Powered by Deep Web Technologies
Note: This page contains sample records for the topic "vi sox nox" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

NOx, SOx & CO{sub 2} mitigation using blended coals  

Science Conference Proceedings (OSTI)

Estimates of potential CO{sub 2} reduction achievable through the use of a mixture of bituminous and subbituminous (PRB) coals, whilst attaining NOx and SOx compliance are presented. The optimization considerations to provide satisfactory furnace, boiler and unit performance with blended coal supplies to make such operation feasible are discussed. 6 refs., 7 figs., 1 tab.

Labbe, D.

2009-11-15T23:59:59.000Z

2

SOx/NOx sorbent and process of use  

DOE Patents (OSTI)

An alumina sorbent capable of adsorbing NOx and SOx from waste gases and being regenerated by heating above 600 C. is made by incorporating an alumina stabilizing agent into the sorbent. A preferred method is to add the stabilizer when the alumina is precipitated. The precipitated powder is formed subsequently into a slurry, milled and dripped to form the stabilizing spheroidal alumina particles. These particles are impregnated with an alkali metal or alkaline earth metal to form the stabilized sorbent. Alumina stabilizers include one or more of silica, lanthana, other rare earths, titania, zirconia and alkaline earths.

Ziebarth, M.S.; Hager, M.J.; Beeckman, J.W.; Plecha, S.

1993-01-19T23:59:59.000Z

3

Definition: Reduced Sox, Nox, And Pm-2.5 Emissions | Open Energy  

Open Energy Info (EERE)

Sox, Nox, And Pm-2.5 Emissions Sox, Nox, And Pm-2.5 Emissions Jump to: navigation, search Dictionary.png Reduced Sox, Nox, And Pm-2.5 Emissions Functions that provide this benefit can lead to avoided vehicle miles, decrease the amount of central generation needed to their serve load (through reduced electricity consumption, reduced electricity losses, more optimal generation dispatch), and or reduce peak generation. These impacts translate into a reduction in pollutant emissions produced by fossil-based electricity generators and vehicles.[1] Related Terms electricity generation, reduced electricity losses, smart grid References ↑ SmartGrid.gov 'Description of Benefits' An in LikeLike UnlikeLike You like this.Sign Up to see what your friends like. line Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Reduced_Sox,_Nox,_And_Pm-2.5_Emissions&oldid=502508

4

Near-Zero Emissions Oxy-Combustion Flue Gas Purification Task 3: SOx/NOx/Hg Removal for Low Sulfur Coal  

Science Conference Proceedings (OSTI)

The goal of this project was to develop a near-zero emissions flue gas purification technology for existing PC (pulverized coal) power plants that are retrofitted with oxycombustion technology. The objective of Task 3 of this project was to evaluate an alternative method of SOx, NOx and Hg removal from flue gas produced by burning low sulfur coal in oxy-combustion power plants. The goal of the program was to conduct an experimental investigation and to develop a novel process for simultaneously removal of SOx and NOx from power plants that would operate on low sulfur coal without the need for wet-FGD & SCRs. A novel purification process operating at high pressures and ambient temperatures was developed. Activated carbonâ??s catalytic and adsorbent capabilities are used to oxidize the sulfur and nitrous oxides to SO{sub 3} and NO{sub 2} species, which are adsorbed on the activated carbon and removed from the gas phase. Activated carbon is regenerated by water wash followed by drying. The development effort commenced with the screening of commercially available activated carbon materials for their capability to remove SO{sub 2}. A bench-unit operating in batch mode was constructed to conduct an experimental investigation of simultaneous SOx and NOx removal from a simulated oxyfuel flue gas mixture. Optimal operating conditions and the capacity of the activated carbon to remove the contaminants were identified. The process was able to achieve simultaneous SOx and NOx removal in a single step. The removal efficiencies were >99.9% for SOx and >98% for NOx. In the longevity tests performed on a batch unit, the retention capacity could be maintained at high level over 20 cycles. This process was able to effectively remove up to 4000 ppm SOx from the simulated feeds corresponding to oxyfuel flue gas from high sulfur coal plants. A dual bed continuous unit with five times the capacity of the batch unit was constructed to test continuous operation and longevity. Full-automation was implemented to enable continuous operation (24/7) with minimum operator supervision. Continuous run was carried out for 40 days. Very high SOx (>99.9%) and NOx (98%) removal efficiencies were also achieved in a continuous unit. However, the retention capacity of carbon beds for SOx and NOx was decreased from ~20 hours to ~10 hours over a 40 day period of operation, which was in contrast to the results obtained in a batch unit. These contradictory results indicate the need for optimization of adsorption-regeneration cycle to maintain long term activity of activated carbon material at a higher level and thus minimize the capital cost of the system. In summary, the activated carbon process exceeded performance targets for SOx and NOx removal efficiencies and it was found to be suitable for power plants burning both low and high sulfur coals. More efforts are needed to optimize the system performance.

Monica Zanfir; Rahul Solunke; Minish Shah

2012-06-01T23:59:59.000Z

5

Near-Zero Emissions Oxy-Combustion Flue Gas Purification Task 2: SOx/Nox/Hg Removal for High Sulfur Coal  

Science Conference Proceedings (OSTI)

The goal of this project is to develop a near-zero emissions flue gas purification technology for existing PC (pulverized coal) power plants that are retrofitted with oxy-combustion technology. The objective of Task 2 of this project was to evaluate an alternative method of SOx, NOx and Hg removal from flue gas produced by burning high sulfur coal in oxy-combustion power plants. The goal of the program was not only to investigate a new method of flue gas purification but also to produce useful acid byproduct streams as an alternative to using a traditional FGD and SCR for flue gas processing. During the project two main constraints were identified that limit the ability of the process to achieve project goals. 1) Due to boiler island corrosion issues >60% of the sulfur must be removed in the boiler island with the use of an FGD. 2) A suitable method could not be found to remove NOx from the concentrated sulfuric acid product, which limits sale-ability of the acid, as well as the NOx removal efficiency of the process. Given the complexity and safety issues inherent in the cycle it is concluded that the acid product would not be directly saleable and, in this case, other flue gas purification schemes are better suited for SOx/NOx/Hg control when burning high sulfur coal, e.g. this project's Task 3 process or a traditional FGD and SCR.

Nick Degenstein; Minish Shah; Doughlas Louie

2012-05-01T23:59:59.000Z

6

Method for reducing CO2, CO, NOX, and SOx emissions  

DOE Patents (OSTI)

Industrial combustion facilities are integrated with greenhouse gas-solidifying fertilizer production reactions so that CO.sub.2, CO, NO.sub.x, and SO.sub.x emissions can be converted prior to emission into carbonate-containing fertilizers, mainly NH.sub.4 HCO.sub.3 and/or (NH.sub.2).sub.2 CO, plus a small fraction of NH.sub.4 NO.sub.3 and (NH.sub.4).sub.2 SO.sub.4. The invention enhances sequestration of CO.sub.2 into soil and the earth subsurface, reduces N0.sub.3.sup.- contamination of surface and groundwater, and stimulates photosynthetic fixation of CO.sub.2 from the atmosphere. The method for converting CO.sub.2, CO, NO.sub.x, and SO.sub.x emissions into fertilizers includes the step of collecting these materials from the emissions of industrial combustion facilities such as fossil fuel-powered energy sources and transporting the emissions to a reactor. In the reactor, the CO.sub.2, CO, N.sub.2, SO.sub.x, and/or NO.sub.x are converted into carbonate-containing fertilizers using H.sub.2, CH.sub.4, or NH.sub.3. The carbonate-containing fertilizers are then applied to soil and green plants to (1) sequester inorganic carbon into soil and subsoil earth layers by enhanced carbonation of groundwater and the earth minerals, (2) reduce the environmental problem of NO.sub.3.sup.- runoff by substituting for ammonium nitrate fertilizer, and (3) stimulate photosynthetic fixation of CO.sub.2 from the atmosphere by the fertilization effect of the carbonate-containing fertilizers.

Lee, James Weifu (Oak Ridge, TN); Li, Rongfu (Zhejiang, CH)

2002-01-01T23:59:59.000Z

7

Agricultural Bio-Fueled Generation of Electricity and Development of Durable and Efficent NOx Reduction  

DOE Green Energy (OSTI)

Caterpillar Power Generation adapted an off-the-shelf Diesel Generator to run on BioDiesel and various Petroleum Diesel/BioDiesel blends. EmeraChem developed and installed an exhaust gas cleanup system to reduce NOx, SOx, volatile organics, and particulates. The system design and function was optimized for emissions reduction with results in the 90-95% range;

Boyd, Rodney

2007-08-08T23:59:59.000Z

8

Low NOx combustion  

DOE Patents (OSTI)

Combustion of hydrocarbon liquids and solids is achieved with less formation of NOx by feeding a small amount of oxygen into the fuel stream.

Kobayashi, Hisashi (Putnam Valley, NY); Bool, III, Lawrence E. (Aurora, NY)

2008-10-21T23:59:59.000Z

9

Low NOx combustion  

DOE Patents (OSTI)

Combustion of hydrocarbon liquids and solids is achieved with less formation of NOx by feeding a small amount of oxygen into the fuel stream.

Kobayashi; Hisashi (Putnam Valley, NY), Bool, III; Lawrence E. (Aurora, NY)

2007-06-05T23:59:59.000Z

10

IEP - Advanced NOx Emissions Control: NOx Reduction Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

NOx Reduction Technologies NOx reduction technologies can be grouped into two broad categories: combustion modifications and post-combustion processes. Some of the more important...

11

Vi Rapp  

NLE Websites -- All DOE Office Websites (Extended Search)

Vi Rapp Vi Rapp Vi Rapp Residential Building Systems Group Lawrence Berkeley National Laboratory 1 Cyclotron Road MS 90R3074 Berkeley CA 94720 Office Location: 90-3080 (510) 495-2035 VHRapp@lbl.gov This publications database is an ongoing project, and not all Division publications are represented here yet. Publications 2013 Rapp, Vi H., Albert Pastor-Perez, Brett C. Singer, and Craig P. Wray. Predicting Backdrafting and Spillage for Natural-Draft Gas Combustion Appliances: Validating VENT-II., 2013. Download: PDF (836.92 KB) 2012 Rapp, Vi H., Brett C. Singer, J. Chris Stratton, and Craig P. Wray. Assessment of Literature Related to Combustion Appliance Venting Systems., 2012. Download: PDF (1.78 MB) Rapp, Vi H., A. DeFilippo, and Samveg Saxena. "Extending the lean operating

12

NETL: Advanced NOx Emissions Control  

NLE Websites -- All DOE Office Websites (Extended Search)

Home > Technologies > Coal & Power Systems > Innovations for Existing Plants > Advanced NOx Emissions Control Innovations for Existing Plants Advanced NOx Emissions Control Adv....

13

Vi Rapp  

NLE Websites -- All DOE Office Websites (Extended Search)

2011 DeFilippo, A., Samveg Saxena, Vi H. Rapp, J. - Y. Chen, and Robert W. Dibble. Extending the lean flammability limit of gasoline using a microwave assisted sparkplug., 2011...

14

NOx | OpenEI  

Open Energy Info (EERE)

NOx NOx Dataset Summary Description Emissions from energy use in buildings are usually estimated on an annual basis using annual average multipliers. Using annual numbers provides a reasonable estimation of emissions, but it provides no indication of the temporal nature of the emissions. Therefore, there is no way of understanding the impact on emissions from load shifting and peak shaving technologies such as thermal energy storage, on-site renewable energy, and demand control. Source NREL Date Released April 11th, 2011 (3 years ago) Date Updated April 11th, 2011 (3 years ago) Keywords buildings carbon dioxide emissions carbon footprinting CO2 commercial buildings electricity emission factors ERCOT hourly emission factors interconnect nitrogen oxides NOx SO2 sulfur dioxide emissions

15

Sulfur Management of NOx Adsorber Technology for Diesel Light-Duty Vehicle and Truck Applications  

DOE Green Energy (OSTI)

Sulfur poisoning from engine fuel and lube is one of the most recognizable degradation mechanisms of a NOx adsorber catalyst system for diesel emission reduction. Even with the availability of 15 ppm sulfur diesel fuel, NOx adsorber will be deactivated without an effective sulfur management. Two general pathways are currently being explored for sulfur management: (1) the use of a disposable SOx trap that can be replaced or rejuvenated offline periodically, and (2) the use of diesel fuel injection in the exhaust and high temperature de-sulfation approach to remove the sulfur poisons to recover the NOx trapping efficiency. The major concern of the de-sulfation process is the many prolonged high temperature rich cycles that catalyst will encounter during its useful life. It is shown that NOx adsorber catalyst suffers some loss of its trapping capacity upon high temperature lean-rich exposure. With the use of a disposable SOx trap to remove large portion of the sulfur poisons from the exhaust, the NOx adsorber catalyst can be protected and the numbers of de-sulfation events can be greatly reduced. Spectroscopic techniques, such as DRIFTS and Raman, have been used to monitor the underlying chemical reactions during NOx trapping/ regeneration and de-sulfation periods, and provide a fundamental understanding of NOx storage capacity and catalyst degradation mechanism using model catalysts. This paper examines the sulfur effect on two model NOx adsorber catalysts. The chemistry of SOx/base metal oxides and the sulfation product pathways and their corresponding spectroscopic data are discussed. SAE Paper SAE-2003-01-3245 {copyright} 2003 SAE International. This paper is published on this website with permission from SAE International. As a user of this website, you are permitted to view this paper on-line, download this pdf file and print one copy of this paper at no cost for your use only. The downloaded pdf file and printout of this SAE paper may not be copied, distributed or forwarded to others or for the use of others.

Fang, Howard L.; Wang, Jerry C.; Yu, Robert C. (Cummins, Inc.); Wan, C. Z. (Engelhard Corp.); Howden, Ken (U.S. Dept. of Energy)

2003-10-01T23:59:59.000Z

16

Impacts of reducing shipboard NOx? and SOx? emissions on vessel performance  

E-Print Network (OSTI)

The international maritime community has been experiencing tremendous pressures from environmental organizations to reduce the emissions footprint of their vessels. In the last decade, air emissions, including nitrogen ...

Caputo, Ronald J., Jr. (Ronald Joseph)

2010-01-01T23:59:59.000Z

17

NETL: Advanced NOx Emissions Control: Control Technology - NOx Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Emissions from Multi-Burners Emissions from Multi-Burners The University of Utah working with Reaction Engineering International and Brigham Young University is investigating a project that consists of integrated experimental, theoretical and computational modeling efforts. The primary objective is to evaluate NOx formation/destruction processes as they occur in multi-burner arrays, a geometry almost always utilized in utility practice. Most controlled experimental work examining NOx has been conducted on single burners. The range of potential intra-burner interactions are likely to provide added degrees of freedom for reducing NOx. The resultant findings may allow existing utilities to arrange fuel and air distribution to minimize NOx. In new applications, orientation of individual burners within an array may also be altered to reduce NOx. Comprehensive combustion codes will be modified to incorporate the latest submodels of nitrogen release and heterogeneous chemistry. Comparison of pilot scale experiments and simulations will be utilized to validate/develop theory.

18

Interpreting Remote Sensing NOx Measurements  

E-Print Network (OSTI)

Interpreting Remote Sensing NOx Measurements Robert Slott, Consultant, Donald Stedman and Saj tailpipe emissions (HC, CO, NOx) are changing with time hUse remote sensing hMeasurements in at least 4 of the year at each location hUniform QC/QA and data reporting Paper # 2001-01-3640 #12;Remote Sensing

Denver, University of

19

Proceedings: 2000 NOx Controls Workshop  

Science Conference Proceedings (OSTI)

The 2000 EPRI workshop on nitrogen oxide (NOx) controls for utility boilers provided a medium for member utilities to augment their knowledge of recent operating experience and developments on NOx control technologies. The event focused on improving methods of compliance with emission regulations mandated by the Clean Air Act Amendments (CAAA) of 1990 without jeopardizing efficiency and plant performance.

2001-04-10T23:59:59.000Z

20

IEP - Advanced NOx Emissions Control: Control Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

forms at high temperatures during fossil fuel combustion (see How NOx is Formed ). The primary sources of NOx emissions in the United States are motor vehicles, power plants,...

Note: This page contains sample records for the topic "vi sox nox" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

NETL: Advanced NOx Emissions Control: Control Technology - Model for NOx  

NLE Websites -- All DOE Office Websites (Extended Search)

Model for NOx Emissions in Biomass Cofiring Model for NOx Emissions in Biomass Cofiring Southern Research Institute is developing a validated tool or methodology to accurately and confidently design and optimize biomass-cofiring systems for full-scale utility boilers to produce the lowest NOX emissions and the least unburned carbon. The computer model will be validated through an extensive set of tests at the 6 MMBtu/hr pilot combustor in the Southern Company/Southern Research Institute Combustion Research Facility. Full-scale demonstration testing can be compared to the model for further validation. The project is designed to balance the development of a systematic and expansive database detailing the effects of cofiring parameters on NOx formation with the complementary modeling effort that will yield a capability to predict, and therefore optimize, NOx reductions by the selection of those parameters. The database of biomass cofiring results will be developed through an extensive set of pilot-scale tests at the Southern Company/Southern Research Institute Combustion Research Facility. The testing in this program will monitor NOx, LOI, and other emissions over a broad domain of biomass composition, coal quality, and cofiring injection configurations to quantify the dependence of NOx formation and LOI on these parameters. This database of cofiring cases will characterize an extensive suite of emissions and combustion properties for each of the fuel and injection configuration combinations tested.

22

Conserved genomic organisation of Group B Sox genes in insects.  

E-Print Network (OSTI)

in the midline. G-G') Lateral views of stage 13 embryos showing Sox21b expression in abdominal epidermal stripes. H-H') Ventral view of stage 14 embryos showing Sox21b expression in abdominal epidermal stripes.Page 5 of 15 (page number not for citation... of the foregut and hindgut at stage 12 (Figure 2E and 2E') with later expression in specific cells of the midline after stage 14 (Figure 2F and 2F'). Sox21b shows conserved expres- sion in abdominal epidermal stripes from stage 13 (Figure 2G to 2H...

McKimmie, Carol; Woerfel, Gertrud; Russell, Steven R

2005-05-19T23:59:59.000Z

23

Structural insight into SoxC and SoxD interaction and their role in electron transport process in the novel global sulfur cycle in Paracoccus pantotrophus  

SciTech Connect

Microbial oxidation of reduced inorganic sulfur compounds mainly sulfur anions in the environment is one of the major reactions of the global sulfur cycle mediated by phylogenetically diverse prokaryotes. The sulfur oxidizing gene cluster (sox) of {alpha}-Proteobacteria comprises of at least 16 genes, which form two transcriptional units, viz., soxSRT and soxVWXYZABCDEFGH. Sequence analysis reveals that soxD gene product (SoxD) belongs to the di-heme cytochrome c family of electron transport proteins whereas soxC gene product (SoxC) is a sulfur dehydrogenase. We employed homology modeling to construct the three-dimensional structures of the SoxC and SoxD from Paracoccus pantotrophus. SoxD protein is known to interact with SoxC. With the help of docking studies we have identified the residues involved in the interaction of SoxC and SoxD. The putative active site geometries of these two proteins as well as the structural basis of the involvements of these proteins in electron transport process during the oxidation of sulfur anions are also investigated.

Bagchi, Angshuman [Bioinformatics Center, Bose Institute, AJC Bose Centenary Building, P1/12 CIT Scheme VIIM, Kolkata 700 054 (India)]. E-mail: angshu@bic.boseinst.ernet.in; Roy, Pradosh [Department of Microbiology, Bose Institute, AJC Bose Centenary Building, P1/12 CIT Scheme VIIM, Kolkata 700 054 (India)]. E-mail: prodosh@bic.boseinst.ernet.in

2005-06-17T23:59:59.000Z

24

Enhanced High Temperature Performance of NOx Reduction Catalyst Materials  

Science Conference Proceedings (OSTI)

Two primary NOx after-treatment technologies have been recognized as the most promising approaches for meeting stringent NOx emission standards for diesel vehicles within the Environmental Protection Agency’s (EPA’s) 2007/2010 mandated limits, NOx Storage Reduction (NSR) and NH3 selective catalytic reduction (SCR); both are, in fact being commercialized for this application. However, in looking forward to 2015 and beyond with expected more stringent regulations, the continued viability of the NSR technology for controlling NOx emissions from lean-burn engines such as diesels will require at least two specific, significant and inter-related improvements. First, it is important to reduce system costs by, for example, minimizing the precious metal content while maintaining, even improving, performance and long-term stability. A second critical need for future NSR systems, as well as for NH3 SCR, will be significantly improved higher and lower temperature performance and stability. Furthermore, these critically needed improvements will contribute significantly to minimizing the impacts to fuel economy of incorporating these after-treatment technologies on lean-burn vehicles. To meet these objectives will require, at a minimum an improved scientific understanding of the following things: i) the various roles for the precious and coinage metals used in these catalysts; ii) the mechanisms for these various roles; iii) the effects of high temperatures on the active metal performance in their various roles; iv) mechanisms for higher temperature NOx storage performance for modified and/or alternative storage materials; v) the interactions between the precious metals and the storage materials in both optimum NOx storage performance and long term stability; vi) the sulfur adsorption and regeneration mechanisms for NOx reduction materials; vii) materials degradation mechanisms in CHA-based NH3 SCR catalysts. The objective of this CRADA project between PNNL and Cummins, Inc. is to develop a fundamental understanding of the above-listed issues. Model catalysts that are based on literature formulations are the focus of the work being carried out at PNNL. In addition, the performance and stability of more realistic high temperature NSR catalysts, supplied by JM, are being studied in order to provide baseline data for the model catalysts that are, again, based on formulations described in the open literature. For this short summary, we will primarily highlight representative results from our recent studies of the stability of candidate high temperature NSR materials.

Gao, Feng; Kim, Do Heui; Luo, Jinyong; Muntean, George G.; Peden, Charles HF; Howden, Ken; Currier, Neal; Kamasamudram, Krishna; Kumar, Ashok; Li, Junhui; Stafford, Randy; Yezerets, Aleksey; Castagnola, Mario; Chen, Hai Ying; Hess, Howard ..

2012-12-31T23:59:59.000Z

25

Near-Zero NOx Technology  

E-Print Network (OSTI)

Miura Boiler is a world leader in boiler technology with manufacturing facilities in Japan, China, Korea, Taiwan and Brantford, Ontario. The company, which began operations in 1927, is committed to technologies that save fuel, reduce harmful emissions, and conserve natural resources. Recently the company announced the development of a technology that dramatically reduces the nitrogen oxide (NOx) concentration in the exhaust gas of gas-fired steam boilers to below 1ppm (at O2=0% equivalent) compared to over 30ppm of conventional US boilers. This “near-zero NOx” breakthrough will be available in North America by 2010 and represents yet another first in Miura’s “green technology” achievements.

Utzinger, M.

2008-01-01T23:59:59.000Z

26

NOx Reduction through Efficiency Gain  

E-Print Network (OSTI)

Benz Air Engineering and the CompuNOx system focus on a controls approach to minimize emissions without exposing steam generation plants to an unbearable financial burden. With minimal system changes we use thorough system analysis in conjunction with a novel control design to deliver a comprehensive boiler controls retrofit that provides reductions in emissions as well as substantial cost savings. Combining mechanical engineering expertise with substantial experience in control engineering in over 200 retrofits this system achieves astonishing results with short payback time, making CompuNOx a feasible solution for emission mandates and cost savings.

Benz, R.; Thompson, R.; Staedter, M.

2007-01-01T23:59:59.000Z

27

Control of NOx by combustion process modifications  

E-Print Network (OSTI)

A theoretical and experimental study was carried out to determine lower bounds of NOx emission from staged combustion of a 0.7%N #6 fuel oil. Thermodynamic and chemical kinetic calculations have shown minimum NOx emissions ...

Ber?, J. M.

1981-01-01T23:59:59.000Z

28

NOx Compliance Using the NOxOUT SNCR Process in the 1200 TPD Montgomery County  

E-Print Network (OSTI)

or RDF. NOx reduction by use of catalytic reduction and ammonia injection are clearly impractical research in this area, so that we can understand the principles of NOx reduction sufficiently to fill our·lined in cinerator by Hiraoka [2] reveals a reduction from 150 ppm NOx to below 100 ppm NOx (at 12% O2) by using

Columbia University

29

Some theoretical results concerning O3-NOx-VOC chemistry and NOx-VOC indicators  

E-Print Network (OSTI)

of modi®ed aircraft NOx emissions, a signi- ®cant reduction of the aircraft-induced NOx and ozone emissions are given in Fig. 6 for the reference year 1990. The reduction of the NOx perturbation is largest-day and future impact of NOx emissions 1073 #12;In July, a maximum reduction between 10 and 20 pptv is found

Sillman, Sanford

30

4, 62396281, 2004 lightning-NOx on  

E-Print Network (OSTI)

accurate model responses under the 25% VOC or NOx emission reduction scenarios but inaccurate results under the 75% NOx emission reduction scenario. OSAT predicts accurate model responses under the 25% VOC emission reduction scenario, but inaccurate responses under the 25% and 75% NOx emission reduction

Paris-Sud XI, Université de

31

NETL: Advanced NOx Emissions Control: Control Technology - Ultra Low-NOx  

NLE Websites -- All DOE Office Websites (Extended Search)

Ultra Low NOx Integrated System Ultra Low NOx Integrated System TFS 2000(tm) Low NOx Firing System Project Summary: ALSTOM Power Inc.'s Power Plant Laboratories, working in concert with ALSTOM Power's Performance Projects Group, has teamed with the U.S. Department of Energy's National Energy Technology Laboratory (DOE NETL) to conduct a comprehensive study to develop/evaluate low-cost, efficient NOx control technologies for retrofit to pulverized coal fired utility boilers. The objective of this project was to develop retrofit NOx control technology to achieve less than 0.15 lb/MMBtu NOx (for bituminous coals) and 0.10 lb/MMBtu NOx (for subbituminous coals) from existing pulverized coal fired utility boilers at a cost which is at least 25% less than SCR technology. Efficient control of NOx is seen as an important,

32

THERMAL DeNOx: A COMMERCIAL SELECTIVE NONCATALYTIC NOx REDUCTION PROCESS FOR  

E-Print Network (OSTI)

THERMAL DeNOx: A COMMERCIAL SELECTIVE NONCATALYTIC NOx REDUCTION PROCESS FOR WASTE when high NOx reduction is required. To illustrate the cost effectiveness, investment and operating in cinerators. INTRODUCTION THERMAL DeNO", a selective noncatalytic NO" reduction process, was invented just

Columbia University

33

NETL: Advanced NOx Emissions Control: Control Technology - NOx Combustion  

NLE Websites -- All DOE Office Websites (Extended Search)

Control Options and Integration Control Options and Integration Reaction Engineering International (REI) is optimizing the performance of, and reduce the technical risks associated with the combined application of low-NOx firing systems (LNFS) and post combustion controls through modeling, bench-scale testing, and field verification. Teaming with REI are the University of Utah and Brown University. During this two-year effort, REI will assess real-time monitoring equipment to evaluate waterwall wastage, soot formation, and burner stoichiometry, demonstrate analysis techniques to improve LNFS in combination with reburning/SNCR, assess selective catalytic reduction catalyst life, and develop UBC/fly ash separation processes. The REI program will be applicable to coal-fired boilers currently in use in the United States, including corner-, wall-, turbo-, and cyclone-fired units. However, the primary target of the research will be cyclone boilers, which are high NOx producing units and represent about 20% of the U.S. generating capacity. The results will also be applicable to all U.S. coals. The research will be divided into four key components:

34

Low NOx Advanced Vortex Combustor  

SciTech Connect

A lean-premixed advanced vortex combustor (AVC) has been developed and tested. The natural gas fueled AVC was tested at the U.S. Department of Energy’s National Energy Technology Laboratory in Morgantown, WV. All testing was performed at elevated pressures and inlet temperatures and at lean fuel-air ratios representative of industrial gas turbines. The improved AVC design exhibited simultaneous NOx /CO/unburned hydrocarbon (UHC) emissions of 4/4/0 ppmv (all emissions corrected to 15% O2 dry). The design also achieved less than 3 ppmv NOx with combustion efficiencies in excess of 99.5%. The design demonstrated marked acoustic dynamic stability over a wide range of operating conditions, which potentially makes this approach significantly more attractive than other lean-premixed combustion approaches. In addition, the measured 1.75% pressure drop is significantly lower than conventional gas turbine combustors, which could translate into an overall gas turbine cycle efficiency improvement. The relatively high velocities and low pressure drop achievable with this technology make the AVC approach an attractive alternative for syngas fuel applications.

Edmonds, R.G. (Ramgen Power Systems, Inc., Bellevue, WA); Williams, J.T. (Ramgen Power Systems, Inc., Bellevue, WA); Steele, R.C. (EPRI); Straub, D.L.; Casleton, K.H.; Bining, Avtar (California Energy Commission, Sacramento, CA)

2008-05-01T23:59:59.000Z

35

UREA INFRASTRUCTURE FOR UREA SCR NOX REDUCTION  

DOE Green Energy (OSTI)

Urea SCR is currently the only proven NOX aftertreatment for diesel engines - high NOX reduction possible - some SCR catalyst systems are robust against fuel sulfur - durability has been demonstrated - many systems in the field - long history in other markets - Major limitations to acceptance - distribution of urea solution to end user - ensuring that urea solution is added to vehicle.

Bunting, Bruce G.

2000-08-20T23:59:59.000Z

36

IEP - Advanced NOx Emissions Control: Regulatory Drivers  

NLE Websites -- All DOE Office Websites (Extended Search)

IEP - Advanced NOx Emissions Control Regulatory Drivers Regulatory Drivers for Existing Coal-Fired Power Plants Regulatory and legislative requirements have predominantly driven the need to develop NOx control technologies for existing coal-fired power plants. The first driver was the Title IV acid rain program, established through the 1990 Clean Air Act Amendments (CAAA). This program included a two-phase strategy to reduce NOx emissions from coal-fired power plants – Phase I started January 1, 1996 and Phase II started January 1, 2000. The Title IV NOx program was implemented through unit-specific NOx emission rate limits ranging from 0.40 to 0.86 lb/MMBtu depending on the type of boiler/burner configuration and based on application of LNB technology.

37

Flue Gas Purification Utilizing SOx/NOx Reactions During Compressin of CO2 Derived from Oxyfuel Combustion  

NLE Websites -- All DOE Office Websites (Extended Search)

Flue Gas Purification Flue Gas Purification Utilizing SO X /NO X Reactions During Compression of CO 2 Derived from Oxyfuel Combustion Background Oxy-combustion in a pulverized coal-fired power station produces a raw carbon dioxide (CO 2 ) product containing contaminants such as water vapor, oxygen, nitrogen, and argon from impurities in the oxygen used and any air leakage into the system. Acid gases are also produced as combustion products, such as sulfur oxides (SO

38

Flue Gas Purification Utilizing SOx/NOx Reactions During Compression of CO{sub 2} Derived from Oxyfuel Combustion  

SciTech Connect

The United States wishes to decrease foreign energy dependence by utilizing the country’s significant coal reserves, while stemming the effects of global warming from greenhouse gases. In response to these needs, Air Products has developed a patented process for the compression and purification of the CO{sub 2} stream from oxyfuel combustion of pulverized coal. The purpose of this project was the development and performance of a comprehensive experimental and engineering evaluation to determine the feasibility of purifying CO{sub 2} derived from the flue gas generated in a tangentially fired coal combustion unit operated in the oxy-combustion mode. Following the design and construction of a 15 bar reactor system, Air Products conducted two test campaigns using the slip stream from the tangentially fired oxy-coal combustion unit. During the first test campaign, Air Products evaluated the reactor performance based on both the liquid and gaseous reactor effluents. The data obtained from the test run has enabled Air Products to determine the reaction and mass transfer rates, as well as the effectiveness of the reactor system. During the second test campaign, Air Products evaluated reactor performance based on effluents for different reactor pressures, as well as water recycle rates. Analysis of the reaction equations indicates that both pressure and water flow rate affect the process reaction rates, as well as the overall reactor performance.

Fogash, Kevin

2010-09-30T23:59:59.000Z

39

Flue Gas Perification Utilizing SOx/NOx Reactions During Compression of CO2 Derived from Oxyfuel Combustion  

SciTech Connect

The United States wishes to decrease foreign energy dependence by utilizing the country’s significant coal reserves, while stemming the effects of global warming from greenhouse gases. In response to these needs, Air Products has developed a patented process for the compression and purification of the CO2 stream from oxyfuel combustion of pulverized coal. The purpose of this project was the development and performance of a comprehensive experimental and engineering evaluation to determine the feasibility of purifying CO2 derived from the flue gas generated in a tangentially fired coal combustion unit operated in the oxy-combustion mode. Following the design and construction of a 15 bar reactor system, Air Products conducted two test campaigns using the slip stream from the tangentially fired oxy-coal combustion unit. During the first test campaign, Air Products evaluated the reactor performance based on both the liquid and gaseous reactor effluents. The data obtained from the test run has enabled Air Products to determine the reaction and mass transfer rates, as well as the effectiveness of the reactor system. During the second test campaign, Air Products evaluated reactor performance based on effluents for different reactor pressures, as well as water recycle rates. Analysis of the reaction equations indicates that both pressure and water flow rate affect the process reaction rates, as well as the overall reactor performance.

Kevin Fogash

2010-09-30T23:59:59.000Z

40

Agricultural Bio-Fueled Generation of Electricity and Development of Durable and Efficent NOx Reduction  

Science Conference Proceedings (OSTI)

The objective of this project was to define the scope and cost of a technology research and development program that will demonstrate the feasibility of using an off-the-shelf, unmodified, large bore diesel powered generator in a grid-connected application, utilizing various blends of BioDiesel as fuel. Furthermore, the objective of project was to develop an emissions control device that uses a catalytic process and BioDiesel (without the presence of Ammonia or Urea)to reduce NOx and other pollutants present in a reciprocating engine exhaust stream with the goal of redefining the highest emission reduction efficiencies possible for a diesel reciprocating generator. Process: Caterpillar Power Generation adapted an off-the-shelf Diesel Generator to run on BioDiesel and various Petroleum Diesel/BioDiesel blends. EmeraChem developed and installed an exhaust gas cleanup system to reduce NOx, SOx, volatile organics, and particulates. The system design and function was optimized for emissions reduction with results in the 90-95% range;

Boyd, Rodney

2007-08-08T23:59:59.000Z

Note: This page contains sample records for the topic "vi sox nox" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Development of a Desulfurization Strategy for a NOx Adsorber Catalyst  

DOE Green Energy (OSTI)

Improve NOx regeneration calibration developed in DECSE Phase I project to understand full potential of NOx adsorber catalyst over a range of operating temperatures. Develop and demonstrate a desulfurization process to restore NOx conversion efficiency lost to sulfur contamination. Investigate effect of desulfurization process on long-term performance of the NOx adsorber catalyst.

Tomazic, Dean

2000-08-20T23:59:59.000Z

42

Influence of Ceria on the NOx Storage/Reduction Behavior of Lean NOx Trap Catalysts  

E-Print Network (OSTI)

ACPD 8, 4911­4947, 2008 NOx-induced ozone loss processes B. Vogel et al. Title Page Abstract mesospheric NOx during Arctic Winter 2003/2004 B. Vogel 1 , P. Konopka 1 , J.-U. Groo� 1 , R. M¨uller 1 , B on behalf of the European Geosciences Union. 4911 #12;ACPD 8, 4911­4947, 2008 NOx-induced ozone loss

Pennycook, Steve

43

Ammonia-Free NOx Control System  

SciTech Connect

Research is being conducted under United States Department of Energy (DOE) Contract DEFC26-03NT41865 to develop a new technology to achieve very low levels of NOx emissions from pulverized coal fired boiler systems by employing a novel system level integration between the PC combustion process and the catalytic NOx reduction with CO present in the combustion flue gas. The combustor design and operating conditions will be optimized to achieve atypical flue gas conditions. This approach will not only suppress NOx generation during combustion but also further reduce NOx over a downstream catalytic reactor that does not require addition of an external reductant, such as ammonia. This report describes the work performed during the January 1 to March 31, 2004 time period.

S. Wu; Z. Fan; R. Herman

2004-03-31T23:59:59.000Z

44

Ammonia-Free NOx Control System  

SciTech Connect

Research is being conducted under United States Department of Energy (DOE) Contract DEFC26-03NT41865 to develop a new technology to achieve very low levels of NOx emissions from pulverized coal fired boiler systems by employing a novel system level integration between the PC combustion process and the catalytic NOx reduction with CO present in the combustion flue gas. The combustor design and operating conditions will be optimized to achieve atypical flue gas conditions. This approach will not only suppress NOx generation during combustion but also further reduce NOx over a downstream catalytic reactor that does not require addition of an external reductant, such as ammonia. This report describes the work performed during the April 1 to June 30, 2004 time period.

Zhen Fan; Song Wu; Richard G. Herman

2004-06-30T23:59:59.000Z

45

In-Situ Combustion NOx Analyzer Sensor  

Science Conference Proceedings (OSTI)

This report contains a review of the different technologies currently available for measuring nitrogen oxide (NOx) in the flue gas stream including chemiluminescence, photometric, Fourier transform infrared (FTIR) and electrochemical cells. Reviews of how NOx is produced, the detrimental effects, and Environmental Protection Agency (EPA) Code of Federal Regulations (CFR) Title 40 test protocols are also included. A survey to gather information and to evaluate the most promising available technologies for...

2005-12-21T23:59:59.000Z

46

Advancements in low NOx tangential firing systems  

Science Conference Proceedings (OSTI)

The most cost effective method of reducing nitrogen oxide emissions when burning fossil fuels, such as coal, is through in-furnace NOx reduction processes. ABB Combustion Engineering, Inc. (ABB CE), through its ABB Power Plant Laboratories has been involved in the development of such low NOx pulverized coal firing systems for many years. This development effort is most recently demonstrated through ABB CE`s involvement with the U.S. Department of Energy`s (DOE) {open_quotes}Engineering Development of Advanced Coal Fired Low-Emission Boiler Systems{close_quotes} (LEBS) project. The goal of the DOE LEBS project is to use {open_quotes}near term{close_quotes} technologies to produce a commercially viable, low emissions boiler. This paper addresses one of the key technologies within this project, the NOx control subsystem. The foundation for the work undertaken at ABB CE is the TFS 2000{trademark} firing system, which is currently offered on a commercial basis. This system encompasses sub-stoichiometric combustion in the main firing zone for reduced NOx formation. Potential enhancements to this firing system focus on optimizing the introduction of the air and fuel within the primary windbox to provide additional horizontal and vertical staging. As is the case with all in-furnace NOx control processes, it is necessary to operate the system in a manner which does not decrease NOx at the expense of reduced combustion efficiency.

Hein, R. von; Maney, C.; Borio, R. [and others

1996-12-31T23:59:59.000Z

47

OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL  

SciTech Connect

Conventional wisdom says adding oxygen to a combustion system enhances product throughput, system efficiency, and, unless special care is taken, increases NOx emissions. This increase in NOx emissions is typically due to elevated flame temperatures associated with oxygen use leading to added thermal NOx formation. Innovative low flame temperature oxy-fuel burner designs have been developed and commercialized to minimize both thermal and fuel NOx formation for gas and oil fired industrial furnaces. To be effective these systems require close to 100% oxy-fuel combustion and the cost of oxygen is paid for by fuel savings and other benefits. For applications to coal-fired utility boilers at the current cost of oxygen, however, it is not economically feasible to use 100% oxygen for NOx control. In spite of this conventional wisdom, Praxair and its team members, in partnership with the US Department of Energy National Energy Technology Laboratory, have developed a novel way to use oxygen to reduce NOx emissions without resorting to complete oxy-fuel conversion. In this concept oxygen is added to the combustion process to enhance operation of a low NOx combustion system. Only a small fraction of combustion air is replaced with oxygen in the process. By selectively adding oxygen to a low NOx combustion system it is possible to reduce NOx emissions from nitrogen-containing fuels, including pulverized coal, while improving combustion characteristics such as unburned carbon. A combination of experimental work and modeling was used to define how well oxygen enhanced combustion could reduce NOx emissions. The results of this work suggest that small amounts of oxygen replacement can reduce the NOx emissions as compared to the air-alone system. NOx emissions significantly below 0.15 lbs/MMBtu were measured. Oxygen addition was also shown to reduce carbon in ash. Comparison of the costs of using oxygen for NOx control against competing technologies, such as SCR, show that this concept offers substantial savings over SCR and is an economically attractive alternative to purchasing NOx credits or installing other conventional technologies. In conjunction with the development of oxygen based low NOx technology, Praxair also worked on developing the economically enhancing oxygen transport membrane (OTM) technology which is ideally suited for integration with combustion systems to achieve further significant cost reductions and efficiency improvements. This OTM oxygen production technology is based on ceramic mixed conductor membranes that operate at high temperatures and can be operated in a pressure driven mode to separate oxygen with infinite selectivity and high flux. An OTM material was selected and characterized. OTM elements were successfully fabricated. A single tube OTM reactor was designed and assembled. Testing of dense OTM elements was conducted with promising oxygen flux results of 100% of target flux. However, based on current natural gas prices and stand-alone air separation processes, ceramic membranes do not offer an economic advantage for this application. Under a different DOE-NETL Cooperative Agreement, Praxair is continuing to develop oxygen transport membranes for the Advanced Boiler where the economics appear more attractive.

David R. Thompson; Lawrence E. Bool; Jack C. Chen

2004-04-01T23:59:59.000Z

48

SOX2 Co-Occupies Distal Enhancer Elements with Distinct POU Factors in ESCs and NPCs to Specify Cell State  

E-Print Network (OSTI)

SOX2 is a master regulator of both pluripotent embryonic stem cells (ESCs) and multipotent neural progenitor cells (NPCs); however, we currently lack a detailed understanding of how SOX2 controls these distinct stem cell ...

Lodato, Michael A.

49

Title VI | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

VI VI Title VI Title VI of the Civil Rights Act of 1964 prohibits discrimination on the basis of race, color, and national origin in programs and activities that receive federal financial assistance. The law states, in part, that: No person in the United States shall, on the ground of race, color, or national origin, be excluded from participation in, be denied the benefits of, or be subjected to discrimination under any program or activity receiving Federal financial assistance. The Office of Civil Rights is responsible for monitoring and enforcing compliance with Title VI, investigating Title VI-related complaints, and providing technical assistance to recipients of Department of Energy financial assistance. The Department has promulgated regulations that

50

NETL: News Release - DOE-Funded Technology Slashes NOx, Costs...  

NLE Websites -- All DOE Office Websites (Extended Search)

November 7, 2005 DOE-Funded Technology Slashes NOx, Costs in Coal-Fired Cyclone Boiler Utility Reconsiders Plans to Install Standard NOx-control Technology After Successful Field...

51

OBSERVATION-BASED METHODS (OBMS) FOR ANALYZING URBAN/REGIONAL OZONE PRODUCTION AND OZONE-NOx-VOC SENSITIVITY.  

E-Print Network (OSTI)

and reduction ofFormation and reduction of NOxNOx during burner combustionduring burner combustion ·· LowLow NOxNOx gas treatment forFlue gas treatment for NOxNOx reduction: SCR, SNCR, otherreduction: SCR, SNCR, other OF TECHNOLOGY ENE-47.153 Selective catalyticSelective catalytic reduction (SCR) ofreduction (SCR) of NOxNOx /1

Sillman, Sanford

52

Steam effect on NOx reduction over lean NOx trap Pt–BaO/Al2O3 ...  

Science Conference Proceedings (OSTI)

Compared to dry atmosphere, steam promoted NOx reduction; however, under ... stored NOx over Pt–BaO/Al2O3 suggest that steam causes NH3 formation over ...

53

Novel Application of Air Separation Membranes Reduces Engine NOx Emissions  

Nitrogen oxide (NOx) emissions pose risks to human health, and so they need to be reduced. One very effective tool for reducing engine in-cylinder temperature and, hence NOx emissions (NOx is a strong function of temperature), is Exhaust Gas ...

54

(plexiglass) covers (negligible transmittance at 290320 nm). NOx emission decreased  

E-Print Network (OSTI)

that the controlling NOx formation and reduction reactions are insensi- tive to coal rank. This observation has been as the initial NOx level in- creases suggests that the char/NO reduction step(s) is more temperature sensitive concentrations cannot be reduced to levels ap- proaching 0 ppm without the use of downstream NOx reduction

55

Radiative forcing from aircraft NOx emissions: mechanisms and seasonal dependence  

E-Print Network (OSTI)

), a Babcock Power Inc. company, has developed a new, innovative, high-efficiency NOX reduction technology into a single unit and provides the maximum NOX reduction and heat recovery practical. The paper will describe emissions. A new system for the reduction of NOX emissions to levels hereby unheard of for US WTE boilers

Stevenson, David

56

NETL: Advanced NOx Emissions Control: Control Technology - Methane de-NOx  

NLE Websites -- All DOE Office Websites (Extended Search)

METHANE de-NOx® METHANE de-NOx® The Gas Technology Institute (GTI) is teaming with the All-Russian Thermal Engineering Institute and DB Riley to develop a pulverized-coal (PC)-combustion system that is an extension of IGT's METHANE de-NOx® technology. The technology is composed of a novel PC burner design using natural gas fired coal preheating developed and demonstrated in Russia, LNBs with internal combustion staging, and additional natural gas injection with overfire air. The coal is preheated at elevated temperatures (up to 1500oF) in oxygen deficient conditions prior to combustion. Coal preheat releases fuel-bound nitrogen together with volatiles present in the coal. These conditions promote the conversion of fuel-bound nitrogen to molecular nitrogen rather than to NOx.

57

Impacts of NOx Controls on Mercury Controllability  

Science Conference Proceedings (OSTI)

Past tests have led researchers and air pollution regulators to hypothesize that nitrogen oxides (NOx) controls can enhance mercury capture by particulate collection devices and sulfur dioxide (SO2) scrubbers. This technology review presents results obtained to date from a comprehensive program designed to confirm, qualify, and quantify these hypotheses.

2002-03-13T23:59:59.000Z

58

LABORATORY VI ELECTRICITY FROM MAGNETISM  

E-Print Network (OSTI)

LABORATORY VI ELECTRICITY FROM MAGNETISM Lab VI - 1 In the previous problems you explored by electric currents. This lab will carry that investigation one step further, determining how changing magnetic fields can give rise to electric currents. This is the effect that allows the generation

Minnesota, University of

59

NOx Sensor for Direct Injection Emission Control  

DOE Green Energy (OSTI)

The Electricore/Delphi team continues to leverage the electrochemical planar sensor technology that has produced stoichiometric planar and wide range oxygen sensors as the basis for development of a NOx sensor. Zirconia cell technology with an integrated heater will provide the foundation for the sensor structure. Proven materials and packaging technology will help to ensure a cost-effective approach to the manufacture of this sensor. The electronics technique and interface is considered to be an area where new strategies need to be employed to produce higher S/N ratios of the NOx signal with emphasis on signal stability over time for robustness and durability Both continuous mode and pulse mode control techniques are being evaluated. Packaging the electronics requires careful design and circuit partitioning so that only the necessary signal conditioning electronics are coupled directly in the wiring harness, while the remainder is situated within the ECM for durability and costs reasons. This task continues to be on hold due to the limitation that the definition of the interface electronics was unavailable until very late in the project. The sense element is based on the amperometric method utilizing integrated alumina and zirconia ceramics. Precious metal electrodes are used to form the integrated heater, the cell electrodes and leads. Inside the actual sense cell structure, it is first necessary to separate NOx from the remaining oxygen constituents of the exhaust, without reducing the NOx. Once separated, the NOx will be measured using a measurement cell. Development or test coupons have been used to facilitate material selection and refinement, cell, diffusion barrier, and chamber development. The sense element currently requires elaborate interconnections. To facilitate a robust durable connection, mechanical and metallurgical connections are under investigation. Materials and process refinements continue to play an important role in the development of the sensor.

Betteridge, William J

2006-02-28T23:59:59.000Z

60

AMMONIA-FREE NOx CONTROL SYSTEM  

DOE Green Energy (OSTI)

This report describes a novel NOx control system that has the potential to drastically reduce cost, and enhance performance, operation and safety of power plant NOx control. The new system optimizes the burner and the furnace to achieve very low NOx levels and to provide an adequate amount of CO, and uses the CO for reducing NO both in-furnace and over a downstream AFSCR (ammonia-free selective catalytic reduction) reactor. The AF-SCR combines the advantages of the highly successful SCR technology for power plants and the TWC (three-way catalytic converter) widely used on automobiles. Like the SCR, it works in oxidizing environment of combustion flue gas and uses only base metal catalysts. Like the TWC, the AF-SCR removes NO and excess CO simultaneously without using any external reagent, such as ammonia. This new process has been studied in a development program jointed funded by the US Department of Energy and Foster Wheeler. The report outlines the experimental catalyst work performed on a bench-scale reactor, including test procedure, operating conditions, and results of various catalyst formulations. Several candidate catalysts, prepared with readily available transition metal oxides and common substrate materials, have shown over 80-90% removal for both NO and CO in oxidizing gas mixtures and at elevated temperatures. A detailed combustion study of a 400 MWe coal-fired boiler, applying computational fluid dynamics techniques to model boiler and burner design, has been carried out to investigate ways to optimize the combustion process for the lowest NOx formation and optimum CO/NO ratios. Results of this boiler and burner optimization work are reported. The paper further discusses catalyst scale-up considerations and the conceptual design of a 400 MWe size AF-SCR reactor, as well as economics analysis indicating large cost savings of the ammonia-free NOx control process over the current SCR technology.

Song Wu; Zhen Fan; Andrew H. Seltzer; Richard G. Herman

2006-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "vi sox nox" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

ULTRA LOW NOx INTEGRATED SYSTEM FOR NOx EMISSION CONTROL FROM COAL-FIRED BOILERS  

Science Conference Proceedings (OSTI)

ALSTOM Power Inc.'s Power Plant Laboratories, working in concert with ALSTOM Power's Performance Projects Group, has teamed with the U.S. Department of Energy's National Energy Technology Laboratory (DOE NETL) to conduct a comprehensive study to develop/evaluate low-cost, efficient NOx control technologies for retrofit to pulverized coal fired utility boilers. The objective of this project was to develop retrofit NOx control technology to achieve less than 0.15 lb/MMBtu NOx (for bituminous coals) and 0.10 lb/MMBtu NOx (for subbituminous coals) from existing pulverized coal fired utility boilers at a cost which is at least 25% less than SCR technology. Efficient control of NOx is seen as an important, enabling step in keeping coal as a viable part of the national energy mix in this century, and beyond. Presently 57% of U.S. electrical generation is coal based, and the Energy Information Agency projects that coal will maintain a lead in U.S. power generation over all other fuel sources for decades (EIA 1998 Energy Forecast). Yet, coal-based power is being strongly challenged by society's ever-increasing desire for an improved environment and the resultant improvement in health and safety. The needs of the electric-utility industry are to improve environmental performance, while simultaneously improving overall plant economics. This means that emissions control technology is needed with very low capital and operating costs. This project has responded to the industry's need for low NOx emissions by evaluating ideas that can be adapted to present pulverized coal fired systems, be they conventional or low NOx firing systems. The TFS 2000{trademark} firing system has been the ALSTOM Power Inc. commercial offering producing the lowest NOx emission levels. In this project, the TFS 2000{trademark} firing system served as a basis for comparison to other low NOx systems evaluated and was the foundation upon which refinements were made to further improve NOx emissions and related combustion performance. Three coals were evaluated during the bench-scale and large pilot-scale testing tasks. The three coals ranged from a very reactive Powder River Basin coal (PRB) to a moderately reactive Midwestern bituminous coal (HVB) to a less reactive medium volatile Eastern bituminous coal (MVB). Bench-scale testing was comprised of standard ASTM properties evaluation, plus more detailed characterization of fuel properties through drop tube furnace testing and thermogravimetric analysis.

Galen H. Richards; Charles Q. Maney; Richard W. Borio; Robert D. Lewis

2002-12-30T23:59:59.000Z

62

NOx Reduction with Natural Gas for Lean Large-Bore Engine Applications Using Lean NOx Trap Aftertreatment  

SciTech Connect

Large-bore natural gas engines are used for distributed energy and gas compression since natural gas fuel offers a convenient and reliable fuel source via the natural gas pipeline and distribution infrastructure. Lean engines enable better fuel efficiency and lower operating costs; however, NOx emissions from lean engines are difficult to control. Technologies that reduce NOx in lean exhaust are desired to enable broader use of efficient lean engines. Lean NOx trap catalysts have demonstrated greater than 90% NOx reduction in lean exhaust from engines operating with gasoline, diesel, and natural gas fuels. In addition to the clean nature of the technology, lean NOx traps reduce NOx with the fuel source of the engine thereby eliminating the requirement for storage and handling of secondary fuels or reducing agents. A study of lean NOx trap catalysts for lean natural gas engines is presented here. Testing was performed on a Cummins C8.3G (CG-280) engine on a motor dynamometer. Lean NOx trap catalysts were tested for NOx reduction performance under various engine operating conditions, and the utilization of natural gas as the reductant fuel source was characterized. Engine test results show that temperature greatly affects the catalytic processes involved, specifically methane oxidation and NOx storage on the lean NOx trap. Additional studies on a bench flow reactor demonstrate the effect of precious metal loading (a primary cost factor) on lean NOx trap performance at different temperatures. Results and issues related to the potential of the lean NOx trap technology for large-bore engine applications will be discussed.

Parks, JE

2005-02-11T23:59:59.000Z

63

OVERVIEW: TROPOSPHERIC OZONE, SMOG AND OZONE-NOx-VOC SENSITIVITY. Dr. Sanford Sillman  

E-Print Network (OSTI)

. MERMCI and the Waste System Authority of Montgomery County (WSA) evaluated the different NOx reduction-Catalytic Reduction (SNCR) system. The NOxOUT® process is a post combustion NOx reduction method that reduces NOx. Such modifications have been successfully employed to achieve 25-70% reduction in NOx from fossil-fueled combusters

Sillman, Sanford

64

Operational Flexibility Guidelines for Gas Turbine Low NOx Combustion Systems  

Science Conference Proceedings (OSTI)

Gas turbine low-NOx combustion systems can differ in hardware from manufacturer to manufacturer, but the principle is the same. Low-NOx combustors reduce peak flame temperatures by mixing fuel and air before combustion and by keeping the fuel-to-air ratio as low (lean) as possible, while still maintaining combustion stability over the broadest possible operating range. Low-NOx combustion systems are inherently more complex than diffusion combustion systems, a fact that impacts operational flexibility, re...

2011-12-14T23:59:59.000Z

65

NETL: Advanced NOx Emissions Control: Control Technology - Mercury...  

NLE Websites -- All DOE Office Websites (Extended Search)

Mercury Speciation from NOx Control University of North Dakota Energy and Environmental Research Center (UNDEERC) is addressing the impact that selective catalytic reduction (SCR),...

66

Sox2 co-occupies distal enhancer elements with cell-type-specific POU factors to specify cell identity in embryonic stem cells and neural precursor cells  

E-Print Network (OSTI)

Sox2 is a master regulator of two distinct cellular states, that of pluripotent embryonic stem cells (ESCs) and multipotent neural progenitor cells (NPCs), but what common or distinct roles Sox2 may play in these cell types ...

Lodato, Michael A. (Michael Anthony)

2012-01-01T23:59:59.000Z

67

Aminoguanidine inhibits aortic hydrogen peroxide production, VSMC NOX activity and hypercontractility in diabetic mice  

E-Print Network (OSTI)

likely via a reduction in NOX-linked hypercontractility.signif- icant reduction in VSMC NOX activity remains to beNOX-derived O 2•- in diabetic VSMC might underlie AG reduction

Oak, Jeong-Ho; Youn, Ji-Youn; Cai, Hua

2009-01-01T23:59:59.000Z

68

Assessment of Alternative Post-Combustion NOx Controls Technologies  

Science Conference Proceedings (OSTI)

As emission control requirements continually become stricter, power producers need new, efficient, cost-effective approaches to reduce NOx and other atmospheric pollutants. This report focuses on alternative emerging and commercial post-combustion NOx controls applications other than the industry standard selective catalytic reduction (SCR) technology.

2008-12-01T23:59:59.000Z

69

NOx reduction by electron beam-produced nitrogen atom injection  

DOE Patents (OSTI)

Deactivated atomic nitrogen generated by an electron beam from a gas stream containing more than 99% N.sub.2 is injected at low temperatures into an engine exhaust to reduce NOx emissions. High NOx reduction efficiency is achieved with compact electron beam devices without use of a catalyst.

Penetrante, Bernardino M. (San Ramon, CA)

2002-01-01T23:59:59.000Z

70

FUNDAMENTALS OF GAMMA TITANIUM ALUMINIDES: VI ...  

Science Conference Proceedings (OSTI)

FUNDAMENTALS OF GAMMA TITANIUM ALUMINIDES: Session VI: Microstructure/Property Relationships--Creep and Environmental Effects. Sponsored by: ...

71

NETL: Emissions Characterization - Adv. Low-NOx Burner Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Low-NOx Burner Emissions Characterization Advanced Low-NOx Burner Emissions Characterization The goal of this work is to develop a comprehensive, high-quality database characterizing PM2.5 emissions from utility plants firing high sulfur coals. The specific objectives are to: 1) develop and test an ultra low-NOx pulverized coal burner for plug-in retrofit applications without boiler wall tube modifications, 2) assess the impact of low-NOx PC burner operation on NOx and PM2.5 emissions, and 3) provide high-quality data to ensure that future PM2.5 regulations are based on good scientific information. The work will be performed in the Clean Environment Development Facility (CEDF), a 100 million Btu/hr near-full-scale facility located at the Alliance Research Center. Related Papers and Publications:

72

Air Pollution Control Regulations: No. 41 - Nox Budget Trading Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

41 - Nox Budget Trading 41 - Nox Budget Trading Program (Rhode Island) Air Pollution Control Regulations: No. 41 - Nox Budget Trading Program (Rhode Island) < Back Eligibility Commercial Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Program Info State Rhode Island Program Type Environmental Regulations Provider Department of Environmental Management These regulations establish a budget trading program for nitrogen oxide emissions, setting NOx budget units for generators and an NOx Allowance Tracking System to account for emissions. These regulations apply to units that serve generators with a nameplate capacity greater than 15 MWe and sell any amount of electricity, as well as to units that have a maximum

73

NOx Control for Utility Boiler OTR Compliance  

Science Conference Proceedings (OSTI)

Under sponsorship of the Department of Energy's National Energy Technology Laboratory (NETL), the Babcock and Wilcox Company (B and W), and Fuel Tech teamed together to investigate an integrated solution for NO{sub x} control. The system is comprised of B and W's DRB-4Z{trademark} ultra low-NO{sub x} pulverized coal (PC) burner technology and Fuel Tech's NOxOUT{reg_sign}, a urea-based selective non-catalytic reduction (SNCR) technology. Development of the low-NO{sub x} burner technology has been a focus in B and W's combustion program. The DRB-4Z{trademark} burner is B and W's newest low-NO{sub x} burner capable of achieving very low NO{sub x}. The burner is designed to reduce NO{sub x} by controlled mixing of the fuel and air. Based on data from several 500 to 600 MWe boilers firing PRB coal, NOx emissions levels of 0.15 to 0.20 lb/ 106 Btu have been achieved from the DRB-4Z{trademark} burners in combination with overfire air ports. Although NOx emissions from the DRB-4Z{trademark} burner are nearing the Ozone Transport Rule (OTR) level of 0.15 lb NO{sub x}/106 Btu, the utility boiler owners can still benefit from the addition of an SNCR and/or SCR system in order to comply with the stringent NO{sub x} emission levels facing them. Large-scale testing is planned in B and W's 100-million Btu/hr Clean Environment Development Facility (CEDF) that simulates the conditions of large coal-fired utility boilers. The objective of the project is to achieve a NO{sub x} level below 0.15 lb/106 Btu (with ammonia slip of less than 5 ppm) in the CEDF using PRB coal and B and W's DRB-4Z{trademark} low-NO{sub x} pulverized coal (PC) burner in combination with dual zone overfire air ports and Fuel Tech's NO{sub x}OUT{reg_sign}. During this period B and W prepared and submitted the project management plan and hazardous substance plan to DOE. The negotiation of a subcontract for Fuel Tech has been started.

Hamid Farzan

2003-12-31T23:59:59.000Z

74

Effects of E-SOx technology on ESP performance. Final report, Aug-Nov 90  

Science Conference Proceedings (OSTI)

The report gives results of an evaluation of the E-SOx process at Ohio Edison's Burger Station. Adequate sulfur dioxide (SO2) removal and acceptable particulate emission levels from the electrostatic precipitator (ESP) were the prime objectives of the investigation. The report describes limited ESP performance testing under both baseline and E-SOx conditions. The ESP data collected under E-SOx conditions, which give the required 50% SO2 removal, show evidence of ESP performance dominated by factors not represented in existing versions of ESP performance models. These analyses and other considerations indicate that the factors which dominate under the conditions tested are a combination of instantaneous reentrainment of low resistivity ash/sorbent particles and deagglomeration of slurry residues within the ESP. These observations may be important to other sorbent injection processes as well as to E-SOx. Improvement of the gas velocity and temperature distributions at the ESP inlet improved the ESP performance, but performance was still dominated by the reentrainment process and was therefore lower than mathematical model predictions.

Marchant, G.H.; Gooch, J.P.; Faulkner, M.G.

1992-10-01T23:59:59.000Z

75

Ion-mobility Spectrometry Based NOx Sensor - Nuclear Engineering Division  

NLE Websites -- All DOE Office Websites (Extended Search)

NPNS > Sensors and NPNS > Sensors and Instrumentation and NDE > Energy System Application > DOE Office of Transportation Technologies > Ion-mobility Spectrometry Based NOx Sensor Capabilities Sensors and Instrumentation and Nondestructive Evaluation Overview Energy System Applications Overview DOE Office of Fossil Energy DOE Office of Transportation Technologies Ion-mobility Spectrometry Based NOx Sensor DOE Office of Power Technology Work for Others Safety-Related Applications Homeland Security Applications Biomedical Applications Millimiter Wave Group Papers Other NPNS Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Sensors and Instrumentation and Nondestructive Evaluation Ion-mobility Spectrometry Based NOx Sensor

76

Modeling of NOx formation in circular laminar jet flames  

E-Print Network (OSTI)

Emissions of oxides of nitrogen (NOx) from combustion devices is a topic of tremendous current importance. The bulk of the review of NOx emissions has been in the field of turbulent jet flames. However laminar jet flames have provided much insight into the relative importance of NOx reaction pathways in non premixed combustion for various flame conditions. The existing models include detailed chemistry kinetics for various species involved in the flame. These detailed models involve very complex integration of hundreds of chemical reactions of various species and their intermediates. Hence such models are highly time consuming and also normally involve heavy computational costs. This work proposes a numerical model to compute the total production of NOx in a non-premixed isolated circular laminar jet flame. The jet consists of the fuel rich inner region and the O2 rich outer region. The model estimates both thermal NOx and prompt NOx assuming single step kinetics for NOx formation and a thin flame model. Further the amount of air entrainment by jet depends upon the Sc number of fuel. The higher the Sc number, the higher is the air entrained which lowers the flame temperature and hence NOx formation. With increasing Sc number, flame volume increases which leads to an increase in the NOx formation. The effect of the Sc number variation on the net production of NOx and flame structure is also investigated. The effect of equilibrium chemistry for CO2 CO + 1/2 O2 and H2O H2 +1/2 O2 on total NOx emission is studied. Also the effect of both CO2 and H2O equilibrium is considered simultaneously and the net x NO formation for propane is 45 ppm. The split between pre-flame and post-flame regions is also investigated. For Propane, 96% of NO emissions occur in the pre-flame region and about 4% in the post-flame region. The model predictions are compared with experimental values of NOx missions reported elsewhere.

Siwatch, Vivek

2005-12-01T23:59:59.000Z

77

Quantification of Variability and Uncertainty in Hourly NOx Emissions from Coal-Fired Power Plants  

E-Print Network (OSTI)

1 Quantification of Variability and Uncertainty in Hourly NOx Emissions from Coal-Fired Power to quantify variability and uncertainty for NOx emissions from coal-fired power plants. Data for hourly NOx Uncertainty, Variability, Emission Factors, Coal-Fired Power Plants, NOx emissions, Regression Models

Frey, H. Christopher

78

PERFORMANCE OF NOx CONTROL TECHNOLOGIES ON THREE CALIFORNIA WASTE-TO-ENERGY  

E-Print Network (OSTI)

catalytic reduction (SNCR) technology. There is a sub stantial volume of literature available discussing NOx in the first three undergrate zones on the SERRF units. Preliminary indications were that some NOx reduction) to quantify the effect of FGR's contribution to NOx reduction during simultaneous FGRIThermal DeNOx use; (b

Columbia University

79

Use of Simulation To Optimize NOx Abatement by Absorption and Selective Catalytic Reduction  

E-Print Network (OSTI)

Use of Simulation To Optimize NOx Abatement by Absorption and Selective Catalytic Reduction Andrew the effect of the ammonia feed ratio on the NOx reduction efficiency for the SCR model. Optimal NOx removal NOx in an inert gas slows its absorption in the absorber and its reduction in the SCR because

Liu, Y. A.

80

THE DEVELOPMENT OF A 1990 GLOBAL INVENTORY FOR SO(X) AND NO(X) ON A 1(DEGREE) X 1(DEGREE) LATITUDE-LONGITUDE GRID.  

SciTech Connect

Sulfur and nitrogen oxides emitted to the atmosphere have been linked to the acidification of water bodies and soils and perturbations in the earth's radiation balance. In order to model the global transport and transformation of SO{sub x} and NO{sub x}, detailed spatial and temporal emission inventories are required. Benkovitz et al. (1996) published the development of an inventory of 1985 global emissions of SO{sub x} and NO{sub x} from anthropogenic sources. The inventory was gridded to a 1{degree} x 1{degree} latitude-longitude grid and has served as input to several global modeling studies. There is now a need to provide modelers with an update of this inventory to a more recent year, with a split of the emissions into elevated and low level sources. This paper describes the development of a 1990 update of the SO{sub x} and NO{sub x} global inventories that also includes a breakdown of sources into 17 sector groups. The inventory development starts with a gridded global default EDGAR inventory (Olivier et al, 1996). In countries where more detailed national inventories are available, these are used to replace the emissions for those countries in the global default. The gridded emissions are distributed into two height levels (0-100m and >100m) based on the final plume heights that are estimated to be typical for the various sectors considered. The sources of data as well as some of the methodologies employed to compile and develop the 1990 global inventory for SO{sub x} and NO{sub x} are discussed. The results reported should be considered to be interim since the work is still in progress and additional data sets are expected to become available.

VAN HEYST,B.J.

1999-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "vi sox nox" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

NOx, SOx and CO2 Emissions Reduction from Continuous Commissioning® (CC®) Measures at the Rent-A-Car Facility in the Dallas-Fort Worth International Airport  

E-Print Network (OSTI)

The Energy Systems Laboratory (ESL) at the Texas Engineering Experiment Station, Texas A&M University System was contracted to fulfill a Continuous Commissioning® (CC®)project on the Rent-a-Car facility (RAC) of the Dallas-Fort Worth International Airport (DFWIA) in which energy savings are directly related to an emission reduction that can be credited. The purpose of this study is to estimate the creditable emissions reductions from energy efficiency CC® measures in the RAC of DFWIA.

Baltazar-Cervantes, J. C.; Haberl, J. S.; Yazdani, B.

2006-10-27T23:59:59.000Z

82

NETL: Advanced NOx Emissions Control: Control Technology - ALTA...  

NLE Websites -- All DOE Office Websites (Extended Search)

of the burner design is to achieve homogeneity of the combustion products in the boiler. Not only does this create ideal conditions for combustion-related NOx control, it...

83

NETL: Advanced NOx Emissions Control: Control Technology - Carbon...  

NLE Websites -- All DOE Office Websites (Extended Search)

product. The FFR concept solves this problem. The technology increases the efficiency of NOx reduction in coal reburning and decreases carbon-in ash. FFR can achieve the same...

84

NETL: Advanced NOx Emissions Control: Control Technology - Dense...  

NLE Websites -- All DOE Office Websites (Extended Search)

air (ROFA(tm)) and ROTAMIX(tm) systems. Baseline NOx emission rates with the ROFA system ranged from 0.17 to 0.26 lbMMBtu. During DPRCS testing the micronized coal feed...

85

Lean Gasoline Engine Reductant Chemistry During Lean NOx Trap Regeneration  

Science Conference Proceedings (OSTI)

Lean NOx Trap (LNT) catalysts can effectively reduce NOx from lean engine exhaust. Significant research for LNTs in diesel engine applications has been performed and has led to commercialization of the technology. For lean gasoline engine applications, advanced direct injection engines have led to a renewed interest in the potential for lean gasoline vehicles and, thereby, a renewed demand for lean NOx control. To understand the gasoline-based reductant chemistry during regeneration, a BMW lean gasoline vehicle has been studied on a chassis dynamometer. Exhaust samples were collected and analyzed for key reductant species such as H2, CO, NH3, and hydrocarbons during transient drive cycles. The relation of the reductant species to LNT performance will be discussed. Furthermore, the challenges of NOx storage in the lean gasoline application are reviewed.

Choi, Jae-Soon [ORNL; Prikhodko, Vitaly Y [ORNL; Partridge Jr, William P [ORNL; Parks, II, James E [ORNL; Norman, Kevin M [ORNL; Huff, Shean P [ORNL; Chambon, Paul H [ORNL; Thomas, John F [ORNL

2010-01-01T23:59:59.000Z

86

Status of the Development and Assessment of Advanced NOx Catalysts  

Science Conference Proceedings (OSTI)

This is an interim report summarizing the status of EPRI's advanced nitrogen oxides (NOx) reduction catalyst development efforts in 2000. Concepts for that are more effective, lower cost, and may not have the problems associated with the standard vanadium pentoxide - titanium dioxide (V2O5-TiO2) NOx selective catalytic reduction (SCR) catalysts that have been assessed under this program. The primary efforts in 2000 included further development of an ultra-high efficiency (UHE) catalyst, determining wheth...

2000-11-27T23:59:59.000Z

87

NOx reduction aftertreatment system using nitrogen nonthermal plasma desorption  

Science Conference Proceedings (OSTI)

In the flue emission from an internal combustion system using diffusing combustion such as coal or oil fuel boiler, incinerator, or diesel engine, around 10% oxygen is usually included. It is difficult to reduce the NOx in the emission completely using catalysts or plasma alone because part of the NO is oxidized under an O{sub 2}-rich environment. In order to overcome these difficulties, we propose a new aftertreatment system of NOx included in the exhaust gas of the combustion system using nonthermal plasma (NTP) desorption and reduction. In this system, exchangeable adsorbent columns are equipped. As an initial step to realize such kind of aftertreatment system, the basic characteristics of the N{sub 2} NTP desorption and NOx reduction were examined experimentally using a pulse corona NTP reactor. After several adsorption/desorption processes, the amount of NOx adsorbed becomes equal to that of the NOx desorbed, that is, all the NO, was desorbed in a single desorption process. It is confirmed that the NOx complete reduction using N{sub 2} NTP desorption is possible not only for a simulated exhaust gas but for a real diesel engine gas. The effective specific energy density can be decreased down to 22 Wh/m{sup 3}.

Okubo, M.; Inoue, M.; Kuroki, T.; Yamamoto, T. [University of Osaka Prefecture, Osaka (Japan). Dept. of Mechanical Engineering

2005-08-01T23:59:59.000Z

88

The Path of Carbon in Photosynthesis VI.  

E-Print Network (OSTI)

PATH OF CkRBON IN PHOTOSYNTHESIS. VI. * Ni. Calvin Radiationdetermination of the path of carbon in photosynthesis. Theredark fixation of photosynthesis and methods of separation

Calvin, M.

1949-01-01T23:59:59.000Z

89

Aeroderivative Gas Turbines Can Meet Stringent NOx Control Requirements  

E-Print Network (OSTI)

Gas Turbines operating in the United States are required to meet federally mandated emission standards. This article will discuss how General Electric's LM industrial aeroderivative gas turbines are meeting NOx requirements as low as 25 parts per million using steam injection. The article will also describe the technical aspects of how water or steam injection can be used to supress NOx, what emission levels GE will guarantee and detail some recently obtained test results. The side benefits of water or steam injection for controlling NOx emissions will be discussed. Steam injection has a very favorable effect on engine performance raising both the power output and efficiency. As an example, full steam injection in the GE LM5000 gas turbine increases the power output from 34 MW to 52 MW while lowering the heat rate from 9,152 Btu/kWh to 7,684 Btu/kWh when fired on natural gas. Water injection increases power output at a slightly decreased thermal efficiency. When steam is injected, NOx can be controlled to 25 ppm (referenced to 15 percent O2) which is sufficient to comply with the most stringent requirements imposed in areas where water or steam injection is considered best available control technology (BACT). Selective Catalytic Reduction (SCR) systems are currently employed in areas with Lowest Achievable Emissions Requirements. SCRs have been proposed as BACT in several areas such as the Bay area of California and the state of New Jersey. These systems are expensive to install and operate, and this cost impact can cause many projects to become economically non-viable. Cost comparisons for NOx removal using an SCR in combination with the steam injection will demonstrate the large incremental cost incurred when NOx is controlled using an SCR. Lastly, a case will be made for not imposing SCR as BACT in that it would close the door on further research and development for better, cost-effective methods of NOx control.

Keller, S. C.; Studniarz, J. J.

1987-09-01T23:59:59.000Z

90

North American Standard Level VI Inspection Program Update: Ensuring...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

North American Standard Level VI Inspection Program Update: Ensuring Safe Transportation of Radioactive Material North American Standard Level VI Inspection Program Update:...

91

LABORATORY VI ENERGY AND THERMAL PROCESSES  

E-Print Network (OSTI)

LABORATORY VI ENERGY AND THERMAL PROCESSES Lab VI - 1 The change of the internal energy of a system temperature by sweating to cool down. Running seems to be the conversion of chemical energy to thermal energy energy into thermal energy, you decide to make some measurements in the laboratory. To make

Minnesota, University of

92

NETL: Advanced NOx Emissions Control: Control Technology - SCNR Field  

NLE Websites -- All DOE Office Websites (Extended Search)

SNCR Field Demonstration SNCR Field Demonstration American Electric Power (AEP), in conjunction with the U.S. Department of Energy, FuelTech, the Ohio Coal Development Office, and fourteen EPRI member utilities, performed a full-scale demonstration of a urea-based Selective Non-Catalytic Reduction (SNCR) system at Cardinal Unit 1. Cardinal Unit 1 is a 600MWe opposed-wall dry bottom pulverized coal-fired boiler that began service in 1967. This unit burns eastern bituminous high-sulfur coal, (3.72%S). This unit was retrofitted with low NOx burners (LNB's) during its scheduled fall 1998 outage and the SNCR system was installed concurrently. SNCR is a post-combustion NOx control process developed to reduce NOx emissions from fossil-fuel combustion systems. SNCR processes involve the injection of a chemical containing nitrogen into the combustion products, where the temperature is in the range of 1600°F - 2200°F (870°C - 1205°C). In this temperature range, the chemical reacts selectively with NOx in the presence of oxygen, forming primarily nitrogen and water. Although a number of chemicals have been investigated and implemented for SNCR NOx reduction, urea and ammonia have been most widely used for full-scale applications.

93

Lean NOx catalysis for gasoline fueled European cars  

SciTech Connect

There is increasing interest in operating gasoline fueled passenger cars lean of the stoichiometric air/fuel (A/F) ratio to improve fuel economy. These types of engines will operate at lean A/F ratios while cruising at partial load, and return to stoichiometric or even rich conditions when more power is required. The challenge for the engine and catalyst manufacturer is to develop a system which will combine the high activity rates of a state-of-the-art three-way catalyst (TWC) with the ability to reduce nitrogen oxides (NOx) in the presence of excess oxygen. The objective is to achieve the future legislative limits (EURO III/IV) in the European Union. Recent developments in automotive pollution control catalysis show that the use of NOx adsorption materials is a suitable way to reduce NOx emissions of gasoline-fueled lean-burn engines. However, the primary task for the implementation of this technology in the European market will be to improve the catalyst`s high-temperature stability and to decrease its susceptibility to sulfur poisoning. Outlined here are results of a recent R and D program to achieve NOx reduction under lean-burn gasoline engine conditions. Model gas test results as well as engine bench data are used for discussion of the parameters which control NOx adsorption efficiency under various conditions.

NONE

1997-02-01T23:59:59.000Z

94

Chemical Consequences of Heme Distortion and the Role of Heme Distortion in Signal Transduction of H-NOX Proteins  

E-Print Network (OSTI)

T. tengcongensis (Tt H-NOX), the reduction potential wasdesign of Tt H-NOX to broaden the reduction potential rangewith Tt H-NOX show that the reduction potential is

Olea, Jr., Charles

2010-01-01T23:59:59.000Z

95

Electrochemical NOx Sensor for Monitoring Diesel Emissions  

Science Conference Proceedings (OSTI)

Increasingly stringent emissions regulations will require the development of advanced gas sensors for a variety of applications. For example, compact, inexpensive sensors are needed for detection of regulated pollutants, including hydrocarbons (HCs), CO, and NO{sub x}, in automotive exhaust. Of particular importance will be a sensor for NO{sub x} to ensure the proper operation of the catalyst system in the next generation of diesel (CIDI) automobiles. Because many emerging applications, particularly monitoring of automotive exhaust, involve operation in harsh, high-temperature environments, robust ceramic-oxide-based electrochemical sensors are a promising technology. Sensors using yttria-stabilized zirconia (YSZ) as an oxygen-ion-conducting electrolyte have been widely reported for both amperometric and potentiometric modes of operation. These include the well-known exhaust gas oxygen (EGO) sensor. More recently, ac impedance-based (i.e., impedance-metric) sensing techniques using YSZ have been reported for sensing water vapor, hydrocarbons, CO, and NO{sub x}. Typically small-amplitude alternating signal is applied, and the sensor response is measured at a specified frequency. Most impedance-metric techniques have used the modulus (or magnitude) at low frequencies ( 600 C, and thermodynamic calculations predict {approx}90% NO, balance NO{sub 2}. Since automotive exhaust sensors will probably be required to operate at temperatures > 600 C, NO is the dominant component in thermodynamic equilibrium and the target NOx species. Also, the use of upstream catalysts could further promote the conversion of NO{sub x} species to NO. Therefore, the focus of current work is to investigate the response to NO. Nevertheless, minimizing the sensitivity to a variety of competing species is important in order to obtain the accuracy necessary for achieving the emission limits. Mitigating the effect of interfering gases (e.g., O{sub 2}, water vapor, HCs, etc.) is an area of current study. For impedance metric NO{sub x} sensors, our previous work has demonstrated that the cross-sensitivity to O{sub 2} may be accounted for by comparing measurements at multiple frequencies. Other strategies for compensation are also being explored, including calibration using data from existing sensors located nearby. Our current work has made significant advances in terms of developing prototype sensors more suitable for commercialization. Also, dynamometer testing has provided real-world sensor performance data that will be useful in approaching potential suppliers to whom we can transfer the technology for commercialization. The advances are a direct result of understanding the sensing mechanisms responsible for impedance-based NO{sub x} sensing and the effect of materials choice and sensor design/geometry.

Woo, L Y; Glass, R S

2008-11-14T23:59:59.000Z

96

NETL: Advanced NOx Emissions Control: Control Technology - Optimized Fuel  

NLE Websites -- All DOE Office Websites (Extended Search)

Optimized Fuel Injector Design Optimized Fuel Injector Design This project includes fundamental research and engineering development of low NOx burners and reburning fuel injectors. The team of Reaction Engineering International (REI), the University of Utah, Brown University and DB Riley, Inc., will develop fundamental information on low NOx burners. The work has two phases. In the first phase, the University of Utah will examine two-phase mixing and near-field behavior of coal injectors using a 15-million Btu/hr bench-scale furnace, Brown University will examine char deactivation and effectiveness of reburning, and REI will develop a comprehensive burner model using the data produced by the University of Utah and Brown University. In the second phase, an optimized injector design will be tested at the 100-million Btu/hr Riley Coal Burner Test Facility. It is anticipated that this work will provide improved hardware designs and computer simulation models for reduced NOx emissions and minimized carbon loss.

97

Study of Lean NOx Technology for Diesel Emission Control  

DOE Green Energy (OSTI)

Diesel engines because of their reliability and efficiency are a popular mobile source. The diesel engine operates at higher compression ratios and with leaner fuel mixtures and produces lower carbon monoxide and hydrocarbon emissions. The oxygen-rich environment leads to higher nitrogen oxides in the form of NO. Catalysts selectively promoting the reduction of NOx by HCs in a lean environment have been termed lean NOx catalyst ''LNC''. The two groups that have shown most promise are, Copper exchanged zeolite Cu/ZSM5, and Platinum on alumina Pt/Al2O3.

Mital, R.

2000-08-20T23:59:59.000Z

98

NOx Solutions for Biodiesel: Final Report; Report 6 in a Series of 6  

DOE Green Energy (OSTI)

A number of studies have shown substantial particulate matter (PM) reductions for biodiesel, but also a significant increase in nitrogen oxides (NOx) emissions. This study examines a number of approaches for NOx reduction from biodiesel.

McCormick, R. L.; Alvarez, J. R.; Graboski, M. S.

2003-02-01T23:59:59.000Z

99

Influence of combustion parameters on NOx production in an industrial boiler  

E-Print Network (OSTI)

Influence of combustion parameters on NOx production in an industrial boiler M.A. Habib a,*, M; accepted 14 April 2007 Available online 24 June 2007 Abstract NOx formation during the combustion process occurs mainly through the oxidation of nitrogen in the combustion air (thermal NOx) and through oxidation

Aldajani, Mansour A.

100

EVALUATION OF OBSERVATION-BASED METHODS FOR ANALYZING OZONE PRODUCTION AND OZONE-NOX-VOC SENSITIVITY  

E-Print Network (OSTI)

summertime For example: Reduce NOx emissions More reduction of NOy deposition Less reduction of NOy export Less reduction of NOy burden The non-linearity indicates that anthropogenic NOx emission reductions/3 of BL O3 production change exists as change of direct O3 export to the FT 23% reduction of surface NOx

Sillman, Sanford

Note: This page contains sample records for the topic "vi sox nox" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Applied Catalysis B: Environmental 37 (2002) 2735 NOx reduction by urea under lean conditions over  

E-Print Network (OSTI)

Applied Catalysis B: Environmental 37 (2002) 27­35 NOx reduction by urea under lean conditions over using a single step sol­gel process (designated as 2% Pt-SG) and tested its activity for NOx reduction and hydrothermally stable in the range of 150­500 C in the reduction of NOx by hy- drocarbons or oxygenated

Gulari, Erdogan

102

A Cost-Effectiveness Analysis of Alternative Ozone Control Strategies: Flexible Nitrogen Oxide (NOx) Abatement  

E-Print Network (OSTI)

hydrolysis of N2O5, and ultimately leads to the computed reduction in NOx levels. 4. Effects of the different in the source magnitude of LtNOx can lead to a substantial10 reduction in the computed lifetimes of these trace. This increase of O3 at higher altitudes is responsible for the reduction of surface NOx levels simulated at high

103

Hydrogen peroxide-producing NADH oxidase (nox-1) from Lactococcus lactis  

E-Print Network (OSTI)

to either water in a four-electron reduction (nox-2 enzymes) or to hydrogen peroxide in a two-electron reduction (nox-1 enzymes).3 Recently, we published the characterization of a novel water- forming NADH the reduction of oxygen to hydrogen peroxide with the help of NADH oxidase (nox-1) from Lactococ- cus lactis (L

Bommarius, Andreas

104

Measurements of NOX produced by rocket-triggered lightning M. Rahman,1  

E-Print Network (OSTI)

with reductions in NOx and VOC emissions are presented and analyzed in this study. Finally, a combination per- formed with the validated model. The first involves a reduction in NOx emissions of 50 emission reduction scenarios at 17:00 LT. (A) 50% NOx reduction emission scenario, (B) 50% VOC reduction

Slatton, Clint

105

NATURAL GAS REBURNING TECHNOLOGY FOR NOx REDUCTION FROM MSW COMBUSTION SYSTEMS  

E-Print Network (OSTI)

NATURAL GAS REBURNING TECHNOLOGY FOR NOx REDUCTION FROM MSW COMBUSTION SYSTEMS ABSTRACf CRAIG A series, injection of up to 15% (HHV basis) natural gas reduced NOx by 50-70% while maintain ing, Illinois DAVID G. LINZ Gas Research Institute Chicago, Illinois ducing NOx emISSIons from municipal solid

Columbia University

106

Microbial removal of nitrogen oxides from flue gas: The BioDeNOx-process  

E-Print Network (OSTI)

W) facilities. NOx levels below 60 ppm (7% O2) have been reliably achieved, which is a reduction of 70% below combustion controls to maximize NOx reduction and minimize ammonia slip. A simplified version of the process forward in the reduction of NOx emissions from EfW facilities. INTRODUCTION Emissions from U.S. Energy

Dekker, Cees

107

Assessment of NOx Reduction Potential from Combustion Modifications at Illinois Power -- Baldwin Unit 1  

Science Conference Proceedings (OSTI)

Cyclone boilers have recently become regulated with respect to NOx emissions due to the adoption of Title IV -- Group 2 NOx emission limits for cyclones of 0.86 lb/MBtu. This project explored the NOx reduction potential of cyclone biasing on a bituminous coal-fired cyclone boiler.

1998-06-24T23:59:59.000Z

108

Electrochemical NOx Sensor for Monitoring Diesel Emissions  

SciTech Connect

Increasingly stringent emissions regulations will require the development of advanced gas sensors for a variety of applications. For example, compact, inexpensive sensors are needed for detection of regulated pollutants, including hydrocarbons (HCs), CO, and NO{sub x}, in automotive exhaust. Of particular importance will be a sensor for NO{sub x} to ensure the proper operation of the catalyst system in the next generation of diesel (CIDI) automobiles. Because many emerging applications, particularly monitoring of automotive exhaust, involve operation in harsh, high-temperature environments, robust ceramic-oxide-based electrochemical sensors are a promising technology. Sensors using yttria-stabilized zirconia (YSZ) as an oxygen-ion-conducting electrolyte have been widely reported for both amperometric and potentiometric modes of operation. These include the well-known exhaust gas oxygen (EGO) sensor. More recently, ac impedance-based (i.e., impedance-metric) sensing techniques using YSZ have been reported for sensing water vapor, hydrocarbons, CO, and NO{sub x}. Typically small-amplitude alternating signal is applied, and the sensor response is measured at a specified frequency. Most impedance-metric techniques have used the modulus (or magnitude) at low frequencies (< 1 Hz) as the sensing signal and attribute the measured response to interfacial phenomena. Work by our group has also investigated using phase angle as the sensing signal at somewhat higher frequencies (10 Hz). The higher frequency measurements would potentially allow for reduced sampling times during sensor operation. Another potential advantage of impedance-metric NO{sub x} sensing is the similarity in response to NO and NO{sub 2} (i.e., total-NO{sub x} sensing). Potentiometric NO{sub x} sensors typically show higher sensitivity to NO2 than NO, and responses that are opposite in sign. However, NO is more stable than NO{sub 2} at temperatures > 600 C, and thermodynamic calculations predict {approx}90% NO, balance NO{sub 2}. Since automotive exhaust sensors will probably be required to operate at temperatures > 600 C, NO is the dominant component in thermodynamic equilibrium and the target NOx species. Also, the use of upstream catalysts could further promote the conversion of NO{sub x} species to NO. Therefore, the focus of current work is to investigate the response to NO. Nevertheless, minimizing the sensitivity to a variety of competing species is important in order to obtain the accuracy necessary for achieving the emission limits. Mitigating the effect of interfering gases (e.g., O{sub 2}, water vapor, HCs, etc.) is an area of current study. For impedance metric NO{sub x} sensors, our previous work has demonstrated that the cross-sensitivity to O{sub 2} may be accounted for by comparing measurements at multiple frequencies. Other strategies for compensation are also being explored, including calibration using data from existing sensors located nearby. Our current work has made significant advances in terms of developing prototype sensors more suitable for commercialization. Also, dynamometer testing has provided real-world sensor performance data that will be useful in approaching potential suppliers to whom we can transfer the technology for commercialization. The advances are a direct result of understanding the sensing mechanisms responsible for impedance-based NO{sub x} sensing and the effect of materials choice and sensor design/geometry.

Woo, L Y; Glass, R S

2008-11-14T23:59:59.000Z

109

NETL: Advanced NOx Emissions Control: Control Technology - ALTA for Cyclone  

NLE Websites -- All DOE Office Websites (Extended Search)

Full-Scale Demonstration of ALTA NOx Control for Cyclone-Fired Boilers Full-Scale Demonstration of ALTA NOx Control for Cyclone-Fired Boilers The primary goal of this project was to evaluate a technology called advanced layered technology application (ALTA) as a means to achieve NOx emissions below 0.15 lb/MMBtu in a cyclone boiler. Reaction Engineering International (REI) conducted field testing and combustion modeling to refine the process design, define the optimum technology parameters, and assess system performance. The ALTA NOx control technology combines deep staging from overfire air, rich reagent injection (RRI), and selective non-catalytic reduction (SNCR). Field testing was conducted during May-June 2005 at AmerenUE's Sioux Station Unit 1, a 500 MW cyclone boiler unit that typically burns an 80/20 blend of Powder River Basin subbituminous coal and Illinois No. 6 bituminous coal. Parametric testing was also conducted with 60/40 and 0/100 blends. The testing also evaluated process impacts on balance-of-plant issues such as the amount of unburned carbon in the ash, slag tapping, waterwall corrosion, ammonia slip, and heat distribution.

110

Mechanisms of Sulfur Poisoning of NOx Adsorber Materials  

Science Conference Proceedings (OSTI)

This annual report will review progress of the initial 4 months of a three-year effort between Cummins Engine Company and Pacific Northwest National Laboratory to understand and improve the performance and sulfur tolerance of the materials used in the NOx adsorber after-treatment technology in order to meet both performance and reliability standards required for diesel engines. The goal of this project is to enable NOx after-treatment technologies that will meet both EPA 2007 emission standards and customer cost, reliability and durability requirements. The project will consist of three phases. First, the efforts will focus on understanding the current limitation of capture, regeneration and durability of existing NOx adsorber materials, especially with respect to their sulfur tolerance. With this developing understanding, efforts will also be focused on the optimization of the NOx absorber chemical and material properties to increase performance and durability over many regeneration cycles. We anticipate that improved materials will be tested and evaluated, in partnership with Cummins, on diesel vehicle engines over expected operating conditions.

Kim, Do Heui; Chin, Ya-Huei; Muntean, George G.; Peden, Charles HF; Stork, Kevin; Broering, L. C.; Stafford, R. J.; Stang, J. H.; Chen, H.-Y.; Cooper, B.; Hess, H.; Lafyatis, D.

2004-10-01T23:59:59.000Z

111

The Chemistry of the Thermal DeNOx Process: A Review of the Technology's Possible Application to control of NOx from Diesel Engines  

DOE Green Energy (OSTI)

This paper presents a review of the Thermal DeNOx process with respect to its application to control of NOx emissions from diesel engines. The chemistry of the process is discussed first in empirical and then theoretical terms. Based on this discussion the possibilities of applying the process to controlling NOx emissions from diesel engines is considered. Two options are examined, modifying the requirements of the chemistry of the Thermal DeNOx process to suit the conditions provided by diesel engines and modifying the engines to provide the conditions required by the process chemistry. While the former examination did not reveal any promising opportunities, the latter did. Turbocharged diesel engine systems in which the turbocharger is a net producer of power seem capable of providing the conditions necessary for NOx reduction via the Thermal DeNOx reaction.

Lyon, Richard

2001-08-05T23:59:59.000Z

112

NOX REDUCTION FOR LEAN EXHAUST USING PLASMA ASSISTED CATALYSIS  

DOE Green Energy (OSTI)

Currently CARB estimates on road diesel vehicles contribute 50% of the NOX and 78% of the particulates being discharged from mobile sources. Diesel emissions obviously must be reduced if future air quality targets are to be met. A critical technological barrier exists because there are no commercial technologies available, which can reduce NOX from diesel (lean), exhaust containing 5-15% O2 concentration. One promising approach to reducing NOX and particulates from diesel exhaust is to use a combination of plasma with catalyst. Plasma can be generated thermally or non-thermally. Thermal plasma is formed by heating the system to an exceedingly high temperature (>2000 C). High temperature requirements for plasma makes thermal plasma inefficient and requires skillful thermal management and hence is considered impractical for mobile applications. Non-thermal plasma directs electrical energy into the creation of free electrons, which in turn react with gaseous species thus creating plasma. A combination of non-thermal plasma with catalysts can be referred to Plasma Assisted Catalysts or PAC. PAC technology has been demonstrated in stationary sources where non-thermal plasma catalysis is carried out in presence of NH3 as a reductant. In stationary applications NO is oxidized to HNO3 and then into ammonium nitrate where it is condensed and removed. This approach is impractical for mobile application because of the ammonia requirement and the ultimate mechanism by which NOX is removed. However, if a suitable catalyst can be found which can use onboard fuel as reductant then the technology holds a considerable promise. NOX REDUCTION FOR LEAN EXHAUST USING PLASMA ASSISTED CATALYSIS Ralph Slone, B. Bhatt and Victor Puchkarev NOXTECH INC. In addition to the development of an effective catalyst, a non-thermal plasma reactor needs be scaled and demonstrated along with a reliable and cost effective plasma power source and onboard HC source needs to be proven. Under the work sponsored by DOE and SCAQMD Noxtech is developing a cost effective and reliable PAC system for mobile applications. The goal of the program is to develop a suitable catalyst with the ability to remove high levels of NOx at reasonable space velocities. This new catalyst will then be used to scale the technology to treat exhaust from 80Hp engine and eventually to demonstrate the technology on 200 and 400 Hp engine applications. Using the 2004 EPA proposed regulation as a standard, it is clear in order for PAC system to be commercially viable it needs to remove NOX by 70% or better. It is further assumed from past experience that 30,000 HR-1 space velocities are necessary to ensure a good compact design.

Bhatt, B.

2000-08-20T23:59:59.000Z

113

Blue Canyon VI | Open Energy Information  

Open Energy Info (EERE)

VI VI Jump to: navigation, search Name Blue Canyon VI Facility Blue Canyon VI Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner EDP Renewables North America LLC Developer EDP Renewables North America LLC Energy Purchaser Merchant Location Lawton OK Coordinates 34.8582°, -98.54752° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.8582,"lon":-98.54752,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

114

ORNL fission product release tests VI-6  

DOE Green Energy (OSTI)

The ORNL fission product release tests investigate release and transport of the major fission products from high-burnup fuel under LWR accident conditions. The two most recent tests (VI-4 and VI-5) were conducted in hydrogen. In three previous tests in this series (VI-1, VI-2, and VI-3), which had been conducted in steam, the oxidized Zircaloy cladding remained largely intact and acted as a barrier to steam reaction with the UO{sub 2}. Test VI-6 was designed to insure significant oxidation of the UO{sub 2} fuel, which has been shown to enhance release of certain fission products, especially molybdenum and ruthenium. The BR3 fuel specimen used in test VI-6 will be heated in hydrogen to 2300 K; the Zircaloy cladding is expected to melt and runoff at {approximately}2150 K. Upon reaching the 2300 K test temperature, the test atmosphere will be changed to steam, and that temperature will be maintained for 60 min, with the three collection trains being operated for 2-, 18-, and 40-min periods. The releases of {sup 85}Kr and {sup 137}Cs will be monitored continuously throughout the test. Posttest analyses of the material collected on the three trains will provide results on the release and transport of Mo, Ru, Sb, Te, Ba, Ce, and Eu as a function of time at 2300 K. Continuous monitoring of the hydrogen produced during the steam atmosphere period at high temperature will provide a measure of the oxidation rate of the cladding and fuel. Following delays in approval of the safety documentation and in decontamination of the hot cell and test apparatus, test VI-6 will be conducted in late May.

Osborne, M.F.; Lorenz, R.A.; Collins, J.L.; Lee, C.S.

1991-01-01T23:59:59.000Z

115

Modeling The NOx Emissions In A Low NOx Burner While Fired With Pulverized Coal And Dairy Biomass Blends  

E-Print Network (OSTI)

New regulations like the Clean Air Interstate Rule (CAIR) will pose greater challenges for Coal fired power plants with regards to pollution reduction. These new regulations plan to impose stricter limits on NOX reduction. The current regulations by themselves already require cleanup technology; newer regulations will require development of new and economical technologies. Using a blend of traditional fuels & biomass is a promising technology to reduce NOX emissions. Experiments conducted previously at the Coal and Biomass energy lab at Texas A&M reported that dairy biomass can be an effective Reburn fuel with NOX reduction of up to 95%; however little work has been done to model such a process with Feedlot Biomass as a blend with the main burner fuel. The present work concerns with development of a zero dimensional for a low NOx burner (LNB) model in order to predict NOX emissions while firing a blend of Coal and dairy biomass. Two models were developed. Model I assumes that the main burner fuel is completely oxidized to CO,CO2,H20 and fuel bound nitrogen is released as HCN, NH3, N2; these partially burnt product mixes with tertiary air, undergoes chemical reactions specified by kinetics and burns to complete combustion. Model II assumes that the main burner solid fuel along with primary and secondary air mixes gradually with recirculated gases, burn partially and the products from the main burner include partially burnt solid particles and fuel bound nitrogen partially converted to N2, HCN and NH3. These products mix gradually with tertiary air, undergo further oxidation-reduction reactions in order to complete the combustion. The results are based on model I. Results from the model were compared with experimental findings to validate it. Results from the model recommend the following conditions for optimal reduction of NOx: Equivalence Ratio should be above 0.95; mixing time should be below 100ms. Based on Model I, results indicate that increasing percentage of dairy biomass in the blend increases the NOx formation due to the assumption that fuel N compounds ( HCN, NH3) do not undergo oxidation in the main burner zone. Thus it is suggested that model II must be adopted in the future work.

Uggini, Hari

2012-05-01T23:59:59.000Z

116

NOx versus VOC limitation of O3 production in the Po valley: Local and integrated view based  

E-Print Network (OSTI)

- 14 #12;emissions and for NOx and VOC emissions reduced by 35%. Before 1300 a NOx reduction is seen north of downtown Milan, the NOx and VOC reduction curves cross. Before this time, O3 is VOC- sensitive reduction) is greater than zero, a VOC emissions reduction is more effective than a NOx emissions reduction

117

Modeling NOx emissions from coal-fired utility boilers using support vector regression with ant colony optimization  

Science Conference Proceedings (OSTI)

Modeling NO"x emissions from coal fired utility boiler is critical to develop a predictive emissions monitoring system (PEMS) and to implement combustion optimization software package for low NO"x combustion. This paper presents an efficient NO"x emissions ... Keywords: Ant colony optimization, Artificial neural networks, Combustion modeling, NOx emissions modeling, Support vector regression

Hao Zhou; Jia Pei Zhao; Li Gang Zheng; Chun Lin Wang; Ke Fa Cen

2012-02-01T23:59:59.000Z

118

LOW NOx EMISSIONS IN A FUEL FLEXIBLE GAS TURBINE  

SciTech Connect

In alignment with Vision 21 goals, a study is presented here on the technical and economic potential for developing a gas turbine combustor that is capable of generating less that 2 ppm NOx emissions, firing on either coal synthesis gas or natural gas, and being implemented on new and existing systems. The proposed solution involves controlling the quantity of H2 contained in the fuel. The presence of H2 leads to increased flame stability such that the combustor can be operated at lower temperatures and produce less thermal NOx. Coal gas composition would be modified using a water gas shift converter, and natural gas units would implement a catalytic partial oxidation (CPOX) reactor to convert part of the natural gas feed to a syngas before fed back into the combustor. While both systems demonstrated technical merit, the economics involved in implementing such a system are marginal at best. Therefore, Praxair has decided not to pursue the technology any further at this time.

Raymond Drnevich; James Meagher; Vasilis Papavassiliou; Troy Raybold; Peter Stuttaford; Leonard Switzer; Lee Rosen

2004-08-01T23:59:59.000Z

119

DYNAMOMETER EVALUATION OF PLASMA-CATALYST FOR DIESEL NOX REDUCTION  

DOE Green Energy (OSTI)

A three-stage plasma-catalyst system was developed and tested on an engine dynamometer. Previous laboratory testing suggested high NOx efficiency could be obtained. With hexene reductant added to the exhaust, over 90% NOx reduction was observed. However, with diesel or Fischer-Tropsch reductant the catalyst efficiency rapidly dropped off. Heating the catalyst in air removed brown deposit from the surface and restored conversion efficiency. Following the engine tests, the used catalysts were evaluated. BET surface area decreased, and TPD revealed significant storage. This storage appears to be partly unburned diesel fuel that can be removed by heating to around 250-300 C, and partly hydrocarbons bonded to the surface that remain in place until 450-500 C. Laboratory testing with propene reductant demonstrated that the catalyst regains efficiency slowly even when operating temperature does not exceed 300 C. This suggests that control strategies may be able to regenerate the catalyst by occasional moderate heating.

Hoard, J; Schmieg, S; Brooks, D; Peden, C; Barlow, S; Tonkyn, R

2003-08-24T23:59:59.000Z

120

Demonstration of a NOx Control System for Stationary Diesel Engines  

Science Conference Proceedings (OSTI)

California has over 26,000 stationary diesel engines, mostly in emergency power and direct drive applications. In the past few years, various incentive programs in the state have resulted in the change-out of older, dirtier engines for newer, cleaner models or replacement with electric motors. Emissions reductions can be accomplished by equipping existing engines with controls for nitrogen oxides (NOx) and particulate matter (PM). The retrofit systems currently available, however, either are not cost com...

2005-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "vi sox nox" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Coal Blending for NOx Reductions and Performance Improvements  

Science Conference Proceedings (OSTI)

Following its formation and initial meeting in 1995, the Alabama Fuels Development Consortium (AFDC) identified its highest priority as mitigating the adverse effects of burning low-volatile Alabama coals. These adverse effects included increased NOx emissions and flame instability. A pilot-scale AFDC study in 1995 and larger-scale projects conducted in partnership with EPRI in 1996 (Shoal Creek/Mina Pribbenow Blend Firing Demonstration) and 1997 (Shoal Creek/Mina Pribbenow Blend Milling Demonstration) m...

2004-09-20T23:59:59.000Z

122

DarkStar VI | Open Energy Information  

Open Energy Info (EERE)

DarkStar VI DarkStar VI Jump to: navigation, search Name DarkStar VI Place Collinsville, Illinois Zip 62234-2022 Sector Services Product Manufacturer of biodiesel processing equipment and supplier of accessories, information and services. Coordinates 36.720014°, -79.91284° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.720014,"lon":-79.91284,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

123

Ultra Low NOx Catalytic Combustion for IGCC Power Plants  

DOE Green Energy (OSTI)

In order to meet DOE's goals of developing low-emissions coal-based power systems, PCI has further developed and adapted it's Rich-Catalytic Lean-burn (RCL{reg_sign}) catalytic reactor to a combustion system operating on syngas as a fuel. The technology offers ultra-low emissions without the cost of exhaust after-treatment, with high efficiency (avoidance of after-treatment losses and reduced diluent requirements), and with catalytically stabilized combustion which extends the lower Btu limit for syngas operation. Tests were performed in PCI's sub-scale high-pressure (10 atm) test rig, using a two-stage (catalytic then gas-phase) combustion process for syngas fuel. In this process, the first stage consists of a fuel-rich mixture reacting on a catalyst with final and excess combustion air used to cool the catalyst. The second stage is a gas-phase combustor, where the air used for cooling the catalyst mixes with the catalytic reactor effluent to provide for final gas-phase burnout and dilution to fuel-lean combustion products. During testing, operating with a simulated Tampa Electric's Polk Power Station syngas, the NOx emissions program goal of less than 0.03 lbs/MMBtu (6 ppm at 15% O{sub 2}) was met. NOx emissions were generally near 0.01 lbs/MMBtu (2 ppm at 15% O{sub 2}) (PCI's target) over a range on engine firing temperatures. In addition, low emissions were shown for alternative fuels including high hydrogen content refinery fuel gas and low BTU content Blast Furnace Gas (BFG). For the refinery fuel gas increased resistance to combustor flashback was achieved through preferential consumption of hydrogen in the catalytic bed. In the case of BFG, stable combustion for fuels as low as 88 BTU/ft{sup 3} was established and maintained without the need for using co-firing. This was achieved based on the upstream catalytic reaction delivering a hotter (and thus more reactive) product to the flame zone. The PCI catalytic reactor was also shown to be active in ammonia reduction in fuel allowing potential reductions in the burner NOx production. These reductions of NOx emissions and expanded alternative fuel capability make the rich catalytic combustor uniquely situated to provide reductions in capital costs through elimination of requirements for SCR, operating costs through reduction in need for NOx abating dilution, SCR operating costs, and need for co-firing fuels allowing use of lower value but more available fuels, and efficiency of an engine through reduction in dilution flows.

Shahrokh Etemad; Benjamin Baird; Sandeep Alavandi; William Pfefferle

2008-03-31T23:59:59.000Z

124

Lean NOx Trap Catalysis for Lean Natural Gas Engine Applications  

DOE Green Energy (OSTI)

Distributed energy is an approach for meeting energy needs that has several advantages. Distributed energy improves energy security during natural disasters or terrorist actions, improves transmission grid reliability by reducing grid load, and enhances power quality through voltage support and reactive power. In addition, distributed energy can be efficient since transmission losses are minimized. One prime mover for distributed energy is the natural gas reciprocating engine generator set. Natural gas reciprocating engines are flexible and scalable solutions for many distributed energy needs. The engines can be run continuously or occasionally as peak demand requires, and their operation and maintenance is straightforward. Furthermore, system efficiencies can be maximized when natural gas reciprocating engines are combined with thermal energy recovery for cooling, heating, and power applications. Expansion of natural gas reciprocating engines for distributed energy is dependent on several factors, but two prominent factors are efficiency and emissions. Efficiencies must be high enough to enable low operating costs, and emissions must be low enough to permit significant operation hours, especially in non-attainment areas where emissions are stringently regulated. To address these issues the U.S. Department of Energy and the California Energy Commission launched research and development programs called Advanced Reciprocating Engine Systems (ARES) and Advanced Reciprocating Internal Combustion Engines (ARICE), respectively. Fuel efficiency and low emissions are two primary goals of these programs. The work presented here was funded by the ARES program and, thus, addresses the ARES 2010 goals of 50% thermal efficiency (fuel efficiency) and <0.1 g/bhp-hr emissions of oxides of nitrogen (NOx). A summary of the goals for the ARES program is given in Table 1-1. ARICE 2007 goals are 45% thermal efficiency and <0.015 g/bhp-hr NOx. Several approaches for improving the efficiency and emissions of natural gas reciprocating engines are being pursued. Approaches include: stoichiometric engine operation with exhaust gas recirculation and three-way catalysis, advanced combustion modes such as homogeneous charge compression ignition, and extension of the lean combustion limit with advanced ignition concepts and/or hydrogen mixing. The research presented here addresses the technical approach of combining efficient lean spark-ignited natural gas combustion with low emissions obtained from a lean NOx trap catalyst aftertreatment system. This approach can be applied to current lean engine technology or advanced lean engines that may result from related efforts in lean limit extension. Furthermore, the lean NOx trap technology has synergy with hydrogen-assisted lean limit extension since hydrogen is produced from natural gas during the lean NOx trap catalyst system process. The approach is also applicable to other lean engines such as diesel engines, natural gas turbines, and lean gasoline engines; other research activities have focused on those applications. Some commercialization of the technology has occurred for automotive applications (both diesel and lean gasoline engine vehicles) and natural gas turbines for stationary power. The research here specifically addresses barriers to commercialization of the technology for large lean natural gas reciprocating engines for stationary power. The report presented here is a comprehensive collection of research conducted by Oak Ridge National Laboratory (ORNL) on lean NOx trap catalysis for lean natural gas reciprocating engines. The research was performed in the Department of Energy's ARES program from 2003 to 2007 and covers several aspects of the technology. All studies were conducted at ORNL on a Cummins C8.3G+ natural gas engine chosen based on industry input to simulate large lean natural gas engines. Specific technical areas addressed by the research include: NOx reduction efficiency, partial oxidation and reforming chemistry, and the effects of sulfur poisons on the partial oxidation

Parks, II, James E [ORNL; Storey, John Morse [ORNL; Theiss, Timothy J [ORNL; Ponnusamy, Senthil [ORNL; Ferguson, Harley Douglas [ORNL; Williams, Aaron M [ORNL; Tassitano, James B [ORNL

2007-09-01T23:59:59.000Z

125

NOx Control Options and Integration for US Coal Fired Boilers  

DOE Green Energy (OSTI)

This is the Final Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project was to develop cost-effective analysis tools and techniques for demonstrating and evaluating low-NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) provided co-funding for this program. This project included research on: (1) In furnace NOx control; (2) Impacts of combustion modifications on boiler operation; (3) Selective Catalytic Reduction (SCR) catalyst testing and (4) Ammonia adsorption/removal on fly ash. Important accomplishments were achieved in all aspects of the project. Rich Reagent Injection (RRI), an in-furnace NOx reduction strategy based on injecting urea or anhydrous ammonia into fuel rich regions in the lower furnace, was evaluated for cyclone-barrel and PC fired utility boilers. Field tests successfully demonstrated the ability of the RRI process to significantly reduce NOx emissions from a staged cyclone-fired furnace operating with overfire air. The field tests also verified the accuracy of the Computational Fluid Dynamic (CFD) modeling used to develop the RRI design and highlighted the importance of using CFD modeling to properly locate and configure the reagent injectors within the furnace. Low NOx firing conditions can adversely impact boiler operation due to increased waterwall wastage (corrosion) and increased soot production. A corrosion monitoring system that uses electrochemical noise (ECN) corrosion probes to monitor, on a real-time basis, high temperature corrosion events within the boiler was evaluated. Field tests were successfully conducted at two plants. The Ohio Coal Development Office provided financial assistance to perform the field tests. To investigate soot behavior, an advanced model to predict soot production and destruction was implemented into an existing reacting CFD modeling tool. Comparisons between experimental data collected in a pilot scale furnace and soot behavior predicted by the CFD model showed good agreement. Field and laboratory tests were performed for SCR catalysts used for coal and biomass co-firing applications. Fundamental laboratory studies were performed to better understand mechanisms involved with catalyst deactivation. Field tests with a slip stream reactor were used to create catalyst exposed to boiler flue gas for firing coal and for co-firing coal and biomass. The field data suggests the mechanisms leading to catalyst deactivation are, in order of importance, channel plugging, surface fouling, pore plugging and poisoning. Investigations were performed to better understand the mechanisms involved with catalyst regeneration through mechanical or chemical methods. A computer model was developed to predict NOx reduction across the catalyst in a SCR. Experiments were performed to investigate the fundamentals of ammonia/fly ash interactions with relevance to the operation of advanced NOx control technologies such as selective catalytic reduction. Measurements were performed for ammonia adsorption isotherms on commercial fly ash samples subjected to a variety of treatments and on the chemistry of dry and semi-dry ammonia removal processes. This work resulted in the first fundamental ammonia isotherms on carbon-containing fly ash samples. This work confirms industrial reports that aqueous solution chemistry takes place upon the introduction of even very small amounts of water, while the ash remains in a semi-dry state.

Mike Bockelie; Marc Cremer; Kevin Davis; Martin Denison; Adel Sarofim; Connie Senior; Hong-Shig Shim; Dave Swenson; Bob Hurt; Eric Suuberg; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker

2006-06-30T23:59:59.000Z

126

Additives for NOx emissions control from fixed sources. Final report, Aug 88-Feb 89  

SciTech Connect

This project tested several additives and catalysts as potential additive/catalyst combinations for a new NOx abatement process. The goal was to identify an effective, economical NOx emissions control process for application to post combustion, exhaust gas streams from jet engine test cells (JETC) and incinerators. The most useful results from this project are that: (1) an additive was identified that achieved gas-phase removal, with no catalyst, of NOx at temperatures as low as 350 deg C, and (2) good NOx removals can be achieved with additive: NOx ratios less than one. These results offer good possibilities for new low-temperature (350 to 500 deg C) gas phase NOx reduction processes of the selective noncatalytic reduction (SNR) type for both JETCs and incinerators.

Ham, D.O.; Moniz, G.; Gouveia, M.

1989-12-01T23:59:59.000Z

127

EPRI 2002 Workshop on Combustion-Based NOx Controls for Coal-Fired Boilers  

Science Conference Proceedings (OSTI)

The Workshop on Combustion-Based NOx Controls for Coal-Fired Boilers, formerly the Workshop on NOx Controls for Utility Boilers, was the sixth in a series sponsored by EPRI and offered attendees a comprehensive picture of recent developments and full-scale applications of control technologies for nitrogen oxides (NOx). The workshop took place on October 24-25, 2002, in Atlanta, Georgia.

2003-01-14T23:59:59.000Z

128

TransForum v8n2 - DeNOX Catalyst License  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Fuel Technologies Gets Worldwide License for Argonne-developed Diesel DeNOX Catalyst Argonne chemist Chris Marshall (front) displays a container of the catalyst while...

129

Desulfurization Effects on a Light-Duty Diesel Vehicle NOx Adsorber Exhaust Emission Control System  

DOE Green Energy (OSTI)

Analyzes the effects on gaseous emissions, before and after desulfurization, on a light-duty diesel vehicle with a NOx adsorber catalyst.

Tatur, M.; Tomazic, D.; Tyrer, H.; Thornton, M.; Kubsh, J.

2006-05-01T23:59:59.000Z

130

NETL: PPII - Integration of Low-NOx Burners with an Optimization...  

NLE Websites -- All DOE Office Websites (Extended Search)

Integration of Low-NOx Burners with an Optimization Plan for Boiler Combustion - Project Brief PDF-72KB Sunflower Electric Power Corp., Garden City, Finney County, KS PROJECT...

131

Impact of Lubricant Formulation on the Performance of NOx Adsorber Catalysts (Presentation)  

DOE Green Energy (OSTI)

Discusses the impact of lubricant formulation on the performance of oxides of nitrogen (NOx) Adsorber Catalysts, including background/motivation for study, experimental design, and results.

Whitacre, S. D.

2005-08-25T23:59:59.000Z

132

Using hydroponic biomass to regulate NOx emissions in long range space travel  

E-Print Network (OSTI)

Using Hydroponic Biomass to Regulate NOx Emissions in Longprepared from hydroponic biomass prohibits high surface areapotato stalk are inedible biomass that can be continuously

2002-01-01T23:59:59.000Z

133

EA-1472: Commercial Demonstration fo the Low Nox Burner/Separated...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

472: Commercial Demonstration fo the Low Nox BurnerSeparated Over-Fire Air (LNBSOFA) Integration System Emission Reduction Technology, Holcolm Station, Sunflower Electric Power...

134

Reduce NOx and Improve Energy Efficiency, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)  

SciTech Connect

This fact sheet describes how the Industrial Technologies Program NOx and Energy Assessment Tool (NxEAT) can help petroleum refining and chemical plants improve energy efficiency.

2008-12-01T23:59:59.000Z

135

ViDe White Paper Evaluating Microsoft  

E-Print Network (OSTI)

ViDe White Paper Evaluating Microsoft® Exchange 2000 Conferencing Server for use in Higher UNRELATED TO CURRENT TRENDS IN VIDEOCONFERENCING OR IN MICROSOFT PRODUCTS. September 2003 #12;White Paper, Australian National University Support for this White Paper activity was provided by Southeastern

Tennessee, University of

136

Lean NOx Trap Modeling in Vehicle Systems Simulations  

DOE Green Energy (OSTI)

A one-dimensional model for simulating lean NOx trap (LNT) performance is developed and validated using both steady state cycling data and transient data from FTP testing cycles. The model consists of the conservation equations for chemical species and energy in the bulk flow, energy of the solid walls, O2 storage and NOx storage (in the form of nitrites and nitrates). Nitrites and nitrates are formed by diffusion of NO and NO2, respectively, into sorbent particles (assumed to be hemi-spherical in shape) along with O2 and their formation rates are controlled by chemical kinetics as well as solid-phase diffusion rates of NOx species. The model also accounts for thermal aging and sulfation of LNTs. Empirical correlations are developed on the basis of published experimental data to capture these effects. These empirical correlations depend on total mileage for which the LNT has been in use, the mileage accumulated since the last desulfation event in addition to the freshly degreened catalyst characteristics. The model has been used in studies of vehicle systems (integration, performance etc.) including hybrid powertrain configurations. Since the engines in hybrid vehicles turn on and off multiple number of times during single drive cycles, the exhaust systems may encounter multiple cold start transients. Accurate modeling of catalyst warm-up and cooling is, therefore, very important to simulate LNT performance in such vehicles. For this purpose, the convective heat loss from the LNT to the ambient is modeled using a Nusselt number correlation that includes effects of both forced convection and natural convection (with later being important when vehicle is stationary). Using the model, the fuel penalty associated with operating LNTs on small diesel engine powered car during FTP drive cycles is estimated.

Gao, Zhiming [ORNL; Chakravarthy, Veerathu K [ORNL; Daw, C Stuart [ORNL; Conklin, Jim [ORNL

2010-09-01T23:59:59.000Z

137

Three-Dimensional Composite Nanostructures for Lean NOx Emission Control  

SciTech Connect

This final report to the Department of Energy (DOE) and National Energy Technology Laboratory (NETL) for DE-EE0000210 covers the period from October 1, 2009 to July 31, 2013. Under this project, DOE awarded UConn about $1,248,242 to conduct the research and development on a new class of 3D composite nanostructure based catalysts for lean NOx emission control. Much of the material presented here has already been submitted to DOE/NETL in quarterly technical reports. In this project, through a scalable solution process, we have successfully fabricated a new class of catalytic reactors, i.e., the composite nanostructure array (nano-array) based catalytic converters. These nanocatalysts, distinct from traditional powder washcoat based catalytic converters, directly integrate monolithic substrates together with nanostructures with well-defined size and shape during the scalable hydrothermal process. The new monolithic nanocatalysts are demonstrated to be able to save raw materials including Pt-group metals and support metal oxides by an order of magnitude, while perform well at various oxidation (e.g., CO oxidation and NO oxidation) and reduction reactions (H{sub 2} reduction of NOx) involved in the lean NOx emissions. The size, shape and arrangement of the composite nanostructures within the monolithic substrates are found to be the key in enabling the drastically reduced materials usage while maintaining the good catalytic reactivity in the enabled devices. The further understanding of the reaction kinetics associated with the unique mass transport and surface chemistry behind is needed for further optimizing the design and fabrication of good nanostructure array based catalytic converters. On the other hand, the high temperature stability, hydrothermal aging stability, as well as S-poisoning resistance have been investigated in this project on the nanocatalysts, which revealed promising results toward good chemical and mechanical robustness, as well as S-poisoning resistance. Further investigation is needed for unraveling the understanding, design and selection principles of this new class of nanostructure based monolithic catalysts.

Gao, Pu-Xian

2013-07-31T23:59:59.000Z

138

NOx CONTROL OPTIONS AND INTEGRATION FOR US COAL FIRED BOILERS  

SciTech Connect

This is the fifth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for firing US coals. The Electric Power Research Institute (EPRI) is providing cofunding for this program. This program contains multiple tasks and good progress is being made on all fronts. Field tests for NOx reduction in a cyclone fired utility boiler due to using Rich Reagent Injection (RRI) have been started. CFD modeling studies have been started to evaluate the use of RRI for NOx reduction in a corner fired utility boiler using pulverized coal. Field tests of a corrosion monitor to measure waterwall wastage in a utility boiler have been completed. Computational studies to evaluate a soot model within a boiler simulation program are continuing. Research to evaluate SCR catalyst performance has started. A literature survey was completed. Experiments have been outlined and two flow reactor systems have been designed and are under construction. Commercial catalyst vendors have been contacted about supplying catalyst samples. Several sets of new experiments have been performed to investigate ammonia removal processes and mechanisms for fly ash. Work has focused on a promising class of processes in which ammonia is destroyed by strong oxidizing agents at ambient temperature during semi-dry processing (the use of moisture amounts less than 5 wt-%). Both ozone and an ozone/peroxide combination have been used to treat both basic and acidic ammonia-laden ashes.

Mike Bockelie; Marc Cremer; Kevin Davis; Connie Senior; Bob Hurt; Eric Eddings; Larry Baxter

2001-10-10T23:59:59.000Z

139

Summary of NOx Emissions Reduction from Biomass Cofiring  

DOE Green Energy (OSTI)

NOx emissions from commercial- and pilot-scale biomass/coal cofiring demonstrations are reduced as the percentage of energy supplied to the boiler by the biomass fuel is increased. This report attempts to provide a summary of the NO{sub x} emissions measured during recent biomass/coal cofiring demonstrations. These demonstrations were carried out at the commercial and pilot-scales. Commercial-scale tests were conducted in a variety of pulverized fuel boiler types including wall-fired, T-fired, and cyclone furnaces. Biomass input ranged up to 20% on a mass basis and 10% on an energy basis.

Dayton, D.

2002-05-01T23:59:59.000Z

140

Properties of O VI Absorption in the Local Interstellar Medium  

E-Print Network (OSTI)

We report on the properties of LISM O VI absorption observed with 20 km/s resolution FUSE observations of 39 white dwarfs (WDs) ranging in distance from 37 to 230 pc with a median distance of 109 pc. LISM O VI is detected with >2sigma significance along 24 of 39 lines of sight. The column densities range from log N(O VI) = 12.38 to 13.60 with a median value of 13.10. The line of sight volume density, n(O VI) = N(O VI)/d exhibits a large dispersion ranging from (0.68 to 13.0)x10(-8) cm(-3) with an average value 3.6x10(-8) cm(-3) twice larger than found for more distant sight lines in the Galactic disk. The narrowest profiles are consistent with thermal Doppler broadening of O VI near its temperature of peak abundance, 2.8x10(5) K. Comparison of the average velocities of O VI and C II absorption reveals 10 cases where the O VI absorption is closely aligned with the C II absorption as expected if the O VI is formed in a condensing interface between the cool and warm absorption and a hot exterior gas. The comparison also reveals 13 cases where O VI absorption is displaced to positive velocity by 7 to 29 km/s from the average velocity of C II. The positive velocity O VI appears to be tracing the evaporative flow of O VI from a young interface between warm gas and a hot exterior medium. However, it is possible the positive velocity O VI is instead tracing cooling hot Local Bubble (LB) gas. The properties of the O VI absorption in the LISM are broadly consistent with the expectations of the theory of conductive interfaces caught in the old condensing phase and possibly in the young evaporative phase of their evolution.

Blair D. Savage; Nicholas Lehner

2005-09-15T23:59:59.000Z

Note: This page contains sample records for the topic "vi sox nox" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Advanced NOx Emissions Control: Control Technology - Second Generation  

NLE Websites -- All DOE Office Websites (Extended Search)

Second Generation Advanced Reburning Second Generation Advanced Reburning General Electric - Energy and Environmental Research Corporation (GE-EER) is carrying out a two Phase research program to develop novel Advanced Reburning (AR) concepts for high efficiency and low cost NOx control from coal-fired utility boilers. AR technologies are based on combination of basic reburning and N-agent/promoter injections. Phase I of the project was successfully completed and EER was selected to continue to develop AR technology during Phase II. Phase I demonstrated that AR technologies are able to provide effective NOx control for coal-fired combustors. Three technologies were originally envisioned for development: AR-Lean, AR-Rich, and Multiple Injection AR (MIAR). Along with these, three additional technologies were identified during the project: reburning plus promoted SNCR; AR-Lean plus promoted SNCR; and AR-Rich plus promoted SNCR. The promoters are sodium salts, in particular sodium carbonate. These AR technologies have different optimum reburn heat input levels and furnace temperature requirements. For full scale application, an optimum technology can be selected on a boiler-specific basis depending on furnace temperature profile and regions of injector access.

142

2004 Conference on Reburning for NOX Control Reburning on Trial  

NLE Websites -- All DOE Office Websites (Extended Search)

2004 Conf. on Reburning for NOx Control Reburning on Trial 2004 Conf. on Reburning for NOx Control Reburning on Trial May 18, 2004 Table of Contents Disclaimer Papers and Presentations Reburning Overview Commercial Reburning Experience Biomass Reburning Other Applications of Reburning Posters Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government or any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

143

NOx Control Options and Integration for US Coal Fired Boilers  

Science Conference Proceedings (OSTI)

This is the twelfth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. During this quarter, a new effort was begun on the development of a corrosion management system for minimizing the impacts of low NOx combustion systems on waterwalls; a kickoff meeting was held at the host site, AEP's Gavin Plant, and work commenced on fabrication of the probes. FTIR experiments for SCR catalyst sulfation were finished at BYU and indicated no vanadium/vanadyl sulfate formation at reactor conditions. Improvements on the mass-spectrometer system at BYU have been made and work on the steady state reactor system shakedown neared completion. The slipstream reactor continued to operate at AEP's Rockport plant; at the end of the quarter, the catalysts had been exposed to flue gas for about 1000 hours. Some operational problems were addressed that enable the reactor to run without excessive downtime by the end of the quarter.

Mike Bockelie; Kevin Davis; Temi Linjewile; Connie Senior; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker; Stan Harding

2003-06-30T23:59:59.000Z

144

ULTRA LOW NOx CATALYTIC COMBUSTION FOR IGCC POWER PLANTS  

Science Conference Proceedings (OSTI)

Tests were performed in PCI's sub-scale high-pressure (10 atm) test rig, using PCI's two-stage (catalytic / gas-phase) combustion process for syngas fuel. In this process, the first stage is a Rich-Catalytic Lean-burn (RCL{trademark}) catalytic reactor, wherein a fuel-rich mixture contacts the catalyst and reacts while final and excess combustion air cool the catalyst. The second stage is a gas-phase combustor, wherein the catalyst cooling air mixes with the catalytic reactor effluent to provide for final gas-phase burnout and dilution to fuel-lean combustion products. During the reporting period, PCI successfully achieved NOx = 0.011 lbs/MMBtu at 10 atm pressure (corresponding to 2.0 ppm NOx corrected to 15% O{sub 2} dry) with near-zero CO emissions, surpassing the project goal of baseload conditions corresponding to Tampa Electric's Polk Power Station operation on 100% syngas (no co-firing of natural gas).

Lance L. Smith

2004-03-01T23:59:59.000Z

145

Three-Dimensional Composite Nanostructures for Lean NOx Emission Control  

DOE Green Energy (OSTI)

In this project, through a scalable solution process, we have successfully fabricated a new class of catalytic reactors, i.e., the composite nanostructure array (nano-array) based catalytic converters. These nanocatalysts, distinct from traditional powder washcoat based catalytic converters, directly integrate monolithic substrates together with nanostructures with well-defined size and shape during the scalable hydrothermal process. The new monolithic nanocatalysts are demonstrated to be able to save raw materials including Pt-group metals and support metal oxides by an order of magnitude, while perform well at various oxidation (e.g., CO oxidation and NO oxidation) and reduction reactions (H{sub 2} reduction of NOx) involved in the lean NOx emissions. The size, shape and arrangement of the composite nanostructures within the monolithic substrates are found to be the key in enabling the drastically reduced materials usage while maintaining the good catalytic reactivity in the enabled devices. The further understanding of the reaction kinetics associated with the unique mass transport and surface chemistry behind is needed for further optimizing the design and fabrication of good nanostructure array based catalytic converters. On the other hand, the high temperature stability, hydrothermal aging stability, as well as S-poisoning resistance have been investigated in this project on the nanocatalysts, which revealed promising results toward good chemical and mechanical robustness, as well as S-poisoning resistance. Further investigation is needed for unraveling the understanding, design and selection principles of this new class of nanostructure based monolithic catalysts.

Gao, Pu-Xian

2013-07-31T23:59:59.000Z

146

Experimental Study of Non-thermal Plasma Injection System Converting NOx in Simulated Diesel Emissions  

Science Conference Proceedings (OSTI)

In order to study the removal effect of non-thermal plasma (NTP) after-treatment system on diesel engine harmful emissions, a dielectric barrier discharge (DBD) plasma reactor is designed, and the NOx removal effect is studied under the conditions of ... Keywords: Non-thermal Plasma(NTP), Dielectric Barrier Discharge(DBD, Diesel Engine, Nox

Jing Wang; Yixi Cai; Jun Wang; Dongli Ran

2010-11-01T23:59:59.000Z

147

Active NOX Control of Cogen Gas Turbine Exhaust using a Nonlinear Feed Forward with Cascade Architecture  

E-Print Network (OSTI)

Active NOX Control of Cogen Gas Turbine Exhaust using a Nonlinear Feed Forward with Cascade control, cogeneration, gas turbine, model based control, feed forward, cascade ABSTRACT Presented is a model based strategy for controlling the NOX concentration of natural gas turbine emissions

Cooper, Doug

148

NOx Adsorbers for Heavy Duty Truck Engines-Testing and Simulation  

DOE Green Energy (OSTI)

This feasibility study of NOx adsorbers in heavy-duty diesel engines examined three configurations (dual-leg, single-leg and single-leg-bypass) in an integrated experimental setup, composed of a Detroit Diesel Class-8 truck engine, a catalyzed diesel particulate filter and the NOx absorber system. The setup also employed a reductant injection concept, sensors and advanced control strategies.

Hakim, N; Hoelzer, J.; Liu, Y.

2002-08-25T23:59:59.000Z

149

Diesel Fuel Sulfur Effects on the Performance of Lean NOx Catalysts  

DOE Green Energy (OSTI)

Evaluate the effects of diesel fuel sulfur on the performance of low temperature and high temperature Lean-NOx Catalysts. Evaluate the effects of up to 250 hours of aging on the performance of the Lean-NOx Catalysts with different fuel sulfur contents.

Ren, Shouxian

2000-08-20T23:59:59.000Z

150

Retrofit NOx Control Guidelines for Gas- and Oil-Fired Boilers Version 2.0  

Science Conference Proceedings (OSTI)

This document reviews and summarizes NOx control technologies to help utility engineering and operating staff evaluate and select appropriate retrofit strategies for natural gas- and oil-fired boilers. In addition to general discussions of the various technologies, the document includes an accompanying database on diskette with detailed information on 239 NOx retrofits.

1997-08-19T23:59:59.000Z

151

A Novel Technology for the Reduction of NOx on Char by Microwaves  

E-Print Network (OSTI)

The emphasis on reduction of NOx as a precursor to street level ozone has increased the need for technologies capable of reducing NOx (>95%) to very low levels in major metropolitan areas from a wide variety of sources. Technology offerings available today may not always be appropriate for every desired application in the utility and industrial sectors. This paper will discuss a new technology under development that has promise to address many of the specialized needs of some of these applications. The technology is directed at NOx reduction but may also address other pollutants like SO2. The technology employees char, a heat treated and devolitilized form of coal, to adsorb NOx from the flue (or waste) gas. Adsorption of greater than 99% has been demonstrated on a lab scale and appears very feasible for scale-up. Microwave energy properly applied to the char loaded with NOx converts the NOx via carbon reduction to nitrogen and carbon dioxide. The role of microwave energy in the efficient destruction of the NOx selectively to nitrogen and CO2 differentiates this technology from other technologies that may generate significant byproducts like CO or N2O. The basic principles of the technology, applications where it is appropriate, and a comparison to other NOx technologies are included in the paper as well as the developmental status and plans.

Buenger, C.; Peterson, E.

1994-04-01T23:59:59.000Z

152

NATURAL GAS REBURNING TECHNOLOGY FOR NOx REDUCTION FROM MSW COMBUSTION SYSTEMS  

E-Print Network (OSTI)

NATURAL GAS REBURNING TECHNOLOGY FOR NOx REDUCTION FROM MSW COMBUSTION SYSTEMS Discussion by CRAIG's increased turbulent mixing is on the CO profile and what the incremental NOx reduction experienced was from that this alone would contribute to a significant reduction in the NO", generated. The authors are careful

Columbia University

153

Key Issues in the Design of NOx Emission Trading Programs to Reduce Ground-Level Ozone  

Science Conference Proceedings (OSTI)

As NOx control requirements grow more stringent and expensive, interest in emission trading as a means of controlling costs and increasing flexibility has risen. This report provides background information for and analysis of the design of emission trading programs for control of nitrogen oxides (NOx) from stationary sources, including fossil fuel electric generating plants.

1994-10-07T23:59:59.000Z

154

THE EFFECT OF SULFUR ON METHANE PARTIAL OXIDATION AND REFORMING PROCESSES FOR LEAN NOX TRAP CATALYSIS  

Science Conference Proceedings (OSTI)

Lean NOx trap catalysis has demonstrated the ability to reduce NOx emissions from lean natural gas reciprocating engines by >90%. The technology operates in a cyclic fashion where NOx is trapped on the catalyst during lean operation and released and reduced to N2 under rich exhaust conditions; the rich cleansing operation of the cycle is referred to as "regeneration" since the catalyst is reactivated for more NOx trapping after NOx purge. Creating the rich exhaust conditions for regeneration can be accomplished by catalytic partial oxidation of methane in the exhaust system. Furthermore, catalytic reforming of partial oxidation exhaust can enable increased quantities of H2 which is an excellent reductant for lean NOx trap regeneration. It is critical to maintain clean and efficient partial oxidation and reforming processes to keep the lean NOx trap functioning properly and to reduce extra fuel consumption from the regeneration process. Although most exhaust constituents do not impede partial oxidation and reforming, some exhaust constituents may negatively affect the catalysts and result in loss of catalytic efficiency. Of particular concern are common catalyst poisons sulfur, zinc, and phosphorous. These poisons form in the exhaust through combustion of fuel and oil, and although they are present at low concentrations, they can accumulate to significant levels over the life of an engine system. In the work presented here, the effects of sulfur on the partial oxidation and reforming catalytic processes were studied to determine any durability limitations on the production of reductants for lean NOx trap catalyst regeneration.

Parks, II, James E [ORNL; Ponnusamy, Senthil [ORNL

2006-01-01T23:59:59.000Z

155

Effects of Fuel's Distribution on NOx Emissions in Iron Ore Sintering  

Science Conference Proceedings (OSTI)

The law of NOx emission in the sintering process indicates that the NOx mainly emits ... Effects of Reducer and Slag Concentrations in the Iron-carbon Nuggets ... Factors Affecting the Mixing Characteristics of Molten Steel in the RH Refining Process ... Simulation Calculation on Calciotherimic Reduction of Titanium Dioxide.

156

Lean NOx Trap Catalysis for Lean Natural Gas Engine Applications  

Science Conference Proceedings (OSTI)

Distributed energy is an approach for meeting energy needs that has several advantages. Distributed energy improves energy security during natural disasters or terrorist actions, improves transmission grid reliability by reducing grid load, and enhances power quality through voltage support and reactive power. In addition, distributed energy can be efficient since transmission losses are minimized. One prime mover for distributed energy is the natural gas reciprocating engine generator set. Natural gas reciprocating engines are flexible and scalable solutions for many distributed energy needs. The engines can be run continuously or occasionally as peak demand requires, and their operation and maintenance is straightforward. Furthermore, system efficiencies can be maximized when natural gas reciprocating engines are combined with thermal energy recovery for cooling, heating, and power applications. Expansion of natural gas reciprocating engines for distributed energy is dependent on several factors, but two prominent factors are efficiency and emissions. Efficiencies must be high enough to enable low operating costs, and emissions must be low enough to permit significant operation hours, especially in non-attainment areas where emissions are stringently regulated. To address these issues the U.S. Department of Energy and the California Energy Commission launched research and development programs called Advanced Reciprocating Engine Systems (ARES) and Advanced Reciprocating Internal Combustion Engines (ARICE), respectively. Fuel efficiency and low emissions are two primary goals of these programs. The work presented here was funded by the ARES program and, thus, addresses the ARES 2010 goals of 50% thermal efficiency (fuel efficiency) and engines are being pursued. Approaches include: stoichiometric engine operation with exhaust gas recirculation and three-way catalysis, advanced combustion modes such as homogeneous charge compression ignition, and extension of the lean combustion limit with advanced ignition concepts and/or hydrogen mixing. The research presented here addresses the technical approach of combining efficient lean spark-ignited natural gas combustion with low emissions obtained from a lean NOx trap catalyst aftertreatment system. This approach can be applied to current lean engine technology or advanced lean engines that may result from related efforts in lean limit extension. Furthermore, the lean NOx trap technology has synergy with hydrogen-assisted lean limit extension since hydrogen is produced from natural gas during the lean NOx trap catalyst system process. The approach is also applicable to other lean engines such as diesel engines, natural gas turbines, and lean gasoline engines; other research activities have focused on those applications. Some commercialization of the technology has occurred for automotive applications (both diesel and lean gasoline engine vehicles) and natural gas turbines for stationary power. The research here specifically addresses barriers to commercialization of the technology for large lean natural gas reciprocating engines for stationary power. The report presented here is a comprehensive collection of research conducted by Oak Ridge National Laboratory (ORNL) on lean NOx trap catalysis for lean natural gas reciprocating engines. The research was performed in the Department of Energy's ARES program from 2003 to 2007 and covers several aspects of the technology. All studies were conducted at ORNL on a Cummins C8.3G+ natural gas engine chosen based on industry input to simulate large lean natural gas engines. Specific technical areas addressed by the research include: NOx reduction efficiency, partial oxidation and reforming chemistry, and the effects of sulfur poisons on the partial oxidation

Parks, II, James E [ORNL; Storey, John Morse [ORNL; Theiss, Timothy J [ORNL; Ponnusamy, Senthil [ORNL; Ferguson, Harley Douglas [ORNL; Williams, Aaron M [ORNL; Tassitano, James B [ORNL

2007-09-01T23:59:59.000Z

157

NETL: PPII - Integration of Low-NOx Burners with an Optimization Plan for  

NLE Websites -- All DOE Office Websites (Extended Search)

Integration of Low-NOx Burners with an Optimization Plan for Boiler Combustion Integration of Low-NOx Burners with an Optimization Plan for Boiler Combustion - Project Brief [PDF-72KB] Sunflower Electric Power Corp., Garden City, Finney County, KS PROJECT FACT SHEET Achieving New Source Performance Standards (NSPS) Through Integration of Low-NOx Burners with an Optimization Plan for Boiler Combustion [PDF-260KB] (Oct 2008) PROGRAM PUBLICATIONS Final Report Achieving NSPS Emission Standards Through Integration of Low NOx Burners with an Optimization Plan for Boiler Combustion [PDF-3.4MB] (June 2006) CCT Reports: Project Performance Summaries, Post-Project Assessments, & Topical Reports Achieving New Source Performance Standards (NSPS) Emission Standards through Integration of Low-NOx Burners with an Optimization Plan for Boiler Combustion: A DOE Assessment [PDF-1.4MB] (Nov 2006)

158

EA-1472: Commercial Demonstration fo the Low Nox Burner/Separated Over-Fire  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

472: Commercial Demonstration fo the Low Nox Burner/Separated 472: Commercial Demonstration fo the Low Nox Burner/Separated Over-Fire Air (LNB/SOFA) Integration System Emission Reduction Technology, Holcolm Station, Sunflower Electric Power Corporation Finnety County, Kansas EA-1472: Commercial Demonstration fo the Low Nox Burner/Separated Over-Fire Air (LNB/SOFA) Integration System Emission Reduction Technology, Holcolm Station, Sunflower Electric Power Corporation Finnety County, Kansas SUMMARY The DOE has prepared an Environmental Assessment (EA), to analyze the potential impacts of the commercial application of the Low-NOx Burner/Separated Over-Fire Air (LNB/SOFA) integration system to achieve nitrogen oxide (NOx) emissions reduction at Sunflower's Holcomb Unit No. 1 (Holcomb Station), located near Garden City, in Finney County, Kansas.

159

Modeling of NOx Destruction Options for INEEL Sodium-Bearing Waste Vitrification  

SciTech Connect

Off-gas NOx concentrations in the range of 1-5 mol% are expected as a result of the proposed vitrification of sodium-bearing waste at the Idaho National Engineering and Environmental Laboratory. An existing kinetic model for staged combustion (originally developed for NOx abatement from the calcination process) was updated for application to vitrification offgas. In addition, two new kinetic models were developed to assess the feasibility of using selective non-catalytic reduction (SNCR) or high-temperature alone for NOx abatement. Each of the models was developed using the Chemkin code. Results indicate that SNCR is a viable option, reducing NOx levels to below 1000 ppmv. In addition, SNCR may be capable of simultaneously reducing CO emissions to below 100 ppmv. Results for using high-temperature alone were not as promising, indicating that a minimum NOx concentration of 3950 ppmv is achievable at 3344°F.

Wood, Richard Arthur

2001-09-01T23:59:59.000Z

160

Low Dose Radiation Program: Workshop VI Abstracts  

NLE Websites -- All DOE Office Websites (Extended Search)

Workshop VI Principal Investigator and Abstracts Workshop VI Principal Investigator and Abstracts Anderson, Carl Whole Genome Analysis of Functional Protein Binding Sites and DNA Methylation: Application to p53 and Low Dose Ionizing Radiation. Averbeck, Dietrich Cellular Responses at Low Doses of Ionizing Radiation. Azzam, Edouard Adaptive Responses to Low Dose/Low Dose-Rate ?-Rays in Normal Human Fibroblasts: The Role of Oxidative Metabolism. Bailey, Susan The Role of Telomere Dysfunction in Driving Genomic Instability. Balajee, Adayabalam Low Dose Radiation Induced DNA Damage Signaling and Repair Responses in Human 3-Dimensional Skin Model System. Barcellos-Hoff, Mary Helen Imaging Bioinformatics for Mapping Multidimensional Responses. Barcellos-Hoff, Mary Helen Biological Response to Radiation Mediated through the Microenvironment and

Note: This page contains sample records for the topic "vi sox nox" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

The Influence of Flue Gas Recirculation on the Formation of NOx in the Process of Coal Grate-Fired  

Science Conference Proceedings (OSTI)

With the improvement of environmental protection requirements, the problems of NOx emission from industrial boiler become more and more notable. To explore a real effective method of low NOx combustion, the article discusses the influence of flue gas ... Keywords: flue gas recirculation, grate-fired, temperature, Nox

Li Xu; Jianmin Gao; Guangbo Zhao; Laifu Zhao; Zhifeng Zhao; Shaohua Wu

2011-03-01T23:59:59.000Z

162

Sulfur Poisoning and Regeneration of NOx Storage-Reduction Cu/K2Ti2O5 Qiang Wang,*,  

E-Print Network (OSTI)

aiming at NOx emission reduction are less effective in controlling the fate of char-N than volatile designated LNCFSTM level I, II and III, as shown in Figure 4.29, resulted in NOx reductions of 20% for levels and fuel quality and economic factors related to boiler age and size. An impression of what NOx reductions

Guo, John Zhanhu

163

Selective NOx Recirculation for Stationary Lean-Burn Natural Gas Engines  

SciTech Connect

Nitric oxide (NO) and nitrogen dioxide (NO2) generated by internal combustion (IC) engines are implicated in adverse environmental and health effects. Even though lean-burn natural gas engines have traditionally emitted lower oxides of nitrogen (NOx) emissions compared to their diesel counterparts, natural gas engines are being further challenged to reduce NOx emissions to 0.1 g/bhp-hr. The Selective NOx Recirculation (SNR) approach for NOx reduction involves cooling the engine exhaust gas and then adsorbing the NOx from the exhaust stream, followed by the periodic desorption of NOx. By sending the desorbed NOx back into the intake and through the engine, a percentage of the NOx can be decomposed during the combustion process. SNR technology has the support of the Department of Energy (DOE), under the Advanced Reciprocating Engine Systems (ARES) program to reduce NOx emissions to under 0.1 g/bhp-hr from stationary natural gas engines by 2010. The NO decomposition phenomenon was studied using two Cummins L10G natural gas fueled spark-ignited (SI) engines in three experimental campaigns. It was observed that the air/fuel ratio ({lambda}), injected NO quantity, added exhaust gas recirculation (EGR) percentage, and engine operating points affected NOx decomposition rates within the engine. Chemical kinetic model predictions using the software package CHEMKIN were performed to relate the experimental data with established rate and equilibrium models. The model was used to predict NO decomposition during lean-burn, stoichiometric burn, and slightly rich-burn cases with added EGR. NOx decomposition rates were estimated from the model to be from 35 to 42% for the lean-burn cases and from 50 to 70% for the rich-burn cases. The modeling results provided an insight as to how to maximize NOx decomposition rates for the experimental engine. Results from this experiment along with chemical kinetic modeling solutions prompted the investigation of rich-burn operating conditions, with added EGR to prevent preignition. It was observed that the relative air/fuel ratio, injected NO quantity, added EGR fraction, and engine operating points affected the NO decomposition rates. While operating under these modified conditions, the highest NO decomposition rate of 92% was observed. In-cylinder pressure data gathered during the experiments showed minimum deviation from peak pressure as a result of NO injections into the engine. A NOx adsorption system, from Sorbent Technologies, Inc., was integrated with the Cummins engine, comprised a NOx adsorbent chamber, heat exchanger, demister, and a hot air blower. Data were gathered to show the possibility of NOx adsorption from the engine exhaust, and desorption of NOx from the sorbent material. In order to quantify the NOx adsorption/desorption characteristics of the sorbent material, a benchtop adsorption system was constructed. The temperature of this apparatus was controlled while data were gathered on the characteristics of the sorbent material for development of a system model. A simplified linear driving force model was developed to predict NOx adsorption into the sorbent material as cooled exhaust passed over fresh sorbent material. A mass heat transfer analysis was conducted to analyze the possibility of using hot exhaust gas for the desorption process. It was found in the adsorption studies, and through literature review, that NO adsorption was poor when the carrier gas was nitrogen, but that NO in the presence of oxygen was adsorbed at levels exceeding 1% by mass of the sorbent. From the three experimental campaigns, chemical kinetic modeling analysis, and the scaled benchtop NOx adsorption system, an overall SNR system model was developed. An economic analysis was completed, and showed that the system was impractical in cost for small engines, but that economies of scale favored the technology.

Nigel N. Clark

2006-12-31T23:59:59.000Z

164

Nitrogen Oxides (NOx), Why and How They are Controlled  

NLE Websites -- All DOE Office Websites (Extended Search)

Air Quality EPA 456/F-99-006R Air Quality EPA 456/F-99-006R Environmental Protection Planning and Standards November 1999 Agency Research Triangle Park, NC 27711 Air EPA-456/F-99-006R November 1999 Nitrogen Oxides (NOx), Why and How They Are Controlled Prepared by Clean Air Technology Center (MD-12) Information Transfer and Program Integration Division Office of Air Quality Planning and Standards U.S. Environmental Protection Agency Research Triangle Park, North Carolina 27711 ii DISCLAIMER This report has been reviewed by the Information Transfer and Program Integration Division of the Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency and approved for publication. Approval does not signify that the contents of this report reflect the views and policies of the U.S. Environmental Protection Agency. Mention of trade

165

NOx Control Options and Integration for US Coal Fired Boilers  

DOE Green Energy (OSTI)

This is the fourteenth Quarterly Technical Report for DOE Cooperative Agreement No: DEFC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. Using the initial CFD baseline modeling of the Gavin Station and the plant corrosion maps, six boiler locations for the corrosion probes were identified and access ports have been installed. Preliminary corrosion data obtained appear consistent and believable. In situ, spectroscopic experiments at BYU reported in part last quarter were completed. New reactor tubes have been made for BYU's CCR that allow for testing smaller amounts of catalyst and thus increasing space velocity; monolith catalysts have been cut and a small reactor that can accommodate these pieces for testing is in its final stages of construction. A poisoning study on Ca-poisoned catalysts was begun this quarter. A possible site for a biomass co-firing test of the slipstream reactor was visited this quarter. The slipstream reactor at Rockport required repair and refurbishment, and will be re-started in the next quarter. This report describes the final results of an experimental project at Brown University on the fundamentals of ammonia / fly ash interactions with relevance to the operation of advanced NOx control technologies such as selective catalytic reduction. The Brown task focused on the measurement of ammonia adsorption isotherms on commercial fly ash samples subjected to a variety of treatments and on the chemistry of dry and semi-dry ammonia removal processes.

Mike Bockelie; Kevin Davis; Temi Linjewile; Connie Senior; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker; Stan Harding; Robert Hurt

2003-12-31T23:59:59.000Z

166

SELECTIVE NOx RECIRCULATION FOR STATIONARY LEAN-BURN NATURAL GAS ENGINES  

DOE Green Energy (OSTI)

The research program conducted at the West Virginia University Engine and Emissions Research Laboratory (EERL) is working towards the verification and optimization of an approach to remove nitric oxides from the exhaust gas of lean burn natural gas engines. This project was sponsored by the US Department of Energy, National Energy Technology Laboratory (NETL) under contract number: DE-FC26-02NT41608. Selective NOx Recirculation (SNR) involves three main steps. First, NOx is adsorbed from the exhaust stream, followed by periodic desorption from the aftertreatment medium. Finally the desorbed NOx is passed back into the intake air stream and fed into the engine, where a percentage of the NOx is decomposed. This reporting period focuses on the NOx decomposition capability in the combustion process. Although researchers have demonstrated NOx reduction with SNR in other contexts, the proposed program is needed to further understand the process as it applies to lean burn natural gas engines. SNR is in support of the Department of Energy goal of enabling future use of environmentally acceptable reciprocating natural gas engines through NOx reduction under 0.1 g/bhp-hr. The study of decomposition of oxides of nitrogen (NOx) during combustion in the cylinder was conducted on a 1993 Cummins L10G 240 hp lean burn natural gas engine. The engine was operated at different air/fuel ratios, and at a speed of 800 rpm to mimic a larger bore engine. A full scale dilution tunnel and analyzers capable of measuring NOx, CO{sub 2}, CO, HC concentrations were used to characterize the exhaust gas. Commercially available nitric oxide (NO) was used to mimic the NOx stream from the desorption process through a mass flow controller and an injection nozzle. The same quantity of NOx was injected into the intake and exhaust line of the engine for 20 seconds at various steady state engine operating points. NOx decomposition rates were obtained by averaging the peak values at each set point minus the baseline and finding the ratio between the injected NO amounts. It was observed that the air/fuel ratio, injected NO quantity and engine operating points affected the NOx decomposition rates of the natural gas engine. A highest NOx decomposition rate of 27% was measured from this engine. A separate exploratory tests conducted with a gasoline engine with a low air/fuel ratio yielded results that suggested, that high NOx decomposition rates may be possible if a normally lean burn engine were operated at conditions closer to stoichiometric, with high exhaust gas recirculation (EGR) for a brief period of time during the NOx decomposition phase and with a wider range of air/fuel ratios. Chemical kinetic model predictions using CHEMKIN were performed to relate the experimental data with the established rate and equilibrium models. NOx decomposition rates from 35% to 42% were estimated using the CHEMKIN software. This provided insight on how to maximize NOx decomposition rates for a large bore engine. In the future, the modeling will be used to examine the effect of higher NO{sub 2}/NO ratios that are associated with lower speed and larger bore lean burn operation.

Nigel Clark; Gregory Thompson; Richard Atkinson; Chamila Tissera; Matt Swartz; Emre Tatli; Ramprabhu Vellaisamy

2005-01-01T23:59:59.000Z

167

NETL: News Release - DOE Selects Five NOx-Control Projects to Combat Acid  

NLE Websites -- All DOE Office Websites (Extended Search)

November 5, 2004 November 5, 2004 DOE Selects Five NOx-Control Projects to Combat Acid Rain and Smog Industry Partners to Focus on Reducing Emissions While Cutting Energy Costs PITTSBURGH, PA - Continuing efforts to cut acid rain and smog-producing nitrogen oxides (NOx) have prompted the U.S. Department of Energy to partner with industry experts to develop advanced NOx-control technologies. With the selection of five new NOx-control projects, the Energy Department continues as a leader in developing advanced technologies to achieve environmental compliance for the nation's fleet of coal-fired power plants. Although today's NOx-control workhorses, such as low-NOx burners and selective catalytic reduction (SCR), have been successfully deployed to address existing regulations, proposed regulations will require deeper cuts in NOx emissions, at a greater number of generating facilities. Many of the smaller affected plants will not be able to cost-effectively use today's technologies; these are the focus of the advanced technologies selected in this announcement.

168

Effects of Coaxial Air on Nitrogen-Diluted Hydrogen Jet Diffusion Flame Length and NOx Emission  

DOE Green Energy (OSTI)

Turbulent nitrogen-diluted hydrogen jet diffusion flames with high velocity coaxial air flows are investigated for their NOx emission levels. This study is motivated by the DOE turbine program’s goal of achieving 2 ppm dry low NOx from turbine combustors running on nitrogen-diluted high-hydrogen fuels. In this study, effects of coaxial air velocity and momentum are varied while maintaining low overall equivalence ratios to eliminate the effects of recirculation of combustion products on flame lengths, flame temperatures, and resulting NOx emission levels. The nature of flame length and NOx emission scaling relationships are found to vary, depending on whether the combined fuel and coaxial air jet is fuel-rich or fuel-lean. In the absence of differential diffusion effects, flame lengths agree well with predicted trends, and NOx emissions levels are shown to decrease with increasing coaxial air velocity, as expected. Normalizing the NOx emission index with a flame residence time reveals some interesting trends, and indicates that a global flame strain based on the difference between the fuel and coaxial air velocities, as is traditionally used, is not a viable parameter for scaling the normalized NOx emissions of coaxial air jet diffusion flames.

Weiland, N.T.; Chen, R.-H.; Strakey, P.A.

2007-10-01T23:59:59.000Z

169

Global NOx Measurements in Turbulent Nitrogen-Diluted Hydrogen Jet Flames  

DOE Green Energy (OSTI)

Turbulent hydrogen diffusion flames diluted with nitrogen are currently being studied to assess their ability to achieve the DOE Turbine Program’s aggressive emissions goal of 2 ppm NOx in a hydrogen-fueled IGCC gas turbine combustor. Since the unstrained adiabatic flame temperatures of these diluted flames are not low enough to eliminate thermal NOx formation the focus of the current work is to study how the effects of flame residence time and global flame strain can be used to help achieve the stated NOx emissions goal. Dry NOx measurements are presented as a function of jet diameter nitrogen dilution and jet velocity for a turbulent hydrogen/nitrogen jet issuing from a thin-lipped tube in an atmospheric pressure combustor. The NOx emission indices from these experiments are normalized by the flame residence time to ascertain the effects of global flame strain and fuel Lewis Number on the NOx emissions. In addition dilute hydrogen diffusion flame experiments were performed in a high-pressure combustor at 2 4 and 8 atm. The NOx emission data from these experiments are discussed as well as the results from a Computational Fluid Dynamics modeling effort currently underway to help explain the experimental data.

Weiland, N.T.; Strakey, P.A.

2007-03-01T23:59:59.000Z

170

Assessment of Impacts of Retrofit NOx Controls on Gas/Oil Boilers  

Science Conference Proceedings (OSTI)

In 1997, when EPRI issued the version 2 of its Retrofit NOx Control Guidelines for Gas- and Oil-Fired Boilers (EPRI report TR-108181), it was thought the most common NOx controls installed on gas and oil-fired boilers would include low NOx burners; selective catalytic reduction (SCR); and other vendor supplied, hardware-intensive approaches. In the years that followed, however, most of the gas and oil power generating fleet opted for less hardware intensive, more cost-effective approaches, with Induced F...

2007-02-07T23:59:59.000Z

171

Development of METHANE de-NOX reburning process. Quarterly report, October 1 - December 31, 1999  

DOE Green Energy (OSTI)

The use of biomass and wood waste solids and sludges as fuel is often hampered by their low heating values and the presence of bound nitrogen that result in inefficient combustion and high NOx emission. Cofiring supplemental fuel through auxiliary burners helps with improving the combustion effectiveness and NOx reduction, but the benefits are limited to the fractional heat input of the auxiliary fuel. Demonstration tests have shown over 60% reduction in NOx, CO and VOC emissions, and a 2% increase in boiler thermal efficiency using only 8 to 13% natural gas.

NONE

1999-12-31T23:59:59.000Z

172

Impacts of Low-NOx Regulations on Chillers: Commercial Cooling Update, Issue 15, September 1996  

Science Conference Proceedings (OSTI)

The 1990 Clean Air Act Amendments and local air quality rules are affecting the cost and operation of all chillers. This document takes a close look at the cost and source energy use impacts of NOx regulations on chillers and provides a summary of findings. Four chiller types are examined: electric centrifugal, direct- fired absorber, engine driven with a lean-burn engine and engine driven by nonselective catalytic reduction. A table is provided that compares energy use, NOx, and first costs of low-NOx c...

1996-10-30T23:59:59.000Z

173

The evolution of NOx control policy for coal-fired power plants in the United States  

Science Conference Proceedings (OSTI)

Emissions of nitrogen oxides (NOx) contribute to formation of particulate matter and ozone, and also to acidification of the environment. The electricity sector is responsible for about 20% of NOx emissions in the United States, and the sector has been the target of both prescriptive (command-and-control) and flexible (cap-and-trade) approaches to regulation. The paper summarises the major NOx control policies affecting this sector in the USA, and provides some perspectives as to their effectiveness. While both prescriptive and flexible approaches continue to play an important role, significant new proposals have wholly embraced a cap-and-trade approach. 20 refs., 7 figs., 2 tabs.

Dallas Burtraw; David A. Evans

2003-12-15T23:59:59.000Z

174

and Particulate Matter Submitted by the United States SUMMARY Executive summary:  

E-Print Network (OSTI)

This document is submitted in support of the proposal to designate certain waters adjacent to the coasts of the United States territories of the Commonwealth of Puerto Rico and the U.S. Virgin Islands as an Emission Control Area for NOX, SOX, and PM, in accordance with regulations 13 and 14 and Appendix III of MARPOL Annex VI. It provides references and other information considered in developing the proposal.

English Only

2010-01-01T23:59:59.000Z

175

Integrated Ecogenomics Study for Bioremediation of Cr(VI) at Hanford 100H Area  

E-Print Network (OSTI)

reducer isolated from the Hanford 100H site capable of Iron(study for bioremediation of Cr(VI) at Hanford 100H area RomyVI)contamination at Hanford ?? Cr(VI) highly soluble, toxic

Chakraborty, Romy

2008-01-01T23:59:59.000Z

176

Molecular Interactions of Plutonium(VI) with Synthetic Manganese-Substituted Goethite  

E-Print Network (OSTI)

E. , Thesis, Reactions of Plutonium(VI) with the Iron Oxideof Uranium, Neptunium, Plutonium, Americium and Technetium;Molecular Interactions of Plutonium(VI) with Synthetic

Hu, Yung-Jin

2011-01-01T23:59:59.000Z

177

Modelling of catalytic aftertreatment of NOx emissions using hydrocarbon as a reductant.  

E-Print Network (OSTI)

??Hydrocarbon selective catalytic reduction (HC-SCR) is emerging as one of the most practical methods for the removal of nitrogen oxides (NOx) from light-duty-diesel engine exhaust… (more)

Sawatmongkhon, Boonlue

2012-01-01T23:59:59.000Z

178

A design strategy applied to sulfur resistant lean NOxĚł automotive catalysts  

E-Print Network (OSTI)

Catalyst poisoning due to sulfur compounds derived from fuel sulfur presents a major challenge, intractable thus far, to development of many advanced technologies for automotive catalysts such as the lean NOx, trap. Under ...

Tang, Hairong

2005-01-01T23:59:59.000Z

179

LBNL's Low-NOx Combustion Technologies for Heat and Power Generation  

NLE Websites -- All DOE Office Websites (Extended Search)

Us Department Contacts Media Contacts LBNL's Low-NOx Combustion Technologies for Heat and Power Generation Speaker(s): Robert Cheng Date: February 2, 1999 - 12:00pm Location: Bldg....

180

Demonstration of a Low-NOx Heavy-Duty Natural Gas Engine  

DOE Green Energy (OSTI)

Results of a Next Generation Natural Gas Vehicle engine research project: A Caterpillar C-12 natural gas engine with Clean Air Power Dual-Fuel technology and exhaust gas recirculation demonstrated low NOx and PM emissions.

Not Available

2004-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "vi sox nox" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Microsoft Word - 41892_Praxair_Low NOx_Factsheet_Rev 0a_01-09...  

NLE Websites -- All DOE Office Websites (Extended Search)

Low NOx Emissions in a Fuel Flexible Gas Turbine FACT SHEET Revision 0a Jan. 9, 2004 Page 1 of 4 I. PROJECT DESCRIPTION A. Objective: The objective of this project is to design a...

182

Time and location differentiated NOX control in competitive electricity markets using cap-and-trade mechanisms  

E-Print Network (OSTI)

Due to variations in weather and atmospheric chemistry, the timing and location of nitrogen oxide (NOX) reductions determine their effectiveness in reducing ground-level ozone, which adversely impacts human health. Electric ...

Martin, Katherine C.

2007-01-01T23:59:59.000Z

183

Climate Co-benefits of Tighter SO2 and NOx Regulations in China  

E-Print Network (OSTI)

Air pollution has been recognized as a significant problem in China. In its Twelfth Five Year Plan (FYP), China proposes to reduce SO2 and NOx emissions significantly, and here we investigate the cost of achieving those ...

Nam, Kyung-Min

2012-10-01T23:59:59.000Z

184

Program on Technology Innovation: Field Evaluations of Entrained Flow NOx Catalyst Concept  

Science Conference Proceedings (OSTI)

EPRI has been actively evaluating and developing advanced catalyst concepts for NOx reduction that are more effective and have potential in achieving near zero emissions. The concept called NOMERCTM involves the entrained flow of pulverized SCR catalyst for NOx reduction combined with activated carbon injection for removing mercury from the flue gas stream at coal-fired utilities. The entrained flow removal process is a novel concept and has been proven to work in a previous proof of concept test. This r...

2006-03-27T23:59:59.000Z

185

An Assessment of Alternative NOx Monitoring Technologies for Coal-Fired Boiler Applications  

Science Conference Proceedings (OSTI)

This report reviews the applicability of alternate measurement technologies to measure NOx in coal-fired boiler applications using optical techniques in general, and tunable diode laser spectroscopy in particular. Increasingly stringent regulations of NOx emission limits on this class of boilers make accurate, reliable, cost effective measurement techniques of growing importance. Existing commercial instrumentation used for CEMS applications, do not entirely satisfy industry requirements and needs for pr...

2005-12-12T23:59:59.000Z

186

Assessment of Impacts of NOx Reduction Technologies on Coal Ash Use: Volume 1: North American Perspective  

Science Conference Proceedings (OSTI)

This two-volume report provides documentation about physical and chemical effects combustion and post-combustion low-NOx technologies have on coal fly ash. U.S., European, and, to a lesser degree, Japanese experience is discussed. The report assesses the effect of low-NOx technologies on fly ash markets in a general manner. Options for beneficiating fly ash for specific markets also appear.

1997-01-04T23:59:59.000Z

187

Retrofit NOx Controls for Coal-Fired Utility Boilers - 2000 Update  

Science Conference Proceedings (OSTI)

During the last four years (1996-2000), NOx control retrofits increased significantly in response to further tightening of NOx regulations. Approximately one hundred complete burner retrofits of wall- and T-fired boilers were implemented during this period, bringing the total burner retrofits to 357. Also, 32 burner component modification BCM) projects were implemented. Other control options included combustion optimization in more than two hundred boilers, thirteen reburns, five selective non-catalytic ...

2000-12-15T23:59:59.000Z

188

NOx Reduction Study at New York Power Authority's Charles Poletti Station  

Science Conference Proceedings (OSTI)

This engineering study assessed the feasibility and economics of obtaining significant NOx reduction levels at New York Power Authoritys Charles Poletti Station through one or more of a variety of approaches. Specific NOx reduction technologies included in the assessment were: 30 Unit De-Rate Induced Flue Gas Recirculation (IFGR) IFGR +30 De-Rate Selective Non-Catalytic Reduction (SNCR) IFGR +SNCR IFGR +SNCR +30 De-Rate Selective Catalytic Reduction (SCR) A number of windbox re-powering options, ...

2006-08-01T23:59:59.000Z

189

Retrofit NOx Control Guidelines for Gas- and Oil-Fired Boilers  

Science Conference Proceedings (OSTI)

Ground-level ozone concentrations continue to exceed the federal health-based standard in many parts of the country, especially urban areas. This condition led Congress to include in the Clean Air Act Amendments of 1990 a requirement that states with nonattainment regions implement regulations to reduce NOx from all sources, including utility boilers. By providing a summary and analysis of all the available information on NOx control techniques for gas-and oil-fired boilers, this document can help utilit...

1994-01-01T23:59:59.000Z

190

Procedure to Calculate NOx Reductions Using the Emissions & Generation Resource Integrated Database (E-Grid) Spreadsheet  

E-Print Network (OSTI)

In this report a detailed description of the procedure to calculate NOx reductions from energy savings due to the 2000 IECC code implementation in single family residences using the United States Environmental Protect Agency's (USEPA's) Emissions and Generation Resource Integrated Database (E-GRID) is presented. This procedure is proposed for calculating county-wide NOx reductions in pounds per MWh for Energy Efficiency and Renewable Energy projects (EE/RE) implemented in each Power Control Area (PCA) in the ERCOT region.

Haberl, J. S.; Im, P.; Culp, C.; Yazdani, B.; Fitzpatrick, T.; Verdict, M.; Turner, W. D.

2003-01-01T23:59:59.000Z

191

Rich Reagent Injection Technology for NOx Control in Cyclone-Fired Boilers  

Science Conference Proceedings (OSTI)

This report summarizes multiple demonstration projects that have led to commercial development of the Rich Reagent Injection (RRI) technology. RRI was developed by Reaction Engineering International (REI) with funding from EPRI and U.S. DOE National Energy Technology Laboratory (DOE-NETL). Prior to RRI, most NOx reduction efforts that focused on modifying combustion to reduce NOx formation in fossil-fuel-fired boilers and furnaces involved air or fuel staging. Even with significant levels of furnace stag...

2006-11-06T23:59:59.000Z

192

Mitigation of Sulfur Effects on a Lean NOx Trap Catalyst by Sorbate Reapplication  

DOE Green Energy (OSTI)

Lean NOx trap catalysis has demonstrated the ability to reduce NOx emissions from lean natural gas reciprocating engines by >90%. The technology operates in a cyclic fashion where NOx is trapped on the catalyst during lean operation and released and reduced to N2 under rich exhaust conditions; the rich cleansing operation of the cycle is referred to as "regeneration" since the catalyst is reactivated for more NOx trapping. Natural gas combusted over partial oxidation catalysts in the exhaust can be used to obtain the rich exhaust conditions necessary for catalyst regeneration. Thus, the lean NOx trap technology is well suited for lean natural gas engine applications. One potential limitation of the lean NOx trap technology is sulfur poisoning. Sulfur compounds directly bond to the NOx trapping sites of the catalyst and render them ineffective; over time, the sulfur poisoning leads to degradation in overall NOx reduction performance. In order to mitigate the effects of sulfur poisoning, a process has been developed to restore catalyst activity after sulfur poisoning has occurred. The process is an aqueous-based wash process that removes the poisoned sorbate component of the catalyst. A new sorbate component is reapplied after removal of the poisoned sorbate. The process is low cost and does not involve reapplication of precious metal components of the catalyst. Experiments were conducted to investigate the feasibility of the washing process on a lean 8.3-liter natural gas engine on a dynamometer platform. The catalyst was rapidly sulfur poisoned with bottled SO2 gas; then, the catalyst sorbate was washed and reapplied and performance was re-evaluated. Results show that the sorbate reapplication process is effective at restoring lost performance due to sulfur poisoning. Specific details relative to the implementation of the process for large stationary natural gas engines will be discussed.

Parks, II, James E [ORNL

2007-01-01T23:59:59.000Z

193

The Ozone Weekend Effect in California: Evidence Supporting NOx Emission Reductions  

E-Print Network (OSTI)

Ozone is typically higher on weekends (WE) than on weekdays (WD) at many of California’s air-monitoring stations. Sometimes called the “ozone WE effect, ” this phenomenon occurs despite substantially lower estimates of WE emissions for the major ozone precursors – volatile organic compounds (VOC) and oxides of nitrogen (NOx). Compared to WD emissions, WE emissions of NOx decrease more (proportionally) than do the WE emissions of VOC. Because the WE increases in ozone coincide with the relatively large WE reductions in NOx, some conclude that regulations that would reduce NOx emissions on all days would undermine ozone attainment efforts by causing ozone to decrease more slowly (or even to increase). At this time, public discussion of the ozone WE effect has mostly reflected the viewpoint that NOx emission reductions would not help reduce ambient ozone levels. A large body of published research from this perspective has accumulated over the last 10 to 20 years. Nevertheless, the presently available scientific evidence can also lead to the conclusion that NOx emission reductions may be needed to maintain or even to expedite progress toward attainment

Lawrence C. Larsen

2003-01-01T23:59:59.000Z

194

Advanced NOx Emissions Control: Control Technology - Second Generation  

NLE Websites -- All DOE Office Websites (Extended Search)

In Situ Device for Real-Time Catalyst Deactivation Measurements in Full-Scale SCR Systems In Situ Device for Real-Time Catalyst Deactivation Measurements in Full-Scale SCR Systems To support trends in the electric generating industry of moving from seasonal to year-round operation of Selective Catalytic Reduction (SCR) for control of NOx and mercury, as well as extending the time between generating unit outages, Fossil Energy Research Corporation (FERCo) is developing technology to determine SCR catalyst activity and remaining life without requiring an outage to obtain and analyze catalyst samples. FERCo intends to use SCR catalyst performance results measured with their in situ device at Alabama PowerÂ’s Plant Gorgas during the 2005 and 2006 ozone seasons, along with EPRIÂ’s CatReactTM catalyst management software, to demonstrate the value of real-time activity measurements with respect to the optimization of catalyst replacement strategy. Southern Company and the Electric Power Research Institute are co-funding the project.

195

Fundamental Study of Low NOx Combustion Fly Ash Utilization  

SciTech Connect

This study is principally concerned with characterizing the organic part of coal combustion fly ashes. High carbon fly ashes are becoming more common as by-products of low-NOx combustion technology, and there is need to learn more about this fraction of the fly ash. The project team consists of two universities, Brown and Princeton, and an electrical utility, New England Power. A sample suite of over forty fly ashes has been gathered from utilities across the United States, and includes ashes from a coals ranging in rank from bituminous to lignite. The characterizations of these ashes include standard tests (LOI, Foam Index), as well as more detailed characterizations of their surface areas, porosity, extractability and adsorption behavior. The ultimate goal is, by better characterizing the material, to enable broadening the range of applications for coal fly ash re-use beyond the current main market as a pozzolanic agent for concretes. The potential for high carbon-content fly ashes to substitute for activated carbons is receiving particular attention. The work performed to date has already revealed how very different the surfaces of different ashes produced by the same utility can be, with respect to polarity of the residual carbon. This can help explain the large variations in acceptability of these ashes as concrete additives.

E. M. Suubert; I. Kuloats; K. Smith; N. Sabanegh; R.H. Hurt; W. D. Lilly; Y. M. Gao

1997-05-01T23:59:59.000Z

196

Discovery of New NOx Reduction Catalysts for CIDI Engines Using Combinatorial Techniques  

SciTech Connect

This project for the discovery of new lean reduction NOx catalysts was initiated on August 16th, 2002 and is now into its fourth year. Several materials have already been identified as NOx reduction catalysts for possible future application. NOx reduction catalysts are a critical need in the North American vehicle market since these catalysts are needed to enable both diesels and lean gasoline engines to meet the 2007-2010 emission standards. Hydrocarbon selective catalytic reduction (SCR) is a preferred technology since it requires no infrastructure changes (as may be expected for urea SCR) and most likely has the simplest engine control strategy of the three proposed NOx reduction approaches. The use of fast throughput techniques and informatics greatly enhances the possibility of discovering new NOx reduction catalysts. Using fast throughput techniques this project has already screened over 3000 new materials and evaluates hundreds of new materials a month. Evaluating such a high number of new materials puts this approach into a very different paradigm than previous discovery approaches for new NOx reduction catalysts. With so much data on materials it is necessary to use statistical techniques to identify the potential catalysts and these statistical techniques are needed to optimize compositions of the multi-component materials that are identified under the program as possible new lean NOx catalysts. Several new materials have conversions in excess of 80% at temperatures above 300 C. That is more than twice the activity of previous HC SCR materials. These materials are candidates for emission control on heavy-duty systems (i.e.; over 8500 pounds gross weight). Tests of one of the downselected materials on an engine dynamometer show NOx reductions greater than 80% under some conditions even though the net NOx reductions on the HWFET and the US06 cycles were relatively low. The program is scheduled to continue until the end of the 2006 calendar year. Work in the final year will focus on continued discovery and identity of candidate materials, and also on refining the engine operating strategies to increase NOx reduction over a full engine cycle.

Blint, Richard J

2005-08-15T23:59:59.000Z

197

Residual oil saturation, Annex VI-1. Venezuela-MEM/USA-DOE fossil energy report VI-1  

SciTech Connect

This report, dealing with the US/Venezuela Cooperative exchange agreement on residual oil saturation (Annex VI), contains the results of efforts by scientists from both countries to improve the state of present technology for accurately measuring the amount of residual oil remaining in a particular reservoir of interest. To date, those efforts have resulted in an exchange of ideas through a sharing of technical literature and bibliographic listings pertinent to the subject, reciprocal visits to the laboratories and field sites where residual oil saturation measurement R and D is in progress, an exchange of ideas through workshops held in each country, and open discussions covering areas of future cooperative R and D. The text of the basic agreement , Annex VI and all amendments, are appended to the report. In addition to a chronicle of events detailing progress under Annex VI, this report also inlcudes a discussion of future work to be performed in the areas of subsidence accompanying the extraction of oil and interwell oil saturation measurement. A meeting was held in Bartlesville May 10 and 11 to formulate plans in this area.

Wesson, T.C.; VonDomselaar, H.

1983-04-01T23:59:59.000Z

198

Selective NOx Recirculation for Stationary Lean-Burn Natural Gas Engines  

Science Conference Proceedings (OSTI)

Selective NOx Recirculation (SNR) involves cooling the engine exhaust gas and then adsorbing the oxides of nitrogen (NOx) from the exhaust stream, followed by the periodic desorption of NOx. By returning the desorbed, concentrated NOx into the engine intake and through the combustion chamber, a percentage of the NOx is decomposed during the combustion process. An initial study of NOx decomposition during lean-burn combustion was concluded in 2004 using a 1993 Cummins L10G 240hp natural gas engine. It was observed that the air/fuel ratio, injected NO (nitric oxide) quantity and engine operating points affected NOx decomposition rates of the engine. Chemical kinetic modeling results were also used to determine optimum NOx decomposition operating points and were published in the 2004 annual report. A NOx decomposition rate of 27% was measured from this engine under lean-burn conditions while the software model predicted between 35-42% NOx decomposition for similar conditions. A later technology 1998 Cummins L10G 280hp natural gas engine was procured with the assistance of Cummins Inc. to replace the previous engine used for 2005 experimental research. The new engine was equipped with an electronic fuel management system with closed-loop control that provided a more stable air/fuel ratio control and improved the repeatability of the tests. The engine was instrumented with an in-cylinder pressure measurement system and electronic controls, and was adapted to operate over a range of air/fuel ratios. The engine was connected to a newly commissioned 300hp alternating current (AC) motoring dynamometer. The second experimental campaign was performed to acquire both stoichiometric and slightly rich (0.97 lambda ratio) burn NOx decomposition rates. Effects of engine load and speed on decomposition were quantified, but Exhaust Gas Recirculation (EGR) was not varied independently. Decomposition rates of up to 92% were demonstrated. Following recommendations at the 2004 ARES peer review meeting at Argonne National Laboratories, in-cylinder pressure was measured to calculate engine indicated mean effective pressure (IMEP) changes due to NOx injections and EGR variations, and to observe conditions in the cylinder. The third experimental campaign gathered NOx decomposition data at 800, 1200 and 1800 rpm. EGR was added via an external loop, with EGR ranging from zero to the point of misfire. The air/fuel ratio was set at both stoichiometric and slightly rich conditions, and NOx decomposition rates were calculated for each set of runs. Modifications were made to the engine exhaust manifold to record individual exhaust temperatures. The three experimental campaigns have provided the data needed for a comprehensive model of NOx decomposition during the combustion process, and data have confirmed that there was no significant impact of injected NO on in-cylinder pressure. The NOx adsorption system provided by Sorbent Technologies Corp. (Twinsburg, OH), comprised a NOx adsorber, heat exchanger and a demister. These components were connected to the engine, and data were gathered to show both the adsorption of NOx from the engine, and desorption of NOx from the carbon-based sorbent material back into the engine intake, using a heated air stream. In order to quantify the NOx adsorption/desorption characteristics of the sorbent material, a bench top adsorption system was constructed and instrumented with thermocouples and the system output was fed into a NOx analyzer. The temperature of this apparatus was controlled while gathering data on the characteristics of the sorbent material. These data were required for development of a system model. Preliminary data were gathered in 2005, and will continue in early 2006. To assess the economic benefits of the proposed SNR technology the WVU research team has been joined in the last quarter by Dr Richard Turton (WVU-Chemical Engineering), who is modeling, sizing and costing the major components. The tasks will address modeling and preliminary design of the heat exchanger, demister and NOx sorbent chamber s

Nigel Clark; Gregory Thompson; Richard Atkinson; Richard Turton; Chamila Tissera; Emre Tatli; Andy Zimmerman

2005-12-28T23:59:59.000Z

199

Cyclone Boiler Field Testing of Advanced Layered NOx Control Technology in Sioux Unit 1  

SciTech Connect

A four week testing program was completed during this project to assess the ability of the combination of deep staging, Rich Reagent Injection (RRI), and Selective Non-Catalytic Reduction (SNCR) to reduce NOx emissions below 0.15 lb/MBtu in a cyclone fired boiler. The host site for the tests was AmerenUE's Sioux Unit 1, a 500 MW cyclone fired boiler located near St. Louis, MO. Reaction Engineering International (REI) led the project team including AmerenUE, FuelTech Inc., and the Electric Power Research Institute (EPRI). This layered approach to NOx reduction is termed the Advanced Layered Technology Approach (ALTA). Installed RRI and SNCR port locations were guided by computational fluid dynamics (CFD) based modeling conducted by REI. During the parametric testing, NOx emissions of 0.12 lb/MBtu were achieved consistently from overfire air (OFA)-only baseline NOx emissions of 0.25 lb/MBtu or less, when firing the typical 80/20 fuel blend of Powder River Basin (PRB) and Illinois No.6 coals. From OFA-only baseline levels of 0.20 lb/MBtu, NOx emissions of 0.12 lb/MBtu were also achieved, but at significantly reduced urea flow rates. Under the deeply staged conditions that were tested, RRI performance was observed to degrade as higher blends of Illinois No.6 were used. NOx emissions achieved with ALTA while firing a 60/40 blend were approximately 0.15 lb/MBtu. NOx emissions while firing 100% Illinois No.6 were approximately 0.165 lb/MBtu. Based on the performance results of these tests, economics analyses of the application of ALTA to a nominal 500 MW cyclone unit show that the levelized cost to achieve 0.15 lb/MBtu is well below 75% of the cost of a state of the art SCR.

Marc A. Cremer; Bradley R. Adams

2006-06-30T23:59:59.000Z

200

METHANE de-NOX for Utility PC Boilers  

SciTech Connect

The overall project objective is the development and validation of an innovative combustion system, based on a novel coal preheating concept prior to combustion, that can reduce NO{sub x} emissions to 0.15 lb/million Btu or less on utility pulverized coal (PC) boilers. This NO{sub x} reduction should be achieved without loss of boiler efficiency or operating stability, and at more than 25% lower levelized cost than state-of-the-art SCR technology. A further objective is to ready technology for full-scale commercial deployment to meet the market demand for NO{sub x} reduction technologies. Over half of the electric power generated in the U.S. is produced by coal combustion, and more than 80% of these units utilize PC combustion technology. Conventional measures for NOx reduction in PC combustion processes rely on combustion and post-combustion modifications. A variety of combustion-based NO{sub x} reduction technologies are in use today, including low-NO{sub x} burners (LNBs), flue gas recirculation (FGR), air staging, and natural gas or other fuel reburning. Selective non-catalytic reduction (SNCR) and selective catalytic reduction (SCR) are post-combustion techniques. NO{sub x} reduction effectiveness from these technologies ranges from 30 to 60% and up to 90-93% for SCR. Typically, older wall-fired PC burner units produce NO{sub x} emissions in the range of 0.8-1.6 lb/million Btu. Low-NO{sub x} burner systems, using combinations of fuel staging within the burner and air staging by introduction of overfire air in the boiler, can reduce NO{sub x} emissions by 50-60%. This approach alone is not sufficient to meet the desired 0.15 lb/million Btu NO{sub x} standard with a range of coals and boiler loads. Furthermore, the heavy reliance on overfire air can lead to increased slagging and corrosion in furnaces, particularly with higher-sulfur coals, when LNBs are operated at sub-stoichiometric conditions to reduce fuel-derived NOx in the flame. Therefore, it is desirable to minimize the need for overfire air by maximizing NO{sub x} reduction in the burner. The proposed combustion concept aims to greatly reduce NO{sub x} emissions by incorporating a novel modification to conventional or low-NO{sub x} PC burners using gas-fired coal preheating to destroy NO{sub x} precursors and prevent NO{sub x} formation. A concentrated PC stream enters the burner, where flue gas from natural gas combustion is used to heat the PC up to about 1500 F prior to coal combustion. Secondary fuel consumption for preheating is estimated to be 3 to 5% of the boiler heat input. This thermal pretreatment releases coal volatiles, including fuel-bound nitrogen compounds into oxygen-deficient atmosphere, which converts the coal-derived nitrogen compounds to molecular N{sub 2} rather than NO. Design, installation, shakedown, and testing on Powder River Basin (PRB) coal at a 3-million Btu/h pilot system at RPI's (Riley Power, Inc.) pilot-scale combustion facility (PSCF) in Worcester, MA demonstrated that the PC PREHEAT process has a significant effect on final O{sub x} formation in the coal burner. Modifications to both the pilot system gas-fired combustor and the PC burner led to NO{sub x} reduction with PRB coal to levels below 0.15 lb/million Btu with CO in the range of 35-112 ppmv without any furnace air staging.

Bruce Bryan; Serguei Nester; Joseph Rabovitser; Stan Wohadlo

2005-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "vi sox nox" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

NOx Control Options and Integration for US Coal Fired Boilers  

SciTech Connect

This is the sixteenth Quarterly Technical Report for DOE Cooperative Agreement No: DEFC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. During an unplanned outage, damage occurred to the electrochemical noise corrosion probes installed at the AEP Gavin plant; testing is expected to resume in August. The KEMCOP corrosion coupons were not affected by the unplanned outage; the coupons were removed and sent for analysis. BYU conducted a series of tests before the ISSR lab was relocated. Ammonia adsorption experiments provided clear evidence of the types of acidic sites present on catalyst surfaces. Data collected this quarter indicate that surface sulfation decreases Lewis acid site concentrations for all catalysts thus far studied, confirming that catalytic activity under commercial coal-based SCR conditions occurs primarily on Br{o}nsted acid sites and would be susceptible to basic impurities such as alkali and alkaline earth oxides, chlorides, and sulfates. SCR activity tests based on MS analysis showed that increasing sulfation generally increases NO reduction activity for both 0% and 1% vanadia catalysts. During this quarter, the slipstream reactor at Rockport operated for 720 hours on flue gas. Catalyst exposure time reached 4500 hours since installation. The reactor is out of service at the Rockport plant and plans are being made to move it to the Gadsden Plant. At Gadsden, modifications have begun in preparation for installation of the slipstream reactor next quarter.

Mike Bockelie; Kevin Davis; Temi Linjewile; Connie Senior; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker; Stan Harding

2004-06-30T23:59:59.000Z

202

Controlling diesel NOx & PM emissions using fuel components and enhanced aftertreatment techniques: developing the next generation emission control system.  

E-Print Network (OSTI)

??The following research thesis focuses on methods of controlling nitrogen oxides (NO(X)) and particulate matter (PM) emissions emitted from a low temperature diesel exhaust. This… (more)

Gill, Simaranjit Singh

2012-01-01T23:59:59.000Z

203

Synergies of PCCI-Type Combustion and Lean NOx Trap Catalysis for Diesel Engines  

Science Conference Proceedings (OSTI)

It is widely recognized that future NOx and PM emission targets for diesel engines cannot be met solely via advanced combustion over the full engine drive cycle. Therefore some combination of advanced combustion methodology with an aftertreatment technology will be required. In this study, NOx reduction, fuel efficiency, and regeneration performance of lean NOx trap (LNT) were evaluated for four operating conditions. The combustion approaches included baseline engine operation with and without EGR, two exhaust enrichment methods (post injection and delayed injection), and one advanced combustion mode to enable high efficiency clean combustion (HECC). A 1.7 liter 4-cylinder diesel engine was operated under five conditions, which represent key interest points for light-duty diesel operation. At the low load setting the exhaust temperature was too low to enable LNT regeneration and oxidation; however, HECC (low NOx) was achievable. HECC was also reached under more moderate loads and the exhaust temperatures were high enough to enable even further NOx reductions by the LNT. At high loads HECC becomes difficult but the LNT performance improves and acceptable regeneration can be met with enrichment methodologies.

Parks, II, James E [ORNL; Prikhodko, Vitaly Y [ORNL; Kass, Michael D [ORNL; Huff, Shean P [ORNL

2008-01-01T23:59:59.000Z

204

Feasibility of plasma aftertreatment for simultaneous control of NOx and particulates  

DOE Green Energy (OSTI)

Plasma reactors can be operated as a particulate trap or as a NOx converter. Particulate trapping in a plasma reactor can be accomplished by electrostatic precipitation. The soluble organic fraction of the trapped particulates can be utilized for the hydrocarbon-enhanced oxidation of NO to NO2 . The NO2 can then be used to non-thermally oxidize the carbon fraction of the particulates. The oxidation of the carbon fraction by NO2 can lead to reduction of NOx or backconversion of NO2 to NO. This paper examines the hydrocarbon and electrical energy density requirements in a plasma for maximum NOx conversion in both heavy-duty and light-duty diesel engine exhaust. The energy density required for complete oxidation of hydrocarbons is also examined and shown to be much greater than that required for maximum NOx conversion. The reaction of NO2 with carbon is shown to lead mainly to backconversion of NO2 to NO. These results suggest that the combination of the plasma with a catalyst will be required to reduce the NOx and oxidize the hydrocarbons. The plasma reactor can be operated occasionally in the arc mode to thermally oxidize the carbon fraction of the particulates.

Brusasco, R M; Merritt, B T; Penetrante, B; Pitz, W J; Vogtlin, G E

1999-08-24T23:59:59.000Z

205

SEGS VI Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

SEGS VI Solar Power Plant SEGS VI Solar Power Plant Jump to: navigation, search Name SEGS VI Solar Power Plant Facility SEGS VI Sector Solar Facility Type Concentrating Solar Power Developer Luz Location Kramer Junction, California Coordinates 34.9925°, -117.540833° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.9925,"lon":-117.540833,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

206

Stability of plutonium(VI) in WIPP brine  

Science Conference Proceedings (OSTI)

The redox stability of plutonium (VI) in WIPP brine was investigated by monitoring the oxidation state as a function of time using a combination of absorption spectrometry, radiochemical counting and filtration. Studies were performed with Pu-239 and Pu-238 in four WIPP brines at concentrations between 10{sup {minus}3} and 10{sup {minus}8} M for durations as long as two years. Two synthetic brines, Brine A and ERDA-6, and two underground collected brines, DH-36 and G-Seep, were used. The stability of Pu(VI) depended on the brine composition and the speciation of the plutonium in that brine. When carbonate was present, a Pu(VI)-carbonate complex was observed that was stable. In the absence of carbonate, Pu(VI) hydrolytic species predominated which had a wide range of stability in the brines investigated. The results reported will help define the speciation of plutonium in WIPP brine and hence its potential for migration.

Reed, D.T.; Okajima, S.

1993-12-01T23:59:59.000Z

207

DEVELOPMENT AND DEMONSTRATION OF NOVEL LOW-NOx BURNERS IN THE STEEL INDUSTRY  

Science Conference Proceedings (OSTI)

Gas Technology Institute (GTI), together with Hamworthy Peabody Combustion Incorporated (formerly Peabody Engineering Corporation), the University of Utah, and Far West Electrochemical have developed and demonstrated an innovative combustion system suitable for natural gas and coke-oven gas firing within the steel industry. The combustion system is a simple, low-cost, energy-efficient burner that can reduce NOx by more than 75%. The U.S. steel industry needs to address NOx control at its steelmaking facilities. A significant part of NOx emissions comes from gas-fired boilers. In steel plants, byproduct gases – blast furnace gas (BFG) and coke-oven gas (COG) – are widely used together with natural gas to fire furnaces and boilers. In steel plants, natural gas can be fired together with BFG and COG, but, typically, the addition of natural gas raises NOx emissions, which can already be high because of residual fuel-bound nitrogen in COG. The Project Team has applied its expertise in low-NOx burners to lower NOx levels for these applications by combining advanced burner geometry and combustion staging with control strategies tailored to mixtures of natural gas and byproduct fuel gases. These methods reduce all varieties of NOx – thermal NOx produced by high flame temperatures, prompt NOx produced by complex chain reactions involving radical hydrocarbon species and NOx from fuel-bound nitrogen compounds such as ammonia found in COG. The Project Team has expanded GTI’s highly successful low-NOx forced internal recirculation (FIR) burner, previously developed for natural gas-fired boilers, into facilities that utilize BFG and COG. For natural gas firing, these burners have been shown to reduce NOx emissions from typical uncontrolled levels of 80-100 vppm to single-digit levels (9 vppm). This is done without the energy efficiency penalties incurred by alternative NOx control methods, such as external flue gas recirculation (FGR), water injection, and selective non-catalytic reduction. The FIR burner was previously demonstrated on firetube and watertube boilers, and these units are still operating at several industrial and commercial boiler sites in sizes ranging from 2.5 to 60 million Btu/h. This report covers the development of an innovative combustion system suitable for natural gas or coke-oven gas firing within the steel industry. The prototype FIR burner was evaluated on a 20 million Btu/h watertube boiler. Acceptable burner performance was obtained when firing natural gas and simulated coke-oven gas doped with ammonia. The laboratory data reveals a direct relationship between NOx formation and the ammonia concentration in the fuel. In addition, NOx formation increases as the primary stoichiometric ratio (PSR) increases. Representative ammonia concentrations, as documented in the steel industry, ranged from 200 to 500 vppm. When the laboratory burner/boiler was operated with 500 vppm ammonia in the fuel, NOx emissions ranged from 50 to 75 vppm. This, conservatively, is 75% less than state-of-the-art burner performance. When the burner is operated with 200 vppm ammonia in the fuel, the corresponding NOx emissions would range from 30 to 45 vppm, 84% less than present burner technology. During field evaluation on a 174 million Btu/h industrial prototype burner both natural gas and actual COG from on-site generation were tested. Despite the elevated hydrogen cyanide and ammonia content in the COG throughout the test program, the FIR burner showed an improvement over baseline emissions. At full load; 167 million Btu/h, NOx emissions were relatively low at 169 vppm. This represents a 30% reduction compared to baseline emissions not accounting for the higher hydrogen cyanide content in the COG. CO emissions remained below 20 vppm and were stable across the firing range. This represents a 68% reduction compared to baseline CO emissions. When firing natural gas, emissions were stable as firing rate increased over the range. At low fire; 45 million Btu/h, NOx emissions where 33 vppm and increased at full load; 144 million Btu

Cygan, David

2006-12-28T23:59:59.000Z

208

Removal of NOx or its conversion into harmless gases by charcoals and composites of metal oxides  

SciTech Connect

In recent years, much attention has been devoted to environmental problems such as acid rain, photochemical smog and water pollution. In particular, NOx emissions from factories, auto mobiles, etc. in urban areas have become worse. To solve these problems on environmental pollution on a global scale, the use of activated charcoal to reduce air pollutants is increasing. However, the capability of wood-based charcoal materials is not yet fully known. The removal of NOx or its conversion into harmless gases such as N{sub 2} should be described. In this study, the adsorption of NO over wood charcoal or metal oxide-dispersed wood charcoal was investigated. In particular, carbonized wood powder of Sugi (Cryptomeria japonica D. Don) was used to study the effectivity of using these materials in adsorbing NOx. Since wood charcoal is chemically stable, metal oxide with the ability of photocatalysis was dispersed into wood charcoal to improve its adsorption and capability to use the light energy effectively.

Ishihara, Shigehisa; Furutsuka, Takeshi [Kyoto Univ. (Japan)

1996-12-31T23:59:59.000Z

209

Heavy-Duty Emissions Control: Plasma-Facilitated vs Reformer-Assisted Lean NOx Catalysis  

DOE Green Energy (OSTI)

Progress has been made in the control of combustion processes to limit the formation of environmentally harmful species, but lean burn vehicles, such as those powered by diesel engines used for the majority of commercial trucking and off-road applications, remain a major source of nitrogen oxides (NOx) and particulate matter (PM) emissions. Tighter control of the combustion process coupled with exhaust gas recirculation has brought emissions in line with 2004 targets worldwide. Additional modifications to the engine control system, somewhat limited NOx control, and PM filters will likely allow the 2007 limits to be met for the on-highway regulations for heavy-duty engines in the United States. Concern arises when the NOx emission limit of 0.2 g/bhphr set for the year 2010 is considered.

(1)Aardahl, C; (1)Rozmiarek, R; (1)Rappe, K; (1)Mendoza, D (2)Park, P

2003-08-24T23:59:59.000Z

210

SELECTIVE CATALYTIC REDUCTION OF DIESEL ENGINE NOX EMISSIONS USING ETHANOL AS A REDUCTANT  

DOE Green Energy (OSTI)

NOx emissions from a heavy-duty diesel engine were reduced by more than 90% and 80% utilizing a full-scale ethanol-SCR system for space velocities of 21000/h and 57000/h respectively. These results were achieved for catalyst temperatures between 360 and 400 C and for C1:NOx ratios of 4-6. The SCR process appears to rapidly convert ethanol to acetaldehyde, which subsequently slipped past the catalyst at appreciable levels at a space velocity of 57000/h. Ammonia and N2O were produced during conversion; the concentrations of each were higher for the low space velocity condition. However, the concentration of N2O did not exceed 10 ppm. In contrast to other catalyst technologies, NOx reduction appeared to be enhanced by initial catalyst aging, with the presumed mechanism being sulfate accumulation within the catalyst. A concept for utilizing ethanol (distilled from an E-diesel fuel) as the SCR reductant was demonstrated.

(1)Kass, M; Thomas, J; Lewis, S; Storey, J; Domingo, N; Graves, R (2) Panov, A

2003-08-24T23:59:59.000Z

211

Excellent Sulfur Resistance of Pt/BaO/CeO2 Lean NOx Trap Catalysts  

SciTech Connect

In this work, we investigated the NOx storage behavior of Pt-BaO/CeO2 catalysts, especially in the presence of SO2. High surface area CeO2 (~ 110 m2/g) with a rod like morphology was synthesized and used as a support. The Pt-BaO/CeO2 sample demonstrated slightly higher NOx conversion in the entire temperature range studied compared with Pt-BaO/?-Al2O3. More importantly, this ceria-based catalyst showed higher sulfur tolerance than the alumina-based one. The time of complete NOx uptake was maintained even after exposing the sample to ~3 g/L of SO2. The same sulfur exposure, on the other hand, eliminated the complete NOx uptake time on the alumina-based NOx storage catalysts. TEM images show no evidence of either Pt sintering or BaS phase formation during reductive de-sulfation up to 600°C on the ceria based catalyst, while the same process over the alumina-based catalyst resulted in both a significant increase in the average Pt cluster size and the agglomeration of a newly-formed BaS phase into large crystallites. XPS results revealed the presence of about 5 times more residual sulfur after reductive de-sulfation at 600°C on the alumina based catalysts in comparison with the ceria-based ones. All of these results strongly support that, besides their superior intrinsic NOx uptake properties, ceria based catalysts have a) much higher sulfur tolerance and b) excellent resistance against Pt sintering when they are compared to the widely used alumina based catalysts.

Kwak, Ja Hun; Kim, Do Heui; Szanyi, Janos; Peden, Charles HF

2008-10-21T23:59:59.000Z

212

NOx Reduction Assessment for Tangentially Fired Boilers Burning Powder River Basin Coal  

Science Conference Proceedings (OSTI)

The objective of this project was to assess the feasibility of and the most cost-effective approaches for reducing nitrous oxide (NOx) emissions for tangentially fired boilers burning Powder River Basin (PRB) coal in order to achieve average NOx emission rates of 0.15 lb/mmBtu (110 ppm), or lower. This is typically achievable by a deep level of combustion air staging, which may be possible if operational issues experienced during low combustion air operation (for example, slagging) can be mitigated. Acc...

2010-01-20T23:59:59.000Z

213

USE OF A DIESEL FUEL PROCESSOR FOR RAPID AND EFFICIENT REGENERATION OF SINGLE LEG NOX ADSORBER SYSTEMS  

DOE Green Energy (OSTI)

Lean NOx adsorber systems are one of the primary candidate technologies for the control of NOx from diesel engines to meet the 2007-2010 US emissions regulations, which require a 90% reduction of NOx from the 2004 regulations. Several of the technical challenges facing this technology are regeneration at low exhaust temperatures and the efficient use of diesel fuel to minimize fuel penalty. A diesel processor system has been developed and tested in a single leg NOx adsorber configuration on a diesel engine test stand. During NOx adsorber regeneration, this fuel processor system performs reduces the exhaust O2 level to zero and efficiently processes the diesel fuel to H2 and CO. Combined with a Nox adsorber catalyst, this system has demonstrated NOx reduction above 90%, regeneration of the NOx adsorber H2/CO pulses as short as 1 second and fuel penalties in the 3 to 4% range at 50% load. This fuel processor system can also be used to provide the desulfation cycle required with sulfur containing fuels as well as providing thermal management for PM filter regeneration.

Betta, R; Cizeron, J; Sheridan, D; Davis, T

2003-08-24T23:59:59.000Z

214

Nitrogen Isotopic Composition of Coal-Fired Power Plant NOx: Influence of Emission Controls and Implications for Global Emission  

E-Print Network (OSTI)

Nitrogen Isotopic Composition of Coal-Fired Power Plant NOx: Influence of Emission Controls from coal-fired power plants in the U.S. at typical operating conditions with and without the presence this, a novel method for collection and isotopic analysis of coal-fired stack NOx emission samples

Elliott, Emily M.

215

Soft-Sensor Modeling on NOx Emission of Power Station Boilers Based on Least Squares Support Vector Machines  

Science Conference Proceedings (OSTI)

The online monitoring for NOx emission of coal-fired boilers in power plants is more difficult to achieve. The soft-sensor technology of artificial neural network (ANN) method that was commonly used has not strong generalization ability, but support ... Keywords: NOx emission, support vector machines, soft sensor, modeling, power station boilers

Feng Lei-hua; Gui Wei-hua; Yang Feng

2009-10-01T23:59:59.000Z

216

Finite element modeling of Cr(VI) reduction by Shewanella oneidensis MR-1 employing the dual-enzyme kinetic model  

Science Conference Proceedings (OSTI)

Chromium (VI) (Cr(VI)) contamination of soil and groundwater is considered a major environmental concern. Bioreduction of Cr(VI) to chromium (III) (Cr(III)) can be considered an effective technology in remediating Cr(VI) contaminated sites. Among the ... Keywords: Bioreduction, Cr(VI), Dual-enzyme, Modeling

Md. Akram Hossain; Mahbub Alam; David Yonge; Prashanta Dutta

2005-12-01T23:59:59.000Z

217

Improved performance of NOx reduction by H2 and CO over a Pd/Al2O3 catalyst at low temperatures under lean-burn conditions  

E-Print Network (OSTI)

Improved performance of NOx reduction by H2 and CO over a Pd/Al2O3 catalyst at low temperatures 4 June 2004; accepted 6 June 2004 Available online 28 July 2004 Abstract Selective reduction of NOx of lean-burn vehicle exhaust. Macleod and Lambert [9] found that Pd/Al2O3 promotes lean NOx reduction

Gulari, Erdogan

218

Investigation Of Synergistic NOx Reduction From Cofiring And Air Staged Combustion Of Coal And Low Ash Dairy Biomass In A 30 Kilowatt Low NOx Furnace  

E-Print Network (OSTI)

Alternate, cost effective disposal methods must be developed for reducing phosphorous and nitrogen loading from land application of animal waste. Cofiring coal with animal waste, termed dairy biomass (DB), is the proposed thermo-chemical method to address this concern. DB is evaluated as a cofired fuel with Wyoming Powder River Basin (PRB) sub-bituminous coal in a small-scale 29 kW_(t) low NO_(x) burner (LNB) facility. Fuel properties, of PRB and DB revealed the following: a higher heating value of 29590 kJ/kg for dry ash free (DAF) coal and 21450 kJ/kg for DAF DB. A new method called Respiratory Quotient (RQ), defined as ratio of carbon dioxide moles to oxygen moles consumed in combustion, used widely in biology, was recently introduced to engineering literature to rank global warming potential (GWP) of fuels. A higher RQ means higher CO_(2) emission and higher GWP. PRB had an RQ of 0.90 and DB had an RQ of 0.92. For comparison purposes, methane has an RQ of 0.50. For unknown fuel composition, gas analyses can be adapted to estimate RQ values. The LNB was modified and cofiring experiments were performed at various equivalence ratios (phi) with pure coal and blends of PRB-DB. Standard emissions from solid fuel combustion were measured; then NO_(x) on a heat basis (g/GJ), fuel burnt fraction, and fuel nitrogen conversion percentage were estimated. The gas analyses yielded burnt fraction ranging from 89% to 100% and confirmed an RQ of 0.90 to 0.94, which is almost the same as the RQ based on fuel composition. At the 0.90 equivalence ratio, unstaged pure coal produced 653 ppm (377 g/GJ) of NOx. At the same equivalence ratio, a 90-10 PRB:LADB blended fuel produced 687 ppm (397 g/GJ) of NO_(x). By staging 20% of the total combustion air as tertiary air (which raised the equivalence ratio of the main burner to 1.12), NO_(x) was reduced to 545 ppm (304 g/GJ) for the 90-10 blended fuel. Analysis of variance showed that variances were statistically significant because of real differences between the independent variables (equivalence ratio, percent LADB in the fuel, and staging intensity).

Lawrence, Benjamin Daniel

2013-08-01T23:59:59.000Z

219

Formation of N2O and NO2 Across Conventional DeNOx SCR Catalysts  

Science Conference Proceedings (OSTI)

This project investigated the formation of N2O and NO2 across conventional DeNOx selective catalytic reduction (SCR) catalysts. N2O is a particularly strong greenhouse gas, and both N2O and NO2 may adversely impact downstream processes. Additional data related to their formation or reduction across SCR catalysts is desirable.

2009-12-15T23:59:59.000Z

220

A Numerical Investigation into the Anomalous Slight NOx Increase when Burning Biodiesel: A New (Old) Theory  

DOE Green Energy (OSTI)

Biodiesel is a notable alternative to petroleum derived diesel fuel because it comes from natural domestic sources and thus reduces dependence on diminishing petroleum fuel from foreign sources, it likely lowers lifecycle greenhouse gas emissions, and it lowers an engine's emission of most pollutants as compared to petroleum derived diesel. However, the use of biodiesel often slightly increases a diesel engine's emission of smog forming nitrogen oxides (NO{sub x}) relative to petroleum diesel. In this paper, previously proposed theories for this slight NOx increase are reviewed, including theories based on biodiesel's cetane number, which leads to differing amounts of charge preheating, and theories based on the fuel's bulk modulus, which affects injection timing. This paper proposes an additional theory for the slight NO{sub x} increase of biodiesel. Biodiesel typically contains more double bonded molecules than petroleum derived diesel. These double bonded molecules have a slightly higher adiabatic flame temperature, which leads to the increase in NOx production for biodiesel. Our theory was verified using numerical simulations to show a NOx increase, due to the double bonded molecules, that is consistent with observation. Further, the details of these numerical simulations show that NOx is predominantly due to the Zeldovich mechanism.

Ban-Weiss, G A; Chen, J Y; Buchholz, B A; Dibble, R W

2007-01-30T23:59:59.000Z

Note: This page contains sample records for the topic "vi sox nox" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

A Numerical Investigation into the Anomalous Slight NOx Increase when Burning Biodiesel: A New (Old) Theory  

SciTech Connect

Biodiesel is a notable alternative to petroleum derived diesel fuel because it comes from natural domestic sources and thus reduces dependence on diminishing petroleum fuel from foreign sources, it likely lowers lifecycle greenhouse gas emissions, and it lowers an engine's emission of most pollutants as compared to petroleum derived diesel. However, the use of biodiesel often slightly increases a diesel engine's emission of smog forming nitrogen oxides (NO{sub x}) relative to petroleum diesel. In this paper, previously proposed theories for this slight NOx increase are reviewed, including theories based on biodiesel's cetane number, which leads to differing amounts of charge preheating, and theories based on the fuel's bulk modulus, which affects injection timing. This paper proposes an additional theory for the slight NO{sub x} increase of biodiesel. Biodiesel typically contains more double bonded molecules than petroleum derived diesel. These double bonded molecules have a slightly higher adiabatic flame temperature, which leads to the increase in NOx production for biodiesel. Our theory was verified using numerical simulations to show a NOx increase, due to the double bonded molecules, that is consistent with observation. Further, the details of these numerical simulations show that NOx is predominantly due to the Zeldovich mechanism.

Ban-Weiss, G A; Chen, J Y; Buchholz, B A; Dibble, R W

2007-01-30T23:59:59.000Z

222

Experiment Study on Adsorption Characteristics of SO2, NOx by Biomass Chars  

Science Conference Proceedings (OSTI)

Different kinds of biomass chars of the wheat straws, rice straw, cotton straw collected at Nanjing, China, were pyrolysed in a fixed bed reactor at different temperatures and heating rates. The specific area and pore structure, micromorphology of different ... Keywords: Biomass char, Pyrolysis, Adsorption efficiency, SO2, NOx

Fei Lu; Ping Lu

2010-12-01T23:59:59.000Z

223

Cyclone Boiler Reburn NOx Control Improvements via Cyclone Design Improvements and Advanced Air Staging  

E-Print Network (OSTI)

Eastman Kodak owns three Babcock & Wilcox coal fired cyclone boilers and one Combustion Engineering pulverized coal boiler located at Kodak Park in Rochester, New York. Duke Energy Generation Services (DEGS) operates and maintains the steam and electric generation equipment for Kodak and has primary responsibility for related capital project development and execution. The Kodak plant is capable of generating approximately 1,900,000 pounds of steam and 130 MW’s of electrical power. To achieve the required level of NOx control, Kodak chose The Babcock & Wilcox (B&W) Company's, Natural Gas Reburn technology for the three cyclone boilers. The relatively low capital cost of the system and reasonable cost of natural gas in the mid 1990’s made Natural Gas Reburn an economic fit for the RACT requirements of 0.60#’s/Mmbtu NOx. The run up in natural gas prices since 2002 has increased the cost of NOx removed from ~ $2000/ton to ~$5000/ton based on fuel expense alone. In an effort to curtail the cost of control, Duke Energy Generations Services and Kodak implemented a series of projects that integrated Cyclone Design Improvements and Advancements in Air Staging along with ESP inlet flue modifications that resulted in decreasing the Natural Gas required for NOx control ~ 40% from baseline levels saving the plant several million dollars per year in fuel expense. Significant improvements in opacity and filterable PM were also realized by these changes.

Morabito, B.; Nee, B.; Goff, V.; Maringo, G.

2008-01-01T23:59:59.000Z

224

Evaluation of Oil-Fired Gas Turbine Selective Catalytic Reduction (SCR) NOx Control  

Science Conference Proceedings (OSTI)

Utilities are experiencing increasing regulatory pressure to equip oil-fired power generation units with selective catalytic reduction (SCR) control systems. This report addresses factors utilities may wish to evaluate when justifying an NOx reduction system other than SCR or ensuring successful implementation of an SCR system.

1990-12-17T23:59:59.000Z

225

State of Knowledge Assessment for Waterwall Wastage with Low NOx Burners  

Science Conference Proceedings (OSTI)

Many utilities have experienced high corrosion rates of waterwall tubing in coal-fired steam plants following retrofit of low NOx systems with separated over-fire air (SOFA) ports. This report provides information on the currently applied materials solutions and their costs.

1997-09-11T23:59:59.000Z

226

Chemistry of NOx on TiO2 surfaces studied by ambient pressure XPS:  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry of NOx on TiO2 surfaces studied by ambient pressure XPS: Chemistry of NOx on TiO2 surfaces studied by ambient pressure XPS: products, effect of UV irradiation, water and coadsorbed K+ Title Chemistry of NOx on TiO2 surfaces studied by ambient pressure XPS: products, effect of UV irradiation, water and coadsorbed K+ Publication Type Journal Article Year of Publication 2013 Authors Rosseler, Olivier, Mohamad Sleiman, Nahuel V. Montesinos, Andrey Shavorskiy, Valerie Keller, Nicolas Keller, Marta I. Litter, Hendrik Bluhm, Miquel Salmeron, and Hugo Destaillats Journal J. Phys. Chem. Lett. Volume 4 Start Page 536 Issue 3 Pagination 536-541 Date Published 01/2013 Abstract Self-cleaning surfaces containing TiO2 nanoparticles have been postulated to efficiently remove NOx from the atmosphere. However, UV irradiation of NOx adsorbed on TiO2 also was shown to form harmful gas-phase byproducts such as HONO and N2O that may limit their depolluting potential. Ambient pressure XPS was used to study surface and gas-phase species formed during adsorption of NO2 on TiO2 and subsequent UV irradiation at λ = 365 nm. It is shown here that NO3-, adsorbed on TiO2 as a byproduct of NO2 disproportionation, was quantitatively converted to surface NO2 and other reduced nitrogenated species under UV irradiation in the absence of moisture. When water vapor was present, a faster NO3- conversion occurred, leading to a net loss of surface-bound nitrogenated species. Strongly adsorbed NO3- in the vicinity of coadsorbed K+ cations was stable under UV light, leading to an efficient capture of nitrogenated compounds.

227

Plasma Catalysis for NOx Reduction from Light-Duty Diesel Vehicles  

SciTech Connect

The control of NOx (NO and NO2) emissions from so-called ‘lean-burn’ vehicle engines remains a challenge. In this program, we have been developing a novel plasma/catalyst technology for the remediation of NOx under lean (excess oxygen) conditions, specifically for compression ignition direct injection (CIDI) diesel engines that have significant fuel economy benefits over conventional stoichiometric gasoline engines. Program efforts included: (1) improving the catalyst and plasma reactor efficiencies for NOx reduction; (2) studies to reveal important details of the reaction mechanism(s) that can then guide our catalyst and reactor development efforts; (3) evaluating the performance of prototype systems on real engine exhaust; and (4) studies of the effects of the plasma on particulate matter (PM) in real diesel engine exhaust. Figure 1 is a conceptual schematic of a plasma/catalyst device, which also shows our current best understanding of the role of the various components of the overall device for reducing NOx from the exhaust of a CIDI engine. When this program was initiated, it was not at all clear what the plasma was doing and, as such, what class of catalyst materials might be expected to produce good results. With the understanding of the role of the plasma (as depicted in Figure 1) obtained in this program, faujasite zeolite-based catalysts were developed and shown to produce high activity for NOx reduction of plasma-treated exhaust in a temperature range expected for light-duty diesel engines. These materials are the subject of a pending patent application, and were recognized with a prestigious R&D100 Award in 2002. In addition, PNNL staff were awarded a Federal Laboratory Consortium (FLC) Award in 2003 “For Excellence in Technology Transfer”. The program also received the DOE’s 2001 CIDI Combustion and Emission Control Program Special Recognition Award and 2004 Advanced Combustion Engine R&D Special Recognition Award.

Barlow, Stephan E.; Kwak, Ja Hun; Peden, Charles HF; Szanyi, Janos; Tonkyn, Russell G.; Howden, Ken; Hoard, John W.; Cho, Byong; Schmieg, Steven J.; Brooks, David J.; Nunn, Steven; Davis, Patrick

2004-12-31T23:59:59.000Z

228

NOx reduction with the use of feedlot biomass as a reburn fuel  

E-Print Network (OSTI)

Coal fired power plants produce NOx at unacceptable levels. In order to control these emissions without major modifications to the burners, additional fuel called reburn fuel is fired under rich conditions (10-30 % by heat) after the coal burners. Additional air called overfire air (about 20 % of total air) is injected in order to complete combustion. Typically reburn fuel is natural gas (NG). From previous research at TAMU, it was found that firing feedlot biomass (FB) as reburn fuel lowers the NOx emission at significant levels compared to NG. The present research was conducted to determine the optimum operating conditions for the reduction of NOx. Experiments were performed in a small scale 29.3 kW (100,000 BTU/hr) reactor using low ash partially composted FB (LA PC FB) with equivalence ratio ranging from 1 to 1.15. The results of these experiments show that NOx levels can be reduced by as much as 90% - 95 % when firing pure LA PC FB and results are almost independent of. The reburn fuel was injected with normal air and then vitiated air (12.5 % O2); further the angles of reburn injector were set normal to the main gas flow and at 45-degrees upward. For LA PC FB no significant changes were observed; but high ash PC FB revealed better reductions with 45-degrees injector and vitiated air. This new technology has the potential to reduce NOx emissions in coal fired boilers located near cattle feedlots and also relieves the cattle industry of the waste.

Goughnour, Paul Gordon

2006-08-01T23:59:59.000Z

229

Complexation of Gluconate with Uranium(VI) in Acidic Solutions: Thermodynamic Study with Structural Analysis  

E-Print Network (OSTI)

of the thermodynamic quantities of uranium(VI)–carboxylateComplexation of Uranium(VI) by Gluconate Thermodynamic Studyacid (H A ) Hexavalent uranium as the UO 22+ ion was studied

Zhang, Zhicheng

2009-01-01T23:59:59.000Z

230

Examination of Uranium(VI) Leaching During Ligand Promoted Dissolution of Waste Tank Sludge Surrogates  

E-Print Network (OSTI)

Effects of phosphate on uranium(VI) adsorption to goethite-and ionic strength upon uranium(VI) sorption onto alumina asD. R. , Leslie, B. W. , Uranium sorption on a-alumina:

Powell, Brian A.

2008-01-01T23:59:59.000Z

231

Tracking the Sun VI: An Historical Summary of the Installed Price...  

NLE Websites -- All DOE Office Websites (Extended Search)

Tracking the Sun VI: An Historical Summary of the Installed Price of Photovoltaics in the United States from 1998 to 2012 Title Tracking the Sun VI: An Historical Summary of the...

232

Waste Coal Fines Reburn for NOx and Mercury Emission Reduction  

SciTech Connect

Injection of coal-water slurries (CWS) made with both waste coal and bituminous coal was tested for enhanced reduction of NO{sub x} and Hg emissions at the AES Beaver Valley plant near Monaca, PA. Under this project, Breen Energy Solutions (BES) conducted field experiments on the these emission reduction technologies by mixing coal fines and/or pulverized coal, urea and water to form slurry, then injecting the slurry in the upper furnace region of a coal-fired boiler. The main focus of this project was use of waste coal fines as the carbon source; however, testing was also conducted using pulverized coal in conjunction with or instead of waste coal fines for conversion efficiency and economic comparisons. The host site for this research and development project was Unit No.2 at AES Beaver Valley cogeneration station. Unit No.2 is a 35 MW Babcock & Wilcox (B&W) front-wall fired boiler that burns eastern bituminous coal. It has low NO{sub x} burners, overfire air ports and a urea-based selective non-catalytic reduction (SNCR) system for NO{sub x} control. The back-end clean-up system includes a rotating mechanical ash particulate removal and electrostatic precipitator (ESP) and wet flue gas desulfurization (FGD) scrubber. Coal slurry injection was expected to help reduce NOx emissions in two ways: (1) Via fuel-lean reburning when the slurry is injected above the combustion zone. (2) Via enhanced SNCR reduction when urea is incorporated into the slurry. The mercury control process under research uses carbon/water slurry injection to produce reactive carbon in-situ in the upper furnace, promoting the oxidation of elemental mercury in flue gas from coal-fired power boilers. By controlling the water content of the slurry below the stoichiometric requirement for complete gasification, water activated carbon (WAC) can be generated in-situ in the upper furnace. As little as 1-2% coal/water slurry (heat input basis) can be injected and generate sufficient WAC for mercury capture. During July, August, and September 2007, BES designed, procured, installed, and tested the slurry injection system at Beaver Valley. Slurry production was performed by Penn State University using equipment that was moved from campus to the Beaver Valley site. Waste coal fines were procured from Headwaters Inc. and transported to the site in Super Sacks. In addition, bituminous coal was pulverized at Penn State and trucked to the site in 55-gallon drums. This system was operated for three weeks during August and September 2007. NO{sub x} emission data were obtained using the plant CEM system. Hg measurements were taken using EPA Method 30B (Sorbent Trap method) both downstream of the electrostatic precipitator and in the stack. Ohio Lumex Company was on site to provide rapid Hg analysis on the sorbent traps during the tests. Key results from these tests are: (1) Coal Fines reburn alone reduced NO{sub x} emissions by 0-10% with up to 4% heat input from the CWS. However, the NO{sub x} reduction was accompanied by higher CO emissions. The higher CO limited our ability to try higher reburn rates for further NO{sub x} reduction. (2) Coal Fines reburn with Urea (Carbon enhanced SNCR) decreased NO{sub x} emissions by an additional 30% compared to Urea injection only. (3) Coal slurry injection did not change Hg capture across the ESP at full load with an inlet temperature of 400-430 F. The Hg capture in the ESP averaged 40%, with or without slurry injection; low mercury particulate capture is normally expected across a higher temperature ESP because any oxidized mercury is thought to desorb from the particulate at ESP temperatures above 250 F. (4) Coal slurry injection with halogen salts added to the mixing tank increased the Hg capture in the ESP to 60%. This significant incremental mercury reduction is important to improved mercury capture with hot-side ESP operation and wherever hindrance from sulfur oxides limit mercury reduction, because the higher temperature is above sulfur oxide dew point interference.

Stephen Johnson; Chetan Chothani; Bernard Breen

2008-04-30T23:59:59.000Z

233

Nitrate Enhanced Microbial Cr(VI) Reduction-Final Report  

Science Conference Proceedings (OSTI)

A major challenge for the bioremediation of radionuclides (i.e., uranium, technetium) and metals (i.e., Cr(VI), Hg) is the co-occurrence of nitrate as it can inhibit metal transformation. Denitrification (nitrate reduction to dinitrogen gas) is considered the most important ecological process. For many metal and metalloid reducing bacteria, however, ammonia is the end product through respiratory nitrate reduction (RNRA). The focus of this work was to determine how RNRA impacts Cr(VI) transformation. The goal was to elucidate the specific mechanism(s) that limits Cr(VI) reduction in the presence of nitrate and to use this information to develop strategies that enhance Cr(VI) reduction (and thus detoxification). Our central hypothesis is that nitrate impacts the biotransformation of metals and metalloids in three ways 1) as a competitive alternative electron acceptor (inhibiting transformation), 2) as a co-metabolite (i.e., concomitant reduction, stimulating transformation), and 3) as an inducer of specific proteins and pathways involved in oxidation/reduction reactions (stimulating transformation). We have identified three model organisms, Geobacter metallireducens (mechanism 1), Sulfurospirillum barnesii, (mechasism 2), and Desulfovibrio desulfuricans (mechanisms 3). Our specific aims were to 1) investigate the role of Cr(VI) concentration on the kinetics of both growth and reduction of nitrate, nitrite, and Cr(VI) in these three organisms; 2) develop a profile of bacterial enzymes involved in nitrate transformation (e.g., oxidoreductases) using a proteomic approach; 3) investigate the function of periplasmic nitrite reductase (Nrf) as a chromate reductase; and 4) develop a strategy to maximize microbial chromium reduction in the presence of nitrate. We found that growth on nitrate by G. metallireducens was inhibited by Cr(VI). Over 240 proteins were identified by LC/MS-MS. Redox active proteins, outer membrane heavy metal efflux proteins, and chemotaxis sensory proteins (Gmet_2478 and Gmet_1641) were up-regulated with exposure to Cr(VI). A nine-heme cytochrome C was purified that could reduce nitrite and could be oxidized by Cr(VI). For D. desulfuricans, we found that confirmed that Cr(VI) induced a prolonged lag period when Cr(VI) was reduced. Over three hundred proteins were unequivocally identified by LC/MS-MS and a significant number of down-regulated proteins for which the levels were changed >2 fold compared to control. Sulfite reductase levels were similar, however, nitrate and nitrite reductase were down-regulated. The supernatant of spent cultures was found to contain a filterable, heat stable compound that rapidly reduced Cr(VI). In addition, desulfoviridin was purified from nitrate grown cells and shown to have nitrite reductase activity that was inhibited by Cr(VI). For S. barnesii, periplasmic nitrate reductase (Nap), nitrite reductase (Nrf), and the metalloid reductase (Rar) were purified and characterized. The supernatant of spent cultures was also found to contain a filterable, heat stable compound that rapidly reduced Cr(VI) but that Rar also reduced Cr(VI). Our results from specific aims 1 through 3 indicate that for G. metallireducens, Cr(VI) inhibits nitrate respiration as it oxidizes cytochromes involved in nitrate respiration. Iron reduction is apparently not affected and the inhibitory affects of Cr(VI) may be attenuated by the addition of sufficient Fe(III) to generate Fe(II) that abiotically reduces the chromium. For S. barnesii, although the enzyme assays indicate that the components of the respiratory pathway for nitrate (e.g. Nap and Nrf) are inhibited by chromate, the organism has a mechanism to prevent this from actually occurring. Our current hypothesis is that the non-specific metalloid reductase (Rar) is providing resistance by reducing the Cr(VI). The strategy here would be to enhance its growth and metabolism in the natural setting. Lactate is a suitable electron donor for S. barnesii but other donors are possible. Although the version of the Phylochip used for monitoring the microb

John F. Stolz

2011-06-15T23:59:59.000Z

234

Energy Savings and NOx Emissions Reduction Potential from the 2012 Federal Legislation to Phase Out Incandescent Lamps in Texas  

E-Print Network (OSTI)

This report provides detailed information about the potential savings from the 2012 Federal Legislation to phase out incandescent lamps and the NOx emissions reduction from the replacement of incandescent bulbs with Compact Fluorescent Lamps (CFL). In Texas, this analysis includes the savings estimates from both the annual and Ozone Season Day (OSD) NOx reductions. The NOx emissions reduction in this analysis are calculated using estimated emissions factors for 2007 from the US Environmental Protection Agency (US EPA) eGRID database, which had been specially prepared for this purpose.

Liu, Zi; Baltazar, Juan Carlos; Haberl, Jeff; Soman, Rohit

2010-03-01T23:59:59.000Z

235

Greenhouse gas emissions trading in U.S. States: observations and lessons from the OTC NOx Budget Program  

Science Conference Proceedings (OSTI)

A number of U.S. states are considering market-based policies to reduce emissions of greenhouse gases (GHGs). The experience gained from emissions trading for sulfur dioxide and oxides of nitrogen (NOx) offers a useful body of information and data to draw on to design a GHG emissions trading system. This report examines NOx trading under the Ozone Transport Commission (OTC) NOx Budget Program, which resulted principally from the leadership, decisions, and actions by a group of states, ultimately becoming the first multilateral cap-and-trade system for emissions of air pollutants. 72 refs.

Andrew Aulisi; Alexander E. Farrell; Jonathan Pershing; Stacy VanDeveer [World Resources Institute, Washington, DC (United States). Sustainable Enterprise Program

2005-07-01T23:59:59.000Z

236

Contribution of Extracellular Polymeric Substances from Shewanella sp. HRCR-1 Biofilms to U(VI) Immobilization  

Science Conference Proceedings (OSTI)

The goal of this study was to quantify the contribution of extracellular polymeric substances (EPS) in U(VI) immobilization by Shewanella sp. HRCR-1. Through comparison of U(VI) immobilization using cells with bound EPS (bEPS) and cells without EPS, we showed that i) bEPS from Shewanella sp. HRCR-1 biofilms contributed significantly to U(VI) immobilization, especially at low initial U(VI) concentrations, through both sorption and reduction; ii) bEPS could be considered as a functional extension of the cells for U(VI) immobilization and they likely play more important roles at initial U(VI) concentrations; and iii) U(VI) reduction efficiency was found to be dependent upon initial U(VI) concentration and the efficiency decreased at lower concentrations. To quantify relative contribution of sorption and reduction in U(VI) immobilization by EPS fractions, we isolated loosely associated EPS (laEPS) and bEPS from Shewanella sp. HRCR-1 biofilms grown in a hollow fiber membrane biofilm reactor and tested their reactivity with U(V). We found that, when in reduced form, the isolated cell-free EPS fractions could reduce U(VI). Polysaccharides in the EPS likely contributed to U(VI) sorption and dominated reactivity of laEPS while redox active components (e.g., outer membrane c-type cytochromes), especially in bEPS, might facilitate U(VI) reduction.

Cao, Bin; Ahmed, B.; Kennedy, David W.; Wang, Zheming; Shi, Liang; Marshall, Matthew J.; Fredrickson, Jim K.; Isern, Nancy G.; Majors, Paul D.; Beyenal, Haluk

2011-06-05T23:59:59.000Z

237

HYDROGEN GENERATION FROM PLASMATRON REFORMERS: A PROMISING TECHNOLOGY FOR NOX ADSORBER REGENERATION AND OTHER AUTOMOTIVE APPLICATIONS  

DOE Green Energy (OSTI)

Plasmatron reformers are being developed at MIT and ArvinMeritor [1]. In these reformers a special low power electrical discharge is used to promote partial oxidation conversion of hydrocarbon fuels into hydrogen and CO. The partial oxidation reaction of this very fuel rich mixture is difficult to initiate. The plasmatron provides continuous enhanced volume initiation. To minimize electrode erosion and electrical power requirements, a low current, high voltage discharge with wide area electrodes is used. The reformers operate at or slightly above atmospheric pressure. Plasmatron reformers provide the advantages of rapid startup and transient response; efficient conversion of the fuel to hydrogen rich gas; compact size; relaxation or elimination of reformer catalyst requirements; and capability to process difficult to reform fuels, such as diesel and bio-oils. These advantages facilitate use of onboard hydrogen-generation technology for diesel exhaust after-treatment. Plasma-enhanced reformer technology can provide substantial conversion even without the use of a catalyst. Recent progress includes a substantial decrease in electrical power consumption (to about 200 W), increased flow rate (above 1 g/s of diesel fuel corresponding to approximately 40 kW of chemical energy), soot suppression and improvements in other operational features.. Plasmatron reformer technology has been evaluated for regeneration of NOx adsorber after-treatment systems. At ArvinMeritor tests were performed on a dual-leg NOx adsorber system using a Cummins 8.3L diesel engine both in a test cell and on a vehicle. A NOx adsorber system was tested using the plasmatron reformer as a regenerator and without the reformer i.e., with straight diesel fuel based regeneration as the baseline case. The plasmatron reformer was shown to improve NOx regeneration significantly compared to the baseline diesel case. The net result of these initial tests was a significant decrease in fuel penalty, roughly 50% at moderate adsorber temperatures. This fuel penalty improvement is accompanied by a dramatic drop in slipped hydrocarbon emissions, which decreased by 90% or more. Significant advantages are demonstrated across a wide range of engine conditions and temperatures. The study also indicated the potential to regenerate NOx adsorbers at low temperatures where diesel fuel based regeneration is not effective, such as those typical of idle conditions. Two vehicles, a bus and a light duty truck, have been equipped for plasmatron reformer NOx adsorber regeneration tests.

Bromberg, L.; Crane, S; Rabinovich, A.; Kong, Y; Cohn, D; Heywood, J; Alexeev, N.; Samokhin, A.

2003-08-24T23:59:59.000Z

238

A Fundamental Consideration on NOx Adsorber Technology for DI Diesel Application  

DOE Green Energy (OSTI)

Diesel engines are far more efficient than gasoline engines of comparable size, and emit less greenhouse gases that have been implicated in global warming. In 2000, the US EPA proposed very stringent emissions standards to be introduced in 2007 along with low sulfur (< 15 ppm) diesel fuel. The California Air Resource Board (CARB) has also established the principle that future diesel fueled vehicles should meet the same low emissions standards as gasoline fueled vehicles and the EPA followed suit with its Tier II emissions regulation. Achieving such low emissions cannot be done through engine development and fuel reformulation alone, and requires application of NOx and particulate matter (PM) aftertreatment control devices. There is a widespread consensus that NOx adsorbers and particulate filter are required in order for diesel engines to meet the 2007 emissions regulations for NOx and PM. In this paper, the key exhaust characteristics from an advanced diesel engine are reviewed. Development of the NOx adsorber technology is discussed. Spectroscopic techniques are applied to understand the underlying chemical reactions over the catalyst surface during NOx trapping and regeneration periods. In-situ surface probes are useful in providing not only thermodynamic and kinetics information required for model development but also a fundamental understanding of storage capacity and degradation mechanisms. The distribution of various nitration/sulfation species is related to surface basicity. Surface displacement reactions of carbonates also play roles in affecting the trapping capability of NOx adsorbers. When ultralow-S fuel is used as a reductant during the regeneration, sulfur induced performance degradation is still observed in an aged catalyst. Other possible sources related to catalyst deactivation include incomplete reduction of surface nitration, coke formation derived from incomplete hydrocarbon burning, and lubricant formulations. Sulfur management and the direction of future work for the successful implementation of such integrated engine and aftertreatment technology are discussed. SAE Paper SAE-2002-01-2889 {copyright} 2002 SAE International. This paper is published on this website with permission from SAE International. As a user of this website, you are permitted to view this paper on-line, download this pdf file and print one copy of this paper at no cost for your use only. The downloaded pdf file and printout of this SAE paper may not be copied, distributed or forwarded to others or for the use of others.

Fang, Howard L.; Huang, Shyan C.; Yu, Robert C. (Cummins, Inc.); Wan, C. Z. (Engelhard Corp.); Howden, Ken (U.S. Dept. of Energy)

2002-10-01T23:59:59.000Z

239

The Effect of Coal Chlorine on Waterwall Wastage in Coal-Fired Boilers with Staged Low-NOx Combustion Systems  

Science Conference Proceedings (OSTI)

Several boilers retrofitted with nitrogen oxides reducing (low-NOx) burner systems have experienced severe waterwall wastage. In this report, the link between chlorine in coal and accelerated wastage will be explored.

2002-10-09T23:59:59.000Z

240

Development of the High-Pressure Direct-Injected, Ultra Low-NOx Natural Gas Engine: Final Report  

DOE Green Energy (OSTI)

Subcontractor report details work done by Cummins and Westport Innovations to develop a heavy-duty, low-NOx, high-pressure direct-injection natural gas engine for the Next Generation Natural Gas Vehicle activity.

Duggal, V. K.; Lyford-Pike, E. J.; Wright, J. F.; Dunn, M.; Goudie, D.; Munshi, S.

2004-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "vi sox nox" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Heavy-duty diesel vehicle Nox? aftertreatment in 2010 : the infrastructure and compliance challenges of urea-SCR  

E-Print Network (OSTI)

Increasingly stringent heavy-duty vehicle emission regulations are prompting the use of PM and NOx aftertreatment systems in the US, the EU and Japan. In the US, the EPA Highway Diesel Rule, which will be fully implemented ...

Bodek, Kristian M

2008-01-01T23:59:59.000Z

242

Development of a Low NOx Burner System for Coal Fired Power Plants Using Coal and Biomass Blends  

E-Print Network (OSTI)

The low NOx burner (LNB) is the most cost effective technology used in coal-fired power plants to reduce NOx. Conventional (unstaged) burners use primary air for transporting particles and swirling secondary air to create recirculation of hot gases. LNB uses staged air (dividing total air into primary, secondary and tertiary air) to control fuel bound nitrogen from mixing early and oxidizing to NOx; it can also limit thermal NOx by reducing peak flame temperatures. Previous research at Texas A&M University (TAMU) demonstrated that cofiring coal with feedlot biomass (FB) in conventional burners produced lower or similar levels of NOx but increased CO. The present research deals with i) construction of a small scale 29.31 kW (100,000 BTU/hr) LNB facility, ii) evaluation of firing Wyoming (WYO) coal as the base case coal and cofiring WYO and dairy biomass (DB) blends, and iii) evaluating the effects of staging on NOx and CO. Ultimate and Proximate analysis revealed that WYO and low ash, partially composted, dairy biomass (LA-PC-DB-SepS) had the following heat values and empirical formulas: CH0.6992N0.0122O0.1822S0.00217 and CH_1.2554N_0.0470O_0.3965S_0.00457. The WYO contained 3.10 kg of Ash/GJ, 15.66 kg of VM/GJ, 0.36 kg of N/GJ, and 6.21 kg of O/GJ while LA-PC-DB-SepS contained 11.57 kg of Ash/GJ, 36.50 kg of VM/GJ, 1.50 kg of N/GJ, and 14.48 kg of O/GJ. The construction of a LNB nozzle capable of providing primary, swirled secondary and swirled tertiary air for staging was completed. The reactor provides a maximum residence time of 1.8 seconds under hot flow conditions. WYO and DB were blended on a mass basis for the following blends: 95:5, 90:10, 85:15, and 80:20. Results from firing pure WYO showed that air staging caused a slight decrease of NOx in lean regions (equivalence ratio, greater than or equal to 1.0) but an increase of CO in rich regions (=1.2). For unstaged combustion, cofiring resulted in most fuel blends showing similar NOx emissions to WYO. Staged cofiring resulted in a 12% NOx increase in rich regions while producing similar to slightly lower amounts of NOx in lean regions. One conclusion is that there exists a strong inverse relationship between NOx and CO emissions.

Gomez, Patsky O.

2009-05-01T23:59:59.000Z

243

Calculation of NOx Emissions Reductions From Energy Efficient Residential Building Construction in Texas  

E-Print Network (OSTI)

Four areas in Texas have been designated by the United States Environmental Protection Agency (EPA) as non-attainment areas because ozone pollution levels exceed the National Ambient Air Quality Standard (NAAQS) maximum allowable limits. These areas face severe sanctions if attainment is not reached by 2007. This paper provides an overview of the procedures that have been developed and used to calculate the electricity savings and NOx reductions from code-compliant residential construction in non-attainment and affected counties. This paper reviews the calculation methods and presents results that show the 2003 annual electricity and natural gas savings and NOx reductions from implementation of the 2000 IECC to single-family and multi-family residences in 2003, which use a code-tracable DOE-2 simulation. A discussion of the development of a web-based emissions reductions calculator is also discussed.

Haberl, J. S.; Culp, C.; Gilman, D.; Yazdani, B.; Fitzpatrick, T.; Muns, S.

2006-05-23T23:59:59.000Z

244

Calculation of Nox Emissions Reductions from Energy Efficient Residential Building Construction in Texas  

E-Print Network (OSTI)

Four areas in Texas have been designated by the United States Environmental Protection Agency (EPA) as non-attainment areas because ozone pollution levels exceed the National Ambient Air Quality Standard (NAAQS) maximum allowable limits. These areas face severe sanctions if attainment is not reached by 2007. This paper provides an overview of the procedures that have been developed and used to calculate the electricity savings and NOx reductions from code-compliant residential construction in non-attainment and affected counties. This paper reviews the calculation methods and presents results that show the 2003 annual electricity and natural gas savings and NOx reductions from implementation of the 2000 IECC to single-family and multi-family residences in 2003, which use a code-traceable DOE-2 simulation. A discussion of the development of a web-based emissions reductions calculator is also discussed.

Haberl, J.; Culp, C.; Gilman, D.; Baltazar-Cervantes, J. C.; Yazdani, B.; Fitzpatrick, T.; Muns, S.; Verdict, M.

2004-01-01T23:59:59.000Z

245

Simulation of catalytic oxidation and selective catalytic NOx reduction in lean-exhaust hybrid vehicles  

DOE Green Energy (OSTI)

We utilize physically-based models for diesel exhaust catalytic oxidation and urea-based selective catalytic NOx reduction to study their impact on drive cycle performance of hypothetical light-duty diesel powered hybrid vehicles. The models have been implemented as highly flexible SIMULINK block modules that can be used to study multiple engine-aftertreatment system configurations. The parameters of the NOx reduction model have been adjusted to reflect the characteristics of Cu-zeolite catalysts, which are of widespread current interest. We demonstrate application of these models using the Powertrain System Analysis Toolkit (PSAT) software for vehicle simulations, along with a previously published methodology that accounts for emissions and temperature transients in the engine exhaust. Our results illustrate the potential impact of DOC and SCR interactions for lean hybrid electric and plug-in hybrid electric vehicles.

Gao, Zhiming [ORNL; Daw, C Stuart [ORNL; Chakravarthy, Veerathu K [ORNL

2012-01-01T23:59:59.000Z

246

DEVELOPMENT AND DEMONSTRATION OF NOVEL LOW-NOx BURNERS IN THE STEEL INDUSTRY  

DOE Green Energy (OSTI)

During field evaluation on a 174 million Btu/h industrial prototype burner both natural gas and actual COG from on-site generation were tested. Despite the elevated hydrogen cyanide and ammonia content in the COG throughout the test program, the FIR burner showed an improvement over baseline emissions. At full load; 167 million Btu/h, NOx emissions were relatively low at 169 vppm. This represents a 30% reduction compared to baseline emissions not accounting for the higher hydrogen cyanide content in the COG. CO emissions remained below 20 vppm and were stable across the firing range. This represents a 68% reduction compared to baseline CO emissions. When firing natural gas, emissions were stable as firing rate increased over the range. At low fire; 45 million Btu/h, NOx emissions where 33 vppm and increased at full load; 144 million Btu

Cygan, David

2006-12-28T23:59:59.000Z

247

Industry-Utility Collaborative Efforts to Address Environmental Concerns- Dispatching for Localized NOx Reduction  

E-Print Network (OSTI)

Environmental pressures are causing many companies to rethink how they do business. Like many other areas of the country, the Gulf Coast petrochemical corridors, including those served by Gulf States Utilities, are classified as non attainment for ozone. Some people believe this classification leads to a bad environmental image. Such an image stifles further economic development and forces existing industries to renovate or close. Sixty four industrial plants located near Baton Rouge were ordered by the Louisiana Department of Environmental Quality to submit both short-term plans, which will be enforced this summer, and long- term plans to reduce ozone precursors. This paper describes a collaborative approach industry and the utility can use to help meet these objectives. The approach involves dispatching NOx-producing equipment (e.g., boilers and gas turbines) to achieve minimum NOx production during ozone alert periods and purchasing supplemental power under a special tariff to replace any loss in self-generated power.

Hamilton, D. E.; Helmick, R. W.; Lambert, W. J.

1991-06-01T23:59:59.000Z

248

DIESEL REFORMERS FOR LEAN NOX TRAP REGENERATION AND OTHER ON-BOARD HYDROGEN APPLICATIONS  

DOE Green Energy (OSTI)

Many solutions to meeting the 2007 and 2010 diesel emissions requirements have been suggested. On board production of hydrogen for in-cylinder combustion and exhaust after-treatment provide promising opportunities for meeting those requirements. Other benefits may include using syngas to rapidly heat up exhaust after-treatment catalysts during engine startup. HydrogenSource's development of a catalytic partial oxidation reformer for generating hydrogen from ultra-low sulfur diesel fuel is presented. The system can operate on engine exhaust and diesel fuel with no water tank. Test data for hydrogen regeneration of a lean NOx trap is presented showing 90% NOx conversion at temperatures as low as 150 degrees C and 99% conversion at 300 degrees C. Finally, additional efforts required to fully understand the benefits and commercial challenges of this technology are discussed.

Mauss, M; Wnuck, W

2003-08-24T23:59:59.000Z

249

Impacts on Regenerated Catalyst on Mercury Oxidation, DeNOX Activity, and SO2-to-SO3 Conversion - Addendum  

Science Conference Proceedings (OSTI)

This report includes NOX activity, SO2 conversion, and chemical analysis bench-scale results for 24 different catalyst samples. The sample set analyzed in the test program represents one of the largest ever assembled constituting both regenerated and new catalyst exposed at full scale. This report is an addendum to EPRI Report 1012657, Impacts on Regenerated Catalyst on Mercury Oxidation, DeNOX Activity, and SO2-to-SO3 Conversion.

2007-07-19T23:59:59.000Z

250

Development of METHANE de-NOX Reburn Process for Wood Waste and Biomass Fired Stoker Boilers - Final Report - METHANE de-NOX Reburn Technology Manual  

Science Conference Proceedings (OSTI)

The overall objective of this project was to demonstrate the effectiveness of the METHANE de-NOX® (MdN) Reburn process in the Forest Products Industry (FPI) to provide more efficient use of wood and sludge waste (biosolids) combustion for both energy generation and emissions reduction (specifically from nitrogen oxides (NOx)) and to promote the transfer of the technology to the wide range of wood waste-fired stoker boilers populating the FPI. This document, MdN Reburn Commercial Technology Manual, was prepared to be a resource to promote technology transfer and commercialization activities of MdN in the industry and to assist potential users understand its application and installation requirements. The Manual includes a compilation of MdN commercial design data from four different stoker boiler designs that were baseline tested as part of the development effort. Design information in the Manual include boiler CFD model studies, process design protocols, engineering data sheets and commercial installation drawings. Each design package is unique and implemented in a manner to meet specific mill requirements.

J. Rabovitser; B. Bryan; S. Wohadlo; S. Nester; J. Vaught; M. Tartan (Gas Technology Institute) L. Szymanski; R. Glickert (ESA Environmental Solutions)

2007-12-31T23:59:59.000Z

251

Catalyst Management Handbook for Coal-Fired Selective Catalytic Reduction NOx Control  

Science Conference Proceedings (OSTI)

This report provides guidelines for operators of coal-fired power plants equipped with selective catalytic reduction (SCR) NOx-control processes. These control processes define when to exchange or replace catalyst, while minimizing power-production cost impacts from SCR process equipment.BackgroundSelective catalytic reduction (SCR) is deployed on most major coal-fired generating units in the United States. Over 225 units, totaling 140 GW of ...

2012-12-14T23:59:59.000Z

252

Fuel Nozzle Flow Testing Guideline for Gas Turbine Low-NOx Combustion Systems  

Science Conference Proceedings (OSTI)

The evolution of dry low-NOx (DLN) gas turbine combustion systems capable of achieving single-digit emission levels requires precise control of the fuel/air ratio within each combustor. The primary means of maintaining the required fuel/air ratio control is through flow testing designed to ensure even distribution of fuel to both individual fuel nozzles and combustion chambers around the gas turbine. This report provides fuel nozzle flow testing guidelines for advanced gas turbine ...

2012-12-31T23:59:59.000Z

253

Reduction of NOx Emissions in Alamo Area Council of Government Projects  

E-Print Network (OSTI)

This reports summarizes the electricity, natural gas and NOx emissions reductions from retrofit measures reported as part of the AACOG emissions reduction effort. The electricity and natural gas savings were collected by the Brooks Energy and Sustainability Laboratory (BESL), and reported to the Energy Systems Laboratory (ESL). The ESL then assembled these data for processing by eGRID. The results from BESL’s data collection efforts and the eGRID analysis are contained in this report.

Haberl, J. S.; Zhu, Y.; Im, P.

2004-01-01T23:59:59.000Z

254

Cold-Start Emissions Control in Hybrid Vehicles Equipped with a Passive Hydrocarbon and NOx Adsorber  

SciTech Connect

We presents a study of the potential for using low-cost sorbent materials (i.e. Ag-Beta-zeolite and Fe-Mn-Zr transition metal oxides) to temporally trap hydrocarbons (HCs) and nitrogen oxides (NOx) emissions during cold-start periods in HEVs and PHEVs over transient driving cycles. The adsorption behavior of the candidate sorbent materials was characterized in our laboratory flow reactor experiments. The parameters were then used to develop a one-dimensional, transient device model which has been implemented in the Powertrain Systems Analysis Toolkit (PSAT) to simulate a passive HC and NOx absorber device. The results show that such an absorber can substantially reduce HC and NOx emissions by storing them when the 3-way catalyst is too cool to function and re-releasing them when the exhaust temperature rises. These improved emission controls do not involve any penalty in fuel consumption or require any change in engine operation. The cost of these sorbent materials is also much less than conventional 3-way catalysts.

Gao, Zhiming [ORNL; Kim, Miyoung [ORNL; Choi, Jae-Soon [ORNL; Daw, C Stuart [ORNL; Parks, II, James E [ORNL; Smith, David E [ORNL

2012-01-01T23:59:59.000Z

255

High-Efficiency, High-Capacity, Low-NOx Aluminum Melting Using Oxygen-Enhanced Combustion  

SciTech Connect

This report describes the development and application of a novel oxygen enhanced combustion system with an integrated vacuum swing adsorption (VSA) oxygen supply providing efficient, low NOx melting in secondary aluminum furnaces. The mainstay of the combustion system is a novel air-oxy-natural gas burner that achieves high productivity and energy efficiency with low NOx emissions through advanced mixing concepts and the use of separate high- and low-purity oxidizer streams. The technology was installed on a reverberatory, secondary aluminum melting plant at the Wabash Aluminum Alloy's Syracuse, N.Y. plant, where it is currently in operation. Field testing gave evidence that the new burner technology meets the stringent NOx emissions target of 0.323 lb NO2/ton aluminum, thus complying with regulations promulgated by Southern California's South Coast Air Quality Management District (SCAQMD). Test results also indicated that the burner technology exceeded fuel efficiency and melting capacity goals. Economic modeling showed that the novel air-oxy-fuel (ADF) combustion technology provides a substantial increase in furnace profitability relative to air-fuel operation. Model results also suggest favorable economics for the air-oxy-fuel technology relative to a full oxy-fuel conversion of the furnace.

D'Agostini, M.D.

2000-06-02T23:59:59.000Z

256

Modeling Species Inhibition of NO Oxidation in Urea-SCR Catalysts for Diesel Engine NOx Control  

DOE Green Energy (OSTI)

Urea-selective catalytic reduction (SCR) catalysts are regarded as the leading NOx aftertreatment technology to meet the 2010 NOx emission standards for on-highway vehicles running on heavy-duty diesel engines. However, issues such as low NOx conversion at low temperature conditions still exist due to various factors, including incomplete urea thermolysis, inhibition of SCR reactions by hydrocarbons and H2O. We have observed a noticeable reduction in the standard SCR reaction efficiency at low temperature with increasing water content. We observed a similar effect when hydrocarbons are present in the stream. This effect is absent under fast SCR conditions where NO ~ NO2 in the feed gas. As a first step in understanding the effects of such inhibition on SCR reaction steps, kinetic models that predict the inhibition behavior of H2O and hydrocarbons on NO oxidation are presented in the paper. A one-dimensional SCR model was developed based on conservation of species equations and was coded as a C-language S-function and implemented in Matlab/Simulink environment. NO oxidation and NO2 dissociation kinetics were defined as a function of the respective adsorbate’s storage in the Fe-zeolite SCR catalyst. The corresponding kinetic models were then validated on temperature ramp tests that showed good match with the test data. Such inhibition models will improve the accuracy of model based control design for integrated DPF-SCR aftertreatment systems.

Devarakonda, Maruthi N.; Tonkyn, Russell G.; Tran, Diana N.; Lee, Jong H.; Herling, Darrell R.

2011-04-20T23:59:59.000Z

257

Modeling Species Inhibition of NO oxidation in Urea-SCR Catalysts for Diesel Engine NOx Control  

DOE Green Energy (OSTI)

Urea-selective catalytic reduction (SCR) catalysts are regarded as the leading NOx aftertreatment technology to meet the 2010 NOx emission standards for on-highway vehicles running on heavy-duty diesel engines. However, issues such as low NOx conversion at low temperature conditions still exist due to various factors, including incomplete urea thermolysis, inhibition of SCR reactions by hydrocarbons and H2O. We have observed a noticeable reduction in the standard SCR reaction efficiency at low temperature with increasing water content. We observed a similar effect when hydrocarbons are present in the stream. This effect is absent under fast SCR conditions where NO ~ NO2 in the feed gas. As a first step in understanding the effects of such inhibition on SCR reaction steps, kinetic models that predict the inhibition behavior of H2O and hydrocarbons on NO oxidation are presented in the paper. A one-dimensional SCR model was developed based on conservation of species equations and was coded as a C-language S-function and implemented in Matlab/Simulink environment. NO oxidation and NO2 dissociation kinetics were defined as a function of the respective adsorbate’s storage in the SCR catalyst. The corresponding kinetic models were then validated on temperature ramp tests that showed good match with the test data.

Devarakonda, Maruthi N.; Tonkyn, Russell G.; Tran, Diana N.; Lee, Jong H.; Herling, Darrell R.

2010-09-15T23:59:59.000Z

258

Sequential high temperature reduction, low temperature hydrolysis for the regeneration of sulfated NOx trap catalysts  

SciTech Connect

We describe a new method that minimizes irreversible Pt sintering during the desulfation of sulfated Pt/BaO/Al2O3 lean NOx trap (LNT) catalysts. While it is known that the addition of H2O to H2 promotes desulfation, we find that the significant and irreversible Pt sintering arising from the presence of water is unavoidable. Control of precious metal sintering is considered to be one of the critical issues in the development of durable LNT catalysts. The new method described here is a sequential desulfation process: the first step is to reduce the sulfates with hydrogen only at higher temperatures to form BaS, followed by a treatment of the thus reduced sample with water at low to moderate temperatures to convert BaS to BaO and H2S. The data showed that Pt sintering was significantly inhibited due to the absence of H2O during the desulfation at high temperatures, and also demonstrates the similar NOx uptake with the desulfated sample cooperatively with H2 and H2O. Therefore, the sequential desulfation process may find applications in realistic systems to inhibit the irreversible sintering of the Pt in the lean NOx trap catalyst, leading to a longer catalyst life.

Kim, Do Heui; Kwak, Ja Hun; Wang, Xianqin; Szanyi, Janos; Peden, Charles HF

2008-07-15T23:59:59.000Z

259

Evaluation of Gas Reburning & Low NOx Burners on a Wall Fired Boiler Performance and Economics Report Gas Reburning-Low NOx Burner System Cherokee Station Unit 3 Public Service Company of Colorado  

Science Conference Proceedings (OSTI)

Under the U.S. Department of Energy's Clean Coal Technology Program (Round 3), a project was completed to demonstrate control of boiler NOX emissions and to a lesser degree, due to coal replacement, SO2 emissions. The project involved combining Gas Reburning with Low NOX Burners (GR-LNB) on a coal-fired electric utility boiler to determine if high levels of NOX reduction (70%) could be achieved. Sponsors of the project included the U.S. Department of Energy, the Gas Research Institute, Public Service Company of Colorado, Colorado Interstate Gas, Electric Power Research Institute, and the Energy and Environmental Research Corporation. The GR-LNB demonstration was performed on Public Service Company of Colorado's (PSCO) Cherokee Unit #3, located in Denver, Colorado. This unit is a 172 MW~ wall-fired boiler that uses Colorado Bituminous, low-sulfur coal. It had a baseline NOX emission level of 0.73 lb/106 Btu using conventional burners. Low NOX burners are designed to yield lower NOX emissions than conventional burners. However, the NOX control achieved with this technique is limited to 30-50%. Also, with LNBs, CO emissions can increase to above acceptable standards. Gas Reburning (GR) is designed to reduce NOX in the flue gas by staged fuel combustion. This technology involves the introduction of natural gas into the hot furnace flue gas stream. When combined, GR and LNBs minimize NOX emissions and maintain acceptable levels of CO emissions. A comprehensive test program was completed, operating over a wide range of boiler conditions. Over 4,000 hours of operation were achieved, providing substantial data. Measurements were taken to quantify reductions in NOX emissions, the impact on boiler equipment and operability and factors influencing costs. The GR-LNB technology achieved good NOX emission reductions and the goals of the project were achieved. Although the performance of the low NOX burners (supplied by others) was less than expected, a NOX reduction of 65% was achieved at an average gas heat input of 18Y0. The performance goal of 70% reduction was met on many test runs, but at a higher reburn gas heat input. S02 emissions, based on coal replacement, were reduced by 18Y0. The performance goal of 70% reduction was met on many test runs, but at a higher reburn gas heat input. S02 emissions, based on coal replacement, were reduced by 18Y0. Toward the end of the program, a Second Generation gas injection system was installed. Higher injector gas pressures were used that eliminated the need for flue gas recirculation as used in the first generation design. The Second Generation GR resulted in similar NOX reduction performance as that for the First Generation. With an improvement in the LNB performance in combination with the new gas injection system , the reburn gas could be reduced to 12.5% of the total boiler heat input to achieve al 64?40 reduction in NO, emissions. In addition, the OFA injectors were modified to provide for better mixing to lower CO emissions.

None

1998-07-01T23:59:59.000Z

260

Remediation of chromium(VI) in the vadose zone: stoichiometry and kinetics of chromium(VI) reduction by sulfur dioxide  

E-Print Network (OSTI)

Immobilization and detoxification of chromium in the vadose zone is made possible by the existence of an effective reductant, SO2, that exists in a gaseous form at room temperature. Experimental studies were designed to characterize stoichiometry and kinetics of chromium reduction both in aqueous solutions at pH values near neutrality and in soil. First, batch experiments and elemental analyses were conducted to characterize the stoichiometry and kinetics of Cr(VI) reduction in water. The stoichiometric ratio of S(IV) removed to Cr(VI) removed ranged between 1.6 and 1.8. The overall reaction is believed to be the result of a linear combination of two reactions in which dithionate is an intermediate and sulfate is the stable oxidized product. The reaction was also rapid, with the half-time of about 45 minutes at pH 6 and about 16 hours at pH 7. A two-step kinetic model was developed to describe changes in concentrations of Cr(VI), S(IV), and S(V). Nonlinear regression was applied to obtain the kinetic parameters. The rate of reaction was assumed to be second-order with respect to [Cr(VI)] and first-order with respect to [S(IV)], and [S(V)]. The values for the rate coefficient for the first reaction (k1) were found to be 4.5 (?10%), 0.25 (?9.4%) (mM-2h-1) at pH 6 and 7, respectively. The values of the rate coefficient for the second reaction (k2) were 25 (?29%), 1.1 (? 30%) (mM-2h-1) at pH 6 and 7, respectively. The reaction rate decreased as pH increased. Experiments showed that the rate at pH 7 was lower than that at pH 6 by one order of magnitude. Second, batch experiments and elemental analyses were conducted to characterize the stoichiometry and kinetics of Cr(VI) reduction in soil. The stoichiometric ratio of S(IV) removed to Cr(VI) removed was almost 2, which is slightly higher than that for the reaction in water. This higher value may be due to S(IV) oxidation by soil-derived Fe(III). The reaction was rapid, with the half-time less than 2 minutes, which is faster than in water. The rate coefficients, k1 and k2, were 22 (?41%) and 13 (?77%) (M-2h-1), respectively.

Ahn, Min

2003-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "vi sox nox" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

ENDF-201: ENDF/B-VI summary documentation  

Science Conference Proceedings (OSTI)

Responsibility for oversight of the ENDF/B Evaluated Nuclear Data file lies with the Cross Section Evaluation Working Group (CSEWG), which is comprised of representatives from various governmental and industrial laboratories in the United States. Individual evaluations are provided by scientists at several US laboratories, including significant contributions by scientists from all over the world. In addition, ENDF/B-VI includes for the first time complete evaluations for three materials that were provided from laboratories outside the US. All data are checked and reviewed by CSEWG, and the data file is maintained and issued by the National Nuclear Data Center at Brookhaven National Laboratory. The previous version of the library, ENDF/B-V, was issued in 1979, and two revisions to the data file were provided in subsequent years, the latest occurring in 1981. A total of 75 new or extensively modified neutron sublibrary evaluations are included in ENDF/B-VI, and are summarized in this document. One incident proton sublibrary is described for Fe{sup 56}. The remaining evaluations in ENDF/B-VI have been carried over from earlier versions of ENDF, and have been updated to reflect the new formats. The release of ENDF/B-VI was carried out between January and June of 1990, with groups of materials being released on ``tapes.`` Table 1 is an index to the evaluation summaries, and includes the material identification or MAT number, the responsible laboratory, and the ``tape`` number. These evaluations have been released without restrictions on their distribution or use.

Rose, P.F. [comp.

1991-10-01T23:59:59.000Z

262

ENDF-201: ENDF/B-VI summary documentation  

Science Conference Proceedings (OSTI)

Responsibility for oversight of the ENDF/B Evaluated Nuclear Data file lies with the Cross Section Evaluation Working Group (CSEWG), which is comprised of representatives from various governmental and industrial laboratories in the United States. Individual evaluations are provided by scientists at several US laboratories, including significant contributions by scientists from all over the world. In addition, ENDF/B-VI includes for the first time complete evaluations for three materials that were provided from laboratories outside the US. All data are checked and reviewed by CSEWG, and the data file is maintained and issued by the National Nuclear Data Center at Brookhaven National Laboratory. The previous version of the library, ENDF/B-V, was issued in 1979, and two revisions to the data file were provided in subsequent years, the latest occurring in 1981. A total of 75 new or extensively modified neutron sublibrary evaluations are included in ENDF/B-VI, and are summarized in this document. One incident proton sublibrary is described for Fe{sup 56}. The remaining evaluations in ENDF/B-VI have been carried over from earlier versions of ENDF, and have been updated to reflect the new formats. The release of ENDF/B-VI was carried out between January and June of 1990, with groups of materials being released on tapes.'' Table 1 is an index to the evaluation summaries, and includes the material identification or MAT number, the responsible laboratory, and the tape'' number. These evaluations have been released without restrictions on their distribution or use.

Rose, P.F. (comp.)

1991-10-01T23:59:59.000Z

263

Electrical contacts for II-VI semiconducting devices  

Science Conference Proceedings (OSTI)

High resistivity II-VI semiconductors in general and CdTe and its associated materials like CdZnTe and CdMnTe in particular are suffering from ohmic contacting problem due to their high electron affinity and consequently large work function. Ni, Au, ... Keywords: CdTe-CdS thin film solar cells, Defect induced contact formation, Ohmic contact, Workfunction engineering

Biswajit Ghosh

2009-11-01T23:59:59.000Z

264

Recovery and Detection of Uranium (VI) From Building Materials  

SciTech Connect

As a legacy of the United States' 50 year old nuclear weapons program, the Department of Energy is responsible for cleaning up and decommissioning contaminated sites that were used for the production of these weapons. The method presented here addresses the problem of detecting and quantifying uranium (VI) in concrete. Specifically, the uranium (VI) is removed from concrete surfaces using a low pH buffer rinse that dissolves the surface layer. The amount of uranium in the wash solution can be quite low, even with extraction efficiencies exceeding 50 %. Therefore, the uranium is complexed with an organic chelating agent (arsenazo III) and concentrated using C18 solid phase extraction. Because the absorbance maximum of arsenazo III shifts upon binding to uranium, the concentrated complex can be detected using ultraviolet-visible spectroscopy. Low part-per-billion levels of uranium (VI) in cement can be detected by this method. Results of work related to other building material s such as stainless steel and plexiglass will also be reported.

Greene, Philip A.; Copper, Christine L.; Berv, David; Ramsey, Jeremy D.; Collins, Greg E.

2004-03-29T23:59:59.000Z

265

A Low Cost and High Efficient Facility for Removal of $\\SO_{2}$ and $\\NO_{x}$ in the Flue Gas from Coal Fire Power Plant  

E-Print Network (OSTI)

A Low Cost and High Efficient Facility for Removal of $\\SO_{2}$ and $\\NO_{x}$ in the Flue Gas from Coal Fire Power Plant

Pei, Y J; Dong, X; Feng, G Y; Fu, S; Gao, H; Hong, Y; Li, G; Li, Y X; Shang, L; Sheng, L S; Tian, Y C; Wang, X Q; Wang, Y; Wei, W; Zhang, Y W; Zhou, H J

2001-01-01T23:59:59.000Z

266

Near-Zero NOx Combustion Technology for ATS Mercury 50 Gas Turbine  

SciTech Connect

A project to demonstrate a near-zero NOx, catalytic combustion technology for natural gas-fired, industrial gas turbines is described. In a cooperative effort between Solar Turbines Incorporated and Precision Combustion Incorporated (PCI), proof-of-concept rig testing of PCI's fuel-rich catalytic combustion technology has been completed successfully. The primary technical goal of the project was to demonstrate NOx and CO emissions below 5ppm and 10 ppm, respectively, (corrected to 15% O{sub 2}) at realistic gas turbine operating conditions. The program consisted of two tasks. In the first task, a single prototype RCL{trademark} (Rich Catalytic Lean Burn) module was demonstrated at Taurus 70 (7.5 Mw) operating conditions (1.6 MPa, 16 atm) in a test rig. For a Taurus 70 engine, eight to twelve RCL modules will be required, depending on the final system design. In the second task, four modules of a similar design were adapted to a Saturn engine (1 Mw) test rig (600 kPa, 6 atm) to demonstrate gas turbine light-off and operation with an RCL combustion system. This project was initially focused on combustion technology for the Mercury 50 engine. However, early in the program, the Taurus 70 replaced the Mercury. This substitution was motivated by the larger commercial market for an ultra-low NOx Taurus 70 in the near-term. Rig tests using a single prototype RCL module at Taurus 70 conditions achieved NOx emissions as low as 0.75 ppm. A combustor turndown of approximately 110C (200F) was achieved with NOx and CO emissions below 3 ppm and 10 ppm, respectively. Catalyst light-off occurred at an inlet temperature of 310C (590F). Once lit the module remained active at inlet air temperatures as low as 204C (400F). Combustor pressure oscillations were acceptably low during module testing. Single module rig tests were also conducted with the Taurus 70 module reconfigured with a central pilot fuel injector. Such a pilot will be required in a commercial RCL system for turbine light-off and transient operation. At and near simulated full load engine conditions, the pilot operated at low pilot fueling rates without degrading overall system emissions. In the second project task, a set of four Taurus 70 modules was tested in an existing Saturn engine rig. The combustion system allowed smooth engine startup and load variation. At steady state conditions (between 82% and 89.7% engine speed; 32% and 61% load), NOx and CO emissions were below 3ppm and 10ppm, respectively. Rig limitations unrelated to the RCL technology prevented low emissions operation outside of this speed range. Combustor pressure oscillations were low, below 0.25 % (peak-to-peak) of the mean combustor pressure.

Kenneth Smith

2004-12-31T23:59:59.000Z

267

Quarterly report July 1 - September 30, 1999 [Development of METHANE de-NOX{reg_sign} reburning process  

DOE Green Energy (OSTI)

The use of biomass and wood waste solids and sludges as fuel is often hampered by their low heating values and the presence of bound nitrogen that result in inefficient combustion and high NOx emissions. Cofiring supplemental fuel through auxiliary burners helps with improving the combustion effectiveness and NOx reduction, but the benefits are limited to the fractional heat input of the auxiliary fuel. IGT has developed a recess called METHANE de-NOX{reg_sign} , which has shown substantially greater economic, energy and environmental benefits than traditional cofiring methods in demonstrations with both MSW- and coal-fired stoker boilers. In this process, auxiliary fuel such as natural gas or oil is injected directly into the lower region of the primary flame zone just above the grate. This increases and stabilizes the average combustion temperature, which improves combustion of high-moisture fuels, provides more uniform temperature profiles and reduced peak temperature, and reduces the availability of oxygen to reduce NOx formation. This is in contrast to conventional reburning, where natural gas is injected above the primary combustion zone after the majority of NOx has already been formed.

NONE

1999-09-30T23:59:59.000Z

268

Summary of the planning, management, and evaluation process for the Geothermal Program Review VI conference  

DOE Green Energy (OSTI)

The purpose of this document is to present an overview of the planning, facilitation, and evaluation process used to conduct the Geothermal Program Review VI (PR VI) conference. This document was also prepared to highlight lessons learned from PR VI and, by utilizing the evaluation summaries and recommendations, be used as a planning tool for PR VII. The conference, entitled Beyond Goals and Objectives,'' was sponsored by the US Department of Energy's (DOE) Geothermal Technology Division (GTD), PR VI was held in San Francisco, California on April 19--21, 1988 and was attended by 127 participants. PR VI was held in conjunction with the National Geothermal Association's (NGA) Industry Round Table. This document presents a brief summary of the activities, responsibilities, and resources for implementing the PR VI meeting and provides recommendations, checklists, and a proposed schedule for assisting in planning PR VII.

Not Available

1988-10-01T23:59:59.000Z

269

Enhanced High Temperature Performance of NOx Storage/Reduction (NSR) Materials  

Science Conference Proceedings (OSTI)

This annual report describes progress on a CRADA project aimed at developing a fundamental understanding of candidate next generation NSR materials for NOx after-treatment for light-duty lean-burn (including diesel) engines. Model catalysts that are based on literature formulations are the focus of the work being carried out at PNNL. In addition, the performance and stability of a realistic high temperature NSR catalyst, supplied by JM, is being studied in order to provide baseline data for the model catalysts that are, again, based on formulations described in the open literature.

Kim, Do Heui; Muntean, George G.; Peden, Charles HF; Howden, Ken; Currier, Neal; Li, Junhui; Stafford, Randy; Yezerets, Aleksey; Chen, Hai Ying; Hess, Howard ..

2012-02-08T23:59:59.000Z

270

Comparison of NOx Removal Efficiencies in Compost Based Biofilters Using Four Different Compost Sources  

Science Conference Proceedings (OSTI)

In 1998, 3.6 trillion kilowatt-hours of electricity were generated in the United States. Over half of this was from coal-fired power plants, resulting in more than 8.3 million tons of nitrogen oxide (NOx) compounds being released into the environment. Over 95% of the NOx compounds produced during coal combustion are in the form of nitric oxide (NO). NOx emission regulations are becoming increasingly stringent, leading to the need for new, cost effective NOx treatment technologies. Biofiltration is such a technology. NO removal efficiencies were compared in compost based biofilters using four different composts. In previous experiments, removal efficiencies were typically highest at the beginning of the experiment, and decreased as the experiments proceeded. This work tested different types of compost in an effort to find a compost that could maintain NO removal efficiencies comparable to those seen early in the previous experiments. One of the composts was wood based with manure, two were wood based with high nitrogen content sludge, and one was dairy compost. The wood based with manure and one of the wood based with sludge composts were taken directly from an active compost pile while the other two composts were received in retail packaging which had been out of active piles for an indeterminate amount of time. A high temperature (55-60°C) off-gas stream was treated in biofilters operated under denitrifying conditions. Biofilters were operated at an empty bed residence time of 13 seconds with target inlet NO concentrations of 500 ppmv. Lactate was the carbon and energy source. Compost was sampled at 10-day intervals to determine aerobic and anaerobic microbial densities. Compost was mixed at a 1:1 ratio with lava rock and calcite was added at 100g/kg of compost. In each compost tested, the highest removal efficiencies occurred within the first 10 days of the experiment. The wood based with manure peaked at day 3 (77.14%), the dairy compost at day 1 (80.74%), the active wood based with sludge at day 5 (68.15%) and the inactive wood based with sludge at day 9 (63.64%, this compost was frozen when received). These levels gradually decreased throughout the remainder of the experiment until they fell between 40% and 60%. Decreasing removal efficiency was characteristic of all the composts tested, regardless of their makeup or activity state prior to testing. Although microbial densities and composition between composts may have differed, there was little change in densities within each experiment.

Lacey, Jeffrey Alan; Lee, Brady Douglas; Apel, William Arnold

2001-06-01T23:59:59.000Z

271

Estimation of Annual Reductions of NOx Emissions in ERCOT for the HB3693 Electricity Savings Goals  

E-Print Network (OSTI)

Increasing the level of energy efficiency in Texas, as proposed by House Bill 3693, an Act related to energy demand, energy load, energy efficiency incentives, energy programs and energy performance measures, would reduce the amount of electricity demanded from Texas utilities. Since approximately eighty-eight percent of electricity generated in Texas is from plants powered by fossil fuels, such as coal and natural gas, this decrease would also reduce the air pollution that would otherwise be associated with burning these fuels. This report presents the potential emission reductions of nitrogen oxides (NOx) that would occur in the Electric Reliability Council of Texas (ERCOT) region if new energy efficiency targets for investor owned utilities are established for 2010 and 2015. These energy efficiency targets are the subject of a feasibility study as prescribed by Texas House Bill 3693. This report describes the details of the methodology, data and assumptions used, and presents the results of the analysis. The total energy savings targets for utilities within ERCOT are 745,710 megawatt-hours (MWh) by 2010 under the 30 percent reduction of growth scenario and 1,788,953 MWh by 2015 under the 50 percent reduction of growth scenario. The total projected annual NOx emissions reductions from these electricity savings are 191 tons in 2010 and 453 tons in 2015, or converting the annual totals into average daily avoided emissions totals, 0.5 tons per day by 2010 and 1.25 tons per day by 2015. The average avoided emission rate is approximately 0.51 pounds (lb) of NOx reduced per MWh of electricity savings. While House Bill 3693 is an Act related to energy and does not target emissions levels, the energy efficiency improvements would achieve air pollution benefits that could positively affect air quality and human health. The emissions reductions projected to result in 2010 and 2015 are comparable to the Texas Emission Reduction Program (TERP) Energy-Efficiency Grants Program, which does target emission reductions and estimated 2005 annual NOx emissions reductions of about 89 tons. While the projected emissions reductions are small compared to the total emission reductions needed to bring the state’s non-attainment areas into attainment of the national ambient air quality standards for ozone, they can be a part of an overall strategy to reduce emissions and improve human health in Texas.

Diem, Art; Mulholland, Denise; Yarbrough, James; Baltazar, Juan Carlos; Im, Piljae; Haberl, Jeff

2008-12-01T23:59:59.000Z

272

Method for making graded I-III-VI.sub.2 semiconductors and solar cell obtained thereby  

DOE Patents (OSTI)

Improved cell photovoltaic conversion efficiencies are obtained by the simultaneous elemental reactive evaporation process of Mickelsen and Chen for making semiconductors by closer control of the evaporation rates and substrate temperature during formation of the near contact, bulk, and near junction regions of a graded I-III-VI.sub.2, thin film, semiconductor, such as CuInSe.sub.2 /(Zn,Cd)S or another I-III-VI.sub.2 /II-VI heterojunction.

Devaney, Walter E. (Seattle, WA)

1987-08-04T23:59:59.000Z

273

Group I-III-VI.sub.2 semiconductor films for solar cell application  

SciTech Connect

This invention relates to an improved thin film solar cell with excellent electrical and mechanical integrity. The device comprises a substrate, a Group I-III-VI.sub.2 semiconductor absorber layer and a transparent window layer. The mechanical bond between the substrate and the Group I-III-VI.sub.2 semiconductor layer is enhanced by an intermediate layer between the substrate and the Group I-III-VI.sub.2 semiconductor film being grown. The intermediate layer contains tellurium or substitutes therefor, such as Se, Sn, or Pb. The intermediate layer improves the morphology and electrical characteristics of the Group I-III-VI.sub.2 semiconductor layer.

Basol, Bulent M. (Redondo Beach, CA); Kapur, Vijay K. (Northridge, CA)

1991-01-01T23:59:59.000Z

274

Behavior of Uranium(VI) during HEDPA Leaching for Aluminum Dissolution in Tank Waste Sludges  

E-Print Network (OSTI)

Behavior of Uranium(VI) during HEDPA Leaching for Aluminuman increase in the aqueous phase uranium concentration.The concentration of uranium continually increased over 59

Powell, Brian A.; Rao, Linfeng; Nash, Kenneth L.; Martin, Leigh

2006-01-01T23:59:59.000Z

275

Reaction of Plutonium(VI) with the Manganese-Substituted Iron Oxide Mineral Goethite  

E-Print Network (OSTI)

Plutonium(VI) Sorption on Manganese-SubstitutedX-ray Beam-Induced Chemistry on Plutonium Sorbed on Variousof Plutonium . . . . . . . . . . . . . . . . .159 v E Anion

Hu, Yung-Jin Hu

2011-01-01T23:59:59.000Z

276

Comprehensive Community NOx Emission Reduction Methodology: Overview and Results from the Application to a Case Study Community  

E-Print Network (OSTI)

This paper reports on the development of a methodology to estimate energy use in a community and its associated effects on air pollution. This methodology would allow decision makers to predict the impacts of various energy conservation options and efficiency programs on air pollution reduction, which will help local governments and their residents understand how to reduce pollution and mange the information collection needed to accomplish this. This paper presents a broad overview of a community-wide energy use and NOx emissions inventory process and discusses detailed procedures used to calculate the residential sector's energy use and its associated NOx emissions. In an effort to better understand community-wide energy use and its associated NOx emissions, the City of College Station, Texas, was selected as a case study community to demonstrate the application of this methodology.

Sung, Y. H.; Haberl, J. S.

2004-08-01T23:59:59.000Z

277

Method for control of NOx emission from combustors using fuel dilution  

SciTech Connect

A method of controlling NOx emission from combustors. The method involves the controlled addition of a diluent such as nitrogen or water vapor, to a base fuel to reduce the flame temperature, thereby reducing NOx production. At the same time, a gas capable of enhancing flame stability and improving low temperature combustion characteristics, such as hydrogen, is added to the fuel mixture. The base fuel can be natural gas for use in industrial and power generation gas turbines and other burners. However, the method described herein is equally applicable to other common fuels such as coal gas, biomass-derived fuels and other common hydrocarbon fuels. The unique combustion characteristics associated with the use of hydrogen, particularly faster flame speed, higher reaction rates, and increased resistance to fluid-mechanical strain, alter the burner combustion characteristics sufficiently to allow operation at the desired lower temperature conditions resulting from diluent addition, without the onset of unstable combustion that can arise at lower combustor operating temperatures.

Schefer, Robert W. (Alamo, CA); Keller, Jay O (Oakland, CA)

2007-01-16T23:59:59.000Z

278

APBF-DEC NOx Adsorber/DPF Project: Light-Duty Passenger Car Platform  

DOE Green Energy (OSTI)

A 1.9L turbo direct injection (TDI) diesel engine was modified to achieve the upcoming Tier 2 Bin 5 emission standard in combination with a NOx adsorber catalyst (NAC) and a diesel particulate filter (DPF). The primary objective for developing this test bed is to investigating the effects of different fuel sulfur contents on the performance of an advanced emission control system (ECS) in a light-duty application. During the development process, the engine-out emissions were minimized by applying a state-of-the-art combustion system in combination with cooled exhaust gas recirculation (EGR). The subsequent calibration effort resulted in emission levels requiring 80-90 percent nitrogen-oxide (NOx) and particulate matter (PM) conversion rates by the corresponding ECS. The strategy development included ean/rich modulation for NAC regeneration, as well as, the desulfurization of the NAC and the regeneration of the DPF. Two slightly different ECS were investigated and calibrated. The initial vehicle results in an Audi A4 station wagon over the federal test procedure (FTP), US 06, and the highway fuel economy test (HFET) cycle indicate the potential of these configuration to meet the future Tier 2 emission standard.

Tomazic, D; Tatur, M; Thornton, M

2003-08-24T23:59:59.000Z

279

Urea for SCR-based NOx Control Systems and Potential Impacts to Ground Water Resources  

DOE Green Energy (OSTI)

One of the key challenges facing manufacturers of diesel engines for light- and heavy-duty vehicles is the development of technologies for controlling emissions of nitrogen oxides, In this regard, selective catalytic reduction (SCR) systems represent control technology that can potentially achieve the NOx removal efficiencies required to meet new U.S. EPA standards. SCR systems rely on a bleed stream of urea solution into exhaust gases prior to catalytic reduction. While urea's role in this emission control technology is beneficial, in that it supports reduced NOx emissions, it can also be an environmental threat to ground water quality. This would occur if it is accidentally released to soils because once in that environmental medium, urea is subsequently converted to nitrate--which is regulated under the U.S. EPA's primary drinking water standards. Unfortunately, nitrate contamination of ground waters is already a significant problem across the U.S. Historically, the primary sources of nitrate in ground waters have been septic tanks and fertilizer applications. The basic concern over nitrate contamination is the potential health effects associated with drinking water containing elevated levels of nitrate. Specifically, consumption of nitrate-contaminated water can cause a blood disorder in infants known as methemoglobinemia.

Layton, D.

2002-01-03T23:59:59.000Z

280

Non-thermal plasma based technologies for the after-treatment of automotive exhaust particulates and marine diesel exhaust NOx  

DOE Green Energy (OSTI)

The trend in environmental legislation is such that primary engine modifications will not be sufficient to meet all future emissions requirements and exhaust aftertreatment technologies will need to be employed. One potential solution that is well placed to meet those requirements is non-thermal plasma technology. This paper will describe our work with some of our partners in the development of a plasma based diesel particulate filter (DPF) and plasma assisted catalytic reduction (PACR) for NOx removal. This paper describes the development of non-thermal plasma technology for the aftertreatment of particulates from a passenger car engine and NOx from a marine diesel exhaust application.

McAdams, R; Beech, P; Gillespie, R; Guy, C; Jones,S; Liddell, T; Morgan, R; Shawcross, J; Weeks, D; Hughes, D; Oesterle, J; Eberspdcher,

2003-08-24T23:59:59.000Z

Note: This page contains sample records for the topic "vi sox nox" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

The Galactic Halo's O VI Resonance Line Intensity  

E-Print Network (OSTI)

We used FUSE to observe ultraviolet emission from diffuse O VI in the hot gas in the Galactic halo. By comparing our result with another, nearby observation blocked by an opaque cloud at a distance of 230 pc, we could subtract off the contribution from the Local Bubble, leading to an apparent halo intensity of I_{OVI} = 4680^{+570}_{-660} photons/cm^2/s/sr. A correction for foreground extinction leads to an intrinsic intensity that could be as much as twice this value. Assuming T ~ 3 x 10^5 K, we conclude that the electron density, n_e, is 0.01-0.02 /cm^3, the thermal pressure, p/k, is 7000-10,000 K/cm^3, and that the hot gas is spread over a length of 50-70 pc, implying a small filling factor for O VI-rich gas. ROSAT observations of emission at 1/4 keV in the same direction indicate that the X-rays are weaker by a factor of 1.1 to 4.7, depending on the foreground extinction. Simulated supernova remnants evolving in low density gas have similar O VI to X-ray ratios when the remnant plasma is approaching collisional ioinizational equilibrium and the physical structures are approaching dynamical ``middle age''. Alternatively, the plasma can be described by a temperature power-law. Assuming that the material is approximately isobaric and the length scales according to T^(beta) d(ln T), we find beta = 1.5+/-0.6 and an upper temperature cutoff of 10^{6.6(+0.3,-0.2)} K. The radiative cooling rate for the hot gas, including that which is too hot to hold O VI, is 6 x 10^{38} erg/s/kpc^2. This rate implies that ~70% of the energy produced in the disk and halo by SN and pre-SN winds is radiated by the hot gas in the halo.

Robin L. Shelton; Shauna M. Sallmen; Edward B. Jenkins

2006-12-18T23:59:59.000Z

282

Evaluated nuclear data file ENDF/B-VI  

SciTech Connect

For the past 25 years, the United States Department of Energy has sponsored a cooperative program among its laboratories, contractors and university research programs to produce an evaluated nuclear data library which would be application independent and universally accepted. The product of this cooperative activity is the ENDF/B evaluated nuclear data file. After approximately eight years of development, a new version of the data file, ENDF/B-VI has been released. The essential features of this evaluated data library are described in this paper. 7 refs.

Dunford, C.L.

1991-01-01T23:59:59.000Z

283

Bistability of Cation Interstitials in II-VI Semiconductors  

DOE Green Energy (OSTI)

The stability of cation interstitials in II-VI semiconductors is studied using ab initio methods. We find that interstitials in the neutral charge state are more stable in the tetrahedral interstitial site near the cation, whereas in the (2+) charge state, they are more stable near the anion. The diffusion energy barrier changes when the defect charge state changes. Therefore, if electrons/holes are taken from the defect level by light, changing its charge state, the interstitial atom will be able to diffuse almost spontaneously due to a reduced diffusion barrier.

Wei, S. H.; Dalpian, G. M.

2005-11-01T23:59:59.000Z

284

Modeling the Removal of Uranium U(VI) from Aqueous Solutions in the  

E-Print Network (OSTI)

Modeling the Removal of Uranium U(VI) from Aqueous Solutions in the Presence of Sulfate Reducing Colorado School of Mines, Division of Environmental Science and Engineering, Golden, Colorado 80401 The reduction kinetics of soluble hexavalent uranium (U(VI)) to insoluble tetravalent U(IV) by both a mixed

285

Simulation of reactive transport of uranium(VI) in groundwater with variable chemical conditions  

E-Print Network (OSTI)

transport of U(VI) in an alluvial aquifer at a former uranium ore-processing mill near Naturita, CO. The SCM alluvial aquifer beneath a former U(VI) mill located near Naturita, CO, was simulated using a surface. Site Characterization 2.1. Site Description [9] The former uranium mill site is approximately 3 km

286

Uranium (VI) solubility in carbonate-free ERDA-6 brine  

Science Conference Proceedings (OSTI)

When present, uranium is usually an element of importance in a nuclear waste repository. In the Waste Isolation Pilot Plant (WIPP), uranium is the most prevalent actinide component by mass, with about 647 metric tons to be placed in the repository. Therefore, the chemistry of uranium, and especially its solubility in the WIPP conditions, needs to be well determined. Long-term experiments were performed to measure the solubility of uranium (VI) in carbonate-free ERDA-6 brine, a simulated WIPP brine, at pC{sub H+} values between 8 and 12.5. These data, obtained from the over-saturation approach, were the first repository-relevant data for the VI actinide oxidation state. The solubility trends observed pointed towards low uranium solubility in WIPP brines and a lack of amphotericity. At the expected pC{sub H+} in the WIPP ({approx} 9.5), measured uranium solubility approached 10{sup -7} M. The objective of these experiments was to establish a baseline solubility to further investigate the effects of carbonate complexation on uranium solubility in WIPP brines.

Lucchini, Jean-francois [Los Alamos National Laboratory; Khaing, Hnin [Los Alamos National Laboratory; Reed, Donald T [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

287

Data summary report for fission product release Test VI-7  

SciTech Connect

Test VI-7 was the final test in the VI series conducted in the vertical furnace. The fuel specimen was a 15.2-cm-long section of a fuel rod from the Monticello boiling water reactor (BWR). The fuel had experienced a burnup of {approximately}-40 Mwd/kg U. It was heated in an induction furnace for successive 20-min periods at 2000 and 2300 K in a moist air-helium atmosphere. Integral releases were 69% for {sup 85}Kr, 52% for {sup 125}Sb, 71% for both {sup 134}Cs and {sup 137}Cs, and 0.04% for {sup 154}Eu. For the non-gamma-emitting species, release values for 42% for I, 4.1% for Ba, 5.3% for Mo, and 1.2% for Sr were determined. The total mass released from the furnace to the collection system, including fission products, fuel, and structural materials, was 0.89 g, with 37% being collected on the thermal gradient tubes and 63% downstream on filters. Posttest examination of the fuel specimen indicated that most of the cladding was completely oxidized to ZrO{sub 2}, but that oxidation was not quite complete at the upper end. The release behaviors for the most volatile elements, Kr and Cs, were in good agreement with the ORNL-Booth Model.

Osborne, M.F.; Lorentz, R.A.; Travis, J.R.; Collins, J.L.; Webster, C.S. [Oak Ridge National Lab., TN (United States)

1995-05-01T23:59:59.000Z

288

Geothermal Program Review VI: proceedings. Beyond goals and objectives  

DOE Green Energy (OSTI)

Program Review VI was comprised of six sessions, including an opening session, four technical sessions that addressed each of the major DOE research areas, and a session on special issues. The technical sessions were on Hydrothermal, Hot Dry Rock, Geopressured and Magma resources. Presenters in the technical sessions discussed their R and D activities within the context of specific GTD Programmatic Objectives for that technology, their progress toward achieving those objectives, and the value of those achievements to industry. The ''Special Issues'' presentations addressed several topics such as the interactions between government and industry on geothermal energy R and D; the origin and basis for the programmatic objectives analytical computer model; and international marketing opportunities for US geothermal equipment and services. The unique aspect of Program Review VI was that it was held in conjunction with the National Geothermal Association's Industry Round Table on Federal R and D. The Round Table provided a forum for open and lively discussions between industry and government researchers and gave industry an opportunity to convey their needs and perspectives on DOE's research programs. These discussions also provided valuable information to DOE regarding industry's priorities and directions.

Not Available

1988-01-01T23:59:59.000Z

289

Pilot-Scale Demonstration of ALTA for NOx Control in Pulverized Coal-Fired Boilers  

SciTech Connect

This report describes computational fluid dynamics (CFD) modeling and pilot-scale testing conducted to demonstrate the ability of the Advanced Layered Technology Approach (ALTA) to reduce NO{sub x} emissions in a pulverized coal (PC) boiler. Testing specifically focused on characterizing NO{sub x} behavior with deep burner staging combined with Rich Reagent Injection (RRI). Tests were performed in a 4 MBtu/hr pilot-scale furnace at the University of Utah. Reaction Engineering International (REI) led the project team which included the University of Utah and Combustion Components Associates (CCA). Deep burner staging and RRI, combined with selective non-catalytic reduction (SNCR), make up the Advanced Layered Technology Approach (ALTA) for NO{sub x} reduction. The application of ALTA in a PC environment requires homogenization and rapid reaction of post-burner combustion gases and has not been successfully demonstrated in the past. Operation of the existing low-NO{sub x} burner and design and operation of an application specific ALTA burner was guided by CFD modeling conducted by REI. Parametric pilot-scale testing proved the chemistry of RRI in a PC environment with a NOx reduction of 79% at long residence times and high baseline NOx rate. At representative particle residence times, typical operation of the dual-register low-NO{sub x} burner provided an environment that was unsuitable for NO{sub x} reduction by RRI, showing no NOx reduction. With RRI, the ALTA burner was able to produce NO{sub x} emissions 20% lower than the low-NO{sub x} burner, 76 ppmv vs. 94 ppmv, at a burner stoichiometric ratio (BSR) of 0.7 and a normalized stoichiometric ratio (NSR) of 2.0. CFD modeling was used to investigate the application of RRI for NO{sub x} control on a 180 MW{sub e} wall-fired, PC boiler. A NO{sub x} reduction of 37% from baseline (normal operation) was predicted using ALTA burners with RRI to produce a NO{sub x} emission rate of 0.185 lb/MBtu at the horizontal nose of the boiler. When combined with SNCR, a NO{sub x} emission rate of 0.12-0.14 lb/MBtu can be expected when implementing a full ALTA system on this unit. Cost effectiveness of the full ALTA system was estimated at $2,152/ton NO{sub x} removed; this was less than 75% of the cost estimated for an SCR system on a unit of this size.

Andrew Fry; Devin Davis; Marc Cremer; Bradley Adams

2008-04-30T23:59:59.000Z

290

DEVELOPMENT AND DEMONSTRATION OF AN ULTRA LOW NOx COMBUSTOR FOR GAS TURBINES  

SciTech Connect

Alzeta Corporation has developed surface-stabilized fuel injectors for use with lean premixed combustors which provide extended turndown and ultra-low NOX emission performance. These injectors use a patented technique to form interacting radiant and blue-flame zones immediately above a selectively-perforated porous metal surface. This allows stable operation at low reaction temperatures. This technology is being commercialized under the product name nanoSTAR. Initial tests demonstrated low NOX emissions but, were limited by flashback failure of the injectors. The weld seams required to form cylindrical injectors from flat sheet material were identified as the cause of the failures. The approach for this project was to first develop new fabrication methods to produce injectors without weld seams, verify similar emissions performance to the original flat sheet material and then develop products for microturbines and small gas turbines along parallel development paths. A 37 month project was completed to develop and test a surface stabilized combustion system for gas turbine applications. New fabrication techniques developed removed a technological barrier to the success of the product by elimination of conductive weld seams from the injector surface. The injectors demonstrated ultra low emissions in rig tests conducted under gas turbine operating conditions. The ability for injectors to share a common combustion chamber allowing for deployment in annular combustion liner was also demonstrated. Some further development is required to resolve integration issues related to specific engine constraints, but the nanoSTAR technology has clearly demonstrated its low emissions potential. The overall project conclusions can be summarized: (1) A wet-laid casting method successfully eliminated weld seams from the injector surface without degrading performance. (2) Gas turbine cycle analysis identified several injector designs and control schemes to start and load engines using nanoSTAR technology. A mechanically simple single zone injector can be used in Solar Turbine's Taurus 60 engine. (3) Rig testing of single monolithic injectors demonstrated sub 3 ppmv NOX and sub 10 ppmv CO and UHC emissions (all corrected to 15% O2) at Taurus 60 full-load pressure and combustion air inlet temperature. (4) Testing of two nanoSTAR injectors in Solar Turbine's sector rig demonstrated the ability for injectors to survive when fired in close proximity at Taurus 60 full load pressure and combustion air inlet temperature. (5) Sector rig tests demonstrated emissions performance and range of operability consistent with single injector rig tests. Alzeta has committed to the commercialization of nanoSTAR injectors and has sufficient production capability to conclude development and meet initial demand.

NEIL K. MCDOUGALD

2005-04-30T23:59:59.000Z

291

DEVELOPMENT AND DEMONSTRATION OF AN ULTRA LOW NOx COMBUSTOR FOR GAS TURBINES  

SciTech Connect

Alzeta Corporation has developed surface-stabilized fuel injectors for use with lean premixed combustors which provide extended turndown and ultra-low NOX emission performance. These injectors use a patented technique to form interacting radiant and blue-flame zones immediately above a selectively-perforated porous metal surface. This allows stable operation at low reaction temperatures. This technology is being commercialized under the product name nanoSTAR. Initial tests demonstrated low NOX emissions but, were limited by flashback failure of the injectors. The weld seams required to form cylindrical injectors from flat sheet material were identified as the cause of the failures. The approach for this project was to first develop new fabrication methods to produce injectors without weld seams, verify similar emissions performance to the original flat sheet material and then develop products for microturbines and small gas turbines along parallel development paths. A 37 month project was completed to develop and test a surface stabilized combustion system for gas turbine applications. New fabrication techniques developed removed a technological barrier to the success of the product by elimination of conductive weld seams from the injector surface. The injectors demonstrated ultra low emissions in rig tests conducted under gas turbine operating conditions. The ability for injectors to share a common combustion chamber allowing for deployment in annular combustion liner was also demonstrated. Some further development is required to resolve integration issues related to specific engine constraints, but the nanoSTAR technology has clearly demonstrated its low emissions potential. The overall project conclusions can be summarized: (1) A wet-laid casting method successfully eliminated weld seams from the injector surface without degrading performance. (2) Gas turbine cycle analysis identified several injector designs and control schemes to start and load engines using nanoSTAR technology. A mechanically simple single zone injector can be used in Solar Turbine's Taurus 60 engine. (3) Rig testing of single monolithic injectors demonstrated sub 3 ppmv NOX and sub 10 ppmv CO and UHC emissions (all corrected to 15% O2) at Taurus 60 full-load pressure and combustion air inlet temperature. (4) Testing of two nanoSTAR injectors in Solar Turbine's sector rig demonstrated the ability for injectors to survive when fired in close proximity at Taurus 60 full load pressure and combustion air inlet temperature. (5) Sector rig tests demonstrated emissions performance and range of operability consistent with single injector rig tests. Alzeta has committed to the commercialization of nanoSTAR injectors and has sufficient production capability to conclude development and meet initial demand.

NEIL K. MCDOUGALD

2005-04-30T23:59:59.000Z

292

Affinity of An(VI) for N4-Tetradentate Donor Ligands: Complexation of the Actinyl(VI) Ions with N4-Tetradentate Ligands  

Science Conference Proceedings (OSTI)

In this report the affinity of four N4-tetradentate ligands that incorporate the 2- methylpyridyl functionality with hexavalent actinides (AnO2+2 ) has been investigated in methanol solution. The ligands studied include N,N*-bis(2-methylpyridyl)diaminoethane (BPMDAE), N,N-bis(2-methylpyridyl)-1,3-diaminopropane (BPMDAP), N,N*-bis(2-pyridylmethyl) piperazine (BPMPIP), and trans-N,N-bis(2-pyridylmethyl)-1,2-diaminocyclohexane (BPMDAC). Conditional stability constants describing the strength of the interaction were determined by UV-visible spectrophotometry. The log10K101 values for both U(VI) and Pu(VI) are comparable and show the same trend of stability with ligand structure. Dinuclear complexes are also indicated as being important. The log10K201 values for Pu(VI) complexation with the N4-ligands are identical for the four ligands (within experimental error), indicating that the structure of the ligand backbone has little effect on the stability of the (PuO2)2L2+ complex. The exception to this trend is the behavior of N,N*- bis(2-pyridylmethyl)piperazine (BPMPIP) with Pu(VI). This ligand displays a tendency to reduce Pu(VI) within the experimental time frame of 45 minutes. BPMPIP is the only ligand tested that contains tertiary amines in the ligand backbone. The decomposition of BPMPIP by Pu(VI) suggests a susceptibility of tertiary amines to oxidative degradation.

Ogden, Mark; Sinkov, Sergey I.; Lumetta, Gregg J.; Nash, Kenneth L.

2012-05-01T23:59:59.000Z

293

Analysis of Strategies for Multiple Emissions from Electric Power SO2, NOX, CO2, Mercury and RPS  

Reports and Publications (EIA)

At the request of the Subcommittee, EIA prepared an initial report that focused on the impacts of reducing power sector NOx, SO2, andCO2 emissions.2 The current report extends the earlier analysis to add the impacts of reducing power sector Hg emissions and introducing RPS requirements.

J. Alan Beamon

2001-07-01T23:59:59.000Z

294

Proceedings of the Combustion Institute, Volume 29, 2002/pp. 11151121 LABORATORY INVESTIGATION OF AN ULTRALOW NOx PREMIXED  

E-Print Network (OSTI)

by the Office of Industrial Technology of the U.S. Department of Energy for year 2020, a new approach was supported by the U.S. Department of Energy, Office of Industrial Technology, and the California Institute INVESTIGATION OF AN ULTRALOW NOx PREMIXED COMBUSTION CONCEPT FOR INDUSTRIAL BOILERS DAVID LITTLEJOHN,1 ADRIAN J

Knowles, David William

295

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

North Dakota Air Quality VIII: An International Conference on Carbon Management, Mercury, Trace Elements, SOx, NOx, EERC will prepare and coordinate the Air Quality VIII...

296

CX-001459: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Determination Air Quality VIII: An International Conference on Carbon Management, Mercury, Trace Elements, Sulfur Oxide (SOx), Nitrogen Oxide (NOx) CX(s) Applied: A9 Date: 03...

297

NETL: IEP ? Post-Combustion CO2 Emissions Control - Flue Gas...  

NLE Websites -- All DOE Office Websites (Extended Search)

Flue Gas Purification Utilizing SOx NOx Reactions During Compression of CO2 Derived from Oxyfuel Combustion Project No.: DE-NT0005309 Air Products and Chemicals Inc. will...

298

Slide 1  

NLE Websites -- All DOE Office Websites (Extended Search)

suggested assessment studies REACTION ENGINEERING INTERNATIONAL * Testing at bench- and pilot-scales - Ignition & flame attachment - Char oxidation - NOx, SOx, Hg - Soot - Heat...

299

Vortex combustor for low NOX emissions when burning lean premixed high hydrogen content fuel  

Science Conference Proceedings (OSTI)

A trapped vortex combustor. The trapped vortex combustor is configured for receiving a lean premixed gaseous fuel and oxidant stream, where the fuel includes hydrogen gas. The trapped vortex combustor is configured to receive the lean premixed fuel and oxidant stream at a velocity which significantly exceeds combustion flame speed in a selected lean premixed fuel and oxidant mixture. The combustor is configured to operate at relatively high bulk fluid velocities while maintaining stable combustion, and low NOx emissions. The combustor is useful in gas turbines in a process of burning synfuels, as it offers the opportunity to avoid use of diluent gas to reduce combustion temperatures. The combustor also offers the possibility of avoiding the use of selected catalytic reaction units for removal of oxides of nitrogen from combustion gases exiting a gas turbine.

Steele, Robert C; Edmonds, Ryan G; Williams, Joseph T; Baldwin, Stephen P

2012-11-20T23:59:59.000Z

300

Power generation systems for NOx reduction. CRADA final report for CRADA Number Y-1292-0111  

SciTech Connect

The Cooperative Research and Development Agreement (CRADA) No. Y1292-0111, between Allison Gas Turbine Division of General Motors Corporation and Lockheed Martin Energy Systems, under contract to the US Department of Energy, is entitled ``Power Generation Systems for NOx Reduction``. The objective of this effort was to design, develop, and demonstrate an integrated turbine genset suitable for high efficiency power generation requirements. The result of this effort would have been prototype generator hardware including controllers for testing and evaluation by Allison Gas Turbine Division. The generator would have been coupled to a suitably sized and configured gas turbine engine, which would operate on a laboratory load bank. This effort leads to extensive knowledge and design capability in the most efficient and high power density generator design for mobile power generation and potentially to commercialization of these advanced technologies.

Adams, D.J. [Lockheed Martin Energy Research Corp., Oak Ridge, TN (United States); Berenyi, S.G. [General Motors Corp., Indianapolis, IN (United States). Allison Gas Turbine Div.

1996-04-30T23:59:59.000Z

Note: This page contains sample records for the topic "vi sox nox" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Method for reducing NOx during combustion of coal in a burner  

DOE Patents (OSTI)

An organically complexed nanocatalyst composition is applied to or mixed with coal prior to or upon introducing the coal into a coal burner in order to catalyze the removal of coal nitrogen from the coal and its conversion into nitrogen gas prior to combustion of the coal. This process leads to reduced NOx production during coal combustion. The nanocatalyst compositions include a nanoparticle catalyst that is made using a dispersing agent that can bond with the catalyst atoms. The dispersing agent forms stable, dispersed, nano-sized catalyst particles. The catalyst composition can be formed as a stable suspension to facilitate storage, transportation and application of the catalyst nanoparticles to a coal material. The catalyst composition can be applied before or after pulverizing the coal material or it may be injected directly into the coal burner together with pulverized coal.

Zhou, Bing (Cranbury, NJ); Parasher, Sukesh (Lawrenceville, NJ); Hare, Jeffrey J. (Provo, UT); Harding, N. Stanley (North Salt Lake, UT); Black, Stephanie E. (Sandy, UT); Johnson, Kenneth R. (Highland, UT)

2008-04-15T23:59:59.000Z

302

Vortex combustor for low NOx emissions when burning lean premixed high hydrogen content fuel  

DOE Patents (OSTI)

A trapped vortex combustor. The trapped vortex combustor is configured for receiving a lean premixed gaseous fuel and oxidant stream, where the fuel includes hydrogen gas. The trapped vortex combustor is configured to receive the lean premixed fuel and oxidant stream at a velocity which significantly exceeds combustion flame speed in a selected lean premixed fuel and oxidant mixture. The combustor is configured to operate at relatively high bulk fluid velocities while maintaining stable combustion, and low NOx emissions. The combustor is useful in gas turbines in a process of burning synfuels, as it offers the opportunity to avoid use of diluent gas to reduce combustion temperatures. The combustor also offers the possibility of avoiding the use of selected catalytic reaction units for removal of oxides of nitrogen from combustion gases exiting a gas turbine.

Steele, Robert C. (Woodinville, WA); Edmonds, Ryan G. (Renton, WA); Williams, Joseph T. (Kirkland, WA); Baldwin, Stephen P. (Winchester, MA)

2009-10-20T23:59:59.000Z

303

Using hydroponic biomass to regulate NOx emissions in long range space travel  

DOE Green Energy (OSTI)

The incineration of wastes is one of the most promising reclamation technologies being developed for life support in long range space travel. However, incineration in a closed environment will build up hazardous NOx if not regulated. A technology that can remove NOx under microgravity conditions without the need of expendables is required. Activated carbon prepared from inedible wheat straw and sweet potato stalk that were grown under hydroponic conditions has been demonstrated to be able to adsorb NO and reduce it to N{sub 2}. The high mineral content in the activated carbon prepared from hydroponic biomass prohibits high surface area production and results in inferior NO adsorption capacity. The removal of mineral from the carbon circumvents the aforementioned negative effect. The optimal production conditions to obtain maximum yield and surface area for the activated carbon have been determined. A parametric study on the NO removal efficiency by the activated carbon has been done. The presence of oxygen in flue gas is essential for effective adsorption of NO by the activated carbon. On the contrary, water vapor inhibits the adsorption efficiency of NO. The NO adsorption capacity and the duration before it exceeds the Space Maximum Allowable Concentration were determined. After the adsorption of NO, the activated carbon can be regenerated for reuse by heating the carbon bed under anaerobic conditions to above 500 C, when the adsorbed NO is reduced to N{sub 2}. The regenerated activated carbon exhibits improved NO adsorption efficiency. However, regeneration had burned off a small percentage of the activated carbon.

Xu, X.H.; Shi, Y.; Chang, S.G.; Fisher, J.; Pisharody, S.; Moran, M.; Wignarajah, K.

2002-02-01T23:59:59.000Z

304

Formation of NOx precursors during Chinese pulverized coal pyrolysis in an arc plasma jet  

Science Conference Proceedings (OSTI)

The formation of NOx precursors (HCN and NH{sub 3}) from the pyrolysis of several Chinese pulverized coals in an arc plasma jet was investigated through both thermodynamic analysis of the C-H-O-N system and experiments. Results of thermodynamic analysis show that the dominant N-containing gaseous species is HCN together with a small amount of ammonia above the temperature of 2000 K. The increase of H content advances the formation of HCN and NH{sub 3}, but the yields of HCN and NH{sub 3} are decreased with a high concentration of O in the system. These results are accordant with the experimental data. The increasing of input power promotes the formation of HCN and NH{sub 3} from coal pyrolysis in an arc plasma jet. Tar-N is not formed during the process. The yield of HCN changes insignificantly with the changing of the residence time of coal particles in the reactor, but that of NH{sub 3} decreases as residence times increase because of the relative instability at high temperature. Adsorption and gasification of CO{sub 2} on the coal surface also can restrain the formation of HCN and NH{sub 3} compare to the results in an Ar plasma jet. Yields of HCN and NH{sub 3} are sensitive to the coal feeding rate, indicating that NOx precursors could interact with the nascent char to form other N-containing species. The formation of HCN and NH{sub 3} during coal pyrolysis in a H{sub 2}/Ar plasma jet are not dependent on coal rank. The N-containing gaseous species is released faster than others in the volatiles during coal pyrolysis in an arc plasma jet, and the final nitrogen content in the char is lower than that in the parent coal, which it is independent of coal type. 16 refs., 9 figs., 1 tab.

Wei-ren Bao; Jin-cao Zhang; Fan Li; Li-ping Chang [Taiyuan University of Technology, Taiyuan (China). Key Laboratory of Coal Science and Technology

2007-08-15T23:59:59.000Z

305

Effect of B20 and Low Aromatic Diesel on Transit Bus NOx Emissions Over Driving Cycles with a Range of Kinetic Intensity  

DOE Green Energy (OSTI)

Oxides of nitrogen (NOx) emissions for transit buses for up to five different fuels and three standard transit duty cycles were compared to establish whether there is a real-world biodiesel NOx increase for transit bus duty cycles and engine calibrations. Six buses representing the majority of the current national transit fleet and including hybrid and selective catalyst reduction systems were tested on a heavy-duty chassis dynamometer with certification diesel, certification B20 blend, low aromatic (California Air Resources Board) diesel, low aromatic B20 blend, and B100 fuels over the Manhattan, Orange County and UDDS test cycles. Engine emissions certification level had the dominant effect on NOx; kinetic intensity was the secondary driving factor. The biodiesel effect on NOx emissions was not statistically significant for most buses and duty cycles for blends with certification diesel, except for a 2008 model year bus. CARB fuel had many more instances of a statistically significant effect of reducing NOx. SCR systems proved effective at reducing NOx to near the detection limit on all duty cycles and fuels, including B100. While offering a fuel economy benefit, a hybrid system significantly increased NOx emissions over a same year bus with a conventional drivetrain and the same engine.

Lammert, M. P.; McCormick, R. L.; Sindler, P.; Williams, A.

2012-10-01T23:59:59.000Z

306

Data summary report for fission product release test VI-6  

SciTech Connect

Test VI-6 was the sixth test in the VI series conducted in the vertical furnace. The fuel specimen was a 15.2-cm-long section of a fuel rod from the BR3 reactor in Belgium. The fuel had experienced a burnup of {approximately}42 MWd/kg, with inert gas release during irradiation of {approximately}2%. The fuel specimen was heated in an induction furnace at 2300 K for 60 min, initially in hydrogen, then in a steam atmosphere. The released fission products were collected in three sequentially operated collection trains designed to facilitate sampling and analysis. The fission product inventories in the fuel were measured directly by gamma-ray spectrometry, where possible, and were calculated by ORIGEN2. Integral releases were 75% for {sup 85}Kr, 67% for {sup 129}I, 64% for {sup 125}Sb, 80% for both {sup 134}Cs and {sup 137}Cs, 14% for {sup 154}Eu, 63% for Te, 32% for Ba, 13% for Mo, and 5.8% for Sr. Of the totals released from the fuel, 43% of the Cs, 32% of the Sb, and 98% of the Eu were deposited in the outlet end of the furnace. During the heatup in hydrogen, the Zircaloy cladding melted, ran down, and reacted with some of the UO{sub 2} and fission products, especially Te and Sb. The total mass released from the furnace to the collection system, including fission products, fuel, and structural materials, was 0.57 g, almost equally divided between thermal gradient tubes and filters. The release behaviors for the most volatile elements, Kr and Cs, were in good agreement with the ORNL Diffusion Model.

Osborne, M.F.; Lorenz, R.A.; Travis, J.R.; Webster, C.S.; Collins, J.L. [Oak Ridge National Lab., TN (United States)

1994-03-01T23:59:59.000Z

307

Plutonium(V/VI) Reduction by the Metal-Reducing Bacteria  

E-Print Network (OSTI)

We examined the ability of the metal-reducing bacteria Geobacter metallireducens GS-15 and Shewanella oneidensis MR-1 to reduce Pu(VI) and Pu(V). Cell suspensions of both bacteria reduced oxidized Pu [a mixture of Pu(VI) and Pu(V)] to Pu(IV). The rate of plutonium reduction was similar to the rate of U(VI) reduction obtained under similar conditions for each bacteria. The rates of Pu(VI) and U(VI) reduction by cell suspensions of S. oneidensis were slightly higher than the rates observed with G. metallireducens. The reduced form of Pu was characterized as aggregates of nanoparticulates of Pu(IV). Transmission electron microscopy images of the solids obtained from the cultures after the reduction of Pu(VI) and Pu(V) by S. oneidensis show that the Pu precipitates have a crystalline structure. The nanoparticulates of Pu(IV) were precipitated on the surface of or within the cell walls of the bacteria. The production of Pu(III) was not observed, which indicates that Pu(IV) was the stable form of reduced Pu under these experimental conditions. Experiments examining the ability of these bacteria to use Pu(VI) as a terminal electron acceptor for growth were inconclusive. A slight increase in cell density was observed for both G. metallireducens and S. oneidensis when Pu(VI) was provided as the sole electron acceptor; however, Pu(VI) concentrations decreased similarly in both the experimental and control cultures. Effective bioremediation and waste management strategies

Gary A. Icopini; Joe G. Lack; Larry E. Hersman; Mary P. Neu; Hakim Boukhalfa

2009-01-01T23:59:59.000Z

308

Microsoft Word - Tracking the Sun VI_working version.docx  

NLE Websites -- All DOE Office Websites (Extended Search)

VI VI An Historical Summary of the Installed Price of Photovoltaics in the United States from 1998 to 2012 Galen Barbose, NaĂŻm Darghouth, Samantha Weaver, and Ryan Wiser July 2013 Tracking the Sun VI An Historical Summary of the Installed Price of Photovoltaics in the United States from 1998 to 2012 Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory Primary Authors: Galen Barbose, NaĂŻm Darghouth, Samantha Weaver, Ryan Wiser Executive Summary ...................................................................................................... 1 1. Introduction .............................................................................................................. 5 2. Data Summary .......................................................................................................... 8

309

Next Generation Natural Gas Vehicle Program Phase I: Clean Air Partners 0.5 g/hp-h NOx Engine Concept; Final Report  

DOE Green Energy (OSTI)

Subcontractor report details work done by Clean Air Partners to develop 0.5 g/hp-h NOx natural gas engine exhaust gas recirculation (EGR) technology for the Next Generation Natural Gas Vehicle Program.

Wong, H. C.

2003-07-01T23:59:59.000Z

310

A cost-effectiveness analysis of alternative ozone control strategies : flexible nitrogen oxide (NOx) abatement from power plants in the eastern United States  

E-Print Network (OSTI)

Ozone formation is a complex, non-linear process that depends on the atmospheric concentrations of its precursors, nitrogen oxide (NOx) and Volatile Organic Compounds (VOC), as well as on temperature and the available ...

Sun, Lin, S.M. Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

311

APBF-DEC NOx Adsorber/DPF Project: SUV / Pick-up Truck Platform  

DOE Green Energy (OSTI)

The objective of this project is to determine the influence of diesel fuel composition on the ability of NOX adsorber catalyst (NAC) technology, in conjunction with diesel particle filters (DPFs), to achieve stringent emissions levels with a minimal fuel economy impact. The test bed for this project was intended to be a light-duty sport utility vehicle (SUV) with a goal of achieving light-duty Tier 2-Bin 5 tail pipe emission levels (0.07 g/mi. NOX and 0.01 g/mi. PM). However, with the current US market share of light-duty diesel applications being so low, no US 2002 model year (MY) light-duty truck (LDT) or SUV platforms equipped with a diesel engine and having a gross vehicle weight rating (GVWR) less than 8500 lb exist. While the current level of diesel engine use is relatively small in the light-duty class, there exists considerable potential for the diesel engine to gain a much larger market share in the future as manufacturers of heavy light-duty trucks (HLDTs) attempt to offset the negative impact on cooperate average fuel economy (CAFE) that the recent rise in market share of the SUVs and LDTs has caused. The US EPA Tier 2 emission standards also contain regulation to prevent the migration of heavy light-duty trucks and SUV's to the medium duty class. This preventive measure requires that all medium duty trucks, SUV's and vans in the 8,500 to 10,000 lb GVWR range being used as passenger vehicles, meet light-duty Tier 2 standards. In meeting the Tier 2 emission standards, the HLDTs and medium-duty passenger vehicles (MDPVs) will face the greatest technological challenges. Because the MDPV is the closest weight class and application relative to the potential upcoming HLDTs and SUV's, a weight class compromise was made in this program to allow the examination of using a diesel engine with a NAC-DPF system on a 2002 production vehicle. The test bed for this project is a 2500 series Chevrolet Silverado equipped with a 6.6L Duramax diesel engine certified to 2002 MY Federal heavy-duty and 2002 MY California medium-duty emission standards. The stock vehicle included cooled air charge (CAC), turbocharger (TC), direct fuel injection (DFI), oxidation catalyst (OC), and exhaust gas recirculation (EGR)

Webb, C; Weber, P; Thornton,M

2003-08-24T23:59:59.000Z

312

The data base of the standards and related cross sections after ENDF/B-VI  

DOE Green Energy (OSTI)

A brief description is given of the procedure used in the global evaluation of the standards and other important cross sections for ENDF/B-VI. The results of the evaluation are compared with new or revised experimental data.

Poenitz, W.P. [Argonne National Lab., IL (United States); Carlson, A.D. [National Inst. of Standards and Technology, Washington, DC (United States)

1992-12-31T23:59:59.000Z

313

The data base of the standards and related cross sections after ENDF/B-VI  

DOE Green Energy (OSTI)

A brief description is given of the procedure used in the global evaluation of the standards and other important cross sections for ENDF/B-VI. The results of the evaluation are compared with new or revised experimental data.

Poenitz, W.P. (Argonne National Lab., IL (United States)); Carlson, A.D. (National Inst. of Standards and Technology, Washington, DC (United States))

1992-01-01T23:59:59.000Z

314

Initial data testing of ENDF/B-VI for thermal reactor benchmark analysis  

SciTech Connect

This paper summarizes some early data testing of ENDF/B-VI by members of the Cross Section Evaluation Working Group (CSEWG) Thermal Reactor Data Testing Subcommittee. Projections of ENDF/B-VI performance in thermal benchmark calculations are beginning to be available; and in some cases the calculations were performed with only a portion of the cross sections taken from version VI, the remainder taken from earlier data files. A factor delaying the thermal reactor data testing is that the final {sup 235}U evaluation has not yet been officially released--only an earlier evaluation with a constant low-energy eta value (like in version V) is currently available. The official version VI {sup 235}U evaluation (scheduled for release as Mod-1) gives a drooping eta variation at low energy; i.e., eta decreases with decreasing energy. This behavior was suggested by European studies to improve the calculation of temperature coefficients in LWRs.

Williams, M.L. [Louisiana State Univ., Baton Rouge, LA (United States). Nuclear Science Center; Kahler, A.C. [Bettis Atomic Power Lab., West Mifflin, PA (United States); MacFarlane, R.E. [Los Alamos National Lab., NM (United States); Milgram, M. [Atomic Energy of Canada Ltd., Chalk River, ON (Canada). Chalk River Nuclear Labs.; Wright, R.Q. [Oak Ridge National Lab., TN (United States)

1991-12-31T23:59:59.000Z

315

TY RPRT T1 Tracking the Sun VI An Historical Summary of the Installed...  

NLE Websites -- All DOE Office Websites (Extended Search)

Tracking the Sun VI An Historical Summary of the Installed Price of Photovoltaics in the United States from to A1 Galen L Barbose A1 Na m Darghouth A1 Samantha Weaver A1 Ryan H...

316

Lawrence Livermore pulsed sphere benchmark analysis of MCNP{trademark} ENDF/B-VI  

Science Conference Proceedings (OSTI)

Twenty-eight Lawrence Livermore pulsed sphere experiments were modeled using MCNP for the purpose of bench- marking the new MCNP ENDF/B-VI data library. The twenty-eight pulsed sphere experiments contain thirty-four of the 124 isotopic or elemental evaluations contained in the new ENDF/B-VI set. The ENDF/B-VI results are compared to experimental neutron time-of-flight data, the results obtained from using ENDF/B-V, and against an additional data set, the MCNP Recommended Library, which includes Los Alamos group T-2 evaluations. The results show that ENDF/B-VI results give better or comparable results in comparison to experiment to ENDF/B-V in many cases, and do not deviate grossly in the other cases.

Court, J.D.; Brockhoff, R.C.; Hendricks, J.S.

1994-12-01T23:59:59.000Z

317

Selective catalytic reduction system and process for treating NOx emissions using a palladium and rhodium or ruthenium catalyst  

Science Conference Proceedings (OSTI)

A process for the catalytic reduction of nitrogen oxides (NOx) in a gas stream (29) in the presence of H.sub.2 is provided. The process comprises contacting the gas stream with a catalyst system (38) comprising zirconia-silica washcoat particles (41), a pre-sulfated zirconia binder (44), and a catalyst combination (40) comprising palladium and at least one of rhodium, ruthenium, or a mixture of ruthenium and rhodium.

Sobolevskiy, Anatoly (Orlando, FL); Rossin, Joseph A. (Columbus, OH); Knapke, Michael J. (Columbus, OH)

2011-07-12T23:59:59.000Z

318

Program on Technology Innovation: Effect of Hydrogen Addition on Part Load Operation of Dry, Low NOx Combustors  

Science Conference Proceedings (OSTI)

Emissions and operability of Dry, Low NOx gas turbines at part load can be an issue for operators. One potential remedy for this problem is the addition of hydrogen to natural gas supplies when operating at part load. This report examines the effect of hydrogen addition on part load emissions and operating envelope. Chemical Reactor Modeling is used to simulate the fluid mechanics of the gas turbine combustor, while allowing for accurate consideration of the chemical kinetics which control emission produ...

2006-09-11T23:59:59.000Z

319

Low Temperature Combustion using nitrogen enrichment to mitigate nox from large bore natural gas-filled engines.  

DOE Green Energy (OSTI)

Low Temperature Combustion (LTC) is identified as one of the pathways to meet the mandatory ultra low NOx emissions levels set by regulatory agencies. This phenomenon can be realized by utilizing various advanced combustion control strategies. The present work discusses nitrogen enrichment using an Air Separation Membrane (ASM) as a better alternative to the mature Exhaust Gas Re-circulation (EGR) technique currently in use. A 70% NOx reduction was realized with a moderate 2% nitrogen enrichment while maintaining power density and simultaneously improving Fuel Conversion Efficiency (FCE). The maximum acceptable Nitrogen Enriched Air (NEA) in a single cylinder spark ignited natural gas engine was investigated in this paper. Any enrichment beyond this level degraded engine performance both in terms of power density and FCE, and unburned hydrocarbon (UHC) emissions. The effect of ignition timing was also studied with and without N2 enrichment. Finally, lean burn versus stoichiometric operation utilizing NEA was compared. Analysis showed that lean burn operation along with NEA is one of the effective pathways for realizing better FCE and lower NOx emissions.

Biruduganti, M. S.; Gupta, S. B.; Sekar, R. R. (Energy Systems)

2008-01-01T23:59:59.000Z

320

Thermal Durability of Cu-CHA NH3-SCR Catalysts for Diesel NOx Reduction  

SciTech Connect

Multiple catalytic functions (NOx conversion, NO and NH3 oxidation, NH3 storage) of a commercial Cu-zeolite urea/NH3-SCR catalyst were assessed in a laboratory fixed-bed flow reactor system after differing degrees of hydrothermal aging. Catalysts were characterized by using x-ray diffraction (XRD), 27Al solid state nuclear magnetic resonance (NMR) and transmission electron microscopy (TEM) / energy dispersive X-ray (EDX) spectroscopy to develop an understanding of the degradation mechanisms during catalyst aging. The catalytic reaction measurements of laboratory-aged catalysts were performed, which allows us to obtain a universal curve for predicting the degree of catalyst performance deterioration as a function of time at each aging temperature. Results show that as the aging temperature becomes higher, the zeolite structure collapses in a shorter period of time after an induction period. The decrease in SCR performance was explained by zeolite structure destruction and/or Cu agglomeration, as detected by XRD/27Al NMR and by TEM/EDX, respectively. Destruction of the zeolite structure and agglomeration of the active phase also results in a decrease in the NO/NH3 oxidation activity and the NH3 storage capacity of the catalyst. Selected laboratory aging conditions (16 h at 800oC) compare well with a 135,000 mile vehicle-aged catalyst for both performance and characterization criteria.

Schmieg, Steven J.; Oh, Se H.; Kim, Chang H.; Brown, David B.; Lee, Jong H.; Peden, Charles HF; Kim, Do Heui

2012-04-30T23:59:59.000Z

Note: This page contains sample records for the topic "vi sox nox" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Economics of pollution trading for SO{sub 2} and NOx  

Science Conference Proceedings (OSTI)

For years economists have urged policymakers to use market-based approaches such as cap-and-trade programs or emission taxes to control pollution. The sulphur dioxide (SO{sub 2}) allowance market created by Title IV of the 1990 US Clean Air Act Amendments represents the first real test of the wisdom of economists' advice. Subsequent urban and regional applications of NOx emission allowance trading took shape in the 1990s in the United States, culminating in a second large experiment in emission trading in the eastern United States that began in 2003. This paper provides an overview of the economic rationale for emission trading and a description of the major US programs for SO{sub 2} and nitrogen oxides. These programs are evaluated along measures of performance including cost savings, environmental integrity, and incentives for technological innovation. The authors offer lessons for the design of future programs including, most importantly, those reducing carbon dioxide. 128 refs., 1 fig., 1 tab.

Dallas Burtraw; David A. Evans; Alan Krupnick; Karen Palmer; Russell Toth

2005-03-15T23:59:59.000Z

322

Ammonia conversion and NOx formation in laminar coflowing nonpremixed methane-air flames  

Science Conference Proceedings (OSTI)

This paper reports on a combined experimental and modeling investigation of NOx formation in nitrogen-diluted laminar methane diffusion flames seeded with ammonia. The methane-ammonia mixture is a surrogate for biomass fuels which contain significant fuel-bound nitrogen. The experiments use flue-gas sampling to measure the concentration of stable species in the exhaust gas, including NO, O2, CO, and CO2. The computations evolve a two-dimensional low Mach number model using a solution-adaptive projection algorithm to capture fine-scale features of the flame. The model includes detailed thermodynamics and chemical kinetics, differential diffusion, buoyancy, and radiative losses. The model shows good agreement with the measurements over the full range of experimental NH3 seeding amounts. As more NH3 is added, a greater percentage is converted to N2 rather than to NO. The simulation results are further analyzed to trace the changes in NO formation mechanisms with increasing amounts of ammonia in the fuel.

Sullivan, Neal; Jensen, Anker; Glarborg, Peter; Day, Marcus S.; Grcar, Joseph F.; Bell, John B.; Pope, Christopher J.; Kee, Robert J.

2002-01-07T23:59:59.000Z

323

Apparatus and method for burning a lean, premixed fuel/air mixture with low NOx emission  

DOE Patents (OSTI)

An apparatus for enabling a burner to stably burn a lean fuel/air mixture. The burner directs the lean fuel/air mixture in a stream. The apparatus comprises an annular flame stabilizer; and a device for mounting the flame stabilizer in the fuel/air mixture stream. The burner may include a body having an internal bore, in which case, the annular flame stabilizer is shaped to conform to the cross-sectional shape of the bore, is spaced from the bore by a distance greater than about 0.5 mm, and the mounting device mounts the flame stabilizer in the bore. An apparatus for burning a gaseous fuel with low NOx emissions comprises a device for premixing air with the fuel to provide a lean fuel/air mixture; a nozzle having an internal bore through which the lean fuel/air mixture passes in a stream; and a flame stabilizer mounted in the stream of the lean fuel/air mixture. The flame stabilizer may be mounted in the internal bore, in which case, it is shaped and is spaced from the bore as just described. In a method of burning a lean fuel/air mixture, a lean fuel/air mixture is provided, and is directed in a stream; an annular eddy is created in the stream of the lean fuel/air mixture; and the lean fuel/air mixture is ignited at the eddy.

Kostiuk, Larry W. (Edmonton, CA); Cheng, Robert K. (Kensington, CA)

1996-01-01T23:59:59.000Z

324

Energy Efficiency/Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP), Preliminary Report: Integrated NOx Emissions Savings from EE/RE Programs Statewide  

E-Print Network (OSTI)

The Energy Systems Laboratory (ESL), at the Texas Engineering Experiment Station of the Texas A&M University System, in fulfillment of its responsibilities under Texas Health and Safety Code Ann. 388.003 (e), Vernon Supp. 2002, submits this sixth annual report, ‘Energy Efficiency/Renewable Energy (EE/RE) Impact in the Texas Emissions Reduction Plan (Preliminary Report)’ to the Texas Commission on Environmental Quality. In this preliminary report the NOx emissions savings from the energy-efficiency programs from multiple Texas State Agencies working under Senate Bill 5 and Senate Bill 7 in a uniform format to allow the TECQ to consider the combined savings for Texas’ State Implementation Plan (SIP) planning purposes. This required that the analysis should include the cumulative savings estimates from all projects projected through 2020 for both the annual and Ozone Season Day (OSD) NOx reductions. The NOx emissions reduction from all these programs were calculated using estimated emissions factors for 2007 from the US Environmental Protection Agency (US EPA) eGRID database, which had been specially prepared for this purpose. In 2007 the cumulative total annual electricity savings from all programs is 12,591,561 MWh/yr (8,326 tons-NOx/year). The total cumulative OSD electricity savings from all programs is 37,421 MWh/day, which would be a 1,559 MW average hourly load reduction during the OSD period (25.05 tons-NOx/day). By 2013 the total cumulative annual electricity savings from will be 28,802,074 MWh/year (18,723 tons-NOx/year). The total cumulative OSD electricity savings from all programs will be 88,560 MWh/day, which would be 3,690 MW average hourly load reduction during the OSD period (58.47 tons-NOx/day).

Degelman, L.; Mukhopadhyay, J.; McKelvey, K.; Montgomery, C.; Baltazar-Cervantes, J. C.; Liu, Z.; Gilman, D.; Culp, C.; Yazdani, B.; Haberl, J. S.

2008-08-29T23:59:59.000Z

325

Thermodynamics of the Complexation of Uranium(VI) by oxalate in aqueous solution at 10-70oC  

E-Print Network (OSTI)

O. Tochiyama in Chemical Thermodynamics of Compounds andUpdate on the Chemical Thermodynamics of Uranium, Neptunium,Thermodynamics of the Complexation of Uranium(VI) with

Di Bernardo, Plinio

2009-01-01T23:59:59.000Z

326

Rate-limited U(VI) desorption during a small-scale tracer test in a hetereogeneous uranium contaminated aquifer  

E-Print Network (OSTI)

reactive transport modeling of uranium bioremediation fieldof calcium on aqueous uranium(VI) speciation and adsorptiontransport modeling of a uranium bioremediation field

Fox, P.M.

2013-01-01T23:59:59.000Z

327

Microbial Reductive Transformation of Phyllosilicate Fe(III) and U(VI) in Fluvial Subsurface Sediments  

SciTech Connect

The microbial reduction of Fe(III) and U(VI) were investigated in shallow aquifer sediments collected from subsurface Pleistocene flood deposits near the Hanford Reach of the Columbia River in Washington State. Increases in 0.5 N HCl-extractable Fe(II) were observed in incubated sediments and 57Fe Mössbauer spectroscopy revealed that Fe(III) associated with phyllosilicates and pyroxene was reduced to Fe(II). Aqueous uranium(VI) concentrations decreased in incubated Hanford sediments with the rate and extent being greater in sediment amended with organic carbon. X-ray absorption spectroscopy of bioreduced sediments indicated that 67-77% of the U signal was U(VI), probably as an adsorbed species associated with a new or modified reactive mineral phase. Phylotypes within the Deltaproteobacteria were more common in Hanford sediments incubated with U(VI) than without and in U(VI)-free incubations, members of the Clostridiales were dominant with sulfate-reducing phylotypes more common in the sulfate-amended sediments. These results demonstrate the potential for anaerobic reduction phyllosilicate Fe(III) and sulfate in Hanford unconfined aquifer sediments and biotransformations involving reduction and adsorption leading to decreased aqueous U concentrations.

Lee, Ji-Hoon; Fredrickson, Jim K.; Kukkadapu, Ravi K.; Boyanov, Maxim I.; Kemner, Kenneth M.; Lin, Xueju; Kennedy, David W.; Bjornstad, Bruce N.; Konopka, Allan; Moore, Dean A.; Resch, Charles T.; Phillips, Jerry L.

2012-04-14T23:59:59.000Z

328

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 2  

NLE Websites -- All DOE Office Websites (Extended Search)

SOx-NOx-Rox Box(tm) Flue Gas Cleanup Demonstration Project - Project Brief [PDF-317KB] SOx-NOx-Rox Box(tm) Flue Gas Cleanup Demonstration Project - Project Brief [PDF-317KB] The Babcock & Wilcox Co., Dilles Bottom, OH PROGRAM PUBLICATIONS Final Reports SOx-NOx-Rox Box(tm) Flue Gas Cleanup Demonstration Final Report [PDF-27.5MB] (Sept 1995) CCT Reports: Project Performance Summaries, Post-Project Assessments, & Topical Reports SOx-NOx-Rox Box(tm) Flue Gas Cleanup Demonstration: A DOE Assessment [PDF-296KB] (Dec 2000) SOx-NOx-Rox Box(tm) Flue Gas Cleanup Demonstration Project, Project Performance Summary [PDF-1.4MB] (June 1999) Technologies for the Combined Control of Sulfur Dioxide and Nitrogen Oxides Emissions from Coal-Fired Boilers, Topical Report No. 13 [PDF-500KB] (May 1999) Design Reports 5 MWe SNRBT Demonstration Facility: Detailed Design Report [PDF-4.5MB] (Nov 1992)

329

SELECTIVE REDUCTION OF NOX IN OXYGEN RICH ENVIRONMENTS WITH PLASMA-ASSISTED CATALYSIS: CATALYST DEVELOPMENT AND MECHANISTIC STUDIES  

DOE Green Energy (OSTI)

The control of NOx (NO and NO2) emissions from so-called ''lean-burn'' vehicle engines remains a challenge. In recent years, there have been a number of reports that show that a plasma device combined with a catalyst can reduce as high as 90% or more of NOx in simulated diesel and other ''lean-burn'' exhaust. In the case of propylene containing simulated diesel exhaust, the beneficial role of a plasma treatment is now thought to be due to oxidation of NO to NO2, and the formation of partially oxidized hydrocarbons that are more active for the catalytic reduction of NO2 than propylene. Thus, the overall system can be most usefully described as hydrocarbon selective catalytic reduction (SCR) enhanced by 'reforming' the exhaust with a non-thermal plasma (NTP) device. For plasma-enhanced catalysis, both zeolite- and alumina-based materials have shown high activity, albeit in somewhat different temperature ranges, when preceded by an NTP reactor. This paper will briefly describe our research efforts aimed at optimizing the catalyst materials for NTP-catalysis devices based, in part, on our continuing studies of the NTP- and catalytic-reaction mechanisms. Various alkali- and alkaline earth-cation-exchanged Y zeolites have been prepared, their material properties characterized, and they have been tested as catalytic materials for NOx reduction in laboratory NTP-catalysis reactors. Interestingly, NO2 formed in the plasma and not subsequently removed over these catalysts, will back-convert to NO, albeit to varying extents depending upon the nature of the cation. Besides this comparative reactivity, we will also discuss selected synthesis strategies for enhancing the performance of these zeolite-based catalyst materials. A particularly important result from our mechanistic studies is the observation that aldehydes, formed during the plasma treatment of simulated diesel exhaust, are the important species for the reduction of NOx to N2. Indeed, acetaldehyde has been found to be especially effective in the thermal reduction of both NO and NO2 over Ba- and Na-Y zeolite catalysts.

Peden, C; Barlow, S; Hoard, J; Kwak, J; *Balmer-Millar, M; *Panov, A; Schmieg, S; Szanyi, J; Tonkyn, R

2003-08-24T23:59:59.000Z

330

T-637: VMSA-2011-0009 VMware hosted product updates, ESX patches and VI ,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7: VMSA-2011-0009 VMware hosted product updates, ESX patches 7: VMSA-2011-0009 VMware hosted product updates, ESX patches and VI , Client update resolve multiple T-637: VMSA-2011-0009 VMware hosted product updates, ESX patches and VI , Client update resolve multiple June 6, 2011 - 3:04pm Addthis PROBLEM: VMSA-2011-0009 VMware hosted product updates, ESX patches and VI , Client update resolve multiple PLATFORM: Supported Platforms VMSA-2011-0009 ABSTRACT: This patch provides a fix for the following three security issues in the VMware Host Guest File System (HGFS). None of these issues affect Windows based Guest Operating Systems. CVE-2011-2146 Mount.vmhgfs Information Disclosure, information disclosure via a vulnerability that allows an attacker with access to the Guest to determine if a path exists in the Host filesystem and whether it is a file or directory regardless of permissions.

331

Those early days as we remember them (Part VI) - Met Lab & Early Argonne History  

NLE Websites -- All DOE Office Websites (Extended Search)

VI | Met Lab and Early Argonne History | Argonne National Laboratory VI | Met Lab and Early Argonne History | Argonne National Laboratory 1/2 Those early days as we remember them Part Vl Lester C. Furney (second from right), who formerly handled public relations at Argonne and is author of the article below, is pictured here in February 1956 with (l to r) Major General D. J. Keirn, Major General James McCormack, Jr. (Ret.), and Lt. General James H. Doolittle (Ret.) during a

332

Methodology to Calculate NOx Emissions Reductions from the Implementation of the 2000 IECC/IRC Conservation Code in Texas  

E-Print Network (OSTI)

Four areas in Texas have been designated by the United States Environmental Protection Agency (EPA) as non-attainment areas because ozone levels exceed the National Ambient Air Quality Standard (NAAQS) maximum allowable limits. These areas face severe sanctions if attainment is not reached by 2007. Four additional areas in the state are also approaching national ozone limits (i.e., affected areas). In 2001, the Texas State Legislature formulated and passed the Texas Emissions Reduction Plan (TERP), to reduce ozone levels by encouraging the reduction of emissions of NOx by sources that are currently not regulated by the state. An important part of this legislation is the State's energy efficiency program, which includes reductions in energy use and demand that are associated with the adoption of the 2001 IECC, which represents one of the first times that the EPA is considering emissions reductions credits from energy conservation - an important new development for building efficiency professionals, since this could pave the way for documented procedures for financial reimbursement for building energy conservation from the state's emissions reductions funding. This paper provides a detailed discussion of the procedures that have been used to calculate the electricity savings and NOx reductions from residential construction in non-attainment and affected counties using the eGRID database. The previous paper by Haberl et al. (2004) presents results from the application of the methodology that is detailed in this paper.

Haberl, J. S.; Im, P.; Culp, C.

2004-01-01T23:59:59.000Z

333

Calculation of NOx Emission Reduction from Implementation of the 2000 IECC/IRC Conservation Code in Texas  

E-Print Network (OSTI)

Four areas in Texas have been designated by the United States Environmental Protection Agency (EPA) as non-attainment areas because ozone levels exceed the National Ambient Air Quality Standard (NAAQS) maximum allowable limits. These areas face severe sanctions if attainment is not reached by 2007. Four additional areas in the state are also approaching national ozone limits (i.e., affected areas)1. In 2001, the Texas State Legislature formulated and passed Senate Bill 5 to reduce ozone levels by encouraging the reduction of emissions of NOx by sources that are currently not regulated by the state2. An important part of this legislation is the State's energy efficiency program, which includes reductions in energy use and demand that are associated with the adoption of the 2001 IECC3, which represents one of the first times that the EPA is considering emissions reductions credits from energy conservation - an important new development for building efficiency professionals, since this could pave the way for documented procedures for financial reimbursement for building energy conservation from the state's emissions reductions funding. This paper reviews the procedures that have been used to calculate the electricity savings from residential construction in non-attainment and affected counties. Results are presented that show the annual electricity savings and NOx reductions from implementation of the 2001 IECC to single family residences in 2002, which use the DOE-2 simulation program.

Turner, W. D.; Yazdani, B.; Im, P.; Verdict, M.; Bryant, J.; Fitzpatrick, T.; Haberl, J. S.; Culp, C.

2003-01-01T23:59:59.000Z

334

A Methodology for Calculating Integrated Nox Emissions Reduction from Energy Efficiency and Renewable Energy (EE/RE) Programs Across State Agencies in Texas  

E-Print Network (OSTI)

This paper presents a summary of the integrated NOx emissions reduction calculation procedures developed by the Energy Systems Laboratory (ESL) to satisfy the reporting requirements for Senate Bill 5. These procedures are used to report annual NOx emissions reduction to the Texas Commission on Environmental Quality (TCEQ) from the state-wide energy efficiency and renewable energy programs of the Laboratory, Federal buildings, furnace pilot light upgrades, the Texas Public Utility Commission (PUC), the Texas State Energy Conservation Office (SECO) and electricity generated from wind power.

Gilman, D.; Yazdani, B.; Haberl, J. S.; Liu, Z.; Mukhopadhyay, J.; Culp, C.; Kim, S.; Baltazar-Cervantes, J. C.; Im, P.

2007-12-01T23:59:59.000Z

335

Molecular Interactions of Plutonium(VI) with Synthetic Manganese-Substituted Goethite  

E-Print Network (OSTI)

in aqueous solution for Pu(VI) taken from Guillaumont etTable 3. Least-squares fits of Pu L III -edge XANES data toIV) Figure 4. Energy (eV) Pu Solution Speciation pH Figure

Hu, Yung-Jin

2011-01-01T23:59:59.000Z

336

Characterization of U(VI) Sorption-Desorption Processes and Model Upscaling  

SciTech Connect

The objectives of the overall collaborative EMSP effort (with which this project is associated) were to characterize sorption and desorption processes of U(VI) on pristine and contaminated Hanford sediments over a range of sediment facies and materials properties and to relate such characterization both to fundamental molecular-scale understanding and field-scale models of geochemistry and mass transfer. The research was intended to provide new insights on the mechanisms of U(VI) retardation at Hanford, and to allow the development of approaches by which laboratory-developed geochemical models could be upscaled for defensible field-scale predictions of uranium transport in the environment. Within this broader context, objectives of the JHU-based project were to test hypotheses regarding the coupled roles of adsorption and impermeable-zone diffusion in controlling the fate and transport of U(VI) species under conditions of comparatively short-term exposure. In particular, this work tested the following hypotheses: (1) the primary adsorption processes in the Hanford sediment over the pH range of 7 to 10 are surface complexation reactions of aqueous U(VI) hydroxycarbonate and carbonate complexes with amphoteric edge sites on detrital phyllosilicates in the silt/clay size fraction; (2) macroscopic adsorption intensity (at given aqueous conditions) is a function of mineral composition and aquatic chemistry; and (3) equilibrium sorption and desorption to apply in short-term, laboratory-spiked pristine sediments; and (4) interparticle diffusion can be fully understood in terms of a model that couples molecular diffusion of uranium species in the porewater with equilibrium sorption under the relevant aqueous conditions. The primary focus of the work was on developing and applying both models and experiments to test the applicability of "local equilibrium" assumptions in the modeling interpretation of sorption retarded interparticle diffusion, as relevant to processes of U(VI) diffusion in silt/clay layers. Batch isotherm experiments were first used to confirm sorption isotherms under the intended test conditions and diffusion cell experiments were then conducted to explore the diffusion hypotheses. Important new information was obtained about the role of aqueous calcium and solid calcium carbonate in controlling sorption equilibrium with Hanford sediments. The retarded interparticle diffusion model with local sorption equilibrium was shown to very successfully simulate diffusion at high aqueous concentration of U(VI). By contrast, however, diffusion data obtained at low concentration suggested nonequilibrium of sorption even at diffusion time scales. Such nonequilibrium effects at low concentration are likely to be the result of sorption retarded intraparticle diffusion, and strong U(VI) sorption in the low concentration range.

Bai, Jing; Dong, Wenming; Ball, William P.

2006-10-12T23:59:59.000Z

337

JV Task 117 - Impact of Lignite Properties on Powerspan's NOx Oxidation System  

Science Conference Proceedings (OSTI)

Powerspan's multipollutant control process called electrocatalytic oxidation (ECO) technology is designed to simultaneously remove SO{sub 2}, NO{sub x}, PM{sub 2.5}, acid gases (such as hydrogen fluoride [HF], hydrochloric acid [HCl], and sulfur trioxide [SO{sub 3}]), Hg, and other metals from the flue gas of coal-fired power plants. The core of this technology is a dielectric barrier discharge reactor composed of cylindrical quartz electrodes residing in metal tubes. Electrical discharge through the flue gas, passing between the electrode and the tube, produces reactive O and OH radicals. The O and OH radicals react with flue gas components to oxidize NO to NO{sub 2} and HNO{sub 3} and a small portion of the SO{sub 2} to SO{sub 3} and H{sub 2}SO{sub 4}. The oxidized compounds are subsequently removed in a downstream scrubber and wet electrostatic precipitator. A challenging characteristic of selected North Dakota lignites is their high sodium content. During high-sodium lignite combustion and gas cooling, the sodium vaporizes and condenses to produce sodium- and sulfur-rich aerosols. Based on past work, it was hypothesized that the sodium aerosols would deposit on and react with the silica electrodes and react with the silica electrodes, resulting in the formation of sodium silicate. The deposit and reacted surface layer would then electrically alter the electrode, thus impacting its dielectric properties and NO{sub x} conversion capability. The purpose of this project was to determine the impact of lignite-derived flue gas containing sodium aerosols on Powerspan's dielectric barrier discharge (DBD) reactor with specific focus on the interaction with the quartz electrodes. Partners in the project were Minnkota Power Cooperative; Basin Electric Power Cooperative; Montana Dakota Utilities Co.; Minnesota Power; the North Dakota Industrial Commission, the Lignite Energy Council, and the Lignite Research Council; the Energy & Environmental Research Center (EERC); and the U.S. Department of Energy. An electrocatalytic oxidation (ECO) reactor slipstream system was designed by Powerspan and the EERC. The slipstream system was installed by the EERC at Minnkota Power Cooperative's Milton R. Young Station Unit 1 downstream of the electrostatic precipitator where the flue gas temperature ranged from 300 to 350 F. The system was commissioned on July 3, 2007, operated for 107 days, and then winterized upon completion of the testing campaign. Operational performance of the system was monitored, and data were archived for postprocessing. A pair of electrodes were extracted and replaced on a biweekly basis. Each pair of electrodes was shipped to Powerspan to determine NO conversion efficiency in Powerspan's laboratory reactor. Tested electrodes were then shipped to the EERC for scanning electron microscopy (SEM) and x-ray microanalysis. Measurement of NO{sub x} conversion online in operating the slipstream system was not possible because the nitric and sulfuric acid production by the DBD reactor results in conditioning corrosion challenges in the sample extraction system and NO measurement technologies. The operational observations, performance results, and lab testing showed that the system was adversely affected by accumulation of the aerosol materials on the electrode. NO{sub x} conversion by ash-covered electrodes was significantly reduced; however, with electrodes that were rinsed with water, the NOx conversion efficiency recovered to nearly that of a new electrode. In addition, the visual appearance of the electrode after washing did not show evidence of a cloudy reacted surface but appeared similar to an unexposed electrode. Examination of the electrodes using SEM x-ray microanalysis showed significant elemental sodium, sulfur, calcium, potassium, and silica in the ash coating the electrodes. There was no evidence of the reaction of the sodium with the silica electrodes to produce sodium silicate layers. All SEM images showed a clearly marked boundary between the ash and the silica. Sodium and sulfur are the main culprits in the

Scott Tolbert; Steven Benson

2008-02-29T23:59:59.000Z

338

JV Task 117 - Impact of Lignite Properties on Powerspan's NOx Oxidation System  

SciTech Connect

Powerspan's multipollutant control process called electrocatalytic oxidation (ECO) technology is designed to simultaneously remove SO{sub 2}, NO{sub x}, PM{sub 2.5}, acid gases (such as hydrogen fluoride [HF], hydrochloric acid [HCl], and sulfur trioxide [SO{sub 3}]), Hg, and other metals from the flue gas of coal-fired power plants. The core of this technology is a dielectric barrier discharge reactor composed of cylindrical quartz electrodes residing in metal tubes. Electrical discharge through the flue gas, passing between the electrode and the tube, produces reactive O and OH radicals. The O and OH radicals react with flue gas components to oxidize NO to NO{sub 2} and HNO{sub 3} and a small portion of the SO{sub 2} to SO{sub 3} and H{sub 2}SO{sub 4}. The oxidized compounds are subsequently removed in a downstream scrubber and wet electrostatic precipitator. A challenging characteristic of selected North Dakota lignites is their high sodium content. During high-sodium lignite combustion and gas cooling, the sodium vaporizes and condenses to produce sodium- and sulfur-rich aerosols. Based on past work, it was hypothesized that the sodium aerosols would deposit on and react with the silica electrodes and react with the silica electrodes, resulting in the formation of sodium silicate. The deposit and reacted surface layer would then electrically alter the electrode, thus impacting its dielectric properties and NO{sub x} conversion capability. The purpose of this project was to determine the impact of lignite-derived flue gas containing sodium aerosols on Powerspan's dielectric barrier discharge (DBD) reactor with specific focus on the interaction with the quartz electrodes. Partners in the project were Minnkota Power Cooperative; Basin Electric Power Cooperative; Montana Dakota Utilities Co.; Minnesota Power; the North Dakota Industrial Commission, the Lignite Energy Council, and the Lignite Research Council; the Energy & Environmental Research Center (EERC); and the U.S. Department of Energy. An electrocatalytic oxidation (ECO) reactor slipstream system was designed by Powerspan and the EERC. The slipstream system was installed by the EERC at Minnkota Power Cooperative's Milton R. Young Station Unit 1 downstream of the electrostatic precipitator where the flue gas temperature ranged from 300 to 350 F. The system was commissioned on July 3, 2007, operated for 107 days, and then winterized upon completion of the testing campaign. Operational performance of the system was monitored, and data were archived for postprocessing. A pair of electrodes were extracted and replaced on a biweekly basis. Each pair of electrodes was shipped to Powerspan to determine NO conversion efficiency in Powerspan's laboratory reactor. Tested electrodes were then shipped to the EERC for scanning electron microscopy (SEM) and x-ray microanalysis. Measurement of NO{sub x} conversion online in operating the slipstream system was not possible because the nitric and sulfuric acid production by the DBD reactor results in conditioning corrosion challenges in the sample extraction system and NO measurement technologies. The operational observations, performance results, and lab testing showed that the system was adversely affected by accumulation of the aerosol materials on the electrode. NO{sub x} conversion by ash-covered electrodes was significantly reduced; however, with electrodes that were rinsed with water, the NOx conversion efficiency recovered to nearly that of a new electrode. In addition, the visual appearance of the electrode after washing did not show evidence of a cloudy reacted surface but appeared similar to an unexposed electrode. Examination of the electrodes using SEM x-ray microanalysis showed significant elemental sodium, sulfur, calcium, potassium, and silica in the ash coating the electrodes. There was no evidence of the reaction of the sodium with the silica electrodes to produce sodium silicate layers. All SEM images showed a clearly marked boundary between the ash and the silica. Sodium and sulfur are the main culprits in the

Scott Tolbert; Steven Benson

2008-02-29T23:59:59.000Z

339

NOx Emissions Reductions from Implementation of the 2000 IECC/IRC Conservation Code to Residential Construction in Texas  

E-Print Network (OSTI)

Four areas in Texas have been designated by the United States Environmental Protection Agency (EPA) as non-attainment areas because ozone levels exceed the National Ambient Air Quality Standard (NAAQS) maximum allowable limits. These areas face severe sanctions if attainment is not reached by 2007. Four additional areas in the state are also approaching national ozone limits (i.e., classified as affected areas). In 2001, the Texas State Legislature formulated and passed the Texas Emissions Reduction Plan (TERP), to reduce ozone levels by encouraging the reduction of emissions of NOx by sources that are currently not regulated by the state. An important part of this legislation is the State's energy efficiency program, which includes reductions in energy use and demand that are associated with the adoption of the 2000 IECC1, which represents one of the first times that the EPA is considering emissions reductions credits from energy conservation - an important new development for building efficiency professionals. This paper provides an overview of the procedures that have been developed and used to calculate the electricity savings and NOx reductions from residential construction in nonattainment and affected counties2. Results are presented that show the annual electricity and natural gas savings and NOx reductions from implementation of the 2000 IECC to singlefamily and multi-family residences in 2003, which use a code-traceable DOE-2 simulation. A second paper provides a detailed discussion of the methods used to calculate the emissions 1 This includes the 2001 Supplement to the 2000 IECC and 2000 IRC (IRC 2000, IECC 2001). 2 The procedures outlined in this paper were developed and used in the Laboratory's 2002 and 2003 Annual Report to the TCEQ to satisfy the requirements of the Senate Bill 5 Legislation. In 2003 the Laboratory was awarded a grant from the EPA, which is administered through the TCEQ, to expand the development of these procedures into a webbased tool that would provide state and local authorities with accurate emissions reductions for use in preparing State Implementation Plans. reductions using the eGRID database (Haberl et al. 2004).

Haberl, J. S.; Im, P.; Culp, C.; Yazdani, B.; Fitzpatrick, T.

2004-01-01T23:59:59.000Z

340

Development of a Cummins ISL Natural Gas Engine at 1.4g/bhp-hr NOx + NMHC Using PLUS Technology: Final Report  

DOE Green Energy (OSTI)

NREL subcontractor report describes Cummins Westport, Inc.'s development of an 8.9 L natural gas engine (320 hp, 1,000 ft-lb peak torque) with CARB emissions certification of 1.4 g/bhp-hr NOx + NMHC.

Kamel, M. M.

2005-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "vi sox nox" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Microsoft Word - 41892_Praxair_Low NOx_Factsheet_Rev 0a_01-09-04.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

FACT SHEET FACT SHEET Revision 0a Jan. 9, 2004 Page 1 of 4 I. PROJECT DESCRIPTION A. Objective: The objective of this project is to design a gas turbine combustor system for new and existing turbines with a combination of air flow management control and fuel composition control to achieve 2 ppm NOx emissions. Since most Integrated Gasification Combined-Cycle (IGCC) systems consider the use of natural gas as an alternative fuel and there is a large infrastructure of existing natural gas based turbines, it is imperative that the combustor design be amenable to operating on both coal derived fuel gas and natural gas. The specific objectives of each phase of this program are: Phase I: Develop conceptual design of turbine combustor with air flow control and fuel

342

DEVELOPMENT OF A VALIDATED MODEL FOR USE IN MINIMIZING NOx EMISSIONS AND MAXIMIZING CARBON UTILIZATION WHEN COFIRING BIOMASS WITH COAL  

DOE Green Energy (OSTI)

This is the first Quarterly Technical Report for DOE Cooperative Agreement No. DE-FC26-00NT40895. A statement of the project objectives is included in the Introduction of this report. The project goals and detailed plans were presented in two project kickoff meetings; one at NETL in Pittsburgh and one in Birmingham, AL at Southern Research Institute. Progress has been made in developing a modeling approach to synthesize the reaction time and temperature distributions that will be produced by computational fluid dynamic models of the pilot-scale combustion furnace and the char burnout and chemical reaction kinetics that will predict NOx emissions and unburned carbon levels in the furnace exhaust. Preparations are under way for the initial pilot-scale combustion experiments.

Larry G. Felix; P. Vann Bush; Stephen Niksa

2001-01-24T23:59:59.000Z

343

Effects of Chromium(VI) and Chromium(III) on Desulfovibrio vulgaris Cells  

DOE Green Energy (OSTI)

Desulfovibrio vulgaris ATCC 29579 is a well studied sulfate reducer that has known capabilities of reducing heavy metals and radionuclides, like chromium and uranium. Cultures grown in a defined medium (i.e. LS4D) had a lag period of approximately 40 h when exposed to 50 ?Mof Cr(VI). Substrate analysis revealed that although chromium is reduced within the first 5 h, growth does not resume for another 35 h. During this time, small amounts of lactate are still utilized but the reduction of sulfate does not occur. Sulfate reduction occurs concurrently with the accumulation of acetate approximately 40 h after inoculation, when growth resumes. Similar amounts of hydrogen are produced during this time compared to hydrogen production by cells not exposed to Cr(VI); therefore an accumulation of hydrogen cannot account for the utilization of lactate. There is a significant decrease in the carbohydrate to protein ratio at approximately 25 h, and this result indicated that lactate is not converted to glycogen. Most probable number analysis indicated that cell viability decreased steadily after inoculation and reached approximately 6 x 104 cells/ml 20 h post-chromium exposure. Regeneration of reducing conditions during chromium exposure does not induce growth and in fact may make the growth conditions even more unfavorable. This result suggested that an increase in Eh was not solely responsible for the decline in viability. Cell pellets collected 10 h after chromium-exposure were unable to resume growth when suspended into fresh medium. Supernatants from these pellets were able to support cell growth upon re- inoculation. D. vulgaris cells treated with a non-dose dependent addition of ascorbate at the same time of Cr(VI) addition did not enter a lag period. Ascorbate added 3 h post-Cr(VI) exposure did not prevent the growth lag. These results indicated that Desulfovibrio utilized lactate to reduce Cr(VI) without the reduction of sulfate, that the decline in cell viability and cell growth was most likely a consequence of Cr(III), and that an organic ligand could protect D. vulgaris cells from Cr(III) toxicity. Lactate consumption decoupled from sulfate reduction in the presence of Cr(VI) could provide organic carbon for organo- Cr(III) complexes.

M.E. Clark; A. Klonowska; S.B. Thieman; B. Giles; J.D. Wall; and M.W. Fields

2007-04-19T23:59:59.000Z

344

500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. Technical progress report, fourth quarter, 1994, October 1994--December 1994  

Science Conference Proceedings (OSTI)

This quarterly report discusses the technical progress of an innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. The project is being conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NOx combustion equipment through the collection and analysis of long-term emissions data. The project provides a stepwise evaluation of the following NOx reduction technologies: Advanced overfire air (AOFA), Low NOx burners (LNB), LNB with AOFA, and Advanced Digital Controls and Optimization Strategies. The project has completed the baseline, AOFA, LNB, and LNB+AOFA test segments, fulfilling all testing originally proposed to DOE. Analysis of the LNB long-term data collected show the full load NOx emission levels to be near 0.65 lb/MBtu. This NOx level represents a 48 percent reduction when compared to the baseline, full load value of 1.24 lb/MBtu. These reductions were sustainable over the long-term test period and were consistent over the entire load range. Full load, fly ash LOI values in the LNB configuration were near 8 percent compared to 5 percent for baseline. Results from the LNB+AOFA phase indicate that full load NOx emissions are approximately 0.40 lb/MBtu with a corresponding fly ash LOI value of near 8 percent. Although this NOx level represents a 67 percent reduction from baseline levels, a substantial portion of the incremental change in NOx emissions between the LNB and LNB+AOFA configurations was the result of operational changes and not the result of the AOFA system. Phase 4 of the project is now underway.

NONE

1995-09-01T23:59:59.000Z

345

Sputtered II-VI Alloys and Structures forTandem PV: Final Subcontract Report, 9 December 2003 - 30 July 2007  

Science Conference Proceedings (OSTI)

This report elaborates on Phase 3 and provides summaries of the first two Phases. Phase 3 research work was divided into five task areas covering different aspects of the II-VI tandem cell.

Compaan, A. D.; Collins, R.; Karpov, V. G.; Giolando, D.

2008-09-01T23:59:59.000Z

346

Microbial community changes during sustained Cr(VI) reduction at the 100H site in Hanford, WA  

E-Print Network (OSTI)

at the 100H site in Hanford, WA Romy Chakraborty 1 , Eoin Lcontaminated aquifer at the Hanford (WA) 100H site in 2004.Cr(VI) reduction at Hanford, and a comparison of the

Chakraborty, Romy

2010-01-01T23:59:59.000Z

347

Rate-limited U(VI) desorption during a small-scale tracer test in a hetereogeneous uranium contaminated aquifer  

E-Print Network (OSTI)

of Contaminants in the Hanford Vadose Zone, Vadose Zone J. ,transport in a contaminated Hanford sediment, Environ. Sci.of U(VI) observed in Hanford sediment column experiments. A

Fox, P.M.

2013-01-01T23:59:59.000Z

348

Detection and Quantification of Pu(III, IV, V, and VI) Using a 1.0-meter Liquid Core Waveguide  

E-Print Network (OSTI)

absorption spectra of Pu ions in 1 M perchloric acidA. ) Pu III, B. )Pu IV, C. ) Pu V (0.001 M HClO 4 ), D. ) Pu VI. D

Wilson, Richard E.; Hu, Yung-Jin; Nitsche, Heino

2005-01-01T23:59:59.000Z

349

KENO3D Visualization Tool for KENO V.a and KENO-VI Geometry Models  

SciTech Connect

Criticality safety analyses often require detailed modeling of complex geometries. Effective visualization tools can enhance checking the accuracy of these models. This report describes the KENO3D visualization tool developed at the Oak Ridge National Laboratory (ORNL) to provide visualization of KENO V.a and KENO-VI criticality safety models. The development of KENO3D is part of the current efforts to enhance the SCALE (Standardized Computer Analyses for Licensing Evaluations) computer software system.

Horwedel, J.E.; Bowman, S.M.

2000-06-01T23:59:59.000Z

350

Process for forming shaped group II-VI semiconductor nanocrystals, and product formed using process  

DOE Patents (OSTI)

A process for the formation of shaped Group II-VI semiconductor nanocrystals comprises contacting the semiconductor nanocrystal precursors with a liquid media comprising a binary mixture of phosphorus-containing organic surfactants capable of promoting the growth of either spherical semiconductor nanocrystals or rod-like semiconductor nanocrystals, whereby the shape of the semiconductor nanocrystals formed in said binary mixture of surfactants is controlled by adjusting the ratio of the surfactants in the binary mixture.

Alivisatos, A. Paul (Oakland, CA); Peng, Xiaogang (Fayetteville, AR); Manna, Liberato (Palo del Colle, IT)

2001-01-01T23:59:59.000Z

351

Thermodynamics of the Complexation of Uranium(VI) by oxalate in aqueous solution at 10-70oC  

SciTech Connect

The protonation reactions of oxalate (ox) and the complex formation of uranium(VI) with oxalate in 1.05 mol kg{sup -1} NaClO{sub 4} were studied at variable temperatures (10-70 C). Three U(VI)/ox complexes (UO{sub 2}ox{sub j}{sup (2-2j){sup +}} with j = 1, 2, 3) were identified in this temperature range. The formation constants and the molar enthalpies of complexation were determined by spectrophotometry and calorimetry. The complexation of uranium(VI) with oxalate ion is exothermic at lower temperatures (10-40 C) and becomes endothermic at higher temperatures (55-70 C). In spite of this, the free energy of complexation becomes more negative at higher temperatures due to increasingly more positive entropy of complexation that exceeds the increase of the enthalpy of complexation. The thermodynamic parameters at different temperatures, in conjunction with the literature data for other dicarboxylic acids, provide insight into the relative strength of U(VI) complexes with a series of dicarboxylic acids (oxalic, malonic and oxydiacetic) and rationalization for the highest stability of U(VI)/oxalate complexes in the series. The data reported in this study are of importance in predicting the migration of uranium(VI) in geological environments in the case of failure of the engineering barriers which protect waste repositories.

Di Bernardo, Plinio; Zanonato, Pier Luigi; Tian, Guoxin; Tolazzi, Marilena; Rao, Linfeng

2009-03-31T23:59:59.000Z

352

New thermal neutron scattering files for ENDF/B-VI release 2  

SciTech Connect

At thermal neutron energies, the binding of the scattering nucleus in a solid, liquid, or gas affects the cross section and the distribution of secondary neutrons. These effects are described in the thermal sub-library of Version VI of the Evaluated Nuclear Data Files (ENDF/B-VI) using the File 7 format. In the original release of the ENDF/B-VI library, the data in File 7 were obtained by converting the thermal scattering evaluations of ENDF/B-III to the ENDF-6 format. These original evaluations were prepared at General Atomics (GA) in the late sixties, and they suffer from accuracy limitations imposed by the computers of the day. This report describes new evaluations for six of the thermal moderator materials and six new cold moderator materials. The calculations were made with the LEAPR module of NJOY, which uses methods based on the British code LEAP, together with the original GA physics models, to obtain new ENDF files that are accurate over a wider range of energy and momentum transfer than the existing files. The new materials are H in H{sub 2}O, Be metal, Be in BeO, C in graphite, H in ZrH, Zr in ZrH, liquid ortho-hydrogen, liquid para-hydrogen, liquid ortho-deuterium, liquid para-deuterium liquid methane, and solid methane.

MacFarlane, R.E.

1994-03-01T23:59:59.000Z

353

Electrode Induced Removal and Recovery of Uranium (VI) from Acidic Subsurfaces  

SciTech Connect

The overarching objective of this research is to provide an improved understanding of how aqueous geochemical conditions impact the removal of U and Tc from groundwater and how engineering design may be utilized to optimize removal of these radionuclides. Experiments were designed to address the unique conditions in Area 3 of ORNL while also providing broader insight into the geochemical effectors of the removal rates and extent for U and Tc. The specific tasks of this work were to: 1) quantify the impact of common aqueous geochemical and operational conditions on the rate and extent of U removal and recovery from water, 2) investigate the removal of Tc with polarized graphite electrode, and determine the influence of geochemical and operational conditions on Tc removal and recovery, 3) determine whether U and Tc may be treated simultaneous from Area 3 groundwater, and examine the bench-scale performance of electrode-based treatment, and 4) determine the capacity of graphite electrodes for U(VI) removal and develop a mathematical, kinetic model for the removal of U(VI) from aqueous solution. Overall the body of work suggests that an electrode-based approach for the remediation of acidic subsurface environments, such as those observed in Area 3 of ORNL may be successful for the removal for both U(VI) and Tc. Carbonaceous (graphite) electrode materials are likely to be the least costly means to maximize removal rates and efficiency by maximizing the electrode surface area.

Gregory, Kelvin [Carnegie Mellon University] [Carnegie Mellon University

2013-08-12T23:59:59.000Z

354

NOx Emissions Reduction from CPS Energy's "Save For Tomorrow Energy Plan" Within the Alamo Area Council of Governments Report to the Texas Commission on Environmental Quality  

E-Print Network (OSTI)

ESL used the Texas Commission on Environmental Quality’s (TCEQ) Guide for Incorporating Energy Efficiency/Renewable Energy (EE/RE) Projects into the SIP for local entities dated February 6, 2004 to survey potential projects in the AACOG area that occurred after the State’s base period (September 1, 2001) for their local Clean Air Plan. CPS Energy retained Nexant, Inc. (Nexant) to conduct a comprehensive, independent measurement and verification (M&V) evaluation of CPS Energy’s 2009 DSM programs. Nexant surveyed the energy and demand savings achieved by CPS Energy’s 2009 DSM programs. In 2009, the programs offered by CPS Energy had two sectors: residential and non-residential (commercial). To determine net program impacts, Nexant conducted market research of evaluations for other utility-sponsored DSM programs around the country. From the survey conducted in 2009, total net energy and demand savings from the residential and non-residential sectors are 86,712,978 kWh (residential subtotal is 62,369,566 kWh and non-residential subtotal is 24,343,412 kWh). Nexant calculated CPS Energy’s DSM potential through 2020 and found there to be significant room for program growth. Total cumulative achievable savings through the 2020 program year are expected to be 2,543 GWh of electricity savings (based on the aggressive incentive scenario and exception of industrial sector). According to the TCEQ/ESL, the total annual NOx emissions reductions estimated through 2009 energy savings were 114.03 ton/year. Annual NOx emissions reductions of residential sector were 82.02 ton/yr and annual NOx emissions reductions of non-residential sector were 32.01 Ton/yr. The NOx emissions reductions estimated through 2020 energy savings potential were 3,344 ton/year. Annual NOx emissions reductions of residential sector were 1,873 ton/yr and annual NOx emissions reductions of non-residential sector, except of industrial sector, were 1,471 ton/yr.

Do, S. L.; Baltazar, J. C.; Haberl, J.; Yazdani, B.

2010-10-01T23:59:59.000Z

355

Investigations of HRC®-Stimulated Bioreduction of Cr(VI) at Hanford 100H  

DOE Green Energy (OSTI)

Hypothesis: Lactate (Hydrogen Release Compound-HRC{trademark}) injection into chromium contaminated groundwater through an injection well will cause indirect or direct bioreduction of chromate [Cr(VI)] and precipitation of insoluble species of [Cr(III)] on soil particles, probably catalyzed at oxide surfaces, at the field scale. Objective: Assess the potential for immobilizing and detoxifying chromium-contaminated groundwater using lactate-stimulated bioreduction of Cr(VI) to Cr(III) at the Hanford Site's 100-H Area field site. Types of Research: A three-well system (injection well and upgradient and downgradient monitoring wells) was used for conducting the in situ biostimulation and monitoring. To assess the pre- and post-injection test groundwater conditions, we used an integrated monitoring approach, involving hydraulic, geochemical, microbial, and geophysical techniques and analytical methods, as well as conducted five Br-tracer injection tests and four pumping tests (concurrently with the Br-tracer tests). Groundwater biostimulation was conducted by injection of 40 lbs of {sup 13}C-labeled HRC into the injection well (over the depth interval from 44-50 ft) on 8/3/2004, followed by low-flow pumping (1.2 to 2.5 l/min) through the downgradient well (to ensure capture of groundwater flow lines passing through the injection well) for 27 days. Main Results: Although the total microbial population in sediments is relatively low (<10{sup 5} cells g-1) under background conditions, which is likely insufficient for direct enzymatic Cr(VI) reduction, several types of bacteria, e.g., Bacillus/Arthrobacter and Geobacter, are present in the Hanford sediments, which are known to reduce or sorb hexavalent chromium. The HRC injection stimulated microbial cell counts to reach the maximum of 2 x 10{sup 7} cells g{sup -1} 13-17 days after the injection, and generated highly reducing conditions. Geochemical and isotopic observations confirmed microbial metabolism of HRC. The Cr(VI) concentration in the monitoring and pumping wells decreased below drinking water minimum contaminant limits and remained below background concentrations even after 1.5 years, when redox conditions and microbial densities had returned to background levels. Fe(II) levels have remained high and may account for the continued reduction of Cr(VI).

T.C. Hazen; B. Faybishenko; D. Joyner; S. Borglin; E.Brodie; S. Hubbard; K. Williams; J. Peterson; J. Wan; T. Tokunaga; Long, P.E.; Newcomer, D.; Koenigsberg, S.; Willet, A.

2005-04-18T23:59:59.000Z

356

Investigations of HRC®-Stimulated Bioreduction of Cr(VI) at Hanford 100H  

DOE Green Energy (OSTI)

Hypothesis: Lactate (Hydrogen Release Compound-HRC{trademark}) injection into chromium contaminated groundwater through an injection well will cause indirect or direct bioreduction of chromate [Cr(VI)] and precipitation of insoluble species of [Cr(III)] on soil particles, probably catalyzed at oxide surfaces, at the field scale. Objective: Assess the potential for immobilizing and detoxifying chromium-contaminated groundwater using lactate-stimulated bioreduction of Cr(VI) to Cr(III) at the Hanford Site's 100-H Area field site. Types of Research: A three-well system (injection well and upgradient and downgradient monitoring wells) was used for conducting the in situ biostimulation and monitoring. To assess the pre- and post-injection test groundwater conditions, we used an integrated monitoring approach, involving hydraulic, geochemical, microbial, and geophysical techniques and analytical methods, as well as conducted five Br-tracer injection tests and four pumping tests (concurrently with the Br-tracer tests). Groundwater biostimulation was conducted by injection of 40 lbs of {sup 13}C-labeled HRC into the injection well (over the depth interval from 44-50 ft) on 8/3/2004, followed by low-flow pumping (1.2 to 2.5 l/min) through the downgradient well (to ensure capture of groundwater flow lines passing through the injection well) for 27 days. Main Results: Although the total microbial population in sediments is relatively low (<10{sup 5} cells g{sup -1}) under background conditions, which is likely insufficient for direct enzymatic Cr(VI) reduction, several types of bacteria, e.g., Bacillus/Arthrobacter and Geobacter, are present in the Hanford sediments, which are known to reduce or sorb hexavalent chromium. The HRC injection stimulated microbial cell counts to reach the maximum of 2 x 10{sup 7} cells g{sup -1} 13-17 days after the injection, and generated highly reducing conditions. Geochemical and isotopic observations confirmed microbial metabolism of HRC. The CR(VI) concentration in the monitoring and pumping wells decreased below drinking water minimum contaminant limits and remained below background concentrations even after 1.5 years, when redox conditions and microbial densities had returned to background levels. Fe(II) levels have remained high and may account for the continued reduction of Cr(VI).

Hazen, T.C.; Faybishenko, B.; Joyner, D.; Borglin, S.; Brodie, E.; Hubbard, S.; Williams, K.; Peterson, J.; Wan, J.; Tokunaga, T.; Firestone, M.; Long, P.E.; Resch, C.T.; Cantrell, K.; Newcomer, D.; Koenigsberg, S.; Willet, A.

2006-04-05T23:59:59.000Z

357

Full Useful Life (120,000 miles) Exhaust Emission Performance of a NOx Adsorber and Diesel Particle Filter Equipped Passenger Car and Medium-duty Engine in Conjunction with Ultra Low Sulfur Fuel (Presentation)  

DOE Green Energy (OSTI)

Discusses the full useful life exhaust emission performance of a NOx (nitrogen oxides) adsorber and diesel particle filter equipped light-duty and medium-duty engine using ultra low sulfur diesel fuel.

Thornton, M.; Tatur, M.; Tomazic, D.; Weber, P.; Webb, C.

2005-08-25T23:59:59.000Z

358

A Methodology For Calculating Integrated NOx Emissions Reductions from Energy Efficiency and Renewable Energy (EE/RE) Programs Across State Agencies in Texas  

E-Print Network (OSTI)

This paper provides an update of the integrated NOx emissions reductions calculation procedures developed by the Energy Systems Laboratory (ESL) for the State of Texas. to satisfy the reporting requirements for Senate Bill 5 of the Texas State Legislature. 1 These procedures are used to report annual NOx emissions reductions to the Texas Commission on Environmental Quality (TCEQ) from the state-wide energy efficiency and renewable energy programs. These programs include: the impact of code-complaint construction, Federal buildings, furnace pilot light upgrades, the Texas Public Utility Commission (PUC), the energy efficiency programs managed by the Texas State Energy Conservation Office (SECO), electricity generated from wind power in the state, and several additional statewide measures, including SEER 13 air conditioner and pilot lights.

Haberl, J. S.; Liu, Z.; Baltazar, J. C.; Mukopadhyay. J; Marshall, K.; Gilman, D.; Culp, C.; Yazdani, B.; Montgomery, C.; McKelvy, K.; Reid, V.

2010-01-01T23:59:59.000Z

359

Innovative Approach to Prevent Acid Drainage from Uranium Mill Tailings Based on the Application of Na-Ferrate (VI)  

SciTech Connect

The operation of uranium mining and milling plants gives rise to huge amounts of wastes from both mining and milling operations. When pyrite is present in these materials, the generation of acid drainage can take place and result in the contamination of underground and surface waters through the leaching of heavy metals and radionuclides. To solve this problem, many studies have been conducted to find cost-effective solutions to manage acid mine drainage; however, no adequate strategy to deal with sulfide-ric h wastes is currently available. Ferrate (VI) is a powerful oxidizing agent in aqueous media. Under acidic conditions, the redox potential of the Ferrate (VI) ion is the highest of any other oxidant used in wastewater treatment processes. The standard half cell reduction potential of ferrate (VI) has been determined as +2.20 V to + 0.72 V in acidic and basic solutions, respectively. Ferrate (VI) exhibits a multitude of advantageous properties, including higher reactivity and selectivity than traditional oxidant alternatives, as well as disinfectant, flocculating, and coagulant properties. Despite numerous beneficial properties in environmental applications, ferrate (VI) has remained commercially unavailable. Starting in 1953, different methods for producing a high purity, powdered ferrate (VI) product were developed. However, producing this dry, stabilized ferrate (VI) product required numerous process steps which led to excessive synthesis costs (over $20/lb) thereby preventing bulk industrial use. Recently a novel synthesis method for the production of a liquid ferrate (VI) based on hypochlorite oxidation of ferric ion in strongly alkaline solutions has been discovered (USPTO 6,790,428; September 14, 2004). This on-site synthesis process dramatically reduces manufacturing cost for the production of ferrate (VI) by utilizing common commodity feedstocks. This breakthrough means that for the first time ferrate (VI) can be an economical alternative to treating acid mining drainage generating materials. The objective of the present study was to investigate a methodology of preventing the generation of acid drainage by applying ferrate (VI) to acid generating materials prior to the disposal in impoundments or piles. Oxidizing the pyritic material in mining waste could diminish the potential for acid generation and its related environmental risks and long-term costs at disposal sites. The effectiveness of toxic metals removal from acid mine drainage by applying ferrate (VI) is also examined. Preliminary results presented in this paper show that the oxidation of pyrite by ferrate is a first-order rate reaction in Fe(VI) with a half-life of about six hours. The stability of Fe(VI) in water solutions will not influence the reaction rate in a significant manner. New low-cost production methods for making liquid ferrate on-site makes this technology a very attractive option to mitigate one of the most pressing environmental problems in the mining industry. (authors)

Fernandes, H.M.; Reinhart, D.; Lettie, L.; Franklin, M.R. [University of Central Florida, P.O. Box. 162450, Orlando, FL, 32816-2450 (United States); Fernandes, H.M.; Franklin, M.R. [Institute of Radiation Protection and Dosimetry (IRD), Av. Salvador Allende s/n - Recreio - Rio de Janeiro - RJ - 22795-090 (Brazil); Sharma, V. [Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901 (United States); Daly, L.J. [Ferrate Treatment Technologies, LLC, 6432 Pine Castle Blvd. Unit 2C, Orlando, FL, 32809 (United States)

2006-07-01T23:59:59.000Z

360

Combustion characteristics and NOx emissions of two kinds of swirl burners in a 300-MWe wall-fired pulverized-coal utility boiler  

SciTech Connect

Measurements were performed in a 300-MWe wall-fired pulverized-coal utility boiler. Enhanced ignition-dual register (EI-DR) burners and centrally fuel rich (CFR) swirl coal combustion burners were installed in the bottom row of the furnace during experiments. Local mean concentrations of O{sub 2}, CO, CO{sub 2} and NOx gas species, gas temperatures, and char burnout were determined in the region of the two types of burners. For centrally fuel rich swirl coal combustion burners, local mean CO concentrations, gas temperatures and the temperature gradient are higher and mean concentrations of O{sub 2} and NOx along the jet flow direction in the burner region are lower than for the enhanced ignition-dual register burners. Moreover, the mean O{sub 2} concentration is higher and the gas temperature and mean CO concentration are lower in the side wall region. For centrally fuel rich swirl coal combustion burners in the bottom row, the combustion efficiency of the boiler increases from 96.73% to 97.09%, and NOx emission decreases from 411.5 to 355 ppm at 6% O{sub 2} compared to enhanced ignition-dual register burners and the boiler operates stably at 110 MWe without auxiliary fuel oil.

Li, Z.Q.; Jing, J.P.; Chen, Z.C.; Ren, F.; Xu, B.; Wei, H.D.; Ge, Z.H. [Harbin Institute for Technology, Harbin (China). School for Energy Science & Engineering

2008-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "vi sox nox" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Measurement of air toxic emissions from a coal-fired boiler equipped with a tangentially-fired low NOx combustion system  

Science Conference Proceedings (OSTI)

This paper presents the results of measurements of chemical emissions from a coal-burning, tangentially-fired, utility boiler equipped with a hot-side electrostatic precipitator and a low NOx firing system. The tests were conducted in response to Title III of the 1990 Amendments to the Clean Air Act which lists 189 chemicals to be evaluated as {open_quotes}Air Toxics.{close_quotes} The project was jointly funded by the Electric Power Research Institute and the US Department of Energy under an existing Innovative Clean Coal Technology Cooperative Agreement managed by Southern Company Services. Field chemical emissions monitoring was conducted in two phases: a baseline {open_quotes}pre-low NOx burner{close_quotes} condition in September 1991 and in the LNCFS Level III low NOx firing condition in January 1992. In addition to stack emissions measurements of both organic and inorganic chemicals, plant material balance evaluations were performed to determine the efficiency of the hot-side ESP at controlling emissions of air toxics and to determine the fate of the target chemicals in various plant process streams.

Dismukes, E.B. [Southern Research Inst., Birmingham, AL (United States); Clarkson, R.J.; Hardman, R.R. [Southern Company Services, Birmingham, AL (United States); Elia, G.G. [Pittsburgh Energy Technology Center, PA (United States)

1993-11-01T23:59:59.000Z

362

Optimizing Cr(VI) and Tc(VII) remediation through nano-scale biomineral engineering  

Science Conference Proceedings (OSTI)

To optimize the production of biomagnetite for the bioremediation of metal oxyanion contaminated waters, the reduction of aqueous Cr(VI) to Cr(III) by two biogenic magnetites and a synthetic magnetite was evaluated under batch and continuous flow conditions. Results indicate that nano-scale biogenic magnetite produced by incubating synthetic schwertmannite powder in cell suspensions of Geobacter sulfurreducens is more efficient at reducing Cr(VI) than either biogenic nano-magnetite produced from a suspension of ferrihydrite 'gel' or synthetic nano-scale Fe{sub 3}O{sub 4} powder. Although X-ray Photoelectron Spectroscopy (XPS) measurements obtained from post-exposure magnetite samples reveal that both Cr(III) and Cr(VI) are associated with nanoparticle surfaces, X-ray Magnetic Circular Dichroism (XMCD) studies indicate that some Cr(III) has replaced octahedrally coordinated Fe in the lattice of the magnetite. Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) measurements of total aqueous Cr in the associated solution phase indicated that, although the majority of Cr(III) was incorporated within or adsorbed to the magnetite samples, a proportion ({approx}10-15 %) was released back into solution. Studies of Tc(VII) uptake by magnetites produced via the different synthesis routes also revealed significant differences between them as regards effectiveness for remediation. In addition, column studies using a {gamma}-camera to obtain real time images of a {sup 99m}Tc(VII) radiotracer were performed to visualize directly the relative performances of the magnetite sorbents against ultra-trace concentrations of metal oxyanion contaminants. Again, the magnetite produced from schwertmannite proved capable of retaining more ({approx}20%) {sup 99m}Tc(VII) than the magnetite produced from ferrihydrite, confirming that biomagnetite production for efficient environmental remediation can be fine-tuned through careful selection of the initial Fe(III) mineral substrate supplied to Fe(III)-reducing bacteria.

Cutting, R. S.; Coker, V. S.; Telling, N. D.; Kimber, R. L.; Pearce, C. I.; Ellis, B.; Lawson, R; van der Laan, G.; Pattrick, R.A.D.; Vaughan, D.J.; Arenholz, E.; Lloyd, J. R.

2009-09-09T23:59:59.000Z

363

Rotational Augmentation Disparities in the MEXICO and UAE Phase VI Experiments: Preprint  

DOE Green Energy (OSTI)

Wind turbine structures and components suffer excessive loads and premature failures when key aerodynamic phenomena are not well characterized, fail to be understood, or are inaccurately predicted. Turbine blade rotational augmentation remains incompletely characterized and understood, thus limiting robust prediction for design. Pertinent rotational augmentation research including experimental, theoretical, and computational work has been pursued for some time, but large scale wind tunnel testing is a relatively recent development for investigating wind turbine blade aerodynamics. Because of their large scale and complementary nature, the MEXICO and UAE Phase VI wind tunnel experiments offer unprecedented synergies to better characterize and understand rotational augmentation of blade aerodynamics.

Schreck, S.; Sant, T.; Micallef, D.

2010-05-01T23:59:59.000Z

364

Magnetized Bianchi Type $VI_{0}$ Barotropic Massive String Universe with Decaying Vacuum Energy Density $?$  

E-Print Network (OSTI)

Bianchi type $VI_{0}$ massive string cosmological models using the technique given by Letelier (1983) with magnetic field are investigated. To get the deterministic models, we assume that the expansion ($\\theta$) in the model is proportional to the shear ($\\sigma$) and also the fluid obeys the barotropic equation of state. It was found that vacuum energy density $\\Lambda \\propto \\frac{1}{t^{2}}$ which matches with natural units. The behaviour of the models from physical and geometrical aspects in presence and absence of magnetic field is also discussed.

Anirudh Pradhan; Raj Bali

2008-05-22T23:59:59.000Z

365

Proceedings: EPRI/EPA 1995 Joint Symposium on Stationary Combustion NOx Control: Volume 1: Tuesday, May 16, 1995, Sessions 1, 2, 3; Volume 2: Wednesday, May 17, 1995, Sessions 4 and 5; Volume 3: Thursday, May 18, 1995, Sessions 6A, 6B, 7A, 7B; Volume ...  

Science Conference Proceedings (OSTI)

The 1995 Joint Symposium Combustion NOx Controls was held in Kansas City, Missouri, May 16-19, 1995. Jointly sponsored by EPRI and EPA, the symposium was the eighth in a biennial series devoted to the international exchange of information on recent technological and regulatory developments for stationary combustion NOx control. Topics covered included active full-scale retrofit demonstrations of low-NOx combustion systems in the United States and abroad; performance and economics results from pilot- and ...

2000-01-05T23:59:59.000Z

366

Innovative clean coal technology: 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. Final report, Phases 1 - 3B  

SciTech Connect

This report presents the results of a U.S. Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) project demonstrating advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. The project was conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The technologies demonstrated at this site include Foster Wheeler Energy Corporation`s advanced overfire air system and Controlled Flow/Split Flame low NOx burner. The primary objective of the demonstration at Hammond Unit 4 was to determine the long-term effects of commercially available wall-fired low NOx combustion technologies on NOx emissions and boiler performance. Short-term tests of each technology were also performed to provide engineering information about emissions and performance trends. A target of achieving fifty percent NOx reduction using combustion modifications was established for the project. Short-term and long-term baseline testing was conducted in an {open_quotes}as-found{close_quotes} condition from November 1989 through March 1990. Following retrofit of the AOFA system during a four-week outage in spring 1990, the AOFA configuration was tested from August 1990 through March 1991. The FWEC CF/SF low NOx burners were then installed during a seven-week outage starting on March 8, 1991 and continuing to May 5, 1991. Following optimization of the LNBs and ancillary combustion equipment by FWEC personnel, LNB testing commenced during July 1991 and continued until January 1992. Testing in the LNB+AOFA configuration was completed during August 1993. This report provides documentation on the design criteria used in the performance of this project as it pertains to the scope involved with the low NOx burners and advanced overfire systems.

NONE

1998-01-01T23:59:59.000Z

367

Field Test of a Catalytic Combustion System for Non-Ammonia Control of Gas Turbine NOx Emissions  

DOE Green Energy (OSTI)

Under federal Award/Proposal Number DE-FG26-04NT42078, the California Energy Commission (CEC) will subgrant $100,000 to the City of Riverside, California, where the project will be located. In turn, the City of Riverside will subaward the federal funds to Alliance Power and/or Catalytica Energy Systems, Inc. (CESI). Alliance Power will coordinate administrative and management activities associated with this task to ensure compliance with CEC grant requirements. CESI will design and fabricate two Xonon{trademark} modules according to General Electric (GE) specification for operating conditions in the GE-10 gas turbine. CESI will ship the modules to the GE test facility for engine testing. CESI will provide test personnel as required to oversee the installation, testing and removal of the Xonon modules. GE will perform an engine test of the CESI-supplied Xonon modules on a GE-10 test engine in the fall of 2004. GE will record all test data as appropriate to evaluate the emissions and operating performance of the Xonon module. Following the test, GE will provide a letter report of the engine test findings. The letter report shall summarize the testing and provide an assessment of Xonon's ability to ultimately achieve less than 3 ppm NOx emissions on the GE-10. All expenses incurred by GE for this task will be paid by GE; no federal funds will be used. Following the reporting of findings, GE will make a decision whether or not to proceed with the Riverside retrofit project. GE will write a letter to CESI giving their decision. GE and CESI will report of engine test findings and the decision letter to the CEC Project Manager.

James F. Burns

2007-07-31T23:59:59.000Z

368

Current Understanding of Cu-Exchanged Chabazite Molecular Sieves for Use as Commercial Diesel Engine DeNOx Catalysts  

SciTech Connect

Selective catalytic reduction (SCR) of NOx with ammonia using metal-exchanged molecular sieves with a chabazite (CHA) structure has recently been commercialized on diesel vehicles. One of the commercialized catalysts, i.e., Cu-SSZ-13, has received much attention for both practical and fundamental studies. For the latter, the particularly well-defined structure of this zeolite is allowing long-standing issues of the catalytically active site for SCR in metal-exchanged zeolites to be addressed. In this review, recent progress is summarized with a focus on two areas. First, the technical significance of Cu-SSZ-13 as compared to other Cu-ion exchanged zeolites (e.g., Cu-ZSM-5 and Cu-beta) is highlighted. Specifically, the much enhanced hydrothermal stability for Cu-SSZ-13 compared to other zeolite catalysts is addressed via performance measurements and catalyst characterization using several techniques. The enhanced stability of Cu-SSZ-13 is rationalized in terms of the unique small pore structure of this zeolite catalyst. Second, the fundamentals of the catalytically active center; i.e., the chemical nature and locations within the SSZ-13 framework are presented with an emphasis on understanding structure-function relationships. For the SCR reaction, traditional kinetic studies are complicated by intra-particle diffusion limitations. However, a major side reaction, nonselective ammonia oxidation by oxygen, does not suffer from mass-transfer limitations at relatively low temperatures due to significantly lower reaction rates. This allows structure-function relationships that are rather well understood in terms of Cu ion locations and redox properties. Finally, some aspects of the SCR reaction mechanism are addressed on the basis of in-situ spectroscopic studies.

Gao, Feng; Kwak, Ja Hun; Szanyi, Janos; Peden, Charles HF

2013-11-03T23:59:59.000Z

369

Field Test of a Catalytic Combustion System for Non-Ammonia Control of Gas Turbine NOx Emissions  

SciTech Connect

Under federal Award/Proposal Number DE-FG26-04NT42078, the California Energy Commission (CEC) will subgrant $100,000 to the City of Riverside, California, where the project will be located. In turn, the City of Riverside will subaward the federal funds to Alliance Power and/or Catalytica Energy Systems, Inc. (CESI). Alliance Power will coordinate administrative and management activities associated with this task to ensure compliance with CEC grant requirements. CESI will design and fabricate two Xonon{trademark} modules according to General Electric (GE) specification for operating conditions in the GE-10 gas turbine. CESI will ship the modules to the GE test facility for engine testing. CESI will provide test personnel as required to oversee the installation, testing and removal of the Xonon modules. GE will perform an engine test of the CESI-supplied Xonon modules on a GE-10 test engine in the fall of 2004. GE will record all test data as appropriate to evaluate the emissions and operating performance of the Xonon module. Following the test, GE will provide a letter report of the engine test findings. The letter report shall summarize the testing and provide an assessment of Xonon's ability to ultimately achieve less than 3 ppm NOx emissions on the GE-10. All expenses incurred by GE for this task will be paid by GE; no federal funds will be used. Following the reporting of findings, GE will make a decision whether or not to proceed with the Riverside retrofit project. GE will write a letter to CESI giving their decision. GE and CESI will report of engine test findings and the decision letter to the CEC Project Manager.

James F. Burns

2007-07-31T23:59:59.000Z

370

Synthesis and optical properties of II-O-VI highly mismatched alloys  

DOE Green Energy (OSTI)

We have synthesized ternary and quaternary diluted II-VI oxides using the combination of O ion implantation and pulsed laser melting. CdO{sub x}Te{sub 1-x} thin films with x up to 0.015, and the energy gap reduced by 150 meV were formed by O{sup +}-implantation in CdTe followed by pulsed laser melting. Quaternary Cd{sub 0.6}Mn{sub 0.4}O{sub x}Te{sub 1-x} and Zn{sub 0.88}Mn{sub 0.12}O{sub x}Te{sub 1-x} with mole fraction of incorporated O as high as 0.03 were also formed. The enhanced O incorporation in Mn-containing alloys is believed to be due to the formation of relatively strong Mn-O bonds. Optical transitions associated with the lower (E{sub -}) and upper (E{sub +}) conduction subbands resulting from the anticrossing interaction between the localized O states and the extended conduction states of the host are clearly observed in these quaternary diluted II-VI oxides. These alloys fulfill the criteria for a multiband semiconductor that has been proposed as a material for making high efficiency, single-junction solar cells.

Yu, K.M.; Walukiewicz, W.; Shan, W.; Wu, J.; Beeman, J.W.; Scarpulla, M.A.; Dubon, O.D.; Becla, P.

2004-01-20T23:59:59.000Z

371

Session VI  

Science Conference Proceedings (OSTI)

Aug 9, 2013 ... Materials for Inertial Fusion Energy: Michael Fluss1; Luke Hsiung1; ... Thoria- based fuel is regarded as a fuel for safer nuclear reactors as it has ...

372

IREX VI  

Science Conference Proceedings (OSTI)

... particularly with respect to wavelength of the infra-red illuminant14 the angle of incident infrared light due to light emitting diode (LED) placement ...

2013-07-24T23:59:59.000Z

373

Market Potential for Nitrogen Fertilizers Derived from the Electric Power Industry  

Science Conference Proceedings (OSTI)

This technology evaluation report describes the potential market for fertilizer materials derived from utility by-products from developing ammonia-based flue gas desulfurization (FGD) systems to control sulfur oxides (SOx) and nitrogen oxides (NOx).

2002-11-27T23:59:59.000Z

374

The air pollution constraints considered best generation mix using fuzzy linear programming  

Science Conference Proceedings (OSTI)

A new approach considering SOx, NOX and CO2 air pollution constraints in the long-term generation mix with multi-criteria is proposed under uncertain circumstances. Specially, CO2 emission of electricity system industry ...

Jaeseok Choi; TrungTinh Tran; Jungji Kwon; Sangsik Lee; Abdurrahim El-keib

2005-09-01T23:59:59.000Z

375

Understanding the role of organic aerosol in the coastal and remote pacic marine boundary layer  

E-Print Network (OSTI)

forest fire from fossil fuel combus- tion organicSouth Asia: Biomass or Fossil Fuel Combustion? Science 323 (of NOx and SOx from fossil-fuel combustion between 1966 and

Hawkins, Lelia Nahid

2010-01-01T23:59:59.000Z

376

A Demonstration System for Capturing Geothermal Energy from Mine...  

Open Energy Info (EERE)

benefits are gained from decreased NOx, SOx, and CO2 emissions as opposed to burning fossil fuels. Heat pumps should add to that efficiency. The completed building will be...

377

All-vapor processing of P-type tellurium-containing II-VI semiconductor and ohmic contacts thereof  

DOE Patents (OSTI)

An all dry method for producing solar cells is provided comprising first heat-annealing a II-VI semiconductor; enhancing the conductivity and grain size of the annealed layer; modifying the surface and depositing a tellurium layer onto the enhanced layer; and then depositing copper onto the tellurium layer so as to produce a copper tellurium compound on the layer.

McCandless, Brian E.

2000-03-01T23:59:59.000Z

378

DOE/EA-1472: Finding of No Significant Impact for the Commercial Demonstration of the Low NOx Burner/Separated Over-Fire Air Integration System Emission Reduction Technology (03/11/03)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

IMPACT IMPACT COMMERCIAL DEMONSRATION OF THE LOW NOx BURNER/SEPARATED OVER- FIRE AIR (LNB/SOFA) INTEGRATON SYSTEM EMISSION REDUCTION TECHNOLOGY HOLCOMB STATION SUNFLOWER ELECTRIC POWER CORPORATION FINNEY COUNTY, KANSAS AGENCY: U.S. Department of Energy (DOE) ACTION: Finding of No Significant Impact (FONSI) SUMMARY: The DOE has prepared an Environmental Assessment (EA), to analyze the potential impacts of the commercial application of the Low-NOx Burner/Separated Over-Fire Air (LNB/SOFA) integration system to achieve nitrogen oxide (NOx) emissions reduction at Sunflower's Holcomb Unit No. 1 (Holcomb Station), located near Garden City, in Finney County, Kansas. The Holcomb Station would be modified in three distinct phases to demonstrate the synergistic effect of layering NO,

379

THE DIAGNOSTIC O VI ABSORPTION LINE IN DIFFUSE PLASMAS: COMPARISON OF NON-EQUILIBRIUM IONIZATION STRUCTURE SIMULATIONS TO FUSE DATA  

Science Conference Proceedings (OSTI)

The nature of the interstellar O VI in the Galactic disk is studied by means of a multi-fluid hydrodynamical approximation, tracing the detailed time-dependent evolution of the ionization structure of the plasma. Our focus is to explore the signature of any non-equilibrium ionization condition present in the interstellar medium using the diagnostic O VI ion. A detailed comparison between the simulations and FUSE data is carried out by taking lines of sight (LOS) measurements through the simulated Galactic disk, covering an extent of 4 kpc from different vantage points. The simulation results bear a striking resemblance with the observations: (1) the N(O VI) distribution with distance and angle fall within the minimum and maximum values of the FUSE data; (2) the column density dispersion with distance is constant for all the LOS, showing a mild decrease at large distances; (3) O VI has a clumpy distribution along the LOS; and (4) the time-averaged midplane density for distances >400 pc has a value of (1.3-1.4) Multiplication-Sign 10{sup -8} cm{sup -3}. The highest concentration of O VI by mass occurs in the thermally stable (10{sup 3.9} K < T {<=} 10{sup 4.2} K; 20%) and unstable (10{sup 4.2} K < T < 10{sup 5} K; 50%) regimes, both well below its peak temperature in collisional ionization equilibrium, with the corresponding volume filling factors oscillating with time between 8%-20% and 4%-5%, respectively. These results may also be relevant for intergalactic metal absorption systems at high redshifts.

De Avillez, Miguel A. [Department of Mathematics, University of Evora, R. Romao Ramalho 59, 7000 Evora (Portugal); Breitschwerdt, Dieter [Zentrum fuer Astronomie und Astrophysik, Technische Universitaet Berlin, Hardenbergstrasse 36, D-10623 Berlin (Germany)

2012-12-20T23:59:59.000Z

380

Calculation of the electron structure of vacancies and their compensated states in III-VI semiconductors  

Science Conference Proceedings (OSTI)

The Green's functions theory and the bond-orbital model are used as a basis for calculations of the electron structure of local defects-specifically, vacancies and their compensated states in III-VI semiconductors. The energy levels in the band gap are established, and the changes induced in the electron densities in the GaS, GaSe, and InSe semiconductors by anion and cation vacancies and their compensated states are calculated. It is established that, if a vacancy is compensated by an atom of an element from the same subgroup with the same tetrahedral coordination and if the ionic radius of the compensating atom is smaller than that of the substituted atom, the local levels formed by the vacancy completely disappear. It is shown that this mechanism of compensation of vacancies provides a means not only for recovering the parameters of the crystal, but for improving the characteristics of the crystal as well.

Mehrabova, M. A., E-mail: Mehrabova@mail.ru; Madatov, R. S. [Azerbaijan National Academy of Sciences, Institute of Radiation Problems (Azerbaijan)

2011-08-15T23:59:59.000Z

Note: This page contains sample records for the topic "vi sox nox" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

OFFICE OF THE GOVERNOR GOVERNMENT HOUSE Charlotte Amalie, V.I. 00802  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GOVERNMENT HOUSE GOVERNMENT HOUSE Charlotte Amalie, V.I. 00802 340-774-0001 March 4,2009 The Honorable Steven Chu Secretary U.S. Department of Energy 1000 Independence Avenue, S . W. Washington, D.C. 20585 Re: State Energy Program Assurances Dear Secretary Chu: As a condition of receiving our State share of the $3.1 billion funding for the State Energy Program (SEP) under the American Recovery and Reinvestment Act of 2009 (ARRA), P.L. 11 1-5, I am providing the following assurances. I have written to the chairman of our Public Service Commission and requested that it consider additional actions to promote energy efficiency, consistent with the statutory requirements set forth in the ARRA and its obligations to maintain just and reasonable rates, while protecting the public. I have also written to the

382

NOx Sensor Development  

SciTech Connect

The objectives of this report are: (1) Develop an inexpensive, rapid-response, high-sensitivity and selective electrochemical sensor for oxides of nitrogen (NO{sub x}) for compression-ignition, direct-injection (CIDI) exhaust gas monitoring; (2) Explore and characterize novel, effective sensing methodologies based on impedance measurements; (3) Explore designs and manufacturing methods that could be compatible with mass fabrication; and (4) Collaborate with industry in order to (ultimately) transfer the technology to a supplier for commercialization.

Woo, L Y; Glass, R S

2009-10-27T23:59:59.000Z

383

Reactive based NOx sensor  

E-Print Network (OSTI)

Diesel engines exhibit better fuel economy and emit fewer greenhouse gases than gasoline engines. Modern diesel technology has virtually eliminated carbon monoxide and particulate emissions. Sulfur oxide emissions have ...

Vassiliou, Christophoros Christou

2006-01-01T23:59:59.000Z

384

OpenEI - NOx  

Open Energy Info (EERE)

http:en.openei.orgdatasetstaxonomyterm4630 en Hourly Energy Emission Factors for Electricity Generation in the United States http:en.openei.orgdatasetsnode488...

385

NOx Sensor Development  

SciTech Connect

NO{sub x} compounds, specifically NO and NO{sub 2}, are pollutants and potent greenhouse gases. Compact and inexpensive NO{sub x} sensors are necessary in the next generation of diesel (CIDI) automobiles to meet government emission requirements and enable the more rapid introduction of more efficient, higher fuel economy CIDI vehicles. Because the need for a NO{sub x} sensor is recent and the performance requirements are extremely challenging, most are still in the development phase. Currently, there is only one type of NO{sub x} sensor that is sold commercially, and it seems unlikely to meet more stringent future emission requirements. Automotive exhaust sensor development has focused on solid-state electrochemical technology, which has proven to be robust for in-situ operation in harsh, high-temperature environments (e.g., the oxygen stoichiometric sensor). Solid-state sensors typically rely on yttria-stabilized zirconia (YSZ) as the oxygen-ion conducting electrolyte and then target different types of metal or metal-oxide electrodes to optimize the response. Electrochemical sensors can be operated in different modes, including amperometric (a current is measured) and potentiometric (a voltage is measured), both of which employ direct current (dc) measurements. Amperometric operation is costly due to the electronics necessary to measure the small sensor signal (nanoampere current at ppm NO{sub x} levels), and cannot be easily improved to meet the future technical performance requirements. Potentiometric operation has not demonstrated enough promise in meeting long-term stability requirements, where the voltage signal drift is thought to be due to aging effects associated with electrically driven changes, both morphological and compositional, in the sensor. Our approach involves impedancemetric operation, which uses alternating current (ac) measurements at a specified frequency. The approach is described in detail in previous reports and several publications. Briefly, impedancemetric operation has shown the potential to overcome the drawbacks of other approaches, including higher sensitivity towards NO{sub x}, better long-term stability, potential for subtracting out background interferences, total NO{sub x} measurement, and lower cost materials and operation. Past LLNL research and development efforts have focused on characterizing different sensor materials and understanding complex sensing mechanisms. Continued effort has led to improved prototypes with better performance, including increased sensitivity (to less than 5 ppm) and long-term stability, with more appropriate designs for mass fabrication, including incorporation of an alumina substrate with an imbedded heater. Efforts in the last year to further improve sensor robustness have led to successful engine dynamometer testing with prototypes mounted directly in the engine manifold. Previous attempts had required exhaust gases to be routed into a separate furnace for testing due to mechanical failure of the sensor from engine vibrations. A more extensive cross-sensitivity study was also undertaken this last year to examine major noise factors including fluctuations in water, oxygen, and temperature. The quantitative data were then used to develop a strategy using numerical algorithms to improve sensor accuracy. The ultimate goal is the transfer of this technology to a supplier for commercialization. Due to the recent economic downturn, suppliers are demanding more comprehensive data and increased performance analysis before committing their resources to take the technology to market. Therefore, our NO{sub x} sensor work requires a level of technology development more thorough and extensive than ever before. The objectives are: (1) Develop an inexpensive, rapid-response, high-sensitivity and selective electrochemical sensor for oxides of nitrogen (NO{sub x}) for compression-ignition, direct-injection (CIDI) exhaust gas monitoring; (2) Explore and characterize novel, effective sensing methodologies based on impedance measurements and designs and manufacturing metho

Woo, L Y; Glass, R S

2010-11-01T23:59:59.000Z

386

Optical Monitoring of NOx  

Science Conference Proceedings (OSTI)

The scientific literature for laser-absorption detection of NO is reviewed and specific strategies are discussed that have potential for in situ measurements within exhaust systems of combustion-driven electric power generation facilities. Fundamentals of laser-absorption measurements are summarized to evaluate the four different spectroscopic schemes for detection of NO: use of absorption transitions within the A-X electronic system in the ultraviolet or use of three different vibrational bands in the i...

2007-12-03T23:59:59.000Z

387

DEVELOPMENT OF A VALIDATED MODEL FOR USE IN MINIMIZING NOx EMISSIONS AND MAXIMIZING CARBON UTILIZATION WHEN CO-FIRING BIOMASS WITH COAL  

DOE Green Energy (OSTI)

In full-scale boilers, the effect of biomass cofiring on NO{sub x} and unburned carbon (UBC) emissions has been found to be site-specific. Few sets of field data are comparable and no consistent database of information exists upon which cofiring fuel choice or injection system design can be based to assure that NOX emissions will be minimized and UBC be reduced. This report presents the results of a comprehensive project that generated an extensive set of pilot-scale test data that were used to validate a new predictive model for the cofiring of biomass and coal. All testing was performed at the 3.6 MMBtu/hr (1.75 MW{sub t}) Southern Company Services/Southern Research Institute Combustion Research Facility where a variety of burner configurations, coals, biomasses, and biomass injection schemes were utilized to generate a database of consistent, scalable, experimental results (422 separate test conditions). This database was then used to validate a new model for predicting NO{sub x} and UBC emissions from the cofiring of biomass and coal. This model is based on an Advanced Post-Processing (APP) technique that generates an equivalent network of idealized reactor elements from a conventional CFD simulation. The APP reactor network is a computational environment that allows for the incorporation of all relevant chemical reaction mechanisms and provides a new tool to quantify NOx and UBC emissions for any cofired combination of coal and biomass.

Larry G. Felix; P. Vann Bush; Stephen Niksa

2003-04-30T23:59:59.000Z

388

Spatially resolved U(VI) partitioning and speciation: Implications for plume scale behavior of contaminant U in the Hanford vadose zone  

E-Print Network (OSTI)

EM/GJ1302- 2006, Stoller Hanford Office, Richland, WA. 2006.characterization of U(VI) in Hanford vadose zone poreUranium Geochemistry at the Hanford Site. Pacific Northwest

Wan, Jiamin

2009-01-01T23:59:59.000Z

389

A Conceptual model of coupled biogeochemical and hydrogeological processes affected by in situ Cr(VI) bioreduction in groundwater at Hanford 100H Site  

E-Print Network (OSTI)

in Groundwater at Hanford 100H Site B.Faybishenko, P.E.Long,Cr(VI) contaminated groundwater at Hanford 100H site. A slowHRC TM ), was injected in Hanford sediments to stimulate

2006-01-01T23:59:59.000Z

390

Gas Combustion Appliances: Validating VENT-II Vi H. Rapp, Albert Pastor-Perez, Brett C. Singer, and  

NLE Websites -- All DOE Office Websites (Extended Search)

Predicting Backdrafting and Spillage for Natural-Draft Predicting Backdrafting and Spillage for Natural-Draft Gas Combustion Appliances: Validating VENT-II Vi H. Rapp, Albert Pastor-Perez, Brett C. Singer, and Craig P. Wray Environmental Energy Technologies Division April 2013 In Press as: Vi H. Rapp, Albert Pastor-Perez, Brett C. Singer, and Craig P. Wray. 2013. "Predicting Backdrafting and Spillage for Natural-Draft Gas Combustion Appliances: A Validation of VENT-II". HVAC&R Research, DOI:10.1080/10789669.2013.771948 LBNL-6193E 2 DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof,

391

CORROSION STUDY FOR THE EFFLUENT TREATMENT FACILITY (ETF) CHROME (VI) REDUCTANT SOLUTION USING 304 & 316L STAINLESS STEEL  

Science Conference Proceedings (OSTI)

The Effluent Treatment Facility has developed a method to regenerate spent resin from the groundwater pump and treat intercepting chrome(VI) plumes (RPP-RPT-32207, Laboratory Study on Regeneration of Spent DOWEX 21K 16-20 Mesh Ion Exchange Resin). Subsequent laboratory studies have shown that the chrome(VI) may be reduced to chrome(III) by titrating with sodium metabisulfite to an oxidation reduction potential (ORP) of +280 mV at a pH of 2. This test plan describes the use of cyclic potentiodynamic polarization and linear polarization techniques to ascertain the electrochemical corrosion and pitting propensity of the 304 and 316L stainless steel in the acidified reducing the solution that will be contained in either the secondary waste receiver tank or concentrate tank.

DUNCAN, J.B.

2007-06-27T23:59:59.000Z

392

A methodology to evaluate energy savings and NOx emissions reductions from the adoption of the 2000 International Energy Conservation Code (IECC) to new residences in non-attainment and affected counties in Texas  

E-Print Network (OSTI)

Currently, four areas of Texas have been designated by the United States Environmental Protection Agency (EPA) as non-attainment areas because they exceeded the national one-hour ground-level ozone standard of 0.12 parts-per-million (ppm). Ozone is formed in the atmosphere by the reaction of Volatile Organic Compounds (VOCs) and Nitrogen Oxides (NOx) in the presence of heat and sunlight. In May 2002, The Texas State Legislature passed Senate Bill 5, the Texas Emissions Reduction Plan (TERP), to reduce the emissions of NOx by several sources. As part of the 2001 building energy performance standards program which is one of the programs in the TERP, the Texas Legislature established the 2000 International Energy Conservation Code (IECC) as the state energy code. Since September 1, 2001, the 2000 IECC has been required for newly constructed single and multifamily houses in Texas. Therefore, this study develops and applies portions of a methodology to calculate the energy savings and NOx emissions reductions from the adoption of the 2000 IECC to new single family houses in non-attainment and affected counties in Texas. To accomplish the objectives of the research, six major tasks were developed: 1) baseline data collection, 2) development of the 2000 IECC standard building simulation, 3) projection of the number of building permits in 2002, 4) comparison of energy simulations, 5) validation and, 6) NOx emissions reduction calculations. To begin, the 1999 standard residential building characteristics which are the baseline construction data were collected, and the 2000 IECC standard building characteristics were reviewed. Next, the annual and peak-day energy savings were calculated using the DOE-2 building energy simulation program. The building characteristics and the energy savings were then crosschecked using the data from previous studies, a site visit survey, and utility billing analysis. In this thesis, several case study houses are used to demonstrate the validation procedure. Finally, the calculated electricity savings (MWh/yr) were then converted into the NOx emissions reductions (tons/yr) using the EPA's eGRID database. The results of the peak-day electricity savings and NOx emissions reductions using this procedure are approximately twice the average day electricity savings and NOx emissions reductions.

Im, Piljae

2003-12-01T23:59:59.000Z

393

Stable ohmic contacts to thin films of p-type tellurium-containing II-VI semiconductors  

SciTech Connect

A photovolatic device is described comprising: a light transmissive substrate; an electrically conductive, transparent layer disposed on the substrate as a first electrode; a layer of a first semiconductor disposed on the first electrode; a p-type thin film of a tellurium-containing II-VI semiconductor disposed on the first semiconductor to form a photoresponsive junction with it; and a second electrode contacting the thin film.

Szabo, L.F.; Biter, W.J.

1988-04-05T23:59:59.000Z

394

THE PROPERTIES OF TWO LOW-REDSHIFT O VI ABSORBERS AND THEIR ASSOCIATED GALAXIES TOWARD 3C 263 ,  

SciTech Connect

Ultraviolet observations of the QSO 3C 263 (z{sub em} = 0.652) with Cosmic Origins Spectrograph and FUSE reveal O VI absorption systems at z = 0.06342 and 0.14072. WIYN multi-object spectrograph observations provide information about the galaxies associated with the absorbers. The multi-phase system at z = 0.06342 traces cool photoionized gas and warm collisionally ionized gas associated with an L {approx} 0.31 L* compact spiral emission line galaxy with an impact parameter of 63 kpc. The cool photoionized gas in the absorber is well modeled, with log U {approx} -2.6, log N(H) {approx} 17.8, log n(H) {approx} -3.3 and [Si/H] = -0.14 {+-} 0.23. The collisionally ionized gas containing C IV and O VI probably arises in cooling shock-heated transition temperature gas with log T {approx} 5.5. The absorber is likely tracing circumgalactic gas enriched by gas ejected from the spiral emission line galaxy. The simple system at z = 0.14072 only contains O VI and broad and narrow H I. The O VI with b = 33.4 {+-} 11.9 km s{sup -1} is likely associated with the broad H I {lambda}1215 absorption, with b = 86.7 {+-} 15.4 km s{sup -1}. The difference in Doppler parameters implies the detection of a very large column of warm gas with log T = 5.61(+0.16, -0.25), log N(H) = 19.54(+0.26, -0.44), and [O/H] = -1.48 (+0.46, -0.26). This absorber is possibly associated with a 1.6 L* absorption line galaxy with an impact parameter of 617 kpc, although an origin in warm filament gas or in the halo of a fainter galaxy is more likely.

Savage, B. D.; Kim, T.-S.; Wakker, B. P. [Department of Astronomy, University of Wisconsin, Madison, WI 53706 (United States); Keeney, B.; Stocke, J.; Syphers, D. [CASA, University of Colorado, Boulder, CO (United States); Narayanan, A. [Indian Institute of Space Science and Technology, Thiruvananthapuram 695547, Kerala (India)

2012-07-01T23:59:59.000Z

395

U(VI) bioreduction with emulsified vegetable oil as the electron donor-- Microcosm tests and model development  

Science Conference Proceedings (OSTI)

Microcosm tests were conducted to study U(VI) bioreduction in contaminated sediments with emulsified vegetable oil (EVO) as the electron donor. In the microcosms, EVO was degraded by indigenous microorganisms and stimulated Fe, U, and sulfate bioreduction, and methanogenesis. Removal of aqueous U occurred concurrently with sulfate reduction, with more reduction of total U in the case of higher initial sulfate concentrations. X-ray absorption near-edge spectroscopy (XANES) analysis confirmed U(VI) reduction to U(IV). As the acetate concentration peaked in 10~20 days in oleate microcosms, the maximum was reached in 100~120 days in the EVO microcosms, indicating that EVO hydrolysis was rate-limiting. The acetate accumulation was sustained over 50 days longer in the oleate and EVO than in the ethanol microcosms, suggesting that acetate-utilizing methanogenesis was slower in the cases of oleate and EVO. Both slow hydrolysis and methanogenesis could contribute to potential sustained bioreduction in field application. Biogeochemical models were developed to couple degradation of EVO, production and oxidation of long-chain fatty acids, glycerol, acetate, and hydrogen, reduction of Fe(III), U(VI) and sulfate, and methanogenesis with growth and decay of microbial functional groups. The models were used to simulate the coupled processes in a field test in a companion article.

Tang, Guoping [ORNL; Wu, Wei-min [Stanford University; Watson, David B [ORNL; Parker, Jack C. [University of Tennessee, Knoxville (UTK); Schadt, Christopher Warren [ORNL; Brooks, Scott C [ORNL; Shi, Xiaoqing [ORNL

2013-01-01T23:59:59.000Z

396

Cr(VI) adsorption on functionalized amorphous and mesoporous silica from aqueous and non-aqueous media  

Science Conference Proceedings (OSTI)

A mesoporous silica (SBA-15) and amorphous silica (SG) have been chemically modified with 2-mercaptopyridine using the homogeneous route. This synthetic route involved the reaction of 2-mercaptopyridine with 3-chloropropyltriethoxysilane prior to immobilization on the support. The resulting material has been characterized by powder X-ray diffraction, nitrogen gas sorption, FT-IR and MAS NMR spectroscopy, thermogravimetry and elemental analysis. The solid was employed as a Cr(VI) adsorbent from aqueous and non-aqueous solutions at room temperature. The effect of several variables (stirring time, pH, metal concentration and solvent polarity) has been studied using the batch technique. The results indicate that under the optimum conditions, the maximum adsorption value for Cr(VI) was 1.83 {+-} 0.03 mmol/g for MP-SBA-15, whereas the adsorption capacity of the MP-SG was 0.86 {+-} 0.02 mmol/g. On the basis of these results, it can be concluded that it is possible to modify chemically SBA-15 and SG with 2-mercaptopyridine and to use the resulting modified silicas as effective adsorbents for Cr(VI)

Perez-Quintanilla, Damian [Departamento de Quimica Inorganica y Analitica, E.S.C.E.T, Universidad Rey Juan Carlos, C/Tulipan s/n, 28933 Mostoles, Madrid (Spain)]. E-mail: damian.perez@urjc.es; Hierro, Isabel del [Departamento de Quimica Inorganica y Analitica, E.S.C.E.T, Universidad Rey Juan Carlos, C/Tulipan s/n, 28933 Mostoles, Madrid (Spain); Fajardo, Mariano [Departamento de Quimica Inorganica y Analitica, E.S.C.E.T, Universidad Rey Juan Carlos, C/Tulipan s/n, 28933 Mostoles, Madrid (Spain); Sierra, Isabel [Departamento de Quimica Inorganica y Analitica, E.S.C.E.T, Universidad Rey Juan Carlos, C/Tulipan s/n, 28933 Mostoles, Madrid (Spain)]. E-mail: isabel.sierra@urjc.es

2007-08-07T23:59:59.000Z

397

Development and Demonstration of a High Efficiency, Rapid Heating, Low NOx Alternative to Conventional Heating of Round Steel Shapes, Steel Substrate (Strip) and Coil Box Transfer Bars  

SciTech Connect

Direct Flame Impingement involves the use of an array of very high-velocity flame jets impinging on a work piece to rapidly heat the work piece. The predominant mode of heat transfer is convection. Because of the locally high rate of heat transfer at the surface of the work piece, the refractory walls and exhaust gases of a DFI furnace are significantly cooler than in conventional radiant heating furnaces, resulting in high thermal efficiency and low NOx emissions. A DFI furnace is composed of a successive arrangement of heating modules through or by which the work piece is conveyed, and can be configured for square, round, flat, and curved metal shapes (e.g., billets, tubes, flat bars, and coiled bars) in single- or multi-stranded applications.

Kurek, Harry; Wagner, John

2010-01-25T23:59:59.000Z

398

Structure of ABC Transporter MsbA in Complex with ATP Vi and  

NLE Websites -- All DOE Office Websites (Extended Search)

ABC Transporter MsbA ABC Transporter MsbA in Comlex with ATP Vi and Lipopolysaccharide: Implications for Lipid Flipping Christopher L. Reyes and Geoffrey Chang* Department of Molecular Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd. CB105, La Jolla, CA 92137 ATP-binding cassette (ABC) transporters are integral membrane proteins critical for the transport of a wide variety of substrate molecules across the cell membrane. MsbA, along with human MDR1 P-glycoprotein, are members of the ABC transporter family that have been implicated in multidrug resistance by coupling ATP binding and hydrolysis to substrate transport. This drug efflux results in resistance to antibiotics in microorganisms and resistance to chemotherapeutic drugs in human cancer cells1. Using x-ray diffraction data collected at SSRL Beam Line 11-1 and ALS, we have determined the 4.2 Ă… x-ray crystal structure of MsbA in complex with transition state mimic ADP, vanadate (an analog of the g phosphate of ATP) and the human immunomodulatory substrate Ra lipopolysaccharide. This structure is the first intact ABC transporter in complex with nucleotide and substrate.

399

Coupled spin and valley physics in monolayer MoS2 and group-VI dichalcogenides  

SciTech Connect

We show that inversion symmetry breaking together with spin-orbit coupling leads to coupled spin and valley physics in monolayer MoS2 and group-VI dichalcogenides, making possible controls of spin and valley in these 2D materials. The spin-valley coupling at the valence band edges suppresses spin and valley relaxation, as flip of each index alone is forbidden by the 0.1 eV valley contrasting spin splitting. Valley Hall and spin Hall effects coexist in both electron-doped and hole-doped systems. Optical interband transitions have frequency-dependent polarization selection rules which allow selective photoexcitation of carriers with various combination of valley and spin indices. Photo-induced spin Hall and valley Hall effects can generate long lived spin and valley accumulations on sample boundaries. The physics discussed here provides a route towards the integration of valleytronics and spintronics in multi-valley materials with strong spin-orbit coupling and inversion symmetry breaking.

Xiao, Di [ORNL; Liu, G. B. [University of Hong Kong, The; Feng, wanxiang [Chinese Academy of Sciences; Xu, Xiaodong [University of Washington; Yao, Wang [University of Hong Kong, The

2012-01-01T23:59:59.000Z

400

Methods for forming thin-film heterojunction solar cells from I-III-VI{sub 2}  

DOE Patents (OSTI)

An improved thin-film, large area solar cell, and methods for forming the same are disclosed, having a relatively high light-to-electrical energy conversion efficiency and characterized in that the cell comprises a p-n type heterojunction formed of: (i) a first semiconductor layer comprising a photovoltaic active material selected from the class of I-III-VI{sub 2} chalcopyrite ternary materials which is vacuum deposited in a thin ``composition-graded`` layer ranging from on the order of about 2.5 microns to about 5.0 microns ({approx_equal}2.5 {mu}m to {approx_equal}5.0 {mu}m) and wherein the lower region of the photovoltaic active material preferably comprises a low resistivity region of p-type semiconductor material having a superimposed region of relatively high resistivity, transient n-type semiconductor material defining a transient p-n homojunction; and (ii) a second semiconductor layer comprising a low resistivity n-type semiconductor material; wherein interdiffusion occurs (a) between the elemental constituents of the two discrete juxtaposed regions of the first semiconductor layer defining a transient p-n homojunction layer, and (b) between the transient n-type material in the first semiconductor layer and the second n-type semiconductor layer. 16 figs.

Mickelsen, R.A.; Chen, W.S.

1985-08-13T23:59:59.000Z

Note: This page contains sample records for the topic "vi sox nox" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Methods for forming thin-film heterojunction solar cells from I-III-VI[sub 2  

DOE Patents (OSTI)

An improved thin-film, large area solar cell, and methods for forming the same are disclosed, having a relatively high light-to-electrical energy conversion efficiency and characterized in that the cell comprises a p-n type heterojunction formed of: (1) a first semiconductor layer comprising a photovoltaic active material selected from the class of I-III-VI[sub 2] chalcopyrite ternary materials which is vacuum deposited in a thin composition-graded'' layer ranging from on the order of about 2.5 microns to about 5.0 microns ([approx equal]2.5[mu]m to [approx equal]5.0[mu]m) and wherein the lower region of the photovoltaic active material preferably comprises a low resistivity region of p-type semiconductor material having a superimposed region of relatively high resistivity, transient n-type semiconductor material defining a transient p-n homojunction; and (2), a second semiconductor layer comprising a low resistivity n-type semiconductor material; wherein interdiffusion (a) between the elemental constituents of the two discrete juxtaposed regions of the first semiconductor layer defining a transient p-n homojunction layer, and (b) between the transient n-type material in the first semiconductor layer and the second n-type semiconductor layer, is allowed.

Mickelsen, R.A.; Chen, W.S.

1982-06-15T23:59:59.000Z

402

Methods for forming thin-film heterojunction solar cells from I-III-VI.sub. 2  

DOE Patents (OSTI)

An improved thin-film, large area solar cell, and methods for forming the same, having a relatively high light-to-electrical energy conversion efficiency and characterized in that the cell comprises a p-n type heterojunction formed of: (i) a first semiconductor layer comprising a photovoltaic active material selected from the class of I-III-VI.sub.2 chalcopyrite ternary materials which is vacuum deposited in a thin "composition-graded" layer ranging from on the order ot about 2.5 microns to about 5.0 microns (.congruent.2.5 .mu.m to .congruent.5.0 .mu.m) and wherein the lower region of the photovoltaic active material preferably comprises a low resistivity region of p-type semiconductor material having a superimposed region of relatively high resistivity, transient n-type semiconductor material defining a transient p-n homojunction; and (ii), a second semiconductor layer comprising a low resistivity n-type semiconductor material; wherein interdiffusion (a) between the elemental constituents of the two discrete juxtaposed regions of the first semiconductor layer defining a transient p-n homojunction layer, and (b) between the transient n-type material in the first semiconductor layer and the second n-type semiconductor layer, causes the The Government has rights in this invention pursuant to Contract No. EG-77-C-01-4042, Subcontract No. XJ-9-8021-1 awarded by the U.S. Department of Energy.

Mickelsen, Reid A. (Bellevue, WA); Chen, Wen S. (Seattle, WA)

1985-01-01T23:59:59.000Z

403

Methods for forming thin-film heterojunction solar cells from I-III-VI.sub. 2  

DOE Patents (OSTI)

An improved thin-film, large area solar cell, and methods for forming the same, having a relatively high light-to-electrical energy conversion efficiency and characterized in that the cell comprises a p-n type heterojunction formed of: (i) a first semiconductor layer comprising a photovoltaic active material selected from the class of I-III-VI.sub.2 chalcopyrite ternary materials which is vacuum deposited in a thin "composition-graded" layer ranging from on the order of about 2.5 microns to about 5.0 microns (.congruent.2.5.mu.m to .congruent.5.0.mu.m) and wherein the lower region of the photovoltaic active material preferably comprises a low resistivity region of p-type semiconductor material having a superimposed region of relatively high resistivity, transient n-type semiconductor material defining a transient p-n homojunction; and (ii), a second semiconductor layer comprising a low resistivity n-type semiconductor material; wherein interdiffusion (a) between the elemental constituents of the two discrete juxtaposed regions of the first semiconductor layer defining a transient p-n homojunction layer, and (b) between the transient n-type material in the first semiconductor layer and the second n-type semiconductor layer, causes the transient n-type material in The Government has rights in this invention pursuant to Contract No. EG-77-C-01-4042, Subcontract No. XJ-9-8021-1 awarded by the U.S. Department of Energy.

Mickelsen, Reid A. (Bellevue, WA); Chen, Wen S. (Seattle, WA)

1982-01-01T23:59:59.000Z

404

National Aeronautics and Space Administration Ms. Jean Wolfe  

E-Print Network (OSTI)

/year reduction in harmful emissions (CO, HC, NOx, SOx) Vehicle Estimated Fuel Savings* Achieving Significantly current aircraft Emissions reduction: Local air quality: 75% less NOx (CAEP 6) Global climate: 40% less airspace resulted in 14 lawsuits. · Since 1980 FAA has invested over $5B in airport noise reduction

405

Effects of Ammonia and Flue Gas Desulfurization (FGD) Wastewater on Power Plant Effluent Toxicity  

Science Conference Proceedings (OSTI)

The Clean Air Act Amendments and subsequently the Clean Air Interstate Rule and other state-level actions have resulted in implementation of a variety of technologies to reduce emissions of nitrogen oxides (NOx), and to further reduce emissions of sulfur oxides (SOx). Selective Catalytic Reduction (SCR) and SNCR (non-catalytic) are two of the primary NOx emission reduction technologies. Often, ammonia is injected into flue gas as the reductant for the chemical reaction that converts NOx to nitrogen gas. ...

2007-12-18T23:59:59.000Z

406

Permeability reduction mechanisms involved in in-situ gelation of a polyacrylamide/chromium (VI)/thiourea system  

SciTech Connect

In this paper an investigation of the in-situ gelation of a polyacrylamide/chromium(VI)/thiourea system under flow conditions in unconsolidated sandpacks is presented. High flow resistance was observed in a localized section of the sandpacks that was consistent with deep-bed filtration mechanisms. A method to measure the size of aggregates in gel solution is also presented. Results from this method showed that the gel aggregates grow with reaction time and distance traveled through the sandpack, supporting the conclusion that filtration is a dominant factor in the in-situ gelation process under flow conditions.

McCool, C.S.; Green, D.W.; Willhits, G.P. (University of Kansas, KS (US))

1991-02-01T23:59:59.000Z

407

Remediation of Cr(VI) by biogenic magnetic nanoparticles: An x-ray magnetic circular dichroism study  

SciTech Connect

Biologically synthesized magnetite (Fe{sub 3}O{sub 4}) nanoparticles are studied using x-ray absorption and x-ray magnetic circular dichroism following exposure to hexavalent Cr solution. By examining their magnetic state, Cr cations are shown to exist in trivalent form on octahedral sites within the magnetite spinel surface. The possibility of reducing toxic Cr(VI) into a stable, non-toxic form, such as a Cr{sup 3+}-spinel layer, makes biogenic magnetite nanoparticles an attractive candidate for Cr remediation.

Telling, N. D.; Coker, V. S.; Cutting, R. S.; van der Laan, G.; Pearce, C. I.; Pattrick, R. A. D.; Arenholz, E.; Lloyd, J. R.

2009-09-04T23:59:59.000Z

408

Characteristics of Desulfation Behavior for Pre-Sulfated Pt-BaO/CeO2 Lean NOx Trap Catalysts: The Role of the CeO2 Support  

SciTech Connect

The desulfation of pre-sulfated Pt-BaO/CeO2 lean NOx trap catalysts was investigated by H2 TPRX (temperature programmed reaction), in-situ TR-XRD (time-resolved X-ray diffraction) and in-situ S K-edge XANES (X-ray absorption near edge spectroscopy) techniques. Compared with Pt-BaO/Al2O3 materials, the reductive treatment in H2 for a CeO2 supported sample up to 1073 K hardly removes any sulfur species. However, the results of in-situ TR-XRD measurements demonstrate that the quantity of a BaS phase formed on Pt-BaO/CeO2 is much smaller than that on Pt-BaO/Al2O3, implying that the formation of BaS crystallites, which occurs during the reduction from sulfate (SO42-) to sulfide (S2-), is significantly suppressed in the CeO2-supported catalyst. As the desulfation temperature increases under reducing conditions (in H2), the in-situ S XANES spectra show that, compared with alumina-supported samples, the reduction temperature for sulfates (S6+) decreases by about 150 K. Concomitantly, the formation of sulfur species with lower oxidation states (S2- - S4+) is enhanced. The step jump of S XANES spectra before and after desulfation are very similar, implying that the amount of sulfur-containing species removed during the reductive treatment is negligible, in agreement with the results of H2 TPRX. These results suggest that H2S produced by the reduction of BaSO4 is readily re-adsorbed on the ceria support to form ceria-sulfur complexes (e.g. CeS2). The high affinity of ceria for H2S, combined with the ease of reducibility of the ceria support gives rise to various oxidation states of sulfur after high temperature H2 treatments. Thus, the results of this study clearly show that the ceria support strongly affects the overall desulfation mechanism. The intrinsic role of the ceria support during desulfation, and its effect on the overall NOx storage processes are discussed on the basis of the characterization results obtained here.

Kim, Do Heui; Kwak, Ja Hun; Szanyi, Janos; Wang, Xianqin; Li, Guosheng; Hanson, Jonathan C.; Peden, Charles HF

2009-12-17T23:59:59.000Z

409

Characteristics of Desulfation Behavior for Presulfated Pt-BaO/CeO2 Lean NOx Trap Catalyst: The Role of the CeO2 Support  

SciTech Connect

The desulfation of presulfated Pt-BaO/CeO{sub 2} lean NOx trap catalyst was investigated by H{sub 2} TPRX (temperature programmed reaction), in situ TR-XRD (time-resolved X-ray diffraction), and in situ S K-edge XANES (X-ray absorption near edge spectroscopy) techniques. Compared with Pt-BaO/Al{sub 2}O{sub 3} materials, a reductive treatment in H{sub 2} for the CeO{sub 2}-supported sample up to 1073 K removes, at most, only a very small amount of sulfur species. However, the results of in situ TR-XRD measurements demonstrate that the quantity of a BaS phase formed on Pt-BaO/CeO{sub 2} is much smaller than that on Pt-BaO/Al{sub 2}O{sub 3}, implying that the formation of BaS crystallites, which occurs during the reduction from sulfate (SO{sub 4}{sup 2-}) to sulfide (S{sup 2-}), is significantly suppressed in the CeO{sub 2}-supported catalyst. As the desulfation temperature increases under reducing conditions (in H{sub 2}), in situ S XANES spectra show that, compared with alumina-supported samples, the reduction temperature for sulfates (S{sup 6+}) decreases by about 150 K. Concomitantly, the formation of sulfur species with lower oxidation states (S{sup 2}-S{sup 4+}) is enhanced. The absolute intensities of S XANES spectra before and after desulfation are very similar, implying that the amount of sulfur-containing species removed during the reductive treatment is negligible, in agreement with the results of H{sub 2} TPRX. These results suggest that H{sub 2}S produced by the reduction of BaSO{sub 4} is readily readsorbed on the ceria support to form ceria-sulfur complexes (e.g., Ce{sub 2}O{sub 2}S). The high affinity of ceria for H{sub 2}S, combined with the ease of reducibility of the ceria support material gives rise to various oxidation states of sulfur after high-temperature H{sub 2} treatments. Thus, the results of this study clearly show that the ceria support strongly affects the overall desulfation mechanism. The intrinsic role of the ceria support during desulfation and its effect on the overall NOx storage processes are discussed on the basis of the characterization results obtained here.

Kim, D.; Kwak, J; Szanyi, J; Wang, X; Li, G; Hanson, J; Peden, C

2009-01-01T23:59:59.000Z

410

Microwave-Assisted Synthesis of II-VI Semiconductor Micro- and Nanoparticles towards Sensor Applications  

E-Print Network (OSTI)

Engineering particles at the nanoscale demands a high degree of control over process parameters during synthesis. For nanocrystal synthesis, solution-based techniques typically include application of external convective heat. This process often leads to slow heating and allows decomposition of reagents or products over time. Microwave-assisted heating provides faster, localized heating at the molecular level with near instantaneous control over reaction parameters. In this work, microwave-assisted heating has been applied for the synthesis of II-VI semiconductor nanocrystals namely, ZnO nanopods and CdX (X = Se, Te) quantum dots (QDs). Based on factors such as size, surface functionality and charge, optical properties of such nanomaterials can be tuned for application as sensors. ZnO is a direct bandgap semiconductor (3.37 eV) with a large exciton binding energy (60 meV) leading to photoluminescence (PL) at room temperature. A microwave-assisted hydrothermal approach allows the use of sub-5 nm ZnO zero-dimensional nanoparticles as seeds for generation of multi-legged quasi one-dimensional nanopods via heterogeneous nucleation. ZnO nanopods, having individual leg diameters of 13-15 nm and growing along the [0001] direction, can be synthesized in as little as 20 minutes. ZnO nanopods exhibit a broad defect-related PL spanning the visible range with a peak at ~615 nm. Optical sensing based on changes in intensity of the defect PL in response to external environment (e.g., humidity) is demonstrated in this work. Microwave-assisted synthesis was also used for organometallic synthesis of CdX(ZnS) (X = Se, Te) core(shell) QDs. Optical emission of these QDs can be altered ased on their size and can be tailored to specific wavelengths. Further, QDs were incorporated in Enhanced Green-Fluorescent Protein – Ultrabithorax (EGFP-Ubx) fusion protein for the generation of macroscale composite protein fibers via hierarchal self-assembly. Variations in EGFP- Ubx·QD composite fiber surface morphology and internal QD distribution were studied with respect to (i) time of QD addition (i.e., pre or post protein self-assembly) and (ii) QD surface charge — negatively charged QDs with dihydrolipoic acid functionalization and positively charged QDs with polyethyleneimine coating. Elucidating design motifs and understanding factors that impact the protein-nanoparticle interaction enables manipulation of the structure and mechanical properties of composite materials.

Majithia, Ravish

2013-05-01T23:59:59.000Z

411

DEVELOPMENT OF A VALIDATED MODEL FOR USE IN MINIMIZING NOx EMISSIONS AND MAXIMIZING CARBON UTILIZATION WHEN CO-FIRING BIOMASS WITH COAL  

DOE Green Energy (OSTI)

This is the eighth Quarterly Technical Report for DOE Cooperative Agreement No. DE-FC26-00NT40895. A statement of the project objectives is included in the Introduction of this report. The final biomass co-firing test burn was conducted during this quarter. In this test (Test 14), up to 20% by weight dry switchgrass was comilled with Jim Walters No.7 mine coal and injected through the single-register burner. Jim Walters No.7 coal is a low-volatility, low-sulfur ({approx}0.7% S) Eastern bituminous coal. The results of this test are presented in this quarterly report. Progress has continued to be made in implementing a modeling approach to combine reaction times and temperature distributions from computational fluid dynamic models of the pilot-scale combustion furnace with char burnout and chemical reaction kinetics to predict NO{sub x} emissions and unburned carbon levels in the furnace exhaust. The REI Configurable Fireside Simulator (CFS) is now in regular use. Presently, the CFS is being used to generate CFD calculations for completed tests with Powder River Basin coal and low-volatility (Jim Walters No.7 Mine) coal. Niksa Energy Associates will use the results of these CFD simulations to complete their validation of the NOx/LOI predictive model. Work has started on the project final report.

Larry G. Felix; P. Vann Bush

2002-10-26T23:59:59.000Z

412

DEVELOPMENT OF A VALIDATED MODEL FOR USE IN MINIMIZING NOx EMISSIONS AND MAXIMIZING CARBON UTILIZATION WHEN CO-FIRING BIOMASS WITH COAL  

SciTech Connect

This is the third Quarterly Technical Report for DOE Cooperative Agreement No. DE-FC26-00NT40895. A statement of the project objectives is included in the Introduction of this report. Three additional biomass co-firing test burns have been conducted. In the first test (Test 3), up to 20% by weight dry hardwood sawdust and dry switchgrass was injected through the center of the burner. In the second test (Test 4), 100% Pratt seam coal was burned in a repeat of the initial test condition of Test 1, to reconcile irregularities in the data from the first test. In the third test (Test 5), up to 20% by weight dry hardwood sawdust and dry switchgrass was injected through an external pipe directed toward the exit of the burner. Progress has continued in developing a modeling approach to synthesize the reaction time and temperature distributions that will be produced by computational fluid dynamic models of the pilot-scale combustion furnace and the char burnout and chemical reaction kinetics that will predict NOx emissions and unburned carbon levels in the furnace exhaust. Additional results of CFD modeling efforts have been received and Preparations are under way for continued pilot-scale combustion experiments. Finally, a presentation was made at a Biomass Cofiring Project Review Meeting held at the NETL in Pittsburgh, PA on June 20-21.

Larry G. Felix; P. Vann Bush

2001-07-17T23:59:59.000Z

413

Simulating the Impact of Premixed Charge Compression Ignition on Light-Duty Diesel Fuel Economy and Emissions of Particulates and NOx  

SciTech Connect

We utilize the Powertrain Systems Analysis Toolkit (PSAT) combined with transient engine and aftertreatment component models implemented in Matlab/Simulink to simulate the effect of premixed charge compression ignition (PCCI) on the fuel economy and emissions of light-duty diesel-powered conventional and hybrid electric vehicles (HEVs). Our simulated engine is capable of both conventional diesel combustion (CDC) and premixed charge compression ignition (PCCI) over real transient driving cycles. Our simulated aftertreatment train consists of a diesel oxidation catalyst (DOC), lean NOx trap (LNT), and catalyzed diesel particulate filter (DPF). The results demonstrate that, in the simulated conventional vehicle, PCCI can significantly reduce fuel consumption and emissions by reducing the need for LNT and DPF regeneration. However, the opportunity for PCCI operation in the simulated HEV is limited because the engine typically experiences higher loads and multiple stop-start transients that are outside the allowable PCCI operating range. Thus developing ways of extending the PCCI operating range combined with improved control strategies for engine and emissions control management will be especially important for realizing the potential benefits of PCCI in HEVs.

Gao, Zhiming [ORNL; Daw, C Stuart [ORNL; Wagner, Robert M [ORNL; Edwards, Kevin Dean [ORNL; Smith, David E [ORNL

2013-01-01T23:59:59.000Z

414

DEVELOPMENT OF A VALIDATED MODEL FOR USE IN MINIMIZING NOx EMISSIONS AND MAXIMIZING CARBON UTILIZATION WHEN CO-FIRING BIOMASS WITH COAL  

DOE Green Energy (OSTI)

This is the second Quarterly Technical Report for DOE Cooperative Agreement No. DE-FC26-00NT40895. A statement of the project objectives is included in the Introduction of this report. Two biomass co-firing test burns have been conducted. In the first test, up to 20% by weight dry hardwood sawdust and dry switchgrass was co-milled Pratt seam coal. In the second test, also with Pratt seam coal, up to 10% by weight dry hardwood sawdust was injected through the center of the burner. Progress has continued in developing a modeling approach to synthesize the reaction time and temperature distributions that will be produced by computational fluid dynamic models of the pilot-scale combustion furnace and the char burnout and chemical reaction kinetics that will predict NOx emissions and unburned carbon levels in the furnace exhaust. Preliminary results of CFD modeling efforts have been received and Preparations are under way for continued pilot-scale combustion experiments.

Larry G. Felix; P. Vann Bush

2001-04-30T23:59:59.000Z

415

Observation of lines above 2000 A in O VIII and C VI in the Princeton Large Torus due to charge-exchange processes: Diagnostic applications  

DOE Green Energy (OSTI)

Hydrogenlike oxygen and carbon lines from transitions (..delta..n = 1) between levels of high principal quantum number n, with wavelengths above 2000 A have been observed. Observations of such transitions were possible due to charge-exchange processes during neutral beam injection of hydrogen atoms into the Princeton Large Torus tokamak. The lines are O VIII 2976 A (8--7 transitions), C VI 3434 A (7--6), and C VI 5291 A (8--7). Application of these lines for ion temperature measurements and initial observations of neutral beam vertical distributions in the plasma are presented.

Suckewer, S.; Skinner, C.H.; Stratton, B.; Bell, R.; Cavallo, A.; Hosea, J.; Hwang, D.; Schilling, G.

1984-08-01T23:59:59.000Z

416

Extraction of Th(IV) and U(VI) by dihexyl-N,N-diethylcarbamoylmethylphosphonate from aqueous nitrate media  

SciTech Connect

The extraction behavior of Th(IV) and U(VI) from nitrate media was studied using relatively pure dihexyl-N,N-diethylcarbamoylmethylphosphonate (DHDECMP). The data were compared with analogous measurements obtained with dibutyl butylphosphonate (DB(BP)). It was found that the extractant dependency is second power for U(VI) with both DHDECMP and DB(BP). However, the extractant dependency for Th(IV) is third power for DB(BP) but varied from 2.5 to 2.0 power for DHDECMP depending on the total nitrate concentration. The K/sub d/ data do not support the theory that DHDECMP is an effective chelating agent for actinide ions. Significant differences between DHDECMP and DB(BP) do appear in the extraction behavior of Th(IV) from 1 to 5 M HNO/sub 3/. These differences are explained by the ability of DHDECMP to buffer itself against the effects of HNO/sub 3/ by protonation of the amide group.

Horwitz, E.P.; Kalina, D.G.; Muscatello, A.C.

1981-05-01T23:59:59.000Z

417

Synthesis, electrochemistry, and spectroscopic properties of six-coordinate monooxomolybdenum(VI) complexes containing tridentate Schiff base and bidentate catecholate ligands. Crystal and molecular structure of (N-salicylidene-2-aminophenolato)(naphthalene-2,3-diolato)oxomolybdenum(VI)  

SciTech Connect

Six-coordinate monooxomolybdenum(VI) complexes, MoO(cat)(Sap), where Sap/sup 2 -/ = the Schiff base dianion N-salicylidene-2-aminophenolate and cat/sup 2 -/ = catecholate Cat/sup 2 -/, naphthalene-2,3-diolate (Naphcat/sup 2 -/), or 3,5-di-tert-butylcatecholate (DTBcat/sup 2 -/), are prepared by reacting the Mo(VI) dimer. (MoO/sub 2/(Sap))/sub 2/, with the appropriate catechol. The products are characterized by cyclic voltammetry, mass spectrometry, and uv/vis, ir, and /sup 95/Mo NMR spectroscopy. The MoO(cat)(Sap) complexes represent the first examples of a mononuclear MoO/sup 4 +/ center with a coordination number of six. The crystal structure of the MoO-(Naphcat)(Sap) derivative is reported, confirming the six-coordinate, distorted octahedrla environment about Mo(VI). Bond angles in the coordination group deviate from the ideal value of 90/degrees/ as a consequence of the ligand bite constraints and because all four O-Mo-O angles involving the terminal oxo ligand are larger than the ideal 90/degrees/ value. MoO(cat)(Sap) complexes undergo reversible one-electronic reduction at -0.5 to -0.7 V versus Fc /sup +/0/ followed by irreversible one-electron reduction at -1.6 to -1.9 V. Reversible MoO/sup 4 +//MoO/sup 3 +/ electrochemistry is attributed to the fact that the Mo d/sub xy/orbital of MoO(cat)(Sap) can be singly occupied upon reduction to Mo(V) without unfavorable interaction with the four bonds in its equatorial plane. This contrasts with the irreversible electrochemical behavior of seven-coordinate MoO/sup 4 +/ complexes, which contain five such bonds. The /sup 95/Mo NMR chemical shift of MoO(Naphcat)(Sap) is +385 ppM versus external molybdate; this value is highly deshielded with respect to seven-coordinate MoO/sup 4 +/ and six-coordinate MoO/sub 2//sup 2 +/ complexes with O and N donors. 35 references, 4 figures, 5 tables.

Mondal, J.U.; Schultz, F.A.; Brennan, T.D.; Scheidt, W.R.

1988-11-02T23:59:59.000Z

418

SaVi: satellite constellation visualization Research Fellow, Centre for Communication Systems Research at the University of Surrey, e-mail: L.Wood@surrey.ac.uk  

E-Print Network (OSTI)

Command Language (Tcl). This two-pronged approach allows SaVi to be scriptable. Simple, short, Tcl scripts to the scripts of the network simulator ns-2, which also relies on Tcl. Many scripts simulating, illustrating is presented in Tcl's Toolkit, Tk, which complements Tcl and allows for relatively straightforward creation

Wood, Lloyd

419

Quest for Environmentally-Benign Ligands for Actinide Separations: Thermodynamic, Spectroscopic, and Structural Characterization of U(VI) Complexes with Oxa-Diamide and Related Ligands  

SciTech Connect

Complexation of U(VI) with N,N,N{prime},N{prime}-tetramethyl-3-oxa-glutaramide (TMOGA) and N,N-dimethyl-3-oxa-glutaramic acid (DMOGA) was studied in comparison with their dicarboxylate analog, oxydiacetic acid (ODA). Thermodynamic parameters, including stability constants, enthalpy and entropy of complexation, were determined by spectrophotometry, potentiometry and calorimetry. Single-crystal X-ray diffractometry, EXAFS spectro