-order one, has no historical basis.

  7. Lin Tongqi : an oral history

    E-Print Network [OSTI]

    Chen, Xin, S.M. Massachusetts Institute of Technology

    2014-01-01T23:59:59.000Z

    In this thesis, I explore the life of Professor Lin Tongqi, a well-known scholar of American Chinese studies, by using an oral history methodology. This oral history is named "Suffering and Thinking," and my goal is to ...

  8. Take up the cross (Mark 8 : 34 and par.) : the history and function of the cross saying in earliest Christianity

    E-Print Network [OSTI]

    Rumple, John Glenn

    The principal contention of this thesis is that the earliest Christians viewed the crucifixion of Jesus as paradigmatic for discipleship, confirmation of which can be found in the history and function of a particular ...

  9. NATIONAL MUSEUM OF NATURAL HISTORY

    E-Print Network [OSTI]

    Mathis, Wayne N.

    NATIONAL MUSEUM OF NATURAL HISTORY Annual Report 2004 #12;2 NATIONAL MUSEUM OF NATURAL HISTORY · www.mnh.si.edu The revitalization of the National Museum of Natural History proceeded at a rapid pace, innovation and solid groundwork for future growth. The Museum's agenda is an active one. As with any

  10. Field Museum of Natural History

    E-Print Network [OSTI]

    Patterson, Bruce D.

    Field Museum of Natural History Financial Statements as of and for the Years Ended December 31' Report #12;FIELD MUSEUM OF NATURAL HISTORY TABLE OF CONTENTS Page INDEPENDENT AUDITORS' REPORT 1 AUDITORS' REPORT To the Board of Trustees of Field Museum of Natural History: We have audited

  11. Field Museum of Natural History

    E-Print Network [OSTI]

    Patterson, Bruce D.

    Field Museum of Natural History Financial Statements as of and for the Years Ended December 31 Auditors' Report #12;FIELD MUSEUM OF NATURAL HISTORY TABLE OF CONTENTS Page INDEPENDENT AUDITORS' REPORT 1 Expenditures 22­23 #12;INDEPENDENT AUDITORS' REPORT To the Board of Trustees of Field Museum of Natural History

  12. Portable instrument and method for detecting reduced sulfur compounds in a gas

    DOE Patents [OSTI]

    Gaffney, J.S.; Kelly, T.J.; Tanner, R.L.

    1983-06-01T23:59:59.000Z

    A portable real time instrument for detecting concentrations in the part per billion range of reduced sulfur compounds in a sample gas. Ozonized air or oxygen and reduced sulfur compounds in a sample gas stream react to produce chemiluminescence in a reaction chamber and the emitted light is filtered and observed by a photomultiplier to detect reduced sulfur compounds. Selective response to individual sulfur compounds is achieved by varying reaction chamber temperature and ozone and sample gas flows, and by the use of either air or oxygen as the ozone source gas.

  13. Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    200 Energy Information AdministrationPetroleum Marketing Annual 1999 Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales Type, and PAD District (Cents per Gallon...

  14. Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales...

    U.S. Energy Information Administration (EIA) Indexed Site

    200 Energy Information AdministrationPetroleum Marketing Annual 1998 Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales Type, and PAD District (Cents per Gallon...

  15. Carbon/Sulfur Nanocomposites and Additives for High-Energy Lithium...

    Broader source: Energy.gov (indexed) [DOE]

    of long cycle life in half cells and expand the synthesis of sulfurcarbon composite materials of various sulfur loading 2. Compare the performance for different...

  16. Sulfur barrier for use with in situ processes for treating formations

    DOE Patents [OSTI]

    Vinegar, Harold J. (Bellaire, TX); Christensen, Del Scot (Friendswood, TX)

    2009-12-15T23:59:59.000Z

    Methods for forming a barrier around at least a portion of a treatment area in a subsurface formation are described herein. Sulfur may be introduced into one or more wellbores located inside a perimeter of a treatment area in the formation having a permeability of at least 0.1 darcy. At least some of the sulfur is allowed to move towards portions of the formation cooler than the melting point of sulfur to solidify the sulfur in the formation to form the barrier.

  17. SULFURIC ACID REMOVAL PROCESS EVALUATION: SHORT-TERM RESULTS

    SciTech Connect (OSTI)

    Gary M. Blythe; Richard McMillan

    2002-03-04T23:59:59.000Z

    The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. Sulfuric acid controls are becoming of increasing interest to utilities with coal-fired units for a number of reasons. Sulfuric acid is a Toxic Release Inventory species, a precursor to acid aerosol/condensable emissions, and can cause a variety of plant operation problems such as air heater plugging and fouling, back-end corrosion, and plume opacity. These issues will likely be exacerbated with the retrofit of SCR for NOX control on some coal-fired plants, as SCR catalysts are known to further oxidize a portion of the flue gas SO{sub 2} to SO{sub 3}. The project is testing the effectiveness of furnace injection of four different calcium- and/or magnesium-based alkaline sorbents on full-scale utility boilers. These reagents have been tested during four one- to two-week tests conducted on two FirstEnergy Bruce Mansfield Plant units. One of the sorbents tested was a magnesium hydroxide slurry produced from a wet flue gas desulfurization system waste stream, from a system that employs a Thiosorbic{reg_sign} Lime scrubbing process. The other three sorbents are available commercially and include dolomite, pressure-hydrated dolomitic lime, and commercial magnesium hydroxide. The dolomite reagent was injected as a dry powder through out-of-service burners, while the other three reagents were injected as slurries through air-atomizing nozzles into the front wall of upper furnace, either across from the nose of the furnace or across from the pendant superheater tubes. After completing the four one- to two-week tests, the most promising sorbents were selected for longer-term (approximately 25-day) full-scale tests. The longer-term tests are being conducted to confirm the effectiveness of the sorbents tested over extended operation and to determine balance-of-plant impacts. This reports presents the results of the short-term tests; the long-term test results will be reported in a later document. The short-term test results showed that three of the four reagents tested, dolomite powder, commercial magnesium hydroxide slurry, and byproduct magnesium hydroxide slurry, were able to achieve 90% or greater removal of sulfuric acid compared to baseline levels. The molar ratio of alkali to flue gas sulfuric acid content (under baseline conditions) required to achieve 90% sulfuric acid removal was lowest for the byproduct magnesium hydroxide slurry. However, this result may be confounded because this was the only one of the three slurries tested with injection near the top of the furnace across from the pendant superheater platens. Injection at the higher level was demonstrated to be advantageous for this reagent over injection lower in the furnace, where the other slurries were tested.

  18. SULFURIC ACID REMOVAL PROCESS EVALUATION: SHORT-TERM RESULTS

    SciTech Connect (OSTI)

    Gary M. Blythe; Richard McMillan

    2002-02-04T23:59:59.000Z

    The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. Sulfuric acid controls are becoming of increasing interest to utilities with coal-fired units for a number of reasons. Sulfuric acid is a Toxic Release Inventory species, a precursor to acid aerosol/condensable emissions, and can cause a variety of plant operation problems such as air heater plugging and fouling, back-end corrosion, and plume opacity. These issues will likely be exacerbated with the retrofit of SCR for NO{sub x} control on some coal-fired plants, as SCR catalysts are known to further oxidize a portion of the flue gas SO{sub 2} to SO{sub 3}. The project is testing the effectiveness of furnace injection of four different calcium- and/or magnesium-based alkaline sorbents on full-scale utility boilers. These reagents have been tested during four one- to two-week tests conducted on two First Energy Bruce Mansfield Plant units. One of the sorbents tested was a magnesium hydroxide slurry produced from a wet flue gas desulfurization system waste stream, from a system that employs a Thiosorbic{reg_sign} Lime scrubbing process. The other three sorbents are available commercially and include dolomite, pressure-hydrated dolomitic lime, and commercial magnesium hydroxide. The dolomite reagent was injected as a dry powder through out-of-service burners, while the other three reagents were injected as slurries through air-atomizing nozzles into the front wall of upper furnace, either across from the nose of the furnace or across from the pendant superheater tubes. After completing the four one- to two-week tests, the most promising sorbents were selected for longer-term (approximately 25-day) full-scale tests. The longer-term tests are being conducted to confirm the effectiveness of the sorbents tested over extended operation and to determine balance-of-plant impacts. This reports presents the results of the short-term tests; the long-term test results will be reported in a later document. The short-term test results showed that three of the four reagents tested, dolomite powder, commercial magnesium hydroxide slurry, and byproduct magnesium hydroxide slurry, were able to achieve 90% or greater removal of sulfuric acid compared to baseline levels. The molar ratio of alkali to flue gas sulfuric acid content (under baseline conditions) required to achieve 90% sulfuric acid removal was lowest for the byproduct magnesium hydroxide slurry. However, this result may be confounded because this was the only one of the three slurries tested with injection near the top of the furnace across from the pendant superheater platens. Injection at the higher level was demonstrated to be advantageous for this reagent over injection lower in the furnace, where the other slurries were tested.

  19. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    SciTech Connect (OSTI)

    Gary M. Blythe

    2003-10-01T23:59:59.000Z

    This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period April 1, 2003 through September, 2003. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub x} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, American Electric Power (AEP) and the Dravo Lime Company are project co-funders. URS Group is the prime contractor. This is the eighth reporting period for the subject Cooperative Agreement. During previous reporting periods, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Plant. Those tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Plant), and a byproduct magnesium hydroxide slurry (both Gavin Plant and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70-75% overall sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Plant, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO{sub x} control than at removing SO{sub 3} formed in the furnace. The SO{sub 3} removal results were presented in the semi-annual Technical Progress Report for the time period April 1, 2001 through September 30, 2001. Additional balance of plant impact information for the two tests was reported in the Technical Progress Report for the time period October 1, 2001 through March 30, 2002. Additional information became available about the effects of byproduct magnesium hydroxide injection on SCR catalyst coupons during the long-term test at BMP, and those results were reported in the report for the time period April 1, 2002 through September 30, 2002. During the current period, process economic estimates were developed, comparing the costs of the furnace magnesium hydroxide slurry injection process tested as part of this project to a number of other candidate SO{sub 3}/sulfuric acid control technologies for coal-fired power plants. The results of this economic evaluation are included in this progress report.

  20. SULFURIC ACID REMOVAL PROCESS EVALUATION: LONG-TERM RESULTS

    SciTech Connect (OSTI)

    Gary M. Blythe; Richard McMillan

    2002-07-03T23:59:59.000Z

    The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The project is being co-funded by the U.S. DOE National Energy Technology Laboratory, under Cooperative Agreement DE-FC26-99FT40718, along with EPRI, the American Electric Power Company (AEP), FirstEnergy Corp., the Tennessee Valley Authority, and Dravo Lime, Inc. Sulfuric acid controls are becoming of increasing interest to power generators with coal-fired units for a number of reasons. Sulfuric acid is a Toxic Release Inventory species and can cause a variety of plant operation problems such as air heater plugging and fouling, back-end corrosion, and plume opacity. These issues will likely be exacerbated with the retrofit of selective catalytic reduction (SCR) for NO{sub x} control on many coal-fired plants, as SCR catalysts are known to further oxidize a portion of the flue gas SO{sub 2} to SO{sub 3}. The project previously tested the effectiveness of furnace injection of four different calcium-and/or magnesium-based alkaline sorbents on full-scale utility boilers. These reagents were tested during four one- to two-week tests conducted on two FirstEnergy Bruce Mansfield Plant (BMP) units. One of the sorbents tested was a magnesium hydroxide byproduct slurry produced from a modified Thiosorbic{reg_sign} Lime wet flue gas desulfurization system. The other three sorbents are available commercially and include dolomite, pressure-hydrated dolomitic lime, and commercial magnesium hydroxide. The dolomite reagent was injected as a dry powder through out-of-service burners, while the other three reagents were injected as slurries through air-atomizing nozzles inserted through the front wall of the upper furnace, either across from the nose of the furnace or across from the pendant superheater tubes. After completing the four one- to two-week tests, the most promising sorbents were selected for longer-term (approximately 25-day) full-scale tests on two different units. The longer-term tests were conducted to confirm the effectiveness of the sorbents tested over extended operation on two different boilers, and to determine balance-of-plant impacts. The first long-term test was conducted on FirstEnergy's BMP, Unit 3, and the second test was conducted on AEP's Gavin Plant, Unit 1. The Gavin Plant testing provided an opportunity to evaluate the effects of sorbent injected into the furnace on SO{sub 3} formed across an operating SCR reactor. This report presents the results from those long-term tests. The tests determined the effectiveness of injecting commercially available magnesium hydroxide slurry (Gavin Plant) and byproduct magnesium hydroxide slurry (both Gavin Plant and BMP) for sulfuric acid control. The results show that injecting either slurry could achieve up to 70 to 75% overall sulfuric acid removal. At BMP, this overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Plant, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NOX control than at removing SO{sub 3} formed in the furnace. The long-term tests also determined balance-of-plant impacts from slurry injection during the two tests. These include impacts on boiler back-end temperatures and pressure drops, SCR catalyst properties, ESP performance, removal of other flue gas species, and flue gas opacity. For the most part the balance-of-plant impacts were neutral to positive, although adverse effects on ESP performance became an issue during the BMP test.

  1. Meta-Historys Dangerous Dream

    E-Print Network [OSTI]

    Harpham, Geoffrey G

    2011-01-01T23:59:59.000Z

    Books, 2007. Harpham: Dangerous Dream. Cliodynamics (2011)History Meta-Historys Dangerous Dream Geoffrey Galt Harpham2011. Meta-Historys Dangerous Dream. Cliodynamics Harpham:

  2. False color viewing device

    DOE Patents [OSTI]

    Kronberg, J.W.

    1991-05-08T23:59:59.000Z

    This invention consists of a viewing device for observing objects in near-infrared false-color comprising a pair of goggles with one or more filters in the apertures, and pads that engage the face for blocking stray light from the sides so that all light reaching, the user`s eyes come through the filters. The filters attenuate most visible light and pass near-infrared (having wavelengths longer than approximately 700 nm) and a small amount of blue-green and blue-violet (having wavelengths in the 500 to 520 nm and shorter than 435 nm, respectively). The goggles are useful for looking at vegetation to identify different species and for determining the health of the vegetation, and to detect some forms of camouflage.

  3. False color viewing device

    DOE Patents [OSTI]

    Kronberg, James W. (108 Independent Blvd., Aiken, SC 29801)

    1992-01-01T23:59:59.000Z

    A viewing device for observing objects in near-infrared false-color comprising a pair of goggles with one or more filters in the apertures, and pads that engage the face for blocking stray light from the sides so that all light reaching the user's eyes come through the filters. The filters attenuate most visible light and pass near-infrared (having wavelengths longer than approximately 700 nm) and a small amount of blue-green and blue-violet (having wavelengths in the 500 to 520 nm and shorter than 435 nm, respectively). The goggles are useful for looking at vegetation to identify different species and for determining the health of the vegetation, and to detect some forms of camouflage.

  4. False color viewing device

    DOE Patents [OSTI]

    Kronberg, J.W.

    1992-10-20T23:59:59.000Z

    A viewing device for observing objects in near-infrared false-color comprising a pair of goggles with one or more filters in the apertures, and pads that engage the face for blocking stray light from the sides so that all light reaching the user's eyes come through the filters. The filters attenuate most visible light and pass near-infrared (having wavelengths longer than approximately 700 nm) and a small amount of blue-green and blue-violet (having wavelengths in the 500 to 520 nm and shorter than 435 nm, respectively). The goggles are useful for looking at vegetation to identify different species and for determining the health of the vegetation, and to detect some forms of camouflage. 7 figs.

  5. The view from Kiev

    SciTech Connect (OSTI)

    Kiselyov, S.

    1993-11-01T23:59:59.000Z

    This article reports the observations of correspondents for the Bulletin (two Russian journalists, one based in Moscow, the other in Kiev) who investigated the status of the Soviet Union's Black Sea Fleet and Ukraine's status as a non-nuclear-weapons state. After two years of wrangling and two earlier failed settlements, Russian President Boris Yeltsin met with Ukrainian President Leonid Kravchuk at Massandra in Crimea. On September 3, the leaders announced that Russia would buy out Ukraine's interest in the fleet and lease the port at Sevastopol. The Massandra summit was also supposed to settle Ukraine's status as a non-nuclear-weapons state. Described here are the Kiev-based correspondent's views on the Massandra summit (and its major topics), which was to have been called off by the Russian foreign ministry when Ukrainian Prime Minister Leonid Kuchma resigned.

  6. Sulfur removal from high-sulfur Illinois coal by low-temperature perchloroethylene (PCE) extraction. Final technical report, September 1, 1991--August 31, 1992

    SciTech Connect (OSTI)

    Chou, M.I.M.; Lytle, J.M. [Illinois State Geological Survey, Champaign, IL (United States); Buchanan, D.H. [Eastern Illinois Univ., Charleston, IL (United States)] [and others

    1992-12-31T23:59:59.000Z

    The purposes of this Testing and Materials (ASTM) forms of sulfur analysis. The purposes of this research are to independently confirm and possibly to improve the organic sulfur removal from Illinois coals with the PCE desulfurization process and to verify the forms-of-sulfur determination using the ASTM method for the PCE process evaluation. Problem that limits commercial application of the PCE process is the high chlorine content in the PCE-treated coals. Hence, to develop a dechlorination procedure to remove excess PCE from the PCE-treated coal is an additional goal of this investigation. MWOPC`s results have been repeated on fresh IBC-104 coal. Oxidation of coals was found to affect subsequent PCE desulfurization. Elemental sulfur is more amenable to removal by PCE. Ohio 5/6 coal appears to produce elemental sulfur more readily than Illinois coal during oxidation. Data from X-Ray Diffraction spectroscopy indicate that sulfate in the oxidized Illinois IBC-104 coal is mainly in gypsum form, whereas, sulfate in oxidized Ohio 5/6 sample is mainly in szomolnokite form. These data suggest that the oxidation reaction for Ohio 5/6 coal might occur under catalytic conditions which readily convert pyrite to produce FeSO{sub 4} and elemental sulfur. The higher elemental sulfur content in that coal results in higher ASTM organic sulfur removal by PCE extraction. From mass balance calculation, 96% of the total sulfur and greater than 95% of total iron were accounted for during our PCE tests with both long-term ambient-oxidized IBC-104 coal and ambient-oxidized Ohio 516 coal.

  7. Removal of sulfur and nitrogen containing pollutants from discharge gases

    DOE Patents [OSTI]

    Joubert, James I. (Pittsburgh, PA)

    1986-01-01T23:59:59.000Z

    Oxides of sulfur and of nitrogen are removed from waste gases by reaction with an unsupported copper oxide powder to form copper sulfate. The resulting copper sulfate is dissolved in water to effect separation from insoluble mineral ash and dried to form solid copper sulfate pentahydrate. This solid sulfate is thermally decomposed to finely divided copper oxide powder with high specific surface area. The copper oxide powder is recycled into contact with the waste gases requiring cleanup. A reducing gas can be introduced to convert the oxide of nitrogen pollutants to nitrogen.

  8. Investigation of Sulfur Removal by Direct Limestone Injection

    E-Print Network [OSTI]

    Colaluca, M. A.; Maloney, D. J.

    Stream Cleanup Systems Contractors Review Meeting, DOE/METC 88/6094, Contract DE-AC21-86MC23262, 295-304. Chase, et al, 1985, JANAF Thermochemical Tables, J. Phys. Chern. Ref. Data, 14, Suppl. 1. Cole, J. A., Kramlich, J. C., Seeker, W. R...-IE-90-06-05 Proceedings from the 12th National Industrial Energy Technology Conference, Houston, TX, June 19-20, 1990 Newton, G. H., Chen, S. L., and Kramlich, J. D., 1989, Role of Porosity Less in Limiting Sulfur Dioxide Capture by Calcium...

  9. History | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked Questions for DOE FYAffairs,Assessment HazleDepartment ofofDepartmentHistory

  10. History | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked Questions for DOE FYAffairs,Assessment HazleDepartment ofofDepartmentHistoryAbout

  11. ESnet IPv6 History

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract ManagementDiscovering HowAnaDynamicGulfENSURINGSiteof ScienceHistory

  12. ULTRA-LOW SULFUR REDUCTION EMISSION CONTROL DEVICE/DEVELOPMENT OF AN ON-BOARD FUEL SULFUR TRAP

    SciTech Connect (OSTI)

    Ron Rohrbach; Gary Zulauf; Tim Gavin

    2003-04-01T23:59:59.000Z

    Honeywell is actively working on a 3-year program to develop and demonstrate proof-of-concept for an ''on-vehicle'' desulfurization fuel filter for heavy-duty diesel engines. Integration of the filter into the vehicle fuel system will reduce the adverse effects sulfur has on post combustion emission control devices such as NO{sub x} adsorbers. The NO{sub x} adsorber may be required to meet the proposed new EPA Tier II and ''2007-Rule'' emission standards. The proposed filter concept is based on Honeywell's reactive filtration technology and experience in liquids handling and conditioning. A regeneration and recycling plan for the spent filters will also be examined. We have chosen to develop and demonstrate this technology based on criteria set forth for a heavy duty CIDI engine system because it represents a more challenging set of conditions of service intervals and overall fuel usage over light duty systems. It is anticipated that the technology developed for heavy-duty applications will be applicable to light-duty as well. Further, technology developed under this proposal would also have application for the use of liquid based fuels for fuel cell power generation. The program consists of four phases. Phase I will focus on developing a concept design and analysis and resolution of technical barriers concerning removal of sulfur-containing species in low sulfur fuels. In Phase II we will concentrate on prototype filter design and preparation followed by qualification testing of this component in a fuel line application. Phase III will study life cycle and regeneration options for the spent filter. Phase IV will focus on efficacy and life testing and component integration. The project team will include a number of partners, with Honeywell International as the prime contractor. The partners include an emission control technology developer (Honeywell International), a fuel technology developer (Marathon Ashland Petroleum), a catalyst technology developer (Johnson Matthey), a CIDI engine manufacturer (Mack Trucks Inc.), a filter recycler (American Wastes Industries), and a low-sulfur fuel supplier (Equilon, a joint venture between Shell and Texaco).

  13. Investigation of a sulfur reduction technique for mild gasification char

    SciTech Connect (OSTI)

    Knight, R.A.

    1991-01-01T23:59:59.000Z

    The object of this program is to investigate the desulfurization of mild gasification char using hydrogen/methane mixtures in a laboratory-scale experimental study. In the first year of the two- year program, char is being treated with mixtures of H{sub 2} and CH{sub 4} at temperatures of 1100{degrees}C to 1550{degrees}F and pressures of 50 to 100 psig. The effects of temperature, pressure, residence time, gas velocity, and gas composition on sulfur removal and carbon gasification are being determined. The batch experiments are being performed in a nominal 2-inch-ID stainless-steel, batch, fluidized-bed reactor. The char to be desulfurized was produced by the IGT mild gasification process research unit (PRU) in a recently completed DOE/METC-sponsored technology development program. The parent coal was Illinois No. 6 from a preparation plant, and the char from the selected test contains 4.58 wt% sulfur. In the first quarter, we have obtained and prepared a char for the desulfurization tests. Ultimate and proximate analyses were performed on this char, and its pore size distribution and surface area were determined. Also this quarter, the fluidized-bed reactor system was constructed and equipped with high pressure mass flow controllers and a high pressure sintered metal filter to remove fines from the effluent gas stream.

  14. Catalysts for the selective oxidation of hydrogen sulfide to sulfur

    DOE Patents [OSTI]

    Srinivas, Girish (Thornton, CO); Bai, Chuansheng (Baton Rouge, LA)

    2000-08-08T23:59:59.000Z

    This invention provides catalysts for the oxidation of hydrogen sulfide. In particular, the invention provides catalysts for the partial oxidation of hydrogen sulfide to elemental sulfur and water. The catalytically active component of the catalyst comprises a mixture of metal oxides containing titanium oxide and one or more metal oxides which can be selected from the group of metal oxides or mixtures of metal oxides of transition metals or lanthanide metals. Preferred metal oxides for combination with TiO.sub.2 in the catalysts of this invention include oxides of V, Cr, Mn, Fe, Co, Ni, Cu, Nb, Mo, Tc, Ru, Rh, Hf, Ta, W, Au, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. Catalysts which comprise a homogeneous mixture of titanium oxide and niobium (Nb) oxide are also provided. A preferred method for preparing the precursor homogenous mixture of metal hydroxides is by coprecipitation of titanium hydroxide with one or more other selected metal hydroxides. Catalysts of this invention have improved activity and/or selectivity for elemental sulfur production. Further improvements of activity and/or selectivity can be obtained by introducing relatively low amounts (up to about 5 mol %)of a promoter metal oxide (preferably of metals other than titanium and that of the selected second metal oxide) into the homogeneous metal/titanium oxide catalysts of this invention.

  15. A novel coal feeder for production of low sulfur fuel

    SciTech Connect (OSTI)

    Khang, S.J.; Lin, L.; Keener, T.C.; Yeh, P.

    1991-01-01T23:59:59.000Z

    A dual-screw feeder was designed for desulfurization of coal. This reactor contains two screw tubes, the inner tube acting as a coal pyrolizer and the outer tube acting as a desulfurizer with hot calcined lime pellets or other renewable sorbent pellets. The objectives of this project is to study the feasibility of an advanced concept of desulfurization and possibly some denitrification in this coal feeder. In this year, two basic studies have been performed: (1) the desulfurization and (2) the denitrification due to mild pyrolysis. Specifically, the following tasks have been performed: (1) Setting up the Dual-Screw reactor, (2) Determination of the pyrolysis product and the sulfur distribution in char, tar and gas based on experimental data, (3) Study of the devolatilization, the desulfurization kinetics and the denitrification kinetics and obtaining the basic kinetic parameters, (4) Study of the sulfur removal efficiency of lime pellets fed into the outer tube of the dual-feeder reactor, (5) Study of the effect of the coal particle size on pyrolysis and desulfurization, (6) Study of the coal pyrolysis and desulfurization using a TGA(Thermal Gravimetric Analyzer).

  16. Crystal structure studies on sulfur oxygenase reductase from Acidianus tengchongensis

    SciTech Connect (OSTI)

    Li Mei [National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101 (China); Chen Zhiwei [State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101 (China); Zhang Pingfeng; Pan Xiaowei [National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101 (China); Graduate University of the Chinese Academy of Sciences, Beijing 100049 (China); Jiang Chengying [State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101 (China); An Xiaomin [National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101 (China); Liu Shuangjiang [State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101 (China); Chang Wenrui [National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101 (China)], E-mail: wrchang@sun5.ibp.ac.cn

    2008-05-09T23:59:59.000Z

    Sulfur oxygenase reductase (SOR) simultaneously catalyzes oxidation and reduction of elemental sulfur to produce sulfite, thiosulfate, and sulfide in the presence of molecular oxygen. In this study, crystal structures of wild type and mutants of SOR from Acidianus tengchongensis (SOR-AT) in two different crystal forms were determined and it was observed that 24 identical SOR monomers form a hollow sphere. Within the icosatetramer sphere, the tetramer and trimer channels were proposed as the paths for the substrate and products, respectively. Moreover, a comparison of SOR-AT with SOR-AA (SOR from Acidianus ambivalens) structures showed that significant differences existed at the active site. Firstly, Cys31 is not persulfurated in SOR-AT structures. Secondly, the iron atom is five-coordinated rather than six-coordinated, since one of the water molecules ligated to the iron atom in the SOR-AA structure is lost. Consequently, the binding sites of substrates and a hypothetical catalytic process of SOR were proposed.

  17. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID REMOVAL

    SciTech Connect (OSTI)

    Gary M. Blythe

    2004-01-01T23:59:59.000Z

    The objective of this project has been to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The project was co-funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-99FT40718, along with EPRI, the American Electric Power Company (AEP), FirstEnergy Corporation, the Tennessee Valley Authority, and Carmeuse North America. Sulfuric acid controls are becoming of increased interest for coal-fired power generating units for a number of reasons. In particular, sulfuric acid can cause plant operation problems such as air heater plugging and fouling, back-end corrosion, and plume opacity. These issues will likely be exacerbated with the retrofit of selective catalytic reduction (SCR) for NOX control, as SCR catalysts are known to further oxidize a portion of the flue gas SO{sub 2} to SO{sub 3}. The project tested the effectiveness of furnace injection of four different magnesium-based or dolomitic alkaline sorbents on full-scale utility boilers. These reagents were tested during one- to two-week tests conducted on two FirstEnergy Bruce Mansfield Plant (BMP) units. One of the sorbents tested was a magnesium hydroxide slurry byproduct from a modified Thiosorbic{reg_sign} Lime wet flue gas desulfurization process. The other three sorbents are available commercially and include dolomite, pressure-hydrated dolomitic lime, and commercially available magnesium hydroxide. The dolomite reagent was injected as a dry powder through out-of-service burners. The other three reagents were injected as slurries through air-atomizing nozzles inserted through the front wall of the upper furnace. After completing the four one- to two-week tests, the most promising sorbents were selected for longer-term (approximately 25-day) full-scale tests on two different units. The longer-term tests were conducted to confirm sorbent effectiveness over extended operation on two different boilers, and to determine balance-of-plant impacts. The first long-term test was conducted on FirstEnergy's BMP Unit 3, and the second was conducted on AEP's Gavin Plant, Unit 1. The Gavin Plant test provided an opportunity to evaluate the effects of sorbent injected into the furnace on SO{sub 3} formed across an operating SCR reactor. A final task in the project was to compare projected costs for furnace injection of magnesium hydroxide slurries to estimated costs for other potential sulfuric acid control technologies. Estimates were developed for reagent and utility costs, and capital costs, for furnace injection of magnesium hydroxide slurries and seven other sulfuric acid control technologies. The estimates were based on retrofit application to a model coal-fired plant.

  18. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    SciTech Connect (OSTI)

    Gary M. Blythe

    2003-06-01T23:59:59.000Z

    This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period October 1, 2002 through March 31, 2003. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub x} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, American Electric Power (AEP) and the Dravo Lime Company are project co-funders. URS Group is the prime contractor. This is the seventh reporting period for the subject Cooperative Agreement. During previous reporting periods, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Plant. Those tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Plant), and a byproduct magnesium hydroxide slurry (both Gavin Plant and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70-75% overall sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Plant, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO{sub x} control than at removing SO{sub 3} formed in the furnace. The SO3 removal results were presented in the semi-annual Technical Progress Report for the time period April 1, 2001 through September 30, 2001. Additional balance of plant impact information for the two tests was reported in the Technical Progress Report for the time period October 1, 2001 through March 30, 2002. Additional information became available about the effects of byproduct magnesium hydroxide injection on SCR catalyst coupons during the long-term test at BMP, and those results were reported in the previous report (April 1, 2002 through September 30, 2002). During the current period, there was no technical progress to report, because all planned testing as part of this project has been completed. The project period of performance was extended to allow the conduct of testing of another SO{sub 3} control technology, the sodium bisulfite injection process. However, these additional tests have not yet been conducted.

  19. Sulfur isotope fractionation during oxidation of sulfur dioxide: gas-phase oxidation by OH radicals and aqueous oxidation by H2O2, O3 and iron catalysis

    E-Print Network [OSTI]

    Harris, E.

    The oxidation of SO[subscript 2] to sulfate is a key reaction in determining the role of sulfate in the environment through its effect on aerosol size distribution and composition. Sulfur isotope analysis has been used to ...

  20. A review of "Mastering Memory: Salons, History, and the Creation of Seventeenth-Century France." by Faith E. Beasley

    E-Print Network [OSTI]

    OHara, Stephanie

    2007-01-01T23:59:59.000Z

    REVIEWS 19 Faith E. Beasley. Mastering Memory: Salons, History, and the Creation of Seventeenth- Century France. Aldershot, Hampshire and Bulington, VT: Ashgate, 2006. xii + 345 pp. $94.95. Review by STEPHANIE O?HARA, UNIVERSITY OF NORTH..., this willful misreading and suppression became the foundation upon which to build the officially accepted view of French literary history?and consequently, French cultural identity. France?s understanding of its literary history, and of what it means...

  1. Production of low sulfur binder pitich from high-sulfur Illinois coals. Quarterly report, 1 March 1995--31 May 1995

    SciTech Connect (OSTI)

    Knight, R.A.

    1995-12-31T23:59:59.000Z

    The objective of this project is to produce electrode binder pitch with sulfur content below 0.6 wt% from high-sulfur Illinois coal mild gasification liquids. Previously, flash thermocracking (FTC) was used to successfully upgrade the properties of mild gasification pitch, yielding a suitable blending stock for use as a binder in the production of carbon electrodes for the aluminum industry. However, in pitches from high-sulfur (4%) Illinois coal, the pitch sulfur content (2%) was still higher than preferred. In this project two approaches to sulfur reduction are being explored in conjunction with FTC: (1) the use of a moderate-sulfur (1.2%) Illinois coal as mild gasification feedstock, and (2) direct biodesulfurization of the liquids from high-sulfur coal prior to FTC. In Case 1, the liquids are being produced by mild gasification of IBC-109 coal in a bench-scale fluidized-bed reactor, followed by distillation to isolate the crude pitch. In Case 2, biodesulfurization with Rhodococcus Rhodochrous IGTS8 biocatalyst is being performed on crude pitch obtained from Illinois No. 6 coal tests conducted in the IGT MILDGAS PRU in 1990. Following preparation of the crude pitches, pitch upgrading experiments are being conducted in a continuous FTC reactor constructed in previous ICCI-sponsored studies. This quarter, mild gasification of IBC-109 coal was completed, producing 450 g of coal liquids, which were then distilled to recover 329 g of Case 1 crude pitch. Next month, the pitch will be subjected to FTC treatment and evaluated. Biodesulfurization experiments were performed on Case 2 pitch dispersed in l-undecanol, resulting in sulfur reductions of 15.1 to 21.4%. This was marginally lower than the 24.8% desulfurization obtained in l-dodecanol, but separation of pitch from the dispersant was facilitated by the greater volatility of l-undecanol.

  2. Sulfur removal from high-sulfur Illinois coal by low-temperature perchloroethylene (PCE) extraction. Technical report, September 1, 1991--November 30, 1991

    SciTech Connect (OSTI)

    Chou, M.I.M.

    1991-12-31T23:59:59.000Z

    A pre-combustion coal desulfurization process at 120{degree}C using perchloroethylene (PCE) to remove up to 70% of the organic sulfur has been developed by the Midwest Ore Processing Co. (MWOPC). However, this process has not yet proven to be as successful with Illinois coals as it has for Ohio and Indiana coals. The organic sulfur removal has been achieved only with highly oxidized Illinois coals containing high sulfatic sulfur. A logical explanation for this observation is vital to successful process optimization for the use of Illinois coals. In addition, the high levels of organic sulfur removals observed by the MWOPC may be due to certain errors involved in the ASTM data interpretation; this needs verification. For example, elemental sulfur extracted by the PCE may be derived from pyrite oxidation during coal pre-oxidation, but it may be interpreted as organic sulfur removed by the PCE using ASTM analysis. The goals of this research are: (1) to independently confirm and possibly to improve the organic sulfur removal from Illinois coals with the PCE desulfurization process reported by the MWOPC, (2) to verify the forms-of-sulfur determination using the ASTM method for the PCE process evaluation, and (3) to determine the suitability of Illinois coals for use in the PCE desulfurization process. This project involves the Illinois State Geological Survey (ISGS), Eastern Illinois University (EIU), the University of Illinois-Urbana/Champaign (UI-UC), and the University of Kentucky, Lexington (UK). This is the first year of a two-year project.

  3. STERN 978-0-12-370875-5 00005 Sulfur: From Acquisition

    E-Print Network [OSTI]

    159 STERN 978-0-12-370875-5 00005 Sulfur: From Acquisition to Assimilation David Gonzalez 5 INTRODUCTION Sulfur (S) is an essential element present in proteins, lipids, and important productivity s0010s0010 p0010p0010 CHAPTER CONTENTS Introduction 159 I. SO4 2 Acquisition and assimilation 160

  4. Modeling of Water-rock interaction in the Mackenzie Basin: competition between sulfuric and carbonic acids

    E-Print Network [OSTI]

    sulfuric and carbonic acids E. Beaulieu, Y. Godd´eris, D. Labat, C. Roelandt, D. Calmels, J. Gail- lardet of the resulting proof before it is published in its final form. Please note that during the production process in the Mackenzie Basin: competition between sulfuric and carbonic acids. E. Beaulieu1 , Y. Goddéris1 , D. Labat1

  5. The impact of dilute sulfuric acid on the selectivity of xylooligomer depolymerization to monomers

    E-Print Network [OSTI]

    California at Riverside, University of

    The impact of dilute sulfuric acid on the selectivity of xylooligomer depolymerization to monomers of polymerization (DP) ranging from 2 to 5 was followed at 160 °C with sulfuric acid added to adjust the pH from acid is low in cost itself, the over- all process is still quite expensive due to the combined costs

  6. Activation of Sulfur-and Nitrogen-Containing Heterocycles by a Dinuclear Iridium Complex

    E-Print Network [OSTI]

    Jones, William D.

    in Scheme 1, which show the sulfur and nitrogen atoms being removed as H2S and NH3. Because of new structurally characterized. Introduction The removal of heteroatom impurities is an essential component pressures of hydrogen (150-2250 psi) over a hot heterogeneous catalyst (320-440 C) to remove sulfur

  7. Surface Science 415 (1998) 2936 Structural studies of sulfur-passivated GaAs (100)

    E-Print Network [OSTI]

    Zhang, Yanchao

    1998-01-01T23:59:59.000Z

    . Keywords: Atomic force microscopy; Gallium arsenide; Low-energy electron diffraction; Roughness; SulfurSurface Science 415 (1998) 2936 Structural studies of sulfur-passivated GaAs (100) surfaces Abstract We present the results of Auger electron spectroscopy (AES), low-energy electron diffraction (LEED

  8. Understanding the Role of Different Conductive Polymers in Improving the Nanostructured Sulfur Cathode Performance

    E-Print Network [OSTI]

    Cui, Yi

    structural configurations of conductive polymer-sulfur composites employed in previous studies. In this workUnderstanding the Role of Different Conductive Polymers in Improving the Nanostructured Sulfur for the confinement of lithium polysulfides. However, the roles of different conductive polymers

  9. Sulfur accumulation and atmospherically deposited sulfate in the Lake states. Forest Service research paper

    SciTech Connect (OSTI)

    David, M.B.; Gertner, G.Z.; Grigal, D.F.; Ohmann, L.F.

    1989-01-01T23:59:59.000Z

    This report characterizes the mass of soil sulfur (adjusted for nitrogen), and atmospherically deposited sulfate along an acid-precipitation gradient from Minnesota to Michigan. The relationship of these variables, presented graphically through contour mapping, suggests that patterns of atmospheric wet sulfate deposition are reflected in soil-sulfur pools.

  10. Effect of Environmental Factors on Sulfur Gas Emissions from Problem Drywall

    E-Print Network [OSTI]

    Effect of Environmental Factors on Sulfur Gas Emissions from Problem Drywall Randy Maddalena on Sulfur Gas Emissions from Problem Drywall Randy Maddalena Indoor Environment Department Environmental humidity (RH) and with an area-specific ventilation rate of ~1.5 cubic meters per square meter of emitting

  11. Equilibrium Segregation of Sulfur to the Free Surface of Single Crystalline Titanium

    E-Print Network [OSTI]

    Zexian, Cao

    1 Equilibrium Segregation of Sulfur to the Free Surface of Single Crystalline Titanium Z crystalline titanium from 560C to 800C was investigated using Auger electron spectroscopy (AES) measurements decaying distribution of sulfur beneath the titanium surface at equilibrium was revealed by sputter depth

  12. In Operando X-ray Diffraction and Transmission X-ray Microscopy of Lithium Sulfur Batteries

    E-Print Network [OSTI]

    Cui, Yi

    In Operando X-ray Diffraction and Transmission X-ray Microscopy of Lithium Sulfur Batteries Johanna Information ABSTRACT: Rechargeable lithium-sulfur (Li-S) batteries hold great potential for high of these batteries for commercial use. The two primary obstacles are the solubility of long chain lithium

  13. Molecular and atomic emission during single-bubble cavitation in concentrated sulfuric acid

    E-Print Network [OSTI]

    Suslick, Kenneth S.

    Molecular and atomic emission during single- bubble cavitation in concentrated sulfuric acid David during cavitation. Single-bubble sonoluminescence (SBSL) from sulfuric acid (H2SO4) is much brighter than occurring during single- bubble cavitation. In fact, SBSL spectra from organic liquids8,9 have been

  14. Amphiphilic Surface Modification of Hollow Carbon Nanofibers for Improved Cycle Life of Lithium Sulfur Batteries

    E-Print Network [OSTI]

    Cui, Yi

    than the conventional lithium ion batteries based on metal oxide cathodes and graphite anodes Sulfur Batteries Guangyuan Zheng, Qianfan Zhang, Judy J. Cha, Yuan Yang, Weiyang Li, Zhi Wei Seh, and Yi lithium sulfur batteries, due to their high specific energy and relatively low cost. Despite recent

  15. Assessing historical global sulfur emission patterns for the period 1850--1990

    SciTech Connect (OSTI)

    Lefohn, A.S. [A.S.L. and Associates, Helena, MT (United States); Husar, J.D.; Husar, R.B. [Washington Univ., St. Louis, MO (United States). Center for Air Pollution Impact and Trend Analysis; Brimblecombe, P. [Univ. of East Anglia, Norwich (United Kingdom)

    1996-07-19T23:59:59.000Z

    Anthropogenic sulfur dioxide emissions from energy-producing and metal production activities have become an important factor in better understanding the relationship between humans and the environment. Concerns about (1) acid rain effects on the environment and (2) anthropogenic aerosols affecting possible global change have prompted interest in the transformation and fate of sulfur in the environment. One step in assessing the importance of sulfur emissions is the development of a reliable regional emission inventory of sulfur as a function of time. The objective of this research effort was to create a homogeneous database for historical sulfur emission estimates for the world. The time from 1850--1990 was selected to include the period of industrialization form the time the main production of fuels and minerals began until the most recent year for which complete production data exist. This research effort attempts to correct some of the deficiencies associated with previous global sulfur emission estimates by (1) identifying those production activities that resulted in sulfur emissions by country and (2) calculating historical emission trends by country across years. An important component of this study was the comparison of the sulfur emission results with those of previous studies.

  16. Fractionation of sulfur isotopes by Desulfovibrio vulgaris mutants lacking hydrogenases or type I tetraheme cytochrome c[subscript 3

    E-Print Network [OSTI]

    Sim, Min Sub

    The sulfur isotope effect produced by sulfate reducing microbes is commonly used to trace biogeochemical cycles of sulfur and carbon in aquatic and sedimentary environments. To test the contribution of intracellular coupling ...

  17. Stable isotope geochemistry of sulfur bearing minerals and clay mineralogy of some soils and sediments in Loot Desert, central Iran

    E-Print Network [OSTI]

    Ahmad, Sajjad

    Stable isotope geochemistry of sulfur bearing minerals and clay mineralogy of some soils Keywords: Sulfur geochemistry Gypsum crystallization water Clay mineralogy Palygorskite Iranian soils Loot technique and clay mineralogy were studied in different landforms in Loot Desert, central Iran. Four

  18. Production of low-sulfur binder pitch from high-sulfur Illinois coals. Technical report, December 1, 1994--February 28, 1995

    SciTech Connect (OSTI)

    Knight, R.A.

    1996-03-01T23:59:59.000Z

    The objective of this project is to produce electrode binder pitch with sulfur content below 0.6 wt% from high-sulfur Illinois coal mild gasification liquids. In previous ICCI projects at IGT, flash thermocracking (FTC) was used to successfully upgrade the properties of mild gasification pitch, yielding a suitable blending stock for use as a binder in the production of carbon electrodes for the aluminum industry. However, in pitches from high-sulfur (4%) Illinois coal, the pitch sulfur content is still unacceptably high at 2%. In this project, two approaches to sulfur reduction are being explored in conjunction with FTC: (1) the use of conventionally cleaned coal with low ({approximately}1%) sulfur as a mild gasification feedstock, and (2) direct biodesulfurization of the liquids prior to FTC. In Case 1, the crude pitch is being produced by mild gasification of IBC-109 coal in an existing IGT bench-scale reactor, followed by distillation to isolate the crude pitch. In Case 2, the crude pitch for biodesulfurization was obtained from Illinois No. 6 coal tests conducted in the IGT mild gasification PRU in 1990. Biodesulfurization is to be performed by contacting the pitch with Rhodococcus Rhodochrous IGTS8 biocatalyst. Following preparation of the crude pitches, pitch upgrading experiments are to be conducted in a continuous FTC reactor constructed in previous ICCI-sponsored studies. The finished pitch is then characterized for physical and chemical properties (density, softening point, QI, TI, coking value, and elemental composition), and compared to typical specifications for binder pitches.

  19. Investigation of the sulfur and lithium to sulfur ratio threshold in stress corrosion cracking of sensitized alloy 600 in borated thiosulfate solution

    SciTech Connect (OSTI)

    Bandy, R.; Kelly, K.

    1984-07-01T23:59:59.000Z

    The stress corrosion cracking of sensitized Alloy 600 was investigated in aerated solutions of sodium thiosulfate generally containing 1.3% boric acid. The aim of the investigation, among others, was to determine the existence, if any, of a threshold level of sulfur, and lithium to sulfur ratio governing the SCC. Specimens were first solution annealed at 1135/sup 0/C for 45 minutes, water quenched, and then sensitized at 621/sup 0/C for 18 hours. Reverse U-bends were tested at room temperature, whereas slow strain rate and constant load tests were performed at 80/sup 0/C. All tests were performed in solutions open to the atmosphere. The results indicate that in the borated thiosulfate solution containing 7 ppM sulfur, 5 ppM lithium as lithium hydroxide is sufficient to inhibit SCC in U-bends. The occurrence of inhibition seems to correlate to the rapid increase of pH and conductivity of the solution as a result of the lithium hydroxide addition. In the slow strain rate tests in the borated solution containing 0.7 ppM lithium as lithium hydroxide, significant stress corrosion cracking is observed at a sulfur level of 30 ppb, i.e., a lithium to sulfur ratio of 23. In a parallel test in 30 ppb sulfur level but without any lithium hydroxide, the stress corrosion cracking is more severe than that in the lithiated environment, thus implying that lithium hydroxide plays some role in the stress corrosion cracking inhibition.

  20. Sulfur removal from high-sulfur Illinois coal by low-temperature perchloroethylene (PCE) extraction. [Quarterly] technical report, March 1, 1993--May 31, 1993

    SciTech Connect (OSTI)

    Chou, M.I.M. [Illinois State Geological Survey, Champaign, IL (United States); Buchanan, D.H. [Eastern Illinois Univ., Charleston, IL (United States); Stucki, J.W. [Illinois Univ., Urbana, IL (United States)

    1993-09-01T23:59:59.000Z

    The purposes of this project are: to independently confirm and possibly to improve the organic sulfur removal from Illinois coals with the PCE process developed by the Midwest Ore Processing Co. (MWOPC), to verify the forms-of-sulfur determination using the ASTM method for evaluation of the PCE process, and to develop a dechlorination procedure to remove excess PCE from the PCE-treated coal. The objectives for the second year are: to verify the possible effects of PCE treatment on coal-derived FeS{sub 2}, FeSO{sub 4}, and Fe{sub 2}(SO{sub 4}){sub 3} on ASTM coal analysis, to investigate the behavior of sulfur during oxidation and PCE desulfurization using the isotopically signatured coal sample, to investigate the effects of conditions and/or reagents on the oxidation of the organic-sulfur-model compounds, to evaluate the extended oxidation condition on the organic sulfur removal by PCE desulfurization, and to study other innovative pretreatment processes for the removal of organic sulfur from coal under mild conditions.

  1. Comparative analysis of polycyclic aromatic sulfur heterocycles isolated from four shale oils. [Polycyclic aromatic sulfur heterocycles; thiophenes

    SciTech Connect (OSTI)

    Willey, C.; Pelroy, R.; Stewart, D.

    1981-12-01T23:59:59.000Z

    This report describes the isolation of sulfur heterocycle fractions from four shale oils (Paraho, Geokinetics, Occidental, and Rio Blanco), the use of capillary column gas chromatography and mass spectrometry for the identification of individual mixture components, and a reverse (Ames) and forward mutation assay with Salmonella typhimurium to screen for possible health hazards. The major components of the Polycyclic Aromatic Sulfur Heterocycles (PASH) fractions for all four shale oils were found to be two- to three-ringed parent and alkylated thiophene compounds. In all cases the PASH fractions showed no more specific mutagenic response than the neutral PAC fractions from which they were isolated. The only mutagenic response which was detected in the PASH fractions was for the Rio Blanco shale oil and showed specific mutagenic response similar to the neutral PAC fraction from which it was isolated. Finally, the forward mutation 8-azaguanine test was apparently more sensitive than the Ames histidine reversion test in detecting mutagenic activity for the chemical fractions from the shale oils.

  2. Petrography and chemistry of sized fly ash from low-sulfur and high-sulfur coal sources

    SciTech Connect (OSTI)

    Hower, J.C. [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research; Trimble, A.S. [Franklin County High School, Frankfort, KY (United States); Eble, C.F. [Kentucky Geological Survey, Lexington, KY (United States); Palmer, C. [Geological Survey, Reston, VA (United States)

    1996-12-31T23:59:59.000Z

    Fly ash samples were collected in November and December, 1994, from two units representing high- and low-sulfur feed coals at a Kentucky power station. The ashes were wet screened at 100, 200, 325, and 500 mesh. The dried ({approximately}40 C) fractions were then weighed, split for petrographic and chemical analysis, mounted in epoxy and prepared as polished pellets, and analyzed for ash yield and carbon content. The November ashes had a similar size distribution in the +325 mesh fractions. The low-sulfur hot side and cool side ashes had a similar size distribution in the November ashes. In contrast, the December fly ashes showed the typical trend, the cool-side ash being finer (over 20% more ash in the {minus}500 mesh fraction) than the hot-side ash. Carbon tends to be relatively concentrated in the coarse fractions. The dominance of the {minus}325 mesh fractions in the overall size analysis implies, though, that carbon in the fine sizes is an important consideration in the utilization potential of the fly ash.

  3. Sampling, preservation, and analytical methods research plan - liquid redox sulfur recovery technologies: Stretford process. Topical report

    SciTech Connect (OSTI)

    Trofe, T.W.

    1986-11-01T23:59:59.000Z

    GRI has developed a sampling, preservation, and analytical (SPandA) methods research plan for developing and validating analytical methodologies for liquid redox sulfur recovery processes (e.g., Stretford process). The document describes the technical approach which will be used to direct research activities to develop SPandA methodologies to analyze gaseous, aqueous, and solid process streams from the Stretford sulfur recovery process. The primary emphasis is on developing and validating methodologies for analyzing vanadium (IV) and vanadium (V), anthraquinone disulphonic acids (ADA), polysulfide-sulfur, sulfide-sulfur, thiosulfate, sulfate, thiocyanate, total soluble sulfur, alkalinity, pH, total dissolved solids, total suspended solids, and dissolved oxygen in aqueous process streams. The document includes descriptions of the process streams and chemical species, selection of candidate analytical methods, and technical approach for methods development and validation.

  4. Linking Sulfur Metabolism to the Cell Division Machinery in Yeast

    E-Print Network [OSTI]

    Blank, Heidi M.

    2010-07-14T23:59:59.000Z

    The longstanding view has been that metabolism allows for cell division to take place, but that metabolic processes do not actively promote cell division. I have recently challenged this notion by identifying a unique gain-of-function metabolic...

  5. History of the Caribbean in a Global Perspective History 303

    E-Print Network [OSTI]

    Abolmaesumi, Purang

    1 History of the Caribbean in a Global Perspective History 303 Consider Resources Primary Resources By Region British Caribbean Define Your Topic Identify the main concepts in your topic and come up background information (see below). When searching for items with Caribbean content, try alternate keywords

  6. Methanol Reaction with Sulfuric Acid: A Vibrational Spectroscopic Study Lisa L. Van Loon and Heather C. Allen*

    E-Print Network [OSTI]

    Methanol Reaction with Sulfuric Acid: A Vibrational Spectroscopic Study Lisa L. Van Loon 43210 ReceiVed: May 27, 2004; In Final Form: August 19, 2004 The reaction between methanol and sulfuric peak in the 800 cm-1 region, not present in either the neat methanol or concentrated sulfuric acid

  7. Population, Economy and Energy Uses Influence on Sulfur Emissions in the United States Since 1900

    E-Print Network [OSTI]

    Kissock, J. K.; Husar, R. B.

    and the transition from coal to less sulfur intensive fuels have reduced sulfur emissions. The net effect of all drivers has been moderate growth in sulfur emissions from 1900 to present. Since 1973, increased energy efficiency and the shift from an industrial to a...

  8. ALTERNATIVE FLOWSHEETS FOR THE SULFUR-IODINE THERMOCHEMICAL HYDROGEN CYCLE

    SciTech Connect (OSTI)

    BROWN,LC; LENTSCH,RD; BESENBRUCH,GE; SCHULTZ,KR; FUNK,JE

    2003-02-01T23:59:59.000Z

    OAK-B135 A hydrogen economy will need significant new sources of hydrogen. Unless large-scale carbon sequestration can be economically implemented, use of hydrogen reduces greenhouse gases only if the hydrogen is produced with non-fossil energy sources. Nuclear energy is one of the limited options available. One of the promising approaches to produce large quantities of hydrogen from nuclear energy efficiently is the Sulfur-Iodine (S-I) thermochemical water-splitting cycle, driven by high temperature heat from a helium Gas-Cooled Reactor. They have completed a study of nuclear-driven thermochemical water-splitting processes. The final task of this study was the development of a flowsheet for a prototype S-I production plant. An important element of this effort was the evaluation of alternative flowsheets and selection of the reference design.

  9. Sulfur-Iodine Integrated Lab Scale Experiment Development

    SciTech Connect (OSTI)

    Russ, Ben

    2011-05-27T23:59:59.000Z

    The sulfur-iodine (SI) cycle was deermined to be the best cycle for coupling to a high temperature reactor (HTR) because of its high efficiency and potential for further improvement. The Japanese Atomic Energy Agency (JAEA) has also selected the SI process for further development and has successfully completed bench-scale demonstrations of the SI process at atmospheric pressure. JEA also plans to proceed with pilot-scale demonstrations of the SI process and eventually plans to couple an SI demonstration plant to its High Temperature Test Reactor (HHTR). As part of an international NERI project, GA, SNL, and the Frech Commissariat L'Energie Atomique performed laboratory-scale demonstrations of the SI process at prototypical temperatures and pressures. This demonstration was performed at GA in San Diego, CA and concluded in April 2009.

  10. Phosphate Glasses for Vitrification of Waste with High Sulfur Content

    SciTech Connect (OSTI)

    Kim, Dong-Sang; Vienna, John D.; Hrma, Pavel R.; Cassingham, Nathan J.

    2002-10-31T23:59:59.000Z

    The low solubility of sulfate in silicate-based glasses, approximately 1 mass% as SO3, limits the loading of high-level waste (HLW) and low-activity waste (LAW) containing high concentrations of sulfur. Based on crucible melting studies, we have shown that the phosphate glasses may incorporate more than 5 mass% SO3; hence, the waste loading can be increased until another constraint is met, such as glass durability. A high-sulfate HLW glass has been formulated and tested to demonstrate the advantages of phosphate glasses. The effect of waste loading on the chemical durability of quenched and slow-cooled phosphate glasses was determined using the Product Consistency Test.

  11. Ultra-low Sulfur Reduction Emission Control Device/Development of an On-board Fuel Sulfur Trap

    SciTech Connect (OSTI)

    Rohrbach, Ron; Barron, Ann

    2008-07-31T23:59:59.000Z

    Honeywell has completed working on a multiyear program to develop and demonstrate proof-of-concept for an 'on-vehicle' desulfurization fuel filter for both light duty and heavy-duty diesel engines. Integration of the filter into the vehicle fuel system will reduce the adverse effects sulfur has on post combustion emission control devices such as NOx adsorbers. The NOx adsorber may be required to meet the proposed new EPA Tier II and '2007-Rule' emission standards. The proposed filter concept is based on Honeywell's reactive filtration technology and experience in liquids handling and conditioning. A regeneration and recycling plan for the spent filters was also examined. We have chosen to develop and demonstrate this technology based on criteria set forth for a heavy duty CIDI engine system because it represents a more challenging set of conditions of service intervals and overall fuel usage over light duty systems. In the second phase of the program a light duty diesel engine test was also demonstrated. Further, technology developed under this proposal would also have application for the use of liquid based fuels for fuel cell power generation. The program consisted of four phases. Phase I focused on developing a concept design and analysis and resolution of technical barriers concerning removal of sulfur-containing species in low sulfur fuels. In Phase II concentrated on prototype filter design and preparation followed by qualification testing of this component in a fuel line application. Phase III studied life cycle and regeneration options for the spent filter. Phase IV focused on efficacy and benefits in the desulfation steps of a NOx adsorber on both a heavy and light duty engine. The project team included a number of partners, with Honeywell International as the prime contractor. The partners include an emission control technology developer (Honeywell International), a fuel technology developer (Marathon Ashland Petroleum), a catalyst technology developer (Johnson Matthey), a CIDI engine manufacturer (Navistar Inc. (formerly International Truck & Engine Corporation) and Mack Trucks Inc.), and filter recycler (American Wastes Industries).

  12. NATIONAL MUSEUM OF NATURAL HISTORY

    E-Print Network [OSTI]

    Mathis, Wayne N.

    NATIONAL MUSEUM OF NATURAL HISTORY MUSEUM REPORT 2009 ­ 2010 @ 100 | PAST, PRESENT & FUTURE #12;NatioNal MuseuM of NatUral History @ 100 | Past, PreseNt & future on March 17, 1910, our doors opened of amazing advances, and the Museum's accomplishments have been no less significant. in our first century, we

  13. cultural history New perspectives on

    E-Print Network [OSTI]

    Making cultural history New perspectives on Western heritage Edited by Anna Klln nordic academic portrayal of a mythological motive, they claim that it rather symbolizes an actual historical conflict. This concluded, the discussion turns to a long exposition of the history of Pergamon, where historical events

  14. cultural history New perspectives on

    E-Print Network [OSTI]

    Making cultural history New perspectives on Western heritage Edited by Anna Klln nordic academic the relation between historical representation and monumental rhetoric. The rhetoric: universalism cultural v10.indd 49 2013-08-26 15:54 #12;50 making cultural history monument as an historical

  15. Tribological behavior of near-frictionless carbon coatings in high- and low-sulfur diesel fuels.

    SciTech Connect (OSTI)

    Alzoubi, M. F.; Ajayi, O. O.; Eryilmaz, O. L.; Ozturk, O.; Erdemir, A.; Fenske, G.

    2000-01-19T23:59:59.000Z

    The sulfur content in diesel fuel has a significant effect on diesel engine emissions, which are currently subject to environmental regulations. It has been observed that engine particulate and gaseous emissions are directly proportional to fuel sulfur content. With the introduction of low-sulfur fuels, significant reductions in emissions are expected. The process of sulfur reduction in petroleum-based diesel fuels also reduces the lubricity of the fuel, resulting in premature failure of fuel injectors. Thus, another means of preventing injector failures is needed for engines operating with low-sulfur diesel fuels. In this study, the authors evaluated a near-frictionless carbon (NFC) coating (developed at Argonne National Laboratory) as a possible solution to the problems associated with fuel injector failures in low-lubricity fuels. Tribological tests were conducted with NFC-coated and uncoated H13 and 52100 steels lubricated with high- and low- sulfur diesel fuels in a high-frequency reciprocating test machine. The test results showed that the NFC coatings reduced wear rates by a factor of 10 over those of uncoated steel surfaces. In low-sulfur diesel fuel, the reduction in wear rate was even greater (i.e., by a factor of 12 compared to that of uncoated test pairs), indicating that the NFC coating holds promise as a potential solution to wear problems associated with the use of low-lubricity diesel fuels.

  16. Geologic controls on sulfur content of the Blue Gem coal seam, southeastern Kentucky

    SciTech Connect (OSTI)

    Rimmer, S.M.; Moore, T.A.; Esterle, J.S.; Hower, J.C.

    1985-01-01T23:59:59.000Z

    Detailed petrographic and lithologic data on the Blue Gem coal seam for a local area in Knox County, Kentucky, suggest that a relationship may exist between overlying roof lithology, petrographic composition of the coal, and sulfur content. In the western part of the area, where thick (20-40 feet) shale sequences overlie the coal, sulfur contents are low (less than 1%). In isolated areas where discontinuous sandstones occur within 6 feet of the coal, sulfur contents range from 1% to over 3%. In the east, a sandstone body usually overlies and frequently scours out the coal, yet sulfur content varies independently of roof lithology. Towards the east, there is an increase in abundance, thickness and variability of fusain bands within the coal and an increase in pyrite and siderite either as cell fillings in fusinite or as masses within vitrinite; early emplacement of these minerals is indicated by compaction features. Data suggest the importance of depositional environment of the peat and overlying sediments as a control on sulfur occurrence. High sulfur contents in the west are related to sandstone bodies which may have allowed sulfate-bearing waters to permeate into the peat. In the east, where increases in pyrite, siderite and fusain content of the coal and coarsening of the overlying sediments suggest a change in environment, the presence or absence of pyrite-containing fusain bands may account for sulfur variability. Siderite occurrence may reflect local fluctuations in sulfate supply to the peat swamp.

  17. A Regulator's View of Cogeneration

    E-Print Network [OSTI]

    Shanaman, S. M.

    1982-01-01T23:59:59.000Z

    of the total national electric generation. In view of the energy requirements of Pennsylvania's industry and the impact of increasing energy costs on employment the Commission directed its technical staff to investigate the potential for industrial cogeneration...

  18. Toward Understanding the Effect of Low-Activity Waste Glass Composition on Sulfur Solubility

    SciTech Connect (OSTI)

    Vienna, John D.; Kim, Dong-Sang; Muller, Isabelle S.; Piepel, Gregory F.; Kruger, Albert A.

    2014-10-01T23:59:59.000Z

    The concentration of sulfur in nuclear waste glass melter feed must be maintained below the point where salt accumulates on the melt surface. The allowable concentrations may range from 0.37 to over 2.05 weight percent (of SO3 on a calcined oxide basis). If the amount of sulfur exceeds its tolerance level a molten salt will accumulate and upset melter operations and potentially shorten melter useful life. Therefore relatively conservative limits have been placed on sulfur loading in melter feed which in-turn significantly impacts the amount of glass that will be produced, in particular at the Hanford site. Crucible-scale sulfur solubility data and scaled melter sulfur tolerance data have been collected on simulated Hanford waste glasses over the last 15 years. These data were compiled and analyzed. A model was developed to predict the solubility of SO3 in glass based on 312 individual glass compositions. This model was shown to well represent the data, accounting for over 80% of the variation in data and was well validated. The model was also found to accurately predict the tolerance for sulfur in melter feed based on 19 scaled melter tests. The model is appropriate for control of waste glass processing which includes uncertainty quantification. The model also gives quantitative estimates of component concentration effects on sulfur solubility. The components that most increase sulfur solubility are Li2O > V2O5 ? TiO2 < CaO < P2O5 ? ZnO. The components that most decrease sulfur solubility are Cl > Cr2O3 > SiO2 ? ZrO2 > Al2O3.

  19. Toward Understanding the Effect of Nuclear Waste Glass Composition on Sulfur Solubility

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Vienna, John D.; Kim, Dong-Sang; Muller, I. S.; Kruger, Albert A.; Piepel, Gregory F.

    2014-10-01T23:59:59.000Z

    The concentration of sulfur in nuclear waste glass melter feed must be maintained below the point where salt accumulates on the melt surface. The allowable concentrations may range from 0.37 to over 2.05 weight percent (of SO3 on a calcined oxide basis) depending on the composition of the melter feed and processing conditions. If the amount of sulfur exceeds the melt tolerance level, a molten salt will accumulate, which may upset melter operations and potentially shorten the useful life of the melter. At the Hanford site, relatively conservative limits have been placed on sulfur loading in melter feed, which inmoreturn significantly increases the amount of glass that will be produced. Crucible-scale sulfur solubility data and scaled melter sulfur tolerance data have been collected on simulated Hanford waste glasses over the last 15 years. These data were compiled and analyzed. A model was developed to predict the solubility of SO3 in glass based on 252 simulated Hanford low-activity waste (LAW) glass compositions. This model represents the data well, accounting for over 85% of the variation in data, and was well validated. The model was also found to accurately predict the tolerance for sulfur in melter feed for 13 scaled melter tests of simulated LAW glasses. The model can be used to help estimate glass volumes and make informed decisions on process options. The model also gives quantitative estimates of component concentration effects on sulfur solubility. The components that most increase sulfur solubility are Li2O > V2O5> CaO ? P2O5 > Na2O ? B2O3 > K2O. The components that most decrease sulfur solubility are Cl > Cr2O3 > Al2O3 > ZrO2 ? SnO2 > Others ? SiO2. The order of component effects is similar to previous literature data, in most cases.less

  20. Toward Understanding the Effect of Nuclear Waste Glass Composition on Sulfur Solubility

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Vienna, John D. [Pacific Northwest National Laboratory; Kim, Dong-Sang [Pacific Northwest National Laboratory; Muller, I. S. [The Catholic University National Laboratory; Kruger, Albert A. [Department of Energy -- Ofice of River Protection; Piepel, Gregory F. [Pacific Northwest National Laboratory

    2014-10-01T23:59:59.000Z

    The concentration of sulfur in nuclear waste glass melter feed must be maintained below the point where salt accumulates on the melt surface. The allowable concentrations may range from 0.37 to over 2.05 weight percent (of SO3 on a calcined oxide basis) depending on the composition of the melter feed and processing conditions. If the amount of sulfur exceeds the melt tolerance level, a molten salt will accumulate, which may upset melter operations and potentially shorten the useful life of the melter. At the Hanford site, relatively conservative limits have been placed on sulfur loading in melter feed, which in turn significantly increases the amount of glass that will be produced. Crucible-scale sulfur solubility data and scaled melter sulfur tolerance data have been collected on simulated Hanford waste glasses over the last 15 years. These data were compiled and analyzed. A model was developed to predict the solubility of SO3 in glass based on 252 simulated Hanford low-activity waste (LAW) glass compositions. This model represents the data well, accounting for over 85% of the variation in data, and was well validated. The model was also found to accurately predict the tolerance for sulfur in melter feed for 13 scaled melter tests of simulated LAW glasses. The model can be used to help estimate glass volumes and make informed decisions on process options. The model also gives quantitative estimates of component concentration effects on sulfur solubility. The components that most increase sulfur solubility are Li2O > V2O5> CaO ? P2O5 > Na2O ? B2O3 > K2O. The components that most decrease sulfur solubility are Cl > Cr2O3 > Al2O3 > ZrO2 ? SnO2 > Others ? SiO2. The order of component effects is similar to previous literature data, in most cases.

  1. History of Heating Oil Reserve Releases

    Broader source: Energy.gov [DOE]

    The Northeast Home Heating Oil Reserve (NEHHOR), a one million barrel supply of ultra low sulfur distillate (diesel), was created to build a buffer to allow commercial companies to compensate for...

  2. The vibrational and rotational structure of the 2400 to 1950 A? absorption spectrum of sulfur dioxide

    E-Print Network [OSTI]

    Riggs, James Willborn

    1958-01-01T23:59:59.000Z

    -l ap pi ng Or de rs 26 Ex te rn al Op ti cs As so ci at ed wi th Ab so rp ti on Tu be 27 28 Sulfur Dioxide Gas System.-The sulfur dioxide gas system associated with the absorption tube is pictured in Figure 3... fulfillment of' %hm r*tuir??Mi*s f?r %ift ??' m m m m m m & m s t Major Sttfejoott Rupeio* THE VIBRATIONAL AND ROTATIONAL STRUCTURE OP THE 2400 TO 1950 A ABSORPTION SPECTRUM OP SULFUR DIOXIDE A Dissertation 37 James Willborn Riggs, Jr. Approved...

  3. High-temperature sorbent method for removal of sulfur containing gases from gaseous mixtures

    DOE Patents [OSTI]

    Young, John E. (Woodridge, IL); Jalan, Vinod M. (Concord, MA)

    1984-01-01T23:59:59.000Z

    A copper oxide-zinc oxide mixture is used as a sorbent for removing hydrogen sulfide and other sulfur containing gases at high temperatures from a gaseous fuel mixture. This high-temperature sorbent is especially useful for preparing fuel gases for high temperature fuel cells. The copper oxide is initially reduced in a preconditioning step to elemental copper and is present in a highly dispersed state throughout the zinc oxide which serves as a support as well as adding to the sulfur sorption capacity. The spent sorbent is regenerated by high-temperature treatment with an air fuel, air steam mixture followed by hydrogen reduction to remove and recover the sulfur.

  4. Method of making a current collector for a sodium/sulfur battery

    DOE Patents [OSTI]

    Tischer, R.P.; Winterbottom, W.L.; Wroblowa, H.S.

    1987-03-10T23:59:59.000Z

    This specification is directed to a method of making a current collector for a sodium/sulfur battery. The current collector so-made is electronically conductive and resistant to corrosive attack by sulfur/polysulfide melts. The method includes the step of forming the current collector for the sodium/sulfur battery from a composite material formed of aluminum filled with electronically conductive fibers selected from the group of fibers consisting essentially of graphite fibers having a diameter up to 10 microns and silicon carbide fibers having a diameter in a range of 500--1,000 angstroms. 2 figs.

  5. High-temperature sorbent method for removal of sulfur containing gases from gaseous mixtures

    DOE Patents [OSTI]

    Young, J.E.; Jalan, V.M.

    1984-06-19T23:59:59.000Z

    A copper oxide-zinc oxide mixture is used as a sorbent for removing hydrogen sulfide and other sulfur containing gases at high temperatures from a gaseous fuel mixture. This high-temperature sorbent is especially useful for preparing fuel gases for high temperature fuel cells. The copper oxide is initially reduced in a preconditioning step to elemental copper and is present in a highly dispersed state throughout the zinc oxide which serves as a support as well as adding to the sulfur sorption capacity. The spent sorbent is regenerated by high-temperature treatment with an air fuel, air steam mixture followed by hydrogen reduction to remove and recover the sulfur.

  6. Method of making a current collector for a sodium/sulfur battery

    DOE Patents [OSTI]

    Tischer, Ragnar P. (Birmingham, MI); Winterbottom, Walter L. (Farmington Hills, MI); Wroblowa, Halina S. (West Bloomfield, MI)

    1987-01-01T23:59:59.000Z

    This specification is directed to a method of making a current collector (14) for a sodium/sulfur battery (10). The current collector so-made is electronically conductive and resistant to corrosive attack by sulfur/polysulfide melts. The method includes the step of forming the current collector for the sodium/sulfur battery from a composite material (16) formed of aluminum filled with electronically conductive fibers selected from the group of fibers consisting essentially of graphite fibers having a diameter up to 10 microns and silicon carbide fibers having a diameter in a range of 500-1000 angstroms.

  7. Update on Transition to Ultra-Low-Sulfur Diesel Fuel (released in AEO2006)

    Reports and Publications (EIA)

    2006-01-01T23:59:59.000Z

    On November 8, 2005, the Environmental Protection Agency (EPA) Administrator signed a direct final rule that will shift the retail compliance date for offering ultra-low sulfur diesel (ULSD) for highway use from September 1, 2006, to October 15, 2006. The change will allow more time for retail outlets and terminals to comply with the new 15 parts per million (ppm) sulfur standard, providing time for entities in the diesel fuel distribution system to flush higher sulfur fuel out of the system during the transition. Terminals will have until September 1, 2006, to complete their transitions to ULSD. The previous deadline was July 15, 2006.

  8. High-temperature sorbent method for removal of sulfur-containing gases from gaseous mixtures

    DOE Patents [OSTI]

    Young, J.E.; Jalan, V.M.

    1982-07-07T23:59:59.000Z

    A copper oxide-zinc oxide mixture is used as a sorbent for removing hydrogen sulfide and other sulfur containing gases at high temperatures from a gaseous fuel mixture. This high-temperature sorbent is especially useful for preparing fuel gases for high temperature fuel cells. The copper oxide is initially reduced in a preconditioning step to elemental copper and is present in a highly dispersed state throughout the zinc oxide which serves as a support as well as adding to the sulfur sorbtion capacity. The spent sorbent is regenerated by high-temperature treatment with an air fuel, air steam mixture followed by hydrogen reduction to remove and recover the sulfur.

  9. World copper smelter sulfur balance, 1988. (Information circular, 1993). Information circular/1993

    SciTech Connect (OSTI)

    Towle, S.W.

    1993-01-01T23:59:59.000Z

    In 1989, the US Bureau of Mines initiated a contract to gather engineering, operating, and environmental cost data for 1988 for 30 major foreign primary copper smelters in market economy countries. Data were collected for 29 of the designated smelters together with information on applicable environmental regulations. Materials balance data obtained were used with available data for the eight US smelters to determine the approximate extent of copper smelter sulfur emission control in 1988. A broad characterization of the status of sulfur emission control regulation was made. Significant changes since 1988 that may increase sulfur emission control are noted.

  10. Influences of clouds and rain on the large-scale transport and deposition of sulfur

    SciTech Connect (OSTI)

    Luecken, D.J.; Berkowitz, C.M.; Easter, R.C.

    1991-07-01T23:59:59.000Z

    This paper describes the application of a three-dimensional, global-scale Eulerian model with an explicit description of cloud and chemical processes. Simulation results describing the transport of sulfur from North America and Europe across the north Atlantic Ocean during a climatological July are presented. Wet deposition was found to contribute slightly more to total sulfur deposition than dry deposition, a feature explained by the large amounts of precipitation during this month. The wet deposition patterns did not always correspond to the emissions patterns. The precipitation rate and spatial distribution had a large effect on the calculated concentrations of soluble sulfur species. 10 refs., 7 figs., 1 tab.

  11. Influence of fuel sulfur on the selective reduction of NO by NH/sub 3/

    SciTech Connect (OSTI)

    Lucas, D.; Brown, N.J.

    1981-10-01T23:59:59.000Z

    The selective reduction of NO by NH/sub 3/ addition has been studied in a lean-burning oil fired laboratory combustion tunnel with pyridine and thiophene added to the fuel oil. Two distinct, but interrelated effects were observed. The conversion of a fixed amount of fuel nitrogen to NO in the flame increased as the fuel sulfur concentration increased. In the post-combustion gases, there was a shift in the temperature dependence of the reduction process when the sulfur combustion products were present. The extent of the NO reduction was not significantly altered, but the optimum temperature for reduction shifted to higher values as the sulfur concentration increased.

  12. Revolutionizing history education : using augmented reality games to teach histories

    E-Print Network [OSTI]

    Schrier, Karen L

    2005-01-01T23:59:59.000Z

    In an ever-changing present of multiple truths and reconfigured histories, people need to be critical thinkers. Research has suggested the potential for using augmented reality (AR) games- location-based games that use ...

  13. Viewing device for electron-beam equipment

    SciTech Connect (OSTI)

    Nasyrov, R.S.

    1985-06-01T23:59:59.000Z

    Viewing devices are used to observe melting, welding, and so on in vacuum systems, an it is necessary to protect the windows from droplets and vapor. A viewing device for electron-beam equipment is described in which the viewing tube and mounting flange are made as a tubular ball joint enclosed in a steel bellows, which render the viewing device flexible. Bending the viewing tube in the intervals between observations protects the viewing window from sputtering and from drops of molten metal.

  14. BA in FAMILY HISTORY--GENEALOGY (734125) MAP Sheet Department of History

    E-Print Network [OSTI]

    Martinez, Tony R.

    BA in FAMILY HISTORY--GENEALOGY (734125) MAP Sheet Department of History For students entering requirement): Rel C 261* Intro to Family History (Genealogy) Rel C 293R*Specialized Studies in Family History

  15. Sulfur by-product formation in the Stretford process. Topical report

    SciTech Connect (OSTI)

    Trofe, T.W.; DeBerry, D.W.

    1993-09-01T23:59:59.000Z

    Liquid redox sulfur recovery processes remove H2S from sour gas streams and produce elemental sulfur for sale or disposal. The Stretford Process is one of the oldest commercial liquid redox processes and it is based on a vanadium and anthraquinone redox system. Improvements in the operability and reliability of the Stretford process would be beneficial to the process user. The report presents results of research focused on developing an understanding of the process parameters and factors that impact sulfur by-product formation (e.g., sodium thiosulfate and sodium sulfate) in the Stretford process. The information in the report can help current Stretford plant process users better understand the operations of their plants, especially with regards to sulfur by-product formation and control strategies.

  16. Did the Clean Air Act cause the remarkable decline in sulfur dioxide concentrations?

    E-Print Network [OSTI]

    Greenstone, Michael

    2003-01-01T23:59:59.000Z

    Over the last three decades, ambient concentrations of sulfur dioxide (SO2) air pollution have declined by approximately 80%. This paper tests whether the 1970 Clean Air Act and its subsequent amendments caused this decline. ...

  17. Explaining low sulfur dioxide allowance prices : the effect of expectation errors and irreversibility

    E-Print Network [OSTI]

    Montero, Juan-Pablo

    1998-01-01T23:59:59.000Z

    The low price of allowances has been a frequently noted featured of the implementation of the sulfur dioxide emissions market of the U.S. Acid Rain Program. This paper presents theoretical and numerical analyses that explain ...

  18. Effect of Sulfur and Hydrocarbon Fuels on Titanate/Ceria SOFC Anodes

    SciTech Connect (OSTI)

    Marina, O.A.; Pedersen, L.R.; Stevenson, J.W.

    2005-01-27T23:59:59.000Z

    The purpose of the project is to develop low-cost, high-performance anodes that offer low polarization resistance as well as improved tolerance for nonidealities in anode environment such as redox cycles, sulfur and other poisons, and hydrocarbons.

  19. Sulfur isotopes as indicators of amended bacterial sulfate reduction processes influencing field scale uranium bioremediation

    E-Print Network [OSTI]

    Druhan, J.L.

    2009-01-01T23:59:59.000Z

    results in enrichment of S, the heavier isotope of sulfur,isotope data from M-24 were observed, although the degree of enrichmentisotopes as indicators of in situ acetate amended sulfate and uranium bioreduction processes. Enrichment

  20. The variability of methane, nitrous oxide and sulfur hexafluoride in Northeast India

    E-Print Network [OSTI]

    Chatterjee, A.

    High-frequency atmospheric measurements of methane (CH[subscript 4]), nitrous oxide (N[subscript 2]O) and sulfur hexafluoride (SF[subscript 6]) from Darjeeling, India are presented from December 2011 (CH[subscript 4])/March ...

  1. New method of regenerating spent vacuum-carbonate sulfur removal liquor

    SciTech Connect (OSTI)

    Popov, A.A.; Dovgopol, A.P.; Goncharova, Z.S.; Belitskii, A.N,.; Gorokhov, N.N.; Grigorash, A.S.; Yaroshenko, A.K.

    1980-01-01T23:59:59.000Z

    A three-stage method is proposed for processing the ballast salts in the wash liquor from vacuum-carbonate removal of sulfur from coke-oven gas. The method is based on successive treatment of the liquor with sulfur dioxide, hydrogen sulfide and 95% sulfuric acid in the presence of hydrogen sulfide. The products of the process are thiosulfate, sulfate and elemental sulfur, at yields of 99.8%, 99.5% and 99.7% respectively. These investigations of a waste-free vacuum-carbonate method of removing hydrogen sulfide from coke-oven gas convincingly show that it is possible in principle to efficiently utilize the spent liquors both as a feedstock and as an absorbent and to obtain commercial products as a result.

  2. Frataxin (FXN) Based Regulation of the Iron-Sulfur Cluster Assembly Complex

    E-Print Network [OSTI]

    Rabb, Jennifer

    2012-07-16T23:59:59.000Z

    Iron-sulfur clusters are protein cofactors that are critical for all life forms. Elaborate multi-component systems have evolved for the biosynthesis of these cofactors to protect organisms from the toxic effects of free iron and sulfide ions...

  3. E-Print Network 3.0 - aromatic sulfur compounds Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    distribution in the oil fractions obtained by thermal cracking of Jordanian El-Lajjun oil Shale Summary: . It has been also shown that most of the sulfur compounds in oil shale are...

  4. EVALUATION OF A SULFUR OXIDE CHEMICAL HEAT STORAGE PROCESS FOR A STEAM SOLAR ELECTRIC PLANT

    E-Print Network [OSTI]

    Dayan, J.

    2011-01-01T23:59:59.000Z

    central receiver of a solar plant, that absorbs heat duringper kW-hr produced by the solar plant and the sulfur-oxideis essential if solar power plants are ever to supply a

  5. Excellent Sulfur Resistance of Pt/BaO/CeO2 Lean NOx Trap Catalysts...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and CHF Peden.2008."Excellent Sulfur Resistance of PtBaOCeO2 Lean NOx Trap Catalysts."Applied Catalysis. B, Environmental 84(3-4):545-551. doi:10.1016j.apcatb.2008.05.009...

  6. Cost-benefit analysis of ultra-low sulfur jet fuel

    E-Print Network [OSTI]

    Kuhn, Stephen (Stephen Richard)

    2010-01-01T23:59:59.000Z

    The growth of aviation has spurred increased study of its environmental impacts and the possible mitigation thereof. One emissions reduction option is the introduction of an Ultra Low Sulfur (ULS) jet fuel standard for ...

  7. Sulfur-rich carbon cryogels for supercapacitors with improved conductivity and wettability

    E-Print Network [OSTI]

    Cao, Guozhong

    Sulfur-rich carbon cryogels for supercapacitors with improved conductivity and wettability Yao Zhou electrolytes. 1 Introduction Supercapacitors have been extensively investigated for decades due as backup energy devices to batteries due to their higher power density. Generally, supercapacitors can

  8. Soft x-ray emission spectroscopy studies of the electronic structure of silicon supersaturated with sulfur

    E-Print Network [OSTI]

    Sullivan, Joseph Timothy

    We apply soft x-ray emission spectroscopy (XES) to measure the electronic structure of crystalline silicon supersaturated with sulfur (up to 0.7 at. %), a candidate intermediate-band solar cell material. Si L[subscript ...

  9. Effective hydrogen generation and resource circulation based on sulfur cycle system

    SciTech Connect (OSTI)

    Takahashi, Hideyuki; Mabuchi, Takashi; Hayashi, Tsugumi; Yokoyama, Shun; Tohji, Kazuyuki [Graduate School of Environmental Studies, Tohoku University 6-6-20, Aramaki, Aoba-ku, Sendai, 980-8579 (Japan)

    2013-12-10T23:59:59.000Z

    For the effective hydrogen generation from H{sub 2}S, it should be compatible that the increscent of the photocatalytic (or electrochemical) activities and the development of effective utilization method of by-products (poly sulfide ion). In this study, system integration to construct the sulfur cycle system, which is compatible with the increscent of the hydrogen and or electron energy generation ratio and resource circulation, is investigated. Photocatalytic hydrogen generation rate can be enhanced by using stratified photocatalysts. Photo excited electron can be transpired to electrode to convert the electron energy to hydrogen energy. Poly sulfide ion as the by-products can be transferred into elemental sulfur and/or industrial materials such as rubber. Moreover, elemental sulfur can be transferred into H{sub 2}S which is the original materials for hydrogen generation. By using this system integration, the sulfur cycle system for the new energy generation can be constructed.

  10. Application of gas chromatography with open tubular columns and chemiluminescent detection to the determination of sulfur-containing substances in oil pollutions of sea water

    SciTech Connect (OSTI)

    Savchuk, S.A.; Rudenko, B.A. [Vernadsky Inst. of Geochemical and Analytical Chemistry, Moscow (Russian Federation); Brodskii, E.S. [Severtzov Inst. of Evolution Morphology and Ecology of Animals, Moscow (Russian Federation)

    1995-11-01T23:59:59.000Z

    Sulfur in the free state and in the form of sulfur-containing organic substances, such as thiols, alkylsulfides, thiacycloalkanes, and thiophenes, are permanently present in oils and in the organic matter of bottom sediments. There are three classes of crude oils that are categorized by the sulfur concentration. Low-sulfur oils contain up to 0.5% of sulfur, sulfurous oils contain from 0.51 to 2%, and high-sulfur oils contain more than 2% of sulfur. The substances of thiophene series are considered to be the most stable sulfur compounds in oils. They are formed at the diagenesis stage via the aromatization of thiacycloalkanes during the thermal maturing of petroleum. Therefore, the determination of the composition of sulfur-containing aromatic substances is very important for studying oil-formation processes.

  11. The Greenhouse Culture Oral History

    E-Print Network [OSTI]

    Scholz, Jared; Sipp, Kalah; Stratton, Emily

    2013-06-26T23:59:59.000Z

    Oral history interview with Jared Scholz and Kalah Sipp conducted by Emily Stratton in Lawrence, Kansas, on June 26, 2013. Jared Scholz is the founder and Senior Pastor of The Greenhouse Culture; Kalah Sipp is The Greenhouse ...

  12. Inferring population history from genealogies

    E-Print Network [OSTI]

    Lohse, Konrad R.

    2010-01-01T23:59:59.000Z

    This thesis investigates a range of genealogical approaches to making quantitative inferences about the spatial and demographic history of populations with application to two insect systems: A local radiation of high ...

  13. Facile synthesis, spectral properties and formation mechanism of sulfur nanorods in PEG-200

    SciTech Connect (OSTI)

    Xie, Xin-yuan; Li, Li-yun; Zheng, Pu-sheng [Department of Chemistry, Jinan University, Guangzhou 510632 (China)] [Department of Chemistry, Jinan University, Guangzhou 510632 (China); Zheng, Wen-jie, E-mail: tzhwj@jnu.edu.cn [Department of Chemistry, Jinan University, Guangzhou 510632 (China)] [Department of Chemistry, Jinan University, Guangzhou 510632 (China); Bai, Yan; Cheng, Tian-feng; Liu, Jie [Department of Chemistry, Jinan University, Guangzhou 510632 (China)] [Department of Chemistry, Jinan University, Guangzhou 510632 (China)

    2012-11-15T23:59:59.000Z

    Graphical abstract: Homogeneous rod-like structure of sulfur with a typical diameter of about 80 nm and an average aspect ratio of about 68 was obtained. The sulfur nanoparticles could self-assemble from spherical particles to nanorods in PEG-200. During the self-assembling process, the absorption band showed a red shift which was due to the production of nanorods. Highlights: ? A novel, facile and greener method to synthesize sulfur nanorods by the solubilizing and templating effect of PEG-200 was reported. ? S{sup 0} nanoparticles could self assemble in PEG-200 and finally form monodisperse and homogeneous rod-like structure with an average diameter of about 80 nm, the length ca. 600 nm. ? The absorption band showed a red shift and the RRS intensity enhanced continuously during the self-assembling process. ? PEG-200 induced the oriented attachment of sulfur nanoparticles by the terminal hydroxyl groups. -- Abstract: The synthesis of nano-sulfur sol by dissolving sublimed sulfur in a green solvent-PEG-200 was studied. Homogeneous rod-like structure of sulfur with a typical diameter of about 80 nm and an average aspect ratio of 68 was obtained. The structure, morphology, size, and stability of the products were investigated by transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and dynamic light scattering (DLS) measurements. The spectral properties of the products were investigated by ultraviolet-visible (UVvis) absorption and resonance Rayleigh scattering spectroscopy (RRS). The results showed that the spherical sulfur nanoparticles could self-assemble into nanorods in PEG-200. During the self-assembling process, the absorption band showed a red shift and the RRS intensity enhanced continuously. There was physical cross-linking between PEG and sulfur nanoparticles. PEG-200 induced the oriented attachment of sulfur nanoparticles by the terminal hydroxyl groups. This research provides a greener and more environment-friendly synthetic method for the production of sulfur nanorods.

  14. Minimizing sulfur contamination and rinse water volume required following a sulfuric acid/hydrogen peroxide clean by performing a chemically basic rinse

    SciTech Connect (OSTI)

    Clews, P.J.; Nelson, G.C.; Resnick, P.J.; Matlock, C.A.; Adkins, C.L.J.

    1997-08-01T23:59:59.000Z

    Sulfuric acid hydrogen peroxide mixtures (SPM) are commonly used in the semiconductor industry to remove organic contaminants from wafer surfaces. This viscous solution is very difficult to rinse off wafer surfaces. Various rinsing conditions were tested and the resulting residual contamination on the wafer surface was measured. The addition of small amounts of a chemical base such as ammonium hydroxide to the rinse water has been found to be effective in reducing the surface concentration of sulfur and also mitigates the particle growth that occurs on SPM cleaned wafers. The volume of room temperature water required to rinse these wafers is also significantly reduced.

  15. Fast-regenerable sulfur dioxide adsorbents for diesel engine emission control

    DOE Patents [OSTI]

    Li, Liyu [Richland, WA; King, David L [Richland, WA

    2011-03-15T23:59:59.000Z

    Disclosed herein are sorbents and devices for controlling sulfur oxides emissions as well as systems including such sorbents and devices. Also disclosed are methods for making and using the disclosed sorbents, devices and systems. In one embodiment the disclosed sorbents can be conveniently regenerated, such as under normal exhaust stream from a combustion engine, particularly a diesel engine. Accordingly, also disclosed are combustion vehicles equipped with sulfur dioxide emission control devices.

  16. Animal performance on small grain pastures with and without sulfur fertilizer

    E-Print Network [OSTI]

    Hardt, Paul Frederick

    1990-01-01T23:59:59.000Z

    prevalent in nature, S is present in the geosphere as sulfate. Sulfur may assume a number of oxidation states ranging from sulfide at -2 to sulfate at +6 and can therefore participate in many biological reactions. Sulfur is an essential mineral... for the synthesis of the amino acids methionine, cysteine and cystine (Tarver and Schmidt, 1939; Huovinen and Gustafsson, 1967), for maintaining the integrity of protein structure (Lehninger, 1982), is a component of mucopolysaccharides associated with structural...

  17. Development of Efficient Flowsheet and Transient Modeling for Nuclear Heat Coupled Sulfur Iodine Cyclefor Hydrogen Production

    SciTech Connect (OSTI)

    Shripad T. Revankar; Nicholas R. Brown; Cheikhou Kane; Seungmin Oh

    2010-05-01T23:59:59.000Z

    The realization of the hydrogen as an energy carrier for future power sources relies on a practical method of producing hydrogen in large scale with no emission of green house gases. Hydrogen is an energy carrier which can be produced by a thermochemical water splitting process. The Sulfur-Iodine (SI) process is an example of a water splitting method using iodine and sulfur as recycling agents.

  18. New ZnO-Based Regenerable Sulfur Sorbents for Fluid-Bed/Transport Reactor Applications

    SciTech Connect (OSTI)

    Slimane, R.B.; Lau, F.S.; Abbasian, J.; Ho, K.H.

    2002-09-19T23:59:59.000Z

    The overall objective of the ongoing sorbent development work at GTI is the advancement to the demonstration stage of a promising ZnO-TiO2 sulfur sorbent that has been developed under DCCA/ICCI and DOE/NETL sponsorship. This regenerable sorbent has been shown to possess an exceptional combination of excellent chemical reactivity, high effective capacity for sulfur absorption, high resistance to attrition, and regenerability at temperatures lower than required by typical zinc titanates.

  19. The solubility of elemental sulfur in methane, carbon dioxide and hydrogen sulfide gas

    E-Print Network [OSTI]

    Wieland, Denton R.

    1958-01-01T23:59:59.000Z

    ABSTRACT The object of the work reported In this dissertation was to determine the solubility of sulfur in gaseous methane carbon dioxide, and hydrogen sulfide and in mixtures of these gases, at various pressures and temperatures* Sulfur solubility... of methane and propane (which has a critical pressure of approximately the same value of hydrogen sulfide) is 1500 psia. To have liquid in this system at 1500 psia, however, would require a maximum temperature of 20?F which is well below the minimum...

  20. Measurement of the diffusion coefficient of sulfur hexafluoride in water

    SciTech Connect (OSTI)

    King. D.B.; Saltzman, E.S. [Univ. of Miami, FL (United States)] [Univ. of Miami, FL (United States)

    1995-04-15T23:59:59.000Z

    Sulfur hexafluoride has been widely used in field studies and laboratory experiments to develop a relationship between gas transfer and wind speed. The interpretation of the data from such studies requires the diffusion coefficient of SF{sub 6} (D{sub SF6}), which has not previously been measured. In this study, D{sub SF6} has been determined in pure water and in 35%NaCl over a temperature range of 5-25{degrees}C. The measurements were made using a continuous-flow diffusion cell where SF{sub 6} flows beneath an agar gel membrane while helium flows above the gel. The experimental data for pure water yielded the following equation: D{sub SF6}=0.029 exp ({minus}19.3/RT, where R is the gas constant and T is temperature in kelvins). Measurements of D{sub SF6} in 35% NaCl were not significantly different from the pure water values. On the basis of this data, the authors estimate the Schmidt numbers for seawater over the temperature range 5-25{degrees}C to be Sc=3016.1{minus}172.00t+4.4996t{sup 2}{minus}0.047965t{sup 3}, where t is temperature in degrees Celsius. 31 refs., 3 figs., 2 tabs.

  1. Longitudinal study of children exposed to sulfur oxides

    SciTech Connect (OSTI)

    Dodge, R.; Solomon, P.; Moyers, J.; Hayes, C.

    1985-05-01T23:59:59.000Z

    This study is a longitudinal comparison of the health of children exposed to markedly different concentrations of sulfur dioxide and moderately different concentrations of particulate sulfate. The four groups of subjects lived in two areas of one smelter town and in two other towns, one of which was also a smelter town. In the area of highest pollution, children were intermittently exposed to high SO/sub 2/ levels (peak three-hour average concentration exceeded 2,500 micrograms/m3) and moderate particulate SO/sub 4/= levels (average concentration was 10.1 micrograms/m3). When the children were grouped by the four gradients of pollution observed, the prevalence of cough (measured by questionnaire) correlated significantly with pollution levels (trend chi-square = 5.6, p = 0.02). No significant differences in the incidence of cough or other symptoms occurred among the groups of subjects over three years, and pulmonary function and lung function growth over the study were roughly equal among all the groups. These results suggest that intermittent elevations in SO/sub 2/ concentration, in the presence of moderate particulate SO/sub 4/= concentration, produced evidence of bronchial irritation in the subjects, but no chronic effect on lung function or lung function growth was detected.

  2. Sulfur dioxide-induced chronic bronchitis in beagle dogs

    SciTech Connect (OSTI)

    Greene, S.A.; Wolff, R.K.; Hahn, F.F.; Henderson, R.F.; Mauderly, J.L.; Lundgren, D.L.

    1984-01-01T23:59:59.000Z

    This study was done to produce a model of chronic bronchitis. Twelve beagle dogs were exposed to 500 ppm sulfur dioxide (SO/sub 2/) for 2 h/d, 5d/wk for 21 wk and 4 dogs were sham-exposed to filtered ambient air for the same period. Exposure effects were evaluated by periodically examining the dogs using chest radiographs, pulmonary function, tracheal mucous clearance, and the cellular and soluble components of bronchopulmonary lavage fluids. Dogs were serially sacrificed after 13 and 21 wk of exposure and after 6 and 14 wk of recovery. Clinical signs produced in the SO/sub 2/-exposed dogs included mucoid nasal discharge, productive cough, moist rales on auscultation, tonsilitis, and conjunctivitis. Chest radiographs revealed mild peribronchiolar thickening. Histopathology, tracheal mucous clearance measurements, and lavage cytology were consistent with a diagnosis of chronic bronchitis. It is concluded that repeated exposure to 500 ppm SO/sub 2/ for 21 wk produced chronic bronchitis in the beagle dog. Complete recovery occurred within 5 wk following cessation of SO/sub 2/ exposure. 43 references, 2 figures, 2 tables.

  3. Art History Adjunct Manual Department of Art & Art History, Hunter College, CUNY Art History Adjunct Manual Department of Art & Art History, Hunter College, CUNY

    E-Print Network [OSTI]

    Qiu, Weigang

    Art History Adjunct Manual Manual Department of Art & Art History and in your classes may be artists or would-be artists, practicing in a wide variety

  4. www.cambridge.org/us/american-history American Labor and Economic

    E-Print Network [OSTI]

    Tsien, Roger Y.

    www.cambridge.org/us/american-history American Labor and Economic Citizenship New Capitalism from as a time when Herbert Hoover and his allies worked to significantly reform economic policy. In Ameri- can Labor and Economic Citizenship, Mark Hendrickson both augments and amends this view by studying

  5. Design and operation of the coke-oven gas sulfur removal facility at Geneva Steel

    SciTech Connect (OSTI)

    Havili, M.U.; Fraser-Smyth, L.L.; Wood, B.W. [Geneva Steel, Provo, UT (United States)

    1996-02-01T23:59:59.000Z

    The coke-oven gas sulfur removal facility at Geneva Steel utilizes a combination of two technologies which had never been used together. These two technologies had proven effective separately and now in combination. However, it brought unique operational considerations which has never been considered previously. The front end of the facility is a Sulfiban process. This monoethanolamine (MEA) process effectively absorbs hydrogen sulfide and other acid gases from coke-oven gas. The final step in sulfur removal uses a Lo-Cat II. The Lo-Cat process absorbs and subsequently oxidizes H{sub 2}S to elemental sulfur. These two processes have been effective in reducing sulfur dioxide emissions from coke-oven gas by 95%. Since the end of the start-up and optimization phase, emission rate has stayed below the 104.5 lb/hr limit of equivalent SO{sub 2} (based on a 24-hr average). In Jan. 1995, the emission rate from the sulfur removal facility averaged 86.7 lb/hr with less than 20 lb/hr from the Econobator exhaust. The challenges yet to be met are decreasing the operating expenses of the sulfur removal facility, notably chemical costs, and minimizing the impact of the heating system on unit reliability.

  6. Wide field of view telescope

    DOE Patents [OSTI]

    Ackermann, Mark R. (Albuquerque, NM); McGraw, John T. (Placitas, NM); Zimmer, Peter C. (Albuquerque, NM)

    2008-01-15T23:59:59.000Z

    A wide field of view telescope having two concave and two convex reflective surfaces, each with an aspheric surface contour, has a flat focal plane array. Each of the primary, secondary, tertiary, and quaternary reflective surfaces are rotationally symmetric about the optical axis. The combination of the reflective surfaces results in a wide field of view in the range of approximately 3.8.degree. to approximately 6.5.degree.. The length of the telescope along the optical axis is approximately equal to or less than the diameter of the largest of the reflective surfaces.

  7. Mammoth Geothermal, A Development History | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconvertersource History ViewMali[1]OpenEI

  8. Input a journal Viewing Journals

    E-Print Network [OSTI]

    Sussex, University of

    Journals Contents: Input a journal Viewing Journals Deleting a journal Entering jnl into different period Problems Input a journal 1 Login to Bluqube 2 Select 3 Enter relevant Doc type To select the number of journals you will processing & the total credit value 6 Click on 7 Enter brief description 8

  9. Observation of neutral sulfuric acid-amine containing clusters in laboratory and ambient measurements

    SciTech Connect (OSTI)

    Kuang C.; Zhao, J.; Smith, J. N.; Eisele, F. L.; Chen, M.; McMurry, P. H.

    2011-11-02T23:59:59.000Z

    Recent ab initio calculations showed that amines can enhance atmospheric sulfuric acid-water nucleation more effectively than ammonia, and this prediction has been substantiated in laboratory measurements. Laboratory studies have also shown that amines can effectively displace ammonia in several types of ammonium clusters. However, the roles of amines in cluster formation and growth at a microscopic molecular scale (from molecular sizes up to 2 nm) have not yet been well understood. Processes that must be understood include the incorporation of amines into sulfuric acid clusters and the formation of organic salts in freshly nucleated particles, which contributes significantly to particle growth rates. We report the first laboratory and ambient measurements of neutral sulfuric acid-amine clusters using the Cluster CIMS, a recently-developed mass spectrometer designed for measuring neutral clusters formed in the atmosphere during nucleation. An experimental technique, which we refer to as Semi-Ambient Signal Amplification (SASA), was employed. Sulfuric acid was added to ambient air, and the concentrations and composition of clusters in this mixture were analyzed by the Cluster CIMS. This experimental approach led to significantly higher cluster concentrations than are normally found in ambient air, thereby increasing signal-to-noise levels and allowing us to study reactions between gas phase species in ambient air and sulfuric acid containing clusters. Mass peaks corresponding to clusters containing four H{sub 2}SO{sub 4} molecules and one amine molecule were clearly observed, with the most abundant sulfuric acid-amine clusters being those containing a C2- or C4-amine (i.e. amines with masses of 45 and 73 amu). Evidence for C3- and C5-amines (i.e. amines with masses of 59 and 87 amu) was also found, but their correlation with sulfuric acid tetramer was not as strong as was observed for the C2- and C4-amines. The formation mechanisms for those sulfuric acid-amine clusters were investigated by varying the residence time in the inlet. It was concluded that the amines react directly with neutral clusters and that ion-induced clustering of sulfuric acid cluster ions with amines was not a dominant process. Results from ambient measurements using the Cluster CIMS without addition of sulfuric acid have shown that the sulfuric acid-amine clusters were reasonably well correlated with sulfuric acid tetramer and consistent with the SASA experiments at the same Boulder sampling site. Also, clusters that contain C2- or C4-amines were more abundant and better correlated with sulfuric acid tetramer than other types of amine containing clusters. However, ambient measurements of sulfuric acid-amine clusters remain difficult and highly uncertain because their concentrations are only slightly above background levels, even during nucleation events.

  10. Non-matrix corrected organic sulfur determination by energy dispersive X-ray spectroscopy for western Kentucky coals and residues

    SciTech Connect (OSTI)

    Clark, C.P.; Freeman, G.B.; Hower, J.C.

    1984-01-01T23:59:59.000Z

    A method for non-matrix corrected organic sulfur analysis by energy dispersive X-ray spectroscopy has been developed using petroleum coke standards. Typically, electron beam microanalysis is a rapid, nondestructive analytical technique to quantitatively measure organic sulfur in coal. The results show good correlation to ASTM values for numerous well characterized coals with a wide range in total and pyritic sulfur content. This direct analysis is capable of reducing error commonly associated with the present ASTM method which relies on an indirect measure of organic sulfur by difference. The precision of the organic sulfur values determined in the present study is comparable to that obtained by ZAF matrix corrected microanalysis. The energy dispersive microanalysis is capable of measuring micro as well as bulk organic sulfur levels.

  11. View

    E-Print Network [OSTI]

    2006-02-28T23:59:59.000Z

    Feb 28, 2006 ... For defining the NSO functions composing the battery, we consider two categories: randomly generated functions, either defined as the...

  12. View

    E-Print Network [OSTI]

    2008-07-07T23:59:59.000Z

    a battery of benchmark instances of up to 200 nodes are reported. These seem to be the largest instances that have been solved exactly for this problem.

  13. View

    E-Print Network [OSTI]

    2011-06-21T23:59:59.000Z

    May 14, 2010 ... Generally, even testing whether a matrix is in C? is co-NP-complete [23]. ...... One concrete example is the following: ?. ?. ?. ?. ?. ?. 1 1/3 1/3...

  14. View

    E-Print Network [OSTI]

    2013-10-14T23:59:59.000Z

    based on median finding, variable fixing, and secant techniques. Keywords: ..... arithmetic operations, the overall complexity is O(n2). D. The worst case bound in ..... always work on its rated clock speed, we turned force the Linux system to use the ..... dimensionally equidistributed uniform pseudo-random number generator.

  15. View

    E-Print Network [OSTI]

    1910-31-00T23:59:59.000Z

    Sep 3, 2003 ... Landau (TDGL) equation, the Maxwell equations, and an energy equation ... varying currents and magnetic fields generate thermal energy,...

  16. View

    E-Print Network [OSTI]

    2013-11-05T23:59:59.000Z

    Approach. ?. Selin Damla Ahipasao?glu the date of receipt and acceptance should be .... which has the minimum volume is a natural choice from both theoretical and ... This problem has important applications in statistics and solving this prob- ...... the SDPT3 algorithm using the CVX platform on MATLAB, which is a classic.

  17. View

    E-Print Network [OSTI]

    2010-08-12T23:59:59.000Z

    all real solutions of a given system of polynomial equations. ... A crucial ingredient is a semidefinite characterization of the real radical ideal ...... The options.

  18. View

    E-Print Network [OSTI]

    2004-12-25T23:59:59.000Z

    Let fbe a meromorphic function satisfying condition (1.2), and let rj be a sequence with property (2.5). Then the set S is finite and for some subsequence of...

  19. View

    E-Print Network [OSTI]

    2010-07-30T23:59:59.000Z

    project of the classification of (simple) nuclear separable C*-algebras [E]. Let C? denote the category of separable C*-algebras and ?-homomorphisms.

  20. View

    E-Print Network [OSTI]

    2006-07-11T23:59:59.000Z

    the classification results of Kirchberg and Phillips using the notion of nuclear absorbing ... A simple purely infinite nuclear separable C*-algebra is called.

  1. View

    E-Print Network [OSTI]

    2008-12-16T23:59:59.000Z

    The aim of this paper is to give a survey of some basic theory of semi-infinite programming. .... operations of addition and multiplication by a scalar. We associate...

  2. Biodesulfurization techniques: Application of selected microorganisms for organic sulfur removal from coals. Final report

    SciTech Connect (OSTI)

    Elmore, B.B.

    1993-08-01T23:59:59.000Z

    As an alternative to post-combustion desulfurization of coal and pre-combustion desulfurization using physicochemical techniques, the microbial desulfurization of coal may be accomplished through the use of microbial cultures that, in an application of various microbial species, may remove both the pyritic and organic fractions of sulfur found in coal. Organisms have been isolated that readily depyritize coal but often at prohibitively low rates of desulfurization. Microbes have also been isolated that may potentially remove the organic-sulfur fraction present in coal (showing promise when acting on organic sulfur model compounds such as dibenzothiophene). The isolation and study of microorganisms demonstrating a potential for removing organic sulfur from coal has been undertaken in this project. Additionally, the organisms and mechanisms by which coal is microbially depyritized has been investigated. Three cultures were isolated that grew on dibenzothiophene (DBT), a model organic-sulfur compound, as the sole sulfur source. These cultures (UMX3, UMX9, and IGTS8) also grew on coal samples as the sole sulfur source. Numerous techniques for pretreating and ``cotreating`` coal for depyritization were also evaluated for the ability to improve the rate or extent of microbial depyritization. These include prewashing the coal with various solvents and adding surfactants to the culture broth. Using a bituminous coal containing 0.61% (w/w) pyrite washed with organic solvents at low slurry concentrations (2% w/v), the extent of depyritization was increased approximately 25% in two weeks as compared to controls. At slurry concentrations of 20% w/v, a tetrachloroethylene treatment of the coal followed by depyritization with Thiobacillus ferrooxidans increased both the rate and extent of depyritization by approximately 10%.

  3. The use of ethanol to remove sulfur from coal. Final report, September 1991--December 1992; Revision

    SciTech Connect (OSTI)

    Savage, R.L.; Lazarov, L.K.; Prudich, M.E.; Lange, C.A.; Kumar, N.

    1994-03-10T23:59:59.000Z

    The initial technical goal in the project was to develop a chemical method for the cost effective removal of both inorganic and organic sulfur from Ohio coals. Verifying and using a process of reacting ethanol vapors with coal under conditions disclosed in U.S. Patent 4,888,029, the immediate technical objectives were to convert a small scale laborative batch process to a larger scale continuous process which can serve as the basis for commercial development of the technology. This involved getting as much information as possible from small scale batch autoclave or fluid bed laboratory reactors for use in pilot plant studies. The laboratory data included material balances on the coal and sulfur, temperature and pressure ranges for the reaction, minimum reaction times at different conditions, the effectiveness of different activators such as oxygen and nitric oxide, the amount and nature of by-products such as sulfur dioxide, hydrogen sulfide and acetaldehyde, the effect of coal particle size on the speed and completeness of the reaction, and the effectiveness of the reaction on different Ohio coals. Because the laboratory experiments using the method disclosed in U.S. 4,888,029 were not successful, the objective for the project was changed to develop a new laboratory process to use ethanol to remove sulfur from coal. Using copper as a catalyst and as an H{sub 2}S scavenger, a new laboratory procedure to use ethanol to remove sulfur from coal has been developed at Ohio University and a patent application covering this process was filed in March, 1993. The process is based on the use of copper as a catalyst for the dehydrogenation of ethanol to produce nascent hydrogen to remove sulfur from the coal and the use of copper as a scavenger to capture the hydrogen sulfide formed from the sulfur removed from coal.

  4. History of manned space flight

    SciTech Connect (OSTI)

    Baker, D.

    1981-01-01T23:59:59.000Z

    This book is the history of all the great moments of failure, tension, drama, euphoria, and success that characterized the beginning of man's adventure in space. It covers the technology and scientific knowledge, the vision, the politics, and the dedication of all those involved in the space program. One chapter is devoted to the experiments and observations of the astronauts as they explored the moon. An integral part of the history of space exploration is the race between Russia and the US to establish man in space. This is included. The book vividly portrays the experiences of the astronauts from Mercury, Gemini, Apollo, Skylab, and the Apollo-Soyuz missions. (SC)

  5. National Level Co-Control Study of the Targets for Energy Intensity and Sulfur Dioxide in China

    E-Print Network [OSTI]

    Zhou, Nan

    2013-01-01T23:59:59.000Z

    and Price 2008). In addition, this scenario assumes that the share of biomassand Price 2008). Substitution of fossil fuels in cement kilns with low-sulfur biomass

  6. Nuclear Hydrogen Initiative, Results of the Phase II Testing of Sulfur-Iodine Integrated Lab Scale Experiments

    SciTech Connect (OSTI)

    Benjamin Russ; G. Naranjo; R. Moore; W. Sweet; M. Hele; N. Pons

    2009-10-30T23:59:59.000Z

    International collaborative effort to construct a laboratory-scale Sulfur-Iodine process capable of producing 100-200 L/hr of hydrogen.

  7. The effect of nitrogen supply and form on the absorption and assimilation of sulfur by the cotton plant

    E-Print Network [OSTI]

    Lane, Harry Cleburne

    1951-01-01T23:59:59.000Z

    of the first basic studies on the ef- fect of sulfur deficiency on the metabolism of the tomato by grosing the plants on a sul~ficient nutrient solution, He found in sulfur-de ficient plants a high level of carbohydrates and soluble organic nitrogen at all... elongation of the internodesX (c) high sulfbr plants were mare succulent than deficient sul- fur pXantsi (d) nitx'ates accumulated in deficient sulfur plants~ and (e) soluble orgazd. c nitrogenous fractions were higher in the sulfur de ficient plants...

  8. Toward Understanding the Effect of Nuclear Waste Glass Composition on Sulfur Solubility

    SciTech Connect (OSTI)

    Vienna, John D. [Pacific Northwest National Laboratory; Kim, Dong-Sang [Pacific Northwest National Laboratory; Muller, I. S. [The Catholic University National Laboratory; Kruger, Albert A. [Department of Energy -- Ofice of River Protection; Piepel, Gregory F. [Pacific Northwest National Laboratory

    2014-10-01T23:59:59.000Z

    The concentration of sulfur in nuclear waste glass melter feed must be maintained below the point where salt accumulates on the melt surface. The allowable concentrations may range from 0.37 to over 2.05 weight percent (of SO3 on a calcined oxide basis) depending on the composition of the melter feed and processing conditions. If the amount of sulfur exceeds the melt tolerance level, a molten salt will accumulate, which may upset melter operations and potentially shorten the useful life of the melter. At the Hanford site, relatively conservative limits have been placed on sulfur loading in melter feed, which in turn significantly increases the amount of glass that will be produced. Crucible-scale sulfur solubility data and scaled melter sulfur tolerance data have been collected on simulated Hanford waste glasses over the last 15 years. These data were compiled and analyzed. A model was developed to predict the solubility of SO3 in glass based on 252 simulated Hanford low-activity waste (LAW) glass compositions. This model represents the data well, accounting for over 85% of the variation in data, and was well validated. The model was also found to accurately predict the tolerance for sulfur in melter feed for 13 scaled melter tests of simulated LAW glasses. The model can be used to help estimate glass volumes and make informed decisions on process options. The model also gives quantitative estimates of component concentration effects on sulfur solubility. The components that most increase sulfur solubility are Li2O > V2O5> CaO ? P2O5 > Na2O ? B2O3 > K2O. The components that most decrease sulfur solubility are Cl > Cr2O3 > Al2O3 > ZrO2 ? SnO2 > Others ? SiO2. The order of component effects is similar to previous literature data, in most cases.

  9. THE EFFECT OF ANOLYTE PRODUCT ACID CONCENTRATION ON HYBRID SULFUR CYCLE PERFORMANCE

    SciTech Connect (OSTI)

    Gorensek, M.; Summers, W.

    2010-03-24T23:59:59.000Z

    The Hybrid Sulfur (HyS) cycle (Fig. 1) is one of the simplest, all-fluids thermochemical cycles that has been devised for splitting water with a high-temperature nuclear or solar heat source. It was originally patented by Brecher and Wu in 1975 and extensively developed by Westinghouse in the late 1970s and early 1980s. As its name suggests, the only element used besides hydrogen and oxygen is sulfur, which is cycled between the +4 and +6 oxidation states. HyS comprises two steps. One is the thermochemical (>800 C) decomposition of sulfuric acid (H{sub 2}SO{sub 4}) to sulfur dioxide (SO{sub 2}), oxygen (O{sub 2}), and water. H{sub 2}SO{sub 4} = SO{sub 2} + 1/2 O{sub 2} + H{sub 2}O. The other is the SO{sub 2}-depolarized electrolysis of water to H{sub 2}SO{sub 4} and hydrogen (H{sub 2}), SO{sub 2} + 2 H{sub 2}O = H{sub 2}SO{sub 4} + H{sub 2}, E{sup o} = -0.156 V, explaining the 'hybrid' designation. These two steps taken together split water into H{sub 2} and O{sub 2} using heat and electricity. Researchers at the Savannah River National Laboratory (SRNL) and at the University of South Carolina (USC) have successfully demonstrated the use of proton exchange membrane (PEM) electrolyzers (Fig. 2) for the SO{sub 2}-depolarized electrolysis (sulfur oxidation) step, while Sandia National Laboratories (SNL) successfully demonstrated the high-temperature sulfuric acid decomposition (sulfur reduction) step using a bayonet-type reactor (Fig. 3). This latter work was performed as part of the Sulfur-Iodine (SI) cycle Integrated Laboratory Scale demonstration at General Atomics (GA). The combination of these two operations results in a simple process that will be more efficient and cost-effective for the massive production of hydrogen than alkaline electrolysis. Recent developments suggest that the use of PEMs other than Nafion will allow sulfuric acid to be produced at higher concentrations (>60 wt%), offering the possibility of net thermal efficiencies around 50% (HHV basis). The effect of operation at higher anolyte concentrations on the flowsheet, and on the net thermal efficiency for a nuclear-heated HyS process, is examined and quantified.

  10. Mitigation of Sulfur Poisoning of Ni/Zirconia SOFC Anodes by Antimony and Tin

    SciTech Connect (OSTI)

    Marina, Olga A.; Coyle, Christopher A.; Engelhard, Mark H.; Pederson, Larry R.

    2011-02-28T23:59:59.000Z

    Surface Ni/Sb and Ni/Sb alloys were found to efficiently minimize the negative effects of sulfur on the performance of Ni/zirconia anode-supported solid oxide fuel cells (SOFC). Prior to operating on fuel gas containing low concentrations of H2S, the nickel/zirconia anodes were briefly exposed to antimony or tin vapor, which only slightly affected the SOFC performance. During the subsequent exposures to 1 and 5 ppm H2S, increases in anodic polarization losses were minimal compared to those observed for the standard nickel/zirconia anodes. Post-test XPS analyses showed that Sb and Sn tended to segregate to the surface of Ni particles, and further confirmed a significant reduction of adsorbed sulfur on the Ni surface in Ni/Sn and Ni/Sb samples compared to the Ni. The effect may be the result of weaker sulfur adsorption on bimetallic surfaces, adsorption site competition between sulfur and Sb or Sn on Ni, or other factors. The use of dilute binary alloys of Ni-Sb or Ni-Sn in the place of Ni, or brief exposure to Sb or Sn vapor, may be effective means to counteract the effects of sulfur poisoning in SOFC anodes and Ni catalysts. Other advantages, including suppression of coking or tailoring the anode composition for the internal reforming, are also expected.

  11. Pressurized fluidized-bed hydroretorting of Eastern oil shales -- Sulfur control

    SciTech Connect (OSTI)

    Roberts, M.J.; Abbasian, J.; Akin, C.; Lau, F.S.; Maka, A.; Mensinger, M.C.; Punwani, D.V.; Rue, D.M. (Institute of Gas Technology, Chicago, IL (United States)); Gidaspow, D.; Gupta, R.; Wasan, D.T. (Illinois Inst. of Tech., Chicago, IL (United States)); Pfister, R.M.: Krieger, E.J. (Ohio State Univ., Columbus, OH (United States))

    1992-05-01T23:59:59.000Z

    This topical report on Sulfur Control'' presents the results of work conducted by the Institute of Gas Technology (IGT), the Illinois Institute of Technology (IIT), and the Ohio State University (OSU) to develop three novel approaches for desulfurization that have shown good potential with coal and could be cost-effective for oil shales. These are (1) In-Bed Sulfur Capture using different sorbents (IGT), (2) Electrostatic Desulfurization (IIT), and (3) Microbial Desulfurization and Denitrification (OSU and IGT). The objective of the task on In-Bed Sulfur Capture was to determine the effectiveness of different sorbents (that is, limestone, calcined limestone, dolomite, and siderite) for capturing sulfur (as H{sub 2}S) in the reactor during hydroretorting. The objective of the task on Electrostatic Desulfurization was to determine the operating conditions necessary to achieve a high degree of sulfur removal and kerogen recovery in IIT's electrostatic separator. The objectives of the task on Microbial Desulfurization and Denitrification were to (1) isolate microbial cultures and evaluate their ability to desulfurize and denitrify shale, (2) conduct laboratory-scale batch and continuous tests to improve and enhance microbial removal of these components, and (3) determine the effects of processing parameters, such as shale slurry concentration, solids settling characteristics, agitation rate, and pH on the process.

  12. For current viewing resistor loads

    DOE Patents [OSTI]

    Lyons, Gregory R. (Tijeras, NM); Hass, Jay B. (Lee's Summit, MO)

    2011-04-19T23:59:59.000Z

    The invention comprises a terminal unit for a flat cable comprising a BNC-PCB connector having a pin for electrically contacting one or more conducting elements of a flat cable, and a current viewing resistor having an opening through which the pin extends and having a resistor face that abuts a connector face of the BNC-PCB connector, wherein the device is a terminal unit for the flat cable.

  13. The history of the LHC

    ScienceCinema (OSTI)

    None

    2011-10-06T23:59:59.000Z

    Abstract: From the civil engineering, to the manufacturing of the various magnet types, each building block of this extraordinary machine required ambitious leaps in innovation. This lecture will review the history of the LHC project, focusing on the many challenges -- scientific, technological, managerial -- that had to be met during the various phases of R&D;, industrialization, construction, installation and commissioning.

  14. cultural history New perspectives on

    E-Print Network [OSTI]

    Making cultural history New perspectives on Western heritage Edited by Anna Klln nordic academic the result of cooperative effort, in a `hand-me-down' narrative of sorts, where the cultural heritage online, display fascinating ways to traverse those layers. Take, for example, Cassini, a historical map

  15. The Sulfur-Iodine Cycle: Process Analysis and Design Using Comprehensive Phase Equilibrium Measurements and Modeling

    SciTech Connect (OSTI)

    Thies, Mark C.; O'Connell, J. P.; Gorensek, Maximilian B.

    2010-01-10T23:59:59.000Z

    Of the 100+ thermochemical hydrogen cycles that have been proposed, the Sulfur-Iodine (S-I) Cycle is a primary target of international interest for the centralized production of hydrogen from nuclear power. However, the cycle involves complex and highly nonideal phase behavior at extreme conditions that is only beginning to be understood and modeled for process simulation. The consequence is that current designs and efficiency projections have large uncertainties, as they are based on incomplete data that must be extrapolated from property models. This situation prevents reliable assessment of the potential viability of the system and, even more, a basis for efficient process design. The goal of this NERI award (05-006) was to generate phase-equilibrium data, property models, and comprehensive process simulations so that an accurate evaluation of the S-I Cycle could be made. Our focus was on Section III of the Cycle, where the hydrogen is produced by decomposition of hydroiodic acid (HI) in the presence of water and iodine (I2) in a reactive distillation (RD) column. The results of this project were to be transferred to the nuclear hydrogen community in the form of reliable flowsheet models for the S-I process. Many of the project objectives were achieved. At Clemson University, a unique, tantalum-based, phase-equilibrium apparatus incorporating a view cell was designed and constructed for measuring fluid-phase equilibria for mixtures of iodine, HI, and water (known as HIx) at temperatures to 350 C and pressures to 100 bar. Such measurements were of particular interest for developing a working understanding of the expected operation of the RD column in Section III. The view cell allowed for the IR observation and discernment of vapor-liquid (VL), liquid-liquid, and liquid-liquid-vapor (LLVE) equilibria for HIx systems. For the I2-H2O system, liquid-liquid equilibrium (LLE) was discovered to exist at temperatures up to 310-315 C, in contrast to the models and predictions of earlier workers. For the I2-HI-H2O ternary, LLE and LLVE were all observed for the first time at temperatures of 160 and 200 C. Three LLE tie-lines were measured at 160 C, and preliminary indications are that the underlying phase behavior could result in further improvements in the performance of the S-I Cycle. Unfortunately, these new results were obtained too late in the project to be incorporated into the modeling and simulation work described below. At the University of Virginia, a uniquely complete and reliable model was developed for the thermodynamic properties of HIx, covering the range of conditions expected for the separation of product hydrogen and recycled iodine in the RD column located in Section III. The model was validated with all available property spectroscopy data. The results provide major advances over prior understanding of the chemical speciation involved. The model was implemented in process simulation studies of the S-I Cycle, which showed improvement in energy efficiency to 42%, as well as significantly smaller capital requirements due to lower pressure operation and much smaller equipment sizes. The result is that the S-I Cycle may be much more economically feasible than was previously thought. If both the experimental and modeling work described above were to be continued to ultimate process optimization, both the American public and the global community would benefit from this alternative energy source that does not produce carbon emissions.

  16. BA in FAMILY HISTORY--GENEALOGY (734125) MAP Sheet Department of History

    E-Print Network [OSTI]

    Olsen Jr., Dan R.

    BA in FAMILY HISTORY--GENEALOGY (734125) MAP Sheet Department of History For students entering of the University Core Doctrinal Foundation and Religion requirement): Rel C 261* Intro to Family History (Genealogy

  17. Method for removing sulfur compounds from C/sub 6/ and lower alkanes

    SciTech Connect (OSTI)

    Keyworth, D.A.

    1989-03-28T23:59:59.000Z

    A process is described for recovering a low sulfur content hydrocarbon fraction having a boiling point of n-hexane or less from a hydrocarbon stream containing hydrocarbons boiling at or below the boiling point of hexane and organic sulfur compounds comprising monosulfides boiling at or below the boiling point of n-hexane. It consists of contacting the hydrocarbon stream with a dilute aqueous solution of sodium hypochlorite for a time sufficient to convert a selected amount of monosulfide compounds present to compounds having boiling points above the boiling point of n-hexane, separating an aqueous phase and a hydrocarbon phase and fractionally distilling the hydrocarbon phase to recover a hydrocarbon fraction having a boiling point of n-hexane or less, and having a reduced amount of the organic sulfur compounds.

  18. The East Penn process for recycling sulfuric acid from lead-acid batteries

    SciTech Connect (OSTI)

    Leiby, R.; Bricker, M. [East Penn Manufacturing Co., Inc., Lyon Station, PA (United States); Spitz, R. [Spitz (R.), Holbrook, MA (United States)

    1995-12-31T23:59:59.000Z

    Prior to March 1992, the only component of the lead-acid battery that was not recycled by East Penn Manufacturing Company was the sulfuric acid electrolyte. This acid was unusable in new batteries because the iron level was found to exceed new product specifications. The development of a liquid ion exchange process to remove the iron from the acid allows East Penn to currently recover over three million gallons of sulfuric acid annually. The process is based upon the use of an iron selective liquid ion exchange material or solvent to extract iron from the sulfuric acid electrolyte followed by regeneration of the solvent. Equilibrium and kinetic data for the extraction and regeneration steps were collected in order to scale up the process to commercial scale. An electrochemical process for the treatment of the acid used in the regeneration step was also developed which significantly reduces the volume of strip acid required in the process.

  19. Configuring the thermochemical hydrogen sulfuric acid process step for the Tandem Mirror Reactor

    SciTech Connect (OSTI)

    Galloway, T.R.

    1981-05-01T23:59:59.000Z

    This paper identifies the sulfuric acid step as the critical part of the thermochemical cycle in dictating the thermal demands and temperature requirements of the heat source. The General Atomic Sulfur-Iodine Cycle is coupled to a Tandem Mirror. The sulfuric acid decomposition process step is focused on specifically since this step can use the high efficiency electrical power of the direct converter together with the other thermal-produced electricity to Joule-heat a non-catalytic SO/sub 3/ decomposer to approximately 1250/sup 0/K. This approach uses concepts originally suggested by Dick Werner and Oscar Krikorian. The blanket temperature can be lowered to about 900/sup 0/K, greatly alleviating materials problems, the level of technology required, safety problems, and costs. A moderate degree of heat has been integrated to keep the cycle efficiency around 48%, but the number of heat exchangers has been limited in order to keep hydrogen production costs within reasonable bounds.

  20. Electrochemical separation and concentration of sulfur containing gases from gas mixtures

    DOE Patents [OSTI]

    Winnick, Jack (3805 Woodrail-on-the-Green, Columbia, MO 65201)

    1981-01-01T23:59:59.000Z

    A method of removing sulfur oxides of H.sub.2 S from high temperature gas mixtures (150.degree.-1000.degree. C.) is the subject of the present invention. An electrochemical cell is employed. The cell is provided with inert electrodes and an electrolyte which will provide anions compatible with the sulfur containing anions formed at the anode. The electrolyte is also selected to provide inert stable cations at the temperatures encountered. The gas mixture is passed by the cathode where the sulfur gases are converted to SO.sub.4.sup.= or, in the case of H.sub.2 S, to S.sup.=. The anions migrate to the anode where they are converted to a stable gaseous form at much greater concentration levels (>10X). Current flow may be effected by utilizing an external source of electrical energy or by passing a reducing gas such as hydrogen past the anode.

  1. Development of Ni-based Sulfur Resistant Catalyst for Diesel Reforming

    SciTech Connect (OSTI)

    Gunther Dieckmann

    2006-06-30T23:59:59.000Z

    In order for diesel fuel to be used in a solid oxide fuel cell auxiliary power unit, the diesel fuel must be reformed into hydrogen, carbon monoxide and carbon dioxide. One of the major problems facing catalytic reforming is that the level of sulfur found in low sulfur diesel can poison most catalysts. This report shows that a proprietary low cost Ni-based reforming catalyst can be used to reform a 7 and 50 ppm sulfur containing diesel fuel for over 500 hours of operation. Coking, which appears to be route of catalyst deactivation due to metal stripping, can be controlled by catalyst modifications, introduction of turbulence, and/or by application of an electromagnetic field with a frequency from {approx}50 kHz to 13.56 MHz with field strength greater than about 100 V/cm and more preferably greater about 500 V/cm.

  2. Sulfur dioxide emissions from primary nonferrous smelters in the Western United States

    SciTech Connect (OSTI)

    Mangeng, C.; Mead, R.

    1980-08-01T23:59:59.000Z

    The greatest source of sulfur dioxide emissions in the West has been the pyrometallurgical processing of copper, lead, and zinc ores. Until the early 1970s, the emissions from most nonferrous metal smelters were released without control into the environment. However, recent Federal and State legislation has mandated the need for large reductions of emissions, a task that will require the introduction of highly efficient sulfur dioxide control technology. The particular processes at each smelter, the smelter location, the capital and operating costs including the cost of energy, the resolution of currently litigated issues, and the metal market prices will be major influences on the choice of technology and on the schedule for implementation of smelter control plans. These parameters are examined, and the problems and issues associated with them are described. The future impact of smelter sulfur dioxide emissions is discussed within the framework of the relevant economic, technologial, and legal issues.

  3. Behavior of sulfur and chlorine in coal during combustion and boiler corrosion

    SciTech Connect (OSTI)

    Chou, C.L.

    1991-01-01T23:59:59.000Z

    The purpose of this project is to conduct laboratory experiments to clarify the mechanism of boiler corrosion, which may lead to solving the corrosion problem associated with the utilization of Illinois' high-sulfur and high-chlorine coal. The kinetics of the release of sulfur and chlorine species during coal combustion is being determined in the laboratories using temperature-programmed pyrolysis coupled with quadrupole gas analysis (QGA) and thermogravimetric analysis in conjunction with Fourier transform infrared spectroscopy (FTIR). Samples of boiler deposits and ashes from different locations in boilers using Illinois coal will be analyzed for mineralogical and chemical compositions to understand the relations among deposit compositions, coal compositions, and the gaseous species in combustion gases. The relationship between the level of chlorine in Illinois coal and boiler corrosion will be studied by experiments with simulated combustion gases under combustion conditions. Reduction of sulfur and chloride concentrations in the flue gas using additives will also be evaluated.

  4. Bimodal Distribution of Sulfuric Acid Aerosols in the Upper Haze of Venus

    E-Print Network [OSTI]

    Gao, Peter; Crisp, David; Bardeen, Charles G; Yung, Yuk L

    2013-01-01T23:59:59.000Z

    The upper haze (UH) of Venus is variable on the order of days and it is populated by two particle modes. We use a 1D microphysics and vertical transport model based on the Community Aerosol and Radiation Model for Atmospheres to evaluate whether interaction of upwelled cloud particles and sulfuric acid particles nucleated in situ on meteoric dust are able to generate the two size modes and whether their observed variability are due to cloud top vertical transient winds. Nucleation of photochemically produced sulfuric acid onto polysulfur condensation nuclei generates mode 1 cloud droplets that then diffuse upwards into the UH. Droplets generated in the UH from nucleation of sulfuric acid onto meteoric dust coagulate with the upwelled cloud particles and cannot reproduce the observed bimodal size distribution. The mass transport enabled by cloud top transient winds are able to generate a bimodal size distribution in a time scale consistent with observations. Sedimentation and convection in the middle and lower...

  5. Sonic Enhanced Ash Agglomeration and Sulfur Capture. Technical progress report, July 1993--September 1993

    SciTech Connect (OSTI)

    Not Available

    1993-12-31T23:59:59.000Z

    A major concern with the utilization of coal in directly fired gas turbines is the control of particulate emissions and reduction of sulfur dioxide, and alkali vapor from combustion of coal, upstream of the gas turbine. Much research and development has been sponsored on methods for particulate emissions control and the direct injection of calcium-based sorbents to reduce SO{sub 2} emission levels. The results of this research and development indicate that both acoustic agglomeration of particulates and direct injection of sorbents have the potential to become a significant emissions control strategy. The Sonic Enhanced Ash Agglomeration and Sulfur Capture program focuses upon the application of an MTCI proprietary invention (Patent No. 5,197,399) for simultaneously enhancing sulfur capture and particulate agglomeration of the combustor effluent. This application can be adapted as either a ``hot flue gas cleanup`` subsystem for the current concepts for combustor islands or as an alternative primary pulse combustor island in which slagging, sulfur capture, particulate agglomeration and control, and alkali gettering as well as NO{sub x} control processes become an integral part of the pulse combustion process. The goal of the program is to support the DOE mission in developing coal-fired combustion gas turbines. In particular, the MTCI proprietary process for bimodal ash agglomeration and simultaneous sulfur capture will be evaluated and developed. The technology embodiment of the invention provides for the use of standard grind, moderately beneficiated coal and WEM for firing the gas turbine with efficient sulfur capture and particulate emission control upstream of the turbine. The process also accommodates injection of alkali gettering material if necessary.

  6. The use of ethanol to remove sulfur from coal. Final report, September 1991--December 1992

    SciTech Connect (OSTI)

    Not Available

    1993-04-15T23:59:59.000Z

    In developing the new Ohio University procedure the thermodynamic limitations of the reactions for removal of both pyritic and organic sulfur from coal at 400--600{degrees}C were studied using copper as a very strong H{sub 2}S-acceptor. Copper serves as a catalyst for ethanol dehydrogenation to form nascent hydrogen. Copper also serves as a scavenger to form copper sulfide from the hydrogen sulfide evolved during the reaction. Copper sulfide in turn serves as a catalyst for organic sulfur hydrodesulfurization reactions. If the coal to be desulfurized contains pyrite (FeS{sub 2}) or FeS, the copper scavenger effect reduces any back reaction of hydrogen sulfide with the iron and increases the removal of sulfur from the carbonaceous material. The desired effect of using copper can be achieved by using copper or copper containing alloys as materials of construction or as liners for a regenerable reactor. During the time period that Ohio Coal Development Office supported this work, small scale (560 grams) laboratory experiments with coals containing about 3.5% sulfur have achieved up to 90% desulfurization at temperatures of 500{degrees}C when using a copper reactor. Results from the autoclave experiments have identified the nature of the chemical reactions taking place. Because the process removes both pyritic and organic sulfur in coal, the successful scale up of the process would have important economic significance to the coal industry. Even though this and other chemical processes may be relatively expensive and far from being commercial, the reason for further development is that this process may hold the promise of achieving much greater sulfur reduction and of producing a cleaner coal than other methods. This would be especially important for small or older power plants and industrial boilers.

  7. Toxicology Studies on Lewisite and Sulfur Mustard Agents: Modified Dominant Lethal Study of Sulfur Mustard in Rats Final Report

    SciTech Connect (OSTI)

    Sasser, L. B.; Cushing, J. A.; Kalkwarf, D. R.; Buschbom, R. L.

    1989-05-01T23:59:59.000Z

    Occupational health standards have not been established for sulfur mustard (HD) [bis{2-chloroethyl)-sulfide) ' a strong alkylating agent with known mutagenic properties. Little, however, is known about the mutagenic activity of HD in mammalian species and data regarding the dominant lethal effects of HD are ambiguous. The purpose of this study was to determine the dominant lethal effect in male and female rats orally exposed to HD. The study was conducted in two phases; a female dominant lethal phase and a male dominant lethal phase. Sprague-Dawley rats of each sex were administered 0.08, 0.20, or 0.50 mg/kg HD in sesame oil 5 days/week for 10 weeks. For the female phase, treated or untreated males were mated with treated females and their fetuses were evaluated at approximately 14 days after copulation. For the male dominant lethal phase, treated males cohabited with untreated femal (during 5 days of each week for 10 weeks) and females were sacrificed for fetal evaluation 14 days after the midweek of cohabitation during each of the 10 weeks. The appearance and behavior of the rats were unremarkable throughout the experiment and there were no treatment-related deaths. Growth rates were reduced in both female and male rats treated with 0.50 mg/kg HD. Indicators of reproductive performance did not demonstrate significant female dominant lethal effects, although significant male dominant lethal effects were observed at 2 and 3 week post-exposure. These effects included increases of early fetal resorptions and preimplantation losses and decreases of total live embryo implants. These effects were most consistently observed at a dose of 0.50 mg/kg, but frequently occurred at the lower doses. Although no treatment-related effects on male reproductive organ weights or sperm motility were found, a significant increase in the percentage of abnormal sperm was detected in males exposed to 0. 50 mg/kg HD. The timing of these effects is consistent with an effect during the postmeiotic stages of spermatogenesis, possibly involving the generally sensitive spermatids.

  8. Bioprocessing of High-sulfur Crudes Via Appliaction of Critical Fluid Biocatalysis

    SciTech Connect (OSTI)

    Ginosar, Daniel Michael; Bala, Greg Alan; Anderson, Raymond Paul; Fox, Sandra Lynn; Stanescue, Marina A.

    2002-05-01T23:59:59.000Z

    This experimental research project investigated protein-based biocatalysis in supercritical fluid solvents as an integrated process approach to catalyze the removal of sulfur atoms from crude oils and fuels. The work focused on the oxidation of model sulfur-containing compounds in supercritical reaction media and included three major tasks: microbiological induction experiments, proteincatalyzed biooxidation in supercritical solvents, and a work-in-kind cooperative research and development agreement (CRADA). This work demonstrated that the biooxidation reaction could be improved by an order-of-magnitude by carrying out the reaction in emulsions in supercritical fluids.

  9. Morbidity And Sulfur Dioxide: Evidence From French Strikes At Oil Refineries

    E-Print Network [OSTI]

    Matthew Neidell; Emmanuelle Lavaine

    2012-01-01T23:59:59.000Z

    This paper examines the impact of sulfur dioxide (SO2) in France on health outcomes at a census track level. To do so, we use recent strikes affecting oil refineries in France, in October 2010, as a natural experiment. Our work offers several contributions. We first show that a temporal shut down in the refining process leads to a reduction in sulfur dioxide concentration. We then use this narrow time frame exogenous shock to assess the impact of a change in air pollution concentration on respiratory outcomes. Our estimates suggest that daily variation in SO2 air pollution has economically significant health effects at levels below the current standard. 0

  10. Cathodic reduction of sulfur dioxide at porous, phthalocyanine-containing electrodes in nonaqueous electrolytes

    SciTech Connect (OSTI)

    Shembel', E.M.; Ksenzhek, O.S.; Danilova, N.P.; Shustov, V.A.

    1988-03-01T23:59:59.000Z

    Electrodes containing catalysts, particularly electrodes containing metal chelate compounds, were studied for their effect on reducing cathodic sulfur dioxide. The electrodes were prepared with an iron phthalocyanine polymer deposited onto activated carbon. Fluoropolymer dispersions was used as the binder and electrochemical studies were performed in a glove box under dry argon. Lithium perchlorate solution in propylene carbonate was used as the electrolyte solution. The results indicate that materials with high catalytic activity show promise in raising the discharge voltage in power sources of the lithium-sulfur dioxide system.

  11. Selective trace determination of sulfur and aluminum using charged particle activation analysis

    E-Print Network [OSTI]

    Burton, Terrence Dale

    1974-01-01T23:59:59.000Z

    for the characterization of ultra-pure materials. In a previous study ( 26) we had analyzed crude oil samples for their sulfur content using the reaction 3 S(p, oc ) P. P is a positron emitter with a half- 29 29 life of 4. . 2 seconds. The 0. 511 MeV gamma... gammas which tended to overload the detector, a lead absorber ( 2" thick) was used. A focused beam of 20 MeV protons was used for irradiating a pure sulfur pellet at very low beam currents (1 nano ampere) and the prompt 2. 23 MeV gamma ray...

  12. NO[sub x] reduction by sulfur tolerant coronal-catalytic apparatus and method

    DOE Patents [OSTI]

    Mathur, V.K.; Breault, R.W.; McLarnon, C.R.; Medros, F.G.

    1992-09-15T23:59:59.000Z

    This invention presents an NO[sub x] environment effective reduction apparatus comprising a sulfur tolerant coronal-catalyst such as high dielectric coronal-catalysts like glass wool, ceramic-glass wool or zirconium glass wool and method of use. In one embodiment the invention comprises an NO[sub x] reduction apparatus of sulfur tolerant coronal-catalyst adapted and configured for hypercritical presentation to an NO[sub x] bearing gas stream at a minimum of at least about 75 watts/cubic meter. 7 figs.

  13. NOx reduction by sulfur tolerant coronal-catalytic apparatus and method

    DOE Patents [OSTI]

    Mathur, V.K.; Breault, R.W.; McLarnon, C.R.; Medros, F.G.

    1993-08-31T23:59:59.000Z

    This invention presents an NO[sub x] environment effective reduction apparatus comprising a sulfur tolerant coronal-catalyst such as high dielectric coronal-catalysts like glass wool, ceramic-glass wool or zirconium glass wool and method of use. In one embodiment the invention comprises an NO[sub x] reduction apparatus of sulfur tolerant coronal-catalyst adapted and configured for hypercritical presentation to an NO[sub x] bearing gas stream at a minimum of at least about 75 watts/cubic meter.

  14. Preliminary analysis of patent trends for sodium/sulfur battery technology

    SciTech Connect (OSTI)

    Triplett, M.B.; Winter, C.; Ashton, W.B.

    1985-07-01T23:59:59.000Z

    This document summarizes development trends in sodium/sulfur battery technology based on data from US patents. Purpose of the study was to use the activity, timing and ownership of 285 US patents to identify and describe broad patterns of change in sodium/sulfur battery technology. The analysis was conducted using newly developed statistical and computer graphic techniques for describing technology development trends from patent data. This analysis suggests that for some technologies trends in patent data provide useful information for public and private R and D planning.

  15. Monte Carlo Simulations of Small Sulfuric Acid-Water Clusters S. M. Kathmann,* and B. N. Hale,*

    E-Print Network [OSTI]

    Hale, Barbara N.

    -to-liquid nucleation1-5 to acid rain formation6-8 and ozone depletion mechanisms.9-11 Doyle's early work2 predictedMonte Carlo Simulations of Small Sulfuric Acid-Water Clusters S. M. Kathmann,* and B. N. Hale§,* En Form: August 7, 2001 Effective atom-atom potentials are developed for binary sulfuric acid

  16. Uptake and Surface Reaction of Methanol by Sulfuric Acid Solutions Investigated by Vibrational Sum Frequency Generation and Raman Spectroscopies

    E-Print Network [OSTI]

    Uptake and Surface Reaction of Methanol by Sulfuric Acid Solutions Investigated by Vibrational SumVised Manuscript ReceiVed: June 4, 2008 The uptake of methanol at the air-liquid interface of 0-96.5 wt % sulfuric methanol and H2SO4 to form methyl hydrogen sulfate. The surface is saturated with the methyl species after

  17. Metal-dependent Fermi-level movement in the metal/sulfur-passivated InGaP contact

    E-Print Network [OSTI]

    Kim, Sehun

    Metal-dependent Fermi-level movement in the metal/sulfur-passivated InGaP contact Y. K. Kim formed on S-passivated n-InGaP 100 surface reveals that the species produced by the chemical reaction. The initial sulfur passivation of n-InGaP 100 surface efficiently reduced the gap states within the band gap

  18. History

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    convert infrared light to ultraviolet. Nova experiments provided confidence that a NIF-size laser could achieve thermonuclear ignition in a laboratory. Photo Number: NIF-1109-17878...

  19. history

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfires mayYuan T. Lee'sdefault Sign

  20. history

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysisDarby Dietrich5 |0/%2A0/%2Agtri |8/%2A en

  1. History

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football High SchoolBundles toHiring-TP59.01 C5;44 Network The

  2. ParaView at NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding access toTestPhysics LabInterconnection RiskMarch StudyParaView

  3. Chisolm View | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CER esDataset Country ChileDialogue,China:Chisolm View

  4. Write History! Strategies for Success A writing workshop for SFU History students, co-sponsored by the SFU History

    E-Print Network [OSTI]

    -sponsored by the SFU History Student Association and the Student Learning Commons. Critical Analysis "InterpretationWrite History! Strategies for Success A writing workshop for SFU History students, co a focused, limited topic. Don't try to do too much! Techniques for focusing include talking about the topic

  5. HYBRID SULFUR PROCESS REFERENCE DESIGN AND COST ANALYSIS

    SciTech Connect (OSTI)

    Gorensek, M.; Summers, W.; Boltrunis, C.; Lahoda, E.; Allen, D.; Greyvenstein, R.

    2009-05-12T23:59:59.000Z

    This report documents a detailed study to determine the expected efficiency and product costs for producing hydrogen via water-splitting using energy from an advanced nuclear reactor. It was determined that the overall efficiency from nuclear heat to hydrogen is high, and the cost of hydrogen is competitive under a high energy cost scenario. It would require over 40% more nuclear energy to generate an equivalent amount of hydrogen using conventional water-cooled nuclear reactors combined with water electrolysis compared to the proposed plant design described herein. There is a great deal of interest worldwide in reducing dependence on fossil fuels, while also minimizing the impact of the energy sector on global climate change. One potential opportunity to contribute to this effort is to replace the use of fossil fuels for hydrogen production by the use of water-splitting powered by nuclear energy. Hydrogen production is required for fertilizer (e.g. ammonia) production, oil refining, synfuels production, and other important industrial applications. It is typically produced by reacting natural gas, naphtha or coal with steam, which consumes significant amounts of energy and produces carbon dioxide as a byproduct. In the future, hydrogen could also be used as a transportation fuel, replacing petroleum. New processes are being developed that would permit hydrogen to be produced from water using only heat or a combination of heat and electricity produced by advanced, high temperature nuclear reactors. The U.S. Department of Energy (DOE) is developing these processes under a program known as the Nuclear Hydrogen Initiative (NHI). The Republic of South Africa (RSA) also is interested in developing advanced high temperature nuclear reactors and related chemical processes that could produce hydrogen fuel via water-splitting. This report focuses on the analysis of a nuclear hydrogen production system that combines the Pebble Bed Modular Reactor (PBMR), under development by PBMR (Pty.) Ltd. in the RSA, with the Hybrid Sulfur (HyS) Process, under development by the Savannah River National Laboratory (SRNL) in the US as part of the NHI. This work was performed by SRNL, Westinghouse Electric Company, Shaw, PBMR (Pty) Ltd., and Technology Insights under a Technical Consulting Agreement (TCA). Westinghouse Electric, serving as the lead for the PBMR process heat application team, established a cost-shared TCA with SRNL to prepare an updated HyS thermochemical water-splitting process flowsheet, a nuclear hydrogen plant preconceptual design and a cost estimate, including the cost of hydrogen production. SRNL was funded by DOE under the NHI program, and the Westinghouse team was self-funded. The results of this work are presented in this Final Report. Appendices have been attached to provide a detailed source of information in order to document the work under the TCA contract.

  6. BRIEF HISTORY OF FFAG ACCELERATORS.

    SciTech Connect (OSTI)

    RUGGIERO, A.

    2006-12-04T23:59:59.000Z

    Colleagues of mine have asked me few times why we have today so much interest in Fixed-Field Alternating-Gradient (FFAG) accelerators when these were invented a long time ago, and have always been ignored since then. I try here to give a reply with a short history of FFAG accelerators, at least as I know it. I take also the opportunity to clarify few definitions.

  7. NORTHWESTERN UNIVERSITY Department of Art History

    E-Print Network [OSTI]

    , the automobile and airplane alter the course of American art history? We deal with these questions and much moreAH_365 NORTHWESTERN UNIVERSITY Department of Art History AMERICAN ART FROM THE ANTEBELLUM ERA

  8. Diesel Emission Control -- Sulfur Effects (DECSE) Program; Phase I Interim Data Report No. 4: Diesel Particulate Filters -- Final Report

    SciTech Connect (OSTI)

    DOE; ORNL; NREL; EMA; MECA

    2000-01-15T23:59:59.000Z

    The Diesel Emission Control-Sulfur Effects (DECSE) is a joint government/industry program to determine the impact of diesel fuel sulfur levels on emission control systems whose use could lower emissions of nitrogen oxides (NOx) and particulate matter (PM) from on-highway trucks in the 2002--2004 model years. Phase 1 of the program was developed with the following objectives in mind: (1) evaluate the effects of varying the level of sulfur content in the fuel on the emission reduction performance of four emission control technologies; and (2) measure and compare the effects of up to 250 hours of aging on selected devices for multiple levels of fuel sulfur content. This is the fourth and final report for the DPF test program and covers the effect of diesel sulfur level on: a catalyzed diesel particulate filter (CDPF), and a continuously regenerating diesel particulate filter (CR-DPF).

  9. Development of bulk-type all-solid-state lithium-sulfur battery using LiBH{sub 4} electrolyte

    SciTech Connect (OSTI)

    Unemoto, Atsushi, E-mail: unemoto@imr.tohoku.ac.jp; Ikeshoji, Tamio [WPI-Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Yasaku, Syun; Matsuo, Motoaki [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Nogami, Genki; Tazawa, Masaru; Taniguchi, Mitsugu [Mitsubishi Gas Chemicals Co., Ltd., 182 Tayuhama Shinwari, Kita-ku, Niigata 950-3112 (Japan); Orimo, Shin-ichi [WPI-Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan)

    2014-08-25T23:59:59.000Z

    Stable battery operation of a bulk-type all-solid-state lithium-sulfur battery was demonstrated by using a LiBH{sub 4} electrolyte. The electrochemical activity of insulating elemental sulfur as the positive electrode was enhanced by the mutual dispersion of elemental sulfur and carbon in the composite powders. Subsequently, a tight interface between the sulfur-carbon composite and the LiBH{sub 4} powders was manifested only by cold-pressing owing to the highly deformable nature of the LiBH{sub 4} electrolyte. The high reducing ability of LiBH{sub 4} allows using the use of a Li negative electrode that enhances the energy density. The results demonstrate the interface modification of insulating sulfur and the architecture of an all-solid-state Li-S battery configuration with high energy density.

  10. BOSTON UNIVERSITY HISTORY OF ART & ARCHITECTURE

    E-Print Network [OSTI]

    Goldberg, Bennett

    BOSTON UNIVERSITY HISTORY OF ART & ARCHITECTURE GRADUATE PROGRAM 2012-2013 Information & Architecture College of Arts & Sciences 725 Commonwealth Avenue, Room 302 Boston, MA 02215 Tel: (617) 353 ..................................................................... 5 THE MA DEGREE IN HISTORY OF ART AND ARCHITECTURE ........................ 5 History of Art

  11. Better Buildings Network View | March 2015 | Department of Energy

    Energy Savers [EERE]

    Better Buildings Network View | March 2015 Better Buildings Network View | March 2015 The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's...

  12. The Better Buildings Neighborhood View -- December 2013 | Department...

    Office of Environmental Management (EM)

    The Better Buildings Neighborhood View -- December 2013 The Better Buildings Neighborhood View -- December 2013 The Better Buildings Neighborhood View monthly newsletter from the...

  13. Better Buildings Network View | November 2014 | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    November 2014 More Documents & Publications Better Buildings Network View | July-August 2014 Better Buildings Network View | December 2014 Better Buildings Network View | January...

  14. The Better Buildings Neighborhood View - August 2012 | Department...

    Energy Savers [EERE]

    The Better Buildings Neighborhood View - August 2012 The Better Buildings Neighborhood View - August 2012 The Better Buildings Neighborhood View monthly newsletter from the U.S....

  15. A novel mechanism and kinetic model to explain enhanced xylose yields from dilute sulfuric acid compared to hydrothermal pretreatment of corn stover

    E-Print Network [OSTI]

    California at Riverside, University of

    A novel mechanism and kinetic model to explain enhanced xylose yields from dilute sulfuric acid stover Dilute sulfuric acid Hydrothermal pretreatment Kinetic model Xylose a b s t r a c t Pretreatment of corn stover in 0.5% sulfuric acid at 160 °C for 40 min realized a maximum monomeric plus oligomeric

  16. JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 105, NO. Dl, PAGES 1387-1415, JANUARY 20,2000 Sulfur chelllistry in the National Center for

    E-Print Network [OSTI]

    Schwartz, Stephen E.

    Understanding the tropospheric sulfur cycle is impor- tant because of its contribution to acid rain and its effect on the Earth's radiation balance. The role of sulfuric acid in acid rain has been recognizedJOURNAL OF GEOPHYSICAL RESEARCH, VOL. 105, NO. Dl, PAGES 1387-1415, JANUARY 20,2000 Sulfur

  17. New Model to Predict Formation Damage due to Sulfur Deposition in Sour M.A. Mahmoud and A.A. Al-Majed, KFUPM, all SPE

    E-Print Network [OSTI]

    Al-Majed, Abdulaziz Abdullah

    in the reservoir will help in better management of sour gas reservoirs with potential sulfur deposition problems as a dissolved species in virtually all deep sour gas reservoirs. Sulfur precipitation is induced by a reductionSPE 149535 New Model to Predict Formation Damage due to Sulfur Deposition in Sour Gas Wells M

  18. Far-infrared spectroelectrochemistry: a study of linear molybdenum/iron/sulfur clusters

    E-Print Network [OSTI]

    Reid, Scott A.

    Far-infrared spectroelectrochemistry: a study of linear molybdenum/iron/sulfur clusters Michael D Received 7 June 2003; accepted 29 November 2003 Abstract The far-infrared spectroelectrochemistry of linear identical electro- chemical properties, allows one to observe solute bands in the 450-cm?1 region. The far-infrared

  19. Effects of sulfuric acid and nitrogen deposition on mineral nutrition of Picea abies (L.) Karst.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ecosystems, saplings have been sprayed with artificial acid rain, structured soil samples have been extractedEffects of sulfuric acid and nitrogen deposition on mineral nutrition of Picea abies (L.) Karst. B sites in the Fichtel- gebirge, and low fogwater pH (Trautner, 1989) of 2.2 indicate a high acid stress

  20. Sulfur Cycling in the Terrestrial Subsurface: Commensal Interactions, Spatial Scales, and Microbial Heterogeneity

    E-Print Network [OSTI]

    Grossman, Ethan L.

    Sulfur Cycling in the Terrestrial Subsurface: Commensal Interactions, Spatial Scales, and Microbial microbial processes in the terrestrial subsurface. Previous geochemical studies suggested that sulfide environment in shallow sediments (5 m), and produces acidic waters (pH 3.8) that are rich in sulfate (28 m

  1. Influence of transport and ocean ice extent on biogenic aerosol sulfur in the Arctic atmosphere

    E-Print Network [OSTI]

    Influence of transport and ocean ice extent on biogenic aerosol sulfur in the Arctic atmosphere S, such as methanesulfonic acid (MSA). This study examines relationships between changes in total sea ice extent north of 70. These results suggest that a decrease in seasonal ice cover influencing other mechanisms of DMS production could

  2. The variability of methane, nitrous oxide and sulfur hexafluoride in Northeast India*

    E-Print Network [OSTI]

    The variability of methane, nitrous oxide and sulfur hexafluoride in Northeast India* A.L. Ganesan Program on the Science and Policy of Global Change combines cutting-edge scientific research with independent policy analysis to provide a solid foundation for the public and private decisions needed

  3. Multilayer sulfur-resistant composite metal membranes and methods of making and repairing the same

    DOE Patents [OSTI]

    Way, J. Douglas; Hatlevik, Oyvind

    2014-07-15T23:59:59.000Z

    The invention relates to thin, hydrogen-permeable, sulfur-resistant membranes formed from multi-layers of palladium or palladium-alloy coatings on porous, ceramic or metal supports, methods of making these membranes, methods of repairing layers of these membranes and devices that incorporate these membranes.

  4. Remote Sensing of Ammonia and Sulfur Dioxide from On-Road Light

    E-Print Network [OSTI]

    Denver, University of

    ) or directly through adsorbed nitrogen and hydrogen atoms (11, 12). Ammonia emissions from tunnel studies have mea- surements than all other data combined. Sulfur compounds in gasoline combust in the engine to help facilitate the stringent 2007 diesel engine emission requirements. These reductions

  5. The influence of sulfur supplementation (methionine and sulfate) on the zinc availability

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    availability of a poor diet in sheep M Lamand, C Lab, M Mignon, JC Tressol INRA, Laboratoire des Maladies availability in lambs. Increasing the sulfur level with methionine and sulfate, of such a diet, enhances zinc absorption. However, sul- fur is not the only factor limiting zinc availability in a hypoproteic diet. zinc

  6. Attrition resistant, zinc titanate-containing, reduced sulfur sorbents and methods of use thereof

    DOE Patents [OSTI]

    Vierheilig, Albert A.; Gupta, Raghubir P.; Turk, Brian S.

    2006-06-27T23:59:59.000Z

    Reduced sulfur gas species (e.g., H.sub.2S, COS and CS.sub.2) are removed from a gas stream by compositions wherein a zinc titanate ingredient is associated with a metal oxide-aluminate phase material in the same particle species. Nonlimiting examples of metal oxides comprising the compositions include magnesium oxide, zinc oxide, calcium oxide, nickel oxide, etc.

  7. Co-firing high sulfur coal with refuse derived fuels. Final report

    SciTech Connect (OSTI)

    Pan, W.P.; Riley, J.T.; Lloyd, W.G.

    1997-11-30T23:59:59.000Z

    This project was designed to evaluate the combustion performance of and emissions from a fluidized bed combustor during the combustion of mixtures of high sulfur and/or high chlorine coals and municipal solid waste (MSW). The project included four major tasks, which were as follows: (1) Selection, acquisition, and characterization of raw materials for fuels and the determination of combustion profiles of combination fuels using thermal analytical techniques; (2) Studies of the mechanisms for the formation of chlorinated organics during the combustion of MSW using a tube furnace; (3) Investigation of the effect of sulfur species on the formation of chlorinated organics; and (4) Examination of the combustion performance of combination fuels in a laboratory scale fluidized bed combustor. Several kinds of coals and the major combustible components of the MSW, including PVC, newspaper, and cellulose were tested in this project. Coals with a wide range of sulfur and chlorine contents were used. TGA/MS/FTIR analyses were performed on the raw materials and their blends. The possible mechanism for the formation of chlorinated organics during combustion was investigated by conducting a series of experiments in a tube furnace. The effect of sulfur dioxide on the formation of molecular chlorine during combustion processes was examined in this study.

  8. Posting type Advisory Subject Varying bias of XRF sulfur relative to IC sulfate

    E-Print Network [OSTI]

    Fischer, Emily V.

    Posting type Advisory Subject Varying bias of XRF sulfur relative to IC sulfate Module/Species A of evidence point to XRF measurement bias as the source of most of the observed variation. Figure 1 shows that was offset by two abrupt increases, each coming at the start of a new sample month. The XRF analyses, unlike

  9. Sorbent utilization prediction methodology: sulfur control in fluidized-bed combustors

    SciTech Connect (OSTI)

    Fee, D.C.; Wilson, W.I.; Shearer, J.A.; Smith, G.W.; Lenc, J.F.; Fan, L.S.; Myles, K.M.; Johnson, I.

    1980-09-01T23:59:59.000Z

    The United States Government has embarked on an ambitious program to develop and commercialize technologies to efficiently extract energy from coal in an environmentally acceptable manner. One of the more promising new technologies for steam and power generation is the fluidized-bed combustion of coal. In this process, coal is burned in a fluidized bed composed mainly of calcined limestone sorbent. The calcium oxide reacts chemically to capture the sulfur dioxide formed during the combustion and to maintain the stack gas sulfur emissions at acceptable levels. The spent sulfur sorbent, containing calcium sulfate, is a dry solid that can be disposed of along with coal ash or potentially used. Other major advantages of fluidized-bed combustion are the reduction in nitrogen oxide emissions because of the relatively low combustion temperatures, the capability of burning wide varieties of fuel, the high carbon combustion efficiencies, and the high heat-transfer coefficients. A key to the widespread commercialization of fluidized-bed technology is the ability to accurately predict the amount of sulfur that will be captured by a given sorbent. This handbook meets this need by providing a simple, yet reliable, user-oriented methodology (the ANL method) that allows performance of a sorbent to be predicted. The methodology is based on only three essential sorbent parameters, each of which can be readily obtained from standardized laboratory tests. These standard tests and the subsequent method of data reduction are described in detail.

  10. Structural and Functional Studies on Human Mitochondrial Iron-Sulfur Cluster Biosynthesis

    E-Print Network [OSTI]

    Tsai, Chi-Lin

    2012-07-16T23:59:59.000Z

    Iron-sulfur (Fe-S) clusters are critical protein cofactors found in all life forms. In eukaryotes, a well-conserved biosynthetic pathway located in the mitochondria is used to assemble Fe-S clusters. Although proteins required for Fe-S cluster...

  11. Rare sulfur and triple oxygen isotope geochemistry of volcanogenic sulfate aerosols

    E-Print Network [OSTI]

    Bindeman, Ilya N.

    Rare sulfur and triple oxygen isotope geochemistry of volcanogenic sulfate aerosols I.N. Bindeman a of Technology, Pasadena, CA, USA c Department of Earth and Planetary Sciences, McGill University, Montreal, Que., Canada d Department of Geology and Earth System Science Interdisciplinary Center, University of Maryland

  12. american history cluster: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Abolmaesumi, Purang 2 History of Science North American Environmental History Environmental Sciences and Ecology Websites Summary: History of Science North American...

  13. architectural history: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IN HISTORY OF ART AND ARCHITECTURE ... 5 History of Art Goldberg, Bennett 3 History of Art and Architecture: Sample Pathway Engineering Websites Summary:...

  14. Cosmology: a bird's eye view

    E-Print Network [OSTI]

    Alan A. Coley; Sigbjorn Hervik; Woei Chet Lim

    2006-05-15T23:59:59.000Z

    In this essay we discuss the difference in views of the Universe as seen by two different observers. While one of the observers follows a geodesic congruence defined by the geometry of the cosmological model, the other observer follows the fluid flow lines of a perfect fluid with a linear equation of state. We point out that the information these observers collect regarding the state of the Universe can be radically different; while one observes a non-inflating ever-expanding ever-lasting universe, the other observer can experience a dynamical behaviour reminiscent to that of quintessence or even that of a phantom cosmology leading to a 'big rip' singularity within finite time (but without the need for exotic forms of matter).

  15. Journal of Astronomical History and Heritage, 7: 53-56 (2004) The IAU Historic Radio Astronomy Working Group.

    E-Print Network [OSTI]

    Groppi, Christopher

    2004-01-01T23:59:59.000Z

    Journal of Astronomical History and Heritage, 7: 53-56 (2004) The IAU Historic Radio Astronomy General Assembly in Sydney, with a view to: (1) assembling a master list of surviving historically. Early observations of the H-line in Sydney. #12;IAU Historic Radio Astronomy WG Report #1 54 Murray, J

  16. Selective Catalytic Oxidation of Hydrogen Sulfide to Elemental Sulfur from Coal-Derived Fuel Gases

    SciTech Connect (OSTI)

    Gardner, Todd H.; Berry, David A.; Lyons, K. David; Beer, Stephen K.; Monahan, Michael J.

    2001-11-06T23:59:59.000Z

    The development of low cost, highly efficient, desulfurization technology with integrated sulfur recovery remains a principle barrier issue for Vision 21 integrated gasification combined cycle (IGCC) power generation plants. In this plan, the U. S. Department of Energy will construct ultra-clean, modular, co-production IGCC power plants each with chemical products tailored to meet the demands of specific regional markets. The catalysts employed in these co-production modules, for example water-gas-shift and Fischer-Tropsch catalysts, are readily poisoned by hydrogen sulfide (H{sub 2}S), a sulfur contaminant, present in the coal-derived fuel gases. To prevent poisoning of these catalysts, the removal of H{sub 2}S down to the parts-per-billion level is necessary. Historically, research into the purification of coal-derived fuel gases has focused on dry technologies that offer the prospect of higher combined cycle efficiencies as well as improved thermal integration with co-production modules. Primarily, these concepts rely on a highly selective process separation step to remove low concentrations of H{sub 2}S present in the fuel gases and produce a concentrated stream of sulfur bearing effluent. This effluent must then undergo further processing to be converted to its final form, usually elemental sulfur. Ultimately, desulfurization of coal-derived fuel gases may cost as much as 15% of the total fixed capital investment (Chen et al., 1992). It is, therefore, desirable to develop new technology that can accomplish H{sub 2}S separation and direct conversion to elemental sulfur more efficiently and with a lower initial fixed capital investment.

  17. ARM - Climate Change Through History

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492air Comments? We would love to heargovInstrumentstdma Comments?History Organization ParticipantsChange

  18. FTCP History | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan| Department of.pdf6-OPAM FLASH2011-16-OPAMYoung,02,Conference CallHistory

  19. Our History | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732onMake YourDepartmentChart OrganizationalDependence onHistory

  20. Our History | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding access toTest andOptimize carbonOther FileDustyOur History Ames

  1. history | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfires mayYuan T. Lee'sdefault Signhistory History In 2010, NETL

  2. A Brief History of CAMS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science,SpeedingWu,IntelligenceYou are70 Years ofA Brief History of CAMS

  3. Analyzing organic sulfur in coal/char: Integrated mild gasification/XANES methods. Technical report, 1 March--31 May 1994

    SciTech Connect (OSTI)

    Palmer, S.R. [Southern Illinois Univ., Carbondale, IL (United States). Dept. of Mechanical Engineering and Energy Processes; Huffman, G.P. [Kentucky Univ., Lexington, KY (United States)

    1994-09-01T23:59:59.000Z

    The overall goal of this study is to improve the understanding of sulfur in coals/chars via the use of combined advanced non-destructive and advanced destructive methods of sulfur analysis. This study combines selective oxidation, analytical pyrolysis, and sulfur X-ray Absorption Near Edge Structure Spectroscopy (XANES) analysis. Samples with a wide variety of sulfur contents, (0.63% to 4.40%) have been prepared for use in this study. This includes steam gasification chars, oxidized coals and desulfurized coals as well of the original unaltered coals. Mild pyrolysis and preliminary XANES data shows that the sulfur chemistry of gasification chars is significantly different from that of the original coals. Mild pyrolysis of the samples that were oxidized with peroxyacetic acid showed that the level of simple thiophene structures observed in the pyrolysis products declines with increasing levels of oxidation. Sulfur XANES spectra of treated samples showed various effects depending on the treatment severity. For the less severely treated samples (demineralization and solvent extraction), the XANES spectra were similar, although not identical, to the untreated coal spectra, whereas the more severe treatments (steam at 450 C; peroxyacetic acid at 25 C) showed preferential oxidation of one or more sulfur-bearing phases in the original coal. Additional samples have recently been examined by XANES and W-band EPR and the data is currently being processed and evaluated.

  4. Better Buildings Network View | May 2014 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    May 2014 More Documents & Publications Better Buildings Network View | July-August 2014 Better Buildings Network View | June...

  5. ancient evolutionary history: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    typical Espeland, Marianne 2 History Ancient, Mediaeval, Modern, Scottish Environmental Sciences and Ecology Websites Summary: 104 History- Ancient, Mediaeval, Modern,...

  6. Regenerative process and system for the simultaneous removal of particulates and the oxides of sulfur and nitrogen from a gas stream

    DOE Patents [OSTI]

    Cohen, M.R.; Gal, E.

    1993-04-13T23:59:59.000Z

    A process and system are described for simultaneously removing from a gaseous mixture, sulfur oxides by means of a solid sulfur oxide acceptor on a porous carrier, nitrogen oxides by means of ammonia gas and particulate matter by means of filtration and for the regeneration of loaded solid sulfur oxide acceptor. Finely-divided solid sulfur oxide acceptor is entrained in a gaseous mixture to deplete sulfur oxides from the gaseous mixture, the finely-divided solid sulfur oxide acceptor being dispersed on a porous carrier material having a particle size up to about 200 microns. In the process, the gaseous mixture is optionally pre-filtered to remove particulate matter and thereafter finely-divided solid sulfur oxide acceptor is injected into the gaseous mixture.

  7. Enhanced Elemental Mercury Removal from Coal-fired Flue Gas by Sulfur-chlorine Compounds

    SciTech Connect (OSTI)

    Chang, Shih-Ger; Yan, Nai-Qiang; Qu, Zan; Chi, Yao; Qiao, Shao-Hua; Dod, Ray; Chang, Shih-Ger; Miller, Charles

    2008-07-02T23:59:59.000Z

    Oxidation of Hg0 with any oxidant or converting it to a particle-bound form can facilitate its removal. Two sulfur-chlorine compounds, sulfur dichloride (SCl2) and sulfur monochloride (S2Cl2), were investigated as oxidants for Hg0 by gas phase reaction and by surface-involved reactions in the presence of flyash or activated carbon. The gas phase reaction rate constants between Hg0 and the sulfur/chlorine compounds were determined, and the effects of temperature and the main components in flue gases were studied. The gas phase reaction between Hg0 and SCl2 is shown to be more rapid than the gas phase reaction with chlorine, and the second order rate constant was 9.1(+-0.5) x 10-18 mL-molecules-1cdots-1 at 373oK. Nitric oxide (NO) inhibited the gas phase reaction of Hg0 with sulfur-chlorine compounds. The presence of flyash or powdered activated carbon in flue gas can substantially accelerate the reaction. The predicted Hg0 removal is about 90percent with 5 ppm SCl2 or S2Cl2 and 40 g/m3 of flyash in flue gas. The combination of activated carbon and sulfur-chlorine compounds is an effective alternative. We estimate that co-injection of 3-5 ppm of SCl2 (or S2Cl2) with 2-3 Lb/MMacf of untreated Darco-KB is comparable in efficiency to the injection of 2-3 Lb/MMacf Darco-Hg-LH. Extrapolation of kinetic results also indicates that 90percent of Hg0 can be removed if 3 Lb/MMacf of Darco-KB pretreated with 3percent of SCl2 or S2Cl2 is used. Unlike gas phase reactions, NO exhibited little effect on Hg0 reactions with SCl2 or S2Cl2 on flyash or activated carbon. Mercuric sulfide was identified as one of the principal products of the Hg0/SCl2 or Hg0/S2Cl2 reactions. Additionally, about 8percent of SCl2 or S2Cl2 in aqueous solutions is converted to sulfide ions, which would precipitate mercuric ion from FGD solution.

  8. MyRED Mobiles Student Views

    E-Print Network [OSTI]

    Farritor, Shane

    tap on Shopping Cart, then select term. Tap on Class Search to find courses to place in your shoppingMyRED Mobiles Student Views Mar 2014 Page 1 Login/Sign-in Enter your MyRED /TrueYou credentials. Tap on any Term bar to view a schedule for the selected term. Home Screen/Main Menu Class Schedule

  9. 1 Introduction 4 1.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . *

    E-Print Network [OSTI]

    Martin, Alain

    Contents 1 Introduction 4 1.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . * * 4 1.1.1 Early Experimental Work . . . . . . . . . . . . . . . . 4 1.2 Structure of This Paper

  10. Residential Exchange History Fact Sheet - June 2007

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    history of BPA's Residential Exchange Program June 2007 F rom its start, the Residential Exchange Program (REP) has been a source of nearly continuous controversy. Its roots go...

  11. Another Map, another History, another Modernity

    E-Print Network [OSTI]

    Chambers, Iain Michael

    2010-01-01T23:59:59.000Z

    Buck-Morss, Susan. Hegel, Haiti, and Universal History.Modernity Disavowed. Haiti and the Cultures of Slavery inbetween Hegel and Haiti, between European idealist

  12. Lubricant oil consumption effects on diesel exhaust ash emissions using a sulfur dioxide trace technique and thermogravimetry

    E-Print Network [OSTI]

    Plumley, Michael J

    2005-01-01T23:59:59.000Z

    A detailed experimental study was conducted targeting lubricant consumption effects on ,diesel exhaust ash levels using a model year 2002 5.9L diesel engine, high and low Sulfur commercial lubricants, and clean diesel ...

  13. The Development of Warm Gas Cleanup Technologies for the Removal of Sulfur Containing Species from Steam Hydrogasification

    E-Print Network [OSTI]

    Luo, Qian

    2012-01-01T23:59:59.000Z

    S.P Chan, J. M Norbeck, Steam hydrogasification of coal-woodet al. , Sulfur-deactivated steam reforming of gasifiedPark, S.P. Singh, J.M. Norbeck, Steam hydrogasification of

  14. Refined understanding of sulfur amino acid nutrition in hybrid striped bass, Morone chrysops (male symbol) x M. saxatilis (female symbol)

    E-Print Network [OSTI]

    Kelly, Mark Christopher

    2005-08-29T23:59:59.000Z

    Previous studies have indicated the level of total sulfur amino acids (TSAA) (methionine + cystine) is most limiting in practical diet formulations for hybrid striped bass (HSB), especially if animal feedstuffs are replaced with plant feedstuffs...

  15. The development of autocatalytic structural materials for use in the sulfur-iodine process for the production of hydrogen

    E-Print Network [OSTI]

    Miu, Kevin (Kevin K.)

    2006-01-01T23:59:59.000Z

    The Sulfur-Iodine Cycle for the thermochemical production of hydrogen offers many benefits to traditional methods of hydrogen production. As opposed to steam methane reforming - the most prevalent method of hydrogen ...

  16. SO[subscript 2] photolysis as a source for sulfur mass-independent isotope signatures in stratospehric aerosols

    E-Print Network [OSTI]

    Jiang, B.

    Signatures of sulfur isotope mass-independent fractionation (S-MIF) have been observed in stratospheric sulfate aerosols deposited in polar ice. The S-MIF signatures are thought to be associated with stratospheric ...

  17. 1300 Federal Register / Vol. 67, No. 7 / Thursday, January 10, 2002 / Rules and Regulations determining sulfur content in fuel for

    E-Print Network [OSTI]

    1300 Federal Register / Vol. 67, No. 7 / Thursday, January 10, 2002 / Rules and Regulations sampling and analysis for sulfur content under subpart GG for stationary gas turbines that combust pipeline; Atlantic Large Whale Take Reduction Plan Regulation

  18. Feasibility of reconstructing paleoatmospheric records of selected alkanes, methyl halides, and sulfur gases from Greenland ice cores

    E-Print Network [OSTI]

    Aydin, M.; Williams, M. B; Saltzman, E. S

    2007-01-01T23:59:59.000Z

    firn and ice at Summit, Greenland, J. Geophys. Res. , 98,AL. : TRACE GASES IN GREENLAND ICE CORE . Andreae Kettle,and sulfur gases from Greenland ice cores M. Aydin, 1 M. B.

  19. Control of Sulfur Dioxide Emissions from Pulverized Coal-Fired Boilers by Dry Removal with Lime and Limestone Sorbants

    E-Print Network [OSTI]

    Schwartz, M. H.

    1979-01-01T23:59:59.000Z

    pulverized coal-fired boiler equipment. These are: (1) coal cleaning to remove pyritic sulfur, (2) conventional wet, nonregenerable scrubbing with alkaline slurry and solution processes, and (3) dry processes which involve direct introduction of lime...

  20. An In-Situ Photometric and Energy Analysis of a Sulfur LampLighting System

    SciTech Connect (OSTI)

    Crawford, Doug; Gould, Carl; Packer, Michael; Rubinstein,Francis; Siminovitch, Michael

    1995-06-01T23:59:59.000Z

    This paper describes the results of a photometric and energy analysis that was conducted on a new light guide and sulfur lamp system recently installed at the U.S. Department of Energy's Forrestal Building. This novel system couples two high lumen output, high efficiency sulfur lamps to a single 73 m (240 ft.) hollow light guide lined with a reflective prismatic film. The system lights a large roadway and plaza area that lies beneath a section of the building. It has been designed to completely replace the grid of 280 mercury vapor lamps formerly used to light the space. This paper details the results of a field study that characterizes the significant energy savings and increased illumination levels that have been achieved. Comparisons to modeled HID lighting scenarios are also included.

  1. Iron distribution among phases in high- and low-sulfur coal fly ash

    SciTech Connect (OSTI)

    Hower, J.C.; Graham, U.M.; Rathbone, R.F. [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research; Dyar, M.D.; Taylor, M.E. [West Chester Univ., PA (United States). Dept. of Geology and Astronomy

    1995-12-31T23:59:59.000Z

    Moessbauer spectroscopy, reflected-light optical microscopy, scanning-electron microscopy, wet chemical, and X-ray diffraction studies were conducted on six fly ash samples. The fly ashes, representing the combustion by-products of coals with total sulfur contents of less than 2% to greater than 4%, ranged from 17.6 to 32.0% Fe{sub 2}O{sub 3} by XRF analysis. Wet chemical analysis was used to determine the Fe{sup 3+}/{summation}Fe content of the ashes, which ranged from 72% to 83%. Optical analysis of the ashes indicated that the spinel, encompassing iron oxides of various compositions, ranges from 4.0 to 12.6% (vol.). Moessbauer analyses confirmed the presence of three Fe-bearing phases: magnetite, hematite (possibly of two different compositions), and glass. The variation in the Fe-oxidation state follows the variation in the sulfur, consequently pyrite, content of the feed coal.

  2. Sodium/sulfur battery engineering for stationary energy storage. Final report

    SciTech Connect (OSTI)

    Koenig, A.; Rasmussen, J. [Silent Power, Inc., Salt Lake City, UT (United States)

    1996-04-01T23:59:59.000Z

    The use of modular systems to distribute power using batteries to store off-peak energy and a state of the art power inverter is envisioned to offer important national benefits. A 4-year, cost- shared contract was performed to design and develop a modular, 300kVA/300-kWh system for utility and customer applications. Called Nas-P{sub AC}, this system uses advanced sodium/sulfur batteries and requires only about 20% of the space of a lead-acid-based system with a smaller energy content. Ten, 300-VDC, 40-kWh sodium/sulfur battery packs are accommodated behind a power conversion system envelope with integrated digital control. The resulting design facilities transportation, site selection, and deployment because the system is quiet and non-polluting, and can be located in proximity to the load. This report contains a detailed description of the design and supporting hardware development performed under this contract.

  3. ZnO-based regenerable sulfur sorbents for fluid-bed/transport reactor applications

    DOE Patents [OSTI]

    Slimane, Rachid B.; Abbasian, Javad; Williams, Brett E.

    2004-09-21T23:59:59.000Z

    A method for producing regenerable sulfur sorbents in which a support material precursor is mixed with isopropanol and a first portion of deionized water at an elevated temperature to form a sol mixture. A metal oxide precursor comprising a metal suitable for use as a sulfur sorbent is dissolved in a second portion of deionized water, forming a metal salt solution. The metal salt solution and the sol mixture are mixed with a sol peptizing agent while heating and stirring, resulting in formation of a peptized sol mixture. The metal oxide precursor is dispersed substantially throughout the peptized sol mixture, which is then dried, forming a dry peptized sol mixture. The dry peptized sol mixture is then calcined and the resulting calcined material is then converted to particles.

  4. Update on sulfur compound distribution in NGL: Plant test data GPA Section A committee, plant design

    SciTech Connect (OSTI)

    Harryman, J.M. [Shell Oil Co., Houston, TX (United States); Smith, B. [Texaco E and P Inc., Tulsa, OK (United States)

    1996-12-31T23:59:59.000Z

    The mystery of why sulfur compounds could never be balanced from analyses of the product streams of NGL fractionation towers was solved by analyzing the data collected during testing completed by GPA Technical Section A in November and December of 1993 at Texaco`s Eunice, New Mexico fractionation plant. Decomposition of dimethyl disulfide (DMDS) to form methyl mercaptan within the towers is the cause of the sulfur balance discrepancies explained in the paper. The results of testing were reported to the 1994 convention, but at the time, a few weeks after completion of testing, the chemistry was not understood, i.e., what is the source of the hydrogen required to complete the formation of methyl mercaptan. This paper is an update of the previous paper and it includes the DMDS decomposition chemistry. It is essentially the body of a report completed in early 1995, excluding the Appendix of data. The 66-page Appendix may be obtained from the GPA, Tulsa.

  5. Co-firing high sulfur coal with refuse derived fuels. Quarterly report, October - December 1996

    SciTech Connect (OSTI)

    Pan, W.-P.; Riley, J.T.; Lloyd, W.G.

    1996-12-01T23:59:59.000Z

    The objectives of this quarter of study on the co-firing of high sulfur coal with refuse derived fuels project were two-fold. First, the effect of S0{sub 2} on the formation of chlorine during combustion processes was examined. To simulate the conditions used in the AFBC system, experiments were conducted in a quartz tube in an electrically heated furnace. The principle analytical technique used for identification of the products from this study was GC/MS. The evolved gas was trapped by an absorbent and analyzed with a GC/MS system. The preliminary results indicate an inhibiting effect of S0{sub 2} on the Deacon Reaction. Secondly, information on the evolution of chlorine, sulfur and organic compounds from coals 95031 and 95011 were studied with the AFBC system. 2 figs., 1 tab.

  6. Controls on the sulfur cycle in estuarine sediments on the Central Texas coast

    E-Print Network [OSTI]

    Thomson, Heather

    2009-06-02T23:59:59.000Z

    volatile sulfides (AVS). TRS does not include elemental sulfur and organic sulfur which are usually at minor concentrations compared to TRS. AVS is part of TRS and has been often considered to be simply solid FeS (mackinawite). However, AVS may also....80 28.49 29.61 92 0.853 Fall Summer 1.00 41.80 30.52 83 0.887 Fall 1.12 35.48 21.57 67 0.724 Summer 1.13 36.81 29.83 15 0.494 Fall 0.91 37.21 22.76 28 0.589 Summer 1.65 0.94 28.15 61 0.634 Fall 0.7 1.51 21.84 23 0.455 Summer 1.18 7.6 27.72 90 0.787 Fall...

  7. Chromatic acclimation and population dynamics of green sulfur bacteria grown with spectrally tailored light

    E-Print Network [OSTI]

    Saikin, Semion K; Huh, Joonsuk; Hannout, Moataz; Wang, Yaya; Zare, Farrokh; Aspuru-Guzik, Alan; Tang, Joseph Kuo-Hsiang

    2014-01-01T23:59:59.000Z

    Living organisms have to adjust to their surrounding in order to survive in stressful conditions. We study this mechanism in one of most primitive creatures - photosynthetic green sulfur bacteria. These bacteria absorb photons very efficiently using the chlorosome antenna complexes and perform photosynthesis in extreme low-light environments. How the chlorosomes in green sulfur bacteria are acclimated to the stressful light conditions, for instance, if the spectrum of light is not optimal for absorption, is unknown. Studying Chlorobaculum tepidum cultures with far-red to near-infrared light-emitting diodes, we found that these bacteria react to changes in energy flow by regulating the amount of light-absorbing pigments and the size of the chlorosomes. Surprisingly, our results indicate that the bacteria can survive in near-infrared lights capturing low-frequency photons by the intermediate units of the light-harvesting complex. The latter strategy may be used by the species recently found near hydrothermal ve...

  8. Groundwater Modeling in ArcView: by integrating ArcView, MODFLOW and

    E-Print Network [OSTI]

    Sengupta, Raja

    Groundwater Modeling in ArcView: by integrating ArcView, MODFLOW and MODPATH Abstract Modeling. This paper addresses groundwater modeling which is one of the many entities in environmental modeling in ArcView 3.2a. The objective was to create an integrated system where a user could do groundwater

  9. Honors Enrichment Contracts Faculty View Page 1 Honors Enrichment Contracts Faculty View

    E-Print Network [OSTI]

    Honors Enrichment Contracts Faculty View Page 1 Honors Enrichment Contracts Faculty View INITIAL APPROVAL #12;Honors Enrichment Contracts Faculty View Page 2 Summary This document contains information about how to make initial and final decisions on Honors Enrichment Contracts submitted by honors

  10. Near-frictionless carbon coatings for use in fuel injectors and pump systems operating with low-sulfur diesel fuels

    SciTech Connect (OSTI)

    Erdemir, A.; Ozturk, O.; Alzoubi, M.; Woodford, J.; Ajayi, L.; Fenske, G.

    2000-01-19T23:59:59.000Z

    While sulfur in diesel fuels helps reduce friction and prevents wear and galling in fuel pump and injector systems, it also creates environmental pollution in the form of hazardous particulates and SO{sub 2} emissions. The environmental concern is the driving force behind industry's efforts to come up with new alternative approaches to this problem. One such approach is to replace sulfur in diesel fuels with other chemicals that would maintain the antifriction and antiwear properties provided by sulfur in diesel fuels while at the same time reducing particulate emissions. A second alternative might be to surface-treat fuel injection parts (i.e., nitriding, carburizing, or coating the surfaces) to reduce or eliminate failures associated with the use of low-sulfur diesel fuels. This research explores the potential usefulness of a near-frictionless carbon (NFC) film developed at Argonne National Laboratory in alleviating the aforementioned problems. The lubricity of various diesel fuels (i.e., high-sulfur, 500 ppm; low sulfur, 140 ppm; ultra-clean, 3 ppm; and synthetic diesel or Fischer-Tropsch, zero sulfur) were tested by using both uncoated and NFC-coated 52100 steel specimens in a ball-on-three-disks and a high-frequency reciprocating wear-test rig. The test program was expanded to include some gasoline fuels as well (i.e., regular gasoline and indolene) to further substantiate the usefulness of the NFC coatings in low-sulfur gasoline environments. The results showed that the NFC coating was extremely effective in reducing wear and providing lubricity in low-sulfur or sulfur-free diesel and gasoline fuels. Specifically, depending on the wear test rig, test pair, and test media, the NFC films were able to reduce wear rates of balls and flats by factors of 8 to 83. These remarkable reductions in wear rates raise the prospect for using the ultra slick carbon coatings to alleviate problems that will be caused by the use of low sulfur diesel and gasoline fuels. Surfaces of the wear scars and tracks were characterized by optical and scanning electron microscopy, and by Raman spectroscopy.

  11. Sulfur Iodine Process Summary for the Hydrogen Technology Down-Selection

    SciTech Connect (OSTI)

    Benjamin Russ

    2009-05-01T23:59:59.000Z

    This report summarizes the sulfur-iodine (SI) thermochemical water splitting process for the purpose of supporting the process for evaluating and recommending a hydrogen production technology to deploy with the Next Generation Nuclear Plant (NGNP). This package provides the baseline process description as well as a comparison with the process as it was implemented in the Integrated Lab Scale (ILS) experiment conducted at General Atomics from 2006-2009.

  12. EVALUATION OF PROTON-CONDUCTING MEMBRANES FOR USE IN A SULFUR-DIOXIDE DEPOLARIZED ELECTROLYZER

    SciTech Connect (OSTI)

    Hobbs, D.; Elvington, M.; Colon-Mercado, H.

    2009-11-11T23:59:59.000Z

    The chemical stability, sulfur dioxide transport, ionic conductivity, and electrolyzer performance have been measured for several commercially available and experimental proton exchange membranes (PEMs) for use in a sulfur dioxide depolarized electrolyzer (SDE). The SDE's function is to produce hydrogen by using the Hybrid Sulfur (HyS) Process, a sulfur based electrochemical/thermochemical hybrid cycle. Membrane stability was evaluated using a screening process where each candidate PEM was heated at 80 C in 60 wt. % H{sub 2}SO{sub 4} for 24 hours. Following acid exposure, chemical stability for each membrane was evaluated by FTIR using the ATR sampling technique. Membrane SO{sub 2} transport was evaluated using a two-chamber permeation cell. SO{sub 2} was introduced into one chamber whereupon SO{sub 2} transported across the membrane into the other chamber and oxidized to H{sub 2}SO{sub 4} at an anode positioned immediately adjacent to the membrane. The resulting current was used to determine the SO{sub 2} flux and SO{sub 2} transport. Additionally, membrane electrode assemblies (MEAs) were prepared from candidate membranes to evaluate ionic conductivity and selectivity (ionic conductivity vs. SO{sub 2} transport) which can serve as a tool for selecting membranes. MEAs were also performance tested in a HyS electrolyzer measuring current density versus a constant cell voltage (1V, 80 C in SO{sub 2} saturated 30 wt% H2SO{sub 4}). Finally, candidate membranes were evaluated considering all measured parameters including SO{sub 2} flux, SO{sub 2} transport, ionic conductivity, HyS electrolyzer performance, and membrane stability. Candidate membranes included both PFSA and non-PFSA polymers and polymer blends of which the non-PFSA polymers, BPVE-6F and PBI, showed the best selectivity.

  13. Process for the hydroformylation of sulfur-containing thermally cracked petroleum residue and novel products thereof

    SciTech Connect (OSTI)

    Oswald, A.A.; Bhatia, R.N.; Mozeleski, E.J.; Glivicky, A.P.; Brueggeman, B.G.; Hooten, J.R.; Smith, C.M.; Hsu, C.S.

    1991-07-09T23:59:59.000Z

    This patent describes a hydroformylation-hydrogenation process comprising reacting an olefinic cracked petroleum distillate feed, produced from petroleum residue by high temperature thermal cracking, and containing C{sub 5} to C{sub 35}-1-n-alkyl olefins as the major type of olefin components, and organic sulfur compounds in concentrations exceeding 0.1% sulfur. It comprises at first with carbon monoxide and hydrogen at temperatures between about 50 and 250{degrees} C and pressures in the range of 50 to 6000 psi; in the presence of a Group VIII transition metal carbonyl complex catalyst in effective amounts to produce aldehydes of a semilinear character having an average of less than one alkyl branch per molecule and 20% by weight or more linear isomers, then with molecular hydrogen at temperatures between 100 and 250{degrees} C and pressures between 200 psi and 5000 psi (13.6 and 340 atm) in the presence of a hydrogenation catalyst in effective amounts the catalyst being sulfur resistant cobalt, molybdenum, nickel, or tungsten or a sulfide thereof to produce the corresponding alcohols of a semilinear character having an average of less than one alkyl branch per molecule and 20% by weight or more linear isomers, then with molecular hydrogen at temperatures between 100 and 250{degrees} C and pressures between 200 psi and 5000 psi (13.6 and 340 atm) in the presence of a hydrogenation catalyst in effective amounts the catalyst being sulfur resistant cobalt, molybdenum, nickel, or tungsten or a sulfide thereof to produce the corresponding alcohols of a semilinear character having an average of less than one alkyl branch per molecule.

  14. Evaluation of an enhanced gravity-based fine-coal circuit for high-sulfur coal

    SciTech Connect (OSTI)

    Mohanty, M.K.; Samal, A.R.; Palit, A. [South Illinois University, Carbondale, IL (United States). Dept. of Mining & Mineral Resources Engineering

    2008-02-15T23:59:59.000Z

    One of the main objectives of this study was to evaluate a fine-coal cleaning circuit using an enhanced gravity separator specifically for a high sulfur coal application. The evaluation not only included testing of individual unit operations used for fine-coal classification, cleaning and dewatering, but also included testing of the complete circuit simultaneously. At a scale of nearly 2 t/h, two alternative circuits were evaluated to clean a minus 0.6-mm coal stream utilizing a 150-mm-diameter classifying cyclone, a linear screen having a projected surface area of 0.5 m{sup 2}, an enhanced gravity separator having a bowl diameter of 250 mm and a screen-bowl centrifuge having a bowl diameter of 500 mm. The cleaning and dewatering components of both circuits were the same; however, one circuit used a classifying cyclone whereas the other used a linear screen as the classification device. An industrial size coal spiral was used to clean the 2- x 0.6-mm coal size fraction for each circuit to estimate the performance of a complete fine-coal circuit cleaning a minus 2-mm particle size coal stream. The 'linear screen + enhanced gravity separator + screen-bowl circuit' provided superior sulfur and ash-cleaning performance to the alternative circuit that used a classifying cyclone in place of the linear screen. Based on these test data, it was estimated that the use of the recommended circuit to treat 50 t/h of minus 2-mm size coal having feed ash and sulfur contents of 33.9% and 3.28%, respectively, may produce nearly 28.3 t/h of clean coal with product ash and sulfur contents of 9.15% and 1.61 %, respectively.

  15. Iron-based alloys with corrosion resistance to oxygen-sulfur mixed gases

    DOE Patents [OSTI]

    Natesan, K.

    1992-11-17T23:59:59.000Z

    An iron-based alloy with improved performance with exposure to oxygen-sulfur mixed gases with the alloy containing about 9--30 wt. % Cr and a small amount of Nb and/or Zr implanted on the surface of the alloy to diffuse a depth into the surface portion, with the alloy exhibiting corrosion resistance to the corrosive gases without bulk addition of Nb and/or Zr and without heat treatment at temperatures of 1000--1100 C. 7 figs.

  16. Iron-based alloys with corrosion resistance to oxygen-sulfur mixed gases

    DOE Patents [OSTI]

    Natesan, Krishnamurti (Naperville, IL)

    1992-01-01T23:59:59.000Z

    An iron-based alloy with improved performance with exposure to oxygen-sulfur mixed gases with the alloy containing about 9-30 wt. % Cr and a small amount of Nb and/or Zr implanted on the surface of the alloy to diffuse a depth into the surface portion, with the alloy exhibiting corrosion resistance to the corrosive gases without bulk addition of Nb and/or Zr and without heat treatment at temperatures of 1000.degree.-1100.degree. C.

  17. Industrial recovery capability. Final report. [Claus alumina catalyst for sulfur production

    SciTech Connect (OSTI)

    Gregg, D.W.

    1984-12-01T23:59:59.000Z

    This report provides an evaluation of the vulnerability - to a nuclear strike, terrorist attack, or natural disaster - of our national capacity to produce chlorine, beryllium, and a particular specialty alumina catalyst required for the production of sulfur. All of these industries are of critical importance to the United States economy. Other industries that were examined and found not to be particularly vulnerable are medicinal drugs and silicon wafers for electronics. Thus, only the three more vulnerable industries are addressed in this report.

  18. The effect of sulfur, magnesium, and various rates of potassium on forage production in some sandy soils of East Texas

    E-Print Network [OSTI]

    Landua, Dennis Paul

    1969-01-01T23:59:59.000Z

    THE EFFECT OF SULFUR, MAGNESIUM, AND VARIOUS RATES OF POTASSIUM ON FORAGE PRODUCTION IN SOME SANDy SOILS OF EAST TEXAS A Thesis by DENNIS PAUL LANDUA Submitted to the Graduate Collccje of Texas AFM Unive, sity in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE Ma 1969 Major Subject Soil Chemistr THE EFFECT OF SULFUR, MAGNESIUM, AND VARIOUS RATES OF POTASSIUM ON FORAGE PRODUCTION IN SOME SANDY SOILS OF EAST TEXAS A Thesis by DENNIS PAUL LANDUA Approved...

  19. NiW and NiRu Bimetallic Catalysts for Ethylene Steam Reforming: Alternative Mechanisms for Sulfur Resistance

    SciTech Connect (OSTI)

    Rangan, M.; Yung, M. M.; Medlin, J. W.

    2012-06-01T23:59:59.000Z

    Previous investigations of Ni-based catalysts for the steam reforming of hydrocarbons have indicated that the addition of a second metal can reduce the effects of sulfur poisoning. Two systems that have previously shown promise for such applications, NiW and NiRu, are considered here for the steam reforming of ethylene, a key component of biomass derived tars. Monometallic and bimetallic Al{sub 2}O{sub 3}-supported Ni and W catalysts were employed for ethylene steam reforming in the presence and absence of sulfur. The NiW catalysts were less active than Ni in the absence of sulfur, but were more active in the presence of 50 ppm H{sub 2}S. The mechanism for the W-induced improvements in sulfur resistance appears to be different from that for Ru in NiRu. To probe reasons for the sulfur resistance of NiRu, the adsorption of S and C{sub 2}H{sub 4} on several bimetallic NiRu alloy surfaces ranging from 11 to 33 % Ru was studied using density functional theory (DFT). The DFT studies reveal that sulfur adsorption is generally favored on hollow sites containing Ru. Ethylene preferentially adsorbs atop the Ru atom in all the NiRu (111) alloys investigated. By comparing trends across the various bimetallic models considered, sulfur adsorption was observed to be correlated with the density of occupied states near the Fermi level while C{sub 2}H{sub 4} adsorption was correlated with the number of unoccupied states in the d-band. The diverging mechanisms for S and C{sub 2}H{sub 4} adsorption allow for bimetallic surfaces such as NiRu that enhance ethylene binding without accompanying increases in sulfur binding energy. In contrast, bimetallics such as NiSn and NiW appear to decrease the affinity of the surface for both the reagent and the poison.

  20. Sulfur, Chlorine, and Argon Abundances in Planetary Nebulae. III: Observations and Results for a Final Sample

    E-Print Network [OSTI]

    K. B. Kwitter; R. B. C. Henry; J. B. Milingo

    2002-09-25T23:59:59.000Z

    This paper is the fourth in a series whose purpose is to study the interstellar abundances of sulfur, chlorine, and argon in the Galaxy using a sample of 86 planetary nebulae. Here we present new high-quality spectrophotometric observations of 20 Galactic planetary nebulae with spectral coverage from 3700-9600 Angstroms. A major feature of our observations throughout the entire study has been the inclusion of the near-infrared lines of [S III] 9069,9532, which allows us to calculate accurate S+2 abundances and to either improve upon or convincingly confirm results of earlier sulfur abundance studies. For each of the 20 objects here we calculate ratios of S/O, Cl/O, and Ar/O and find average values of S/O=1.1E-2+/-1.1E-2, Cl/O=4.2E-4+/-5.3E-4, and Ar/O=5.7E-3+/-4.3E-3. For six objects we are able to compare abundances of S+3 calculated directly from available [S IV] 10.5 micron measurements with those inferred indirectly from the values of the ionization correction factors for sulfur. In the final paper of the series, we will compile results from all 86 objects, search for and evaluate trends, and use chemical evolution models to interpret our results.

  1. Activated carbon cleanup of the acid gas feed to Claus sulfur plants

    SciTech Connect (OSTI)

    Harruff, L.G.; Bushkuhl, S.J. [Saudi Aramco, Dhahran (Saudi Arabia)

    1996-12-31T23:59:59.000Z

    This paper presents the details of a recently developed novel process using activated carbon to remove hydrocarbon contaminants from the acid gas feed to Claus sulfur recovery units. Heavy hydrocarbons, particularly benzene, toluene and xylene (BTX) have been linked to coke formation and catalyst deactivation in Claus converters. This deactivation results in reduced sulfur recovery and increased sulfur emissions from these plants. This effect is especially evident in split flow Claus plants which bypass some of the acid gas feed stream around the initial combustion step because of a low hydrogen sulfide concentration. This new clean-up process was proven to be capable of removing 95% of the BTX and other C{sub 6}{sup +} hydrocarbons from acid gas over a wide range of actual plant conditions. Following the adsorption step, the activated carbon was easily regenerated using low pressure steam. A post regeneration drying step using plant fuel gas also proved beneficial. This technology was extensively pilot tested in Saudi Aramco`s facilities in Saudi Arabia. Full scale commercial units are planned for two plants in the near future with the first coming on-line in 1997. The process described here represents the first application of activated carbon in this service, and a patent has been applied for. The paper will discuss the pilot plant results and the issues involved in scale-up to commercial size.

  2. RF driven sulfur lamp having driving electrodes which face each other

    DOE Patents [OSTI]

    Gabor, G.; Orr, T.R.; Greene, C.M.; Crawford, D.G.; Berman, S.M.

    1999-06-22T23:59:59.000Z

    A high intensity discharge lamp without mercury is disclosed radiating a selected spectrum of which can be almost entirely in the visible range from an envelope that contains a sulfur containing substance. The lamp utilizes a signal source that generates an excitation signal that is externally coupled to the exterior surface of the envelope to excite the enclosed sulfur containing substance. Various embodiments of the lamp use electrodes adjacent the envelope to couple the excitation signal thereto with the face of the electrodes shaped to complement the shape of the exterior surface of the envelope. Two shapes discussed are spherical and cylindrical. To minimize filamentary discharges each envelope may include an elongated stem affixed to the exterior thereof whereby a rotational subsystem spins the envelope. In yet another embodiment the envelope has a Dewar configuration with two electrodes, one positioned near the external curved side surface of the body, and a second to the inner surface of the hole through the envelope. Further, the envelope may contain a backfill of a selected inert gas to assist in the excitation of lamp with that backfill at a pressure of less than 1 atmosphere, wherein the backfill pressure is directly related to the increase or decrease of peak output and inversely related to the increase and decrease of the emitted spectrum from the envelope. The emitting fill can be less than 6 mg/cc, or at least 2 mg/cc of the envelope of a sulfur containing substance. 17 figs.

  3. Vacuum carbonate desulfurization and claus sulfur recovery system at No. 11 battery

    SciTech Connect (OSTI)

    Ellis, A.

    1981-01-01T23:59:59.000Z

    The vacuum carbonate process functions above 90% efficiency and satisfactorily removes the HCN and sulfur compounds from the coke oven gas generated at No. 11 Battery. It has been noted that a large quantity of energy is required for the operation of the vacuum carbonate system. Normally 544,617 kg (1.2 million lbs of steam) and 5.4 thousand kWh of electricity are used per day to maintain the system's temperatures and pressures. The processed coke oven gases from the system satisfy industrial and environmental standards as a combustible fuel. The HCN destruction unit reduces the corrosive HCN to concentrations below .07% of the acid gas stream and offers the necessary protection to the downstream modified Claus unit. The Claus unit at No. 11 Battery operates at 98% efficiency and produces 5896 kg (6.5 tons) of sulfur per day. The liquid sulfur generated in the Claus unit is a high quality product of 99% purity. 7 figures, 3 tables.

  4. RF driven sulfur lamp having driving electrodes arranged to cool the lamp

    DOE Patents [OSTI]

    Gabor, George (820 Skywood Rd., Lafayette, CA 94549); Orr, Thomas Robert (2285 Vestal, Castro Valley, CA 94546); Greene, Charles Maurice (6450 Regent St., Oakland, CA 94618); Crawford, Douglas Gordon (33 Longridge Rd., Orinda, CA 94563); Berman, Samuel Maurice (2832 Union St., San Francisco, CA 94123)

    1998-01-01T23:59:59.000Z

    A high intensity discharge lamp without mercury is disclosed radiating a selected spectrum of which can be almost entirely in the visible range from an envelope that contains a sulfur containing substance. The lamp utilizes a signal source that generates an excitation signal that is externally coupled to the exterior surface of the envelope to excite the enclosed sulfur containing substance. Various embodiments of the lamp use electrodes adjacent the envelope to couple the excitation signal thereto with the face of the electrodes shaped to complement the shape of the exterior surface of the envelope. Two shapes discussed are spherical and cylindrical. To minimize filamentary discharges each envelope may include an elongated stem affixed to the exterior thereof whereby a rotational subsystem spins the envelope. In yet another embodiment the envelope has a Dewar configuration with two electrodes, one positioned near the external curved side surface of the body, and a second to the inner surface of the hole through the envelope. Further, the envelope may contain a backfill of a selected inert gas to assist in the excitation of lamp with that backfill at a pressure of less than 1 atmosphere, wherein the backfill pressure is directly related to the increase or decrease of peak output and inversely related to the increase and decrease of the emitted spectrum from the envelope. The emitting fill can be less than 6 mg/cc, or at least 2 mg/cc of the envelope of a sulfur containing substance.

  5. RF driven sulfur lamp having driving electrodes which face each other

    DOE Patents [OSTI]

    Gabor, George (Lafayette, CA); Orr, Thomas Robert (Castro Valley, CA); Greene, Charles Maurice (Oakland, CA); Crawford, Douglas Gordon (Orinda, CA); Berman, Samuel Maurice (San Francisco, CA)

    1999-01-01T23:59:59.000Z

    A high intensity discharge lamp without mercury is disclosed radiating a selected spectrum of which can be almost entirely in the visible range from an envelope that contains a sulfur containing substance. The lamp utilizes a signal source that generates an excitation signal that is externally coupled to the exterior surface of the envelope to excite the enclosed sulfur containing substance. Various embodiments of the lamp use electrodes adjacent the envelope to couple the excitation signal thereto with the face of the electrodes shaped to complement the shape of the exterior surface of the envelope. Two shapes discussed are spherical and cylindrical. To minimize filamentary discharges each envelope may include an elongated stem affixed to the exterior thereof whereby a rotational subsystem spins the envelope. In yet another embodiment the envelope has a Dewar configuration with two electrodes, one positioned near the external curved side surface of the body, and a second to the inner surface of the hole through the envelope. Further, the envelope may contain a backfill of a selected inert gas to assist in the excitation of lamp with that backfill at a pressure of less than 1 atmosphere, wherein the backfill pressure is directly related to the increase or decrease of peak output and inversely related to the increase and decrease of the emitted spectrum from the envelope. The emitting fill can be less than 6 mg/cc, or at least 2 mg/cc of the envelope of a sulfur containing substance.

  6. RF driven sulfur lamp having driving electrodes arranged to cool the lamp

    DOE Patents [OSTI]

    Gabor, G.; Orr, T.R.; Greene, C.M.; Crawford, D.G.; Berman, S.M.

    1998-10-20T23:59:59.000Z

    A high intensity discharge lamp without mercury is disclosed radiating a selected spectrum of which can be almost entirely in the visible range from an envelope that contains a sulfur containing substance. The lamp utilizes a signal source that generates an excitation signal that is externally coupled to the exterior surface of the envelope to excite the enclosed sulfur containing substance. Various embodiments of the lamp use electrodes adjacent the envelope to couple the excitation signal thereto with the face of the electrodes shaped to complement the shape of the exterior surface of the envelope. Two shapes discussed are spherical and cylindrical. To minimize filamentary discharges each envelope may include an elongated stem affixed to the exterior thereof whereby a rotational subsystem spins the envelope. In yet another embodiment the envelope has a Dewar configuration with two electrodes, one positioned near the external curved side surface of the body, and a second to the inner surface of the hole through the envelope. Further, the envelope may contain a backfill of a selected inert gas to assist in the excitation of lamp with that backfill at a pressure of less than 1 atmosphere, wherein the backfill pressure is directly related to the increase or decrease of peak output and inversely related to the increase and decrease of the emitted spectrum from the envelope. The emitting fill can be less than 6 mg/cc, or at least 2 mg/cc of the envelope of a sulfur containing substance. 17 figs.

  7. HYBRID SULFUR FLOWSHEETS USING PEM ELECTROLYSIS AND A BAYONET DECOMPOSITION REACTOR

    SciTech Connect (OSTI)

    Gorensek, M; William Summers, W

    2008-05-30T23:59:59.000Z

    A conceptual design is presented for a Hybrid Sulfur process for the production of hydrogen using a high-temperature nuclear heat source to split water. The process combines proton exchange membrane-based SO{sub 2}-depolarized electrolyzer technology being developed at Savannah River National Laboratory with silicon carbide bayonet decomposition reactor technology being developed at Sandia National Laboratories. Both are part of the US DOE Nuclear Hydrogen Initiative. The flowsheet otherwise uses only proven chemical process components. Electrolyzer product is concentrated from 50 wt% sulfuric acid to 75 wt% via recuperative vacuum distillation. Pinch analysis is used to predict the high-temperature heat requirement for sulfuric acid decomposition. An Aspen Plus{trademark} model of the flowsheet indicates 340.3 kJ high-temperature heat, 75.5 kJ low-temperature heat, 1.31 kJ low-pressure steam, and 120.9 kJ electric power are consumed per mole of H{sub 2} product, giving an LHV efficiency of 35.3% (41.7% HHV efficiency) if electric power is available at a conversion efficiency of 45%.

  8. Resistance of biofilm-covered mortars to microbiologically influenced deterioration simulated by sulfuric acid exposure

    SciTech Connect (OSTI)

    Soleimani, Sahar, E-mail: ssoleima@connect.carleton.ca; Isgor, O. Burkan, E-mail: burkan_isgor@carleton.ca; Ormeci, Banu, E-mail: banu_ormeci@carleton.ca

    2013-11-15T23:59:59.000Z

    Following the reported success of biofilm applications on metal surfaces to inhibit microbiologically influenced corrosion, effectiveness and sustainability of E. coli DH5? biofilm on mortar surface to prevent microbiologically influenced concrete deterioration (MICD) are investigated. Experiments simulating microbial attack were carried out by exposing incrementally biofilm-covered mortar specimens to sulfuric acid solutions with pH ranging from 3 to 6. Results showed that calcium concentration in control reactors without biofilm was 2347% higher than the reactors with biofilm-covered mortar. Formation of amorphous silica gel as an indication of early stages of acid attack was observed only on the control mortar specimens without biofilm. During acidification, the biofilm continued to grow and its thickness almost doubled from ? 30 ?m before acidification to ? 60 ?m after acidification. These results demonstrated that E. coli DH5? biofilm was able to provide a protective and sustainable barrier on mortar surfaces against medium to strong sulfuric acid attack. -- Highlights: Effectiveness of E.coli DH5? biofilm to prevent MICD was studied. Conditions that lead to MICD were simulated by chemical acidification. Biofilm-covered mortar specimens were exposed to sulfuric acid solutions. The presence of biofilm helped reduce the chemically-induced mortar deterioration. Biofilm remained alive and continued to grow during the acidification process.

  9. Formation of Large Polysulfide Complexes during the Lithium-Sulfur Battery Discharge

    SciTech Connect (OSTI)

    Wang, Bin [Vanderbilt University, Nashville; Alhassan, Saeed M. [The Petroleum Institute; Pantelides, Sokrates T [ORNL

    2014-01-01T23:59:59.000Z

    Sulfur cathodes have much larger capacities than transition-metal-oxide cathodes used in commercial lithium-ion batteries but suffer from unsatisfactory capacity retention and long-term cyclability. Capacity degradation originates from soluble lithium polysulfides gradually diffusing into the electrolyte. Understanding of the formation and dynamics of soluble polysulfides during the discharging process at the atomic level remains elusive, which limits further development of lithium-sulfur (Li-S) batteries. Here we report first-principles molecular dynamics simulations and density functional calculations, through which the discharging products of Li-S batteries are studied. We find that, in addition to simple Li2Sn (1 n 8) clusters generated from single cyclooctasulfur (S8) rings, large Li-S clusters form by collectively coupling several different rings to minimize the total energy. At high lithium concentration, a Li-S network forms at the sulfur surfaces. The results can explain the formation of the soluble Li-S complex, such as Li2S8, Li2S6, and Li2S4, and the insoluble Li2S2 and Li2S structures. In addition, we show that the presence of oxygen impurities in graphene, particularly oxygen atoms bonded to vacancies and edges, may stabilize the lithium polysulfides that may otherwise diffuse into the electrolyte.

  10. Conversion of Hydrogen Sulfide in Coal Gases to Liquid Elemental Sulfur with Monolithic Catalysts

    SciTech Connect (OSTI)

    K. C. Kwon

    2007-09-30T23:59:59.000Z

    Removal of hydrogen sulfide (H{sub 2}S) from coal gasifier gas and sulfur recovery are key steps in the development of Department of Energy's (DOE's) advanced power plants that produce electric power and clean transportation fuels with coal and natural gas. These plants will require highly clean coal gas with H{sub 2}S below 1 ppmv and negligible amounts of trace contaminants such as hydrogen chloride, ammonia, alkali, heavy metals, and particulate. The conventional method of sulfur removal and recovery employing amine, Claus, and tail-gas treatment is very expensive. A second generation approach developed under DOE's sponsorship employs hot-gas desulfurization (HGD) using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process (DSRP). However, this process sequence does not remove trace contaminants and is targeted primarily towards the development of advanced integrated gasification combined cycle (IGCC) plants that produce electricity (not both electricity and transportation fuels). There is an immediate as well as long-term need for the development of cleanup processes that produce highly clean coal gas for next generation power plants. To this end, a novel process is now under development at several research organizations in which the H{sub 2}S in coal gas is directly oxidized to elemental sulfur over a selective catalyst. Such a process is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S In the Single-Step Sulfur Recovery Process (SSRP), the direct oxidation of H{sub 2}S to elemental sulfur in the presence of SO{sub 2} is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and HGD/DSRP. The H{sub 2} and CO components of syngas appear to behave as inert with respect to sulfur formed at the SSRP conditions. One problem in the SSRP process that needs to be eliminated or minimized is COS formation that may occur due to reaction of CO with sulfur formed from the Claus reaction. The objectives of this research are to formulate monolithic catalysts for removal of H{sub 2}S from coal gases and minimum formation of COS with monolithic catalyst supports, {gamma}-alumina wash or carbon coats, and catalytic metals, to develop a catalytic regeneration method for a deactivated monolithic catalyst, to measure kinetics of both direct oxidation of H{sub 2}S to elemental sulfur with SO{sub 2} as an oxidizer and formation of COS in the presence of a simulated coal gas mixture containing H{sub 2}, CO, CO{sub 2}, and moisture, using a monolithic catalyst reactor, and to develop kinetic rate equations and model the direct oxidation process to assist in the design of large-scale plants. This heterogeneous catalytic reaction has gaseous reactants such as H{sub 2}S and SO{sub 2}. However, this heterogeneous catalytic reaction has heterogeneous products such as liquid elemental sulfur and steam. Experiments on conversion of hydrogen sulfide into elemental sulfur and formation of COS were carried out for the space time range of 130-156 seconds at 120-140 C to formulate catalysts suitable for the removal of H{sub 2}S and COS from coal gases, evaluate removal capabilities of hydrogen sulfide and COS from coal gases with formulated catalysts, and develop an economic regeneration method of deactivated catalysts. Simulated coal gas mixtures consist of 3,300-3,800-ppmv hydrogen sulfide, 1,600-1,900 ppmv sulfur dioxide, 18-21 v% hydrogen, 29-34 v% CO, 8-10 v% CO{sub 2}, 5-18 vol % moisture, and nitrogen as remainder. Volumetric feed rates of a simulated coal gas mixture to the reactor are 114-132 SCCM. The temperature of the reactor is controlled in an oven at 120-140 C. The pressure of the reactor is maintained at 116-129 psia. The molar ratio of H{sub 2}S to SO{sub 2} in the monolithic catalyst reactor is

  11. Conversion of Hydrogen Sulfide in Coal Gases to Liquid Elemental Sulfur with Monolithic Catalysts

    SciTech Connect (OSTI)

    K.C. Kwon

    2009-09-30T23:59:59.000Z

    Removal of hydrogen sulfide (H{sub 2}S) from coal gasifier gas and sulfur recovery are key steps in the development of Department of Energy's (DOE's) advanced power plants that produce electric power and clean transportation fuels with coal and natural gas. These plants will require highly clean coal gas with H{sub 2}S below 1 ppmv and negligible amounts of trace contaminants such as hydrogen chloride, ammonia, alkali, heavy metals, and particulate. The conventional method of sulfur removal and recovery employing amine, Claus, and tail-gas treatment is very expensive. A second generation approach developed under DOE's sponsorship employs hot-gas desulfurization (HGD) using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process (DSRP). However, this process sequence does not remove trace contaminants and is targeted primarily towards the development of advanced integrated gasification combined cycle (IGCC) plants that produce electricity (not both electricity and transportation fuels). There is an immediate as well as long-term need for the development of cleanup processes that produce highly clean coal gas for next generation power plants. To this end, a novel process is now under development at several research organizations in which the H{sub 2}S in coal gas is directly oxidized to elemental sulfur over a selective catalyst. Such a process is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S In the Single-Step Sulfur Recovery Process (SSRP), the direct oxidation of H{sub 2}S to elemental sulfur in the presence of SO{sub 2} is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and HGD/DSRP. The H{sub 2} and CO components of syngas appear to behave as inert with respect to sulfur formed at the SSRP conditions. One problem in the SSRP process that needs to be eliminated or minimized is COS formation that may occur due to reaction of CO with sulfur formed from the Claus reaction. The objectives of this research are to formulate monolithic catalysts for removal of H{sub 2}S from coal gases and minimum formation of COS with monolithic catalyst supports, {gamma}-alumina wash coat, and catalytic metals, to develop a regeneration method for a deactivated monolithic catalyst, to measure kinetics of both direct oxidation of H{sub 2}S to elemental sulfur with SO{sub 2} as an oxidizer and formation of COS in the presence of a simulated coal gas mixture containing H{sub 2}, CO, CO{sub 2}, and moisture, using a monolithic catalyst reactor. The task of developing kinetic rate equations and modeling the direct oxidation process to assist in the design of large-scale plants will be abandoned since formulation of catalysts suitable for the removal of H{sub 2}S and COS is being in progress. This heterogeneous catalytic reaction has gaseous reactants such as H{sub 2}S and SO{sub 2}. However, this heterogeneous catalytic reaction has heterogeneous products such as liquid elemental sulfur and steam. Experiments on conversion of hydrogen sulfide into elemental sulfur and formation of COS were carried out for the space time range of 46-570 seconds under reaction conditions to formulate catalysts suitable for the removal of H{sub 2}S and COS from coal gases and evaluate their capabilities in reducing hydrogen sulfide and COS in coal gases. Simulated coal gas mixtures consist of 3,200-4,000-ppmv hydrogen sulfide, 1,600-20,000-ppmv sulfur dioxide, 18-27 v% hydrogen, 29-41 v% CO, 8-12 v% CO{sub 2}, 0-10 vol % moisture, and nitrogen as remainder. Volumetric feed rates of simulated coal gas mixtures to the reactor are 30 - 180 cm{sup 3}/min at 1 atm and 25 C (SCCM). The temperature of the reactor is controlled in an oven at 120-155 C. The pressure of the reactor is maintained at 40-210 psia. The molar ratio

  12. Encapsulation of mixed radioactive and hazardous waste contaminated incinerator ash in modified sulfur cement

    SciTech Connect (OSTI)

    Kalb, P.D.; Heiser, J.H. III; Colombo, P.

    1990-01-01T23:59:59.000Z

    Some of the process waste streams incinerated at various Department of Energy (DOE) facilities contain traces of both low-level radioactive (LLW) and hazardous constituents, thus yielding ash residues that are classified as mixed waste. Work is currently being performed at Brookhaven National Laboratory (BNL) to develop new and innovative materials for encapsulation of DOE mixed wastes including incinerator ash. One such material under investigation is modified sulfur cement, a thermoplastic developed by the US Bureau of Mines. Monolithic waste forms containing as much as 55 wt % incinerator fly ash from Idaho national Engineering Laboratory (INEL) have been formulated with modified sulfur cement, whereas maximum waste loading for this waste in hydraulic cement is 16 wt %. Compressive strength of these waste forms exceeded 27.6 MPa. Wet chemical and solid phase waste characterization analyses performed on this fly ash revealed high concentrations of soluble metal salts including Pb and Cd, identified by the Environmental Protection Agency (EPA) as toxic metals. Leach testing of the ash according to the EPA Toxicity Characteristic Leaching Procedure (TCLP) resulted in concentrations of Pb and Cd above allowable limits. Encapsulation of INEL fly ash in modified sulfur cement with a small quantity of sodium sulfide added to enhance retention of soluble metal salts reduced TCLP leachate concentrations of Pb and Cd well below EPA concentration criteria for delisting as a toxic hazardous waste. 12 refs., 4 figs., 2 tabs.

  13. Lithium-sulfur batteries based on nitrogen-doped carbon and ionic liquid electrolyte

    SciTech Connect (OSTI)

    Sun, Xiao-Guang [ORNL; Wang, Xiqing [ORNL; Mayes, Richard T [ORNL; Dai, Sheng [ORNL

    2012-01-01T23:59:59.000Z

    Nitrogen-doped mesoporous carbon (NC) and sulfur were used to prepare an NC/S composite cathode, which was evaluated in an ionic liquid electrolyte of 0.5 M lithium bis(trifluoromethane sulfonyl)imide (LiTFSI) in methylpropylpyrrolidinium bis(trifluoromethane sulfonyl)imide (MPPY.TFSI) by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and cycle testing. To facilitate the comparison, a C/S composite based on activated carbon (AC) without nitrogen doping was also fabricated under the same conditions as those for the NC/S composite. Compared with the AC/S composite, the NC/S composite showed enhanced activity toward sulfur reduction, as evidenced by the early onset sulfur reduction potential, higher redox current density in the CV test, and faster charge transfer kinetics as indicated by EIS measurement. At room temperature under a current density of 84 mA g-1 (C/20), the battery based on the NC/S composite exhibited higher discharge potential and an initial capacity of 1420 mAh g-1 whereas that based on the AC/S composite showed lower discharge potential and an initial capacity of 1120 mAh g-1. Both batteries showed similar capacity fading with cycling due to the intrinsic polysulfide solubility and the polysulfide shuttle mechanism; the capacity fading can be improved by further modification of the cathode.

  14. ELECTRON IRRADIATION OF CARBON DISULFIDE-OXYGEN ICES: TOWARD THE FORMATION OF SULFUR-BEARING MOLECULES IN INTERSTELLAR ICES

    SciTech Connect (OSTI)

    Maity, Surajit; Kaiser, Ralf I. [Department of Chemistry, University of Hawai'i at Manoa, Honolulu, HI 96822 (United States)

    2013-08-20T23:59:59.000Z

    The formation of sulfur-bearing molecules in interstellar ices was investigated during the irradiation of carbon disulfide (CS{sub 2})-oxygen (O{sub 2}) ices with energetic electrons at 12 K. The irradiation-induced chemical processing of these ices was monitored online and in situ via Fourier transform infrared spectroscopy to probe the newly formed products quantitatively. The sulfur-bearing molecules produced during the irradiation were sulfur dioxide (SO{sub 2}), sulfur trioxide (SO{sub 3}), and carbonyl sulfide (OCS). Formations of carbon dioxide (CO{sub 2}), carbon monoxide (CO), and ozone (O{sub 3}) were observed as well. To fit the temporal evolution of the newly formed products and to elucidate the underlying reaction pathways, kinetic reaction schemes were developed and numerical sets of rate constants were derived. Our studies suggest that carbon disulfide (CS{sub 2}) can be easily transformed to carbonyl sulfide (OCS) via reactions with suprathermal atomic oxygen (O), which can be released from oxygen-containing precursors such as water (H{sub 2}O), carbon dioxide (CO{sub 2}), and/or methanol (CH{sub 3}OH) upon interaction with ionizing radiation. This investigation corroborates that carbonyl sulfide (OCS) and sulfur dioxide (SO{sub 2}) are the dominant sulfur-bearing molecules in interstellar ices.

  15. Electrochemical and metallurgical aspects of stress corrosion cracking of sensitized Alloy 600 in simulated primary water containing sulfur contamination

    SciTech Connect (OSTI)

    Bandy, R.; Kelly, K.

    1985-01-01T23:59:59.000Z

    The stress corrosion cracking (SCC) of sensitized Alloy 600 was investigated in aerated solutions of sodium thiosulfate containing 1.3% boric acid. Results indicate that in the borated thiosulfate solution containing 7 ppM sulfur, 5 ppM lithium as lithium hydroxide is sufficient to inhibit SCC in U-bends. The occurrence of inhibition seems to correlate to the rapid increase of pH and conductivity of the solution as a result of the lithium hydroxide addition. In the slow strain rate tests in the borated solution containing 0.7 ppM lithium as lithium hydroxide, significant SCC is observed at a sulfur level of 30 ppB, i.e., a lithium to sulfur ratio of 23. In a parallel test in 30 ppB sulfur level but without any lithium hydroxide, the SCC is more severe than that in the lithiated environment. In the constant load test on a specimen held initially at a nominal stress near the yield strength of the material, cracks continue to grow until fracture during controlled, progressive dilution of the bulk solution, leading to final lithium concentration of 1.5 ppM and sulfur concentration (as thiosulfate) of 9.6 ppB i.e., a lithium to sulfur ratio of about 156, although lithium hydroxide retards the rate of crack propagation to some extent. The crack growth rate is strongly influenced by the electrochemical potential which is primarily governed by the local crack tip chemistry.

  16. P.R. Lawson -History of Stellar Interferometry History of Stellar Interferometry

    E-Print Network [OSTI]

    P.R. Lawson - History of Stellar Interferometry History of Stellar Interferometry from 1868 to the present P.R. Lawson Jet Propulsion Laboratory 4 8 0 0 O a k G r o v e D r i v e P a sad e n a , CA 9 1 1 0 9 #12;P.R. Lawson - History of Stellar Interferometry #12;P.R. Lawson - History of Stellar

  17. FAINT RADIO SOURCES AND STAR FORMATION HISTORY

    E-Print Network [OSTI]

    Waddington, Ian

    FAINT RADIO SOURCES AND STAR FORMATION HISTORY Deborah B. Haarsma 1 , R. Bruce Partridge 1 , Ian 85287­1504 USA Abstract. Faint extragalactic radio sources provide important information about the global history of star formation. Sensitive radio observations of the Hubble Deep Field and other fields

  18. Atomic power in space: A history

    SciTech Connect (OSTI)

    Not Available

    1987-03-01T23:59:59.000Z

    ''Atomic Power in Space,'' a history of the Space Isotope Power Program of the United States, covers the period from the program's inception in the mid-1950s through 1982. Written in non-technical language, the history is addressed to both the general public and those more specialized in nuclear and space technologies. 19 figs., 3 tabs.

  19. NASA HISTORY DIVISION Office of External Relations

    E-Print Network [OSTI]

    apollo 40th anniversary events NASA Headquarters hosted the Apollo 40th Anniversary History Symposium on 16 July 2009 in the NASA Headquarters James Webb auditorium. The "Apollo: History and Legacy anniversary of the launch of Apollo 11. The discussion began with remarks by Associate Administrator (and

  20. Tech Area II: A history

    SciTech Connect (OSTI)

    Ullrich, R. [Ktech Corp., Albuquerque, NM (United States)] [Ktech Corp., Albuquerque, NM (United States)

    1998-07-01T23:59:59.000Z

    This report documents the history of the major buildings in Sandia National Laboratories` Technical Area II. It was prepared in support of the Department of Energy`s compliance with Section 106 of the National Historic Preservation Act. Technical Area II was designed and constructed in 1948 specifically for the final assembly of the non-nuclear components of nuclear weapons, and was the primary site conducting such assembly until 1952. Both the architecture and location of the oldest buildings in the area reflect their original purpose. Assembly activities continued in Area II from 1952 to 1957, but the major responsibility for this work shifted to other sites in the Atomic Energy Commission`s integrated contractor complex. Gradually, additional buildings were constructed and the original buildings were modified. After 1960, the Area`s primary purpose was the research and testing of high-explosive components for nuclear weapons. In 1994, Sandia constructed new facilities for work on high-explosive components outside of the original Area II diamond-shaped parcel. Most of the buildings in the area are vacant and Sandia has no plans to use them. They are proposed for decontamination and demolition as funding becomes available.