National Library of Energy BETA

Sample records for vi rgi ni

  1. BUDGET DETAILS BOOK FOUR DPRMN OF N RGY U.S. Department of Energy

    Energy Savers [EERE]

    BUDGET DETAILS BOOK FOUR DPRMN OF N RGY U.S. Department of Energy Transition Team Budget Book Office of the Chief Financial Officer Office of Budget 1. Budget Overview 2. Funding Tables and Charts 3. Appropriations Subcommittees 4. Program Overviews 5. Major Construction Projects, Activities, and Initiatives 6. Laboratory and State Data Acronyms commonly used in budget documents. ACI American Competitiveness Initiative AEI Advanced Energy Initiative AFP Approved Funding Program (monthly

  2. ARM Airborne Carbon Measurements VI (ACME VI) Science Plan (Program...

    Office of Scientific and Technical Information (OSTI)

    Title: ARM Airborne Carbon Measurements VI (ACME VI) Science Plan From October 1 through September 30, 2016, the Atmospheric RadiationMeasurement (ARM) Aerial Facility will deploy ...

  3. MONOGRAFIAS DE FISICA VI

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    %y MONOGRAFIAS DE FISICA VI mSTER THE MANY BODY PROBLEM C. N. YANG Lectures at the Latin American School of Physics June 2 7 - August 7, I 9 6 0 RIO DE JANEIRO BRASIL DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. MONOGRAFIAS DE FISICA VI THE MxANY BODY PROBLEM b y C . No Y a n g L e c t u r e s a t the L a t i n American School of P h y s i c s June 27 - August 7) 19^0 Notes by: M. Bauer Y. Chow

  4. FE(VI)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wieghardt Research Neese Research DeBeer George Research Berry Research Lightsources.Org 25 July 2006 An Octahedral Iron(VI) Complex - A Novel Form of Iron summary written by Bradley Plummer, SLAC Communication Office Chemists have synthesized and characterized a new, highly reactive form of iron that promises to deepen our understanding of this important element. Iron is found in abundance in the natural world, and in its ionized form plays a crucial role in virtually all living processes. An

  5. Title VI | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    VI Title VI Title VI of the Civil Rights Act of 1964 prohibits discrimination on the basis of race, color, and national origin in programs and activities that receive federal financial assistance. The law states, in part, that: No person in the United States shall, on the ground of race, color, or national origin, be excluded from participation in, be denied the benefits of, or be subjected to discrimination under any program or activity receiving Federal financial assistance. The Office of

  6. Appendix VI Corrective Action Strategy

    National Nuclear Security Administration (NNSA)

    VI Corrective Action Strategy Revision No.: 2 February 2008 Federal Facility Agreement and Consent Order (FFACO) FFACO, Appendix VI February 2008 Revision 2 Page i of v Table of Contents List of Figures ................................................................................................................................ iii List of Tables ................................................................................................................................. iv List of Acronyms

  7. Flyer, Title VI | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Flyer, Title VI Flyer, Title VI Titles VI and IX of the Civil Rights Act of 1964, as amended prohibit discrimination in programs and activities receiving Federal financial assistance. This flyer explains this probition, and can be downloaded and displayed at your place of work. PDF icon discrimination flyer July 2011.pdf More Documents & Publications NO FEAR Act Notice DOE F 1600.5 DOE F 1600.1

  8. The Radiolysis of AmVI Solutions

    SciTech Connect (OSTI)

    Bruce J. Mincher

    2013-06-01

    The reduction of bismuthate-produced AmVI by 60Co gamma-rays was measured using post-irradiation UV/Vis spectroscopy. The reduction of AmVI by radiolysis was rapid, producing AmV as the sole product. Relatively low absorbed doses in the ~0.3 kGy range quantitatively reduced a solution of 2.5 x 10-4 M AmVI. The addition of bismuthate to samples during irradiation did not appear to protect AmVI from radiolytic reduction during these experiments. It was also shown here that AmV is very stable toward radiation. The quantitative reduction of the AmVI concentration here corresponds to 1.4 hours of exposure to a process solution, however the actual americium concentrations will be higher and the expected contact times short when using centrifugal contactors. Thus, the reduction rate found in these initial experiments may not be excessive.

  9. EA-389 Greay Bay Energy VI, LLC | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Application to Export Electric Energy OE Docket No. EA-389 Great Bay Energy VI, LLC EA-389-A Great Bay Energy VI, LLC EA-342-A Royal Bank of Canada...

  10. I.D I VI Figure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ~press - ,~,.--;~ 3.1 ,,~-.::;:.--- ~ ( 3.1 ( ;-; t\ I.D I VI Figure 9-1. Location of the original Cypress Grove Set-Aside and the Stave Island and Georgia Power replacement Areas. Set-Aside 9: Cypress Grove, Stave Island, and Georgia Power

  11. Energy balance of ENDF/B-VI

    SciTech Connect (OSTI)

    MacFarlane, R.E.

    1994-06-01

    ENDF/B-VI through Release 2 has been tested for neutron-photon energy balance using the Heater module of the NJOY nuclear data procesing system. The situation is much improved over ENDF/B-V, but there are still a number of maerials that show problems.

  12. Microsoft Word - APP VI, Rev 3 _03-19-20

    National Nuclear Security Administration (NNSA)

    Appendix VI Corrective Action Strategy Revision No.: 3 March 2010 Federal Facility Agreement and Consent Order (FFACO) FFACO, Appendix VI March 2010 Revision 3 Page i of vi Table of Contents List of Figures ................................................................................................................................ iii List of Tables ................................................................................................................................. iv List of

  13. Ni Ni: University of California - Los Angeles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Condensed Matter and Magnetic Science Group. Ni was chosen as one of the Lab's first Marie Curie Distinguished Postdoctoral Fellows. The selection criteria for the award...

  14. AFS-2 FLOWSHEET MODIFICATIONS TO ADDRESS THE INGROWTH OF PU(VI) DURING METAL DISSOLUTION

    SciTech Connect (OSTI)

    Crapse, K.; Rudisill, T.; O'Rourke, P.; Kyser, E.

    2014-07-02

    In support of the Alternate Feed Stock Two (AFS-2) PuO{sub 2} production campaign, Savannah River National Laboratory (SRNL) conducted a series of experiments concluding that dissolving Pu metal at 95C using a 610 M HNO{sub 3} solution containing 0.050.2 M KF and 02 g/L B could reduce the oxidation of Pu(IV) to Pu(VI) as compared to dissolving Pu metal under the same conditions but at or near the boiling temperature. This flowsheet was demonstrated by conducting Pu metal dissolutions at 95C to ensure that PuO{sub 2} solids were not formed during the dissolution. These dissolution parameters can be used for dissolving both Aqueous Polishing (AP) and MOX Process (MP) specification materials. Preceding the studies reported herein, two batches of Pu metal were dissolved in the H-Canyon 6.1D dissolver to prepare feed solution for the AFS-2 PuO{sub 2} production campaign. While in storage, UV-visible spectra obtained from an at-line spectrophotometer indicated the presence of Pu(VI). Analysis of the solutions also showed the presence of Fe, Ni, and Cr. Oxidation of Pu(IV) produced during metal dissolution to Pu(VI) is a concern for anion exchange purification. Anion exchange requires Pu in the +4 oxidation state for formation of the anionic plutonium(IV) hexanitrato complex which absorbs onto the resin. The presence of Pu(VI) in the anion feed solution would require a valence adjustment step to prevent losses. In addition, the presence of Cr(VI) would result in absorption of chromate ion onto the resin and could limit the purification of Pu from Cr which may challenge the purity specification of the final PuO{sub 2} product. Initial experiments were performed to quantify the rate of oxidation of Pu(IV) to Pu(VI) (presumed to be facilitated by Cr(VI)) as functions of the HNO{sub 3} concentration and temperature in simulated dissolution solutions containing Cr, Fe, and Ni. In these simulated Pu dissolutions studies, lowering the temperature from near boiling to 95 C reduced the oxidation rate of Pu(IV) to Pu(VI). For 8.1 M HNO{sub 3} simulated dissolution solutions, at near boiling conditions >35% Pu(VI) was present in 50 h while at 95 C <10% Pu(VI) was present at 50 h. At near boiling temperatures, eliminating the presence of Cr and varying the HNO{sub 3} concentration in the range of 78.5 M had little effect on the rate of conversion of Pu(IV) to Pu(VI). HNO{sub 3} oxidation of Pu(IV) to Pu(VI) in a pure solution has been reported previously. Based on simulated dissolution experiments, this study concluded that dissolving Pu metal at 95C using a 6 to 10 M HNO{sub 3} solution 0.050.2 M KF and 02 g/L B could reduce the rate of oxidation of Pu(IV) to Pu(VI) as compared to near boiling conditions. To demonstrate this flowsheet, two small-scale experiments were performed dissolving Pu metal up to 6.75 g/L. No Pu-containing residues were observed in the solutions after cooling. Using Pu metal dissolution rates measured during the experiments and a correlation developed by Holcomb, the time required to completely dissolve a batch of Pu metal in an H-Canyon dissolver using this flowsheet was estimated to require nearly 5 days (120 h). This value is reasonably consistent with an estimate based on the Batch 2 and 3 dissolution times in the 6.1D dissolver and Pu metal dissolution rates measured in this study and by Rudisill et al. Data from the present and previous studies show that the Pu metal dissolution rate decreases by a factor of approximately two when the temperature decreased from boiling (112 to 116C) to 95C. Therefore, the time required to dissolve a batch of Pu metal in an H-Canyon dissolver at 95C would likely double (from 36 to 54 h) and require 72 to 108 h depending on the surface area of the Pu metal. Based on the experimental studies, a Pu metal dissolution flowsheet utilizing 610 M HNO{sub 3} containing 0.050.2 M KF (with 02 g/L B) at 95C is recommended to reduce the oxidation of Pu(IV) to Pu(VI) as compared to near boiling conditions. The time required to completely di

  15. Role of Anions and Reaction Conditions in the Preparation of Uranium(VI), Neptunium(VI), and Plutonium(VI) Borates

    SciTech Connect (OSTI)

    none,

    2011-02-03

    U(VI), Np(VI), and Pu(VI) borates with the formula AnO2[B8O11(OH)4] (An = U, Np, Pu) have been prepared via the reactions of U(VI) nitrate, Np(VI) perchlorate, or Pu(IV) or Pu(VI) nitrate with molten boric acid. These compounds are all isotypic and consist of a linear actinyl(VI) cation, AnO22+, surrounded by BO3 triangles and BO4 tetrahedra to create an AnO8 hexagonal bipyramidal environment. The actinyl bond lengths are consistent with actinide contraction across this series. The borate anions bridge between actinyl units to create sheets. Additional BO3 triangles and BO4 tetrahedra extend from the polyborate layers and connect these sheets together to form a three-dimensional chiral framework structure. UV-vis-NIR absorption and fluorescence spectroscopy confirms the hexavalent oxidation state in all three compounds. Bond-valence parameters are developed for Np(VI).

  16. North American Standard Level VI Inspection Program Update: Ensuring Safe

    Office of Environmental Management (EM)

    Transportation of Radioactive Material | Department of Energy North American Standard Level VI Inspection Program Update: Ensuring Safe Transportation of Radioactive Material North American Standard Level VI Inspection Program Update: Ensuring Safe Transportation of Radioactive Material Presentation made by Carlisle Smith for the NTSF annual meeting held from May 14-16, 2013 in Buffalo, NY PDF icon North American Standard Level VI Inspection Program Update: Ensuring Safe Transportation of

  17. Ch. VI, The geophysical environment around Waunita Hot Springs...

    Open Energy Info (EERE)

    VI, The geophysical environment around Waunita Hot Springs Author A. L. Lange Editor T. G. Zacharakis Published Colorado Geological Survey in Cooperation with the U.S. Department...

  18. North American Standard Level VI Inspection Program Update: Ensuring...

    Office of Environmental Management (EM)

    North American Standard Level VI Inspection Program Update: Ensuring Safe Transportation of Radioactive Material Presentation made by Carlisle Smith for the NTSF annual meeting ...

  19. Air quality VI details environmental progress

    SciTech Connect (OSTI)

    2007-12-31

    A report is given of the International Conference on Air Quality VI where key topics discussed were control of mercury, trace elements, sulphur trioxide and particulates. This year a separate track was added on greenhouse gas reduction, with panels on greenhouse gas policy and markets, CO{sub 2} capture and sequestration, and monitoring, mitigation and verification. In keynote remarks, NETL Director Carl Bauer noted that emissions have gone down since 1990 even though coal consumption has increased. The conference provided an overview of the state-of-the-science regarding key pollutants and CO{sub 2}, the corresponding regulatory environment, and the technology readiness of mitigation techniques. 1 photo.

  20. KENO-VI Primer: A Primer for Criticality Calculations with SCALE/KENO-VI Using GeeWiz

    SciTech Connect (OSTI)

    Bowman, Stephen M

    2008-09-01

    The SCALE (Standardized Computer Analyses for Licensing Evaluation) computer software system developed at Oak Ridge National Laboratory is widely used and accepted around the world for criticality safety analyses. The well-known KENO-VI three-dimensional Monte Carlo criticality computer code is one of the primary criticality safety analysis tools in SCALE. The KENO-VI primer is designed to help a new user understand and use the SCALE/KENO-VI Monte Carlo code for nuclear criticality safety analyses. It assumes that the user has a college education in a technical field. There is no assumption of familiarity with Monte Carlo codes in general or with SCALE/KENO-VI in particular. The primer is designed to teach by example, with each example illustrating two or three features of SCALE/KENO-VI that are useful in criticality analyses. The primer is based on SCALE 6, which includes the Graphically Enhanced Editing Wizard (GeeWiz) Windows user interface. Each example uses GeeWiz to provide the framework for preparing input data and viewing output results. Starting with a Quickstart section, the primer gives an overview of the basic requirements for SCALE/KENO-VI input and allows the user to quickly run a simple criticality problem with SCALE/KENO-VI. The sections that follow Quickstart include a list of basic objectives at the beginning that identifies the goal of the section and the individual SCALE/KENO-VI features that are covered in detail in the sample problems in that section. Upon completion of the primer, a new user should be comfortable using GeeWiz to set up criticality problems in SCALE/KENO-VI. The primer provides a starting point for the criticality safety analyst who uses SCALE/KENO-VI. Complete descriptions are provided in the SCALE/KENO-VI manual. Although the primer is self-contained, it is intended as a companion volume to the SCALE/KENO-VI documentation. (The SCALE manual is provided on the SCALE installation DVD.) The primer provides specific examples of using SCALE/KENO-VI for criticality analyses; the SCALE/KENO-VI manual provides information on the use of SCALE/KENO-VI and all its modules. The primer also contains an appendix with sample input files.

  1. Procedure for plutonium determination using Pu(VI) spectra

    SciTech Connect (OSTI)

    Walker, L.F.; Temer, D.J.; Jackson, D.D.

    1996-09-01

    This document describes a simple spectrophotometric method for determining total plutonium in nitric acid solutions based on the spectrum of Pu(VI). Plutonium samples in nitric acid are oxidized to Pu(VI) with Ce(IV) and the net absorbance at the 830 nm peak is measured.

  2. ALTERATION OF U(VI)-PHASES UNDER OXIDIZING CONDITIONS

    SciTech Connect (OSTI)

    A.P. Deditius; S. Utsunomiya; R.C. Ewing

    2006-02-21

    Uranium-(VI) phases are the primary alteration products of the UO{sub 2} in spent nuclear fuel and the UO{sub 2+x}, in natural uranium deposits. The U(VI)-phases generally form sheet structures of edge-sharing UO{sub 2}{sup 2+} polyhedra. The complexity of these structures offers numerous possibilities for coupled-substitutions of trace metals and radionuclides. The incorporation of radionuclides into U(VI)-structures provides a potential barrier to their release and transport in a geologic repository that experiences oxidizing conditions. In this study, we have used natural samples of UO{sub 2+x}, to study the U(VI)-phases that form during alteration and to determine the fate of the associated trace elements.

  3. The reduction of Np(VI) and Pu(VI) by organic chelating agents.

    SciTech Connect (OSTI)

    Reed, D.T.; Aase, S.B.; Banaszak, J.E.

    1998-03-19

    The reduction of NpO{sup 2+} and PuO{sub 2}{sup 2+} by oxalate. citrate, and ethylenediaminetetraacetic acid (EDTA) was investigated in low ionic strength media and brines. This was done to help establish the stability of the An(VI) oxidation state in the presence of organic complexants. The stability of the An(VI) oxidation state depended on the pH and relative strength of the various oxidation state-specific complexes. At low ionic strength and pH 6, NpO{sub 2}O{sup 2+} was rapidly reduced to form NpO{sub 2}{sup +} organic complexes. At longer times, Np(IV) organic complexes were observed in the presence of citrate. PuO{sub 2}{sup 2+} was predominantly reduced to Pu{sup 4+}, resulting in the formation of organic complexes or polymeric/hydrolytic precipitates. The relative rates of reduction to the An(V) complex were EDTA > citrate > oxalate. Subsequent reduction to An(IV) complexes, however, occurred in the following order: citrate > EDTA > oxalate because of the stability of the An(V)-EDTA complex. The presence of organic complexants led to the rapid reduction of NpO{sub 2}{sup 2+} and PuO{sub 2}P{sup 2+} in G-seep brine at pHs 5 and 7. At pHs 8 and 10 in ERDA-6 brine, carbonate and hydrolytic complexes predominated and slowed down or prevented the reduction of An(VI) by the organics present.

  4. Electrolyte Solvation and Ionic Association. VI. Acetonitrile-Lithium Salt

    Office of Scientific and Technical Information (OSTI)

    Mixtures: Highly Associated Salts Revisited (Journal Article) | SciTech Connect Electrolyte Solvation and Ionic Association. VI. Acetonitrile-Lithium Salt Mixtures: Highly Associated Salts Revisited Citation Details In-Document Search Title: Electrolyte Solvation and Ionic Association. VI. Acetonitrile-Lithium Salt Mixtures: Highly Associated Salts Revisited Molecular dynamics (MD) simulations of acetonitrile (AN) mixtures with LiBF4, LiCF3SO3 and LiCF3CO2 provide extensive details about the

  5. Controlling the electronic structure in II-VI core-shell nanocrystal...

    Office of Scientific and Technical Information (OSTI)

    in II-VI core-shell nanocrystal quantum dots toward tuned optical properties Citation Details In-Document Search Title: Controlling the electronic structure in II-VI ...

  6. Detection and Quantification of Pu(III, IV, V, and VI) Using...

    Office of Scientific and Technical Information (OSTI)

    of Pu(III, IV, V, and VI) Using a1.0-meter Liquid Core Waveguide Citation Details In-Document Search Title: Detection and Quantification of Pu(III, IV, V, and VI) Using ...

  7. EA-389-A Great Bay Energy VI, LLC | Department of Energy

    Office of Environmental Management (EM)

    9-A Great Bay Energy VI, LLC EA-389-A Great Bay Energy VI, LLC Rescission of export authorization to export electric energy to Canada. PDF icon EA-389-A Great Bay Energy Rescission (CN).pdf More Documents & Publications EA-389 Greay Bay Energy VI, LLC Application to Export Electric Energy OE Docket No. EA-389 Great Bay Energy VI, LLC EA-342-A Royal Bank of Canada

  8. AM(VI) PARTITIONING STUDIES: FY14 FINAL REPORT

    SciTech Connect (OSTI)

    Bruce J Mincher

    2014-10-01

    The use of higher oxidation states of americium in partitioning from the lanthanides is under continued investigation by the sigma team. This is based on the hypothesis that Am(VI) can be produced and remain stable in irradiated first cycle raffinate solution long enough to perform solvent extraction for separations. The stability of Am(VI) to autoreduction was measured using millimolar americium concentrations in a 1-cm cell with a Cary 6000 UV/Vis spectrophotometer for data acquisition. At millimolar americium concentrations, Am(VI) is stable enough against its own autoreduction for separations purposes. A second major accomplishment during FY14 was the hot test. Americium oxidation and extraction was performed using a centrifugal contactor-based test bed consisting of an extraction stage and two stripping stages. Sixty-three percent americium extraction was obtained in one extraction stage, in agreement with batch contacts. Promising electrochemical oxidation results have also been obtained, using terpyridine ligand derivatized electrodes for binding of Am(III). Approximately 50 % of the Am(III) was oxidized to Am(V) over the course of 1 hour. It is believed that this is the first demonstration of the electrolytic oxidation of americium in a non-complexing solution. Finally, an initial investigation of Am(VI) extraction using diethylhexylbutyramide (DEHBA) was performed.

  9. Chemistry of the Colloidal Group II-VI Nanocrystal Synthesis

    SciTech Connect (OSTI)

    Liu, Haitao

    2007-05-17

    In the last two decades, the field of nanoscience andnanotechnology has witnessed tremendous advancement in the synthesis andapplication of group II-VI colloidal nanocrystals. The synthesis based onhigh temperature decomposition of organometallic precursors has becomeone of the most successful methods of making group II-VI colloidalnanocrystals. This method is first demonstrated by Bawendi and coworkersin 1993 to prepare cadmium chalcogenide colloidal quantum dots and laterextended by others to prepare other group II-VI quantum dots as well asanisotropic shaped colloidal nanocrystals, such as nanorod and tetrapod.This dissertation focuses on the chemistry of this type of nanocrystalsynthesis. The synthesis of group II-VI nanocrystals was studied bycharacterizing the molecular structures of the precursors and productsand following their time evolution in the synthesis. Based on theseresults, a mechanism was proposed to account for the 2 reaction betweenthe precursors that presumably produces monomer for the growth ofnanocrystals. Theoretical study based on density functional theorycalculations revealed the detailed free energy landscape of the precursordecomposition and monomerformation pathway. Based on the proposedreaction mechanism, a new synthetic method was designed that uses wateras a novel reagent to control the diameter and the aspect ratio of CdSeand CdS nanorods.

  10. Chemistry of the Colloidal Group II-VI Nanocrystal Synthesis

    SciTech Connect (OSTI)

    Liu, Haitao

    2007-05-17

    In the last two decades, the field of nanoscience andnanotechnology has witnessed tremendous advancement in the synthesis andapplication of group II-VI colloidal nanocrystals. The synthesis based onhigh temperature decomposition of organometallic precursors has becomeone of the most successful methods of making group II-VI colloidalnanocrystals. This methodis first demonstrated by Bawendi and coworkersin 1993 to prepare cadmium chalcogenide colloidal quantum dots and laterextended by others to prepare other group II-VI quantum dots as well asanisotropic shaped colloidal nanocrystals, such as nanorod and tetrapod.This dissertation focuses on the chemistry of this type of nanocrystalsynthesis. The synthesis of group II-VI nanocrystals was studied bycharacterizing the molecular structures of the precursors and productsand following their time evolution in the synthesis. Based on theseresults, a mechanism was proposed to account for the 2 reaction betweenthe precursors that presumably produces monomer for the growth ofnanocrystals. Theoretical study based on density functional theorycalculations revealed the detailed free energy landscape of the precursordecomposition and monomerformation pathway. Based on the proposedreaction mechanism, a new synthetic method was designed that uses wateras a novel reagent to control the diameter and the aspect ratio of CdSeand CdS nanorods.

  11. The role of nanopores on U(VI) sorption and redox behavior in

    Office of Scientific and Technical Information (OSTI)

    U(VI)-contaminated subsurface sediments (Technical Report) | SciTech Connect The role of nanopores on U(VI) sorption and redox behavior in U(VI)-contaminated subsurface sediments Citation Details In-Document Search Title: The role of nanopores on U(VI) sorption and redox behavior in U(VI)-contaminated subsurface sediments Most reactive surfaces in clay-dominated sediments are present within nanopores (pores of nm dimension). The behavior of geological fluids and minerals in nanopores is

  12. Airtricity Developments NI Ltd | Open Energy Information

    Open Energy Info (EERE)

    Airtricity Developments NI Ltd Jump to: navigation, search Name: Airtricity Developments NI Ltd Place: Belfast, Northern Ireland, United Kingdom Zip: BT2 7AF Sector: Wind energy...

  13. ENDF-201: ENDF/B-VI summary documentation

    SciTech Connect (OSTI)

    Rose, P.F.

    1991-10-01

    Responsibility for oversight of the ENDF/B Evaluated Nuclear Data file lies with the Cross Section Evaluation Working Group (CSEWG), which is comprised of representatives from various governmental and industrial laboratories in the United States. Individual evaluations are provided by scientists at several US laboratories, including significant contributions by scientists from all over the world. In addition, ENDF/B-VI includes for the first time complete evaluations for three materials that were provided from laboratories outside the US. All data are checked and reviewed by CSEWG, and the data file is maintained and issued by the National Nuclear Data Center at Brookhaven National Laboratory. The previous version of the library, ENDF/B-V, was issued in 1979, and two revisions to the data file were provided in subsequent years, the latest occurring in 1981. A total of 75 new or extensively modified neutron sublibrary evaluations are included in ENDF/B-VI, and are summarized in this document. One incident proton sublibrary is described for Fe{sup 56}. The remaining evaluations in ENDF/B-VI have been carried over from earlier versions of ENDF, and have been updated to reflect the new formats. The release of ENDF/B-VI was carried out between January and June of 1990, with groups of materials being released on tapes.'' Table 1 is an index to the evaluation summaries, and includes the material identification or MAT number, the responsible laboratory, and the tape'' number. These evaluations have been released without restrictions on their distribution or use.

  14. ENDF-201: ENDF/B-VI summary documentation

    SciTech Connect (OSTI)

    Rose, P.F.

    1991-10-01

    Responsibility for oversight of the ENDF/B Evaluated Nuclear Data file lies with the Cross Section Evaluation Working Group (CSEWG), which is comprised of representatives from various governmental and industrial laboratories in the United States. Individual evaluations are provided by scientists at several US laboratories, including significant contributions by scientists from all over the world. In addition, ENDF/B-VI includes for the first time complete evaluations for three materials that were provided from laboratories outside the US. All data are checked and reviewed by CSEWG, and the data file is maintained and issued by the National Nuclear Data Center at Brookhaven National Laboratory. The previous version of the library, ENDF/B-V, was issued in 1979, and two revisions to the data file were provided in subsequent years, the latest occurring in 1981. A total of 75 new or extensively modified neutron sublibrary evaluations are included in ENDF/B-VI, and are summarized in this document. One incident proton sublibrary is described for Fe{sup 56}. The remaining evaluations in ENDF/B-VI have been carried over from earlier versions of ENDF, and have been updated to reflect the new formats. The release of ENDF/B-VI was carried out between January and June of 1990, with groups of materials being released on ``tapes.`` Table 1 is an index to the evaluation summaries, and includes the material identification or MAT number, the responsible laboratory, and the ``tape`` number. These evaluations have been released without restrictions on their distribution or use.

  15. The chemistry of plutonium(VI) in aqueous carbonate solutions

    SciTech Connect (OSTI)

    Stout, B.E.; Choppin, G.R. . Dept. of Chemistry); Sullivan, J.C. )

    1990-01-01

    The dynamic behavior of carbonate ion as a ligand that interacts with the hexavalent actinyl ions of U, Np, and Pu has been examined by {sup 13}C NMR. The first order rate parameter that describes the exchange between bulk solution and bound carbonate decreases with increasing pH. At a pH of 10.0, 25{degree}C, the respective values of k for the U(VI), Np(VI) and Pu(VI) complexes are 27.1 {plus minus} 0.3, 64.7 {plus minus} 3.3 and 706 {plus minus} 29. The variation of k with temperature was used to calculate the values of {Delta}H{sup +} = 53 and 42 kJ/M; and {Delta}S{sup +} = {minus}40 and {minus}71 J/M-K for the uranyl and neptunyl systems, respectively. A plausible reaction scheme for the exchange reaction is considered. The influence of these slow carbonate exchange reactions on selected electron transfer reactions is noted. 19 refs., 4 figs., 2 tabs.

  16. Fate and Transport of Uranium (VI) in Weathered Saprolite

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kim, Young-Jin; Brooks, Scott C; Zhang, Fan; Parker, Jack C.; Moon, Ji Won; Roh, Yul

    2015-01-01

    Batch and column experiments were conducted to investigate sorption and transport of uranium (U) in the presence of saprolite derived from interbedded shale, limestone, and sandstone sequences. Sorption kinetics were measured at two initial concentrations (C0; 1, 10 mM) and three soil:solution ratios (Rs/w; 0.005, 0.25, 2 kg/L) at pH 4.5 (pH of the saprolite). The rate of U loss from solution (mmole/L/h) increased with increasing Rs/w. Uranium sorption exhibited a fast phase with 80% sorption in the first eight hours for all C0 and Rs/w values and a slow phase during which the reaction slowly approached (pseudo) equilibrium overmore » the next seven days. The pH-dependency of U sorption was apparent in pH sorption edges. U(VI) sorption increased over the pH range 4e6, then decreased sharply at pH > 7.5. U(VI) sorption edges were well described by a surface complexation model using calibrated parameters and the reaction network proposed by Waite et al. (1994). Sorption isotherms measured using the same Rs/w and pH values showed a solids concentration effect where U(VI) sorption capacity and affinity decreased with increasing solids concentration. This effect may have been due to either particle aggregation or competition between U(VI) and exchangeable cations for sorption sites. The surface complexation model with calibrated parameters was able to predict the general sorption behavior relatively well, but failed to reproduce solid concentration effects, implying the importance of appropriate design if batch experiments are to be utilized for dynamic systems. Transport of U(VI) through the packed column was significantly retarded. Transport simulations were conducted using the reactive transport model HydroGeoChem (HGC) v5.0 that incorporated the surface complexation reaction network used to model the batch data. Model parameters reported by Waite et al. (1994) provided a better prediction of U transport than optimized parameters derived from our sorption edges. The results presented in this study highlight the challenges in defining appropriate conditions for batch-type experiments used to extrapolate parameters for transport models, and also underline a gap in our ability to transfer batch results to transport simulations.« less

  17. Fate and Transport of Uranium (VI) in Weathered Saprolite

    SciTech Connect (OSTI)

    Kim, Young-Jin; Brooks, Scott C; Zhang, Fan; Parker, Jack C.; Moon, Ji Won; Roh, Yul

    2015-01-01

    Batch and column experiments were conducted to investigate sorption and transport of uranium (U) in the presence of saprolite derived from interbedded shale, limestone, and sandstone sequences. Sorption kinetics were measured at two initial concentrations (C0; 1, 10 mM) and three soil:solution ratios (Rs/w; 0.005, 0.25, 2 kg/L) at pH 4.5 (pH of the saprolite). The rate of U loss from solution (mmole/L/h) increased with increasing Rs/w. Uranium sorption exhibited a fast phase with 80% sorption in the first eight hours for all C0 and Rs/w values and a slow phase during which the reaction slowly approached (pseudo) equilibrium over the next seven days. The pH-dependency of U sorption was apparent in pH sorption edges. U(VI) sorption increased over the pH range 4e6, then decreased sharply at pH > 7.5. U(VI) sorption edges were well described by a surface complexation model using calibrated parameters and the reaction network proposed by Waite et al. (1994). Sorption isotherms measured using the same Rs/w and pH values showed a solids concentration effect where U(VI) sorption capacity and affinity decreased with increasing solids concentration. This effect may have been due to either particle aggregation or competition between U(VI) and exchangeable cations for sorption sites. The surface complexation model with calibrated parameters was able to predict the general sorption behavior relatively well, but failed to reproduce solid concentration effects, implying the importance of appropriate design if batch experiments are to be utilized for dynamic systems. Transport of U(VI) through the packed column was significantly retarded. Transport simulations were conducted using the reactive transport model HydroGeoChem (HGC) v5.0 that incorporated the surface complexation reaction network used to model the batch data. Model parameters reported by Waite et al. (1994) provided a better prediction of U transport than optimized parameters derived from our sorption edges. The results presented in this study highlight the challenges in defining appropriate conditions for batch-type experiments used to extrapolate parameters for transport models, and also underline a gap in our ability to transfer batch results to transport simulations.

  18. Method for making graded I-III-VI.sub.2 semiconductors and solar cell obtained thereby

    DOE Patents [OSTI]

    Devaney, Walter E. (Seattle, WA)

    1987-08-04

    Improved cell photovoltaic conversion efficiencies are obtained by the simultaneous elemental reactive evaporation process of Mickelsen and Chen for making semiconductors by closer control of the evaporation rates and substrate temperature during formation of the near contact, bulk, and near junction regions of a graded I-III-VI.sub.2, thin film, semiconductor, such as CuInSe.sub.2 /(Zn,Cd)S or another I-III-VI.sub.2 /II-VI heterojunction.

  19. Method of manufacturing semiconductor having group II-group VI compounds doped with nitrogen

    DOE Patents [OSTI]

    Compaan, Alvin D.; Price, Kent J.; Ma, Xianda; Makhratchev, Konstantin

    2005-02-08

    A method of making a semiconductor comprises depositing a group II-group VI compound onto a substrate in the presence of nitrogen using sputtering to produce a nitrogen-doped semiconductor. This method can be used for making a photovoltaic cell using sputtering to apply a back contact layer of group II-group VI compound to a substrate in the presence of nitrogen, the back coating layer being doped with nitrogen. A semiconductor comprising a group II-group VI compound doped with nitrogen, and a photovoltaic cell comprising a substrate on which is deposited a layer of a group II-group VI compound doped with nitrogen, are also included.

  20. Group I-III-VI.sub.2 semiconductor films for solar cell application

    DOE Patents [OSTI]

    Basol, Bulent M. (Redondo Beach, CA); Kapur, Vijay K. (Northridge, CA)

    1991-01-01

    This invention relates to an improved thin film solar cell with excellent electrical and mechanical integrity. The device comprises a substrate, a Group I-III-VI.sub.2 semiconductor absorber layer and a transparent window layer. The mechanical bond between the substrate and the Group I-III-VI.sub.2 semiconductor layer is enhanced by an intermediate layer between the substrate and the Group I-III-VI.sub.2 semiconductor film being grown. The intermediate layer contains tellurium or substitutes therefor, such as Se, Sn, or Pb. The intermediate layer improves the morphology and electrical characteristics of the Group I-III-VI.sub.2 semiconductor layer.

  1. PART TWO PERMITTING/CLOSURE OF TSD UNITS/GROUPS ARTICLE VI. ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    16- PART TWO PERMITTINGCLOSURE OF TSD UNITSGROUPS ARTICLE VI. FINDINGS AND DETERMINATIONS 23. The following paragraphs of this Article constitute a summary of the facts upon...

  2. Characterization of U(VI) Sorption-Desorption Processes and Model...

    Office of Scientific and Technical Information (OSTI)

    U(VI) on pristine and contaminated Hanford sediments over a range of sediment facies and materials properties and to relate such characterization both to fundamental...

  3. Kinetics of Uranium(VI) Desorption from Contaminated Sediments: Effect of Geochemical Conditions and Model Evaluation

    SciTech Connect (OSTI)

    Liu, Chongxuan; Shi, Zhenqing; Zachara, John M.

    2009-09-01

    Stirred-flow cell experiments were performed to investigate the kinetics of uranyl [U(VI)] desorption from a contaminated sediment collected from the Hanford 300 Area at the US Department of Energy (DOE) Hanford Site, Washington. Three influent solutions of variable pH, Ca and carbonate concentrations that affected U(VI) aqueous and surface speciation were used under dynamic flow conditions to evaluate the effect of geochemical conditions on the rate of U(VI) desorption. The measured rate of U(VI) desorption varied with solution chemical composition that evolved as a result of thermodynamic and kinetic interactions between the influent solutions and sediment. The solution chemical composition that led to a lower equilibrium U(VI) sorption to the solid phase yielded a faster desorption rate. The experimental results were used to evaluate a multi-rate, surface complexation model (SCM) that has been proposed to describe U(VI) desorption kinetics in the Hanford sediment that contained complex sorbed U(VI) species in mass transfer limited domains. The model was modified and supplemented by including multi-rate, ion exchange reactions to describe the geochemical interactions between the solutions and sediment. With the same set of model parameters, the modified model reasonably well described the evolution of major ions and the rates of U(VI) desorption under variable geochemical and flow conditions, implying that the multi-rate SCM is an effective way to describe U(VI) desorption kinetics in subsurface sediments.

  4. Bistability of Cation Interstitials in II-VI Semiconductors

    SciTech Connect (OSTI)

    Wei, S. H.; Dalpian, G. M.

    2005-11-01

    The stability of cation interstitials in II-VI semiconductors is studied using ab initio methods. We find that interstitials in the neutral charge state are more stable in the tetrahedral interstitial site near the cation, whereas in the (2+) charge state, they are more stable near the anion. The diffusion energy barrier changes when the defect charge state changes. Therefore, if electrons/holes are taken from the defect level by light, changing its charge state, the interstitial atom will be able to diffuse almost spontaneously due to a reduced diffusion barrier.

  5. Geothermal Program Review VI: proceedings. Beyond goals and objectives

    SciTech Connect (OSTI)

    Not Available

    1988-01-01

    Program Review VI was comprised of six sessions, including an opening session, four technical sessions that addressed each of the major DOE research areas, and a session on special issues. The technical sessions were on Hydrothermal, Hot Dry Rock, Geopressured and Magma resources. Presenters in the technical sessions discussed their R and D activities within the context of specific GTD Programmatic Objectives for that technology, their progress toward achieving those objectives, and the value of those achievements to industry. The ''Special Issues'' presentations addressed several topics such as the interactions between government and industry on geothermal energy R and D; the origin and basis for the programmatic objectives analytical computer model; and international marketing opportunities for US geothermal equipment and services. The unique aspect of Program Review VI was that it was held in conjunction with the National Geothermal Association's Industry Round Table on Federal R and D. The Round Table provided a forum for open and lively discussions between industry and government researchers and gave industry an opportunity to convey their needs and perspectives on DOE's research programs. These discussions also provided valuable information to DOE regarding industry's priorities and directions.

  6. Data summary report for fission product release Test VI-7

    SciTech Connect (OSTI)

    Osborne, M.F.; Lorentz, R.A.; Travis, J.R.; Collins, J.L.; Webster, C.S.

    1995-05-01

    Test VI-7 was the final test in the VI series conducted in the vertical furnace. The fuel specimen was a 15.2-cm-long section of a fuel rod from the Monticello boiling water reactor (BWR). The fuel had experienced a burnup of {approximately}-40 Mwd/kg U. It was heated in an induction furnace for successive 20-min periods at 2000 and 2300 K in a moist air-helium atmosphere. Integral releases were 69% for {sup 85}Kr, 52% for {sup 125}Sb, 71% for both {sup 134}Cs and {sup 137}Cs, and 0.04% for {sup 154}Eu. For the non-gamma-emitting species, release values for 42% for I, 4.1% for Ba, 5.3% for Mo, and 1.2% for Sr were determined. The total mass released from the furnace to the collection system, including fission products, fuel, and structural materials, was 0.89 g, with 37% being collected on the thermal gradient tubes and 63% downstream on filters. Posttest examination of the fuel specimen indicated that most of the cladding was completely oxidized to ZrO{sub 2}, but that oxidation was not quite complete at the upper end. The release behaviors for the most volatile elements, Kr and Cs, were in good agreement with the ORNL-Booth Model.

  7. Uranium (VI) solubility in carbonate-free ERDA-6 brine

    SciTech Connect (OSTI)

    Lucchini, Jean-francois; Khaing, Hnin; Reed, Donald T

    2010-01-01

    When present, uranium is usually an element of importance in a nuclear waste repository. In the Waste Isolation Pilot Plant (WIPP), uranium is the most prevalent actinide component by mass, with about 647 metric tons to be placed in the repository. Therefore, the chemistry of uranium, and especially its solubility in the WIPP conditions, needs to be well determined. Long-term experiments were performed to measure the solubility of uranium (VI) in carbonate-free ERDA-6 brine, a simulated WIPP brine, at pC{sub H+} values between 8 and 12.5. These data, obtained from the over-saturation approach, were the first repository-relevant data for the VI actinide oxidation state. The solubility trends observed pointed towards low uranium solubility in WIPP brines and a lack of amphotericity. At the expected pC{sub H+} in the WIPP ({approx} 9.5), measured uranium solubility approached 10{sup -7} M. The objective of these experiments was to establish a baseline solubility to further investigate the effects of carbonate complexation on uranium solubility in WIPP brines.

  8. Solvent impregnated resin for isolation of U(VI) from industrial wastes

    SciTech Connect (OSTI)

    Karve, M.; Rajgor, R.V.

    2008-07-01

    A solid-phase extraction method based upon impregnation of Cyanex 302 (bis(2,4,4- trimethylpentyl)mono-thio-phosphinic acid) on Amberlite XAD-2 resin is proposed for isolation of U(VI) from uranmicrolite ore tailing samples and industrial effluent samples. U(VI) was sorbed from nitric acid media on the solvent-impregnated resin (SIR) and was recovered completely with 1.0 M HCl. Based upon sorption behavior of U(VI) with Cyanex 302, it was quantitatively sorbed on the SIR in a dynamic method, while the other metal ions were not sorbed by the modified resin. The preparation of impregnated resin is simple, based upon physical interaction of the extractant and solid support, has good sorption capacity for U(VI), and is also reliable for detection of traces of U(VI). (authors)

  9. Multi-crystalline II-VI based multijunction solar cells and modules

    DOE Patents [OSTI]

    Hardin, Brian E.; Connor, Stephen T.; Groves, James R.; Peters, Craig H.

    2015-06-30

    Multi-crystalline group II-VI solar cells and methods for fabrication of same are disclosed herein. A multi-crystalline group II-VI solar cell includes a first photovoltaic sub-cell comprising silicon, a tunnel junction, and a multi-crystalline second photovoltaic sub-cell. A plurality of the multi-crystalline group II-VI solar cells can be interconnected to form low cost, high throughput flat panel, low light concentration, and/or medium light concentration photovoltaic modules or devices.

  10. Three-Dimensional Topological Insulators in I - III - VI 2 and...

    Office of Scientific and Technical Information (OSTI)

    and II - IV - V 2 Chalcopyrite Semiconductors Citation Details In-Document Search Title: Three-Dimensional Topological Insulators in I - III - VI 2 and II - IV - V 2 Chalcopyrite ...

  11. Characterization of U(VI) Sorption-Desorption Processes and Model...

    Office of Scientific and Technical Information (OSTI)

    also performed mXRD studies of two sediment sample to identify the specific U(VI)-silicate phase present. Samples from the 300 Area were examined by mSXRF to determine the...

  12. In Situ Long-Term Reductive Bioimmobilization of Cr(VI) in Groundwater...

    Office of Scientific and Technical Information (OSTI)

    injection into Cr(VI)-contaminated groundwater stimulates an average increase in biomass by up to 50 times, from-5105 to 2.5107 cellsmL. The results also show a...

  13. Controlling the electronic structure in II-VI core-shell nanocrystal

    Office of Scientific and Technical Information (OSTI)

    quantum dots toward tuned optical properties (Conference) | SciTech Connect Conference: Controlling the electronic structure in II-VI core-shell nanocrystal quantum dots toward tuned optical properties Citation Details In-Document Search Title: Controlling the electronic structure in II-VI core-shell nanocrystal quantum dots toward tuned optical properties Authors: Ghosh, Yagnaseni [1] ; Mangum, Benjamin D [1] ; Park, Young - Shin [1] ; Brovelli, Sergio [1] ; Casson, Joanna L [1] ; Htoon,

  14. Controlling the electronic structure in II-VI core-shell nanocrystal

    Office of Scientific and Technical Information (OSTI)

    quantum dots toward tuned optical properties (Conference) | SciTech Connect Conference: Controlling the electronic structure in II-VI core-shell nanocrystal quantum dots toward tuned optical properties Citation Details In-Document Search Title: Controlling the electronic structure in II-VI core-shell nanocrystal quantum dots toward tuned optical properties × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of

  15. Fate and Transport of Uranium (VI) in Weathered Saprolite (Journal Article)

    Office of Scientific and Technical Information (OSTI)

    | SciTech Connect Journal Article: Fate and Transport of Uranium (VI) in Weathered Saprolite Citation Details In-Document Search Title: Fate and Transport of Uranium (VI) in Weathered Saprolite Batch and column experiments were conducted to investigate sorption and transport of uranium (U) in the presence of saprolite derived from interbedded shale, limestone, and sandstone sequences. Sorption kinetics were measured at two initial concentrations (C0; 1, 10 mM) and three soil:solution ratios

  16. ARM Airborne Carbon Measurements VI (ARM-ACME V) Science Plan

    Office of Scientific and Technical Information (OSTI)

    s. DEPARTMENT OF CD ENERGY Office of Science DOE/SC-ARM-15-047 ARM Airborne Carbon Measurements VI (ACME VI) Science Plan S Biraud December 2015 CLIMATE RESEARCH FACILITY DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information,

  17. ARM Airborne Carbon Measurements VI (ARM-ACME V) Science Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 ARM Airborne Carbon Measurements VI (ACME VI) Science Plan S Biraud December 2015 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe

  18. LABORATORY STUDY FOR THE REDUCTION OF CHROME (VI) TO CHROME (III) USING

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SODIUM METABISULFITE UNDER ACIDIC CONDITIONS (Technical Report) | SciTech Connect LABORATORY STUDY FOR THE REDUCTION OF CHROME (VI) TO CHROME (III) USING SODIUM METABISULFITE UNDER ACIDIC CONDITIONS Citation Details In-Document Search Title: LABORATORY STUDY FOR THE REDUCTION OF CHROME (VI) TO CHROME (III) USING SODIUM METABISULFITE UNDER ACIDIC CONDITIONS × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of

  19. Upscaling of U(VI) Desorption and Transport Using Decimeter-Scale Tanks

    SciTech Connect (OSTI)

    Rodriguez, Derrick

    2015-01-28

    Experimental work was used to validate modeling studies and develop multicontinuum models of U(VI) transport in a contaminated aquifer. At the bench scale, it has been shown that U(VI) desorption is rate-limited and that rates are dependent on the bicarbonate concentration. Two decimeter-scale experiments were conducted in order to help establish rigorous upscaling approaches that could be tested at the tracer test and plume scales.

  20. Bicarbonate Impact on U(VI) Bioreduction in a Shallow Alluvial Aquifer

    SciTech Connect (OSTI)

    Long, Philip E.; Williams, Kenneth H.; Davis, James A.; Fox, Patricia M.; Wilkins, Michael J.; Yabusaki, Steven B.; Fang, Yilin; Waichler, Scott R.; Berman, Elena S.; Gupta, Manish; Chandler, Darrell P.; Murray, Christopher J.; Peacock, Aaron D.; Giloteaux, L.; Handley, Kim M.; Lovley, Derek R.; Banfield, Jillian F.

    2015-02-01

    Field-scale biostimulation and desorption tracer experiments conducted in a uranium (U) contaminated, shallow alluvial aquifer have provided insight into the coupling of microbiology, biogeochemistry, and hydrogeology that control U mobility in the subsurface. Initial experiments successfully tested the concept that Fe-reducing bacteria such as Geobacter sp. could enzymatically reduce soluble U(VI) to insoluble U(IV) during in situ electron donor amendment (Anderson et al. 2003, Williams et al. 2011). In parallel, in situ desorption tracer tests using bicarbonate amendment demonstrated rate-limited U(VI) desorption (Fox et al. 2012). These results and prior laboratory studies underscored the importance of enzymatic U(VI)-reduction and suggested the ability to combine desorption and bioreduction of U(VI). Here we report the results of a new field experiment in which bicarbonate-promoted uranium desorption and acetate amendment were combined and compared to an acetate amendment-only experiment in the same experimental plot. Results confirm that bicarbonate amendment to alluvial aquifer desorbs U(VI) and increases the abundance of Ca-uranyl-carbonato complexes. At the same time, that the rate of acetate-promoted enzymatic U(VI) reduction was greater in the presence of added bicarbonate in spite of the increased dominance of Ca-uranyl-carbonato aqueous complexes. A model-simulated peak rate of U(VI) reduction was ~3.8 times higher during acetate-bicarbonate treatment than under acetate-only conditions. Lack of consistent differences in microbial community structure between acetate-bicarbonate and acetate-only treatments suggest that a significantly higher rate of U(VI) reduction the bicarbonate-impacted sediment may be due to a higher intrinsic rate of microbial reduction induced by elevated concentrations of the bicarbonate oxyanion. The findings indicate that bicarbonate amendment may be useful in improving the engineered bioremediation of uranium in aquifers.

  1. Upscaling of U(VI) Desorption and Transport Using Decimeter-Scale Tanks

    SciTech Connect (OSTI)

    Rodriguez, Derrick

    2014-12-22

    Experimental work was used to validate modeling studies and develop multicontinuum models of U(VI) transport in a contaminated aquifer. At the bench scale, it has been shown that U(VI) desorption is rate-limited and that rates are dependent on the bicarbonate concentration. Two decimeter-scale experiments were conducted in order to help establish rigorous upscaling approaches that could be tested at the tracer test and plume scales.

  2. Characterization of U(VI) Sorption-Desorption Processes and Model Upscaling

    SciTech Connect (OSTI)

    Zachara, John M.

    2003-06-01

    The objectives of the overall collaborative EMSP effort (with which this project is associated) are to characterize sorption and desorption processes of U(VI) on pristine and contaminated Hanford sediments over a range of sediment facies and materials properties. The research is intended to provide new insights on the mechanisms of U(VI) retardation at Hanford, and to develop approaches by which laboratory-characterized geochemical models can be upscaled for defensible predictions of uranium transport in field.

  3. Chromium Isotope Fractionation During Reduction of Cr(VI) Under Saturated Flow Conditions

    SciTech Connect (OSTI)

    Jamieson-Hanes, Julia H.; Gibson, Blair D.; Lindsay, Matthew B.J.; Kim, Yeongkyoo; Ptacek, Carol J.; Blowes, David W.

    2012-10-25

    Chromium isotopes are potentially useful indicators of Cr(VI) reduction reactions in groundwater flow systems; however, the influence of transport on Cr isotope fractionation has not been fully examined. Laboratory batch and column experiments were conducted to evaluate isotopic fractionation of Cr during Cr(VI) reduction under both static and controlled flow conditions. Organic carbon was used to reduce Cr(VI) in simulated groundwater containing 20 mg L{sup -1} Cr(VI) in both batch and column experiments. Isotope measurements were performed on dissolved Cr on samples from the batch experiments, and on effluent and profile samples from the column experiment. Analysis of the residual solid-phase materials by scanning electron microscopy (SEM) and by X-ray absorption near edge structure (XANES) spectroscopy confirmed association of Cr(III) with organic carbon in the column solids. Decreases in dissolved Cr(VI) concentrations were coupled with increases in {delta}{sup 53}Cr, indicating that Cr isotope enrichment occurred during reduction of Cr(VI). The {delta}{sup 53}Cr data from the column experiment was fit by linear regression yielding a fractionation factor ({alpha}) of 0.9979, whereas the batch experiments exhibited Rayleigh-type isotope fractionation ({alpha} = 0.9965). The linear characteristic of the column {delta}{sup 53}Cr data may reflect the contribution of transport on Cr isotope fractionation.

  4. SF 6432-NI (02-22-10)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    be controlling. All deliverables under this Contract shall use andor be in the English language. NI14 - PAYMENT Contractor agrees to provide invoices within 60 days of...

  5. SF 6432-NI (04-95)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    be controlling. All deliverables under this Contract shall use andor be in the English language. NI15 - PAYMENT Contractor agrees to provide invoices within 60 days of...

  6. SF 6432-NI (04-95)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    be controlling. All deliverables under this Contract shall use andor be in the English language. NI14 - PAYMENT Contractor agrees to provide invoices within 60 days of...

  7. SF 6432-NI (04-95)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    descending order of precedence: (1) Section I; (2) SF 6432-NI, Section II. The English language version of this Contract shall be controlling. All deliverables under this...

  8. Ni Clusterbank Replacement Project | Argonne Leadership Computing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ni Clusterbank Replacement Project Event Sponsor: Argonne Leadership Computing Facility Seminar Start Date: Oct 20 2015 - 12:00pm BuildingRoom: Building 241Room D173...

  9. The Dy-Ni-Si system as a representative of the rare earth-Ni-Si

    Office of Scientific and Technical Information (OSTI)

    family: Its isothermal section and new rare-earth nickel silicides (Journal Article) | SciTech Connect SciTech Connect Search Results Journal Article: The Dy-Ni-Si system as a representative of the rare earth-Ni-Si family: Its isothermal section and new rare-earth nickel silicides Citation Details In-Document Search Title: The Dy-Ni-Si system as a representative of the rare earth-Ni-Si family: Its isothermal section and new rare-earth nickel silicides The Dy-Ni-Si system has been

  10. Improving Memory Subsystem Performance Using ViVA: Virtual Vector Architecture

    SciTech Connect (OSTI)

    Gebis, Joseph; Oliker, Leonid; Shalf, John; Williams, Samuel; Yelick, Katherine

    2009-01-12

    The disparity between microprocessor clock frequencies and memory latency is a primary reason why many demanding applications run well below peak achievable performance. Software controlled scratchpad memories, such as the Cell local store, attempt to ameliorate this discrepancy by enabling precise control over memory movement; however, scratchpad technology confronts the programmer and compiler with an unfamiliar and difficult programming model. In this work, we present the Virtual Vector Architecture (ViVA), which combines the memory semantics of vector computers with a software-controlled scratchpad memory in order to provide a more effective and practical approach to latency hiding. ViVA requires minimal changes to the core design and could thus be easily integrated with conventional processor cores. To validate our approach, we implemented ViVA on the Mambo cycle-accurate full system simulator, which was carefully calibrated to match the performance on our underlying PowerPC Apple G5 architecture. Results show that ViVA is able to deliver significant performance benefits over scalar techniques for a variety of memory access patterns as well as two important memory-bound compact kernels, corner turn and sparse matrix-vector multiplication -- achieving 2x-13x improvement compared the scalar version. Overall, our preliminary ViVA exploration points to a promising approach for improving application performance on leading microprocessors with minimal design and complexity costs, in a power efficient manner.

  11. Microbial Reductive Transformation of Phyllosilicate Fe(III) and U(VI) in Fluvial Subsurface Sediments

    SciTech Connect (OSTI)

    Lee, Ji-Hoon; Fredrickson, Jim K.; Kukkadapu, Ravi K.; Boyanov, Maxim I.; Kemner, Kenneth M.; Lin, Xueju; Kennedy, David W.; Bjornstad, Bruce N.; Konopka, Allan; Moore, Dean A.; Resch, Charles T.; Phillips, Jerry L.

    2012-04-14

    The microbial reduction of Fe(III) and U(VI) were investigated in shallow aquifer sediments collected from subsurface Pleistocene flood deposits near the Hanford Reach of the Columbia River in Washington State. Increases in 0.5 N HCl-extractable Fe(II) were observed in incubated sediments and 57Fe Mssbauer spectroscopy revealed that Fe(III) associated with phyllosilicates and pyroxene was reduced to Fe(II). Aqueous uranium(VI) concentrations decreased in incubated Hanford sediments with the rate and extent being greater in sediment amended with organic carbon. X-ray absorption spectroscopy of bioreduced sediments indicated that 67-77% of the U signal was U(VI), probably as an adsorbed species associated with a new or modified reactive mineral phase. Phylotypes within the Deltaproteobacteria were more common in Hanford sediments incubated with U(VI) than without and in U(VI)-free incubations, members of the Clostridiales were dominant with sulfate-reducing phylotypes more common in the sulfate-amended sediments. These results demonstrate the potential for anaerobic reduction phyllosilicate Fe(III) and sulfate in Hanford unconfined aquifer sediments and biotransformations involving reduction and adsorption leading to decreased aqueous U concentrations.

  12. Spectroscopic confirmation of uranium(VI)-carbonato adsorption complexes on hematite

    SciTech Connect (OSTI)

    Bargar, J.R. . Stanford Synchrotron Radiation Lab.); Reitmeyer, R.; Davis, J.A. . Water Resources Div.)

    1999-07-15

    Evaluating societal risks posed by uranium contamination from waste management facilities, mining sites, and heavy industry requires knowledge about uranium transport in groundwater, often the most significant pathway of exposure to humans. It has been proposed that uranium mobility in aquifers may be controlled by adsorption of U(VI)-carbonato complexes on oxide minerals. The existence of such complexes has not been demonstrated, and little is known about their compositions and reaction stoichiometries. The authors have used attenuated total reflectance Fourier transform infrared (ATR-FTIR) and extended X-ray absorption fine structure (EXAFS) spectroscopies to probe the existence, structures, and compositions of [triple bond]FeO[sub surface]-U(VI)-carbonato complexes on hematite throughout the pH range of uranyl uptake under conditions relevant to aquifers. U(VI)-carbonato complexes were found to be the predominant adsorbed U(VI) species at all pH values examined, a much wider pH range than previously postulated based on analogy to aqueous U(VI)-carbonato complexes, which are trace constituents at pH < 6. This result indicates the inadequacy of the common modeling assumption that the compositions and predominance of adsorbed species can be inferred from aqueous species. By extension, adsorbed carbonato complexes may be of major importance to the groundwater transport of similar actinide contaminants such as neptunium and plutonium.

  13. Spectroscopic Confirmation of Uranium (VI)-Carbonato Adsorption Complexes on Hematite

    SciTech Connect (OSTI)

    Bargar, John R

    1999-05-04

    Evaluating societal risks posed by uranium contamination from waste management facilities, mining sites, and heavy industry requires knowledge about uranium transport in groundwater, often the most significant pathway of exposure to humans. It has been proposed that uranium mobility in aquifers may be controlled by adsorption of U(VI)-carbonato complexes on oxide minerals. The existence of such complexes has not been demonstrated, and little is known about their compositions and reaction stoichiometries. We have used Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) and Extended X-ray Absorption Fine Structure (EXAFS) spectroscopies to probe the existence, structures, and compositions of FeO{sub surface}-U(VI)-carbonato complexes on hematite throughout the pH range of uranyl uptake under conditions relevant to aquifers. U(VI)-carbonato complexes were found to be the predominant adsorbed U(VI) species at all pH values examined, a much wider pH range than previously postulated based on analogy to aqueous U(VI)-carbonato complexes, which are trace constituents at pH < 6. This result indicates the inadequacy of the common modeling assumption that the compositions and predominance of adsorbed species can be inferred from aqueous species. By extension, adsorbed carbonato complexes may be of major importance to the groundwater transport of similar actinide contaminants such as neptunium and plutonium.

  14. Vykson Formerly Turbine Developments NI Ltd | Open Energy Information

    Open Energy Info (EERE)

    Vykson Formerly Turbine Developments NI Ltd Jump to: navigation, search Name: Vykson (Formerly Turbine Developments (NI) Ltd) Place: Canterbury, England, United Kingdom Zip: BR6...

  15. Spectrophotometric determination of uranium(VI) with chlorophosphonazo-mN by flow injection analysis

    SciTech Connect (OSTI)

    Sun, Jun Ying; Chen, Xing Guo; Hu, Zhi De

    1994-07-01

    A sensitive and selective spectrophotometric flow injection analysis (FIA) method with chlorophosphonazo-mN has been developed for the determination of uranium(VI) in standard ore samples. Most interfereing ions are effectively eliminated by the masking reagent diethylenetriaminepentaacetic acid (DTPA). In the U(VI)-chlorophosphonazo-mN system, the maximum absorption wavelength is at 680 nm and Beer`s law is obeyed in the range of 1 to 15 {mu}g {mu}l{sup -1}. The correlation coefficient of the calibration curve is. 0.9998, the sampling frequency is 60{sup -1}, and detection limit for uranium(VI) is 0.5 {mu}g mul{sup -1}.

  16. Effect of temperature on the complexation of Uranium(VI) with fluoride in aqueous solutions

    SciTech Connect (OSTI)

    Tian, Guoxin; Rao, Linfeng

    2009-05-18

    Complexation of U(VI) with fluoride at elevated temperatures in aqueous solutions was studied by spectrophotometry. Four successive complexes, UO{sub 2}F{sup +}, UO{sub 2}F{sub 2}(aq), UO{sub 2}F{sub 3}{sup -}, and UO{sub 2}F{sub 4}{sup 2-}, were identified, and the stability constants at 25, 40, 55, and 70 C were calculated. The stability of the complexes increased as the temperature was elevated. The enthalpies of complexation at 25 C were determined by microcalorimetry. Thermodynamic parameters indicate that the complexation of U(VI) with fluoride in aqueous solutions at 25 to 70 C is slightly endothermic and entropy-driven. The Specific Ion Interaction (SIT) approach was used to obtain the thermodynamic parameters of complexation at infinite dilution. Structural information on the U(VI)/fluoride complexes was obtained by extended X-ray absorption fine structure spectroscopy.

  17. Characterization of U(VI) Sorption-Desorption Processes and Model Upscaling

    SciTech Connect (OSTI)

    Zachara, John M.; Brown, Gordon, E.; Lichtner, Peter C.; Ball, William

    2004-06-14

    The objectives of the overall collaborative EMSP effort (with which this project is associated) are to characterize sorption and desorption processes of U(VI) on pristine and contaminated Hanford sediments over a range of sediment facies and materials properties and to relate such characterization both to fundamental molecular-scale understanding and fieldscale models of geochemistry and mass transfer. The research is intended to provide new insights on the mechanisms of U(VI) retardation at Hanford, and to allow the development of approaches by which laboratory-developed geochemical models can be upscaled for defensible field-scale predictions of uranium transport in the environment.

  18. Crystal structure of Tb5Ni2In4 and Y5Ni2In4, and magnetic properties of

    Office of Scientific and Technical Information (OSTI)

    Dy5Ni2In4 (Journal Article) | SciTech Connect Crystal structure of Tb5Ni2In4 and Y5Ni2In4, and magnetic properties of Dy5Ni2In4 Citation Details In-Document Search Title: Crystal structure of Tb5Ni2In4 and Y5Ni2In4, and magnetic properties of Dy5Ni2In4 The crystal structure of the R5Ni2In4 intermetallic compounds was earlier reported for R Ho, Er, Tm, and Lu (Lu5Ni2In4-type, oP22, Pbam); more recently the isostructural phases Dy5Ni2In4 and Sc5Ni2In4 have also been identified. Three

  19. Layering and temperature-dependent magnetization and anisotropy of naturally produced Ni/NiO multilayers

    SciTech Connect (OSTI)

    Pappas, S. D.; Trachylis, D.; Velgakis, M. J.; Kapaklis, V.; Joensson, P. E.; Papaioannou, E. Th.; Delimitis, A.; Poulopoulos, P.; Fumagalli, P.; Politis, C.

    2012-09-01

    Ni/NiO multilayers were grown by magnetron sputtering at room temperature, with the aid of the natural oxidation procedure. That is, at the end of the deposition of each single Ni layer, air is let to flow into the vacuum chamber through a leak valve. Then, a very thin NiO layer ({approx}1.2 nm) is formed. Simulated x-ray reflectivity patterns reveal that layering is excellent for individual Ni-layer thickness larger than 2.5 nm, which is attributed to the intercalation of amorphous NiO between the polycrystalline Ni layers. The magnetization of the films, measured at temperatures 5-300 K, has almost bulk-like value, whereas the films exhibit a trend to perpendicular magnetic anisotropy (PMA) with an unusual significant positive interface anisotropy contribution, which presents a weak temperature dependence. The power-law behavior of the multilayers indicates a non-negligible contribution of higher order anisotropies in the uniaxial anisotropy. Bloch-law fittings for the temperature dependence of the magnetization in the spin-wave regime show that the magnetization in the multilayers decreases faster as a function of temperature than the one of bulk Ni. Finally, when the individual Ni-layer thickness decreases below 2 nm, the multilayer stacking vanishes, resulting in a dramatic decrease of the interface magnetic anisotropy and consequently in a decrease of the perpendicular magnetic anisotropy.

  20. ARM - El Niño Phenomenon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TeachersTopic ListEl Niño Phenomenon Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans El Niño Phenomenon After the annual seasonal cycles of weather conditions which contribute to the climate of a location, the most notable aspect of climate variability is that which distinguishes one year

  1. Characterization of U(VI) Sorption-Desorption Processes and Model Upscaling

    SciTech Connect (OSTI)

    Bai, Jing; Dong, Wenming; Ball, William P.

    2006-10-12

    The objectives of the overall collaborative EMSP effort (with which this project is associated) were to characterize sorption and desorption processes of U(VI) on pristine and contaminated Hanford sediments over a range of sediment facies and materials properties and to relate such characterization both to fundamental molecular-scale understanding and field-scale models of geochemistry and mass transfer. The research was intended to provide new insights on the mechanisms of U(VI) retardation at Hanford, and to allow the development of approaches by which laboratory-developed geochemical models could be upscaled for defensible field-scale predictions of uranium transport in the environment. Within this broader context, objectives of the JHU-based project were to test hypotheses regarding the coupled roles of adsorption and impermeable-zone diffusion in controlling the fate and transport of U(VI) species under conditions of comparatively short-term exposure. In particular, this work tested the following hypotheses: (1) the primary adsorption processes in the Hanford sediment over the pH range of 7 to 10 are surface complexation reactions of aqueous U(VI) hydroxycarbonate and carbonate complexes with amphoteric edge sites on detrital phyllosilicates in the silt/clay size fraction; (2) macroscopic adsorption intensity (at given aqueous conditions) is a function of mineral composition and aquatic chemistry; and (3) equilibrium sorption and desorption to apply in short-term, laboratory-spiked pristine sediments; and (4) interparticle diffusion can be fully understood in terms of a model that couples molecular diffusion of uranium species in the porewater with equilibrium sorption under the relevant aqueous conditions. The primary focus of the work was on developing and applying both models and experiments to test the applicability of "local equilibrium" assumptions in the modeling interpretation of sorption retarded interparticle diffusion, as relevant to processes of U(VI) diffusion in silt/clay layers. Batch isotherm experiments were first used to confirm sorption isotherms under the intended test conditions and diffusion cell experiments were then conducted to explore the diffusion hypotheses. Important new information was obtained about the role of aqueous calcium and solid calcium carbonate in controlling sorption equilibrium with Hanford sediments. The retarded interparticle diffusion model with local sorption equilibrium was shown to very successfully simulate diffusion at high aqueous concentration of U(VI). By contrast, however, diffusion data obtained at low concentration suggested nonequilibrium of sorption even at diffusion time scales. Such nonequilibrium effects at low concentration are likely to be the result of sorption retarded intraparticle diffusion, and strong U(VI) sorption in the low concentration range.

  2. Electronic circuits having NiAl and Ni.sub.3 Al substrates

    DOE Patents [OSTI]

    Deevi, Seetharama C. (Midlothian, VA); Sikka, Vinod K. (Oak Ridge, TN)

    1999-01-01

    An electronic circuit component having improved mechanical properties and thermal conductivity comprises NiAl and/or Ni.sub.3 Al, upon which an alumina layer is formed prior to applying the conductive elements. Additional layers of copper-aluminum alloy or copper further improve mechanical strength and thermal conductivity.

  3. Photosensitivity of the Ni-A state of [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F with visible light

    SciTech Connect (OSTI)

    Osuka, Hisao; Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma-shi, Nara 630-0192 ; Shomura, Yasuhito; Komori, Hirofumi; Shibata, Naoki; Nagao, Satoshi; Higuchi, Yoshiki; CREST, JST, Gobancho, Chiyoda-ku, Tokyo 102-0076 ; Hirota, Shun; CREST, JST, Gobancho, Chiyoda-ku, Tokyo 102-0076

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Ni-A state of [NiFe] hydrogenase showed light sensitivity. Black-Right-Pointing-Pointer New FT-IR bands were observed with light irradiation of the Ni-A state. Black-Right-Pointing-Pointer EPR g-values of the Ni-A state shifted upon light irradiation. Black-Right-Pointing-Pointer The light-induced state converted back to the Ni-A state under the dark condition. -- Abstract: [NiFe] hydrogenase catalyzes reversible oxidation of molecular hydrogen. Its active site is constructed of a hetero dinuclear Ni-Fe complex, and the oxidation state of the Ni ion changes according to the redox state of the enzyme. We found that the Ni-A state (an inactive unready, oxidized state) of [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F (DvMF) is light sensitive and forms a new state (Ni-AL) with irradiation of visible light. The Fourier transform infrared (FT-IR) bands at 1956, 2084 and 2094 cm{sup -1} of the Ni-A state shifted to 1971, 2086 and 2098 cm{sup -1} in the Ni-AL state. The g-values of g{sub x} = 2.30, g{sub y} = 2.23 and g{sub z} = 2.01 for the signals in the electron paramagnetic resonance (EPR) spectrum of the Ni-A state at room temperature varied for -0.009, +0.012 and +0.010, respectively, upon light irradiation. The light-induced Ni-AL state converted back immediately to the Ni-A state under dark condition at room temperature. These results show that the coordination structure of the Fe site of the Ni-A state of [NiFe] hydrogenase is perturbed significantly by light irradiation with relatively small coordination change at the Ni site.

  4. Sputtered II-VI Alloys and Structures forTandem PV: Final Subcontract Report, 9 December 2003 - 30 July 2007

    SciTech Connect (OSTI)

    Compaan, A. D.; Collins, R.; Karpov, V. G.; Giolando, D.

    2008-09-01

    This report elaborates on Phase 3 and provides summaries of the first two Phases. Phase 3 research work was divided into five task areas covering different aspects of the II-VI tandem cell.

  5. Blending Cr2O3 into a NiO-Ni electrocatalyst for sustained water splitting

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gong, Ming; Zhou, Wu; Kenney, Michael James; Kapusta, Rich; Cowley, Sam; Wu, Yingpeng; Lu, Bingan; Lin, Meng -Chang; Wang, Di -Yan; Yang, Jiang; et al

    2015-08-24

    The rising H2 economy demands active and durable electrocatalysts based on low-cost, earth-abundant materials for water electrolysis/photolysis. Here we report nanoscale Ni metal cores over-coated by a Cr2O3-blended NiO layer synthesized on metallic foam substrates. The Ni@NiO/Cr2O3 triphase material exhibits superior activity and stability similar to Pt for the hydrogen-evolution reaction in basic solutions. The chemically stable Cr2O3 is crucial for preventing oxidation of the Ni core, maintaining abundant NiO/Ni interfaces as catalytically active sites in the heterostructure and thus imparting high stability to the hydrogen-evolution catalyst. The highly active and stable electrocatalyst enables an alkaline electrolyzer operating at 20more » mA cm–2 at a voltage lower than 1.5 V, lasting longer than 3 weeks without decay. Thus, the non-precious metal catalysts afford a high efficiency of about 15 % for light-driven water splitting using GaAs solar cells.« less

  6. Scaling Effects of Cr(VI) Reduction Kinetics. The Role of Geochemical Heterogeneity

    SciTech Connect (OSTI)

    Wang, Li; Li, Li

    2015-10-22

    The natural subsurface is highly heterogeneous with minerals distributed in different spatial patterns. Fundamental understanding of how mineral spatial distribution patterns regulate sorption process is important for predicting the transport and fate of chemicals. Existing studies about the sorption was carried out in well-mixed batch reactors or uniformly packed columns, with few data available on the effects of spatial heterogeneities. As a result, there is a lack of data and understanding on how spatial heterogeneities control sorption processes. In this project, we aim to understand and develop modeling capabilities to predict the sorption of Cr(VI), an omnipresent contaminant in natural systems due to its natural occurrence and industrial utilization. We systematically examine the role of spatial patterns of illite, a common clay, in determining the extent of transport limitation and scaling effects associated with Cr(VI) sorption capacity and kinetics using column experiments and reactive transport modeling. Our results showed that the sorbed mass and rates can differ by an order of magnitude due to of the illite spatial heterogeneities and transport limitation. With constraints from data, we also developed the capabilities of modeling Cr(VI) in heterogeneous media. The developed model is then utilized to understand the general principles that govern the relationship between sorption and connectivity, a key measure of the spatial pattern characteristics. This correlation can be used to estimate Cr(VI) sorption characteristics in heterogeneous porous media. Insights gained here bridge gaps between laboratory and field application in hydrogeology and geochemical field, and advance predictive understanding of reactive transport processes in the natural heterogeneous subsurface. We believe that these findings will be of interest to a large number of environmental geochemists and engineers, hydrogeologists, and those interested in contaminant fate and transport, water quality and water composition, and natural attenuation processes in natural systems.

  7. Electrochemical and spectroscopic evidence on the one-electron reduction of U(VI) to U(V) on magnetite

    SciTech Connect (OSTI)

    Yuan, Ke; Ilton, Eugene S.; Antonio, Mark R.; Li, Zhongrui; Cook, Peter J.; Becker, Udo

    2015-05-19

    Reduction of U(VI) to U(IV) on mineral surfaces has been considered as a one-step two electron process. However, stabilized U(V), with no evidence of U(IV), found in recent studies indicates U(VI) can undergo a one electron reduction to U(V) without further progression to U(IV). We investigated the mechanisms of uranium reduction by reducing U(VI) electrochemically on a magnetite electrode at pH 3.4 . The one electron reduction of U(VI) was first confirmed using the cyclic voltammetry method. Formation of nano-size uranium precipitates on the surface of magnetite at reducing potentials and dissolution of the solids at oxidizing potentials were observed by in situ electrochemical AFM. XPS analysis of the magnetite electrodes polarized in uranium solutions at voltages from 0.1 ~ 0.9 V (vs. Ag/AgCl) showed the presence of only U(V) and U(VI). The highest amount of U(V) relative to U(VI) was prepared at 0.7 V, where the longest average UOaxial distance of 2.05 0.01 was evident in the same sample revealed by EXAFS analysis. The results demonstrate that the electrochemical reduction of U(VI) on magnetite only yields U(V), even at a potential of 0.9 V, which favors the one-electron reduction mechanism. U(V) did not disproportionate but stabilized on magnetite through precipitation of mixed-valence state U(VI)/U(V) solids.

  8. TREATMENT TESTS FOR EX SITU REMOVAL OF CHROMATE & NITRATE & URANIUM (VI) FROM HANFORD (100-HR-3) GROUNDWATER FINAL REPORT

    SciTech Connect (OSTI)

    BECK MA; DUNCAN JB

    1994-01-03

    This report describes batch and ion exchange column laboratory scale studies investigating ex situ methods to remove chromate (chromium [VI]), nitrate (NO{sub 3}{sup -}) and uranium (present as uranium [VI]) from contaminated Hanford site groundwaters. The technologies investigated include: chemical precipitation or coprecipitation to remove chromate and uranium; and anion exchange to remove chromate, uranium and nitrate. The technologies investigated were specified in the 100-HR-3 Groundwater Treatability Test Plan. The method suggested for future study is anion exchange.

  9. Electrode Induced Removal and Recovery of Uranium (VI) from Acidic Subsurfaces

    SciTech Connect (OSTI)

    Gregory, Kelvin

    2013-08-12

    The overarching objective of this research is to provide an improved understanding of how aqueous geochemical conditions impact the removal of U and Tc from groundwater and how engineering design may be utilized to optimize removal of these radionuclides. Experiments were designed to address the unique conditions in Area 3 of ORNL while also providing broader insight into the geochemical effectors of the removal rates and extent for U and Tc. The specific tasks of this work were to: 1) quantify the impact of common aqueous geochemical and operational conditions on the rate and extent of U removal and recovery from water, 2) investigate the removal of Tc with polarized graphite electrode, and determine the influence of geochemical and operational conditions on Tc removal and recovery, 3) determine whether U and Tc may be treated simultaneous from Area 3 groundwater, and examine the bench-scale performance of electrode-based treatment, and 4) determine the capacity of graphite electrodes for U(VI) removal and develop a mathematical, kinetic model for the removal of U(VI) from aqueous solution. Overall the body of work suggests that an electrode-based approach for the remediation of acidic subsurface environments, such as those observed in Area 3 of ORNL may be successful for the removal for both U(VI) and Tc. Carbonaceous (graphite) electrode materials are likely to be the least costly means to maximize removal rates and efficiency by maximizing the electrode surface area.

  10. Equations of state of ice VI and ice VII at high pressure and high temperature

    SciTech Connect (OSTI)

    Bezacier, Lucile; Hanfland, Michael; Journaux, Baptiste; Perrillat, Jean-Philippe; Cardon, Herv; Daniel, Isabelle

    2014-09-14

    High-pressure H{sub 2}O polymorphs among which ice VI and ice VII are abundant in the interiors of large icy satellites and exo-planets. Knowledge of the elastic properties of these pure H{sub 2}O ices at high-temperature and high-pressure is thus crucial to decipher the internal structure of icy bodies. In this study we assess for the first time the pressure-volume-temperature (PVT) relations of both polycrystalline pure ice VI and ice VII at high pressures and temperatures from 1 to 9 GPa and 300 to 450 K, respectively, by using in situ synchrotron X-ray diffraction. The PVT data are adjusted to a second-order Birch-Murnaghan equation of state and give V{sub 0} = 14.17(2) cm{sup 3}?mol{sup ?1}, K{sub 0} = 14.05(23) GPa, and ?{sub 0} = 14.6(14) 10{sup ?5} K{sup ?1} for ice VI and V{sub 0} = 12.49(1) cm{sup 3}?mol{sup ?1}, K{sub 0} = 20.15(16) GPa, and ?{sub 0} = 11.6(5) 10{sup ?5} K{sup ?1} for ice VII.

  11. Spectroscopic studies of U(VI) sorption at the kaolinite-water interface. Final report

    SciTech Connect (OSTI)

    Thompson, H.A.; Parks, G.A.; Brown, G.E. Jr.

    1994-06-01

    Efficient use of U as a resource and safe handling, recycling and disposal of U-containing wastes require an understanding of the factors controlling the fate of U, where fate refers to the destination of U, typically expressed as an environmental medium or a process phase. The sorption process constitutes a change in elemental fate. Partitioning of an element from solution to a solid phase, or sorption, can be divided into three broad categories: adsorption, surface precipitation, and absorption. Extended X-ray absorption fine structure (EXAFS), a type of X-ray absorption spectroscopy (XAS), offers the possibility for distinguishing among different modes of sorption by characterizing the atomic environment of the sorbing element. In this study, the authors use EXAFS to determine the structure of U(VI) sorption complexes at the kaolinite-water interface. In Chapter One, they present an overview of selected aspects of U structural chemistry as a basis for considering the structural environment of U at the solid-water interface. To evaluate the utility of XAS for characterization of the structural environment of U(VI) at the solid-water interface, they have carried out an in-depth analysis of XAS data from U(VI)-containing solid and solution model compounds, which they describe in Chapter Two. In Chapter three, they consider sorption of U by kaolinite as a means of effecting the removal of U from surface collection pond waters on the Rocky Flats Plant site in northern Colorado.

  12. High Temperature coatings based on {beta}-NiAI

    SciTech Connect (OSTI)

    Severs, Kevin

    2012-07-10

    High temperature alloys are reviewed, focusing on current superalloys and their coatings. The synthesis, characerization, and oxidation performance of a NiAlTiB{sub 2} composite are explained. A novel coating process for MoNiAl alloys for improved oxidation performance is examined. The cyclic oxidation performance of coated and uncoated MoNiAl alloys is discussed.

  13. Reactive oxygen species mediate Cr(VI)-induced carcinogenesis through PI3K/AKT-dependent activation of GSK-3?/?-catenin signaling

    SciTech Connect (OSTI)

    Son, Young-Ok; Pratheeshkumar, Poyil; Wang, Lei; Wang, Xin; Fan, Jia; Kim, Dong-Hern; Lee, Ju-Yeon; Zhang, Zhuo; Lee, Jeong-Chae; Shi, Xianglin

    2013-09-01

    Cr(VI) compounds are known human carcinogens that primarily target the lungs. Cr(VI) produces reactive oxygen species (ROS), but the exact effects of ROS on the signaling molecules involved in Cr(VI)-induced carcinogenesis have not been extensively studied. Chronic exposure of human bronchial epithelial cells to Cr(VI) at nanomolar concentrations (10100 nM) for 3 months not only induced cell transformation, but also increased the potential of these cells to invade and migrate. Injection of Cr(VI)-stimulated cells into nude mice resulted in the formation of tumors. Chronic exposure to Cr(VI) increased levels of intracellular ROS and antiapoptotic proteins. Transfection with catalase or superoxide dismutase (SOD) prevented Cr(VI)-mediated increases in colony formation, cell invasion, migration, and xenograft tumors. While chronic Cr(VI) exposure led to activation of signaling cascades involving PI3K/AKT/GSK-3?/?-catenin and PI3K/AKT/mTOR, transfection with catalase or SOD markedly inhibited Cr(VI)-mediated activation of these signaling proteins. Inhibitors specific for AKT or ?-catenin almost completely suppressed the Cr(VI)-mediated increase in total and active ?-catenin proteins and colony formation. In particular, Cr(VI) suppressed autophagy of epithelial cells under nutrition deprivation. Furthermore, there was a marked induction of AKT, GSK-3?, ?-catenin, mTOR, and carcinogenic markers in tumor tissues formed in mice after injection with Cr(VI)-stimulated cells. Collectively, our findings suggest that ROS is a key mediator of Cr(VI)-induced carcinogenesis through the activation of PI3K/AKT-dependent GSK-3?/?-catenin signaling and the promotion of cell survival mechanisms via the inhibition of apoptosis and autophagy. - Highlights: Chronic exposure to Cr(VI) induces carcinogenic properties in BEAS-2B cells. ROS play an important role in Cr(VI)-induced tumorigenicity of BEAS-2B cells. PI3K/AKT/GSK-3?/?-catenin signaling involved in Cr(VI) carcinogenesis. The inhibition of apoptosis and autophagy contributes to Cr(VI) carcinogenesis.

  14. Influence of Ni on Martensitic Phase Transformations in NiTi Shape Memory Alloys

    SciTech Connect (OSTI)

    Frenzel, J.; George, Easo P; Dlouhy, A.; Somsen, Ch.; Wagner, M. F.-X; Eggeler, G.

    2010-01-01

    High-precision data on phase transformation temperatures in NiTi, including numerical expressions for the effect of Ni on M{sub S}, M{sub F}, A{sub S}, A{sub F} and T{sub 0}, are obtained, and the reasons for the large experimental scatter observed in previous studies are discussed. Clear experimental evidence is provided confirming the predictions of Tang et al. 1999 regarding deviations from a linear relation between the thermodynamic equilibrium temperature and Ni concentration. In addition to affecting the phase transition temperatures, increasing Ni contents are found to decrease the width of thermal hysteresis and the heat of transformation. These findings are rationalized on the basis of the crystallographic data of Prokoshkin et al. 2004 and the theory of Ball and James. The results show that it is important to document carefully the details of the arc-melting procedure used to make shape memory alloys and that, if the effects of processing are properly accounted for, precise values for the Ni concentration of the NiTi matrix can be obtained.

  15. Optimizing Cr(VI) and Tc(VII) remediation through nano-scale biomineral engineering

    SciTech Connect (OSTI)

    Cutting, R. S.; Coker, V. S.; Telling, N. D.; Kimber, R. L.; Pearce, C. I.; Ellis, B.; Lawson, R; van der Laan, G.; Pattrick, R.A.D.; Vaughan, D.J.; Arenholz, E.; Lloyd, J. R.

    2009-09-09

    To optimize the production of biomagnetite for the bioremediation of metal oxyanion contaminated waters, the reduction of aqueous Cr(VI) to Cr(III) by two biogenic magnetites and a synthetic magnetite was evaluated under batch and continuous flow conditions. Results indicate that nano-scale biogenic magnetite produced by incubating synthetic schwertmannite powder in cell suspensions of Geobacter sulfurreducens is more efficient at reducing Cr(VI) than either biogenic nano-magnetite produced from a suspension of ferrihydrite 'gel' or synthetic nano-scale Fe{sub 3}O{sub 4} powder. Although X-ray Photoelectron Spectroscopy (XPS) measurements obtained from post-exposure magnetite samples reveal that both Cr(III) and Cr(VI) are associated with nanoparticle surfaces, X-ray Magnetic Circular Dichroism (XMCD) studies indicate that some Cr(III) has replaced octahedrally coordinated Fe in the lattice of the magnetite. Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) measurements of total aqueous Cr in the associated solution phase indicated that, although the majority of Cr(III) was incorporated within or adsorbed to the magnetite samples, a proportion ({approx}10-15 %) was released back into solution. Studies of Tc(VII) uptake by magnetites produced via the different synthesis routes also revealed significant differences between them as regards effectiveness for remediation. In addition, column studies using a {gamma}-camera to obtain real time images of a {sup 99m}Tc(VII) radiotracer were performed to visualize directly the relative performances of the magnetite sorbents against ultra-trace concentrations of metal oxyanion contaminants. Again, the magnetite produced from schwertmannite proved capable of retaining more ({approx}20%) {sup 99m}Tc(VII) than the magnetite produced from ferrihydrite, confirming that biomagnetite production for efficient environmental remediation can be fine-tuned through careful selection of the initial Fe(III) mineral substrate supplied to Fe(III)-reducing bacteria.

  16. Telescope Guiding with a HyViSI H2RG Used in Guide Mode

    SciTech Connect (OSTI)

    Simms, Lance M.; Figerb, Donald F.; Hanold, Brandon J.; Kahn, Steven M.; Gilmore, D.Kirk

    2010-06-04

    We report on long exposure results obtained with a Teledyne HyViSI H2RG detector operating in guide mode. The sensor simultaneously obtained nearly seeing-limited data while also guiding the Kitt Peak 2.1 m telescope. Results from unguided and guided operation are presented and used to place lower limits on flux/fluence values for accurate centroid measurements. We also report on significant noise reduction obtained in recent laboratory measurements that should further improve guiding capability with higher magnitude stars.

  17. Local structure study of Fe dopants in Ni-deficit Ni3Al alloys

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    V. N. Ivanovski; Umicevic, A.; Belosevic-Cavor, J.; Lei, Hechang; Li, Lijun; Cekic, B.; Koteski, V.; Petrovic, C.

    2015-08-24

    We found that the local electronic and magnetic structure, hyperfine interactions, and phase composition of polycrystalline Ni–deficient Ni 3-x FexAl (x = 0.18 and 0.36) were investigated by means of 57 Fe Mössbauer spectroscopy. The samples were characterized by X–ray diffraction and magnetization measurements. The ab initio calculations performed with the projector augmented wave method and the calculations of the energies of iron point defects were done to elucidate the electronic structure and site preference of Fe doped Ni 3 Al. Moreover, the value of calculated electric field gradient tensor Vzz=1.6 1021Vm-2 matches well with the results of Mössbauer spectroscopymore » and indicates that the Fe atoms occupy Ni sites.« less

  18. INTENSITY ENHANCEMENT OF OVI ULTRAVIOLET EMISSION LINES IN SOLAR SPECTRA DUE TO OPACITY

    SciTech Connect (OSTI)

    Keenan, F. P.; Mathioudakis, M.; Doyle, J. G.; Madjarska, M. S.; Rose, S. J.; Bowler, L. A.; Britton, J.; McCrink, L.

    2014-04-01

    Opacity is a property of many plasmas. It is normally expected that if an emission line in a plasma becomes optically thick, then its intensity ratio to that of another transition that remains optically thin should decrease. However, radiative transfer calculations undertaken both by ourselves and others predict that under certain conditions the intensity ratio of an optically thick to an optically thin line can show an increase over the optically thin value, indicating an enhancement in the former. These conditions include the geometry of the emitting plasma and its orientation to the observer. A similar effect can take place between lines of differing optical depths. While previous observational studies have focused on stellar point sources, here we investigate the spatially resolved solar atmosphere using measurements of the I(1032 )/I(1038 ) intensity ratio of OVI in several regions obtained with the Solar Ultraviolet Measurements of Emitted Radiation instrument on board the Solar and Heliospheric Observatory satellite. We find several I(1032 )/I(1038 ) ratios observed on the disk to be significantly larger than the optically thin value of 2.0, providing the first detection (to our knowledge) of intensity enhancement in the ratio arising from opacity effects in the solar atmosphere. The agreement between observation and theory is excellent and confirms that the OVI emission originates from a slab-like geometry in the solar atmosphere, rather than from cylindrical structures.

  19. Isotopic and geochemical tracers for U(VI) reduction and U mobility at an in situ recovery U mine

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Basu, Anirban; Brown, Shaun T.; Christensen, John N.; DePaolo, Donald J.; Reimus, Paul W.; Heikoop, Jeffrey M.; Woldegabriel, Giday; Simmons, Ardyth M.; House, Brian M.; Hartmann, Matt; et al

    2015-05-19

    In situ recovery (ISR) uranium (U) mining mobilizes U in its oxidized hexavalent form (U(VI)) by oxidative dissolution of U from the roll-front U deposits. Post-mining natural attenuation of residual U(VI) at ISR mines is a potential remediation strategy. Detection and monitoring of naturally occurring reducing subsurface environments are important for successful implementation of this remediation scheme. We used the isotopic tracers ²³⁸U/²³⁵U (δ²³⁸U), ²³⁴U/²³⁸U activity ratio, and ³⁴S/³²S (δ³⁴S), and geochemical measurements of U ore and groundwater collected from 32 wells located within, upgradient, and downgradient of a roll-front U deposit to detect U(VI) reduction and U mobility atmore » an ISR mining site at Rosita, TX, USA. The δ²³⁸U in Rosita groundwater varies from 0.61‰ to -2.49‰, with a trend toward lower δ²³⁸U in downgradient wells. The concurrent decrease in U(VI) concentration and δ²³⁸U with an ε of 0.48‰ ± 0.08‰ is indicative of naturally occurring reducing environments conducive to U(VI) reduction. Additionally, characteristic ²³⁴U/²³⁸U activity ratio and δ³⁴S values may also be used to trace the mobility of the ore zone groundwater after mining has ended. These results support the use of U isotope-based detection of natural attenuation of U(VI) at Rosita and other similar ISR mining sites.« less

  20. NiW and NiRu Bimetallic Catalysts for Ethylene Steam Reforming: Alternative Mechanisms for Sulfur Resistance

    SciTech Connect (OSTI)

    Rangan, M.; Yung, M. M.; Medlin, J. W.

    2012-06-01

    Previous investigations of Ni-based catalysts for the steam reforming of hydrocarbons have indicated that the addition of a second metal can reduce the effects of sulfur poisoning. Two systems that have previously shown promise for such applications, NiW and NiRu, are considered here for the steam reforming of ethylene, a key component of biomass derived tars. Monometallic and bimetallic Al{sub 2}O{sub 3}-supported Ni and W catalysts were employed for ethylene steam reforming in the presence and absence of sulfur. The NiW catalysts were less active than Ni in the absence of sulfur, but were more active in the presence of 50 ppm H{sub 2}S. The mechanism for the W-induced improvements in sulfur resistance appears to be different from that for Ru in NiRu. To probe reasons for the sulfur resistance of NiRu, the adsorption of S and C{sub 2}H{sub 4} on several bimetallic NiRu alloy surfaces ranging from 11 to 33 % Ru was studied using density functional theory (DFT). The DFT studies reveal that sulfur adsorption is generally favored on hollow sites containing Ru. Ethylene preferentially adsorbs atop the Ru atom in all the NiRu (111) alloys investigated. By comparing trends across the various bimetallic models considered, sulfur adsorption was observed to be correlated with the density of occupied states near the Fermi level while C{sub 2}H{sub 4} adsorption was correlated with the number of unoccupied states in the d-band. The diverging mechanisms for S and C{sub 2}H{sub 4} adsorption allow for bimetallic surfaces such as NiRu that enhance ethylene binding without accompanying increases in sulfur binding energy. In contrast, bimetallics such as NiSn and NiW appear to decrease the affinity of the surface for both the reagent and the poison.

  1. Geometric and Electronic Structures of the Ni(I) and Methyl-Ni(III)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Intermediates of Methyl-Coenzyme M Reductase 9 Geometric and Electronic Structures of the Ni(I) and Methyl-Ni(III) Intermediates of Methyl-Coenzyme M Reductase Methyl-coenzyme M reductase (MCR) from methanogenic archaea catalyzes the terminal step in biological methane synthesis. Using coenzyme B (CoBSH) as the two-electron donor, MCR reduces methyl-coenzyme M (methyl-SCoM) to form methane and the heterodisulfide product, CoBS-SCoM. MCR contains an essential redox active nickel tetrapyrrolic

  2. Microstructures in rapidly solidified Ni-Mo alloys

    SciTech Connect (OSTI)

    Jayaraman, N.; Tewari, S.N.; Hemker, K.J.; Glasgow, T.K.

    1985-01-01

    Ni-Mo alloys of compositions ranging from pure Ni to Ni-40 at % Mo were rapidly solidified by chill block melt spinning in vacuum and were examined by optical metallography, x-ray diffraction and transmission electron microscopy. Rapid solidification resulted in an extension of molybdenum solubility in nickel from 28 to 37.5 at %. A number of different phases and microstructures were seen at different depths (solidification conditions) from the quenched surface of the melt spun ribbons.

  3. Oxidation-resistant, solution-processed plasmonic Ni nanochain...

    Office of Scientific and Technical Information (OSTI)

    solar thermal absorbers Citation Details In-Document Search Title: Oxidation-resistant, solution-processed plasmonic Ni nanochain-SiOsub x (x < 2) selective solar thermal ...

  4. A modified model for calculating lattice thermal expansion of I{sub 2}-IV-VI{sub 3} and I{sub 3}-V-VI{sub 4} tetrahedral compounds

    SciTech Connect (OSTI)

    Omar, M.S. . E-mail: dr_m_s_omar@yahoo.com

    2007-05-03

    A general empirical formula was found for calculating lattice thermal expansion for compounds having their properties extended for compound groups having different mean ionicity as well as more than one type of cation atoms with that of different numbers of them such as I{sub 2}-IV-VI{sub 3} and I{sub 3}-V-VI{sub 4}. The difference in the valence electrons for cations and anions in the compound was used to correlate the deviations caused by the compound ionicity. The ionicity effects, which are due to their different numbers for their types, were also added to the correlation equation. In general, the lattice thermal expansion for a compound semiconductor can be calculated from a relation containing melting point, mean atomic distance and number of valence electrons for the atoms forming the compound. The mean ionicity for the group compounds forming I{sub 2}-IV-VI{sub 3} was found to be 0.323 and 0.785 for the ternary group compounds of I{sub 3}-V-VI{sub 4}.

  5. American Flyers N-I Wine Makers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flyers N-I Wine Makers WSI leads charge in local bike events. NSTec recognizes top performers in NNSS mission. Navarro employees enjoy wine making hobby. See page 8. See page 7. Do You Know Where To Find Latest NNSS Info? In late August, a rainstorm in Las Vegas caused flooding near Mt. Charleston that washed the remnants of this summer's Carpenter Fire across U.S. 95, blocking the roadway. It was 11 p.m. on a Sunday night, and the road closure threatened Nevada National Security Site (NNSS)

  6. Enhanced photocatalytic efficiency in zirconia buffered n-NiO/p-NiO single crystalline heterostructures by nanosecond laser treatment

    SciTech Connect (OSTI)

    Molaei, R.; Bayati, M. R.; Alipour, H. M.; Nori, S.; Narayan, J.

    2013-06-21

    We report the formation of NiO based single crystalline p-n junctions with enhanced photocatalytic activity induced by pulsed laser irradiation. The NiO epilayers were grown on Si(001) substrates buffered with cubic yttria-stabilized zirconia (c-YSZ) by using pulsed laser deposition. The NiO/c-YSZ/Si heterostructures were subsequently laser treated by 5 pulses of KrF excimer laser (pulse duration = 25 Multiplication-Sign 10{sup -9} s) at lower energies. Microstructural studies, conducted by X-ray diffraction ({theta}-2{theta} and {phi} techniques) and high resolution transmission electron microscope, showed a cube-on-cube epitaxial relationship at the c-YSZ/Si interface; the epitaxial relationship across the NiO/c-YSZ interface was established as NiO<111 > Double-Vertical-Line Double-Vertical-Line c-YSZ<001> and in-plane NiO<110> Double-Vertical-Line Double-Vertical-Line c-YSZ<100>. Electron microscopy studies showed that the interface between the laser annealed and the pristine region as well as the NiO/c-YSZ interface was atomically sharp and crystallographically continuous. The formation of point defects, namely oxygen vacancies and NiO, due to the coupling of the laser photons with the NiO epilayers was confirmed by XPS. The p-type electrical characteristics of the pristine NiO epilayers turned to an n-type behavior and the electrical conductivity was increased by one order of magnitude after laser treatment. Photocatalytic activity of the pristine (p-NiO/c-YSZ/Si) and the laser-annealed (n-NiO/p-NiO/c-YSZ/Si) heterostructures were assessed by measuring the decomposition rate of 4-chlorophenol under UV light. The photocatalytic reaction rate constants were determined to be 0.0059 and 0.0092 min{sup -1} for the as-deposited and the laser-treated samples, respectively. The enhanced photocatalytic efficiency was attributed to the suppressed charge carrier recombination in the NiO based p-n junctions and higher electrical conductivity. Besides, the oxygen vacancies ease the adsorption of 4-chlorophenol, hydroxyl, and water molecules to the surface. Thus, n-NiO/p-NiO single crystalline catalysts can be introduced as a potent candidate to remediate the environmental pollution.

  7. Energies of Electronic States of Ni (II) Ion in NiO-Al2O3 Catalyst Prepared by Impregnation

    SciTech Connect (OSTI)

    Obadovic, D. Z.; Kiurski, J.; Marinkovic-Neducin, R. P.

    2007-04-23

    The behavior of NiO-Al2O3 catalysts is strongly dependent on the preparation method, as well as on pretreatment conditions. In the present work we investigated the influences of Ni(II) ion on NiO-Al2O3 catalysts properties due to the preparation by impregnation method. Based on experimental diffuse reflectance spectroscopy (DRS) data of electronic d-d transitions of Ni (II) promoter ion the energies of electronic states in spinel-like structure were calculated, and the most probable scheme of molecular orbital have been proposed.

  8. Solution-based thermodynamic modeling of the Ni-Al-Mo system...

    Office of Scientific and Technical Information (OSTI)

    as (Al,Mo,Ni)0.75(Al,Mo,Ni)0.25. Thus, -fcc and -Ni3Al are modeled with a single Gibbs free energy function with appropriate treatment of the chemical ordering contribution. ...

  9. REVISED AND EXTENDED ANALYSIS OF FIVE TIMES IONIZED XENON, Xe VI

    SciTech Connect (OSTI)

    Gallardo, M.; Raineri, M.; Reyna Almandos, J.; Pagan, C. J. B.; Abraho, R. A. E-mail: cesarpagan@fee.unicamp.br

    2015-01-01

    A capillary discharge tube was used to record the Xe spectrum in the 400-5500 Š region. A set of 243 lines of the Xe VI spectrum was observed, and 146 of them were classified for the first time. For all known lines, we calculated the weighted oscillator strengths (gf) and weighted transition probabilities (gA) using the configuration interaction in a relativistic Hartree-Fock approach. The energy matrix was calculated using energy parameters adjusted to fit the experimental energy levels. Core polarization effects were taken into account in our calculations. Experimental energy values and calculated lifetimes are also presented for a set of 88 levels. From these levels, 32 were classified for the first time and 33 had their values revised. Our analysis of the 5s5p5d and 5s5p6s configurations was extended in order to clarify discrepancies among previous works.

  10. Influence of calcite on uranium(VI) reactive transport in the groundwaterriver mixing zone

    SciTech Connect (OSTI)

    Ma, Rui; Liu, Chongxuan; Greskowiak, Janek; Prommer, Henning; Zachara, John M.; Zheng, Chunmiao

    2014-01-23

    Calcite is an important mineral that can affect uranyl reactive transport in subsurface sediments. This study investigated the distribution of calcite and its influence on uranyl adsorption and reactive transport in the groundwater-river mixing zone at US Hanford 300A, Washington State. Simulations using a 2D reactive transport model under field-relevant hydrogeochemical conditions revealed a complex distribution of calcite concentration as a result of dynamic groundwater-river interactions. The calcite concentration distribution in turn affected the spatial and temporal changes in aqueous carbonate, calcium, and pH, which subsequently influenced U(VI) mobility and discharge rates into the river. The results implied that calcite distribution and its concentration dynamics is an important consideration for field characterization, monitoring, and reactive transport prediction.

  11. Synthesis and electrochemical properties of NiO nanospindles

    SciTech Connect (OSTI)

    Zhou, Hai; Lv, Baoliang; Xu, Yao; Wu, Dong

    2014-02-01

    Graphical abstract: NiO nanospindles with a different electrochemical activity as compared to those previous reports were synthesized via an agglomeration–dissolution–recrystallization growth process without the addition of any surfactant. - Highlights: • NiO nanospindles were synthesized without the addition of any surfactant. • The agglomeration–dissolution–recrystallization growth process was used to explain the precursors’ formation process of the spindle-like NiO. • As-obtained spindle-like NiO showed a different electrochemical activity as compared to those previous reports. - Abstract: NiO nanospindles were successfully synthesized via a hydrothermal and post-treatment method. The as-synthesized nanospindles were about several hundred nanometers in width and about one micrometer in length. X-ray diffraction (XRD) analysis revealed that the spindle-like structure was cubic NiO phase crystalline. Scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM) analysis indicated that these NiO nanospindles were of single crystal nature. On the basis of time-dependent experiments, a possible agglomeration–dissolution–recrystallization growth process was proposed to explain the formation process of the spindle-like precursors. The cyclic voltammetry (CV) measurement showed that the as-prepared spindle-like NiO exhibited a pseudo-capacitance behavior.

  12. Lanthanide Al-Ni base Ericsson cycle magnetic refrigerants

    DOE Patents [OSTI]

    Gschneidner, Jr., Karl A. (Ames, IA); Takeya, Hiroyuki (Ibaraki, JP)

    1995-10-31

    A magnetic refrigerant for a magnetic refrigerator using the Ericsson thermodynamic cycle comprises DyAlNi and (Gd.sub.0.54 Er.sub.0.46)AlNi alloys having a relatively constant .DELTA.Tmc over a wide temperature range.

  13. Lanthanide Al-Ni base Ericsson cycle magnetic refrigerants

    DOE Patents [OSTI]

    Gschneidner, K.A. Jr.; Takeya, Hiroyuki

    1995-10-31

    A magnetic refrigerant for a magnetic refrigerator using the Ericsson thermodynamic cycle comprises DyAlNi and (Gd{sub 0.54}Er{sub 0.46})AlNi alloys having a relatively constant {Delta}Tmc over a wide temperature range. 16 figs.

  14. Effects of Cr and Ni on Interdiffusion and Reaction between U and Fe-Cr-Ni Alloys

    SciTech Connect (OSTI)

    K. Huang; Y. Park; L. Zhou; K.R. Coffey; Y.H. Sohn; B.H. Sencer; J. R. Kennedy

    2014-08-01

    Metallic U-alloy fuel cladded in steel has been examined for high temperature fast reactor technology wherein the fuel cladding chemical interaction is a challenge that requires a fundamental and quantitative understanding. In order to study the fundamental diffusional interactions between U with Fe and the alloying effect of Cr and Ni, solid-to-solid diffusion couples were assembled between pure U and Fe, Fe15 wt.%Cr or Fe15 wt.%Cr15 wt.%Ni alloy, and annealed at high temperature ranging from 580 to 700 C. The microstructures and concentration profiles that developed from the diffusion anneal were examined by scanning electron microscopy, and X-ray energy dispersive spectroscopy (XEDS), respectively. Thick U6Fe and thin UFe2 phases were observed to develop with solubilities: up to 2.5 at.% Ni in U6(Fe,Ni), up to 20 at.%Cr in U(Fe, Cr)2, and up to 7 at.%Cr and 14 at.% Ni in U(Fe, Cr, Ni)2. The interdiffusion and reactions in the U vs. Fe and U vs. FeCrNi exhibited a similar temperature dependence, while the U vs. FeCr diffusion couples, without the presence of Ni, yielded greater activation energy for the growth of intermetallic phases lower growth rate at lower temperature but higher growth rate at higher temperature.

  15. Enhanced Dry Reforming of Methane on Ni and Ni-Pt Catalysts Synthesized by Atomic Layer Deposition

    SciTech Connect (OSTI)

    Gould, Troy D.; Montemore, Matthew M.; Lubers, Alia M.; Ellis, Lucas D.; Weimer, Alan; Falconer, John L.; Medlin, James W.

    2015-02-25

    Atomic layer deposition (ALD) was used to deposit Ni and Pt on alumina supports to form monometallic and bimetallic catalysts with initial particle sizes of 12.4 nm. The ALD catalysts were more active (per mass of metal) than catalysts prepared by incipient wetness (IW) for dry reforming of methane (DRM), and they did not form carbon whiskers during reaction due to their sufficiently small size. Catalysts modified by Pt ALD had higher rates of reaction per mass of metal and inhibited coking, whereas NiPt catalysts synthesized by IW still formed carbon whiskers. Temperature-programmed reduction of Ni catalysts modified by Pt ALD indicated the presence of bimetallic interaction. Density functional theory calculations suggested that under reaction conditions, the NiPt surfaces form Ni-terminated surfaces that are associated with higher DRM rates (due to their C and O adsorption energies, as well as the CO formation and CH4 dissociation energies).

  16. The first principle study of Ni{sub 2}ScGa and Ni{sub 2}TiGa

    SciTech Connect (OSTI)

    zduran, Mustafa; Turgut, Kemal; Arikan, Nihat; ?yigr, Ahmet; Candan, Abdullah

    2014-10-06

    We computed the electronic structure, elastic moduli, vibrational properties, and Ni{sub 2}TiGa and Ni{sub 2}ScGa alloys in the cubic L2{sub 1} structure. The obtained equilibrium lattice constants of these alloys are in good agreement with available data. In cubic systems, there are three independent elastic constants, namely C{sub 11}, C{sub 12} and C{sub 44}. We calculated elastic constants in L2{sub 1} structure for Ni{sub 2}TiGa and Ni{sub 2}ScGa using the energy-strain method. The electronic band structure, total and partial density of states for these alloys were investigated within density functional theory using the plane-wave pseudopotential method implemented in Quantum-Espresso program package. From band structure, total and projected density of states, we observed metallic characters of these compounds. The electronic calculation indicate that the predominant contributions of the density of states at Fermi level come from the Ni 3d states and Sc 3d states for Ni{sub 2}TiGa, Ni 3d states and Sc 3d states for Ni{sub 2}ScGa. The computed density of states at Fermi energy are 2.22 states/eV Cell for Ni{sub 2}TiGa, 0.76 states/eV Cell for Ni{sub 2}ScGa. The vibrational properties were obtained using a linear response in the framework at the density functional perturbation theory. For the alloys, the results show that the L2{sub 1} phase is unstable since the phonon calculations have imagine modes.

  17. Ni/metal hydride secondary element

    DOE Patents [OSTI]

    Bauerlein, Peter

    2005-04-19

    A Ni/metal hydride secondary element having a positive nickel hydroxide electrode, a negative electrode having a hydrogen storage alloy, and an alkaline electrolyte, the positive electrode, provided with a three-dimensional metallic conductive structure, also contains an aluminum compound which is soluble in the electrolyte, in addition to nickel hydroxide and cobalt oxide. The aluminum compound is aluminum hydroxide and/or aluminum oxide, and the mass of the aluminum compound which is present in the positive bulk material mixture is 0.1 to 2% by weight relative to the mass of the nickel hydroxide which is present. In combination with aluminum hydroxide or aluminum oxide, the positive electrode further contains lanthanoid oxidic compounds Y.sub.2 O.sub.3, La.sub.2 O.sub.3 and Ca(OH).sub.2, as well as mixtures of these compounds.

  18. The fabrication of foam-like 3D mesoporous NiO-Ni as anode for high performance Li-ion batteries

    SciTech Connect (OSTI)

    Huang, Peng; Zhang, Xin; Wei, Jumeng; Pan, Jiaqi; Sheng, Yingzhou; Feng, Boxue

    2015-03-15

    Graphical abstract: Foam-like 3 dimensional (3D) mesoporous NiO on 3D micro-porous Ni was fabricated. - Highlights: We prepare NiO-Ni foam composite via hydrothermal etching and subsequent annealing. The NiO exhibits novel foam-like 3D mesoporous architecture. The NiO-Ni anode shows good cycle stability. - Abstract: Foam-like three dimensional mesoporous NiO on Ni foam was fabricated via facile hydrothermal etching and subsequent annealing treatment. The porous NiO consists of a large number of nanosheets with mean thickness about 50 nm, among which a large number of mesoscopic pores with size ranges from 100 nm to 1 ?m distribute. The electrochemical performance of the as-prepared NiO-Ni as anode for lithium ion battery was studied by conventional charge/discharge test, which shows excellent cycle stability and rate capability. It exhibits initial discharge and charge capacities of 979 and 707 mA h g{sup ?1} at a charge/discharge rate of 0.7 C, which maintain of 747 and 738 mA h g{sup ?1} after 100 cycles. Even after 60 cycles at various rates from 0.06 to 14 C, the 10th discharge and charge capacities of the NiO-Ni electrode can revert to 699 and 683 mA h g{sup ?1} when lowering the charge/discharge rate to 0.06 C.

  19. Halo mass dependence of H I and O VI absorption: evidence for differential kinematics

    SciTech Connect (OSTI)

    Mathes, Nigel L.; Churchill, Christopher W.; Nielsen, Nikole M.; Trujillo-Gomez, Sebastian [New Mexico State University, Las Cruces, NM 88003 (United States); Kacprzak, Glenn G. [Swinburne University of Technology, Victoria 3122 (Australia); Charlton, Jane; Muzahid, Sowgat [The Pennsylvania State University, University Park, PA 16802 (United States)

    2014-09-10

    We studied a sample of 14 galaxies (0.1 < z < 0.7) using HST/WFPC2 imaging and high-resolution HST/COS or HST/STIS quasar spectroscopy of Ly?, Ly?, and O VI ??1031, 1037 absorption. The galaxies, having 10.8 ? log (M {sub h}/M {sub ?}) ? 12.2, lie within D = 300 kpc of quasar sightlines, probing out to D/R {sub vir} = 3. When the full range of M {sub h} and D/R {sub vir} of the sample are examined, ?40% of the H I absorbing clouds can be inferred to be escaping their host halo. The fraction of bound clouds decreases as D/R {sub vir} increases such that the escaping fraction is ?15% for D/R {sub vir} < 1, ?45% for 1 ? D/R {sub vir} < 2, and ?90% for 2 ? D/R {sub vir} < 3. Adopting the median mass log M {sub h}/M {sub ?} = 11.5 to divide the sample into 'higher' and 'lower' mass galaxies, we find a mass dependency for the hot circumgalactic medium kinematics. To our survey limits, O VI absorption is found in only ?40% of the H I clouds in and around lower mass halos as compared to ?85% around higher mass halos. For D/R {sub vir} < 1, lower mass halos have an escape fraction of ?65%, whereas higher mass halos have an escape fraction of ?5%. For 1 ? D/R {sub vir} < 2, the escape fractions are ?55% and ?35% for lower mass and higher mass halos, respectively. For 2 ? D/R {sub vir} < 3, the escape fraction for lower mass halos is ?90%. We show that it is highly likely that the absorbing clouds reside within 4R {sub vir} of their host galaxies and that the kinematics are dominated by outflows. Our finding of 'differential kinematics' is consistent with the scenario of 'differential wind recycling' proposed by Oppenheimer et al. We discuss the implications for galaxy evolution, the stellar to halo mass function, and the mass-metallicity relationship of galaxies.

  20. Nondestructive evaluation of Ni-Ti shape memory alloy

    SciTech Connect (OSTI)

    Meir, S.; Gordon, S.; Karsh, M.; Ayers, R.; Olson, D. L.; Wiezman, A.

    2011-06-23

    The nondestructive evaluation of nickel titanium (Ni-Ti) alloys for applications such as heat treatment for biomaterials applications (dental) and welding was investigated. Ni-Ti alloys and its ternary alloys are valued for mechanical properties in addition to the shape memory effect. Two analytical approaches were perused in this work. Assessment of the microstructure of the alloy that determines the martensitic start temperature (Ms) of Ni-Ti alloy as a function of heat treatment, and secondly, an attempt to evaluate a Friction Stir Welding, which involves thermo-mechanical processing of the alloy.

  1. Graphene Monolayer Rotation on Ni(111) Facilities Bilayer Graphene Growth

    SciTech Connect (OSTI)

    Batzill M.; Sutter P.; Dahal, A.; Addou, R.

    2012-06-11

    Synthesis of bilayer graphene by chemical vapor deposition is of importance for graphene-based field effect devices. Here, we demonstrate that bilayer graphene preferentially grows by carbon-segregation under graphene sheets that are rotated relative to a Ni(111) substrate. Rotated graphene monolayer films can be synthesized at growth temperatures above 650 C on a Ni(111) thin-film. The segregated second graphene layer is in registry with the Ni(111) substrate and this suppresses further C-segregation, effectively self-limiting graphene formation to two layers.

  2. Application of cluster-plus-glue-atom model to barrierless CuNiTi and CuNiTa films

    SciTech Connect (OSTI)

    Li, Xiaona, E-mail: lixiaona@dlut.edu.cn; Ding, Jianxin; Wang, Miao; Dong, Chuang [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024 (China); Chu, Jinn P. [Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China)

    2014-11-01

    To improve the thermal stability of copper and avoid its diffusion into surrounding dielectrics or interfacial reactions with them, the authors applied the cluster-plus-glue-atom model to investigate barrierless CuNiM (M?=?Ti or Ta) seed layers. The dissolution of the third element (Ti or Ta) in the Cu lattice with the aid of Ni significantly improved the thermal stability of the Cu seed layer. The appropriate M/Ni (M?=?Ti or Ta) ratio was selected to obtain a low resistivity: the resistivity was as low as 2.5??? cm for the (Ti{sub 1.5/13.5}Ni{sub 12/13.5}){sub 0.3}Cu{sub 99.7} film and 2.8??? cm for the (Ta{sub 1.1/13.1}Ni{sub 12/13.1}){sub 0.4}Cu{sub 99.6} film after annealing at 500?C for 1?h. After annealing at 500?C for 40?h, the two films remained stable without forming a Cu{sub 3}Si compound. The authors confirmed that the range of applications of the cluster-plus-glue-atom model could be extended. Therefore, a third element M with negative enthalpies of mixing with both Cu and Ni could be selected, under the premise that the mixing enthalpy of MNi is more negative than that of MCu.

  3. Excess Ni-doping induced enhanced room temperature magneto-functionality in Ni-Mn-Sn based shape memory alloy

    SciTech Connect (OSTI)

    Pramanick, S.; Giri, S.; Majumdar, S.; Chatterjee, S.

    2014-09-15

    Present work reports on the observation of large magnetoresistance (??30% at 80 kOe) and magnetocaloric effect (?12?Jkg{sup ?1}K{sup ?1} for 050 kOe) near room temperature (?290?K) on the Ni-excess ferromagnetic shape memory alloy Ni{sub 2.04}Mn{sub 1.4}Sn{sub 0.56}. The sample can be thought of being derived from the parent Ni{sub 2}Mn{sub 1.4}Sn{sub 0.6} alloy, where excess Ni was doped at the expense of Sn. Such Ni doping enhances the martensitic transition temperature and for the Ni{sub 2.04}Mn{sub 1.4}Sn{sub 0.56} it is found to be optimum (288?K). The doped alloy shows enhanced magneto-functional properties as well as reduced saturation magnetization as compared to the undoped counterpart at low temperature. A probable increment of antiferromagnetic correlation between Mn-atoms on Ni substitution can be accounted for the enhanced magneto-functional properties as well as reduction in saturation moment.

  4. Overall Photocatalytic Water Splitting with NiOx-SrTiO3 A Revised Mechanism

    SciTech Connect (OSTI)

    Townsend, Troy K.; Browning, Nigel D.; Osterloh, Frank

    2012-11-01

    NiOx (0 < x < 1) modified SrTiO3 (STO) is one of the best studied photocatalyst for overall water splitting under UV light. The established mechanism for this and many other NiOx containing catalysts assumes water oxidation to occur at the early transition metal oxide and water reduction at NiOx. Here we show that NiOx-STO is more likely a three component Ni-STO-NiO catalyst, in which STO absorbs the light, Ni reduces protons, and NiO oxidizes water. This interpretation is based on systematic H2/O2 evolution tests of appropriately varied catalyst compositions using oxidized, chemically and photochemically added nickel and NiO nanoparticle cocatalysts. Surface photovoltage (SPV) measurements reveal that Ni(0) serves as an electron trap (site for water reduction) and that NiO serves as a hole trap (site for water oxidation). Electrochemical measurements show that the overpotential for water oxidation correlates with NiO content, whereas the water reduction overpotential depends on Ni content. Photodeposition experiments with NiCl2 and H2PtCl6 on NiO-STO show that electrons are available on the STO surface, not on the NiO particles. Based on photoelectrochemistry, both NiO and Ni particles suppress the Fermi level in STO, but the effect of this shift on catalytic activity is not clear. Overall, the results suggest a revised role for NiO in NiOx-STO and in many other nickel-containing water splitting systems, including NiOx-La:KTaO3, and many layered perovskites.

  5. Real-time observation of morphological transformations in II-VI semiconducting nanobelts via environmental transmission electron microscopy

    SciTech Connect (OSTI)

    Agarwal, Rahul; Zakharov, Dmitri N.; Krook, Nadia M.; Liu, Wenjing; Berger, Jacob; Stach, Eric A.; Agarwal, Ritesh

    2015-05-01

    It has been observed that wurtzite II–VI semiconducting nanobelts transform into single-crystal, periodically branched nanostructures upon heating. The mechanism of this novel transformation has been elucidated by heating II–VI nanobelts in an environmental transmission electron microscope (ETEM) in oxidizing, reducing and inert atmospheres while observing their structural changes with high spatial resolution. The interplay of surface reconstruction of high-energy surfaces of the wurtzite phase and environment-dependent anisotropic chemical etching of certain crystal surfaces in the branching mechanism of nanobelts has been observed. Understanding of structural and chemical transformations of materials via in situ microscopy techniques and their role in designing new nanostructured materials is discussed.

  6. CORROSION STUDY FOR THE EFFLUENT TREATMENT FACILITY (ETF) CHROME (VI) REDUCTANT SOLUTION USING 304 & 316L STAINLESS STEEL

    SciTech Connect (OSTI)

    DUNCAN, J.B.

    2007-06-27

    The Effluent Treatment Facility has developed a method to regenerate spent resin from the groundwater pump and treat intercepting chrome(VI) plumes (RPP-RPT-32207, Laboratory Study on Regeneration of Spent DOWEX 21K 16-20 Mesh Ion Exchange Resin). Subsequent laboratory studies have shown that the chrome(VI) may be reduced to chrome(III) by titrating with sodium metabisulfite to an oxidation reduction potential (ORP) of +280 mV at a pH of 2. This test plan describes the use of cyclic potentiodynamic polarization and linear polarization techniques to ascertain the electrochemical corrosion and pitting propensity of the 304 and 316L stainless steel in the acidified reducing the solution that will be contained in either the secondary waste receiver tank or concentrate tank.

  7. Real-time observation of morphological transformations in II-VI semiconducting nanobelts via environmental transmission electron microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Agarwal, Rahul; Zakharov, Dmitri N.; Krook, Nadia M.; Liu, Wenjing; Berger, Jacob; Stach, Eric A.; Agarwal, Ritesh

    2015-05-01

    It has been observed that wurtzite II–VI semiconducting nanobelts transform into single-crystal, periodically branched nanostructures upon heating. The mechanism of this novel transformation has been elucidated by heating II–VI nanobelts in an environmental transmission electron microscope (ETEM) in oxidizing, reducing and inert atmospheres while observing their structural changes with high spatial resolution. The interplay of surface reconstruction of high-energy surfaces of the wurtzite phase and environment-dependent anisotropic chemical etching of certain crystal surfaces in the branching mechanism of nanobelts has been observed. Understanding of structural and chemical transformations of materials via in situ microscopy techniques and their role in designingmore » new nanostructured materials is discussed.« less

  8. Molecular beam epitaxial growth and characterization of Bi{sub 2}Se{sub 3}/II-VI semiconductor heterostructures

    SciTech Connect (OSTI)

    Chen, Zhiyi Zhao, Lukas; Krusin-Elbaum, Lia; Garcia, Thor Axtmann; Tamargo, Maria C.; Hernandez-Mainet, Luis C.; Deng, Haiming

    2014-12-15

    Surfaces of three-dimensional topological insulators (TIs) have been proposed to host quantum phases at the interfaces with other types of materials, provided that the topological properties of interfacial regions remain unperturbed. Here, we report on the molecular beam epitaxy growth of II-VI semiconductorTI heterostructures using c-plane sapphire substrates. Our studies demonstrate that Zn{sub 0.49}Cd{sub 0.51}Se and Zn{sub 0.23}Cd{sub 0.25}Mg{sub 0.52}Se layers have improved quality relative to ZnSe. The structures exhibit a large relative upward shift of the TI bulk quantum levels when the TI layers are very thin (?6nm), consistent with quantum confinement imposed by the wide bandgap II-VI layers. Our transport measurements show that the characteristic topological signatures of the Bi{sub 2}Se{sub 3} layers are preserved.

  9. Co-implantation of group VI elements and N for formation of non-alloyed ohmic contacts for n-type semiconductors

    DOE Patents [OSTI]

    Walukiewicz, Wladyslaw; Yu, Kin M.

    2004-07-06

    Non-alloyed, low resistivity contacts for semiconductors using Group III-V and Group II-VI compounds and methods of making are disclosed. Co-implantation techniques are disclosed.

  10. LABORATORY STUDY FOR THE REDUCTION OF CHROME (VI) TO CHROME (III) USING SODIUM METABISULFITE UNDER ACIDIC CONDITIONS

    SciTech Connect (OSTI)

    DUNCAM JB; GUTHRIE MD; LUECK KJ; AVILA M

    2007-07-18

    This report describes the results from RPP-PLAN-32738, 'Test Plan for the Effluent Treatment Facility to Reduce Chrome(VI) to Chrome(I1I) in the Secondary Waste Stream', using sodium metabisulfite. Appendix A presents the report as submitted by the Center for Laboratory Sciences (CLS) to CH2M HILL Hanford Group, Inc. The CLS carried out the laboratory effort under Contract Number 21065, release Number 30. This report extracts the more pertinent aspects of the laboratory effort.

  11. Characterization of U(VI) Sorption-Desorption Processes and Model Upscaling: Annual Report for Johns Hopkins University (Contract No. DE-FG07-02ER63498)

    SciTech Connect (OSTI)

    Ball, William P.

    2003-06-12

    The objectives of the overall collaborative EMSP effort (with which this project is associated) are to characterize sorption and desorption processes of U(VI) on pristine and contaminated Hanford sediments over a range of sediment facies and materials properties. The research is intended to provide new insights on the mechanisms of U(VI) retardation at Hanford, and to develop approaches by which laboratory-characterized geochemical models can be upscaled for defensible predictions of uranium transport in field.

  12. Ni(NiO)/single-walled carbon nanotubes composite: Synthesis of electro-deposition, gas sensing property for NO gas and density functional theory calculation

    SciTech Connect (OSTI)

    Li, Li; Zhang, Guo; Chen, Lei; Bi, Hong-Mei; Shi, Ke-Ying

    2013-02-15

    Graphical abstract: The Ni(NiO)/semiconducting single-walled carbon nanotubes composite collected from the cathode after electro-deposition shows a high sensitivity to low-concentration NO gas at room temperature (18 C). Display Omitted Highlights: ? Ni(NiO) nanoparticles were deposited on semiconducting SWCNTs by electro-deposition. ? Ni(NiO)/semiconducting SWCNTs film shows a high sensitivity to NO gas at 18 C. ?Theoretical calculation reveals electron transfer from SWCNTs to NO via Ni. -- Abstract: Single-walled carbon nanotubes which contains metallic SWCNTs (m-SWCNTs) and semiconducting SWCNTs (s-SWCNTs) have been obtained under electric arc discharge. Their separation can be effectively achieved by the electro-deposition method. The Ni(NiO)/s-SWCNTs composite was found on cathode where Ni was partially oxidized to NiO at ambient condition with Ni(NiO) nanoparticles deposited uniformly on the bundles of SWCNTs. These results were confirmed by Raman spectra, transmission electron microscopy (TEM), scanning electron microscopy (SEM), UVvisNIR and TG characterizations. Furthermore, investigation of the gas sensing property of Ni(NiO)/s-SWCNTs composite film to NO gas at 18 C demonstrated the sensitivity was approximately 5% at the concentration of 97 ppb. Moreover, density functional theory (DFT) calculations were performed to explore the sensing mechanism which suggested the adsorption of NO molecules onto the composite through NNi interaction as well as the proposition of electron transfer mechanisms from SWCNTs to NO via the Ni medium.

  13. Methods for forming thin-film heterojunction solar cells from I-III-VI[sub 2

    DOE Patents [OSTI]

    Mickelsen, R.A.; Chen, W.S.

    1982-06-15

    An improved thin-film, large area solar cell, and methods for forming the same are disclosed, having a relatively high light-to-electrical energy conversion efficiency and characterized in that the cell comprises a p-n type heterojunction formed of: (1) a first semiconductor layer comprising a photovoltaic active material selected from the class of I-III-VI[sub 2] chalcopyrite ternary materials which is vacuum deposited in a thin composition-graded'' layer ranging from on the order of about 2.5 microns to about 5.0 microns ([approx equal]2.5[mu]m to [approx equal]5.0[mu]m) and wherein the lower region of the photovoltaic active material preferably comprises a low resistivity region of p-type semiconductor material having a superimposed region of relatively high resistivity, transient n-type semiconductor material defining a transient p-n homojunction; and (2), a second semiconductor layer comprising a low resistivity n-type semiconductor material; wherein interdiffusion (a) between the elemental constituents of the two discrete juxtaposed regions of the first semiconductor layer defining a transient p-n homojunction layer, and (b) between the transient n-type material in the first semiconductor layer and the second n-type semiconductor layer, is allowed.

  14. Methods for forming thin-film heterojunction solar cells from I-III-VI{sub 2}

    DOE Patents [OSTI]

    Mickelsen, R.A.; Chen, W.S.

    1985-08-13

    An improved thin-film, large area solar cell, and methods for forming the same are disclosed, having a relatively high light-to-electrical energy conversion efficiency and characterized in that the cell comprises a p-n type heterojunction formed of: (i) a first semiconductor layer comprising a photovoltaic active material selected from the class of I-III-VI{sub 2} chalcopyrite ternary materials which is vacuum deposited in a thin ``composition-graded`` layer ranging from on the order of about 2.5 microns to about 5.0 microns ({approx_equal}2.5 {mu}m to {approx_equal}5.0 {mu}m) and wherein the lower region of the photovoltaic active material preferably comprises a low resistivity region of p-type semiconductor material having a superimposed region of relatively high resistivity, transient n-type semiconductor material defining a transient p-n homojunction; and (ii) a second semiconductor layer comprising a low resistivity n-type semiconductor material; wherein interdiffusion occurs (a) between the elemental constituents of the two discrete juxtaposed regions of the first semiconductor layer defining a transient p-n homojunction layer, and (b) between the transient n-type material in the first semiconductor layer and the second n-type semiconductor layer. 16 figs.

  15. Coupled spin and valley physics in monolayer MoS2 and group-VI dichalcogenides

    SciTech Connect (OSTI)

    Xiao, Di; Liu, G. B.; Feng, wanxiang; Xu, Xiaodong; Yao, Wang

    2012-01-01

    We show that inversion symmetry breaking together with spin-orbit coupling leads to coupled spin and valley physics in monolayer MoS2 and group-VI dichalcogenides, making possible controls of spin and valley in these 2D materials. The spin-valley coupling at the valence band edges suppresses spin and valley relaxation, as flip of each index alone is forbidden by the 0.1 eV valley contrasting spin splitting. Valley Hall and spin Hall effects coexist in both electron-doped and hole-doped systems. Optical interband transitions have frequency-dependent polarization selection rules which allow selective photoexcitation of carriers with various combination of valley and spin indices. Photo-induced spin Hall and valley Hall effects can generate long lived spin and valley accumulations on sample boundaries. The physics discussed here provides a route towards the integration of valleytronics and spintronics in multi-valley materials with strong spin-orbit coupling and inversion symmetry breaking.

  16. Methods for forming thin-film heterojunction solar cells from I-III-VI.sub. 2

    DOE Patents [OSTI]

    Mickelsen, Reid A.; Chen, Wen S.

    1985-08-13

    An improved thin-film, large area solar cell, and methods for forming the same, having a relatively high light-to-electrical energy conversion efficiency and characterized in that the cell comprises a p-n type heterojunction formed of: (i) a first semiconductor layer comprising a photovoltaic active material selected from the class of I-III-VI.sub.2 chalcopyrite ternary materials which is vacuum deposited in a thin "composition-graded" layer ranging from on the order ot about 2.5 microns to about 5.0 microns (.congruent.2.5 .mu.m to .congruent.5.0 .mu.m) and wherein the lower region of the photovoltaic active material preferably comprises a low resistivity region of p-type semiconductor material having a superimposed region of relatively high resistivity, transient n-type semiconductor material defining a transient p-n homojunction; and (ii), a second semiconductor layer comprising a low resistivity n-type semiconductor material; wherein interdiffusion (a) between the elemental constituents of the two discrete juxtaposed regions of the first semiconductor layer defining a transient p-n homojunction layer, and (b) between the transient n-type material in the first semiconductor layer and the second n-type semiconductor layer, causes the The Government has rights in this invention pursuant to Contract No. EG-77-C-01-4042, Subcontract No. XJ-9-8021-1 awarded by the U.S. Department of Energy.

  17. Methods for forming thin-film heterojunction solar cells from I-III-VI.sub. 2

    DOE Patents [OSTI]

    Mickelsen, Reid A. (Bellevue, WA); Chen, Wen S. (Seattle, WA)

    1982-01-01

    An improved thin-film, large area solar cell, and methods for forming the same, having a relatively high light-to-electrical energy conversion efficiency and characterized in that the cell comprises a p-n type heterojunction formed of: (i) a first semiconductor layer comprising a photovoltaic active material selected from the class of I-III-VI.sub.2 chalcopyrite ternary materials which is vacuum deposited in a thin "composition-graded" layer ranging from on the order of about 2.5 microns to about 5.0 microns (.congruent.2.5.mu.m to .congruent.5.0.mu.m) and wherein the lower region of the photovoltaic active material preferably comprises a low resistivity region of p-type semiconductor material having a superimposed region of relatively high resistivity, transient n-type semiconductor material defining a transient p-n homojunction; and (ii), a second semiconductor layer comprising a low resistivity n-type semiconductor material; wherein interdiffusion (a) between the elemental constituents of the two discrete juxtaposed regions of the first semiconductor layer defining a transient p-n homojunction layer, and (b) between the transient n-type material in the first semiconductor layer and the second n-type semiconductor layer, causes the transient n-type material in The Government has rights in this invention pursuant to Contract No. EG-77-C-01-4042, Subcontract No. XJ-9-8021-1 awarded by the U.S. Department of Energy.

  18. U(VI) bioreduction with emulsified vegetable oil as the electron donor-- Microcosm tests and model development

    SciTech Connect (OSTI)

    Tang, Guoping; Wu, Wei-min; Watson, David B; Parker, Jack C.; Schadt, Christopher Warren; Brooks, Scott C; Shi, Xiaoqing

    2013-01-01

    Microcosm tests were conducted to study U(VI) bioreduction in contaminated sediments with emulsified vegetable oil (EVO) as the electron donor. In the microcosms, EVO was degraded by indigenous microorganisms and stimulated Fe, U, and sulfate bioreduction, and methanogenesis. Removal of aqueous U occurred concurrently with sulfate reduction, with more reduction of total U in the case of higher initial sulfate concentrations. X-ray absorption near-edge spectroscopy (XANES) analysis confirmed U(VI) reduction to U(IV). As the acetate concentration peaked in 10~20 days in oleate microcosms, the maximum was reached in 100~120 days in the EVO microcosms, indicating that EVO hydrolysis was rate-limiting. The acetate accumulation was sustained over 50 days longer in the oleate and EVO than in the ethanol microcosms, suggesting that acetate-utilizing methanogenesis was slower in the cases of oleate and EVO. Both slow hydrolysis and methanogenesis could contribute to potential sustained bioreduction in field application. Biogeochemical models were developed to couple degradation of EVO, production and oxidation of long-chain fatty acids, glycerol, acetate, and hydrogen, reduction of Fe(III), U(VI) and sulfate, and methanogenesis with growth and decay of microbial functional groups. The models were used to simulate the coupled processes in a field test in a companion article.

  19. Role of uranium(VI) in the ThO/sub 2/-UO/sub 3/ sol-gel process

    SciTech Connect (OSTI)

    Tewari, P.H.; Campbell, A.B.

    1980-11-01

    Increases in pH and temperature of U(VI) solutions enhance adsorption of uranium on ThO/sub 2/ through hydrolysis of U(VI) as evidenced by absorption spectra changes of the solution. Sols of ThO/sub 2/-UO/sub 3/ are formed by adsorption of uranium on ThO/sub 2/. At low pH's (approx. pH 3.0), the sols behave as Newtonian fluids but at higher pH's the sols (especially the concentrated ones) transform into thixotropic gels. The increased adsorption of uranium by ThO/sub 2/ and the increased viscosity of the ThO/sub 2/-UO/sub 3/ sols with pH are related. Increased adsorption of uranium produces rod-shaped UO/sub 3/.2H/sub 2/O on the ThO/sub 2/ surface. These UO/sub 3/ nuclei link ThO/sub 2/ particles to form long rodlike particles. With further increased adsorption of uranium at higher pH's (less than or equal to 3.7), the particles crosslink to produce a structured network giving a thixotropic gel. Adsorption, electron microscopic, electrophoetic mobility, X-ray diffraction, and X-ray photoelectron spectroscopic data are presented to explain the role of U(VI) in the sol-gel process. 6 figures, 1 table.

  20. Support effects on hydrotreating activity of NiMo catalysts

    SciTech Connect (OSTI)

    Dominguez-Crespo, M.A. Arce-Estrada, E.M.; Torres-Huerta, A.M.

    2007-10-15

    The effect of the gamma alumina particle size on the catalytic activity of NiMoS{sub x} catalysts prepared by precipitation method of aluminum acetate at pH = 10 was studied. The structural characterization of the supports was measured by using XRD, pyridine FTIR-TPD and nitrogen physisorption. NiMo catalysts were characterized during the preparation steps (annealing and sulfidation) using transmission electron microscopy (TEM). Hydrogen TPR studies of the NiMo catalysts were also carried out in order to correlate their hydrogenating properties and their catalytic functionality. Catalytic tests were carried out in a pilot plant at 613, 633 and 653 K temperatures. The results showed that the rate constants of hydrodesulfurization (HDS), hydrodenitrogenation (HDN) and hydrodearomatizing (HDA) at 613-653 K decreased in the following order: A > B > C corresponding to the increase of NiMoS particle size associated to these catalysts.

  1. Rationalization of Au concentration and distribution in AuNi...

    Office of Scientific and Technical Information (OSTI)

    Rationalization of Au concentration and distribution in AuNi@Pt core-shell nanoparticles for oxygen reduction reaction Citation Details In-Document Search This content will become ...

  2. Double dumbbell shaped AgNi alloy by pulsed electrodeposition

    SciTech Connect (OSTI)

    Dhanapal, K.; Vasumathi, M.; Santhi, Kalavathy; Narayanan, V. Stephen, A.

    2014-01-28

    Silver-Nickel is the well-known thermally immiscible system that makes them quite complex for the formation of alloy. This kind of alloy can be attained from electrodeposition method. In the present work, AgNi alloy was synthesized by pulsed electrodeposition in a single bath two electrode system with the use of anodic alumina membrane. The prepared AgNi alloy and pure Ag were characterized with X-ray Diffraction (XRD) for structural confirmation, Scanning Electron Microscopy (SEM) for morphological, and magnetic properties by Vibrating Sample Magnetometer, respectively. The X-ray Diffraction study shows the formation of cubic structure for pure Ag. SEM analysis reveals the double dumbbell morphology for AgNi alloy and spherically agglomeration for pure silver. Hysteresis behaviour from VSM measurement indicates that the AgNi alloy have good ferro-magnetic properties.

  3. Uranium(VI) reduction by nanoscale zero-valent iron in anoxic batch systems: The role of Fe(II) and Fe(III)

    SciTech Connect (OSTI)

    Yan, Sen; Chen, Yongheng; Xiang, Wu; Bao, Zhengyu; Liu, Chongxuan; Deng, Baolin

    2014-12-01

    The role of Fe(II) and Fe(III) on U(VI) reduction by nanoscale zerovalent iron (nanoFe0) was investigated using two iron chelators 1,10-phenanthroline and triethanolamine (TEA) under a CO2-free anoxic condition. The results showed U(VI) reduction was strongly inhibited by 1,10-phenanthroline and TEA in a pH range from 6.92 to 9.03. For instance, at pH 6.92 the observed U(VI) reduction rates decreased by 80.7% and 82.3% in the presence of 1,10-phenanthroline and TEA, respectively. The inhibition was attributed to the formation of stable complexes between 1,10-phenanthroline and Fe(II) or TEA and Fe(III). In the absence of iron chelators, U(VI) reduction can be enhanced by surface-bound Fe(II) on nanoFe0. Our results suggested that Fe(III) and Fe(II) probably acted as an electron shuttle to mediate the transfer of electrons from nanoFe0 to U(VI), therefore a combined system with Fe(II), Fe(III) and nanoFe0 can facilitate the U(VI) reductive immobilization in the contaminated groundwater.

  4. Isotopic and geochemical tracers for U(VI) reduction and U mobility at an in situ recovery U mine

    SciTech Connect (OSTI)

    Basu, Anirban; Brown, Shaun T.; Christensen, John N.; DePaolo, Donald J.; Reimus, Paul W.; Heikoop, Jeffrey M.; Woldegabriel, Giday; Simmons, Ardyth M.; House, Brian M.; Hartmann, Matt; Maher, Kate

    2015-05-19

    In situ recovery (ISR) uranium (U) mining mobilizes U in its oxidized hexavalent form (U(VI)) by oxidative dissolution of U from the roll-front U deposits. Post-mining natural attenuation of residual U(VI) at ISR mines is a potential remediation strategy. Detection and monitoring of naturally occurring reducing subsurface environments are important for successful implementation of this remediation scheme. We used the isotopic tracers ?U/?U (??U), ?U/?U activity ratio, and ?S/S (??S), and geochemical measurements of U ore and groundwater collected from 32 wells located within, upgradient, and downgradient of a roll-front U deposit to detect U(VI) reduction and U mobility at an ISR mining site at Rosita, TX, USA. The ??U in Rosita groundwater varies from 0.61 to -2.49, with a trend toward lower ??U in downgradient wells. The concurrent decrease in U(VI) concentration and ??U with an ? of 0.48 0.08 is indicative of naturally occurring reducing environments conducive to U(VI) reduction. Additionally, characteristic ?U/?U activity ratio and ??S values may also be used to trace the mobility of the ore zone groundwater after mining has ended. These results support the use of U isotope-based detection of natural attenuation of U(VI) at Rosita and other similar ISR mining sites.

  5. Sources of stress gradients in electrodeposited Ni MEMS. (Conference) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Sources of stress gradients in electrodeposited Ni MEMS. Citation Details In-Document Search Title: Sources of stress gradients in electrodeposited Ni MEMS. The ability of future integrated metal-semiconductor micro-systems such as RF MEMS to perform highly complex functions will depend on developing freestanding metal structures that offer improved conductivity and reflectivity over polysilicon structures. For example, metal-based RF MEMS technology could replace the bulky

  6. Stress evolution during electrodeposition of Ni thin films. (Conference) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Conference: Stress evolution during electrodeposition of Ni thin films. Citation Details In-Document Search Title: Stress evolution during electrodeposition of Ni thin films. Abstract not provided. Authors: Hearne, Sean Joseph ; Floro, Jerrold Anthony Publication Date: 2004-10-01 OSTI Identifier: 1144066 Report Number(s): SAND2004-5595C 266981 DOE Contract Number: DE-AC04-94AL85000 Resource Type: Conference Resource Relation: Conference: MRS Spring Meeting held March 28-April

  7. Stress gradients in electrodeposited Ni MEMS. (Conference) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Stress gradients in electrodeposited Ni MEMS. Citation Details In-Document Search Title: Stress gradients in electrodeposited Ni MEMS. No abstract prepared. Authors: Hearne, Sean Joseph ; Floro, Jerrold Anthony ; Dyck, Christopher William Publication Date: 2004-06-01 OSTI Identifier: 957295 Report Number(s): SAND2004-3006C TRN: US201007%%569 DOE Contract Number: AC04-94AL85000 Resource Type: Conference Resource Relation: Conference: Proposed for presentation at the Electrochemical

  8. Anomalous magnetic behavior in nanocomposite materials of reduced graphene oxide-Ni/NiFe{sub 2}O{sub 4}

    SciTech Connect (OSTI)

    Kollu, Pratap E-mail: anirmalagrace@vit.ac.in; Prathapani, Sateesh; Varaprasadarao, Eswara K.; Mallick, Sudhanshu; Bahadur, D. E-mail: anirmalagrace@vit.ac.in; Santosh, Chella; Grace, Andrews Nirmala E-mail: anirmalagrace@vit.ac.in

    2014-08-04

    Magnetic Reduced Graphene Oxide-Nickel/NiFe{sub 2}O{sub 4} (RGO-Ni/NF) nanocomposite has been synthesized by one pot solvothermal method. Respective phase formations and their purities in the composite are confirmed by High Resolution Transmission Electron Microscope and X Ray Diffraction, respectively. For the RGO-Ni/NF composite material finite-size effects lead to the anomalous magnetic behavior, which is corroborated in temperature and field dependent magnetization curves. Here, we are reporting the behavior of higher magnetization values for Zero Field Cooled condition to that of Field Cooled for the RGO-Ni/NF nanocomposite. Also, the observed negative and positive moments in Hysteresis loops at relatively smaller applied fields (100?Oe and 200?Oe) are explained on the basis of surface spin disorder.

  9. Electronic and structural influence of Ni by Pd substitution on the hydrogenation properties of TiNi

    SciTech Connect (OSTI)

    Emami, Hoda; Souques, Raphaeel; Crivello, Jean-Claude; Cuevas, Fermin

    2013-02-15

    In Ti (Ni,Pd) compounds, the hydrogen capacity and the stability of their hydrides decreases when Ni is partially substituted by larger in size Pd atoms. To understand this peculiar behaviour, the crystal structure of TiNi{sub 1-x}Pd{sub x}D{sub y} (x=0.1, 0.3 and 0.5) deuterides and the stability of TiNi{sub 1-x}Pd{sub x} (0{<=}x{<=}0.5) intermetallics and their hydrides have been investigated by both neutron diffraction experiments and Density Functional Theory (DFT) calculations. Neutron diffraction shows that at x=0.1 and 0.3, deuterium absorption induces tetragonal distortion in intermetallics sublattice whereas at x=0.5 the cubic symmetry is preserved. The structural properties and the heat of formation of TiNi{sub 1-x}Pd{sub x} (0{<=}x{<=}0.5) intermetallics and their hydrides have been determined by DFT. These results show that Pd substitution increases the stability of the intermetallics and decreases the stability of the hydrides, which confirms the rule of reverse stability. - Graphical abstract: Crystal structure of Ti(Ni,Pd)Hy hydrides in the I4/mmm space group. Highlights: Black-Right-Pointing-Pointer Neutron Diffraction and DFT calculations have been done on TiNi{sub 1-x}Pd{sub x}H{sub y} compounds. Black-Right-Pointing-Pointer Electronic effect of Pd substitution governs the hydrogenation properties in TiNi. Black-Right-Pointing-Pointer The rule of reverse stability in intermetallics/hydrides is observed with Pd substitution. Black-Right-Pointing-Pointer The hydrogen atoms in the I4/mmm structure prefer to occupy the 16n site.

  10. Electronic structure of Co-Ni-Ga Heusler alloys studied by resonant

    Office of Scientific and Technical Information (OSTI)

    photoemission (Journal Article) | SciTech Connect Electronic structure of Co-Ni-Ga Heusler alloys studied by resonant photoemission Citation Details In-Document Search Title: Electronic structure of Co-Ni-Ga Heusler alloys studied by resonant photoemission The electronic structures of Co{sub 2.01}Ni{sub 1.05}Ga{sub 0.94} and Co{sub 1.76}Ni{sub 1.46}Ga{sub 0.78} Heusler alloys have been investigated by resonant photoemission spectroscopy across the 3p-3d transition of Co and Ni. For the Ni

  11. Identification of Highly Active Fe Sites in (Ni,Fe)OOH for Electrocatalytic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Splitting | Stanford Synchrotron Radiation Lightsource Identification of Highly Active Fe Sites in (Ni,Fe)OOH for Electrocatalytic Water Splitting Thursday, April 30, 2015 Operando XAS showing structural changes at Fe dopants in Ni(OH)2/NiOOH host structure. Ni(OH)2 is oxidized into γ-NiOOH under OER operating conditions, inducing significant M-O bond contraction at both Ni and Fe sites. Theoretical modeling of site specific OER overpotentials using DFT+U reveals the origin of

  12. An Update on NiCE Support for BISON

    SciTech Connect (OSTI)

    McCaskey, Alex; Billings, Jay Jay; Deyton, Jordan H.; Wojtowicz, Anna

    2015-09-01

    The Nuclear Energy Advanced Modeling and Simulation program (NEAMS) from the Department of Energy s Office of Nuclear Energy has funded the development of a modeling and simulation workflow environment to support the various codes in its nuclear energy scientific computing toolkit. This NEAMS Integrated Computational Environment (NiCE) provides extensible tools and services that enable efficient code execution, input generation, pre-processing visualizations, and post-simulation data analysis and visualization for a large portion of the NEAMS Toolkit. A strong focus for the NiCE development team throughout FY 2015 has been support for the Multiphysics Object Oriented Simulation Environment (MOOSE) and the NEAMS nuclear fuel performance modeling application built on that environment, BISON. There is a strong desire in the program to enable and facilitate the use of BISON throughout nuclear energy research and industry. A primary result of this desire is the need for strong support for BISON in NiCE. This report will detail improvements to NiCE support for BISON. We will present a new and improved interface for interacting with BISON simulations in a variety of ways: (1) improved input model generation, (2) embedded mesh and solution data visualizations, and (3) local and remote BISON simulation launch. We will also show how NiCE has been extended to provide support for BISON code development.

  13. Modified Ni-Cu catalysts for ethanol steam reforming

    SciTech Connect (OSTI)

    Dan, M.; Mihet, M.; Almasan, V.; Borodi, G.; Katona, G.; Muresan, L.; Lazar, M. D.

    2013-11-13

    Three Ni-Cu catalysts, having different Cu content, supported on ?-alumina were synthesized by wet co-impregnation method, characterized and tested in the ethanol steam reforming (ESR) reaction. The catalysts were characterized for determination of: total surface area and porosity (N{sub 2} adsorption - desorption using BET and Dollimer Heal methods), Ni surface area (hydrogen chemisorption), crystallinity and Ni crystallites size (X-Ray Diffraction), type of catalytic active centers (Hydrogen Temperature Programmed Reduction). Total surface area and Ni crystallites size are not significantly influenced by the addition of Cu, while Ni surface area is drastically diminished by increasing of Cu concentration. Steam reforming experiments were performed at atmospheric pressure, temperature range 150-350C, and ethanol - water molar ration of 1 at 30, using Ar as carrier gas. Ethanol conversion and hydrogen production increase by the addition of Cu. At 350C there is a direct connection between hydrogen production and Cu concentration. Catalysts deactivation in 24h time on stream was studied by Transmission Electron Microscopy (TEM) and temperature-programmed reduction (TPR) on used catalysts. Coke deposition was observed at all studied temperatures; at 150C amorphous carbon was evidenced, while at 350C crystalline, filamentous carbon is formed.

  14. Superior performance of Ni-W-Ce mixed-metal oxide catalysts for ethanol steam reforming: Synergistic effects of W- and Ni-dopants

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rodriguez, Jose A.; Liu, Zongyuan; Xu, Wenqian; Yao, Siyu; Johnson-Peck, Aaron C.; Zhao, Fuzhen; Michorczyk, Piotr; Kubacka, Anna; Stach, Eric A.; Fernandez-Garica, Marcos; et al

    2014-11-26

    The ethanol steam reforming (ESR) reaction was studied over a series of Ni-W-Ce oxide catalysts. The structures of the catalysts were characterized using in-situ techniques including X-ray diffraction, Pair Distribution Function, X-ray absorption fine structure and transmission electron microscopy; while possible surface intermediates for the ESR reaction were investigated by Diffuse Reflectance Infrared Fourier Transform Spectroscopy. In these materials, all the W and part of the Ni were incorporated into the CeO? lattice, with the remaining Ni forming highly dispersed nano NiO (moreThe Ni-W-Ce systeme exhibited a much larger lattice strain than those seen for Ni-Ce and W-Ce. Synergistic effects between Ni and W inside ceria produced a substantial amount of defects and O vacancies that led to high catalytic activity, selectivity and stability (i.e. resistance to coke formation) during ethanol steam reforming.less

  15. Microsoft Word - ViArray_Fact_ Sheet_SAND2011-3935P_updated_format.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ViA Tru Sandia N radiation ASICs e Pre-qual Manufac fabric-lik Specia  M  F s  U s  O Applica  C  I  S  O  R  H Sandia N high-con design a high-mix capabilit high-reli Array sted National Lab n-hardened, enable rapid lified base ar cturing Sour ke structure l Features Metal-via co Four Power- supplies for p Unused trans static current On-package ations incl Command & Instrumentat Sensor Moni Obsolescent Rad-hard env High-Reliabi National Lab nsequence ap and

  16. Mitigation of Sulfur Poisoning of Ni/Zirconia SOFC Anodes by Antimony and Tin

    SciTech Connect (OSTI)

    Marina, Olga A.; Coyle, Christopher A.; Engelhard, Mark H.; Pederson, Larry R.

    2011-02-28

    Surface Ni/Sb and Ni/Sb alloys were found to efficiently minimize the negative effects of sulfur on the performance of Ni/zirconia anode-supported solid oxide fuel cells (SOFC). Prior to operating on fuel gas containing low concentrations of H2S, the nickel/zirconia anodes were briefly exposed to antimony or tin vapor, which only slightly affected the SOFC performance. During the subsequent exposures to 1 and 5 ppm H2S, increases in anodic polarization losses were minimal compared to those observed for the standard nickel/zirconia anodes. Post-test XPS analyses showed that Sb and Sn tended to segregate to the surface of Ni particles, and further confirmed a significant reduction of adsorbed sulfur on the Ni surface in Ni/Sn and Ni/Sb samples compared to the Ni. The effect may be the result of weaker sulfur adsorption on bimetallic surfaces, adsorption site competition between sulfur and Sb or Sn on Ni, or other factors. The use of dilute binary alloys of Ni-Sb or Ni-Sn in the place of Ni, or brief exposure to Sb or Sn vapor, may be effective means to counteract the effects of sulfur poisoning in SOFC anodes and Ni catalysts. Other advantages, including suppression of coking or tailoring the anode composition for the internal reforming, are also expected.

  17. Bimetallic Fe-Ni Oxygen Carriers for Chemical Looping Combustion

    SciTech Connect (OSTI)

    Bhavsar, Saurabh; Veser, Goetz

    2013-11-06

    The relative abundance, low cost, and low toxicity of iron make Fe-based oxygen carriers of great interest for chemical looping combustion (CLC), an emerging technology for clean and efficient combustion of fossil and renewable fuels. However, Fe also shows much lower reactivity than other metals (such as Ni and Cu). Here, we demonstrate strong improvement of Fe-based carriers by alloying the metal phase with Ni. Through a combination of carrier synthesis and characterization with thermogravimetric and fixed-bed reactor studies, we demonstrate that the addition of Ni results in a significant enhancement in activity as well as an increase in selectivity for total oxidation. Furthermore, comparing alumina and ceria as support materials highlights the fact that reducible supports can result in a strong increase in oxygen carrier utilization.

  18. Healing of graphene on single crystalline Ni(111) films

    SciTech Connect (OSTI)

    Zeller, Patrick; Wintterlin, Joost; Speck, Florian; Ostler, Markus; Weinl, Michael; Schreck, Matthias; Seyller, Thomas

    2014-11-10

    The annealing of graphene layers grown on 150?nm thick single crystal Ni(111) films was investigated in situ by low energy electron microscopy and photoemission electron microscopy. After growth, by means of chemical vapor deposition of ethylene, the graphene layers consist of several domains showing different orientations with respect to the underlying Ni surface and also of small bilayer areas. It is shown that, in a controlled process, the rotated domains can be transformed into lattice-aligned graphene, and the bilayer areas can be selectively dissolved, so that exclusively the aligned monolayer graphene is obtained. The ordering mechanism involves transport of C atoms across the surface and solution in the bulk.

  19. Shape-memory transformations of NiTi: Minimum-energy pathways...

    Office of Scientific and Technical Information (OSTI)

    Shape-memory transformations of NiTi: Minimum-energy pathways between austenite, ... Citation Details In-Document Search Title: Shape-memory transformations of NiTi: ...

  20. Multiscale twin hierarchy in NiMnGa shape memory alloys with...

    Office of Scientific and Technical Information (OSTI)

    Multiscale twin hierarchy in NiMnGa shape memory alloys with Fe and Cu Citation Details In-Document Search Title: Multiscale twin hierarchy in NiMnGa shape memory alloys with Fe ...

  1. Simulation of atomic diffusion in the Fcc NiAl system: A kinetic...

    Office of Scientific and Technical Information (OSTI)

    Simulation of atomic diffusion in the Fcc NiAl system: A kinetic Monte Carlo study Citation Details In-Document Search Title: Simulation of atomic diffusion in the Fcc NiAl system: ...

  2. Extraction of uranium(VI) by N,N-di-(2-ethylhexyl)isobutyramide (DEHIBA): from the batch experimental data to the countercurrent process

    SciTech Connect (OSTI)

    Miguirditchian, M.; Sorel, C.; Cames, B.; Bisel, I.; Baron, P.

    2008-07-01

    The selective separation of uranium(VI) in the first cycle of the GANEX process is operated by a hydrometallurgical process using a monoamide extractant DEHiBA (N,N-di-(2-ethylhexyl)isobutyramide). Distribution ratios of uranium(VI) and nitric acid in 1 M DEHiBA/HTP were determined with macro-concentrations of uranium, and the experimental data were modelled by taking into account the activity coefficients of the constituents in aqueous phases. A flowsheet was designed and tested in a countercurrent process in laboratory-scale mixer-settlers on a surrogate U(VI)/HNO 3 feed. More than 99.999% of the uranium was recovered. (authors)

  3. Superior performance of Ni-W-Ce mixed-metal oxide catalysts for ethanol steam reforming: Synergistic effects of W- and Ni-dopants

    SciTech Connect (OSTI)

    Rodriguez, Jose A.; Liu, Zongyuan; Xu, Wenqian; Yao, Siyu; Johnson-Peck, Aaron C.; Zhao, Fuzhen; Michorczyk, Piotr; Kubacka, Anna; Stach, Eric A.; Fernandez-Garica, Marcos; Senanayake, Sanjaya D.

    2014-11-26

    The ethanol steam reforming (ESR) reaction was studied over a series of Ni-W-Ce oxide catalysts. The structures of the catalysts were characterized using in-situ techniques including X-ray diffraction, Pair Distribution Function, X-ray absorption fine structure and transmission electron microscopy; while possible surface intermediates for the ESR reaction were investigated by Diffuse Reflectance Infrared Fourier Transform Spectroscopy. In these materials, all the W and part of the Ni were incorporated into the CeO? lattice, with the remaining Ni forming highly dispersed nano NiO (< 2 nm) outside the Ni-W-Ce oxide structure. The nano NiO was reduced to Ni under ESR conditions. The Ni-W-Ce systeme exhibited a much larger lattice strain than those seen for Ni-Ce and W-Ce. Synergistic effects between Ni and W inside ceria produced a substantial amount of defects and O vacancies that led to high catalytic activity, selectivity and stability (i.e. resistance to coke formation) during ethanol steam reforming.

  4. Superior performance of NiWCe mixed-metal oxide catalysts for ethanol steam reforming: Synergistic effects of W- and Ni-dopants

    SciTech Connect (OSTI)

    Liu, Zongyuan; Xu, Wenqian; Yao, Siyu; Johnson-Peck, Aaron C.; Zhao, Fuzhen; Michorczyk, Piotr; Kubacka, Anna; Stach, Eric A.; Fernndez-Garca, Marcos; Senanayake, Sanjaya D.; Rodriguez, Jos A.

    2014-11-26

    In this study, the ethanol steam reforming (ESR) reaction was examined over a series of Ni-W-Ce oxide catalysts. The structures of the catalysts were characterized using in-situ techniques including X-ray diffraction, Pair Distribution Function, X-ray absorption fine structure and transmission electron microscopy; while possible surface intermediates for the ESR reaction were investigated by Diffuse Reflectance Infrared Fourier Transform Spectroscopy. In these materials, all the W and part of the Ni were incorporated into the CeO? lattice, with the remaining Ni forming highly dispersed nano NiO (< 2 nm) outside the Ni-W-Ce oxide structure. The nano NiO was reduced to Ni under ESR conditions. The Ni-W-Ce systeme exhibited a much larger lattice strain than those seen for Ni-Ce and W-Ce. Synergistic effects between Ni and W inside ceria produced a substantial amount of defects and O vacancies that led to high catalytic activity, selectivity and stability (i.e. resistance to coke formation) during ethanol steam reforming.

  5. Effect of Co-solutes on the Products and Solubility of Uranium(VI) Precipitated with Phosphate

    SciTech Connect (OSTI)

    Mehta, Vrajesh; Maillot, Fabien; Wang, Zheming; Catalano, Jeffrey G.; Giammar, Daniel E.

    2014-01-22

    Uranyl phosphate solids are often found with uranium ores, and their low solubility makes them promising target phases for in situ remediation of uranium-contaminated subsurface environments. The products and solubility of uranium(VI) precipitated with phosphate can be affected by the pH, dissolved inorganic carbon (DIC) concentration, and co-solute composition (e.g. Na+/Ca2+) of the groundwater. Batch experiments were performed to study the effect of these parameters on the products and extent of uranium precipitation induced by phosphate addition. In the absence of co-solute cations, chernikovite [H3O(UO2)(PO4)3H2O] precipitated despite uranyl orthophosphate [(UO2)3(PO4)24H2O] being thermodynamically more favorable under certain conditions. As determined using X-ray diffraction, electron microscopy, and laser induced fluorescence spectroscopy, the presence of Na+ or Ca2+ as a co-solute led to the precipitation of sodium autunite ([Na2(UO2)2(PO4)2] and autunite [Ca(UO2)2(PO4)2]), which are structurally similar to chernikovite. In the presence of sodium, the dissolved U(VI) concentrations were generally in agreement with equilibrium predictions of sodium autunite solubility. However, in the calcium-containing systems, the observed concentrations were below the predicted solubility of autunite, suggesting the possibility of uranium adsorption to or incorporation in a calcium phosphate precipitate in addition to the precipitation of autunite.

  6. Damage accumulation in ion-irradiated Ni-based concentrated solid-solution alloys

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ullah, Mohammad W.; Aidhy, Dilpuneet S.; Zhang, Yanwen; Weber, William J.

    2016-01-01

    We investigate Irradiation-induced damage accumulation in Ni0.8Fe0.2 and Ni0.8Cr0.2 alloys by using molecular dynamics simulations to assess possible enhanced radiation-resistance in these face-centered cubic (fcc), single-phase, concentrated solid-solution alloys, as compared with pure fcc Ni.

  7. Selective extraction of U(VI) and some other metals from nitric acid media by poly-phosphine poly-oxides

    SciTech Connect (OSTI)

    Nogami, M.; Sugiyama, Y.; Ikeda, Y.; Maruyama, K.

    2008-07-01

    For the selective extraction of radionuclides from nitrate media, the extractabilities of organo-poly-phosphine poly-oxides were examined in the form of impregnated resins. It was found that the extractability of 1,1,3,5,5-pentaphenyl-1,3,5-tri-phospha-pentane trioxide (PPTPT) for U(VI) is quite unusual with very high values at both low and high concentrations of nitric acid, which is not observed for other types of extractants. Thus, this extractant might be promising for the selective extraction of U(VI) in very high concentrations of HNO{sub 3}. (authors)

  8. Specifications for the development of BUGLE-93: An ENDF/B-VI multigroup cross section library for LWR shielding and pressure vessel dosimetry

    SciTech Connect (OSTI)

    White, J.E.; Wright, R.Q.; Roussin, R.W.; Ingersoll, D.T.

    1992-11-01

    This report discusses specifications which have been developed for a new multigroup cross section library based on ENDF/B-VI data for light water reactor shielding and reactor pressure vessel dosimetry applications. The resulting broad-group library and an intermediate fine-group library are defined by the specifications provided in this report. Processing ENDF/B-VI into multigroup format for use in radiation transport codes will provide radiation shielding analysts with the most currently available nuclear data. it is expected that the general nature of the specifications will be useful in other applications such as reactor physics.

  9. High Tc YBCO superconductor deposited on biaxially textured Ni substrate

    DOE Patents [OSTI]

    Budai, John D. (Oakridge, TN); Christen, David K. (Oakridge, TN); Goyal, Amit (Knoxville, TN); He, Qing (Knoxville, TN); Kroeger, Donald M. (Knoxville, TN); Lee, Dominic F. (Knoxville, TN); List, III, Frederick A. (Andersonville, TN); Norton, David P. (Knoxville, TN); Paranthaman, Mariappan (Knoxville, TN); Sales, Brian C. (Knoxville, TN); Specht, Eliot D. (Knoxville, TN)

    1999-01-01

    A superconducting article includes a biaxially-textured Ni substrate, and epitaxial buffer layers of Pd (optional), CeO.sub.2 and YSZ, and a top layer of in-plane aligned, c-axis oriented YBCO having a critical current density (J.sub.c) in the range of at least 100,000 A/cm.sup.2 at 77 K.

  10. High strain rate deformation of NiAl

    SciTech Connect (OSTI)

    Maloy, S.A.; Gray, G.T. III; Darolia, R.

    1994-07-01

    NiAl is a potential high temperature structural material. Applications for which NiAl is being considered (such as rotating components in jet engines) requires knowledge of mechanical properties over a wide range of strain rates. Single crystal NiAl (stoichiometric and Ni 49.75Al 0.25Fe) has been deformed in compression along [100] at strain rates of 0.001, 0.1/s and 2000/s and temperatures of 76,298 and 773K. <111> slip was observed after 76K testing at a strain rate of 0.001/s and 298K testing at a strain rate of 2000/s. Kinking was observed after deformation at 298K and a strain rate of 0.001/s and sometimes at 298 K and a strain rate of 0.1/s. Strain hardening rates of 8200 and 4000 MPa were observed after 773 and 298K testing respectively, at a strain rate of 2000/s. Results are discussed in reference to resulting dislocation substructure.

  11. First-principles investigations of Ni3Al(111) and NiAl(110) surfaces at metal dusting conditions

    SciTech Connect (OSTI)

    Saadi, Souheil

    2011-03-01

    We investigate the structure and surface composition of the {gamma}{prime}-Ni{sub 3}Al(111) and {beta}-NiAl(110) alloy surfaces at conditions relevant for metal dusting corrosion related to catalytic steam reforming of natural gas. In regular service as protective coatings, nickel-aluminum alloys are protected by an oxide scale, but in case of oxide scale spallation, the alloy surface may be directly exposed to the reactive gas environment and vulnerable to metal dusting. By means of density functional theory and thermochemical calculations for both the Ni{sub 3}Al and NiAl surfaces, the conditions under which CO and OH adsorption is to be expected and under which it is inhibited, are mapped out. Because CO and OH are regarded as precursors for nucleating graphite or oxide on the surfaces, phase diagrams for the surfaces provide a simple description of their stability. Specifically, this study shows how the CO and OH coverages depend on the steam to carbon ratio (S/C) in the gas and thereby provide a ranking of the carbon limits on the different surface phases.

  12. Solution-based thermodynamic modeling of the Ni-Al-Mo system using

    Office of Scientific and Technical Information (OSTI)

    first-principles calculations (Journal Article) | SciTech Connect Solution-based thermodynamic modeling of the Ni-Al-Mo system using first-principles calculations Citation Details In-Document Search Title: Solution-based thermodynamic modeling of the Ni-Al-Mo system using first-principles calculations A solution-based thermodynamic description of the ternary Ni-Al-Mo system is developed here, incorporating first-principles calculations and reported modeling of the binary Ni-Al, Ni-Mo and

  13. Magnetic structures of R5Ni2In4 and R11Ni4In9 ( R = Tb and Ho): Strong

    Office of Scientific and Technical Information (OSTI)

    hierarchy in the temperature dependence of the magnetic ordering in the multiple rare-earth sublattices (Journal Article) | SciTech Connect Magnetic structures of R5Ni2In4 and R11Ni4In9 ( R = Tb and Ho): Strong hierarchy in the temperature dependence of the magnetic ordering in the multiple rare-earth sublattices Citation Details In-Document Search This content will become publicly available on November 9, 2016 Title: Magnetic structures of R5Ni2In4 and R11Ni4In9 ( R = Tb and Ho): Strong

  14. Engineering of high performance supercapacitor electrode based on Fe-Ni/Fe{sub 2}O{sub 3}-NiO core/shell hybrid nanostructures

    SciTech Connect (OSTI)

    Singh, Ashutosh K. E-mail: aksingh@bose.res.in; Mandal, Kalyan

    2015-03-14

    The present work reports on fabrication and supercapacitor applications of a core/shell Fe-Ni/Fe{sub 2}O{sub 3}-NiO hybrid nanostructures (HNs) electrode. The core/shell Fe-Ni/Fe{sub 2}O{sub 3}-NiO hybrid nanostructures have been fabricated through a two step method (nanowire fabrication and their controlled oxidation). The 1D hybrid nanostructure consists of highly porous shell layer (redox active materials NiO and Fe{sub 2}O{sub 3}) and the conductive core (FeNi nanowire). Thus, the highly porous shell layer allows facile electrolyte diffusion as well as faster redox reaction kinetics; whereas the conductive FeNi nanowire core provides the proficient express way for electrons to travel to the current collector, which helps in the superior electrochemical performance. The core/shell Fe-Ni/Fe{sub 2}O{sub 3}-NiO hybrid nanostructures electrode based supercapacitor shows very good electrochemical performances in terms of high specific capacitance nearly 1415?F g{sup ?1} at a current density of 2.5?A g{sup ?1}, excellent cycling stability and rate capability. The high quality electrochemical performance of core/shell hybrid nanostructures electrode shows its potential as an alternative electrode for forthcoming supercapacitor devices.

  15. Unexpected Actinyl Cation-Directed Structural Variation in Neptunyl(VI) A-Type Tri-lacunary Heteropolyoxotungstate Complexes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Berg, John M.; Gaunt, Andrew J.; May, Iain; Pugmire, Alison L.; Reilly, Sean D.; Scott, Brian L.; Wilkerson, Marianne P.

    2015-04-22

    A-type tri-lacunary heteropolyoxotungstate anions (e.g., [PW9O34]9-, [AsW9O34]9-, [SiW9O34]10- and [GeW9O34]10-) are multi-dentate oxygen donor ligands that readily form sandwich complexes with actinyl cations ({UO2}2+, {NpO2}+, {NpO2}2+ & {PuO2}2+) in near neutral/slightly alkaline aqueous solutions. Two or three actinyl cations are sandwiched between two trilacunary anions, with additional cations (Na+, K+ or NH4 +) also often held within the cluster. Studies thus far have indicated that it is these additional +I cations, rather than the specific actinyl cation, that direct the structural variation in the complexes formed. We now report the structural characterization of the neptunyl (VI) cluster complex (NH4)13 [Na(NpO2)2(A-α-more » PW9O34)2]·12H2O. The anion in this complex, [Na(NpO2)2(PW9O34)2]13-, contains one Na+ cation and two {NpO2}2+ cations held between two [PW9O34]9- anions – with an additional partial occupancy NH4 + or {NpO2}2+ cation also present. In the analogous uranium (VI) system, under similar reaction conditions that includes an excess of NH4Cl in the parent solution, it was previously shown that [(NH4)2(UVIO2)2(A-PW9O34)2]12- is the dominant species in both solution and the crystallized salt. Spectroscopic studies provide further proof of differences in the observed chemistry for the {NpO2}2+/[PW9O34]9- and {UO2}2+/[PW9O34]9- systems, both in solution and in solid state complexes crystallized from comparable salt solutions. The work revealed that varying the actinide element (Np vs. U) can indeed measurably impact structure and complex stability in the cluster chemistry of actinyl (VI) cations with A-type tri-lacunary heteropolyoxotungstate anions.« less

  16. Temperature-induced sign change of the magnetic interlayer coupling in Ni/Ni{sub 25}Mn{sub 75}/Ni trilayers on Cu{sub 3}Au(001)

    SciTech Connect (OSTI)

    Shokr, Y. A.; Zhang, B.; Sandig, O.; Kuch, W.; Erkovan, M.; Wu, C.-B.

    2015-05-07

    We investigated the magnetic interlayer coupling between two ferromagnetic (FM) Ni layers through an antiferromagnetic (AFM) Ni{sub 25}Mn{sub 75} layer and the influence of this coupling on the exchange bias phenomenon. The interlayer coupling energy of an epitaxial trilayer of 14 atomic monolayers (ML) Ni/45 ML Ni{sub 25}Mn{sub 75}/16 ML Ni on Cu{sub 3}Au(001) was extracted from minor-loop magnetization measurements using in-situ magneto-optical Kerr effect. The interlayer coupling changes from ferromagnetic to antiferromagnetic when the temperature is increased above 300?K. This sign change is interpreted as the result of the competition between an antiparallel Ruderman-Kittel-Kasuya-Yosida (RKKY)-type interlayer coupling, which dominates at high temperature, and a stronger direct exchange coupling across the AFM layer, which is present only below the Nel temperature of the AFM layer.

  17. Martensite transformation of epitaxial Ni-Ti films

    SciTech Connect (OSTI)

    Buschbeck, J.; Kozhanov, A.; Kawasaki, J. K.; James, R. D.; Palmstroem, C. J.

    2011-05-09

    The structure and phase transformations of thin Ni-Ti shape memory alloy films grown by molecular beam epitaxy are investigated for compositions from 43 to 56 at. % Ti. Despite the substrate constraint, temperature dependent x-ray diffraction and resistivity measurements reveal reversible, martensitic phase transformations. The results suggest that these occur by an in-plane shear which does not disturb the lattice coherence at interfaces.

  18. Precipitation in 18 wt% Ni maraging steel of grade 350

    SciTech Connect (OSTI)

    Tewari, R.; Mazumder, S.; Batra, I.S.; Dey, G.K.; Banerjee, S.

    2000-03-14

    The evolution of precipitates in maraging steel of grade 350 was studied using the complementary techniques of small angle X-ray scattering (SACS) and transmission electron microscopy (TEM). These investigations revealed that ageing the steel at 703 K involved a rhombohedral distortion of the supersaturated b.c.c. martensite accompanied by the appearance of diffuse {omega}-like structures. This was followed by the appearance of well-defined {omega} particles containing chemical order. At the ageing temperature of 783 K, Ni{sub 3}(Ti,Mo) precipitates were the first to appear with a growth exponent of 1/3. The values of the Pored exponent obtained from the SAXS profiles indicated that the {omega} particles, formed below 723 K, had diffuse interfaces up to an ageing time of 48 h. On the other hand, Ni{sub 3}(Ti,Mo) precipitates, formed above 723 K, developed sharp interfaces in just about an hour. Also, the steel exhibited scaling in phase separation both at 703 and 783 K, but only during the early stages. Through this study it was established that at temperatures of ageing less than 723 K, evolution of {omega} particles takes place through the collapse of the unstable b.c.c. lattice and, at temperatures above 723 K, precipitation of A{sub 3}B type of phases through the mechanism of clustering and ordering of atomic species. Sharp interfaces develop rather quickly when the mechanism of precipitation involves development and amplification of a concentration wave along as in the nucleation of Ni{sub 3}(Ti,Mo) at 783 K than when an interplay of both the displacement and concentration waves is required as in the evolution of {omega} at 703 K. These results indicate towards the possibility of existence of two separate time-temperature-transformation (TTT) curves, one for the evolution of {omega}-phase and another for nucleation and growth of Ni{sub 3}(Ti,Mo).

  19. Auxiliary Ligand-Dependent Assembly of Several Ni/Ni-Cd Compounds with N2O2 Donor Tetradentate Symmetrical Schiff Base Ligand

    SciTech Connect (OSTI)

    Ge, Ying Ying; Li, Guo-Bi; Fang, Hua-Cai; Zhan, Xu Lin; Gu, Zhi-Gang; Chen, Jin Hao; Sun, Feng; Cai, Yue-Peng; Thallapally, Praveen K.

    2010-09-18

    Several low-dimensional Ni/Ni-Cd complexes containing N2O2 donor tetradentate symmetrical Schiff base ligand bis(acetylacetone)ethylene-diamine (sy-H2L2), namely, [Ni(sy-L2)]2?HLa?ClO4 (2), (HLa)2?(ClO4)?(NO3) (3), [Ni(sy-L2)X]2](4,4-bipy) (where La = 5,7-dimethyl-3,6-dihydro-2H-1,4-diazepine, X = ClO4 (4), X=NO3 (5), [Ni(sy-L2)Cd(SCN)2]n (6) and [Ni(sy-L2)?Cd(N3)2]n (7) have been synthesized from [Ni(sy-L2)]2?H2O (1). Complex 2, is three component discrete assembly generated from (HLa)+ moiety bridged with [Ni(sy-L2)] unit and ClO4- anion. A solution containing complex 2 and Cd(NO3)2 results in a mixture of 1 and 3. Further re-crystallization of 1 and 3 with various auxiliary ligands, provides coordination complexes 4 7 stabilized by weak hydrogen bonds in which 6 and 7 represent the first 1D heteronuclear complexes based on symmetric acacen-base Schiff base ligand.

  20. Ni(OH){sub 2} nanoflakes electrodeposited on Ni foam-supported vertically oriented graphene nanosheets for application in asymmetric supercapacitors

    SciTech Connect (OSTI)

    Wang, Xin; Liu, Jiyue; Wang, Yayu; Zhao, Cuimei; Zheng, Weitao

    2014-04-01

    Highlights: Ni(OH){sub 2}/vertically oriented graphene nanosheets (V-GNs) was prepared. Ni(OH){sub 2}/V-GNs had enhanced specific capacitance, cycling reversibility and stability. Performance of Ni(OH){sub 2}/GNs/NF-AC asymmetric supercapacitor was studied. - Abstract: Binderless Ni(OH){sub 2} nanoflakes grown on Ni foam (NF)-supported vertically oriented graphene nanosheets (V-GNs) has been fabricated as a positive electrode material for asymmetric supercapacitor (ASC), coupled with activated carbon (AC) as a counter electrode material. The introduction of V-GNs leads to dense growth of nanocrystalline ?-Ni(OH){sub 2} that is confirmed by X-ray diffraction, transmission electron microscopic and scanning electron microscopic analyses. The electrochemical performances of the Ni(OH){sub 2}/GNs/NF electrode are characterized by cyclic voltammetry and chargedischarge tests, which exhibit high specific capacitance of 2215 F g{sup ?1} at a scan current density of 2.3 A g{sup ?1}, enhanced cycling stability and high rate capability. The Ni(OH){sub 2}/GNs/NF-AC-based ASC can achieve a cell voltage of 1.4 V and a specific energy density of 11.11 Wh kg{sup ?1} at 0.5 mA cm{sup ?2} with a nearly 100% coulombic efficiency at room temperature.

  1. Facile approach to prepare hollow coreshell NiO microspherers for supercapacitor electrodes

    SciTech Connect (OSTI)

    Han, Dandan; Xu, Pengcheng; Jing, Xiaoyan; Wang, Jun; Song, Dalei; Liu, Jingyuan; Zhang, Milin

    2013-07-15

    A facile lamellar template method (see image) has been developed for the preparation of uniform hollow coreshell structure NiO (HCSNiO) with a nanoarchitectured wall structure. The prepared NiO was found to be highly crystalline in uniform microstructures with high specific surface area and pore volume. The results indicated that ethanol interacted with trisodium citrate played an important role for the formation of hollow coreshell spheres. On the basis of the analysis of the composition and the morphology, a possible formation mechanism was investigated. NiO microspheres with hollow coreshell showed excellent capacitive properties. The exceptional cyclic, structural and electrochemical stability with ?95% coulombic efficiency, and very low ESR value from impedance measurements promised good utility value of hollow coreshell NiO material in fabricating a wide range of high-performance electrochemical supercapacitors. - The hollow coreshell NiO was prepared with a facile lamellar template method. The prepared NiO show higher capacitance, lower ion diffusion resistance and better electroactive surface utilization for Faradaic reactions. - Highlights: Formation of hollow coreshell NiO via a novel and facile precipitation route. Exhibited uniform feature sizes and high surface area of hollow coreshell NiO. Synthesized NiO has high specific capacitance ( 448 F g{sup 1}) and very low ESR value. Increased 20% of long life cycles capability after 500 chargedischarge cycles.

  2. Low temperature spin dynamics in Cr{sub 7}Ni-Cu-Cr{sub 7}Ni coupled molecular rings

    SciTech Connect (OSTI)

    Bordonali, L.; Furukawa, Y.; Mariani, M.; Sabareesh, K. P. V.; Garlatti, E.; Borsa, F.

    2014-05-07

    Proton Nuclear Magnetic Resonance (NMR) relaxation measurements have been performed down to very low temperature (50?mK) to determine the effect of coupling two Cr{sub 7}Ni molecular rings via a Cu{sup 2+} ion. No difference in the spin dynamics was found from nuclear spin lattice relaxation down to 1.5?K. At lower temperature, the {sup 1}H-NMR line broadens dramatically indicating spin freezing. From the plot of the line width vs. magnetization, it is found that the freezing temperature is higher (260?mK) in the coupled ring with respect to the single Cr{sub 7}Ni ring (140?mK)

  3. Room temperature synthesis of Ni-based alloy nanoparticles by radiolysis.

    SciTech Connect (OSTI)

    Nenoff, Tina Maria; Berry, Donald T.; Lu, Ping; Leung, Kevin; Provencio, Paula Polyak; Stumpf, Roland Rudolph; Huang, Jian Yu; Zhang, Zhenyuan

    2009-09-01

    Room temperature radiolysis, density functional theory, and various nanoscale characterization methods were used to synthesize and fully describe Ni-based alloy nanoparticles (NPs) that were synthesized at room temperature. These complementary methods provide a strong basis in understanding and describing metastable phase regimes of alloy NPs whose reaction formation is determined by kinetic rather than thermodynamic reaction processes. Four series of NPs, (Ag-Ni, Pd-Ni, Co-Ni, and W-Ni) were analyzed and characterized by a variety of methods, including UV-vis, TEM/HRTEM, HAADF-STEM and EFTEM mapping. In the first focus of research, AgNi and PdNi were studied. Different ratios of Ag{sub x}- Ni{sub 1-x} alloy NPs and Pd{sub 0.5}- Ni{sub 0.5} alloy NP were prepared using a high dose rate from gamma irradiation. Images from high-angle annular dark-field (HAADF) show that the Ag-Ni NPs are not core-shell structure but are homogeneous alloys in composition. Energy filtered transmission electron microscopy (EFTEM) maps show the homogeneity of the metals in each alloy NP. Of particular interest are the normally immiscible Ag-Ni NPs. All evidence confirmed that homogeneous Ag-Ni and Pd-Ni alloy NPs presented here were successfully synthesized by high dose rate radiolytic methodology. A mechanism is provided to explain the homogeneous formation of the alloy NPs. Furthermore, studies of Pd-Ni NPs by in situ TEM (with heated stage) shows the ability to sinter these NPs at temperatures below 800 C. In the second set of work, CoNi and WNi superalloy NPs were attempted at 50/50 concentration ratios using high dose rates from gamma irradiation. Preliminary results on synthesis and characterization have been completed and are presented. As with the earlier alloy NPs, no evidence of core-shell NP formation occurs. Microscopy results seem to indicate alloying occurred with the CoNi alloys. However, there appears to be incomplete reduction of the Na{sub 2}WO{sub 4} to form the W{sup 2+} ion in solution; the predominance of WO{sup +} appears to have resulted in a W-O-Ni complex that has not yet been fully characterized.

  4. PT AND PT/NI "NEEDLE" ELETROCATALYSTS ON CARBON NANOTUBES WITH HIGH ACTIVITY FOR THE ORR

    SciTech Connect (OSTI)

    Colon-Mercado, H.

    2011-11-10

    Platinum and platinum/nickel alloy electrocatalysts supported on graphitized (gCNT) or nitrogen doped carbon nanotubes (nCNT) are prepared and characterized. Pt deposition onto carbon nanotubes results in Pt 'needle' formations that are 3.5 nm in diameter and {approx}100 nm in length. Subsequent Ni deposition and heat treatment results in PtNi 'needles' with an increased diameter. All Pt and Pt/Ni materials were tested as electrocatalysts for the oxygen reduction reaction (ORR). The Pt and Pt/Ni catalysts showed excellent performance for the ORR, with the heat treated PtNi/gCNT (1.06 mA/cm{sup 2}) and PtNi/nCNT (0.664 mA/cm{sup 2}) showing the highest activity.

  5. Structural and Mssbauer spectroscopic study of Fe-Ni alloy nanoparticles

    SciTech Connect (OSTI)

    Kumar, Asheesh; Banerjee, S. Sudarsan, V.; Meena, S. S.

    2014-04-24

    Nano-crystalline Fe-Ni alloys have been synthesized in ethylene glycol medium. Based on XRD studies it is confirmed that, in these alloys Fe atoms are incorporated at Ni site to form Ni-Fe solid solutions. Mssbauer studies have established that for alloy particles having smaller size there is significant concentration of two different types of paramagnetic Fe species and their relative concentration decreased with increase in particle size.

  6. Effect of Cu addition on the martensitic transformation of powder metallurgy processed TiNi alloys

    SciTech Connect (OSTI)

    Kim, Yeon-wook; Choi, Eunsoo

    2014-10-15

    Highlights: M{sub s} of Ti{sub 50}Ni{sub 50} powders is 22 C, while M{sub s} of SPS-sintered porous bulk increases up to 50 C. M{sub s} of Ti{sub 50}Ni{sub 40}Cu{sub 20} porous bulk is only 2 C higher than that of the powders. Recovered stain of porous TiNi and TiNiCu alloy is more than 1.5%. - Abstract: Ti{sub 50}Ni{sub 50} and Ti{sub 50}Ni{sub 30}Cu{sub 20} powders were prepared by gas atomization and their transformation behaviors were examined by means of differential scanning calorimetry and X-ray diffraction. One-step B2B19 transformation occurred in Ti{sub 50}Ni{sub 50} powders, while Ti{sub 50}Ni{sub 30}Cu{sub 20} powders showed B2B19 transformation behavior. Porous bulks with 24% porosity were fabricated by spark plasma sintering. The martensitic transformation start temperature (50 C) of Ti{sub 50}Ni{sub 50} porous bulk is much higher than that (22 C) of the as-solidified powders. However, the martensitic transformation start temperature (35 C) of Ti{sub 50}Ni{sub 30}Cu{sub 20} porous bulk is almost the same as that (33 C) of the powders. When the specimens were compressed to the strain of 8% and then unloaded, the residual strains of Ti{sub 50}Ni{sub 50} and Ti{sub 50}Ni{sub 30}Cu{sub 20} alloy bulks were 3.95 and 3.7%, respectively. However, these residual strains were recovered up to 1.7% after heating by the shape memory phenomenon.

  7. Microstructural evaluation of NiTi-based films deposited by magnetron

    Office of Scientific and Technical Information (OSTI)

    sputtering (Journal Article) | SciTech Connect Microstructural evaluation of NiTi-based films deposited by magnetron sputtering Citation Details In-Document Search Title: Microstructural evaluation of NiTi-based films deposited by magnetron sputtering Shape memory alloy films belonging to the NiTi-based systems were deposited on heated and unheated substrates, by magnetron sputtering in a custom made system, and their structure and composition was analyzed using electron microscopy. Several

  8. Shape-memory transformations of NiTi: Minimum-energy pathways between

    Office of Scientific and Technical Information (OSTI)

    austenite, martensites, and kinetically limited intermediate states (Journal Article) | DOE PAGES Shape-memory transformations of NiTi: Minimum-energy pathways between austenite, martensites, and kinetically limited intermediate states « Prev Next » Title: Shape-memory transformations of NiTi: Minimum-energy pathways between austenite, martensites, and kinetically limited intermediate states NiTi is the most used shape-memory alloy, nonetheless, a lack of understanding remains regarding

  9. Unoccupied electronic structure of Ni2MnGa ferromagnetic shape memory alloy

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Unoccupied electronic structure of Ni2MnGa ferromagnetic shape memory alloy Citation Details In-Document Search This content will become publicly available on August 20, 2016 Title: Unoccupied electronic structure of Ni2MnGa ferromagnetic shape memory alloy Momentum resolved inverse photoemission spectroscopy measurements show that the dispersion of the unoccupied bands of Ni2MnGa is significant in the austenite phase. Furthermore, in the martensite phase,

  10. Shape-memory transformations of NiTi: Minimum-energy pathways between

    Office of Scientific and Technical Information (OSTI)

    austenite, martensites, and kinetically limited intermediate states (Journal Article) | SciTech Connect Journal Article: Shape-memory transformations of NiTi: Minimum-energy pathways between austenite, martensites, and kinetically limited intermediate states Citation Details In-Document Search Title: Shape-memory transformations of NiTi: Minimum-energy pathways between austenite, martensites, and kinetically limited intermediate states NiTi is the most used shape-memory alloy, nonetheless, a

  11. Prompt Proton Decay and Deformed Bands in 56Ni

    SciTech Connect (OSTI)

    Johansson, E. K.; Rudolph, D.; Andersson, L. L.; Torres, D. A.; Ragnarsson, I.; Andreoiu, C.; Baktash, Cyrus; Carpenter, M. P.; Charity, R. J.; Chiara, C. J.; Ekman, J.; Fahlander, C.; Hoel, C.; Pechenaya, O. L.; Reviol, W.; du Rietz, R.; Sarantites, D. G.; Seweryniak, D.; Sobotka, L. G.; Yu, Chang-Hong; Zhu, S.

    2008-06-01

    High-spin states in the doubly magic N=Z nucleus {sup 56}Ni have been investigated with three fusion-evaporation reaction experiments. New {gamma}-ray transitions are added, and a confirmation of a previously suggested prompt proton decay from a rotational band in {sup 56}Ni into the ground state of {sup 55}Co is presented. The rotational bands in {sup 56}Ni are discussed within the framework of cranked Nilsson-Strutinsky calculations.

  12. Enhanced magnetic hysteresis in Ni-Mn-Ga single crystal and its influence

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on magnetic shape memory effect (Journal Article) | SciTech Connect Enhanced magnetic hysteresis in Ni-Mn-Ga single crystal and its influence on magnetic shape memory effect Citation Details In-Document Search Title: Enhanced magnetic hysteresis in Ni-Mn-Ga single crystal and its influence on magnetic shape memory effect Enhanced magnetic hysteresis due to boron doping in combination with magnetic shape memory effect in Ni-Mn-Ga single crystal results in new interesting functionality of

  13. Self-assembled Ni/TiO{sub 2} nanocomposite anodes synthesized via

    Office of Scientific and Technical Information (OSTI)

    electroless plating and atomic layer deposition on biological scaffolds (Journal Article) | SciTech Connect Self-assembled Ni/TiO{sub 2} nanocomposite anodes synthesized via electroless plating and atomic layer deposition on biological scaffolds Citation Details In-Document Search Title: Self-assembled Ni/TiO{sub 2} nanocomposite anodes synthesized via electroless plating and atomic layer deposition on biological scaffolds Ni(core)/TiO{sub 2}(shell) nanocomposite anodes were fabricated on

  14. Shape-memory transformations of NiTi: Minimum-energy pathways between

    Office of Scientific and Technical Information (OSTI)

    austenite, martensites, and kinetically limited intermediate states (Journal Article) | DOE PAGES Shape-memory transformations of NiTi: Minimum-energy pathways between austenite, martensites, and kinetically limited intermediate states Title: Shape-memory transformations of NiTi: Minimum-energy pathways between austenite, martensites, and kinetically limited intermediate states NiTi is the most used shape-memory alloy, nonetheless, a lack of understanding remains regarding the associated

  15. NiSource Energy Technologies Inc.: System Integration of Distributed Power for Complete Building Systems

    SciTech Connect (OSTI)

    Not Available

    2003-10-01

    Summarizes NiSource Energy Technologies' work under contract to DOE's Distribution and Interconnection R&D. Includes studying distributed generation interconnection issues and CHP system performance.

  16. Ductile Ni.sub.3 Al alloys as bonding agents for ceramic materials

    DOE Patents [OSTI]

    Tiegs, Terry N. (Lenoir City, TN); McDonald, Robert R. (Traverse City, MI)

    1990-01-01

    An improved ceramic-metal composite comprising a mixture of a ceramic material with a ductile intermetallic alloy, preferably Ni.sub.3 Al.

  17. Self-assembled Ni/TiO{sub 2} nanocomposite anodes synthesized...

    Office of Scientific and Technical Information (OSTI)

    Ni(core)TiOsub 2(shell) nanocomposite anodes were fabricated on three-dimensional, self-assembled nanotemplates of Tobacco mosaic virus using atomic layer deposition, exhibiting ...

  18. Ductile Ni.sub.3 Al alloys as bonding agents for ceramic materials in cutting tools

    DOE Patents [OSTI]

    Tiegs, Terry N. (Lenoir City, TN); McDonald, Robert R. (Traverse City, MI)

    1991-01-01

    An improved ceramic-metal composite comprising a mixture of a ceramic material with a ductile intermetallic alloy, preferably Ni.sub.3 Al.

  19. Ductile Ni[sub 3]Al alloys as bonding agents for ceramic materials

    DOE Patents [OSTI]

    Tiegs, T.N.; McDonald, R.R.

    1990-04-24

    An improved ceramic-metal composite is described comprising a mixture of a ceramic material with a ductile intermetallic alloy, preferably Ni[sub 3]Al. 2 figs.

  20. Enhanced magnetic hysteresis in Ni-Mn-Ga single crystal and its...

    Office of Scientific and Technical Information (OSTI)

    shape memory effect Citation Details In-Document Search Title: Enhanced magnetic hysteresis in Ni-Mn-Ga single crystal and its influence on magnetic shape memory effect ...

  1. Ductile Ni[sub 3]Al alloys as bonding agents for ceramic materials in cutting tools

    DOE Patents [OSTI]

    Tiegs, T.N.; McDonald, R.R.

    1991-05-14

    An improved ceramic-metal composite comprising a mixture of a ceramic material with a ductile intermetallic alloy, preferably Ni[sub 3]Al is disclosed. 2 figures.

  2. Simple route for the synthesis of supercapacitive Co-Ni mixed hydroxide thin films

    SciTech Connect (OSTI)

    Dubal, D.P.; Department of Materials Science and Engineering, Gwangju Institute of Science and Technology, 261 Cheomdan-gwagiro, Buk-gu, Gwangju 500-712 ; Jagadale, A.D.; Patil, S.V.; Lokhande, C.D.

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer Novel method for deposition of Co-Ni mixed hydroxide. Black-Right-Pointing-Pointer Nanoparticle network of Co-Ni hydroxide. Black-Right-Pointing-Pointer High specific capacitance of 672 F g{sup -1}. Black-Right-Pointing-Pointer High discharge/charge rates. -- Abstract: Facile synthesis of Co-Ni mixed hydroxides films with interconnected nanoparticles networks through two step route is successfully established. These films have been characterized by X-ray diffraction (XRD), Fourier transform infrared technique (FTIR), scanning electron microscopy (SEM) and wettability test. Co-Ni film formation is confirmed from XRD and FTIR study. SEM shows that the surface of Co-Ni films is composed of interconnected nanoparticles. Contact angle measurement revealed the hydrophilic nature of films which is feasible for the supercapacitor. The electrochemical performance of the film is evaluated by cyclic voltammetry, and constant-current charge/discharge cycling techniques. Specific capacitance of the Co-Ni mixed hydroxide electrode achieved 672 F g{sup -1}. Impedance analysis shows that Co-Ni mixed hydroxide electrode provides less resistance for the intercalation and de-intercalation of ions. The Co-Ni mixed electrode exhibited good charge/discharge rate at different current densities. The results demonstrated that Co-Ni mixed hydroxide composite is very promising for the next generation high performance electrochemical supercapacitors.

  3. Blending Cr2O3 into a NiO-Ni electrocatalyst for sustained water splitting

    SciTech Connect (OSTI)

    Gong, Ming; Zhou, Wu; Kenney, Michael James; Kapusta, Rich; Cowley, Sam; Wu, Yingpeng; Lu, Bingan; Lin, Meng -Chang; Wang, Di -Yan; Yang, Jiang; Hwang, Bing -Joe; Dai, Hongjie

    2015-08-24

    The rising H2 economy demands active and durable electrocatalysts based on low-cost, earth-abundant materials for water electrolysis/photolysis. Here we report nanoscale Ni metal cores over-coated by a Cr2O3-blended NiO layer synthesized on metallic foam substrates. The Ni@NiO/Cr2O3 triphase material exhibits superior activity and stability similar to Pt for the hydrogen-evolution reaction in basic solutions. The chemically stable Cr2O3 is crucial for preventing oxidation of the Ni core, maintaining abundant NiO/Ni interfaces as catalytically active sites in the heterostructure and thus imparting high stability to the hydrogen-evolution catalyst. The highly active and stable electrocatalyst enables an alkaline electrolyzer operating at 20 mA cm2 at a voltage lower than 1.5 V, lasting longer than 3 weeks without decay. Thus, the non-precious metal catalysts afford a high efficiency of about 15 % for light-driven water splitting using GaAs solar cells.

  4. Hydrogen production via reforming of biogas over nanostructured Ni/Y catalyst: Effect of ultrasound irradiation and Ni-content on catalyst properties and performance

    SciTech Connect (OSTI)

    Sharifi, Mahdi; Haghighi, Mohammad; Abdollahifar, Mozaffar

    2014-12-15

    Highlights: Synthesis of nanostructured Ni/Y catalyst by sonochemical and impregnation methods. Enhancement of size distribution and active phase dispersion by employing sonochemical method. Evaluation of biogas reforming over Ni/Y catalyst with different Ni-loadings. Preparation of highly active and stable catalyst with low Ni content for biogas reforming. Getting H{sub 2}/CO very close to equilibrium ratio by employing sonochemical method. - Abstract: The effect of ultrasound irradiation and various Ni-loadings on dispersion of active phase over zeolite Y were evaluated in biogas reforming for hydrogen production. X-ray diffraction, field emission scanning electron microscopy, energy dispersive X-ray, BrunauerEmmettTeller, Fourier transform infrared analysis and TEM analysis were employed to observe the characteristics of nanostructured catalysts. The characterizations implied that utilization of ultrasound irradiation enhanced catalyst physicochemical properties including high dispersion of Ni on support, smallest particles size and high catalyst surface area. The reforming reactions were carried out at GHSV = 24 l/g.h, P = 1 atm, CH{sub 4}/CO{sub 2} = 1 and temperature range of 550850 C. Activity test displayed that ultrasound irradiated Ni(5 wt.%)/Y had the best performance and the activity remained stable during 600 min. Furthermore, the proposed reaction mechanism showed that there are three major reaction channels in biogas reforming.

  5. Improved synthesis and crystal structure of the flexible pillared layer porous coordination polymer: Ni(1,2-bis(4-pyridyl)ethylene)[Ni(CN)4

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wong-Ng, W.; Culp, J. T.; Chen, Y. S.; Zavalij, P.; Espinal, L.; Siderius, D. W.; Allen, A. J.; Scheins, S.; Matranga, C.

    2013-01-01

    This paper reports our synthesis of flexible coordination polymer, Ni(L)[Ni(CN)4], (L = 1,2-bis(4-pyridyl)ethylene (nicknamed bpene)), and its structural characterization using synchrotron single crystal X-ray diffraction. The structure of the purplish crystals has been determined to be monoclinic, space group P21/m, a = 13.5941(12) Å, b = 14.3621(12) Å, c = 14.2561(12) Å, β = 96.141(2)°, V = 2767.4(4) Å3, Z = 4, Dc = 1.46 g cm-1. Ni(bpene)[Ni(CN)4] assumes a pillared layer structure with layers defined by Ni[Ni(CN)4]n nets and bpene ligands acting as pillars. With the present crystallization technique which involves the use of concentrated ammonium hydroxide solution andmore » dimethyl sulfoxide (DMSO), disordered free bpene ligands and solvents of crystallization (DMSO and water molecules) occupy the pores, resulting in a formula of Ni(bpene)[Ni(CN)4](1/2)bpene∙DMSO2H2O, or Ni2N7C24H25SO3. Without the inclusion of free bpene ligands and solvent molecules, the free volume is approximately 61% of the total volume; this free volume fraction is reduced to 50% with the free ligands present. Pores without the free ligands were found to have a local diameter of 5.7 Å and a main aperture of 3.5 Å. Based on the successful crystal synthesis, we also devised a new bulk synthetic technique which yielded a polycrystalline material with a significantly improved CO2 uptake as compared to the originally reported powder material. The improved synthetic technique yielded a polycrystalline material with 40% higher CO2 uptake compared to the previously reported powder material. An estimated 14.4 molecules of CO2 per unit cell was obtained.« less

  6. ENDF/B-VII.0, ENDF/B-VI, JEFF-3.1, AND JENDL-3.3 RESULTS FOR UNREFLECTED PLUTONIUM SOLUTIONS AND MOX LATTICES (U)

    SciTech Connect (OSTI)

    MOSTELLER, RUSSELL D.

    2007-02-09

    Previous studies have indicated that ENDF/B-VII preliminary releases {beta}-2 and {beta}-3, predecessors to the recent initial release of ENDF/B-VII.0, produce significantly better overall agreement with criticality benchmarks than does ENDF/B-VI. However, one of those studies also suggests that improvements still may be needed for thermal plutonium cross sections. The current study substantiates that concern by examining criticality benchmarks for unreflected spheres of plutonium-nitrate solutions and for slightly and heavily borated mixed-oxide (MOX) lattices. Results are presented for the JEFF-3.1 and JENDL-3.3 nuclear data libraries as well as ENDF/B-VII.0 and ENDF/B-VI. It is shown that ENDF/B-VII.0 tends to overpredict reactivity for thermal plutonium benchmarks over at least a portion of the thermal range. In addition, it is found that additional benchmark data are needed for the deep thermal range.

  7. In pursuit of clean air: a data book of problems and strategies at the state level. Volume 3: Federal Regions IV and VI

    SciTech Connect (OSTI)

    Garvey, D.B.; Streets, D.G.

    1980-02-01

    This is the third volume of a five-volume report, designed to provide useful information for policy analysis in the Department of Energy, especially for the examination of possible areas of conflict between the implementation of a national energy policy calling for the increased use of coal and the pursuit of clean air. Information is presented for each state in Federal Regions IV and VI under the following section headings: state title page (includes a summary of air quality data); revised state implementation plan outline; maps of nonattainment areas, as designated; Storage and Retrieval of Aerometric Data (SAROAD); SAROAD data maps; power plant data; power plant maps; and county maps. States in Federal Region IV include: Alabama, Florida, Georgia, Kentucky, Mississippi, North Carolina, South Carolina, and Tennessee. Those in Federal Region VI include: Arkansas, Louisiana, New Mexico, Oklahoma, and Texas. (JGB)

  8. Effect of the accumulation of excess Ni atoms in the crystal structure of the intermetallic semiconductor n-ZrNiSn

    SciTech Connect (OSTI)

    Romaka, V. A.; Rogl, P.; Romaka, V. V.; Stadnyk, Yu. V.; Hlil, E. K.; Krajovskii, V. Ya.; Horyn, A. M.

    2013-07-15

    The crystal structure, electron density distribution, and energy, kinetic, and magnetic properties of the n-ZrNiSn intermetallic semiconductor heavily doped with a Ni impurity are investigated. The effect of the accumulation of an excess number of Ni{sub 1+x} atoms in tetrahedral interstices of the crystal structure of the semiconductor is found and the donor nature of such structural defects that change the properties of the semiconductor is established. The results obtained are discussed within the Shklovskii-Efros model of a heavily doped and strongly compensated semiconductor.

  9. FINAL REPORT FOR THE REDUCTION OF CHROME (VI) TO CHROME (III) IN THE SECONDARY WASTE STREAM OF THE EFFLUENT TREATMENT FACILITY

    SciTech Connect (OSTI)

    DUNCAN JB; GUTHRIE MD

    2008-08-29

    This report documents the laboratory results of RPP-PLAN-35958, Test Plan for the Effluent Treatment Facility to Reduce Chrome (VI) to Chrome (III) in the Secondary Waste Stream With the exception of the electrochemical corrosion scans, all work was carried out at the Center for Laboratory Science (CLS) located at the Columbia Basin College. This document summarizes the work carried out at CLS and includes the electrochemical scans and associated corrosion rates for 304 and 316L stainless steel.

  10. Cu-Ni-Fe anodes having improved microstructure

    DOE Patents [OSTI]

    Bergsma, S. Craig; Brown, Craig W.

    2004-04-20

    A method of producing aluminum in a low temperature electrolytic cell containing alumina dissolved in an electrolyte. The method comprises the steps of providing a molten electrolyte having alumina dissolved therein in an electrolytic cell containing the electrolyte. A non-consumable anode and cathode is disposed in the electrolyte, the anode comprised of Cu--Ni--Fe alloys having single metallurgical phase. Electric current is passed from the anode, through the electrolyte to the cathode thereby depositing aluminum on the cathode, and molten aluminum is collected from the cathode.

  11. Oxidation sulfidation resistance of Fe-Cr-Ni alloys

    DOE Patents [OSTI]

    Natesan, Ken (Naperville, IL); Baxter, David J. (Woodridge, IL)

    1984-01-01

    High temperature resistance of Fe-Cr-Ni alloy compositions to oxidative and/or sulfidative conditions is provided by the incorporation of about 1-8 wt. % of Zr or Nb and results in a two-phase composition having an alloy matrix as the first phase and a fine grained intermetallic composition as the second phase. The presence and location of the intermetallic composition between grains of the matrix provides mechanical strength, enhanced surface scale adhesion, and resistance to corrosive attack between grains of the alloy matrix at temperatures of 500.degree.-1000.degree. C.

  12. Improved oxidation sulfidation resistance of Fe-Cr-Ni alloys

    DOE Patents [OSTI]

    Natesan, K.; Baxter, D.J.

    1983-07-26

    High temperature resistance of Fe-Cr-Ni alloy compositions to oxidative and/or sulfidative conditions is provided by the incorporation of about 1 to 8 wt % of Zr or Nb and results in a two-phase composition having an alloy matrix as the first phase and a fine grained intermetallic composition as the second phase. The presence and location of the intermetallic composition between grains of the matrix provides mechanical strength, enhanced surface scale adhesion, and resistance to corrosive attack between grains of the alloy matrix at temperatures of 500 to 1000/sup 0/C.

  13. Stable atomic structure of NiTi austenite

    SciTech Connect (OSTI)

    Zarkevich, Nikolai A; Johnson, Duane D

    2014-08-01

    Nitinol (NiTi), the most widely used shape-memory alloy, exhibits an austenite phase that has yet to be identified. The usually assumed austenitic structure is cubic B2, which has imaginary phonon modes, hence it is unstable. We suggest a stable austenitic structure that on average has B2 symmetry (observed by x-ray and neutron diffraction), but it exhibits finite atomic displacements from the ideal B2 sites. The proposed structure has a phonon spectrum that agrees with that from neutron scattering, has diffraction spectra in agreement with x-ray diffraction, and has an energy relative to the ground state that agrees with calorimetry data.

  14. Investigating the use of bismuth(V) for the oxidation and subsequent solvent extraction of americium(VI)

    SciTech Connect (OSTI)

    Martin, L.R.; Mincher, B.J.; Schmitt, N.C.

    2008-07-01

    The separation of Am from Cm and the lanthanides is still one of the most complex separations facing analytical chemistry, as well as any proposed advanced fuel cycle. Current research is focused on the oxidation of americium for its selective separation from the trivalent lanthanides and curium. We have already successfully demonstrated that Am oxidized to the hexavalent state using sodium bismuthate at room temperature can be extracted into 30% TBP/dodecane. Its behavior has been demonstrated to be analogous to that of hexavalent uranyl, neptunyl, and plutonyl ions. Using UV-visible spectrophotometry, the mechanism of the oxidation with sodium bismuthate has been probed to identify if it is a suitable reagent for deployment in solvent extraction systems. It has been identified that 97% of the Am is oxidized within the first 5 minutes. Significantly longer periods of time are required to obtain a solution containing greater than 50% Am(VI) limiting the use of Bi(V) for process applications. (authors)

  15. Stratospheric ozone protection: The Montreal Protocol and Title VI of the Clean Air Act Amendments of 1990

    SciTech Connect (OSTI)

    Babst, C.R. III

    1993-08-01

    The stratospheric ozone layer protects the surface of the Earth from harmful ultraviolet (UV-B) radiation, which has been causally linked to skin cancer and cataracts, suppression of the human immune system, damage to crops and aquatic organisms, the formation of ground-level zone and the rapid weathering of outdoor plastics. In recent years, scientists have observed a significant deterioration of the ozone layer, particularly over the poles, but increasingly over populated regions as well. This deterioration has been attributed to the atmospheric release of certain man-made halocarbons, including chlorofluorocarbons (CFCs), halons, methyl chloroform and carbon tetrachloride. Once used extensively as propellants for aerosol sprays (but generally banned for such purposes since 1978), CFCs are widely used today as refrigerants, foams and solvents. All of these chlorinated (CFC, methyl chloroform and carbon tetrachloride) and brominated (halon) compounds are classified for regulatory purposes as Class I substances because of their significant ozone-depleting potential. Hydrochlorofluorocarbons (HCFCs), developed as alternatives to CFCs and halons for many different applications, have been classified for regulatory purposes as Class II substances because of their relatively less destructive impact on stratospheric ozone. This paper describes the following regulations to reduce destruction of the ozone layer: the Montreal Protocol; Title VI of the Clean air Act Amendments of 1990; Accelerated Phase-out schedules developed by the countries which signed the Montreal Protocol; Use restrictions; Recycling and Emission reduction requirements; Servicing of motor vehicle air conditions; ban on nonessential products; labeling requirements; safe alternatives. 6 refs.

  16. Three-Dimensional Topological Insulators in I-III-VI2 and II-IV-V2 Chalcopyrite Semiconductors

    SciTech Connect (OSTI)

    Feng, wanxiang; Ding, Jun; Yao, yugui

    2011-01-01

    The recent discovery of topological insulators with exotic metallic surface states has garnered great interest in the fields of condensed matter physics and materials science.1 A number of spectacular quantum phenomena have been predicted when the surface states are under the influence of magnetism and superconductivity,2 5 which could open up new opportunities for technological applications in spintronics and quantum computing. To achieve this goal, material realization of topological insulators with desired physical properties is of crucial importance. Based on first-principles calculations, here we show that a large number of ternary chalcopyrite compounds of composition I-III-VI2 and II-IV-V2 can realize the topological insulating phase in their native states. The crystal structure of chalcopyrites is derived from the frequently used zinc-blende structure, and many of them possess a close lattice match to important mainstream semiconductors, which is essential for a smooth integration into current semiconductor technology. The diverse optical, electrical and structural properties of chalcopyrite semiconductors,6 and particularly their ability to host room-temperature ferromagnetism,7 9 make them appealing candidates for novel spintronic devices.

  17. U(VI) bioreduction with emulsified vegetable oil as the electron donor-Model application to a field test

    SciTech Connect (OSTI)

    Tang, Guoping; Watson, David B; Wu, Wei-min; Schadt, Christopher Warren; Parker, Jack C; Brooks, Scott C

    2013-01-01

    A one-time 2-hour emulsified vegetable oil (EVO) injection in a fast flowing aquifer decreased U discharge to a stream for over a year. Using a comprehensive biogeochemical model developed in the companion article based on microcosm tests, we approximately matched the observed acetate, nitrate, Fe, U, and sulfate concentrations, and described the major evolution trends of multiple microbial functional groups in the field test. While the lab-determined parameters were generally applicable in the field-scale simulation, the EVO hydrolysis rate constant was estimated to be an order of magnitude greater in the field than in the microcosms. The model predicted substantial biomass (sulfate reducers) and U(IV) accumulation near the injection wells and along the side boundaries of the treatment zone where electron donors (long-chain fatty acids) from the injection wells met electron acceptors (sulfate) from the surrounding environment. While EVO retention and hydrolysis characteristics were expected to control treatment longevity, modeling results indicated that electron acceptors such as sulfate may not only compete for electrons but also play a conducive role in degrading complex substrates and enhancing U(VI) reduction and immobilization. As a result, the spacing of the injection wells could be optimized for effective sustainable bioremediation.

  18. [Ni(H{sub 2}O){sub 4}]{sub 3}[U(OH,H{sub 2}O)(UO{sub 2}){sub 8}O{sub 12}(OH){sub 3}], crystal structure and comparison with uranium minerals with U{sub 3}O{sub 8}-type sheets

    SciTech Connect (OSTI)

    Rivenet, Murielle; Vigier, Nicolas; Roussel, Pascal; Abraham, Francis

    2009-04-15

    The new U(VI) compound, [Ni(H{sub 2}O){sub 4}]{sub 3}[U(OH,H{sub 2}O)(UO{sub 2}){sub 8}O{sub 12}(OH){sub 3}], was synthesized by mild hydrothermal reaction of uranyl and nickel nitrates. The crystal-structure was solved in the P-1 space group, a=8.627(2), b=10.566(2), c=12.091(4) A and alpha=110.59(1), beta=102.96(2), gamma=105.50(1){sup o}, R=0.0539 and wR=0.0464 from 3441 unique observed reflections and 151 parameters. The structure of the title compound is built from sheets of uranium polyhedra closely related to that in beta-U{sub 3}O{sub 8}. Within the sheets [(UO{sub 2})(OH)O{sub 4}] pentagonal bipyramids share equatorial edges to form chains, which are cross-linked by [(UO{sub 2})O{sub 4}] and [UO{sub 4}(H{sub 2}O)(OH)] square bipyramids and through hydroxyl groups shared between [(UO{sub 2})(OH)O{sub 4}] pentagonal bipyramids. The sheets are pillared by sharing the apical oxygen atoms of the [(UO{sub 2})(OH)O{sub 4}] pentagonal bipyramids with the oxygen atoms of [NiO{sub 2}(H{sub 2}O){sub 4}] octahedral units. That builds a three-dimensional framework with water molecules pointing towards the channels. On heating [Ni(H{sub 2}O){sub 4}]{sub 3}[U(OH,H{sub 2}O)(UO{sub 2}){sub 8}O{sub 12}(OH){sub 3}] decomposes into NiU{sub 3}O{sub 10}. - Graphical abstract: The framework of [Ni(H{sub 2}O){sub 4}]{sub 3}[U(OH,H{sub 2}O)(UO{sub 2}){sub 8}O{sub 12}(OH){sub 3}] built from uranium polyhedra sheets pillared by Ni-centered octahedra.

  19. Deformations and magnetic rotations in the {sup 60}Ni nucleus

    SciTech Connect (OSTI)

    Torres, D. A.; Cristancho, F.; Andersson, L.-L.; Johansson, E. K.; Rudolph, D.; Fahlander, C.; Ekman, J.; Rietz, R. du; Andreoiu, C.; Carpenter, M. P.; Seweryniak, D.; Zhu, S.; Charity, R. J.; Chiara, C. J.; Hoel, C.; Pechenaya, O. L.; Reviol, W.; Sarantites, D. G.; Sobotka, L. G.; Baktash, C.

    2008-11-15

    Data from three experiments using the heavy-ion fusion evaporation-reaction {sup 36}Ar+{sup 28}Si have been combined to study high-spin states in the residual nucleus {sup 60}Ni, which is populated via the evaporation of four protons from the compound nucleus {sup 64}Ge. The GAMMASPHERE array was used for all the experiments in conjunction with a 4{pi} charged-particle detector arrays (MICROBALL, LUWUSIA) and neutron detectors (NEUTRON SHELL) to allow for the detection of {gamma} rays in coincidence with the evaporated particles. An extended {sup 60}Ni level scheme is presented, comprising more than 270{gamma}-ray transitions and 110 excited states. Their spins and parities have been assigned via directional correlations of {gamma} rays emitted from oriented states. Spherical shell-model calculations in the fp-shell characterize some of the low-spin states, while the experimental results of the rotational bands are analyzed with configuration-dependent cranked Nilsson-Strutinsky calculations.

  20. Doubly-magic nature of {sup 56}Ni: Measurement of the ground state nuclear magnetic dipole moment of {sup 55}Ni

    SciTech Connect (OSTI)

    Berryman, J. S.; Crawford, H. L.; Mantica, P. F.; Stoker, J. B.; Minamisono, K.; Grinyer, G. F.; Rogers, W. F.; Brown, B. A.; Towner, I. S.

    2009-06-15

    The nuclear magnetic moment of the ground state of {sup 55}Ni (I{sup {pi}}=3/2{sup -}, T{sub 1/2}=204 ms) has been deduced to be |{mu}({sup 55}Ni)|=(0.976{+-}0.026) {mu}{sub N} using the {beta}-ray detecting nuclear magnetic resonance technique. Results of a shell model calculation in the full fp shell model space with the GXPF1 interaction reproduce the experimental value. Together with the known magnetic moment of the mirror partner {sup 55}Co, the isoscalar spin expectation value was extracted as <{sigma}{sigma}{sub z}>=0.91{+-}0.07. The <{sigma}{sigma}{sub z}> shows a trend similar to that established in the sd shell. The present theoretical interpretations of both {mu}({sup 55}Ni) and <{sigma}{sigma}{sub z}> for the T=1/2, A=55 mirror partners support the softness of the {sup 56}Ni core.

  1. Nanoscale compositional analysis of NiTi shape memory alloy films deposited by DC magnetron sputtering

    SciTech Connect (OSTI)

    Sharma, S. K.; Mohan, S.; Bysakh, S.; Kumar, A.; Kamat, S. V.

    2013-11-15

    The formation of surface oxide layer as well as compositional changes along the thickness for NiTi shape memory alloy thin films deposited by direct current magnetron sputtering at substrate temperature of 300 C in the as-deposited condition as well as in the postannealed (at 600 C) condition have been thoroughly studied by using secondary ion mass spectroscopy, x-ray photoelectron spectroscopy, and scanning transmission electron microscopy-energy dispersive x-ray spectroscopy techniques. Formation of titanium oxide (predominantly titanium dioxide) layer was observed in both as-deposited and postannealed NiTi films, although the oxide layer was much thinner (8 nm) in as-deposited condition. The depletion of Ti and enrichment of Ni below the oxide layer in postannealed films also resulted in the formation of a graded microstructure consisting of titanium oxide, Ni{sub 3}Ti, and B2 NiTi. A uniform composition of B2 NiTi was obtained in the postannealed film only below a depth of 200250 nm from the surface. Postannealed film also exhibited formation of a ternary silicide (Ni{sub x}Ti{sub y}Si) at the filmsubstrate interface, whereas no silicide was seen in the as-deposited film. The formation of silicide also caused a depletion of Ni in the film in a region ?250300 nm just above the film substrate interface.

  2. Ferromagnetic interactions and martensitic transformation in Fe doped Ni-Mn-In shape memory alloys

    SciTech Connect (OSTI)

    Lobo, D. N.; Priolkar, K. R.; Emura, S.; Nigam, A. K.

    2014-11-14

    The structure, magnetic, and martensitic properties of Fe doped Ni-Mn-In magnetic shape memory alloys have been studied by differential scanning calorimetry, magnetization, resistivity, X-ray diffraction (XRD), and EXAFS. While Ni{sub 2}MnIn{sub 1?x}Fe{sub x} (0???x???0.6) alloys are ferromagnetic and non martensitic, the martensitic transformation temperature in Ni{sub 2}Mn{sub 1.5}In{sub 1?y}Fe{sub y} and Ni{sub 2}Mn{sub 1.6}In{sub 1?y}Fe{sub y} increases for lower Fe concentrations (y???0.05) before decreasing sharply for higher Fe concentrations. XRD analysis reveals presence of cubic and tetragonal structural phases in Ni{sub 2}MnIn{sub 1?x}Fe{sub x} at room temperature with tetragonal phase content increasing with Fe doping. Even though the local structure around Mn and Ni in these Fe doped alloys is similar to martensitic Mn rich Ni-Mn-In alloys, presence of ferromagnetic interactions and structural disorder induced by Fe affect Mn-Ni-Mn antiferromagnetic interactions resulting in suppression of martensitic transformation in these Fe doped alloys.

  3. Effect of Co/Ni ratios in cobalt nickel mixed oxide catalysts on methane combustion

    SciTech Connect (OSTI)

    Lim, Tae Hwan; Cho, Sung June; Yang, Hee Sung; Engelhard, Mark H.; Kim, Do Heui

    2015-07-31

    A series of cobalt nickel mixed oxide catalysts with the varying ratios of Co to Ni, prepared by co-precipitation method, were applied to methane combustion. Among the various ratios, cobalt nickel mixed oxides having the ratios of Co to Ni of (50:50) and (67:33) demonstrate the highest activity for methane combustion. Structural analysis obtained from X-ray diffraction (XRD) and extended X-ray absorption fine structure (EXAFS) evidently demonstrates that CoNi (50:50) and (67:33) samples consist of NiCo2O4and NiO phase and, more importantly, NiCo2O4spinel structure is largely distorted, which is attributed to the insertion of Ni2+ions into octahedral sites in Co3O4spinel structure. Such structural dis-order results in the enhanced portion of surface oxygen species, thus leading to the improved reducibility of the catalysts in the low temperature region as evidenced by temperature programmed reduction by hydrogen (H2TPR) and X-ray photoelectron spectroscopy (XPS) O 1s results. They prove that structural disorder in cobalt nickel mixed oxides enhances the catalytic performance for methane combustion. Thus, it is concluded that a strong relationship between structural property and activity in cobalt nickel mixed oxide for methane combustion exists and, more importantly, distorted NiCo2O4spinel structure is found to be an active site for methane combustion.

  4. Method For Making Electronic Circuits Having Nial And Ni3al Substrates

    DOE Patents [OSTI]

    Deevi, Seetharama C. (Midlothian, VA); Sikka, Vinod K. (Oak Ridge, TN)

    2001-01-30

    A method for making electronic circuit component having improved mechanical properties and thermal conductivity comprises steps of providing NiAl and/or Ni.sub.3 Al, and forming an alumina layer thereupon prior to applying the conductive elements. Additional layers of copper-aluminum alloy or copper further improve mechanical strength and thermal conductivity.

  5. Fundamental studies of high-temperature corrosion reactions. Sixth annual progress report. [Cu-6% Ni

    SciTech Connect (OSTI)

    Rapp, R.A.

    1981-02-01

    Research was conducted on the sulfidation of pure Mo by sulfur gases at 700 to 950/sup 0/C and on the in-situ oxidation of metals and alloys in the hot-stage SEM. Results on the in-situ oxidation of Cu, Ni, Fe, and Cu-6% Ni up to 930/sup 0/C are reported in detail. 21 figures.

  6. Flower-like NiO structures: Controlled hydrothermal synthesis and electrochemical characteristic

    SciTech Connect (OSTI)

    Chai, Hui; Chen, Xuan; Key Laboratory of Advanced Functional Materials, Institute of Applied Chemistry, Xinjiang University, Urumqi 830046, Xinjiang ; Jia, Dianzeng; Key Laboratory of Advanced Functional Materials, Institute of Applied Chemistry, Xinjiang University, Urumqi 830046, Xinjiang ; Bao, Shujuan; Key Laboratory of Advanced Functional Materials, Institute of Applied Chemistry, Xinjiang University, Urumqi 830046, Xinjiang ; Zhou, Wanyong

    2012-12-15

    Graphical abstract: Flower-like porous NiO was obtained via thermal decomposition of the precursor prepared by a hydrothermal process using hexamethylenetetramine and polyethylene glycol as hydrolysis-controlling agent and surfactant, respectively. The morphology and microstructure of as-synthesized NiO were characterized by X-ray diffraction (XRD), BrunauerEmmettTeller (BET), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results of electrochemical measurements demonstrated that the flower-like porous NiO has high capacity (340 F g{sup ?1}) with excellent cycling performance as electrode materials of electrochemical capacitors (ECs), which may be attributed to the unique microstrcture of NiO. Data analyses indicated that NiO with novel porous structure attractive for practical and large-scale applications in electrochemical capacitors. Display Omitted Highlights: ? Synthesis and characterization of NiO with novel porous structure is presented in this work. ? The electrochemical performance of product was examined. ? NiO with excellent performance as electrode materials may be due to the unique microstrcture. ? NiO with novel porous structure attractive for practical with high capacity (340 F g{sup ?1}). -- Abstract: Flower-like porous NiO was obtained by thermal decomposition of the precursor prepared by a hydrothermal process with hexamethylenetetramine and polyethylene glycol as hydrolysis-controlling agent and surfactant, respectively. The morphology and microstructure of as-synthesized NiO were characterized by X-ray diffraction (XRD), BrunauerEmmettTeller (BET), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The resulting structures of NiO exhibited porous like petal building blocks. The electrochemical measurements results demonstrated that flower-like porous NiO has high capacity (340 F g{sup ?1}) with excellent cycling performance as electrode materials for electrochemical capacitors, which may be attributed to the unique structure of NiO. The results indicated that NiO with novel porous structure has been attractive for practical and large-scale applications in electrochemical capacitors.

  7. Direct synthesis of porous NiO nanowall arrays on conductive substrates for supercapacitor application

    SciTech Connect (OSTI)

    Zhu, Jianhui; Jiang, Jian; Liu, Jingping; Ding, Ruimin; Ding, Hao; Feng, Yamin; Wei, Guangming; Huang, Xintang

    2011-03-15

    Porous NiO nanowall arrays (NWAs) grown on flexible Fe-Co-Ni alloy have been successfully synthesized by using nullaginite (Ni{sub 2}(OH){sub 2}CO{sub 3}) as precursor and investigated as supercapacitor electrodes. In details, we adopted a simple hydrothermal method to realize Ni{sub 2}(OH){sub 2}CO{sub 3} NWAs and examined their robust mechanical adhesion to substrate via a long-time ultrasonication test. Porous NiO NWAs were then obtained by a post-calcination towards precursors at 500 {sup o}C in nitrogen atmosphere. Electrochemical properties of as-synthesized NiO NWAs were evaluated by cyclic voltammetry and galvanostatic charge/discharge; porous NiO NWAs electrode delivered a specific capacitance of 270 F/g (0.67 A/g); even at high current densities, the electrode could still deliver a high capacitance up to 236 F/g (13.35 A/g). Meanwhile, it exhibited excellent cycle lifetime with {approx}93% specific capacitance kept after 4000 cycles. These results suggest that as-made porous NiO NWAs electrode is a promising candidate for future thin-film supercapacitors and other microelectronic systems. -- Graphical abstract: Porous NiO nanowall arrays (NWAs) grown on alloy substrate have been made using nullaginite as precursor and studied as supercapacitor electrodes. Porous nanowalls interconnected with each other resulting in the formation of extended-network architectures and exhibited excellent capacitor properties. NiO NWAs electrode delivered a capacitance of 270 F/g (0.67 A/g); even at high current density, the electrode could still deliver a high capacitance up to 236 F/g (13.35 A/g). Besides, it exhibited excellent cycle lifetime with {approx}93% capacitance kept after 4000 cycles. These remarkable results made it possible for mass production of NiO NWAs and future thin-film microelectronic applications. Display Omitted Research highlights: {yields} Large-scale nullaginite (Ni{sub 2}(OH){sub 2}CO{sub 3}) nanowall arrays (NWAs) have been synthesized on flexible alloy substrate by a facile hydrothermal method. {yields} Ultrasonication test has been conducted to demonstrate the robust mechanical adhesion between NWAs and substrate. {yields} As supercapacitor electrodes porous NiO NWAs obtained by a post-calcination towards Ni{sub 2}(OH){sub 2}CO{sub 3} precursors have exhibited excellent electrochemical properties.

  8. Investigation of defect clusters in ion-irradiated Ni and NiCo using diffuse X-ray scattering and electron microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Olsen, Raina J.; Jin, Ke; Lu, Chenyang; Beland, Laurent K.; Wang, Lumin M.; Bei, Hongbin; Specht, Eliot D.; Larson, Bennett C.

    2016-01-01

    The nature of defect clusters in Ni and Nimore » $$_{50}$$Co$$_{50}$$ (NiCo) irradiated at room temperature with 2–16 MeV Ni ions is studied using asymptotic diffuse X-ray scattering and transmission electron microscopy (TEM). Analysis of the scattering data provides separate size distributions for vacancy and interstitial type defect clusters, showing that both types of defect clusters have a smaller size and higher density in NiCo than in Ni. Diffuse scattering results show good quantitative agreement with TEM results for cluster sizes greater than 4 nm diameter, but find that the majority of vacancy clusters are under 2 nm in NiCo, which, if not detected, would lead to the conclusion that defect density was actually lower in the alloy. Interstitial dislocation loops and stacking fault tetrahedra are identified by TEM. Lastly comparison of diffuse scattering lineshapes to those calculated for dislocation loops and SFTs indicates that most of the vacancy clusters are SFTs.« less

  9. Monodisperse core/shell Ni/FePt nanoparticles and their con-version to Ni/Pt to catalyze oxygen reduction

    SciTech Connect (OSTI)

    Zhang, Sen; Su, Dong; Doan-Nguyen, Vicky V. T.; Wu, Yaoting; Li, Jing; Sun, Shouheng; Murray, Christopher B.; Hao, Yizhou

    2014-11-12

    We report a size-controllable synthesis of monodisperse core/shell Ni/FePt nanoparticles (NPs) via a seed-mediated growth and their subsequent conversion to Ni/Pt NPs. Preventing surface oxidation of the Ni seeds is essential for the growth of uniform FePt shells. These Ni/FePt NPs have a thin (? 1 nm) FePt shell, and can be converted to Ni/Pt by acetic acid wash to yield active catalysts for oxygen reduction reaction (ORR). Tuning the core size allow for optimization of their electrocatalytic activity. The specific activity and mass activity of 4.2 nm/0.8 nm core/shell Ni/FePt reach 1.95 mA/cm and 490 mA/mgPt at 0.9 V (vs. reversible hydrogen electrode, RHE), which are much higher than those of benchmark commercial Pt catalyst (0.34 mA/cm and 92 mA/mgPt at 0.9 V). Our studies provide a robust approach to monodisperse core/shell NPs with non-precious metal core, making it possible to develop advanced NP catalysts with ultralow Pt content for ORR and many other heterogeneous reactions.

  10. Correlating Extent of PtNi Bond Formation with Low-temperature Hydrogenation of Benzene and 1,3-butadiene over Supported Pt/Ni Bimetallic Catalysts

    SciTech Connect (OSTI)

    Lonergan, W.; Vlachos, D; Chen, J

    2010-01-01

    Low-temperature hydrogenation of benzene and 1,3-butadiene on supported Pt/Ni catalysts have been used as probe reactions to correlate hydrogenation activity with the extent of Pt-Ni bimetallic bond formation. Pt/Ni bimetallic and Pt and Ni monometallic catalysts were supported on {gamma}-Al{sub 2}O{sub 3} using incipient wetness impregnation. Two sets of bimetallic catalysts were synthesized: one set to study the effect of metal atomic ratio and the other to study the effect of impregnation sequence. Fourier transform infrared spectroscopy (FTIR) CO adsorption studies were performed to characterize the surface composition of the bimetallic nanoparticles, and transmission electron microscopy (TEM) was utilized to characterize the particle size distribution. Batch reactor studies with FTIR demonstrated that all bimetallic catalysts outperformed monometallic catalysts for both benzene and 1,3-butadiene hydrogenation. Within the two sets of bimetallic catalysts, it was found that catalysts with a smaller Pt:Ni ratio possessed higher hydrogenation activity and that catalysts synthesized using co-impregnation had greater activity than sequentially impregnated catalysts. Extended X-ray absorption fine structure (EXAFS) measurements were performed in order to verify the extent of Pt-Ni bimetallic bond formation, which was found to correlate with the hydrogenation activity.

  11. Monodisperse core/shell Ni/FePt nanoparticles and their con-version to Ni/Pt to catalyze oxygen reduction

    SciTech Connect (OSTI)

    Zhang, Sen; Hao, Yizhou; Su, Dong; Doan-Nguyen, Vicky V. T.; Wu, Yaoting; Li, Jing; Sun, Shouheng; Murray, Christopher B.

    2014-10-28

    We report a size-controllable synthesis of monodisperse core/shell Ni/FePt nanoparticles (NPs) via a seed-mediated growth and their subsequent conversion to Ni/Pt NPs. Preventing surface oxidation of the Ni seeds is essential for the growth of uniform FePt shells. These Ni/FePt NPs have a thin (? 1 nm) FePt shell, and can be converted to Ni/Pt by acetic acid wash to yield active catalysts for oxygen reduction reaction (ORR). Tuning the core size allow for optimization of their electrocatalytic activity. The specific activity and mass activity of 4.2 nm/0.8 nm core/shell Ni/FePt reach 1.95 mA/cm and 490 mA/mgPt at 0.9 V (vs. reversible hydrogen electrode, RHE), which are much higher than those of benchmark commercial Pt catalyst (0.34 mA/cm and 92 mA/mgPt at 0.9 V). Our studies provide a robust approach to monodisperse core/shell NPs with non-precious metal core, making it possible to develop advanced NP catalysts with ultralow Pt content for ORR and many other heterogeneous reactions.

  12. Monodisperse core/shell Ni/FePt nanoparticles and their con-version to Ni/Pt to catalyze oxygen reduction

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Sen; Hao, Yizhou; Su, Dong; Doan-Nguyen, Vicky V. T.; Wu, Yaoting; Li, Jing; Sun, Shouheng; Murray, Christopher B.

    2014-10-28

    We report a size-controllable synthesis of monodisperse core/shell Ni/FePt nanoparticles (NPs) via a seed-mediated growth and their subsequent conversion to Ni/Pt NPs. Preventing surface oxidation of the Ni seeds is essential for the growth of uniform FePt shells. These Ni/FePt NPs have a thin (≈ 1 nm) FePt shell, and can be converted to Ni/Pt by acetic acid wash to yield active catalysts for oxygen reduction reaction (ORR). Tuning the core size allow for optimization of their electrocatalytic activity. The specific activity and mass activity of 4.2 nm/0.8 nm core/shell Ni/FePt reach 1.95 mA/cm² and 490 mA/mgPt at 0.9 Vmore »(vs. reversible hydrogen electrode, RHE), which are much higher than those of benchmark commercial Pt catalyst (0.34 mA/cm² and 92 mA/mgPt at 0.9 V). Our studies provide a robust approach to monodisperse core/shell NPs with non-precious metal core, making it possible to develop advanced NP catalysts with ultralow Pt content for ORR and many other heterogeneous reactions.« less

  13. Hybrid Composite Ni(OH)(2)@NiCo2O4 Grown on Carbon Fiber Paper for High-Performance Supercapacitors

    SciTech Connect (OSTI)

    Huang, L; Chen, DC; Ding, Y; Wang, ZL; Zeng, ZZ; Liu, ML

    2013-11-13

    We have successfully fabricated and tested the electrochemical performance of supercapacitor electrodes consisting of Ni(OH)(2) nanosheets coated on NiCo2O4 nanosheets grown on carbon fiber paper (CFP) current collectors. When the NiCo2O4 nanosheets are replaced by Co3O4 nanosheets, however, the energy and power density as well as the rate capability of the electrodes are significantly reduced, most likely due to the lower conductivity of Co3O4 than that of NiCo2O4. The 3D hybrid composite Ni(OH)(2)/ NiCo2O4/CFP electrodes demonstrate a high areal capacitance of 5.2 F/cm(2) at a cycling current density of 2 rnA/cm(2), with a capacitance retention of 79% as the cycling current density was increased from 2 to 50 mA/cm(2). The remarkable performance of these hybrid composite electrodes implies that supercapacitors based on them have potential for many practical applications.

  14. Eutectic bonding of a Ti sputter coated, carbon aerogel wafer to a Ni foil

    SciTech Connect (OSTI)

    Jankowski, A.F.; Hayes, J.P.; Kanna, R.L.

    1994-06-01

    The formation of high energy density, storage devices is achievable using composite material systems. Alternate layering of carbon aerogel wafers and Ni foils with rnicroporous separators is a prospective composite for capacitor applications. An inherent problem exists to form a physical bond between Ni and the porous carbon wafer. The bonding process must be limited to temperatures less than 1000{degrees}C, at which point the aerogel begins to degrade. The advantage of a low temperature eutectic in the Ni-Ti alloy system solves this problem. Ti, a carbide former, is readily adherent as a sputter deposited thin film onto the carbon wafer. A vacuum bonding process is then used to join the Ni foil and Ti coating through eutectic phase formation. The parameters required for successfld bonding are described along with a structural characterization of the Ni foil-carbon aerogel wafer interface.

  15. Thermal plasma synthesis of Fe{sub 1?x}Ni{sub x} alloy nanoparticles

    SciTech Connect (OSTI)

    Raut, Suyog A.; Kanhe, Nilesh S.; Bhoraskar, S. V.; Mathe, V. L.; Das, A. K.

    2014-04-24

    Fe-Ni alloy nanoparticles are of great interest because of diverse practical applications in the fields such as magnetic fluids, high density recording media, catalysis and medicine. We report the synthesis of Fe-Ni nanoparticles via thermal plasma route. Thermal plasma assisted synthesis is a high temperature process and gives high yields of production. Here, we have used direct arc thermal plasma plume of 6kw as a source of energy at operating pressure 500 Torr. The mixture of Fe-Ni powder in required proportion (Fe{sub 1?x}Ni{sub x}; x=0.30, 0.32, 0.34, 0.36, 0.38 and 0.40) was made to evaporate simultaneously from the graphite anode in thermal plasma reactor to form Fe-Ni bimetallic nanoparticles. The as synthesized particles were characterized by X-Ray Diffraction (XRD), Thermo-Gravimetric Analysis/Differential Scanning Calorimtry (TGA/DSC)

  16. Hydrothermal synthesis and electrochemical performance of NiO microspheres with different nanoscale building blocks

    SciTech Connect (OSTI)

    Wang Ling; Hao Yanjing; Zhao Yan; Lai Qiongyu; Xu Xiaoyun

    2010-11-15

    NiO microspheres were successfully obtained by calcining the Ni(OH){sub 2} precursor, which were synthesized via the hydrothermal reaction of nickel chloride, glucose and ammonia. The products were characterized by TGA, XRD and SEM. The influences of glucose and reaction temperature on the morphologies of NiO samples were investigated. Moreover, the possible growth mechanism for the spherical morphology was proposed. The charge/discharge test showed that the as-prepared NiO microspheres composed of nanoparticles can serve as an ideal electrode material for supercapacitor due to the spherical hollow structure. -- Graphical Abstract: Fig. 5 is the SEM image of NiO that was prepared in the different hydrothermal reaction temperatures. It showed that reaction temperature played a crucial role for the morphology of products.

  17. Fabrication of NiO thin film electrode for supercapacitor applications

    SciTech Connect (OSTI)

    Mali, V. V.; Navale, S. T.; Chougule, M. A.; Khuspe, G. D.; Godse, P. R.; Patil, V. B.; Pawar, S. A.

    2014-04-24

    Nanocrystalline NiO electrode is successfully electrosynthesized for supercapacitor application. The nanocrystalline NiO electrode is characterized using scanning electron microscope (SEM). Nickel oxide is a highly porous and the film surface looked smooth and composed of fine elongated particles. The supercapacitive performance of NiO electrode is tested using cyclic voltammetry (C-V) technique in 0.5M Na{sub 2}S{sub 2}O{sub 3} electrolyte within potential range of ?1.2 to +1.2 V. The effect of scan rate on the capacitance of NiO electrode is studied. The highest specific capacitance of 439 Fg{sup ?1} at the voltage scan rate of 50mVs{sup ?1} is achieved. Additionally stability and chargingdischarging of NiO electrode are studied.

  18. Microstructure and thermal conductivity of surfactant-free NiO nanostructures

    SciTech Connect (OSTI)

    Sahoo, Pranati; Misra, Dinesh K.; Salvador, Jim; Makongo, Julien P.A.; Chaubey, Girija S.; Takas, Nathan J.; Wiley, John B.; Poudeu, Pierre F.P.

    2012-06-15

    High purity, nanometer sized surfactant-free nickel oxide (NiO) particles were produced in gram scale using a solution combustion method and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), gas pycnometry and gas adsorption analysis (BET). The average particle size of the as-synthesized NiO increases significantly with the preheating temperature of the furnace, while the specific surface area decreases. A BET specific surface area of {approx}100 m{sup 2}/g was obtained for NiO nanoparticles with size as small as 3 nm synthesized at 300 Degree-Sign C. The thermal conductivity ({kappa}) of pressed pellets of the synthesized NiO nanoparticles obtained using spark plasma sintering (SPS) and uniaxial hot pressing is drastically decreased ({approx}60%) compared to that of NiO single crystal. This strong reduction in {kappa} with particle size suggests the suitability of the synthesized surfactant-free NiO nanoparticles for use as nanoinclusions when designing high performance materials for waste heat recovery. - Graphical abstract: Highly efficient phonon scattering by surfactant-free NiO nanostructures obtained by solution combustion of a mixture of nickel (II) nitrate hexahydrate (oxidizer) and urea (fuel) at various temperatures. Highlights: Black-Right-Pointing-Pointer Fast synthesis of surfactant-free NiO nanoparticles with controllable size. Black-Right-Pointing-Pointer High specific surface area for NiO nanoparticles with size range from 3 to 7 nm. Black-Right-Pointing-Pointer Strong reduction of the thermal conductivity with decreasing particle size. Black-Right-Pointing-Pointer NiO as nanoinclusions in high performance materials for energy conversion.

  19. High Temperature Oxidation Behavior of gamma-Ni+gamma'-Ni3Al Alloys and Coatings Modified with Pt and Reactive Elements

    SciTech Connect (OSTI)

    Nan Mu

    2007-12-01

    Materials for high-pressure turbine blades must be able to operate in the high-temperature gases (above 1000 C) emerging from the combustion chamber. Accordingly, the development of nickel-based superalloys has been constantly motivated by the need to have improved engine efficiency, reliability and service lifetime under the harsh conditions imposed by the turbine environment. However, the melting point of nickel (1455 C) provides a natural ceiling for the temperature capability of nickel-based superalloys. Thus, surface-engineered turbine components with modified diffusion coatings and overlay coatings are used. Theses coatings are capable of forming a compact and adherent oxide scale, which greatly impedes the further transport of reactants between the high-temperature gases and the underlying metal and thus reducing attack by the atmosphere. Typically, these coatings contain {beta}-NiAl as a principal constituent phase in order to have sufficient aluminum content to form an Al{sub 2}O{sub 3} scale at elevated temperatures. The drawbacks to the currently-used {beta}-based coatings, such as phase instabilities, associated stresses induced by such phase instabilities, and extensive coating/substrate interdiffusion, are major motivations in this study to seek next-generation coatings. The high-temperature oxidation resistance of novel Pt + Hf-modified {gamma}-Ni + {gamma}-Ni{sub 3}Al-based alloys and coatings were investigated in this study. Both early-stage and 4-days isothermal oxidation behavior of single-phase {gamma}-Ni and {gamma}{prime}-Ni{sub 3}Al alloys were assessed by examining the weight changes, oxide-scale structures, and elemental concentration profiles through the scales and subsurface alloy regions. It was found that Pt promotes Al{sub 2}O{sub 3} formation by suppressing the NiO growth on both {gamma}-Ni and {gamma}{prime}Ni{sub 3}Al single-phase alloys. This effect increases with increasing Pt content. Moreover, Pt exhibits this effect even at lower temperatures ({approx}970 C) in the very early stage of oxidation. It was also inferred that Pt enhances the diffusive flux of aluminum from the substrate to the scale/alloy interface. Relatively low levels of hafnium addition to Pt-free {gamma}{prime}-Ni{sub 3}Al increased the extent of external NiO formation due to non-protective HfO{sub 2} formation. Accordingly, this effect intensified with increasing Hf content from 0.2 to 0.5 at.%.

  20. In situ carbonyl extraction of Ni from gaseous diffusion cells

    SciTech Connect (OSTI)

    Visnapuu, A. [USBM Salt Lake Research Center, Salt Lake City, UT (United States); Hollenberg, G.W. [Battelle Pacific Northwest Lab., Richland, WA (United States); Bundy, R.D. [Battelle Memorial Institute, Oak Ridge, TN (United States)

    1995-12-31

    This paper discusses the use of carbonyl processing technology for recovery of nickel from uranium isotope separation diffusion cells, and potential applications to recover nickel, iron, chromium, cobalt, and other carbonyl forming metals from nuclear waste while reducing the volume of the high level residue for more economic disposal. Nickel powder was carbonylated under static and dynamic conditions using only carbon monoxide to determine if the nickel powder would react rapidly enough to require no promoter. Nickel to Ni(CO){sub 4} conversion was realized in all cases and nickel metal was vapor deposited in the thermal decomposer, but the conversion rates in all cases the reaction were too slow for practical recovery. Addition of hydrogen sulfide gas as a promoter increased the conversion rate more than 500-fold over conversion with no promoter. Test summaries are provided in the paper; results indicate that promoter activated carbonylation is a viable approach for recovery of nickel from uranium isotope diffusion cells.

  1. Properties of Ni-Al under shock loading

    SciTech Connect (OSTI)

    Koskelo, A. C.; McClellan, K. J.; Brooks, J. D.; Paisley, Dennis L.; Swift, D. C.

    2002-01-01

    New models for the dynamic response of materials will be based increasingly on better understanding and representation of processes occurring at the microstructural level. These developments require advances in diagnostics and models which can be applied explicitly to microstructural response. Various phenomena occur at the microstructural level which are generally ignored or averaged out in continuum-level models. One example of such 'irregular hydrodynamics' is the roughness imparted to a shock wave as it propagates through a polycrystalline material. We have developed imaging techniques to study spatial variations in shock propagation through polycrystalline materials. In order to interpret spatially-resolved data from polycrystal samples, we need to compare with simulations which represent the microstructure. Here we describe work undertaken to develop a model of the dynamic response of individual grains. The material chosen was Ni-Al alloy, because it exhibits a relatively large degree of elastic anisotropy, and it is relatively easy to manufacture.

  2. Low Temperature Scaling of the Susceptibility of Ni Films

    SciTech Connect (OSTI)

    Song, X. H.; Zhang, Xiaoguang; Fan, J.; Jin, Y. R.; Su, S. K.; Zhang, D. L.

    2008-03-01

    Measurement of low field ac susceptibility of Ni thin films over the temperature range 5-300K reveals a surprising power law scaling. The temperature dependent part of the normalized susceptibility, $\\chi_\\parallel/M_S-\\chi_{\\rm rot}/M_S$, where $\\chi_\\parallel$ is the initial susceptibility for in-plane magnetization, $\\chi_{\\rm rot}$ is the domain rotation contribution, and $M_S$ is the saturation magnetization, scales with the nonlinear reduced temperature as $t^{-2}$ over the entire temperature range, where $t=(T-T_C)/(T+T_C)$ and $T_C$ is the Curie temperature. Thickness and reduced temperature dependences are completely decoupled. This result implies that domain wall motion does not contribute to the low field susceptibility.

  3. Undercooled and rapidly quenched Ni-Mo alloys

    SciTech Connect (OSTI)

    Tewari, S.N.; Glasgow, T.K.

    1986-01-01

    Hypoeutectic, eutectic, and hypereutectic nickel-molybdenum alloys were rapidly solidified by both bulk undercooling and melt spinning techniques. Alloys were undercooled in both electromagnetic levitation and differential thermal analysis equipment. The rate of recalescence depended upon the degree of initial undercooling and the nature (faceted or nonfaceted) of the primary nucleating phase. Alloy melts were observed to undercool more in the presence of primary Beta (NiMo intermetallic) phase than in gamma (fcc solid solution) phase. Melt spinning resulted in an extension of molybdenum solid solubility in gamma nickel, from 28 to 37.5 at % Mo. Although the microstructures observed by undercooling and melt spinning were similar the microsegregation pattern across the gamma dendries was different. The range of microstructures evolved was analyzed in terms of the nature of the primary phase to nucleate, its subsequent dendritic growth, coarsening and fragmentation, and final solidification of interfenderitic liquid.

  4. A semisynthetic strategy leads to alteration of the backbone amidate ligand in the NiSOD active site

    SciTech Connect (OSTI)

    Campecio, Julius O.; Dudycz, Lech W.; Tumelty, David; Berg, Volker; Cabelli, Diane E.; Maroney, Michael J.

    2015-07-01

    Computational investigations have implicated the amidate ligand in nickel superoxide dismutase (NiSOD) in stabilizing Ni-centered redox catalysis and in preventing cysteine thiolate ligand oxidation. To test these predictions, we have used an experimental approach utilizing a semisynthetic scheme that employs native chemical ligation of a pentapeptide (HCDLP) to recombinant S. coelicolor NiSOD lacking these N-terminal residues, N?5-NiSOD. Wild-type enzyme produced in this manner exhibits the characteristic spectral properties of recombinant WT-NiSOD and is as catalytically active. The semisynthetic scheme was also employed to construct a variant where the amidate ligand was converted to a secondary amine, H1*-NiSOD, a novel strategy that retains a backbone N-donor atom. The H1*-NiSOD variant was found to have only ~1% of the catalytic activity of the recombinant wild-type enzyme, and had altered spectroscopic properties. X-ray absorption spectroscopy reveals a four-coordinate planar site with N2S2-donor ligands, consistent with electronic absorption spectroscopic results indicating that the Ni center in H1*-NiSOD is mostly reduced in the as-isolated sample, as opposed to 50:50 Ni(II)/Ni(III) mixture that is typical for the recombinant wild-type enzyme. The EPR spectrum of as-isolated H1*-NiSOD accounts for ~11% of the Ni in the sample and is similar to WT-NiSOD, but more axial, with gz < gx,y. 14N-hyperfine is observed on gzNi(III) complex. As a result, the altered electronic properties and implications for redox catalysis are discussed in light of predictions based on synthetic and computational models.

  5. On characterisation of wire-arc-plasma-sprayed Ni on alumina substrate

    SciTech Connect (OSTI)

    Laik, A.; Chakravarthy, D.P.; Kale, G.B. . E-mail: gbkale@apsara.barc.ernet.in

    2005-08-15

    A study was carried out on metal-ceramic bonding produced by the technique of wire-arc-plasma spraying of Ni on Al{sub 2}O{sub 3} substrate. The Ni layer and the Ni/Al{sub 2}O{sub 3} interface were characterised using optical and electro-optic techniques. The plasma-deposited Ni layer shows a uniform lamellar microstructure throughout the cross-section. The metal-ceramic interface was found to be well bonded with no pores, flaws or cracks in the as-sprayed condition. The optical metallography and concentration profiles established with the help of an electron probe microanalyser confirmed the absence of any intermediate phase at the interface. An annealing treatment at 1273 K for 24 h on the plasma-coated samples did not result in formation of any intermetallic compound or spinel at the Ni/Al{sub 2}O{sub 3} interface. This indicates that the oxygen picked up by Ni during the spraying operation is less than the threshold value required to form the spinel NiAl{sub 2}O{sub 4}.

  6. Carbon-Supported IrNi Core-Shell Nanoparticles: Synthesis Characterization and Catalytic Activity

    SciTech Connect (OSTI)

    K Sasaki; K Kuttiyiel; L Barrio; D Su; A Frenkel; N Marinkovic; D Mahajan; R Adzic

    2011-12-31

    We synthesized carbon-supported IrNi core-shell nanoparticles by chemical reduction and subsequent thermal annealing in H{sub 2}, and verified the formation of Ir shells on IrNi solid solution alloy cores by various experimental methods. The EXAFS analysis is consistent with the model wherein the IrNi nanoparticles are composed of two-layer Ir shells and IrNi alloy cores. In situ XAS revealed that the Ir shells completely protect Ni atoms in the cores from oxidation or dissolution in an acid electrolyte under elevated potentials. The formation of Ir shell during annealing due to thermal segregation is monitored by time-resolved synchrotron XRD measurements, coupled with Rietveld refinement analyses. The H{sub 2} oxidation activity of the IrNi nanoparticles was found to be higher than that of a commercial Pt/C catalyst. This is predominantly due to Ni-core-induced Ir shell contraction that makes the surface less reactive for IrOH formation, and the resulting more metallic Ir surface becomes more active for H{sub 2} oxidation. This new class of core-shell nanoparticles appears promising for application as hydrogen anode fuel cell electrocatalysts.

  7. NREL Improves Hole Transport in Sensitized CdS-NiO Nanoparticle Photocathodes (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-01-01

    Significantly improved charge-collection efficiencies result from a general chemical approach to synthesizing photocathodes. It has been reported that a dye-sensitized nickel oxide (NiO) photocathode, when coupled to a dye-sensitized photoanode, could significantly increase overall solar conversion efficiency. However, the conversion efficiencies of these cells are still low. There has been much effort to improve the conversion efficiency by fabricating films with improved properties and developing more effective sensitizing dyes for p-type NiO. One of the factors limiting the use of NiO for solar cell application is the low hole conductivity in p-NiO. A team of researchers from the National Renewable Energy Laboratory (NREL) developed a general chemical approach to synthesize NiO-cadmium sulfide (CdS) core-shell nanoparticle films as photocathodes for p-type semiconductor-sensitized solar cells. Compared to dye-sensitized NiO photocathodes, the CdS-sensitized NiO cathodes exhibited two orders of magnitude faster hole transport (attributable to the passivation of surface traps by the CdS) and almost 100% charge-collection efficiencies.

  8. Fabrication of hollow mesoporous NiO hexagonal microspheres via hydrothermal process in ionic liquid

    SciTech Connect (OSTI)

    Zhao, Jinbo; School of Materials Science and Engineering, Shandong University, 250061, Jinan ; Wu, Lili; School of Materials Science and Engineering, Shandong University, 250061, Jinan ; Zou, Ke; School of Materials Science and Engineering, Shandong University, 250061, Jinan

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer Ni(OH){sub 2} precursors were synthesized in ionic liquid and water solution by hydrothermal method. Black-Right-Pointing-Pointer NiO hollow microspheres were prepared by thermal treatment of Ni(OH){sub 2} precursors. Black-Right-Pointing-Pointer NiO hollow microspheres were self-assembled by mesoporous cubic and hexagonal nanocrystals with high specific surface area. Black-Right-Pointing-Pointer The mesoporous structure is stable at 773 K. Black-Right-Pointing-Pointer The ionic liquid absorbed on the O-terminate surface of the crystals to form hydrogen bond and played key roles in determining the final shape of the NiO novel microstructure. -- Abstract: The novel NiO hexagonal hollow microspheres have been successfully prepared by annealing Ni(OH){sub 2}, which was synthesized via an ionic liquid-assisted hydrothermal method. The samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), transmission electron microscopy (TEM), N{sub 2} adsorption-desorption and Fourier transform infrared spectrometer (FTIR). The results show that the hollow NiO microstructures are self-organized by mesoporous cubic and hexagonal nanocrystals. The mesoporous structure possessed good thermal stability and high specific surface area (ca. 83 m{sup 2}/g). The ionic liquid 1-butyl-3methylimidazolium tetrafluoroborate ([Bmim][BF{sub 4}]) was found to play a key role in controlling the morphology of NiO microstructures during the hydrothermal process. The special hollow mesoporous architectures will have potential applications in many fields, such as catalysts, absorbents, sensors, drug-delivery carriers, acoustic insulators and supercapacitors.

  9. Structure Analysis of a Precipitate Phase in an Ni-Rich High Temperature NiTiHf Shape Memory Alloy

    SciTech Connect (OSTI)

    Yang, Fan; Coughlin, D. R.; Phillips, Patrick J.; Yang, L.; Devaraj, Arun; Kovarik, Libor; Noebe, Ronald D.; Mills, M. J.

    2013-03-22

    Thermal aging of the high temperature shape memory alloy 50.3Ni-29.7Ti-20Hf (at.%) introduces a novel precipitate phase, which plays an important role in improving shape memory properties. The precipitate phase was investigated by conventional electron diffraction, high resolution scanning transmission electron microscopy (STEM) and three dimensional atom probe tomography. An unrelaxed orthorhombic atomic structural model is proposed based on these observations. This model was subsequently relaxed by ab initio calculations. As a result of the relaxation, atom shuffle displacements occur, which in turn yields improved agreement with the STEM images. The relaxed structure, which is termed the H-phase, has also been verified to be thermodymanically stable at 0 K.

  10. Observation of spectral evolution during the formation of a Ni2 kondo molecule

    SciTech Connect (OSTI)

    Madhavan, V.; Jamneala, T.; Nagaoka, K.; Chen, W.; Li, Je-Luen; Louie, Steven G.; Crommie, M.F.

    2002-04-15

    We have used atomic manipulation and scanning tunneling spectroscopy to study the evolution in electronic properties that occurs as two Ni atoms are merged into a single magnetic molecule on Au(111). We observe energetic shifting of molecular d-orbitals and a strong decrease in the molecular Kondo temperature as Ni-Ni separation is reduced to 3.4+ or -0.3Angstroms. These results are qualitatively explained by a combination of spin-1/2-s-d model and density-functional calculations.

  11. Features of a priori heavy doping of the n-TiNiSn intermetallic semiconductor

    SciTech Connect (OSTI)

    Romaka, V. A.; Rogl, P.; Romaka, V. V.; Hlil, E. K.; Stadnyk, Yu. V.; Budgerak, S. M.

    2011-07-15

    The crystal structure, the distribution of electron density, and the energy, kinetic, and magnetic properties of the n-TiNiSn intermetallic semiconductor are investigated. It is shown that a priori doping of n-TiNiSn with donors originates from partial, up to 0.5 at %, redistribution of Ti and Ni atoms in crystallographic sites of Ti atoms. The correlation is established between the donor concentration, amplitude of modulation of the continuous energy bands, and degree of filling of low-scale fluctuation potential wells with charge carriers. The results obtained are discussed within the Shklovskii-Efros model of a heavily doped and compensated semiconductor.

  12. Structural evolution in Ti-Cu-Ni metallic glasses during heating

    SciTech Connect (OSTI)

    Gargarella, P.; Pauly, S.; Stoica, M.; Khn, U.; Vaughan, G.; Afonso, C. R. M.; Eckert, J.

    2015-01-01

    The structural evolution of Ti{sub 50}Cu{sub 43}Ni{sub 7} and Ti{sub 55}Cu{sub 35}Ni{sub 10} metallic glasses during heating was investigated by in-situ synchrotron X-ray diffraction. The width of the most intense diffraction maximum of the glassy phase decreases slightly during relaxation below the glass transition temperature. Significant structural changes only occur above the glass transition manifesting in a change in the respective peak positions. At even higher temperatures, nanocrystals of the shape memory B2-Ti(Cu,Ni) phase precipitate, and their small size hampers the occurrence of a martensitic transformation.

  13. Effects of aging on the characteristics of TiNiPd shape memory alloy thin films

    SciTech Connect (OSTI)

    Zhang Congchun

    2008-07-15

    TiNiPd thin films have been deposited on glass substrate using R.F. magnetron sputtering. Effects of annealing and aging on the microstructure, phase transformation behaviors and shape memory effects of these thin films have been studied by X-ray diffractometry, differential scanning calorimeter, tensile tests and internal friction characteristics. The TiNiPd thin films annealed at 750 deg. C exhibit uniform martensite/austenite transformations and shape memory effect. Aging at 450 deg. C for 1 h improved the uniformity of transformations and shape memory effect. Long time aging decreased transformation temperatures and increased the brittleness of TiNiPd thin films.

  14. Unoccupied electronic structure of Ni2MnGa ferromagnetic shape memory alloy

    SciTech Connect (OSTI)

    Maniraj, M.; D?Souza, S. W.; Rai, Abhishek; Schlagel, D. L.; Lograsso, T. A.; Chakrabarti, Aparna; Barman, S. R.

    2015-08-20

    Momentum resolved inverse photoemission spectroscopy measurements show that the dispersion of the unoccupied bands of Ni2MnGa is significant in the austenite phase. Furthermore, in the martensite phase, it is markedly reduced, which is possibly related to the structural transition to an incommensurate modulated state in the martensite phase. Finally, based on the first principle calculations of the electronic structure of NiMnGa, we show that the modification of the spectral shape with surface composition is related to change in the hybridization between the Mn 3d and Ni 3d-like states that dominate the unoccupied conduction band.

  15. AB INITIO STUDIES OF COKE FORMATION ON NI CATALYSTS DURING METHANE REFORMING

    SciTech Connect (OSTI)

    David S. Sholl

    2003-09-25

    The atomic-scale processes that control the formation of carbon deposits on Ni catalysts in reforming applications are poorly understood. Ab initio Density Functional Theory calculations have been used to examine several key elementary steps in the complex network of chemical reactions that precedes carbon formation on practical catalysts. Attention has been focused on the disproportionation of CO. A comparative study of this reaction on flat and stepped crystal planes of Ni has provided the first direct evidence that surface carbon formation is driven by elementary reactions occurring at defect sites on Ni catalysts.

  16. Modulation on Ni{sub 2}MnGa(001) surface (Journal Article) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Modulation on Ni{sub 2}MnGa(001) surface Citation Details In-Document Search Title: Modulation on Ni{sub 2}MnGa(001) surface We report periodic modulation on (001) surface of Ni2MnGa ferromagnetic shape memory alloy. For the stoichiometric surface, analysis of the low energy electron diffraction (LEED) spot profiles shows that the modulation is incommensurate. The modulation appears at 200 K, concomitant with the first order structural transition to the martensitic phase. Authors:

  17. Measuring relative performance of an EDS detector using a NiO standard.

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Technical Report: Measuring relative performance of an EDS detector using a NiO standard. Citation Details In-Document Search Title: Measuring relative performance of an EDS detector using a NiO standard. A method for measuring the relative performance of energy dispersive spectrometers (EDS) on a TEM is discussed. A NiO thin-film standard fabricated at Sandia CA is used. A performance parameter,, is measured and compared to values on several TEM systems.

  18. The effect of Au and Ni doping on the heavy fermion state of the Kondo

    Office of Scientific and Technical Information (OSTI)

    lattice antiferromagnet CePtZn (Journal Article) | SciTech Connect The effect of Au and Ni doping on the heavy fermion state of the Kondo lattice antiferromagnet CePtZn Citation Details In-Document Search Title: The effect of Au and Ni doping on the heavy fermion state of the Kondo lattice antiferromagnet CePtZn We have probed the effect of doping CePtZn with Au and Ni and also investigated in detail the magnetic behavior of the iso-structural CeAuZn. A magnetic ground state is observed in

  19. Developing El Niño The National Oceanic and Atmospheric Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Developing El Niño The National Oceanic and Atmospheric Administration (NOAA) recently announced the development of El Niño conditions in the tropical Pacific Ocean near the South American coastline. Scientists detected a 4ºF increase in the sea-surface temperatures during February. Conrad C. Lautenbacher, NOAA administrator and Under Secretary of Commerce for Oceans and Atmosphere, indicated that this warming is a sign that the Pacific Ocean is heading toward an El Niño condition.

  20. ARM - Lesson Plans: The Pacific and El Niño

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Pacific and El Niño Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Lesson Plans: The Pacific and El Niño Objective The objective is to illustrate and reinforce information with regard to changes in wind patterns during El Niño years by comparison with normal years and the role that

  1. Simulation of atomic diffusion in the Fcc NiAl system: A kinetic Monte

    Office of Scientific and Technical Information (OSTI)

    Carlo study (Journal Article) | SciTech Connect Simulation of atomic diffusion in the Fcc NiAl system: A kinetic Monte Carlo study Citation Details In-Document Search Title: Simulation of atomic diffusion in the Fcc NiAl system: A kinetic Monte Carlo study The atomic diffusion in fcc NiAl binary alloys was studied by kinetic Monte Carlo simulation. The environment dependent hopping barriers were computed using a pair interaction model whose parameters were fitted to relevant data derived

  2. TRENDS IN {sup 44}Ti AND {sup 56}Ni FROM CORE-COLLAPSE SUPERNOVAE (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect TRENDS IN {sup 44}Ti AND {sup 56}Ni FROM CORE-COLLAPSE SUPERNOVAE Citation Details In-Document Search Title: TRENDS IN {sup 44}Ti AND {sup 56}Ni FROM CORE-COLLAPSE SUPERNOVAE We compare the yields of {sup 44}Ti and {sup 56}Ni produced from post-processing the thermodynamic trajectories from three different core-collapse models-a Cassiopeia A progenitor, a double shock hypernova progenitor, and a rotating two-dimensional explosion-with the yields from exponential

  3. The new ternary pnictides Er{sub 12}Ni{sub 30}P{sub 21} and Er{sub

    Office of Scientific and Technical Information (OSTI)

    13}Ni{sub 25}As{sub 19}: Crystal structures and magnetic properties (Journal Article) | SciTech Connect The new ternary pnictides Er{sub 12}Ni{sub 30}P{sub 21} and Er{sub 13}Ni{sub 25}As{sub 19}: Crystal structures and magnetic properties Citation Details In-Document Search Title: The new ternary pnictides Er{sub 12}Ni{sub 30}P{sub 21} and Er{sub 13}Ni{sub 25}As{sub 19}: Crystal structures and magnetic properties The new ternary pnictides Er{sub 12}Ni{sub 30}P{sub 21} and Er{sub 13}Ni{sub

  4. Underground Injection Control Permit Applications for FutureGen 2.0 Morgan County Class VI UIC Wells 1, 2, 3, and 4

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FG-RPT-017 Revision 1 Underground Injection Control Permit Applications for FutureGen 2.0 Morgan County Class VI UIC Wells 1, 2, 3, and 4 SUPPORTING DOCUMENTATION March 2013 (Revised May 2013 in accordance with the U.S. Environmental Protection Agency's Completeness Review) Acknowledgment: This material is based upon work supported by the Department of Energy under Award Number DE-FE0001882. Disclaimer: This report was prepared as an account of work sponsored by an agency of the United States

  5. Significant Reduction in NiO Band Gap upon Formation of LixNi1?xO Alloys: Applications to Solar Energy Conversion

    SciTech Connect (OSTI)

    Alidoust, Nima; Toroker, Maytal; Keith, John A.; Carter, Emily A.

    2014-01-01

    Long-term sustainable solar energy conversion relies on identifying economical and versatile semiconductor materials with appropriate band structures for photovoltaic and photocatalytic applications (e.g., band gaps of ?1.52.0 eV). Nickel oxide (NiO) is an inexpensive yet highly promising candidate. Its charge-transfer character may lead to longer carrier lifetimes needed for higher efficiencies, and its conduction band edge is suitable for driving hydrogen evolution via water-splitting. However, NiOs large band gap (?4 eV) severely limits its use in practical applications. Our first-principles quantum mechanics calculations show band gaps dramatically decrease to ?2.0 eV when NiO is alloyed with Li2O. We show that LixNi1?xO alloys (with x=0.125 and 0.25) are p-type semiconductors, contain states with no impurity levels in the gap and maintain NiOs desirable charge-transfer character. Lastly, we show that the alloys have potential for photoelectrochemical applications, with band edges well-placed for photocatalytic hydrogen production and CO2 reduction, as well as in tandem dye-sensitized solar cells as a photocathode.

  6. A semisynthetic strategy leads to alteration of the backbone amidate ligand in the NiSOD active site

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Campeciño, Julius O.; Dudycz, Lech W.; Tumelty, David; Berg, Volker; Cabelli, Diane E.; Maroney, Michael J.

    2015-07-01

    Computational investigations have implicated the amidate ligand in nickel superoxide dismutase (NiSOD) in stabilizing Ni-centered redox catalysis and in preventing cysteine thiolate ligand oxidation. To test these predictions, we have used an experimental approach utilizing a semisynthetic scheme that employs native chemical ligation of a pentapeptide (HCDLP) to recombinant S. coelicolor NiSOD lacking these N-terminal residues, NΔ5-NiSOD. Wild-type enzyme produced in this manner exhibits the characteristic spectral properties of recombinant WT-NiSOD and is as catalytically active. The semisynthetic scheme was also employed to construct a variant where the amidate ligand was converted to a secondary amine, H1*-NiSOD, a novel strategymore » that retains a backbone N-donor atom. The H1*-NiSOD variant was found to have only ~1% of the catalytic activity of the recombinant wild-type enzyme, and had altered spectroscopic properties. X-ray absorption spectroscopy reveals a four-coordinate planar site with N2S2-donor ligands, consistent with electronic absorption spectroscopic results indicating that the Ni center in H1*-NiSOD is mostly reduced in the as-isolated sample, as opposed to 50:50 Ni(II)/Ni(III) mixture that is typical for the recombinant wild-type enzyme. The EPR spectrum of as-isolated H1*-NiSOD accounts for ~11% of the Ni in the sample and is similar to WT-NiSOD, but more axial, with gz < gx,y. 14N-hyperfine is observed on gz« less

  7. VI-1 PAPERS PUBLISHED

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    -ray strength function method, H. Utsunomiya, S. Goriely, M. Kamata, H. Akimune, T. Kondo, O. Itoh, C. Iwamoto, T. Yamagata, H. Toyokawa, Y.-W. Lui, H. Harada, F. Kitatani, S....

  8. VI-1 TALKS PRESENTED

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... The 27 th Texas Symposium on Relativistic Astrophysics, Dallas, Texas (December 2013). ... XXVII Texas Symposium on Relativistic Astrophysics, Dallas, Texas (December 2013). ...

  9. VI-1 PAPERS PUBLISHED

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 - March 31, 2012 Isoscalar giant resonances in 48 Ca, Y.-W. Lui, D. H. Youngblood, S. Shlomo, X. Chen, Y. Tokimoto, Krishichayan, M. Anders, and J. Button, Phys. Rev. C 83, 044327 (2011). Experimental validation of the largest calculated isospin-symmetry-breaking effect in a superallowed Fermi decay, D. Melconian, S. Triambak, C. Bordeanu, A. Garcia, J.C. Hardy, V.E. Iacob, N. Nica, H.I. Park, G. Tabacaru, L. Trache, I.S. Towner, R.E. Tribble and Y. Zhai, Phys. Rev. Lett. 107, 182301 (2011).

  10. VI-1 TALKS PRESENTED

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 - March 31, 2013 Low energy nuclear physics facilities in the US and opportunities for ... on the Intersections of Particle and Nuclear Physics, St. Petersburg, Florida (May 2012). ...

  11. Measuring relative performance of an EDS detector using a NiO...

    Office of Scientific and Technical Information (OSTI)

    performance of energy dispersive spectrometers (EDS) on a TEM is discussed. A NiO thin-film standard fabricated at Sandia CA is used. A performance parameter,, is measured...

  12. Electronic Structure and Lattice Dynamics of the Magnetic Shape Memory Alloy Co2NiGa

    SciTech Connect (OSTI)

    Siewert, M.; Shapiro, S.; Gruner, M.E.; Dannenberg, A.; Hucht, A.; Xu, G.; Schlagel, D.L.; Lograsso, T.A.; Entel1, P.

    2010-08-20

    In addition to the prototypical Ni-Mn-based Heusler alloys, the Co-Ni-Ga systems have recently been suggested as another prospective materials class for magnetic shape-memory applications. We provide a characterization of the dynamical properties of this material and their relation to the electronic structure within a combined experimental and theoretical approach. This relies on inelastic neutron scattering to obtain the phonon dispersion while first-principles calculations provide the link between dynamical properties and electronic structure. In contrast to Ni{sub 2}MnGa, where the softening of the TA{sub 2} phonon branch is related to Fermi-surface nesting, our results reveal that the respective anomalies are absent in Co-Ni-Ga, in the phonon dispersions as well as in the electronic structure.

  13. Modeling and Characterization of the Magnetocaloric Effect in Ni2MnGa Materials

    SciTech Connect (OSTI)

    Nicholson, Don M; Odbadrakh, Khorgolkhuu; Rios, Orlando; Hodges, Jason P; Ludtka, Gerard Michael; Porter, Wallace D; Sefat, A. S.; Rusanu, Aurelian; Evans III, Boyd Mccutchen

    2012-01-01

    Magnetic shape memory alloys have great promise as magneto-caloric effect refrigerant materials due to their combined magnetic and structural transitions. Computational and experimental research is reported on the Ni2MnGa material system. The magnetic states of this system have been explored using the Wang-Landau statistical approach in conjunction with the Locally Self-consistent Multiple-Scattering (LSMS) method to explore the magnetic states responsible for the magnet-caloric effect in this material. The effects of alloying agents on the transition temperatures of the Ni2MnGa alloy were investigated using differential scanning calorimetry (DSC) and superconducting quantum interference device (SQUID). Neutron scattering experiments were performed to observe the structural and magnetic phase transformations at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL) on alloys of Ni-Mn-Ga and Ni-Mn-Ga-Cu-Fe. Data from the observations are discussed in comparison with the computational studies.

  14. Microstructural evaluation of NiTi-based films deposited by magnetron sputtering

    SciTech Connect (OSTI)

    Cr?ciunescu, Corneliu M. Mitelea, Ion Bud?u, Victor; Ercu?a, Aurel

    2014-11-24

    Shape memory alloy films belonging to the NiTi-based systems were deposited on heated and unheated substrates, by magnetron sputtering in a custom made system, and their structure and composition was analyzed using electron microscopy. Several substrates were used for the depositions: glass, Cu-Zn-Al, Cu-Al-Ni and Ti-NiCu shape memory alloy ribbons and kapton. The composition of the Ti-Ni-Cu films showed limited differences, compared to the one of the target and the microstructure for the DC magnetron sputtering revealed crystallized structure with features determined on peel off samples from a Si wafer. Both inter and transcrystalline fractures were observed and related to the interfacial stress developed on cooling from deposition temperature.

  15. AB INITIO STUDIES OF COKE FORMATION ON NI CATALYSTS DURING METHANE REFORMING

    SciTech Connect (OSTI)

    David S. Sholl

    2004-09-25

    The atomic-scale processes that control the formation of carbon deposits on Ni catalysts in reforming applications are poorly understood. Ab initio Density Functional Theory calculations have been used to examine several key elementary steps in the complex network of chemical reactions that precedes carbon formation on practical catalysts. Attention has been focused on the disproportionation of CO. A comparative study of this reaction on flat and stepped crystal planes of Ni has provided the first direct evidence that surface carbon formation is driven by elementary reactions occurring at defect sites on Ni catalysts. The adsorption and diffusion of atomic H on several flat and stepped Ni surfaces has also been characterized experimentally.

  16. Ab Initio Studies of Coke Formation on Ni Catalysts During Methane Reforming

    SciTech Connect (OSTI)

    David S. Sholl

    2006-03-05

    The atomic-scale processes that control the formation of carbon deposits on Ni catalysts in reforming applications are poorly understood. Ab initio Density Functional Theory calculations have been used to examine several key elementary steps in the complex network of chemical reactions that precedes carbon formation on practical catalysts. Attention has been focused on the disproportionation of CO. A comparative study of this reaction on flat and stepped crystal planes of Ni has provided the first direct evidence that surface carbon formation is driven by elementary reactions occurring at defect sites on Ni catalysts. The adsorption and diffusion of atomic H on several flat and stepped Ni surfaces has also been characterized experimentally.

  17. Thermodynamic modeling and experimental validation of the Fe-Al-Ni-Cr-Mo alloy system

    SciTech Connect (OSTI)

    Teng, Zhenke; Zhang, F; Miller, Michael K; Liu, Chain T; Huang, Shenyan; Chou, Y.T.; Tien, R; Chang, Y A; Liaw, Peter K

    2012-01-01

    NiAl-type precipitate-strengthened ferritic steels have been known as potential materials for the steam turbine applications. In this study, thermodynamic descriptions of the B2-NiAl type nano-scaled precipitates and body-centered-cubic (BCC) Fe matrix phase for four alloys based on the Fe-Al-Ni-Cr-Mo system were developed as a function of the alloy composition at the aging temperature. The calculated phase structure, composition, and volume fraction were validated by the experimental investigations using synchrotron X-ray diffraction and atom probe tomography. With the ability to accurately predict the key microstructural features related to the mechanical properties in a given alloy system, the established thermodynamic model in the current study may significantly accelerate the alloy design process of the NiAl-strengthened ferritic steels.

  18. Thermal properties of Ni-substituted LaCoO{sub 3} perovskite

    SciTech Connect (OSTI)

    Thakur, Rasna Thakur, Rajesh K. Gaur, N. K.; Srivastava, Archana

    2014-04-24

    With the objective of exploring the unknown thermodynamic behavior of LaCo{sub 1?x}Ni{sub x}O{sub 3} family, we present here an investigation of the temperature-dependent (10K ? T ? 300K) thermodynamic properties of LaCo{sub 1?x}Ni{sub x}O{sub 3} (x=0.1, 0.3, 0.5). The specific heat of LaCoO3 with Ni doping in the perovskite structure at B-site has been studied by means of a Modified Rigid Ion Model (MRIM). This replacement introduces large cation variance at B-site hence the specific heat increases appreciably. We report here probably for the first time the cohesive energy, Reststrahlen frequency (?) and Debye temperature (?{sub D}) of LaCo{sub 1?x}Ni{sub x}O{sub 3} compounds.

  19. Pressure-Induced Structural Phase Transition in CeNi: X-ray and...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Pressure-Induced Structural Phase Transition in CeNi: X-ray and Neutron Scattering Studies and First-Principles Calculations Citation Details In-Document Search...

  20. Isoscalar and neutron modes in the E 1 spectra of Ni isotopes...

    Office of Scientific and Technical Information (OSTI)

    Title: Isoscalar and neutron modes in the E 1 spectra of Ni isotopes and the relevance of shell effects and the continuum Authors: Papakonstantinou, P. ; Hergert, H. ; Roth, R. ...

  1. Identification of Highly Active Fe Sites in (Ni,Fe)OOH for Electrocata...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of site specific OER overpotentials using DFT+U reveals the origin of enhanced OER activity in Fe-doped -NiOOH, in which Fe sites have near-optimum binding energies for...

  2. Contact-induced spin polarization of monolayer hexagonal boron nitride on Ni(111)

    SciTech Connect (OSTI)

    Ohtomo, Manabu; Entani, Shiro; Matsumoto, Yoshihiro; Naramoto, Hiroshi; Sakai, Seiji; Yamauchi, Yasushi; Kuzubov, Alex A.; Eliseeva, Natalya S.; Avramov, Pavel V.

    2014-02-03

    Hexagonal boron nitride (h-BN) is a promising barrier material for graphene spintronics. In this Letter, spin-polarized metastable de-excitation spectroscopy (SPMDS) is employed to study the spin-dependent electronic structure of monolayer h-BN/Ni(111). The extreme surface sensitivity of SPMDS enables us to elucidate a partial filling of the in-gap states of h-BN without any superposition of Ni 3d signals. The in-gap states are shown to have a considerable spin polarization parallel to the majority spin of Ni. The positive spin polarization is attributed to the π-d hybridization and the effective spin transfer to the nitrogen atoms at the h-BN/Ni(111) interface.

  3. Ni-Si Alloys for the S-I Reactor-Hydrogen Production Process Interface

    SciTech Connect (OSTI)

    Joseph W. Newkirk; Richard K. Brow

    2010-01-21

    The overall goal of this project was to develop Ni-Si alloys for use in vessels to contain hot, pressurized sulfuric acid. The application was to be in the decomposition loop of the thermochemical cycle for production of hydrogen.

  4. Neutron Scattering of CeNi at the Spallation Neutron Source at...

    Office of Scientific and Technical Information (OSTI)

    Title: Neutron Scattering of CeNi at the Spallation Neutron Source at Oak Ridge National Laboratory: A Preliminary Report Authors: Tobin, J G ; Mirmelstein, A V ; Podlesnyak, A ; ...

  5. Hydrogen absorption characteristics of amorphous LaNi[sub 5. 0] films prepared by reactive sputtering

    SciTech Connect (OSTI)

    Sakaguchi, H.; Tsujimoto, T.; Adachi, Ginya (Osaka University, Suita (Japan))

    1993-01-01

    Amorphous LaNi[sub 5] thin films are expected to be one of the promising materials for use in hydrogen separation and battery electrodes, because the durability of the films is great in regard to the hydrogen absorption-desorption cycling process and the films have excellent resistance to harmful impurities in the hydrogen gas in comparison with the crystalline bulk material. An amorphous LaNi[sub 5.0] film having high hydrogen density and low hydrogen-induced stress was obtained by means of a reactive sputtering method using an Ar-H[sub 2] gas mixture. Pressure-composition isotherms show that the amount of hydrogen (H/LaNi[sub 5.0]) taken up by a formula weight of LaNi[sub 5.0] is about 1.5 times larger for the reactive sputtered film than for the conventional sputtered film prepared by using Ar gas. 18 refs., 1 fig, 1 tabs.

  6. Heat treatment of NiCrFe alloy to optimize resistance to intergrannular stress corrosion

    DOE Patents [OSTI]

    Steeves, Arthur F. (Schenectady, NY); Bibb, Albert E. (Clifton Park, NY)

    1984-01-01

    A process of producing a NiCrFe alloy having a high resistance to stress corrosion cracking comprising heating a NiCrFe alloy to a temperature sufficient to enable the carbon present in the alloy body in the form of carbide deposits to enter into solution, rapidly cool the alloy body, and heat the cooled body to a temperature between 1100.degree. to 1500.degree. F. for about 1 to 30 hours.

  7. Experimental determination of band offsets of NiO-based thin film heterojunctions

    SciTech Connect (OSTI)

    Kawade, Daisuke; Sugiyama, Mutsumi, E-mail: mutsumi@rs.noda.tus.ac.jp [Faculty of Science and Technology/Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510 (Japan); Chichibu, Shigefusa F. [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 9808577 (Japan)

    2014-10-28

    The energy band diagrams of NiO-based solar cell structures that use various n-type oxide semiconductors such as ZnO, Mg{sub 0.3}Zn{sub 0.7}O, Zn{sub 0.5}Sn{sub 0.5}O, In{sub 2}O{sub 3}:Sn (ITO), SnO{sub 2}, and TiO{sub 2} were evaluated by photoelectron yield spectroscopy. The valence band discontinuities were estimated to be 1.6?eV for ZnO/NiO and Mg{sub 0.3}Zn{sub 0.7}O/NiO, 1.7?eV for Zn{sub 0.5}Sn{sub 0.5}O/NiO and ITO/NiO, and 1.8?eV for SnO{sub 2}/NiO and TiO{sub 2}/NiO heterojunctions. By using the valence band discontinuity values and corresponding energy bandgaps of the layers, energy band diagrams were developed. Judging from the band diagram, an appropriate solar cell consisting of p-type NiO and n-type ZnO layers was deposited on ITO, and a slight but noticeable photovoltaic effect was obtained with an open circuit voltage (V{sub oc}) of 0.96?V, short circuit current density (J{sub sc}) of 2.2??A/cm{sup 2}, and fill factor of 0.44.

  8. Pressure-Induced Structural Phase Transition in CeNi: X-ray and Neutron

    Office of Scientific and Technical Information (OSTI)

    Scattering Studies and First-Principles Calculations (Journal Article) | SciTech Connect Journal Article: Pressure-Induced Structural Phase Transition in CeNi: X-ray and Neutron Scattering Studies and First-Principles Calculations Citation Details In-Document Search This content will become publicly available on August 3, 2016 Title: Pressure-Induced Structural Phase Transition in CeNi: X-ray and Neutron Scattering Studies and First-Principles Calculations The pressure-induced structural

  9. Rationalization of Au concentration and distribution in AuNi@Pt core-shell

    Office of Scientific and Technical Information (OSTI)

    nanoparticles for oxygen reduction reaction (Journal Article) | SciTech Connect Rationalization of Au concentration and distribution in AuNi@Pt core-shell nanoparticles for oxygen reduction reaction Citation Details In-Document Search This content will become publicly available on September 18, 2016 Title: Rationalization of Au concentration and distribution in AuNi@Pt core-shell nanoparticles for oxygen reduction reaction Improving the activity and stability of Pt-based core-shell

  10. Isoscalar and neutron modes in the E 1 spectra of Ni isotopes and the

    Office of Scientific and Technical Information (OSTI)

    relevance of shell effects and the continuum (Journal Article) | SciTech Connect Isoscalar and neutron modes in the E 1 spectra of Ni isotopes and the relevance of shell effects and the continuum Citation Details In-Document Search This content will become publicly available on September 13, 2016 Title: Isoscalar and neutron modes in the E 1 spectra of Ni isotopes and the relevance of shell effects and the continuum Authors: Papakonstantinou, P. ; Hergert, H. ; Roth, R. Publication Date:

  11. Shape-memory transformations of NiTi: Minimum-energy pathways between

    Office of Scientific and Technical Information (OSTI)

    austenite, martensites, and kinetically limited intermediate states (Journal Article) | SciTech Connect Shape-memory transformations of NiTi: Minimum-energy pathways between austenite, martensites, and kinetically limited intermediate states Citation Details In-Document Search Title: Shape-memory transformations of NiTi: Minimum-energy pathways between austenite, martensites, and kinetically limited intermediate states × You are accessing a document from the Department of Energy's (DOE)

  12. Static critical phenomena in Co-Ni-Ga ferromagnetic shape memory alloy

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Static critical phenomena in Co-Ni-Ga ferromagnetic shape memory alloy Citation Details In-Document Search Title: Static critical phenomena in Co-Ni-Ga ferromagnetic shape memory alloy Ferromagnetic shape memory alloys are smart materials because they exhibit temperature driven shape memory effect and magnetic field induced strain. Thus two types of energy, i.e. thermal and magnetic, are used to control their shape memory behaviour. Study of critical

  13. Tailoring the physical properties of Ni-based single-phase equiatomic

    Office of Scientific and Technical Information (OSTI)

    alloys by modifying the chemical complexity (Journal Article) | DOE PAGES Tailoring the physical properties of Ni-based single-phase equiatomic alloys by modifying the chemical complexity This content will become publicly available on January 1, 2017 « Prev Next » Title: Tailoring the physical properties of Ni-based single-phase equiatomic alloys by modifying the chemical complexity We discovered that equiatomic alloys (e.g. high entropy alloys) have recently attracted considerable

  14. Updates to the ORIGEN-S Cross-Section Libraries Using ENDF-VI, EAF-99, and FENDL-2.0

    SciTech Connect (OSTI)

    Murphy, B.D.

    2004-11-04

    The standard cross-section library for light-water reactor (LWR) analyses used by the ORIGEN-S depletion and decay code has been extensively updated. This work entailed the development of broad multigroup neutron cross sections for ORIGEN-S from several sources of pointwise continuous-energy cross-section evaluations, including the U.S. Evaluated Nuclear Data Files ENDF/B-VI Release 7, the Fusion Evaluated Nuclear Data Library FENDL-2.0, and the European Activation File EAF-99. The pointwise cross sections were collapsed to a three-group structure using a continuous-energy neutron flux spectrum representative of the typical neutronic conditions of typical LWR fuel and formatted for use by ORIGEN-S. In addition, the fission-product library has been expanded to include ENDF/B-VI fission yield data for 30 fissionable actinides. The processing codes and procedures are explained. Preliminary verification studies using the updated libraries were performed using the modules of the SCALE (Standardized Computer Analyses for Licensing Evaluation) system. Comparisons between the previous basic ORIGEN-S libraries and the updated libraries developed in this work are presented.

  15. An Update on Improvements to NiCE Support for RELAP-7

    SciTech Connect (OSTI)

    McCaskey, Alex; Wojtowicz, Anna; Deyton, Jordan H.; Patterson, Taylor C.; Billings, Jay Jay

    2015-01-01

    The Multiphysics Object-Oriented Simulation Environment (MOOSE) is a framework that facilitates the development of applications that rely on finite-element analysis to solve a coupled, nonlinear system of partial differential equations. RELAP-7 represents an update to the venerable RELAP-5 simulator that is built upon this framework and attempts to model the balance-of-plant concerns in a full nuclear plant. This report details the continued support and integration of RELAP-7 and the NEAMS Integrated Computational Environment (NiCE). RELAP-7 is fully supported by the NiCE due to on-going work to tightly integrate NiCE with the MOOSE framework, and subsequently the applications built upon it. NiCE development throughout the first quarter of FY15 has focused on improvements, bug fixes, and feature additions to existing MOOSE-based application support. Specifically, this report will focus on improvements to the NiCE MOOSE Model Builder, the MOOSE application job launcher, and the 3D Nuclear Plant Viewer. This report also includes a comprehensive tutorial that guides RELAP-7 users through the basic NiCE workflow: from input generation and 3D Plant modeling, to massively parallel job launch and post-simulation data visualization.

  16. Innovative Use of Cr(VI) Plume Depictions and Pump-and-Treat Capture Analysis to Estimate Risks of Contaminant Discharge to Surface Water at Hanford Reactor Areas

    SciTech Connect (OSTI)

    Miller, Chuck W.; Hanson, James P.; Ivarson, Kristine A.; Tonkin, M.

    2015-01-14

    The Hanford Site nuclear reactor operations required large quantities of high-quality cooling water, which was treated with chemicals including sodium dichromate dihydrate for corrosion control. Cooling water leakage, as well as intentional discharge of cooling water to ground during upset conditions, produced extensive groundwater recharge mounds consisting largely of contaminated cooling water and resulted in wide distribution of hexavalent chromium (Cr[VI]) contamination in the unconfined aquifer. The 2013 Cr(VI) groundwater plumes in the 100 Areas cover approximately 6 km2 (1500 acres), primarily in the 100-HR-3 and 100-KR-4 groundwater operable units (OUs). The Columbia River is a groundwater discharge boundary; where the plumes are adjacent to the Columbia River there remains a potential to discharge Cr(VI) to the river at concentrations above water quality criteria. The pump-and-treat systems along the River Corridor are operating with two main goals: 1) protection of the Columbia River, and 2) recovery of contaminant mass. An evaluation of the effectiveness of the pump-and-treat systems was needed to determine if the Columbia River was protected from contamination, and also to determine where additional system modifications may be needed. In response to this need, a technique for assessing the river protection was developed which takes into consideration seasonal migration of the plume and hydraulic performance of the operating well fields. Groundwater contaminant plume maps are generated across the Hanford Site on an annual basis. The assessment technique overlays the annual plume and the capture efficiency maps for the various pump and treat systems. The river protection analysis technique was prepared for use at the Hanford site and is described in detail in M.J. Tonkin, 2013. Interpolated capture frequency maps, based on mapping dynamic water level observed in observation wells and derived water levels in the vicinity of extraction and injection wells, are developed initially. Second, simulated capture frequency maps are developed, based on transport modelling results. Both interpolated and simulated capture frequency maps are based on operation of the systems over a full year. These two capture maps are then overlaid on the plume distribution maps for inspection of the relative orientation of the contaminant plumes with the capture frequency. To quantify the relative degree of protection of the river from discharges of Cr(VI) (and conversely, the degree of threat) at any particular location, a systematic method of evaluating and mapping the plume/capture relationship was developed. By comparing the spatial relationship between contaminant plumes and hydraulic capture frequency, an index of relative protectiveness is developed and the results posted on the combined plume/capture plan view map. Areas exhibiting lesser degrees of river protection are identified for remedial process optimization actions to control plumes and prevent continuing discharge of Cr(VI) to the river.

  17. Metallic glass alloys of Zr, Ti, Cu and Ni

    DOE Patents [OSTI]

    Lin, Xianghong (Pasadena, CA); Peker, Atakan (Pasadena, CA); Johnson, William L. (Pasadena, CA)

    1997-01-01

    At least quaternary alloys form metallic glass upon cooling below the glass transition temperature at a rate less than 10.sup.3 K/s. Such alloys comprise titanium from 19 to 41 atomic percent, an early transition metal (ETM) from 4 to 21 atomic percent and copper plus a late transition metal (LTM) from 49 to 64 atomic percent. The ETM comprises zirconium and/or hafnium. The LTM comprises cobalt and/or nickel. The composition is further constrained such that the product of the copper plus LTM times the atomic proportion of LTM relative to the copper is from 2 to 14. The atomic percentage of ETM is less than 10 when the atomic percentage of titanium is as high as 41, and may be as large as 21 when the atomic percentage of titanium is as low as 24. Furthermore, when the total of copper and LTM are low, the amount of LTM present must be further limited. Another group of glass forming alloys has the formula (ETM.sub.1-x Ti.sub.x).sub.a Cu.sub.b (Ni.sub.1-y Co.sub.y).sub.c wherein x is from 0.1 to 0.3, y.cndot.c is from 0 to 18, a is from 47 to 67, b is from 8 to 42, and c is from 4 to 37. This definition of the alloys has additional constraints on the range of copper content, b.

  18. Electrochemical Testing of Ni-Cr-Mo-Gd Alloys

    SciTech Connect (OSTI)

    T. E. Lister; R. E. Mizia; H. Tian

    2005-10-01

    The waste package site recommendation design specified a boron-containing stainless steel, Neutronit 976/978, for fabrication of the internal baskets that will be used as a corrosion-resistant neutron-absorbing material. Recent corrosion test results gave higher-than-expected corrosion rates for this material. The material callout for these components has been changed to a Ni-Cr-Mo-Gd alloy (ASTM-B 932-04, UNS N06464) that is being developed at the Idaho National Laboratory. This report discusses the results of initial corrosion testing of this material in simulated in-package environments that could contact the fuel baskets after breach of the waste package outer barrier. The corrosion test matrix was executed using the potentiodynamic and potentiostatic electrochemical test techniques. The alloy performance shows low rates of general corrosion after initial removal of a gadolinium-rich second phase that intersects the surface. The high halide-containing test solutions exhibited greater tendencies toward initiation of crevice corrosion.

  19. Interplay between out-of-plane anisotropic L1{sub 1}-type CoPt and in-plane anisotropic NiFe layers in CoPt/NiFe exchange springs

    SciTech Connect (OSTI)

    Saravanan, P.; Hsu, Jen-Hwa Tsai, C. L.; Tsai, C. Y.; Lin, Y. H.; Kuo, C. Y.; Wu, J.-C.; Lee, C.-M.

    2014-06-28

    Films of L1{sub 1}-type CoPt/NiFe exchange springs were grown with different NiFe (Permalloy) layer thickness (t{sub NiFe} = 0–10 nm). X-ray diffraction analysis reveals that the characteristic peak position of NiFe(111) is not affected by the CoPt-layer—confirming the absence of any inter-diffusion between the CoPt and NiFe layers. Magnetic studies indicate that the magnetization orientation of NiFe layer can be tuned through varying t{sub NiFe} and the perpendicular magnetic anisotropy of L1{sub 1}-type CoPt/NiFe films cannot sustain for t{sub NiFe} larger than 3.0 nm due to the existence of exchange interaction at the interface of L1{sub 1}-CoPt and NiFe layers. Magnetic force microscopy analysis on the as-grown samples shows the changes in morphology from maze-like domains with good contrast to hazy domains when t{sub NiFe} ≥ 3.0 nm. The three-dimensional micro-magnetic simulation results demonstrate that the magnetization orientation in NiFe layer is not uniform, which continuously increases from the interface to the top of NiFe layer. Furthermore, the tilt angle of the topmost NiFe layers can be changed over a very wide range from a small number to about 75° by varying t{sub NiFe} from 1 to 10 nm. It is worth noting that there is an abrupt change in the magnetization direction at the interface, for all the t{sub NiFe} investigated. The results of present study demonstrate that the tunable tilted exchange springs can be realized with L1{sub 1}-type CoPt/NiFe bilayers for future applications in three-axis magnetic sensors or advanced spintronic devices demanding inclined magnetic anisotropy.

  20. Insulating and metallic spin glass in Ni-doped KxFe2-ySe? single crystals

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ryu, Hyejin; Abeykoon, Milinda; Wang, Kefeng; Lei, Hechang; Lazarevic, N.; Warren, J. B.; Bozin, E. S.; Popovic, Z. V.; Petrovic, C.

    2015-05-04

    We report electron doping effects by Ni in KxFe2-?-yNiySe? (0.06 ? y ? 1.44) single crystal alloys. A rich ground state phase diagram is observed. A small amount of Ni (~ 4%) suppressed superconductivity below 1.8 K, inducing insulating spin glass magnetic ground state for higher Ni content. With further Ni substitution, metallic resistivity is restored. For high Ni concentration in the lattice the unit cell symmetry is high symmetry I4/mmm with no phase separation whereas both I4/m + I4/mmm space groups were detected in the phase separated crystals when concentration of Ni morewith the absence of crystalline Fe vacancy order.less

  1. Observation of Precipitation Evolution in Fe-Ni-Mn-Ti-Al Maraging Steel using Atom Probe Tomography

    SciTech Connect (OSTI)

    Pereloma, E. V.; Stohr, R A; Miller, Michael K; Ringer, S. P.

    2009-01-01

    We describe the full decomposition sequence in an Fe-Ni-Mn-Ti-Al maraging steel during isothermal annealing at 550 C. Following significant pre-precipitation clustering reactions within the supersaturated martensitic solid solution, (Ni,Fe){sub 3}Ti and (Ni,Fe){sub 3}(Al,Mn) precipitates eventually form after isothermal aging for {approx}60 seconds. The morphology of the (Ni,Fe){sub 3}Ti particles changes gradually during aging from predominantly plate-like to rod-like, and, importantly, Mn and Al were observed to segregate to these precipitate/matrix interfaces. The (Ni,Fe){sub 3}(Al,Mn) precipitates occurred at two main locations: uniformly within the matrix and at the periphery of the (Ni,Fe){sub 3}Ti particles. We relate this latter mode of precipitation to the Mn-Al segregation.

  2. Magnetic structures of R5Ni2In4 and R 11Ni4In9 ( R = Tb and Ho): strong hierarchy in the temperature dependence of the magnetic ordering in the multiple rare-earth sublattices

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ritter, C.; Provino, A.; Manfrinetti, P.; Pecharsky, V. K.; Gschneidner, K. A.; Dhar, S. K.

    2015-11-09

    The magnetic properties and magnetic structures of the R5Ni2In4 and the microfibrous R 11Ni4In9 compounds with R = Tb and Ho have been examined using magnetization, heat capacity, and neutron diffraction data. Rare earth atoms occupy three and five symmetrically inequivalent rare earth sites in R5Ni2In4 and R 11Ni4In9 compounds, respectively. As a result of the intra- and inter-magnetic sublattice interactions, the magnetic exchange interactions are different for various rare earth sites; this leads to a cascade of magnetic transitions with a strong hierarchy in the temperature dependence of the magnetic orderings.

  3. Exploring the influence of transfer channels on fusion reactions: The case of 40 Ca + 58,64 Ni

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bourgin, D.; Courtin, S.; Haas, F.; Goasduff, A.; Stefanini, A. M.; Montagnoli, G.; Montanari, D.; Corradi, L.; Huiming, J.; Scarlassara, F.; et al

    2015-01-29

    Fusion cross sections have been measured in the 40Ca + 58Ni and 40Ca + 64Ni systems at beam energies ranging from Elab = 104.75 MeV to 153.5 MeV using the Laboratori Nazionali di Legnaro electrostatic deflector. Distributions of barriers have been extracted from the experimental data. Preliminary coupled channel calculations were performed and hints of effects of neutron transfers on the fusion below the barrier in the 40Ca + 64Ni are discussed.

  4. In Situ Time-Resolved Characterization of Ni-MoO2 Catalysts for the Water-Gas Shift Reaction

    SciTech Connect (OSTI)

    Wen,W.; Calderon, J.; Brito, J.; Marinkovic, N.; Hanson, J.; Rodriquez, J.

    2008-01-01

    Active catalysts for the water-gas shift (WGS, CO + H2O ? H2 + CO2) reaction were synthesized from nickel molybdates ({beta}-NiMoO4 and nH2O{center_dot}NiMoO4) as precursors, and their structural transformations were monitored using in situ time-resolved X-ray diffraction and X-ray absorption near-edge spectroscopy. In general, the nickel molybdates were not stable and underwent partial reduction in the presence of CO or CO/H2O mixtures at high temperatures. The interaction of {beta}-NiMoO4 with the WGS reactants at 500 C led to the formation of a mixture of Ni (24 nm particle size) and MoO2 (10 nm particle size). These Ni-MoO2 systems displayed good catalytic activity at 350, 400, and 500 C. At 350 and 400 C, catalytic tests revealed that the Ni-MoO2 system was much more active than isolated Ni (some activity) or isolated MoO2 (negligible activity). Thus, cooperative interactions between the admetal and oxide support were probably responsible for the high WGS activity of Ni-MoO2. In a second synthetic approach, the NiMoO4 hydrate was reduced to a mixture of metallic Ni, NiO, and amorphous molybdenum oxide by direct reaction with H2 gas at 350 C. In the first pass of the water-gas shift reaction, MoO2 appeared gradually at 500 C with a concurrent increase of the catalytic activity. For these catalysts, the particle size of Ni (4 nm) was much smaller than that of the MoO2 (13 nm). These systems were found to be much more active WGS catalysts than Cu-MoO2, which in turn is superior to commercial low-temperature Cu-ZnO catalysts.

  5. Metallic glass alloys of Zr, Ti, Cu and Ni

    DOE Patents [OSTI]

    Lin, X.; Peker, A.; Johnson, W.L.

    1997-04-08

    At least quaternary alloys form metallic glass upon cooling below the glass transition temperature at a rate less than 10{sup 3} K/s. Such alloys comprise titanium from 19 to 41 atomic percent, an early transition metal (ETM) from 4 to 21 atomic percent and copper plus a late transition metal (LTM) from 49 to 64 atomic percent. The ETM comprises zirconium and/or hafnium. The LTM comprises cobalt and/or nickel. The composition is further constrained such that the product of the copper plus LTM times the atomic proportion of LTM relative to the copper is from 2 to 14. The atomic percentage of ETM is less than 10 when the atomic percentage of titanium is as high as 41, and may be as large as 21 when the atomic percentage of titanium is as low as 24. Furthermore, when the total of copper and LTM are low, the amount of LTM present must be further limited. Another group of glass forming alloys has the formula (ETM{sub 1{minus}x}Ti{sub x}){sub a} Cu{sub b} (Ni{sub 1{minus}y}Co{sub y}){sub c} wherein x is from 0.1 to 0.3, y{center_dot}c is from 0 to 18, a is from 47 to 67, b is from 8 to 42, and c is from 4 to 37. This definition of the alloys has additional constraints on the range of copper content, b. 2 figs.

  6. Kinetic study of hydrogen evolution reaction on Ni{sub 30} Mo{sub 70}, Co{sub 30}Mo{sub 70}, Co{sub 30}Ni{sub 70} and Co{sub 10}Ni{sub 20}Mo{sub 70} alloy electrodes

    SciTech Connect (OSTI)

    Dominguez-Crespo, M.A.; Plata-Torres, M.; Torres-Huerta, A.M.; Arce-Estrada, E.M. . E-mail: earce@ipn.mx; Hallen-Lopez, J.M.

    2005-07-15

    The hydrogen evolution reaction on nanocrystalline Ni{sub 30}Mo{sub 70}, Co{sub 30}Mo{sub 70}, Co{sub 30}Ni{sub 70}, and Co{sub 10}Ni{sub 20}Mo{sub 70}, metallic powders prepared by mechanical alloying was investigated with linear polarization and ac impedance methods, in 30 wt.% KOH aqueous solution at room temperature. The formation process and structural properties of these nanocrystalline materials were characterized by X-ray diffraction and transmission electron microscopy. Alloyed powders showed the presence of two phases: an fcc solid solution and intermetallic compounds of Ni, Co and Mo. Based on polarization and ac impedance measurements, an improved electrocatalytic activity for hydrogen evolution reaction was observed in mechanically alloyed Co{sub 30}Ni{sub 70} powders, which is slightly higher than milled metallic Ni powders.

  7. A Summary of Tritium In-Bed Accountability for 1500 Liter La-Ni-Al Storage Beds

    SciTech Connect (OSTI)

    Klein, J.E.

    2001-07-31

    This paper summarizes the in-bed accountability (IBA) calibration results for all the RF LaNi4.25Al0.75 tritium storage beds.

  8. Self-assembled nano- to micron-size fibers from molten R11Ni4In9

    Office of Scientific and Technical Information (OSTI)

    intermetallics (Journal Article) | SciTech Connect SciTech Connect Search Results Journal Article: Self-assembled nano- to micron-size fibers from molten R11Ni4In9 intermetallics Citation Details In-Document Search Title: Self-assembled nano- to micron-size fibers from molten R11Ni4In9 intermetallics A study of the formation of Gd11M4In9 (M = Ni, Pd, Pt) and R11Ni4In9 (R = rare earth) compounds revealed a unique and peculiar property, which is to naturally crystallize in a bundle of

  9. Production of Ni-Cr-Ti-natural fibres composite and investigation of mechanical properties

    SciTech Connect (OSTI)

    Pesmen, G.; Erol, A.

    2015-03-30

    Intermetallic materials such as Ni{sub 2}Ti, Cr{sub 2}Ti are among advanced technology materials that have outstanding mechanical and physical properties for high temperature applications. Especially creep resistance, low density and high hardness properties stand out in such intermetallics. The microstructure, mechanical properties of (%50Ni-%48Cr-%2Ti)-%10Naturel Fibres and (%64Ni-%32Cr-%4Ti)-%10Naturel Fibres powders were investigated using specimens produced by tube furnace sintering at 1000-1200-1400C temperature. A composite consisting of ternary additions, a metallic phase, Ti,Cr and Ni have been prepared under Ar shroud and then tube furnace sintered. XRD, SEM (Scanning Electron Microscope), were investigated to characterize the properties of the specimens. Experimental results carried out for composition (%64Ni-%32Cr-%4Ti)-%10Naturel at 1400C suggest that the best properties as 112.09HV and 5,422g/cm{sup 3} density were obtained at 1400C.

  10. Effect of Surface Termination on the Electonic Properties of LaNiO? Films

    SciTech Connect (OSTI)

    Kumah, Divine P.; Malashevich, Andrei; Disa, Ankit S.; Arena, Dario A.; Walker, Fred J.; Ismail-Beigi, Sohrab; Ahn, Charles H.

    2014-11-06

    The electronic and structural properties of thin LaNiO? films grown by using molecular beam epitaxy are studied as a function of the net ionic charge of the surface terminating layer. We demonstrate that electronic transport in nickelate heterostructures can be manipulated through changes in the surface termination due to a strong coupling of the surface electrostatic properties to the structural properties of the NiO bonds that govern electronic conduction. We observe experimentally and from first-principles theory an asymmetric response of the structural properties of the films to the sign of the surface charge, which results from a strong interplay between electrostatic and mechanical boundary conditions governing the system. The structural response results in ionic buckling in the near-surface NiO? planes for films terminated with negatively charged NiO? and bulklike NiO? planes for films terminated with positively charged LaO planes. The ability to modify transport properties by the deposition of a single atomic layer can be used as a guiding principle for nanoscale device fabrication.

  11. Aging effects in palladium and LaNi sub 4. 25 Al sub 0. 75 tritides

    SciTech Connect (OSTI)

    Nobile, A.; Wermer, J.R. ); Walters, R.T. . Plasma Physics Lab.)

    1992-03-01

    Palladium and LaNi{sub 5{minus}x}Al{sub x} (x = 0.30, 0.75, 0.85), which from reversible hydrides, are used for tritium processing and storage in the Savannah River Site (SRS) tritium facilities. As part of a program to develop technology based on the use of reversible metal hydrides for tritium processing and storage, the effects of aging on the thermodynamic behavior of palladium and LaNi{sub 4.25}Al{sub 0.75} tritides are under investigation. During aging, the {sup 3}He tritium decay product remains in the tritide lattice and changes the thermodynamics of the tritium-metal tritide system. Aging effects in 755-day-aged palladium and 1423-day-aged LaNi{sub 4.25}Al{sub 0.75} tritides are reported. Changes in the thermodynamics are determined by measuring tritium desorption isotherms on aging samples. In palladium, aging deceases the desorption isotherm plateau pressure and changes the {alpha}-phase portion of the isotherm. aging-induced changes in desorption isotherms are more drastic in LaNi{sub 4.25}Al{sub 0.75}. Various processes occurring in the tritide lattice which might be responsible for the observed aging effects in palladium and LaNi{sub 4.25}Al{sub 0.75} tritides are discussed in this paper.

  12. Stability of Surface and Subsurface Hydrogen on and in Au/Ni Near-Surface Alloys

    SciTech Connect (OSTI)

    Celik, Fuat E.; Mavrikakis, Manos

    2015-10-01

    Periodic, self-consistent DFT-GGA (PW91) calculations were used to study the interaction of hydrogen atoms with the (111) surfaces of substitutional near-surface alloys (NSAs) of Au and Ni with different surface layer compositions and different arrangements of Au atoms in the surface layer. The effect of hydrogen adsorption on the surface and in the first and second subsurface layers of the NSAs was studied. Increasing the Au content in the surface layer weakens hydrogen binding on the surface, but strengthens subsurface binding, suggesting that the distribution of surface and subsurface hydrogen will be different than that on pure Ni(111). While the metal composition of the surface layer has an effect on the binding energy of hydrogen on NSA surfaces, the local composition of the binding site has a stronger effect. For example, fcc hollow sites consisting of three Ni atoms bind H nearly as strongly as on Ni(111), and fcc sites consisting of three Au atoms bind H nearly as weakly as on Au(111). Sites with one or two Au atoms show intermediate binding energies. The preference of hydrogen for three-fold Ni hollow sites alters the relative stabilities of different surface metal atom arrangements, and may provide a driving force for adsorbate-induced surface rearrangement.

  13. Hybrid density functional theory description of N- and C-doping of NiO

    SciTech Connect (OSTI)

    Nolan, Michael; Long, Run; English, Niall J.; Mooney, Damian A.

    2011-06-14

    The large intrinsic bandgap of NiO hinders its potential application as a photocatalyst under visible-light irradiation. In this study, we have performed first-principles screened exchange hybrid density functional theory with the HSE06 functional calculations of N- and C-doped NiO to investigate the effect of doping on the electronic structure of NiO. C-doping at an oxygen site induces gap states due to the dopant, the positions of which suggest that the top of the valence band is made up primarily of C 2p-derived states with some Ni 3d contributions, and the lowest-energy empty state is in the middle of the gap. This leads to an effective bandgap of 1.7 eV, which is of potential interest for photocatalytic applications. N-doping induces comparatively little dopant-Ni 3d interactions, but results in similar positions of dopant-induced states, i.e., the top of the valence band is made up of dopant 2p states and the lowest unoccupied state is the empty gap state derived from the dopant, leading to bandgap narrowing. With the hybrid density functional theory (DFT) results available, we discuss issues with the DFT corrected for on-site Coulomb description of these systems.

  14. I-III-VI.sub.2 based solar cell utilizing the structure CuInGaSe.sub.2 CdZnS/ZnO

    DOE Patents [OSTI]

    Chen, Wen S.; Stewart, John M.

    1992-01-07

    A thin film I-III-VI.sub.2 based solar cell having a first layer of copper indium gallium selenide, a second layer of cadmium zinc sulfide, a double layer of zinc oxide, and a metallization structure comprised of a layer of nickel covered by a layer of aluminum. An optional antireflective coating may be placed on said metallization structure. The cadmium zinc sulfide layer is deposited by means of an aqueous solution growth deposition process and may actually consist of two layers: a low zinc content layer and a high zinc content layer. Photovoltaic efficiencies of 12.5% at Air Mass 1.5 illumination conditions and 10.4% under AMO illumination can be achieved.

  15. Theoretical analyses of (n,xn) reactions on sup 235 U, sup 238 U, sup 237 Np, and sup 239 Pu for ENDF/B-VI

    SciTech Connect (OSTI)

    Young, P.G.; Arthur, E.D.

    1991-01-01

    Theoretical analyses were performed of neutron-induced reactions on {sup 235}U, {sup 238}U, {sup 237}Np, and {sup 239}Pu between 0.01 and 20 MeV in order to calculate neutron emission cross sections and spectra for ENDF/B-VI evaluations. Coupled-channel optical model potentials were obtained for each target nucleus by fitting total, elastic, and inelastic scattering cross section data, as well as low-energy average resonance data. The resulting deformed optical model potentials were used to calculate direct (n,n{prime}) cross sections and transmission coefficients for use in Hauser-Feshbach statistical theory analyses. A fission model with multiple barrier representation, width fluctuation corrections, and preequilibrium corrections were included in the analyses. Direct cross sections for higher-lying vibrational states were calculated using DWBA theory, normalized using B(E{ell}) values determined from (d,d{prime}) and Coulomb excitation data, where available, and from systematics otherwise. Initial fission barrier parameters and transition state density enhancements appropriate to the compound systems involved were obtained from previous analyses, especially fits to charged-particle fission probability data. The parameters for the fission model were adjusted for each target system to obtain optimum agreement with direct (n,f) cross section measurements, taking account of the various multichance fission channels, that is, the different compound systems involved. The results from these analyses were used to calculate most of the neutron (n,n), (n,n{prime}), and (n,xn) cross section data in the ENDF/B/VI evaluations for the above nuclei, and all of the energy-angle correlated spectra. The deformed optical model and fission model parameterizations are described. Comparisons are given between the results of these analyses and the previous ENDF/B-V evaluations as well as with the available experimental data. 14 refs., 3 figs., 1 tab.

  16. Surface roughness and interface width scaling of magnetron sputter deposited Ni/Ti multilayers

    SciTech Connect (OSTI)

    Maidul Haque, S.; Biswas, A.; Tokas, R. B.; Bhattacharyya, D.; Sahoo, N. K.; Bhattacharya, Debarati

    2013-09-14

    Using an indigenously built r.f. magnetron sputtering system, several single layer Ti and Ni films have been deposited at varying deposition conditions. All the samples have been characterized by Grazing Incidence X-ray Reflectivity (GIXR) and Atomic Force Microscopy to estimate their thickness, density, and roughness and a power law dependence of the surface roughness on the film thickness has been established. Subsequently, at optimized deposition condition of Ti and Ni, four Ni/Ti multilayers of 11-layer, 21-layer, 31-layer, and 51-layer having different bilayer thickness have been deposited. The multilayer samples have been characterized by GIXR and neutron reflectivity measurements and the experimental data have been fitted assuming an appropriate sample structure. A power law correlation between the interface width and bilayer thickness has been observed for the multilayer samples, which was explained in the light of alternate roughening/smoothening of multilayers and assuming that at the interface the growth restarts every time.

  17. Importance of Size and Distribution of Ni Nanoparticles for the Hydrodeoxygenation of Microalgae Oil

    SciTech Connect (OSTI)

    Song, Wenji; Zhao, Chen; Lercher, Johannes A.

    2013-07-22

    Improved synthetic approaches for preparing small-sized Ni nanoparticles (d=3 nm) supported on HBEA zeolite have been explored and compared with the traditional impregnation method. The formation of surface nickel silicate/aluminate involved in the two precipitation processes are inferred to lead to the stronger interaction between the metal and the support. The lower Brnsted acid concentrations of these two Ni/HBEA catalysts compared with the parent zeolite caused by the partial exchange of Brnsted acid sites by Ni2+ cations do not influence the hydrodeoxygenation rates, but alter the product selectivity. Higher initial rates and higher stability have been achieved with these optimized catalysts for the hydrodeoxygenation of stearic acid and microalgae oil. Small metal particles facilitate high initial catalytic activity in the fresh sample and size uniformity ensures high catalyst stability.

  18. Electrical properties of the amorphous interfacial layer between Al electrodes and epitaxial NiO films

    SciTech Connect (OSTI)

    Hyuck Jang, Jae; Kwon, Ji-Hwan; Kim, Miyoung; Ran Lee, Seung; Char, Kookrin

    2012-04-23

    The amorphous interfacial layer (a-IL) between Al electrode and epitaxial NiO films were studied using electron energy-loss spectroscopy (EELS) and energy-dispersive x-ray spectroscopy. Two distinct properties were found in the a-IL, i.e., a lower metallic and an upper insulating layer. EELS results revealed that the metallic Ni atoms were responsible for the conducting nature of the lower oxide amorphous layer. The resistance behavior of Al/a-IL/epi-NiO was changed from a high to a low resistance state after forming process. The resistance change could be explained by the formation of a nanocrystalline metal alloy in the insulating amorphous layer.

  19. Structural transformations in Mn{sub 2}NiGa due to residual stress

    SciTech Connect (OSTI)

    Singh, Sanjay; Maniraj, M.; D'Souza, S. W.; Barman, S. R.; Ranjan, R.

    2010-02-22

    Powder x-ray diffraction study of Mn{sub 2}NiGa ferromagnetic shape memory alloy shows the existence of a 7M monoclinic modulated structure at room temperature (RT). The structure of Mn{sub 2}NiGa is found to be highly dependent on residual stress. For higher stress, the structure is tetragonal at RT, and for intermediate stress it is 7M monoclinic. However, only when the stress is considerably relaxed, the structure is cubic, as is expected at RT since the martensitic transition temperature is 230 K.

  20. Characterizations Of Precipitate Phases In a Ti-Ni-Pd Alloy

    SciTech Connect (OSTI)

    Yang, Fan; Kovarik, Libor; Phillips, Patrick J.; Noebe, Ronald D.; Mills, M. J.

    2012-06-01

    Precipitates in the Ti46Ni37.5Pd16.5 alloy were investigated by electron diffraction and high-resolution scanning transmission electron microscopy. The phase content and stability were determined at several different temperatures and times. Aging at 400 C for an hour results in a new phase, which is consumed by P-phase at longer aging time. At 450 C, the new phase appears first, and then coexists with P-phase. At 500 C, the entire alloy transformed into the new phase. At 550 C, Ti3(Ni,Pd)4 phase begins to form.

  1. Simulation of atomic diffusion in the Fcc NiAl system: A kinetic Monte Carlo study

    SciTech Connect (OSTI)

    Alfonso, Dominic R.; Tafen, De Nyago

    2015-04-28

    The atomic diffusion in fcc NiAl binary alloys was studied by kinetic Monte Carlo simulation. The environment dependent hopping barriers were computed using a pair interaction model whose parameters were fitted to relevant data derived from electronic structure calculations. Long time diffusivities were calculated and the effect of composition change on the tracer diffusion coefficients was analyzed. These results indicate that this variation has noticeable impact on the atomic diffusivities. A reduction in the mobility of both Ni and Al is demonstrated with increasing Al content. As a result, examination of the pair interaction between atoms was carried out for the purpose of understanding the predicted trends.

  2. Preparation and characterization of nanodiamond cores coated with a thin Ni-Zn-P alloy film

    SciTech Connect (OSTI)

    Wang Rui; Ye Weichun; Ma Chuanli; Wang Chunming

    2008-02-15

    Nanodiamond cores coated with a thin Ni-Zn-P alloy film were prepared by an electroless deposition method under the conditions of tin chloride sensitization and palladium chloride activation. The prepared materials were analyzed by Fourier transform infrared (FTIR) spectrometry and X-ray diffraction (XRD). The nanostructure of the materials was then characterized by transmission electron microscopy (TEM). The alloy film composition was characterized by Energy Dispersive X-ray (EDX) analysis. The results indicated the approximate composition 49.84%Ni-37.29%Zn-12.88%P was obtained.

  3. Neutron scattering of CeNi at the SNS-ORNL: A preliminary report

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Conference: Neutron scattering of CeNi at the SNS-ORNL: A preliminary report Citation Details In-Document Search Title: Neutron scattering of CeNi at the SNS-ORNL: A preliminary report This is a preliminary report of a neutron scattering experiment used to investigate 4f electron behavior in Ce. Authors: Mirmelstein, A. [1] ; Podlesnyak, Andrey A [2] ; Kolesnikov, Alexander I [2] ; Saporov, B. [3] ; Sefat, A.S. [3] ; Tobin, J. G. [4] + Show Author Affiliations

  4. Oxidation-resistant, solution-processed plasmonic Ni nanochain-SiO{sub x}

    Office of Scientific and Technical Information (OSTI)

    (x < 2) selective solar thermal absorbers (Journal Article) | SciTech Connect Oxidation-resistant, solution-processed plasmonic Ni nanochain-SiO{sub x} (x < 2) selective solar thermal absorbers Citation Details In-Document Search Title: Oxidation-resistant, solution-processed plasmonic Ni nanochain-SiO{sub x} (x < 2) selective solar thermal absorbers Metal oxidation at high temperatures has long been a challenge in cermet solar thermal absorbers, which impedes the development of

  5. Pressure-Induced Structural Phase Transition in CeNi: X-ray and Neutron

    Office of Scientific and Technical Information (OSTI)

    Scattering Studies and First-Principles Calculations (Journal Article) | SciTech Connect Pressure-Induced Structural Phase Transition in CeNi: X-ray and Neutron Scattering Studies and First-Principles Calculations Citation Details In-Document Search Title: Pressure-Induced Structural Phase Transition in CeNi: X-ray and Neutron Scattering Studies and First-Principles Calculations Authors: Mirmelstein, A ; Podlesnyak, A ; dos Santos, A M ; Ehlers, G ; Kerbel, O ; Matvienko, V ; Sefat, A S ;

  6. Magnetoelectric coupling tuned by competing anisotropies in Mn 1 - x Ni x

    Office of Scientific and Technical Information (OSTI)

    TiO 3 (Journal Article) | DOE PAGES Magnetoelectric coupling tuned by competing anisotropies in Mn 1 - x Ni x TiO 3 « Prev Next » Title: Magnetoelectric coupling tuned by competing anisotropies in Mn 1 - x Ni x TiO 3 Authors: Chi, Songxue ; Ye, Feng ; Zhou, H. D. ; Choi, E. S. ; Hwang, J. ; Cao, Huibo ; Fernandez-Baca, Jaime A. Publication Date: 2014-10-24 OSTI Identifier: 1181043 Type: Publisher's Accepted Manuscript Journal Name: Physical Review B Additional Journal Information: Journal

  7. Unoccupied electronic structure of Ni2MnGa ferromagnetic shape memory alloy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Maniraj, M.; D׳Souza, S. W.; Rai, Abhishek; Schlagel, D. L.; Lograsso, T. A.; Iowa State Univ., Ames, IA; Chakrabarti, Aparna; Barman, S. R.

    2015-08-20

    Momentum resolved inverse photoemission spectroscopy measurements show that the dispersion of the unoccupied bands of Ni2MnGa is significant in the austenite phase. Furthermore, in the martensite phase, it is markedly reduced, which is possibly related to the structural transition to an incommensurate modulated state in the martensite phase. Finally, based on the first principle calculations of the electronic structure of Ni–Mn–Ga, we show that the modification of the spectral shape with surface composition is related to change in the hybridization between the Mn 3d and Ni 3d-like states that dominate the unoccupied conduction band.

  8. Exceptional damage-tolerance of a medium-entropy alloy NiCoCr at cryogenic

    Office of Scientific and Technical Information (OSTI)

    temperatures (Journal Article) | SciTech Connect Exceptional damage-tolerance of a medium-entropy alloy NiCoCr at cryogenic temperatures Citation Details In-Document Search This content will become publicly available on January 1, 2017 Title: Exceptional damage-tolerance of a medium-entropy alloy NiCoCr at cryogenic temperatures High-entropy alloys1 3 are an intriguing new class of metallic materials that derive their properties not from a single dominant constituent, such as iron in steels,

  9. Magnetically nanostructured state in a Ni-Mn-Sn shape-memory alloy (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Magnetically nanostructured state in a Ni-Mn-Sn shape-memory alloy Citation Details In-Document Search This content will become publicly available on June 15, 2016 Title: Magnetically nanostructured state in a Ni-Mn-Sn shape-memory alloy Authors: Yuan, S. ; Kuhns, P. L. ; Reyes, A. P. ; Brooks, J. S. ; Hoch, M. J. R. ; Srivastava, V. ; James, R. D. ; El-Khatib, S. ; Leighton, C. Publication Date: 2015-06-16 OSTI Identifier: 1184888 Grant/Contract Number:

  10. Multiscale twin hierarchy in NiMnGa shape memory alloys with Fe and Cu

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Journal Article: Multiscale twin hierarchy in NiMnGa shape memory alloys with Fe and Cu Citation Details In-Document Search Title: Multiscale twin hierarchy in NiMnGa shape memory alloys with Fe and Cu Authors: Barabash, Rozaliya I. ; Barabash, Oleg M. ; Popov, Dmitry ; Shen, Guoyin ; Park, Changyong ; Yang, Wenge [1] ; ORNL) [2] ; CIW) [2] ; CHPSTAR- China) [2] + Show Author Affiliations (Tennessee-K) ( Publication Date: 2015-04-01 OSTI Identifier:

  11. Neutron Scattering of CeNi at the SNS-ORNL: A Preliminary Report

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Conference: Neutron Scattering of CeNi at the SNS-ORNL: A Preliminary Report Citation Details In-Document Search Title: Neutron Scattering of CeNi at the SNS-ORNL: A Preliminary Report × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy

  12. Coexistence of charge-density wave and ferromagnetism in Ni2MnGa (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | DOE PAGES DOE PAGES Search Results Publisher's Accepted Manuscript: Coexistence of charge-density wave and ferromagnetism in Ni2MnGa « Prev Next » Title: Coexistence of charge-density wave and ferromagnetism in Ni2MnGa Authors: D'Souza, S. W. ; Rai, Abhishek ; Nayak, J. ; Maniraj, M. ; Dhaka, R. S. ; Barman, S. R. ; Schlagel, D. L. ; Lograsso, T. A. ; Chakrabarti, Aparna Publication Date: 2012-02-23 OSTI Identifier: 1099244 Type: Publisher's Accepted Manuscript Journal Name:

  13. Coexistence of charge-density wave and ferromagnetism in Ni2MnGa (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Coexistence of charge-density wave and ferromagnetism in Ni2MnGa Citation Details In-Document Search Title: Coexistence of charge-density wave and ferromagnetism in Ni2MnGa Authors: D'Souza, S. W. ; Rai, Abhishek ; Nayak, J. ; Maniraj, M. ; Dhaka, R. S. ; Barman, S. R. ; Schlagel, D. L. ; Lograsso, T. A. ; Chakrabarti, Aparna Publication Date: 2012-02-23 OSTI Identifier: 1099244 Type: Publisher's Accepted Manuscript Journal Name: Physical Review. B. Condensed

  14. Surface segregation effects in electrocatalysis: Kinetics ofoxygen reduction reaction on polycrystalline Pt3Ni alloy surfaces

    SciTech Connect (OSTI)

    Stamenkovic, V.; Schmidt, T.J.; Ross, P.N.; Markovic, N.M.

    2002-11-01

    Effects of surface segregation on the oxygen reduction reaction (ORR) have been studied on a polycrystalline Pt3Ni alloy in acid electrolyte using ultra high vacuum (UHV) surface sensitive probes and the rotating ring disk electrode (RRDE) method. Preparation, modification and characterization of alloy surfaces were done in ultra high vacuum (UHV). Depending on the preparation method, two different surface compositions of the Pt3Ni alloy are produced: a sputtered surface with 75 % Pt and an annealed surface (950 K ) with 100 % Pt. The latter surface is designated as the 'Pt-skin' structure, and is a consequence of surface segregation, i.e., replacement of Ni with Pt atoms in the first few atomic layers. Definitive surface compositions were established by low energy ion scattering spectroscopy (LEISS). The cyclic voltammetry of the 'Pt-skin' surface as well as the pseudocapacitance in the hydrogen adsorption/desorption potential region is similar to a polycrystalline Pt electrode. Activities of ORR on Pt3Ni alloy surfaces were compared to polycrystalline Pt in 0.1M HClO4 electrolyte for the observed temperature range of 293 < T < 333 K. The order of activities at 333 K was: 'Pt-skin' > Pt3Ni (75% Pt) > Pt with the maximum catalytic enhancement obtained for the 'Pt-skin' being 4 times that for pure Pt. Catalytic improvement of the ORR on Pt3Ni and 'Pt-skin' surfaces was assigned to the inhibition of Pt-OHad formation (on Pt sites) versus polycrystalline Pt. Production of H2O2 on both surfaces were similar compared to the pure Pt. Kinetic analyses of RRDE data confirmed that kinetic parameters for the ORR on the Pt3Ni and 'Pt-skin' surfaces are the same as on pure Pt: reaction order, m=1, two identical Tafel slopes, activation energy, {approx} 21-25 kJ/mol. Therefore the reaction mechanism on both Pt3Ni and 'Pt-skin' surfaces is the same as one proposed for pure Pt i.e. 4e{sup -} reduction pathway.

  15. Comparison of three Ni-Hard I alloys (Conference) | SciTech Connect

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Comparison of three Ni-Hard I alloys Citation Details In-Document Search Title: Comparison of three Ni-Hard I alloys × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science and technology. A paper copy of this document is also available for sale to the public from the

  16. Contact-induced spin polarization in BNNT(CNT)/TM (TM=Co, Ni) nanocomposites

    SciTech Connect (OSTI)

    Kuzubov, Alexander A.; Kovaleva, Evgenia A. Avramov, Paul; Kuklin, Artem V.; Mikhaleva, Natalya S.; Tomilin, Felix N.; Sakai, Seiji; Entani, Shiro; Matsumoto, Yoshihiro; Naramoto, Hiroshi

    2014-08-28

    The interaction between carbon and BN nanotubes (NT) and transition metal Co and Ni supports was studied using electronic structure calculations. Several configurations of interfaces were considered, and the most stable ones were used for electronic structure analysis. All NT/Co interfaces were found to be more energetically favorable than NT/Ni, and conductive carbon nanotubes demonstrate slightly stronger bonding than semiconducting ones. The presence of contact-induced spin polarization was established for all nanocomposites. It was found that the contact-induced polarization of BNNT leads to the appearance of local conductivity in the vicinity of the interface while the rest of the nanotube lattice remains to be insulating.

  17. Modeling and Characterization of the Magnetocaloric Effect in Ni2MnGa Materials

    SciTech Connect (OSTI)

    Nicholson, Don M; Odbadrakh, Khorgolkhuu; Shassere, Benjamin; Rios, Orlando; Hodges, Jason P; Ludtka, Gerard Michael; Porter, Wallace D; Safa-Sefat, Athena; Rusanu, Aurelian; Brown, Greg; Evans III, Boyd Mccutchen

    2014-01-01

    Magnetic shape memory alloys have great promise as magneto-caloric effect refrigerant materials due to their combined magnetic and structural transitions. Computational and experimental research is reported on the Ni2MnGa material system. The magnetic states of this system are explored using the Wang-Landau statistical approach in conjunction with the Locally Self-consistent Multiple-Scattering method. The effects of alloying agents on the transition temperatures of the Ni2MnGa alloy are investigated using differential scanning calorimetry and superconducting quantum interference device. Experiments are performed at the Spallation Neutron Source at Oak Ridge National Laboratory to observe the structural and magnetic phase transformations.

  18. Mixed-sputter deposition of Ni-Ti-Cu shape memory films

    SciTech Connect (OSTI)

    Krulevitch, P.; Ramsey, P.B.; Makowiecki, D.M.; Lee, A.P.; Northrup, M.A.; Johnson, G.C.

    1994-05-01

    Ni-Ti-Cu shape memory films were mixed-sputter deposited from separate nickel, titanium, and copper targets, providing increased compositional flexibility. Shape memory characteristics, examined for films with 7 at. % Cu and 41--51 at. % Tl, were determined with temperature controlled substrate curvature measurements, and microstructure was studied with transmission electron microscopy. The Ni-Ti-Cu films were found to have shape memory properties comparable to bulk materials, with transformation temperatures between 20 and 62{degree}C, a 10--13{degree}C hysteresis, and up to 330 MPa recoverable stress.

  19. THE REDDENING TOWARD CASSIOPEIA A's SUPERNOVA: CONSTRAINING THE {sup 56}Ni

    Office of Scientific and Technical Information (OSTI)

    YIELD (Journal Article) | SciTech Connect THE REDDENING TOWARD CASSIOPEIA A's SUPERNOVA: CONSTRAINING THE {sup 56}Ni YIELD Citation Details In-Document Search Title: THE REDDENING TOWARD CASSIOPEIA A's SUPERNOVA: CONSTRAINING THE {sup 56}Ni YIELD We present new reddening measurements toward the young supernova remnant Cassiopeia A using two techniques not previously applied to this object. Our observations of the near-infrared [Fe II] 1.257 {mu}m and 1.644 {mu}m lines show the extinction to

  20. Magnetically nanostructured state in a Ni-Mn-Sn shape-memory alloy (Journal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Article) | DOE PAGES Publisher's Accepted Manuscript: Magnetically nanostructured state in a Ni-Mn-Sn shape-memory alloy This content will become publicly available on June 15, 2016 Title: Magnetically nanostructured state in a Ni-Mn-Sn shape-memory alloy Authors: Yuan, S. ; Kuhns, P. L. ; Reyes, A. P. ; Brooks, J. S. ; Hoch, M. J. R. ; Srivastava, V. ; James, R. D. ; El-Khatib, S. ; Leighton, C. Publication Date: 2015-06-16 OSTI Identifier: 1184888 Grant/Contract Number: FG02-06ER46275

  1. X-ray absorption fine structure (XAFS) analyses of Ni species trapped in graphene sheet of carbon nanofibers

    SciTech Connect (OSTI)

    Ushiro, Mayuko; Uno, Kanae; Fujikawa, Takashi; Sato, Yoshinori; Tohji, Kazuyuki; Watari, Fumio; Chun, W.-J.; Koike, Yuichiro; Asakura, Kiyotaka

    2006-04-01

    Metal impurities in the carbon nanotubes and carbon nanofibers play an important role in understanding their physical and chemical properties. We apply the Ni K-edge x-ray absorption fine structure analyses to the local electronic and geometric structures around embedded Ni impurities used as catalysts in a carbon nanofiber in combination with multiple scattering analyses. We find almost Ni catalysts as metal particles are removed by the purification treatment. Even after the purification, residual 100 ppm Ni species are still absorbed; most of them are in monomer structure with Ni-C bond length 1.83 A, and each of them is substituted for a carbon atom in a graphene sheet.

  2. Induced spin-polarization of EuS at room temperature in Ni/EuS multilayers

    SciTech Connect (OSTI)

    Poulopoulos, P.; Goschew, A.; Straub, A.; Fumagalli, P.; Kapaklis, V.; Wolff, M.; Delimitis, A.; Wilhelm, F.; Rogalev, A.; Pappas, S. D.

    2014-03-17

    Ni/EuS multilayers with excellent multilayer sequencing are deposited via e-beam evaporation on the native oxide of Si(100) wafers at 4 × 10{sup −9} millibars. The samples have very small surface and interface roughness and show sharp interfaces. Ni layers are nanocrystalline 4–8 nm thick and EuS layers are 2–4 nm thick and are either amorphous or nanocrystalline. Unlike for Co/EuS multilayers, all Eu ions are in divalent (ferromagnetic) state. We show a direct antiferromagnetic coupling between EuS and Ni layers. At room temperature, the EuS layers are spin-polarized due to the proximity of Ni. Therefore, Ni/EuS is a candidate for room-temperature spintronics applications.

  3. Effect of annealing temperature on the contact properties of Ni/V/4H-SiC structure

    SciTech Connect (OSTI)

    Dai, Chong-Chong; Zhou, Tian-Yu; University of Chinese Academy of Sciences, Beijing 100049 ; Liu, Xue-Chao Zhuo, Shi-Yi; Kong, Hai-Kuan; Yang, Jian-Hua; Shi, Er-Wei

    2014-04-15

    A sandwich structure of Ni/V/4H-SiC was prepared and annealed at different temperatures from 650?C to 1050?C. The electrical properties and microstructures were characterized by transmission line method, X-ray diffraction, Raman spectroscopy and transmission electron microscopy. A low specific contact resistance of 3.3 10{sup -5} ?cm{sup 2} was obtained when the Ni/V contact was annealed at 1050?C for 2 min. It was found that the silicide changed from Ni{sub 3}Si to Ni{sub 2}Si with increasing annealing temperature, while the vanadium compounds appeared at 950?C and their concentration increased at higher annealing temperature. A schematic diagram was proposed to explain the ohmic contact mechanism of Ni/V/4H-SiC structure.

  4. Crystallographic, magnetic, and electronic structures of ferromagnetic shape memory alloys Ni{sub 2}XGa (X=Mn,Fe,Co) from first-principles calculations

    SciTech Connect (OSTI)

    Bai, J.; Raulot, J. M.; Zhang, Y. D.; Esling, C.; Zhao, X.; Zuo, L.

    2011-01-01

    The crystallographic, magnetic and electronic structures of the ferromagnetic shape memory alloys Ni{sub 2}XGa (X=Mn, Fe, and Co), are systematically investigated by means of the first-principles calculations within the framework of density functional theory using the VIENNA AB INITIO SOFTWARE PACKAGE. The lattice parameters of both austenitic and martensitic phases in Ni{sub 2}MnGa have been calculated. The formation energies of the cubic phase of Ni{sub 2}XGa are estimated, and show a destabilization tendency if Mn atom is substituted by Fe or Co. From Ni{sub 2}MnGa to Ni{sub 2}CoGa, the down spin total density of states (DOS) at Fermi level is gradually increasing, whereas that of the up spin part remains almost unchanged. This is the main origin of the difference of the magnetic moment in these alloys. The partial DOS is dominated by the Ni and Mn 3d states in the bonding region below E{sub F}. There are two bond types existing in Ni{sub 2}XGa: one is between neighboring Ni atoms in Ni{sub 2}MnGa; the other is between Ni and X atoms in Ni{sub 2}FeGa and Ni{sub 2}CoGa alloys.

  5. Effect of Surface Termination on the Electonic Properties of LaNiO₃ Films

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kumah, Divine P.; Malashevich, Andrei; Disa, Ankit S.; Arena, Dario A.; Walker, Fred J.; Ismail-Beigi, Sohrab; Ahn, Charles H.

    2014-11-06

    The electronic and structural properties of thin LaNiO₃ films grown by using molecular beam epitaxy are studied as a function of the net ionic charge of the surface terminating layer. We demonstrate that electronic transport in nickelate heterostructures can be manipulated through changes in the surface termination due to a strong coupling of the surface electrostatic properties to the structural properties of the Ni—O bonds that govern electronic conduction. We observe experimentally and from first-principles theory an asymmetric response of the structural properties of the films to the sign of the surface charge, which results from a strong interplay betweenmore » electrostatic and mechanical boundary conditions governing the system. The structural response results in ionic buckling in the near-surface NiO₂ planes for films terminated with negatively charged NiO₂ and bulklike NiO₂ planes for films terminated with positively charged LaO planes. The ability to modify transport properties by the deposition of a single atomic layer can be used as a guiding principle for nanoscale device fabrication.« less

  6. Modulation on Ni{sub 2}MnGa(001) surface

    SciTech Connect (OSTI)

    D'Souza, S. W.; Rai, Abhishek; Nayak, J.; Maniraj, M.; Dhaka, R. S.; Barman, S. R.; Schlagel, D. L.; Lograsso, T. A.

    2011-07-15

    We report periodic modulation on (001) surface of Ni2MnGa ferromagnetic shape memory alloy. For the stoichiometric surface, analysis of the low energy electron diffraction (LEED) spot profiles shows that the modulation is incommensurate. The modulation appears at 200 K, concomitant with the first order structural transition to the martensitic phase.

  7. Production of Cu-Al-Ni Shape Memory Alloys by Mechanical Alloy

    SciTech Connect (OSTI)

    Goegebakan, Musa; Soguksu, Ali Kemal; Uzun, Orhan; Dogan, Ali

    2007-04-23

    The mechanical alloying technique has been used to produce shape memory Cu83Al13Ni4 alloy. The structure and thermal properties were examined by using scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). The morphology of the surface suggests the presence of martensite.

  8. Ni3Al-based alloys for die and tool application

    DOE Patents [OSTI]

    Liu, Chain T. (Oak Ridge, TN); Bloom, Everett E. (Kingston, TN)

    2001-01-01

    A novel Ni.sub.3 Al-based alloy exhibits strengths and hardness in excess of the standard base alloy IC-221M at temperatures of up to about 1000.degree. C. The alloy is useful in tool and die applications requiring such temperatures, and for structural elements in engineering systems exposed to such temperatures.

  9. Mechanical and microstructural response of Ni sub 3 Al at high strain rate and elevated temperatures

    SciTech Connect (OSTI)

    Sizek, H.W.; Gray, G.T. III.

    1990-01-01

    In this paper, the effect of strain rate and temperature on the substructure evolution and mechanical response of Ni{sub 3}Al will be presented. The strain rate response of Ni{sub 3}Al was studied at strain rates from 10{sup {minus}3} s{sup {minus}1} (quasi-static) to 10{sup 4} s{sup {minus}1} using a Split Hopkinson Pressure Bar. The Hopkinson Bar tests were conducted at temperatures ranging from 77K to 1273K. At high strain rates the flow strength increased significantly with increasing temperature, similar to the behavior observed at quasi-static rates. The work hardening rates increased with strain rate and varied with temperatures. The work hardening rates, appeared to be significantly higher than those found for Ni270. The substructure evolution was characterized utilizing TEM. The defect generation and rate sensitivity of Ni{sub 3}Al are also discussed as a function of strain rate and temperature. 15 refs., 4 figs.

  10. Aging effects in palladium and LaNi sub 4. 25 Al sub 0. 75 tritides

    SciTech Connect (OSTI)

    Nobile, A.; Wermer, J.R.; Walters, R.T.

    1991-01-01

    Palladium and LaNi{sub 5-x}Al{sub x} (x=0.30, 0.75, 0.85), which form reversible hydrides, are used for tritium processing and storage in the Savannah River Site (SRS) tritium facilities. As part of a program to develop technology based on the use of reversible metal hydrides for tritium processing and storage, the effects of aging on the thermodynamic behavior of palladium and LaNi{sub 4.25}Al{sub 0. 75} tritides are under investigation. During aging, the {sup 3}He tritium decay product remains in the tritide lattice and changes the thermodynamics of the tritium-metal tritide system. Aging effects in 755-day-aged palladium and 1423-day-aged LaNi{sub 4.25}Al{sub 0.75} tritides will be reported. Changes in the thermodynamics were determined by measuring tritium desorption isotherms on aging samples. In palladium, aging decreases the desorption isotherm plateau pressure and changes the {alpha}-phase portion of the isotherm. Aging-induced changes in desorption isotherms are more drastic in LaNi{sub 4.25}Al{sub 0.75}. Among the changes noted are: (1) decreased isotherm plateau pressure, (2) increased isotherm plateau slope, and (3) appearance of deep-trapped tritium, removable only by exchange with deuterium.

  11. Ni.sub.3 Al-based intermetallic alloys having improved strength above 850.degree. C.

    DOE Patents [OSTI]

    Liu, Chain T.

    2000-01-01

    Intermetallic alloys composed essentially of: 15.5% to 17.0% Al, 3.5% to 5.5% Mo, 4% to 8% Cr, 0.04% to 0.2% Zr, 0.04% to 1.5% B, balance Ni, are characterized by melting points above 1200.degree. C. and superior strengths at temperatures above 1000.degree. C.

  12. Epitaxial growth of NiTiO3 with a distorted ilmenite structure

    SciTech Connect (OSTI)

    Varga, Tamas; Droubay, Timothy C.; Bowden, Mark E.; Nachimuthu, Ponnusamy; Shutthanandan, V.; Bolin, Trudy B.; Shelton, William A.; Chambers, Scott A.

    2012-06-30

    MTiO3 (M = Fe, Mn, Ni) compounds have received recent attention as possible candidates for new multiferroic materials capable of magnetization switching by application of an electric field. Epitaxial Ni1-xTi1-yO3 films of different thickness and composition were deposited on Al2O3(0001) by pulsed laser deposition, and characterized using several techniques. Structural parameters for the metastable LiNbO3-type NiTiO3 structure with the space group R3c were predicted using density functional theory calculations, and compared with the experimental results. Our structural data from x-ray diffraction and x-ray absorption spectroscopy indicate that epitaxial ilmenite-type NiTiO3 films were successfully grown. Furthermore, lattice strain exerted by the sapphire substrate results in a distorted ilmenite structure similar to the LiNbO3-type one. Our results demonstrate the potential of oxide heteroepitaxy to stabilize metastable multiferroic phases that may be difficult to prepare or are inaccessible in the bulk.

  13. Aliovalent titanium substitution in layered mixed Li Ni-Mn-Co oxides for lithium battery applications

    SciTech Connect (OSTI)

    Kam, Kinson; Doeff, Marca M.

    2010-12-01

    Improved electrochemical characteristics are observed for Li[Ni1/3Co1/3-yMyMn1/3]O2 cathode materials when M=Ti and y<0.07, compared to the baseline material, with up to 15percent increased discharge capacity.

  14. Development of high-performance Na/NiCl{sub 2} cell

    SciTech Connect (OSTI)

    Redey, L.: Prakash, J.; Vissers, D.R.; Myles, K.M.

    1992-07-01

    The performance of the Ni/NiCl{sub 2} positive electrode for the Na/NiCl{sub 2} battery has been significantly improved by lowering the impedance and increasing the usable capacity through the use of chemical additives and a tailored electrode morphology. The improved electrode has excellent performance even below 200{degrees}C and can be recharged within one hour. The performance of this new electrode was measured by a conventional galvanostatic method and by a newly developed ``powerdynamic`` method. These measurements were used to project the performance of 40 to 60-kWh batteries built with this new electrode combined with already highly developed sodium/{beta} -- alumina negative electrode. These calculated results yielded a specific power of 150--400 W/kg and a specific energy of 110--200 Wh/kg for batteries with single-tube and bipolar cell designs. This high performance, along with the high cell voltage, mid-temperature operation, fast recharge capability, and short-circuited failure mode of the electrode couple, makes the NA/NiCl{sub 2} battery attractive for electric vehicle applications.

  15. Development of high-performance Na/NiCl sub 2 cell

    SciTech Connect (OSTI)

    Redey, L.: Prakash, J.; Vissers, D.R.; Myles, K.M.

    1992-01-01

    The performance of the Ni/NiCl{sub 2} positive electrode for the Na/NiCl{sub 2} battery has been significantly improved by lowering the impedance and increasing the usable capacity through the use of chemical additives and a tailored electrode morphology. The improved electrode has excellent performance even below 200{degrees}C and can be recharged within one hour. The performance of this new electrode was measured by a conventional galvanostatic method and by a newly developed powerdynamic'' method. These measurements were used to project the performance of 40 to 60-kWh batteries built with this new electrode combined with already highly developed sodium/{beta} -- alumina negative electrode. These calculated results yielded a specific power of 150--400 W/kg and a specific energy of 110--200 Wh/kg for batteries with single-tube and bipolar cell designs. This high performance, along with the high cell voltage, mid-temperature operation, fast recharge capability, and short-circuited failure mode of the electrode couple, makes the NA/NiCl{sub 2} battery attractive for electric vehicle applications.

  16. Recent advances in alloy design of Ni{sub 3}Al alloys for structural use

    SciTech Connect (OSTI)

    Liu, C.T.; George, E.P.

    1996-12-31

    This is a comprehensive review of recent advances in R&D of Ni{sub 3}Al-based alloys for structural use at elevated temperatures in hostile environments. Recent studies indicate that polycrystalline Ni{sub 3}Al is intrinsically quite ductile at ambient temperatures, and its poor tensile ductility and brittle grain-boundary fracture are caused mainly by moisture-induced hydrogen embrittlement when the aluminide is tested in moisture- or hydrogen-containing environments. Tensile ductility is improved by alloying with substitutional and interstitial elements. Among these additives, B is most effective in suppressing environmental embrittlement and enhancing grain-boundary cohesion, resulting in a dramatic increase of tensile ductility at room temperature. Both B-doped and B-free Ni{sub 3}Al alloys exhibit brittle intergranular fracture and low ductility at intermediate temperatures (300-850 C) because of oxygen-induced embrittlement in oxidizing environments. Cr is found to be most effective in alleviating elevated-temperature embrittlement. Parallel efforts on alloy development using physical metallurgy principles have led to development of several Ni{sub 3}Al alloys for industrial use. The unique properties of these alloys are briefly discussed. 56 refs, 15 figs, 3 tabs.

  17. Anomalous magnetic configuration of Mn{sub 2}NiAl ribbon and the role of hybridization in the martensitic transformation of Mn{sub 50}Ni{sub 50−x}Al{sub x} ribbons

    SciTech Connect (OSTI)

    Zhao, R. B.; Zhao, D. W.; Li, G. K.; Ma, L. E-mail: houdenglu@mail.hebtu.edu.cn; Zhen, C. M.; Hou, D. L. E-mail: houdenglu@mail.hebtu.edu.cn; Wang, W. H.; Liu, E. K.; Chen, J. L.; Wu, G. H.

    2014-12-08

    The magnetic configuration of Mn{sub 2}NiAl ribbon has been investigated. In contrast to Ni{sub 2}MnAl, the compound Mn{sub 2}NiAl with considerable disorder does exhibit ferromagnetism and, due to exchange interaction competition, both ferromagnetic and antiferromagnetic moment orientations can coexist between nearest neighbor Mn atoms. This is unexpected in Heusler alloys. Regarding the mechanism of the martensitic transformation in Mn{sub 50}Ni{sub 50−x}Al{sub x}, it is found that increasing the Al content results in an unusual change in the lattice constant, a decrease of the transformation entropy change, and enhancement of the calculated electron localization. These results indicate that the p-d covalent hybridization between Mn (or Ni) and Al atoms gradually increases at the expense of the d-d hybridization between Ni and Mn atoms. This leads to an increased stability of the austenite phase and a decrease of the martensitic transformation temperature. For 11 ≤ x ≤ 14, Mn{sub 50}Ni{sub 50−x}Al{sub x} ferromagnetic shape memory alloys are obtained.

  18. Evidence for near-Surface NiOOH Species in Solution-Processed NiOx Selective Interlayer Materials: Impact on Energetics and the Performance of Polymer Bulk Heterojunction Photovoltaics

    SciTech Connect (OSTI)

    Ratcliff, Erin L.; Meyer, Jens; Steirer, K. Xerxes; Garcia, Andres; Berry, Joseph J.; Ginley, David S.; Olson, Dana C.; Kahn, Antoine; Armstrong, Neal R.

    2011-11-22

    The characterization and implementation of solution-processed, wide bandgap nickel oxide (NiO{sub x}) hole-selective interlayer materials used in bulk-heterojunction (BHJ) organic photovoltaics (OPVs) are discussed. The surface electrical properties and charge selectivity of these thin films are strongly dependent upon the surface chemistry, band edge energies, and midgap state concentrations, as dictated by the ambient conditions and film pretreatments. Surface states were correlated with standards for nickel oxide, hydroxide, and oxyhydroxide components, as determined using monochromatic X-ray photoelectron spectroscopy. Ultraviolet and inverse photoemission spectroscopy measurements show changes in the surface chemistries directly impact the valence band energies. O?-plasma treatment of the as-deposited NiO{sub x} films was found to introduce the dipolar surface species nickel oxyhydroxide (NiOOH), rather than the p-dopant Ni?O?, resulting in an increase of the electrical band gap energy for the near-surface region from 3.1 to 3.6 eV via a vacuum level shift. Electron blocking properties of the as-deposited and O?-plasma treated NiO{sub x} films are compared using both electron-only and BHJ devices. O?-plasma-treated NiO{sub x} interlayers produce electron-only devices with lower leakage current and increased turn on voltages. The differences in behavior of the different pretreated interlayers appears to arise from differences in local density of states that comprise the valence band of the NiO{sub x} interlayers and changes to the band gap energy, which influence their hole-selectivity. The presence of NiOOH states in these NiO{sub x} films and the resultant chemical reactions at the oxide/organic interfaces in OPVs is predicted to play a significant role in controlling OPV device efficiency and lifetime.

  19. Glass formation in binary and ternary Zr based Fe and Ni bearing alloys

    SciTech Connect (OSTI)

    Savalia, R.T.; Tewari, R.; Banerjee, S.; Dey, G.K.

    1996-01-01

    Rapid solidification of the Zr{sub 76}Fe{sub 24-x}Ni{sub x} alloys (x - 0, 4, 8, 12, 16, 20 and 24) by melt spinning under different conditions has yielded fully amorphous as well as partially crystalline ribbons. The partially crystalline ribbons have been found to contain crystal aggregates comprising a core of the {beta}-Zr phase surrounded by peripheral crystals of the Zr{sub 3}(Fe,Ni) phase in alloys with x < 12. In alloys containing larger amount of Ni (x {ge} 12), both Zr{sub 2}Ni and Zr{sub 3}(Fe,Ni) crystals have been found to be present in the periphery. The nucleation of the core crystals and the peripheral crystals in the undercooled melt has been examined by considering transient and steady state homogeneous and heterogeneous nucleation. The transient nucleation time and the steady state nucleation rate of crystals have been evaluated. For this purpose, use has been made of molar free energy difference {Delta}G{sub c} between the liquid and the crystalline phases determined from experimentally evaluated quantities. The growth of the crystals in the undercooled melt has been examined taking into account recalescence and heat removal during melt spinning. The glass forming ability of the alloys has been evaluated on the basis of the avoidance of crystallization approach. A comparison has been made between the microstructures of the splat cooled and the melt spun alloys in order to understand the process of solidification and the nature of phase transformation during post solidification cooling.

  20. Role of the antiferromagnetic pinning layer on spin wave properties in IrMn/NiFe based spin-valves

    SciTech Connect (OSTI)

    Gubbiotti, G. Tacchi, S.; Del Bianco, L.; Bonfiglioli, E.; Giovannini, L.; Spizzo, F.; Zivieri, R.; Tamisari, M.

    2015-05-07

    Brillouin light scattering (BLS) was exploited to study the spin wave properties of spin-valve (SV) type samples basically consisting of two 5?nm-thick NiFe layers (separated by a Cu spacer of 5?nm), differently biased through the interface exchange coupling with an antiferromagnetic IrMn layer. Three samples were investigated: a reference SV sample, without IrMn (reference); one sample with an IrMn underlayer (10?nm thick) coupled to the bottom NiFe film; one sample with IrMn underlayer and overlayer of different thickness (10?nm and 6?nm), coupled to the bottom and top NiFe film, respectively. The exchange coupling with the IrMn, causing the insurgence of the exchange bias effect, allowed the relative orientation of the NiFe magnetization vectors to be controlled by an external magnetic field, as assessed through hysteresis loop measurements by magneto-optic magnetometry. Thus, BLS spectra were acquired by sweeping the magnetic field so as to encompass both the parallel and antiparallel alignment of the NiFe layers. The BLS results, well reproduced by the presented theoretical model, clearly revealed the combined effects on the spin dynamic properties of the dipolar interaction between the two NiFe films and of the interface IrMn/NiFe exchange coupling.

  1. Three-dimensional microstructural changes in the NiYSZ solid oxide fuel cell anode during operation

    SciTech Connect (OSTI)

    Nelson G. J.; Chu Y.; Grew, K.N.; Izzo Jr. J.R.; Lombardo, J.J.; Harris, W.M.; Faes, A.; Hessler-Wyser, A.; Van herle, J.; Wang, S.; Virkar, A.V.; Chiu, W.K.S.

    2012-04-07

    Microstructural evolution in solid oxide fuel cell (SOFC) cermet anodes has been investigated using X-ray nanotomography along with differential absorption imaging. SOFC anode supports composed of Ni and yttria-stabilized zirconia (YSZ) were subjected to extended operation and selected regions were imaged using a transmission X-ray microscope. X-ray nanotomography provides unique insight into microstructure changes of all three phases (Ni, YSZ, pore) in three spatial dimensions, and its relation to performance degradation. Statistically significant 3D microstructural changes were observed in the anode Ni phase over a range of operational times, including phase size growth and changes in connectivity, interfacial contact area and contiguous triple-phase boundary length. These observations support microstructural evolution correlated to SOFC performance. We find that Ni coarsening is driven by particle curvature as indicated by the dihedral angles between the Ni, YSZ and pore phases, and hypothesize that growth occurs primarily by means of diffusion and particle agglomeration constrained by a pinning mechanism related to the YSZ phase. The decrease in Ni phase size after extended periods of time may be the result of a second process connected to a mobility-induced decrease in the YSZ phase size or non-uniform curvature resulting in a net decrease in Ni phase size.

  2. Many-body ab-initio diffusion quantum Monte Carlo applied to the strongly correlated oxide NiO

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mitra, Chandrima; Krogel, Jaron T.; Santana, Juan A.; Reboredo, Fernando A.

    2015-10-28

    We present a many-body diffusion quantum Monte Carlo (DMC) study of the bulk and defect properties of NiO. We find excellent agreement with experimental values, within 0.3%, 0.6%, and 3.5% for the lattice constant, cohesive energy, and bulk modulus, respectively. The quasiparticle bandgap was also computed, and the DMC result of 4.72 (0.17) eV compares well with the experimental value of 4.3 eV. Furthermore, DMC calculations of excited states at the L, Z, and the gamma point of the Brillouin zone reveal a flat upper valence band for NiO, in good agreement with Angle Resolved Photoemission Spectroscopy results. To studymoredefect properties, we evaluated the formation energies of the neutral and charged vacancies of oxygen and nickel in NiO. A formation energy of 7.2 (0.15) eV was found for the oxygen vacancy under oxygen rich conditions. For the Ni vacancy, we obtained a formation energy of 3.2 (0.15) eV under Ni rich conditions. These results confirm that NiO occurs as a p-type material with the dominant intrinsic vacancy defect being Ni vacancy.less

  3. Oxidation-resistant, solution-processed plasmonic Ni nanochain-SiO{sub x} (x?

    SciTech Connect (OSTI)

    Yu, Xiaobai; Wang, Xiaoxin; Liu, Jifeng; Zhang, Qinglin; Li, Juchuan

    2014-08-21

    Metal oxidation at high temperatures has long been a challenge in cermet solar thermal absorbers, which impedes the development of atmospherically stable, high-temperature, high-performance concentrated solar power (CSP) systems. In this work, we demonstrate solution-processed Ni nanochain-SiO{sub x} (x?Ni nanochain-SiO{sub 2} selective solar thermal absorbers that exhibit a strong anti-oxidation behavior up to 600?C in air. The thermal stability is far superior to previously reported Ni nanoparticle-Al{sub 2}O{sub 3} selective solar thermal absorbers, which readily oxidize at 450?C. The SiO{sub x} (x?Ni/SiO{sub x} interface to passivate the surface of Ni nanoparticles and prevent oxidation. X-ray photoelectron spectroscopy and Raman spectroscopy demonstrate that the excess Si in the SiO{sub x} (x?Ni nanostructures to form silicides at the interfaces, which further improves the anti-oxidation properties. As a result, Ni-SiO{sub x} (x?Ni-SiO{sub 2} systems. This oxidation-resistant Ni nanochain-SiO{sub x} (x?

  4. Synthesis and anion exchange properties of a Zn/Ni double hydroxide salt with a guarinoite structure

    SciTech Connect (OSTI)

    Delorme, F.; Seron, A.; Licheron, M.; Veron, E.; Giovannelli, F.; Beny, C.; Jean-Prost, V.; Martineau, D.

    2009-09-15

    In this study, the first route to synthesize a compound with the guarinoite structure (Zn,Co,Ni){sub 6}(SO{sub 4})(OH,Cl){sub 10}.5H{sub 2}O is reported. Zn/Ni guarinoite is obtained from the reaction of NiSO{sub 4}.7H{sub 2}O with solid ZnO in aqueous solution. The resulting green Zn/Ni guarinoite ((Zn{sub 3.52}Ni{sub 1.63})(SO{sub 4}){sub 1.33}(OH{sub 7.64}).4.67H{sub 2}O) was characterized by X-ray diffraction, infrared spectrometry, UV-Visible spectrometry and thermal analysis. It is shown that its structure is similar to the one described for the layered Zn sulfate hydroxide hydrate, i.e. brucite layers with 1/4 empty octahedra presenting tetrahedrally coordinated divalent atoms above and below the empty octahedra. Ni atoms are located in the octahedra and zinc atoms in tetrahedra and octahedra. In this structure the exchangeable anions are located at the apex of tetrahedra. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations show that the Zn/Ni guarinoite is composed of aggregates of hexagonal plates of several hundreds of nanometers. Due to its interest for industrial or environmental applications, the exchange of sulfate groups by carbonates has been investigated. Results show a limited exchange and a higher affinity of the Zn/Ni guarinoite for sulfates compared to carbonates. - Graphical abstract: SEM micrograph (secondary electrons) of the synthesized Zn/Ni guarinoite showing that aggregates are composed of small plate-like particles.

  5. Energy levels, oscillator strengths and transition probabilities for Si-like P II, S III, Cl IV, Ar V and K VI

    SciTech Connect (OSTI)

    Abou El-Maaref, A.; Uosif, M.A.M.; Allam, S.H.; El-Sherbini, Th.M.

    2012-07-15

    Fine-structure calculations of energy levels, oscillator strengths, and transition probabilities for transitions among the terms belonging to 3s{sup 2}3p{sup 2}, 3s3p{sup 3}, 3s{sup 2}3p3d, 3s{sup 2}3p4s, 3s{sup 2}3p4p, 3s{sup 2}3p4d, 3s{sup 2}3p5s and 3s{sup 2}3p5p configurations of silicon-like ions P II, S III, Cl IV, Ar V and K VI have been calculated using configuration-interaction version 3 (CIV3). We compared our data with the available experimental data and other theoretical calculations. Most of our calculations of energy levels and oscillator strengths (in length form) show good agreement with both experimental and theoretical data. Lifetimes of the excited levels are also given.

  6. The Department of Energy`s Rocky Flats Plant: A guide to record series useful for health-related research. Volume VI, workplace and environmental monitoring

    SciTech Connect (OSTI)

    1995-08-01

    This is the sixth in a series of seven volumes which constitute a guide to records of the Rocky Flats Plant useful for conducting health-related research. The primary purpose of Volume VI is to describe record series pertaining to workplace and environmental monitoring activities at the Department of Energy`s (DOE) Rocky Flats Plant, now named the Rocky Flats Environmental Technology Site, near Denver, Colorado. History Associates Incorporated (HAI) prepared this guide as part of its work as the support services contractor for DOE`s Epidemiologic Records Inventory Project. This introduction briefly describes the Epidemiologic Records Inventory Project and HAI`s role in the project, provides a history of workplace and environmental monitoring practices at Rocky Flats, and identifies organizations contributing to workplace and environmental monitoring policies and activities. Other topics include the scope and arrangement of this volume and the organization to contact for access to these records. Comprehensive introductory and background information is available in Volume I. Other volumes in the guide pertain to administrative and general subjects, facilities and equipment, production and materials handling, waste management, and employee health. In addition, HAI has produced a subject-specific guide, titled The September 1957 Rocky Flats Fire. A Guide to Record Series of the Department of Energy and Its Contractors, which researchers should consult for further information about records related to this incident.

  7. Apparatus for forming thin-film heterojunction solar cells employing materials selected from the class of I-III-VI.sub.2 chalcopyrite compounds

    DOE Patents [OSTI]

    Mickelsen, Reid A. (Bellevue, WA); Chen, Wen S. (Seattle, WA)

    1983-01-01

    Apparatus for forming thin-film, large area solar cells having a relatively high light-to-electrical energy conversion efficiency and characterized in that the cell comprises a p-n-type heterojunction formed of: (i) a first semiconductor layer comprising a photovoltaic active material selected from the class of I-III-VI.sub.2 chalcopyrite ternary materials which is vacuum deposited in a thin "composition-graded" layer ranging from on the order of about 2.5 microns to about 5.0 microns (.congruent.2.5 .mu.m to .congruent.5.0 .mu.m) and wherein the lower region of the photovoltaic active material preferably comprises a low resistivity region of p-type semiconductor material having a superimposed region of relatively high resistivity, transient n-type semiconductor material defining a transient p-n homojunction; and (ii), a second semiconductor layer comprising a low resistivity n-type semiconductor material wherein interdiffusion (a) between the elemental constituents of the two discrete juxtaposed regions of the first semiconductor layer defining a transient p-n homojunction layer, and (b) between the transient n-type material in the first semiconductor layer and the second n-type semiconductor layer, causes the transient n-type material in the first semiconductor layer to evolve into p-type material, thereby defining a thin layer heterojunction device characterized by the absence of voids, vacancies and nodules which tend to reduce the energy conversion efficiency of the system.

  8. Tritium Aging Studies of LaNi4.15Al0.85 (LANA.85) | Department of Energy

    Office of Environmental Management (EM)

    Aging Studies of LaNi4.15Al0.85 (LANA.85) Tritium Aging Studies of LaNi4.15Al0.85 (LANA.85) Presentation from the 36th Tritium Focus Group Meeting held in Los Alamos, New Mexico, November 3-5, 2015. PDF icon Tritium Aging Studies of LaNi4.15Al0.85 (LANA.85) More Documents & Publications Advances in Design of the Next Generation Hydride Bed Safe Disposition of Retired LANA.75 Hydride Beds Determination of In-Vitro Lung Solubility and Intake-To-Dose Conversion Factors for Tritiated

  9. Mn deposition on Ni{sub 2}MnGa(100) (Journal Article) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Mn deposition on Ni{sub 2}MnGa(100) Citation Details In-Document Search Title: Mn deposition on Ni{sub 2}MnGa(100) We report the study of Mn adlayers on a Mn deficient Ni{sub 2}MnGa(100) surface by using low energy electron diffraction (LEED). The spot profile analysis indicates that after 0.2 monolayer (ML) deposition, the LEED spots become very sharp. This pattern indicates the removal of Mn vacancies formed on the surface due to Mn deficiency. But with further growth of Mn layers on this

  10. Magnetic doping of the golden cage cluster M@Au16¯ (M=Fe,Co,Ni) (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Magnetic doping of the golden cage cluster M@Au16¯ (M=Fe,Co,Ni) Citation Details In-Document Search Title: Magnetic doping of the golden cage cluster M@Au16¯ (M=Fe,Co,Ni) Structural, electronic, and magnetic properties of the golden cage doped with a transition-metal atom, M@Au16¯ (M=Fe,Co,Ni), are investigated using trapped ion electron diffraction, photoelectron spectroscopy, and density-functional theory. The best agreement to experiment is obtained for

  11. Influence of Cr and W alloying on the fiber-matrix interfacial shear strength in cast and directionally solidified sapphire NiAl composites

    SciTech Connect (OSTI)

    Asthana, R.; Tiwari, R.; Tewari, S.N.

    1995-08-01

    Sapphire-reinforced NiAl matrix composites with chromium or tungsten as alloying additions were synthesized using casting and zone directional solidification (DS) techniques and characterized by a fiber pushout test as well as by microhardness measurements. The sapphire-NiAl(Cr) specimens exhibited an interlayer of Cr rich eutectic at the fiber-matrix interface and a higher interfacial shear strength compared to unalloyed sapphire-NiAl specimens processed under identical conditions. In contrast, the sapphire-NiAl(W) specimens did not show interfacial excess of tungsten rich phases, although the interfacial shear strength was high and comparable to that of sapphire-NiAl(Cr). The postdebond sliding stress was higher in sapphire-NiAl(Cr) than in sapphire-NiAl(W) due to interface enrichment with chromium particles. The matrix microhardness progressively decreased with increasing distance from the interface in both DS NiAl and NiAl(Cr) specimens. The study highlights the potential of casting and DS techniques to improve the toughness and strength of NiAl by designing dual-phase microstructures in NiAl alloys reinforced with sapphire fibers.

  12. Improving the phase stability and oxidation resistance of B-NiAl

    SciTech Connect (OSTI)

    Brammer, Travis

    2011-08-15

    High temperature alloys are essential to many industries that require a stable material to perform in harsh oxidative environments. Many of these alloys are suited for specific applications such as jet engine turbine blades where most other materials would either melt or oxidize and crumble (1). These alloys must have a high melting temperature, excellent oxidation resistance, good creep resistance, and decent fracture toughness to be successfully used in such environments. The discovery of Ni based superalloys in the 1940s revolutionized the high temperature alloy industry and there has been continued development of these alloys since their advent (2). These materials are capable of operating in oxidative environments in the presence of combustion gases, water vapor and at temperatures around 1050 C. Demands for increased f uel efficiency, however, has highlighted the need for materials that can be used under similar atmospheres and at temperatures in excess of 1200 C. The current Ni based superalloys are restricted to lower temperatures due to the presence of a number of low melting phases that result in softening of the alloys above 1000 C. Therefore, recent research has been aimed at exploring and developing newer alloy systems that can meet the escalating requirements. This thesis comprises a part of such an effort. The motivation of this work is to develop a novel high temperature alloy system that shows improved performance at higher temperatures than the currently employed alloys. The desired alloy should be in accordance with the requirements established in the National Energy Technology Laboratory (NETL) FutureGen program having an operating temperature around 1300 C. Alloys based on NiAl offer significant potential payoffs as structural materials in gas turbine applications due to a unique range of physical and mechanical properties. Alloying additions to NiAl could be used to further improve the pertinent properties that currently limit this system from replacing Ni based superalloys. Modifications to NiAl were explored to increase the phase stability and oxidation resistance which would allow these alloys to be used at even higher temperatures yielding greater efficiencies. The extended Miedema model was an effective tool that screened all of the potential phase space for ternary substitutions to NiAl and found the few potential systems worth further investigation. After production of the alloys it was determined that Ir, Rh, and Pd were the top candidates for substitution on Ni site up to 12 at%. The melting temperature of NiAl could be increased as much as 150 C with 12 at% Ir and 130 C with 12 at% Rh substitution. Pall adium on the other hand decreased the melting temperature by 50 C at the 12 at% substitution level. The grain size was found to have a profound influence on the oxidation resistance. Both Ir and Rh substitutions resulted in finer grain sizes compared to Pd substitutions or base NiAl. The grain size increased drastically during high temperature annealing with the PGM substitutions hindering grain growth only slightly. However, the addition of 0.05 at% Hf limited the grain growth dramatically during high temperature annealing. NiAl inherently has respectable oxidation resistance up to 1100 C. It was found through experimental testing that both Ir and Rh substitutions improve the oxidation resistance of NiAl at ultra-high temperatures with Ir performing the best. Both PGM substitutions decreased the growth rate as well as forming a more adherent oxide scale. Pd substitutions appeared to have a negligible effect to the oxidation resistance of NiAl. Hafnium addition of 0.05 at% was found to decrease the oxidation rate as well as increase the scale adherence. The combination of both Ir substitution (6-9 at%) and Hf addition (0.05 at%) produced the alloy with the best oxidation resistance. Although improvements in phase stability and oxidation resistance have been made to the NiAl system, more development and testing are still needed. Two major issues yet to be resolved are the low fracture toughn

  13. PLASMA SPRAYED Ni-Al COATINGS FOR SAFE ENDING HEAT EXCHANGER TUBES

    SciTech Connect (OSTI)

    ALLAN,M.L.; OTTERSON,D.; BERNDT,C.C.

    1998-11-01

    Brookhaven National Laboratory (BNL) has developed thermally conductive composite liners for corrosion and scale protection in heat exchanger tubes exposed to geothermal brine. The liners cannot withstand roller expansion to connect the tubes to the tubesheet. It is not possible to line the ends of the tubes with the same material after roller expansion due to the nature of the current liner application process. It was requested that BNL evaluate plasma sprayed Ni-Al coatings for safe ending heat exchanger tubes exposed to geothermal brine. The tubes of interest had an internal diameter of 0.875 inches. It is not typical to thermal spray small diameter components or use such small standoff distances. In this project a nozzle extension was developed by Zatorski Coating Company to spray the tube ends as well as flat coupons for testing. Four different Ni-Al coatings were investigated. One of these was a ductilized Ni-AIB material developed at Oak Ridge National Laboratory. The coatings were examined by optical and scanning electron microscopy. In addition, the coatings were analyzed by X-ray diffraction and subjected to corrosion, tensile adhesion, microhardness and field tests in a volcanic pool in New Zealand. It was determined that the Ni-Al coatings could be applied to a depth of two inches on the tube ends. When sprayed on flat coupons the coatings exhibited relatively high adhesion strength and microhardness. Polarization curves showed that the coating performance was variable. Measured corrosion potentials indicated that the Ni-Al coatings are active towards steel coated with thermally conductive polymers, thereby suggesting preferential corrosion. Corrosion also occurred on the coated coupons tested in the volcanic pool. This may have been exacerbated by the difficulty in applying a uniform coating to the coupon edges. The Ni-Al coatings applied to the tubes had significant porosity and did not provide adequate corrosion protection. This is associated with the short standoff distance and is not a reflection of the normal quality of plasma sprayed coatings. Even if coating porosity could be reduced, the coupling of an alloy coating to a polymer-based barrier coating in the same electrolyte is not recommended. Therefore, polymer coatings that can be field applied to the tube ends after roller expansion should be sought.

  14. Inverse magnetocaloric effect in Mn{sub 2}NiGa and Mn{sub 1.75}Ni{sub 1.25}Ga magnetic shape memory alloys

    SciTech Connect (OSTI)

    Singh, Sanjay Barman, S. R.; Esakki Muthu, S.; Arumugam, S.; Senyshyn, A.; Rajput, P.; Suard, E.

    2014-02-03

    Inverse magnetocaloric effect is demonstrated in Mn{sub 2}NiGa and Mn{sub 1.75}Ni{sub 1.25}Ga magnetic shape memory alloys. The entropy change at the martensite transition is larger in Mn{sub 1.75}Ni{sub 1.25}Ga, and it increases linearly with magnetic field in both the specimens. Existence of inverse magnetocaloric effect is consistent with the observation that magnetization in the martensite phase is smaller than the austenite phase. Although the Mn content is smaller in Mn{sub 1.75}Ni{sub 1.25}Ga, from neutron diffraction, we show that the origin of inverse magnetocaloric effect is the antiferromagnetic interaction between the Mn atoms occupying inequivalent sites.

  15. Magnetic structures of R5Ni2In4 and R11Ni4In9 ( R = Tb and Ho): Strong hierarchy in the temperature dependence of the magnetic ordering in the multiple rare-earth sublattices

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ritter, C.; Provino, A.; Manfrinetti, P.; Pecharsky, V. K.; Gschneidner, Jr., K. A.; Dhar, S. K.

    2015-11-09

    In this study, the magnetic properties and magnetic structures of the R5Ni2In4 and the microfibrous R 11Ni4In9 compounds with R = Tb and Ho have been examined using magnetization, heat capacity, and neutron diffraction data. Rare earth atoms occupy three and five symmetrically inequivalent rare earth sites in R5Ni2In4 and R 11Ni4In9 compounds, respectively. As a result of the intra- and inter-magnetic sublattice interactions, the magnetic exchange interactions are different for various rare earth sites; this leads to a cascade of magnetic transitions with a strong hierarchy in the temperature dependence of the magnetic orderings.

  16. Magnetic domain structure and domain-wall energy in UFe{sub 8}Ni{sub 2}Si{sub 2} and UFe{sub 6}Ni{sub 4}Si{sub 2} intermetallic compounds

    SciTech Connect (OSTI)

    Wyslocki, J.J.; Suski, W.; Wochowski, K.

    1994-03-01

    Magnetic domain structures in the UFe{sub 8}Ni{sub 2}Si{sub 2} and UFe{sub 6}Ni{sub 4}Si{sub 2} compounds were studied using the powder pattern method. The domain structure observed is typical for uniaxial materials. The domain-wall energy density {gamma} was determined from the average surface domain width D{sub s} observed on surfaces perpendicular to the easy axis as equal to 16 erg/cm{sup 2} for UFe{sub 8}Ni{sub 2}Si{sub 2} and 10 erg/cm{sup 2} for UFe{sub 6}Ni{sub 4}Si{sub 2}. Moreover, the critical diameter for single domain particle D{sub c} was calculated for the studied compounds.

  17. Anti-site disorder and improved functionality of Mn?NiX (X = Al, Ga, In, Sn) inverse Heusler alloys

    SciTech Connect (OSTI)

    Paul, Souvik; Kundu, Ashis; Ghosh, Subhradip; Sanyal, Biplab

    2014-10-07

    Recent first-principles calculations have predicted Mn?NiX (X = Al, Ga, In, Sn) alloys to be magnetic shape memory alloys. Moreover, experiments on Mn?NiGa and Mn?NiSn suggest that the alloys deviate from the perfect inverse Heusler arrangement and that there is chemical disorder at the sublattices with tetrahedral symmetry. In this work, we investigate the effects of such chemical disorder on phase stabilities and magnetic properties using first-principles electronic structure methods. We find that except Mn?NiAl, all other alloys show signatures of martensitic transformations in presence of anti-site disorder at the sublattices with tetrahedral symmetry. This improves the possibilities of realizing martensitic transformations at relatively low fields and the possibilities of obtaining significantly large inverse magneto-caloric effects, in comparison to perfect inverse Heusler arrangement of atoms. We analyze the origin of such improvements in functional properties by investigating electronic structures and magnetic exchange interactions.

  18. Ab initio study of structural, electronic, magnetic alloys: XTiSb (X = Co, Ni and Fe)

    SciTech Connect (OSTI)

    Ibrir, M. Berri, S.; Lakel, S.; Alleg, S.; Bensalem, R.

    2015-03-30

    Structural, electronic and magnetic properties of three semi-Heusler compounds of CoTiSb, NiTiSb and FeTiSb were calculated by the method (FP-LAPW) which is based on the DFT code WIEN2k. We used the generalized gradient approximation (GGA (06)) for the term of the potential exchange and correlation (XC) to calculate structural properties, electronic properties and magnetic properties. Structural properties obtained as the lattice parameter are in good agreement with the experimental results available for the electronic and magnetic properties was that: CoTiSb is a semiconductor NiTiSb is a metal and FeTiSb is a half-metal ferromagnetic.

  19. A Low Hysteresis NiTiFe Shape Memory Alloy Based Thermal Conduction Switch

    SciTech Connect (OSTI)

    Lemanski, J. L.; Krishnan, V. B.; Manjeri, R. Mahadevan; Vaidyanathan, R.; Notardonato, W. U.

    2006-03-31

    Shape memory alloys possess the ability to return to a preset shape by undergoing a solid state phase transformation at a particular temperature. This work reports on the development and testing of a low temperature thermal conduction switch that incorporates a NiTiFe shape memory element for actuation. The switch was developed to provide a variable conductive pathway between liquid methane and liquid oxygen dewars in order to passively regulate the temperature of methane. The shape memory element in the switch undergoes a rhombohedral or R-phase transformation that is associated with a small hysteresis (typically 1-2 deg. C) and offers the advantage of precision control over a set temperature range. For the NiTiFe alloy used, its thermomechanical processing, subsequent characterization using dilatometry, differential scanning calorimetry and implementation in the conduction switch configuration are addressed.

  20. Bulk glass formation in the Pd{endash}Ni{endash}P system

    SciTech Connect (OSTI)

    He, Y.; Schwarz, R.B.; Archuleta, J.I. [Center for Materials Science, MS K-765, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)] [Center for Materials Science, MS K-765, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    1996-09-01

    Bulk amorphous Pd{endash}Ni{endash}P rods with diameters ranging from 10 to 25 mm were prepared by a fluxing technique over a wide composition range. For most bulk glassy alloys studied, the difference between the glass transition temperature and the crystallization temperature, {ital T}{sub {ital x}}{minus}{ital T}{sub {ital g}}, is larger than 90 K. Of all the alloy compositions examined, Pd{sub 40}Ni{sub 40}P{sub 20} has the highest glass formability, and 300-g bulk amorphous cylinders, 25 mm in diameter and 50 mm in length, were easily and repeatedly formed. This size, however, is not an upper limit. The elastic properties of these bulk amorphous alloys were determined by a resonant ultrasound spectroscopy technique.

  1. Magnetic properties of double perovskite La2BMnO6 (B = Ni or Co) nanoparticles

    SciTech Connect (OSTI)

    Mao, Yuanbing; Parsons, Jason; McCloy, John S.

    2013-03-31

    Double perovskite La2BMnO6 (B = Ni and Co) nanoparticles with average particle size of ~50 nm were synthesized using a facile, environmentally friendly, scalable molten-salt reaction at 700 C in air. Their structural and morphological properties were characterized by x-ray diffraction and transmission electron microscopy. Magnetic properties were evaluated using dc magnetic M-T and M-H, and ac magnetic susceptibility versus frequency, temperature, and field. The magnetization curve shows a paramagnetic-ferromagnetic transition at TC ~275 and 220 K for La2NiMnO6 (LNMO) and La2CoMnO6 (LCMO) nanoparticles, respectively. ac susceptibility revealed that the LCMO had a single magnetic transition indicative of Co2+-O2--Mn4+ ordering, whereas the LNMO showed more complex magnetic behavior suggesting a re-entrant spin glass.

  2. Search for the Pygmy Dipole Resonance in {sup 68}Ni at 600 MeV/nucleon

    SciTech Connect (OSTI)

    Wieland, O.; Benzoni, G.; Blasi, N.; Brambilla, S.; Million, B.; Bracco, A.; Camera, F.; Crespi, F. C. L.; Leoni, S.; Nicolini, R.; Maj, A.; Bednarczyk, P.; Grebosz, J.; Kmiecik, M.; Meczynski, W.; Styczen, J.; Wollersheim, H. J.; Aumann, T.; Banu, A.; Beck, T.

    2009-03-06

    The {gamma} decay from Coulomb excitation of {sup 68}Ni at 600 MeV/nucleon on a Au target was measured using the RISING setup at the fragment separator of GSI. The {sup 68}Ni beam was produced by a fragmentation reaction of {sup 86}Kr at 900 MeV/nucleon on a {sup 9}Be target and selected by the fragment separator. The {gamma} rays produced at the Au target were measured with HPGe detectors at forward angles and with BaF{sub 2} scintillators at backward angles. The measured spectra show a peak centered at approximately 11 MeV, whose intensity can be explained in terms of an enhanced strength of the dipole response function (pygmy resonance). Such pygmy structure has been predicted in this unstable neutron-rich nucleus by theory.

  3. Numerical prediction of the thermodynamic properties of ternary Al-Ni-Hf alloys

    SciTech Connect (OSTI)

    Romanowska, Jolanta; Kotowski, S?awomir; Zagula-Yavorska, Maryana

    2014-10-06

    Thermodynamic properties of ternary Al-Hf-Ni system, such as {sup ex}G, ?{sub Al}, ?{sub Ni} and ?{sub Zr} at 1373K were predicted on the basis of thermodynamic properties of binary systems included in the investigated ternary system. The idea of predicting {sup ex}G values was regarded as the calculation of excess Gibbs energy values inside a certain area (a Gibbs triangle) unless all boundary conditions, that is values of {sup ex}G on all legs of the triangle are known. {sup ex}G and L{sub ijk} ternary interaction parameters in the Muggianu extension of the Redlich-Kister formalism are calculated numerically using Wolfram Mathematica 9 software.

  4. Sessile dislocations by reactions in NiAl severely deformed at room temperature

    SciTech Connect (OSTI)

    Geist, D.; Gammer, C.; Rentenberger, C.; Karnthaler, H. P.

    2015-02-05

    B2 ordered NiAl is known for its poor room temperature (RT) ductility; failure occurs in a brittle like manner even in ductile single crystals deforming by single slip. In the present study NiAl was severely deformed at RT using the method of high pressure torsion (HPT) enabling the hitherto impossible investigation of multiple slip deformation. Methods of transmission electron microscopy were used to analyze the dislocations formed by the plastic deformation showing that as expected dislocations with Burgers vector a(100) carry the plasticity during HPT deformation at RT. In addition, we observe that they often form a(110) dislocations by dislocation reactions; the a(110) dislocations are considered to be sessile based on calculations found in the literature. It is therefore concluded that the frequently encountered 3D dislocation networks containing sessile a(110) dislocations are pinned and lead to deformation-induced embrittlement. In spite of the severe deformation, the chemical order remains unchanged.

  5. Interfacial shear strength of cast and directionally solidified NiAl-sapphire fiber composites

    SciTech Connect (OSTI)

    Tewari, S.N.; Asthana, R. . Chemical Engineering Dept.); Noebe, R.D. . Intermetallics Branch)

    1993-09-01

    The feasibility of fabricating intermetallic NiAl-sapphire fiber composites by casting and zone directional solidification has been examined. The fiber-matrix interfacial shear strengths measured using a fiber push-out technique in both cast and directionally solidified composites are greater than the strengths reported for composites fabricated by powder cloth process using organic binders. Microscopic examination of fibers extracted from cast, directionally solidified (DS), and thermally cycled composites, and the high values of interfacial shear strengths suggest that the fiber-matrix interface does not degrade due to casting and directional solidification. Sapphire fibers do not pin grain boundaries during directional solidification, suggesting that this technique can be used to fabricate sapphire fiber reinforced NiAl composites with single crystal matrices.

  6. Synthesis and characterization of NiFe{sub 2}O{sub 4}Pd magnetically recyclable catalyst for hydrogenation reaction

    SciTech Connect (OSTI)

    Karao?lu, E.; zel, U.; Caner, C.; Baykal, A.; Summak, M.M.; Szeri, H.

    2012-12-15

    Graphical abstract: Display Omitted Highlights: ? Novel superparamagnetic NiFe{sub 2}O{sub 4}Pd magnetically recyclable catalyst was fabricated through co-precipitation. ? It could be reused several times without significant loss in catalytic activity for hydrogenation reaction. ? No further modification of the NiFe{sub 2}O{sub 4}Pd magnetically recyclable catalyst is necessary for utilization as catalyst. -- Abstract: Herein we report the fabrication and characterization magnetically recyclable catalysts of NiFe{sub 2}O{sub 4}Pd nanocomposite as highly effective catalysts for reduction reactions in liquid phase. The reduction Pd{sup 2+} was accomplished with polyethylene glycol 400 (PEG-400) instead of sodium borohydride (NaBH{sub 4}) and NiFe{sub 2}O{sub 4} nanoparticles was prepared by sonochemically using FeCI{sub 3}6H{sub 2}O and NiCl{sub 2}. The chemical characterization of the product was done with X-ray diffractometry, Infrared spectroscopy, transmission electron microscopy, UVVis spectroscopy, thermal gravimetry and inductively coupled plasma. Thus formed NiFe{sub 2}O{sub 4}Pd MRCs showed a very high activity in reduction reactions of 4-nitro aniline and 1,3-dinitrobenzene in liquid phase. It was found out that the catalytic activity of NiFe{sub 2}O{sub 4}Pd MRCs on the reduction of 4-nitro aniline and 1,3-dinitrobenzene in liquid phase are between 9993% and 9893%, respectively. Magnetic character of this system allowed recovery and multiple use without significant loss of its catalytic activity. It is found that NiFe{sub 2}O{sub 4}Pd MRCs showed very efficient catalytic activity and multiple usability.

  7. On the amorphization behavior and hydrogenation performance of high-energy ball-milled Mg{sub 2}Ni alloys

    SciTech Connect (OSTI)

    Kou, Hongchao; Hou, Xiaojiang; Zhang, Tiebang, E-mail: tiebangzhang@nwpu.edu.cn; Hu, Rui; Li, Jinshan; Xue, Xiangyi

    2013-06-15

    Amorphous Mg{sub 2}Ni alloy was prepared by high energy ball-milling starting with polycrystalline Mg{sub 2}Ni which was prepared with the help of a metallurgy method by using a SPEX 8000D mill. The microstructural and phase structure characterization of the prepared materials was performed via scanning electron microscopy, transition electron microscope and X-ray diffraction. The thermal stabilities were investigated by differential scanning calorimetry. The apparent activation energies were determined by means of the Kissinger method. The first and second crystallization reactions take place at ? 255 C and ? 410 C, and the corresponding activation energy of crystallization is E{sub a1} = 276.9 and E{sub a2} = 382.4 kJ/mol, respectively. At 3 MPa hydrogen pressure and 250 C, the hydrogen absorption capacities of crystalline, partially and fully amorphous Mg{sub 2}Ni alloy are 2.0 wt.%, 3.2 wt.% and 3.5 wt.% within 30 min, respectively. - Graphical Abstract: We mainly focus on the amorphization behavior of crystalline Mg{sub 2}Ni alloy in the high energy ball-milling process and the crystallization behavior of the amorphous Mg{sub 2}Ni alloy in a follow-up heating process. The relationship of milling, microstructure and hydrogenation properties is established and explained by models. - Highlights: Amorphous Mg{sub 2}Ni has been obtained by high energy ball milling the as-cast alloy. The amorphization behavior of polycrystalline Mg{sub 2}Ni is presented. The crystallization behavior of the amorphous Mg{sub 2}Ni alloy is illustrated. Establish the relationship of milling, microstructure and hydrogenation properties.

  8. Synthesis of mesoporous NiO doped TiO{sub 2} submicrosphere via spray hydrolysis

    SciTech Connect (OSTI)

    Bahadur, J.; Sen, D.; Prakash, J.; Singh, Ripandeep; Paul, B.; Mazumder, S.; Sathiyamoorthy, D.

    2012-06-05

    NiO doped TiO{sub 2} submicrosphere have been prepared via spray hydrolysis. The doping concentration has been varied form 2 wt% to 15 wt%. Morphology of the submicrospheres has been investigated using small-angle neutron scattering and scanning electron microscopy. Elemental analysis has been carried out by energy dispersive X-ray analysis which confirms the doping concentrations. The mesopores in submicrospheres possess cylindrical morphology.

  9. X-ray diffraction study of the phase transformations in NiTi shape memory alloy

    SciTech Connect (OSTI)

    Uchil, J.; Fernandes, F.M. Braz . E-mail: kkmahesh@rediffmail.com

    2007-03-15

    The phase transformations occurring in heat-treated NiTi shape memory alloys have been studied through the analysis of variation in integrated peak area (integrated intensity) with temperature, under the XRD peak profiles in the transformation temperature range. For this purpose, integrated peak area under the prominent peak corresponding to (110) plane of the austenitic phase has been chosen. The results so obtained are compared with those got from the DSC method. The XRD method is found to be more sensitive.

  10. Martensitic transformation behaviors of rapidly solidified TiNiMo powders

    SciTech Connect (OSTI)

    Kim, Yeon-wook

    2012-10-15

    For the fabrication of bulk near-net-shape shape memory alloys and porous metallic biomaterials, consolidation of TiNiMo alloy powders is more useful than that of elemental powders of Ti, Ni and Mo. Ti{sub 50}Ni{sub 49.9}Mo{sub 0.1} shape memory alloy powders were prepared by gas atomization, and transformation temperatures and microstructures of those powders were investigated as a function of powder size. XRD analysis showed that the B2RB19 martensitic transformation occurred in powders smaller than 150 ?m. According to DSC analysis of the as-atomized powders, the B2R transformation temperature (T{sub R}) of the 2550 ?m powders was 18.4 C. The T{sub R} decreased with increasing powder size, however, the difference in T{sub R} between 2550 ?m powders and 100150 ?m powders is only 1 C. Evaluation of powder microstructures was based on SEM examination of the surface and the polished and etched powder cross sections and the typical images of the rapidly solidified powders showed cellular morphology. Porous cylindrical foams of 10 mm diameter and 1.5 mm length were fabricated by spark plasma sintering (SPS) at 800 C and 5 MPa. Finally these porous TiNi alloy samples are heat-treated for 1 h at 850 C, and then quenched in ice water. The bulk samples have 23% porosity and 4.6 g/cm{sup 3} density and their T{sub R} is 17.8 C.

  11. Neutron Scattering of CeNi at the Spallation Neutron Source at Oak Ridge

    Office of Scientific and Technical Information (OSTI)

    National Laboratory: A Preliminary Report (Conference) | SciTech Connect Spallation Neutron Source at Oak Ridge National Laboratory: A Preliminary Report Citation Details In-Document Search Title: Neutron Scattering of CeNi at the Spallation Neutron Source at Oak Ridge National Laboratory: A Preliminary Report Authors: Tobin, J G ; Mirmelstein, A V ; Podlesnyak, A ; Kolesnikov, A I Publication Date: 2014-01-16 OSTI Identifier: 1132009 Report Number(s): LLNL-PROC-649216 DOE Contract Number:

  12. SF6432-NI Fixed Price Contracts with the Newly Independent States of the Former Soviet Union

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department Release Date: 11/17/15 Page 1 of 15 Printed copies of this document are uncontrolled. Retrieve latest version electronically. SANDIA CORPORATION SF 6432-NI (11/2015) SECTION II STANDARD TERMS AND CONDITIONS FOR FIXED PRICE CONTRACTS WITH THE NEWLY INDEPENDENT STATES OF THE FORMER SOVIET UNION THE FOLLOWING CLAUSES APPLY TO REQUESTS FOR QUOTATION AND CONTRACTS AS INDICATED UNLESS SPECIFICALLY DELETED, OR EXCEPT TO THE EXTENT THEY ARE SPECIFICALLY SUPPLEMENTED OR AMENDED IN WRITING IN

  13. SF6432-NI Fixed Price Contracts with the Newly Independent States of the Former Soviet Union

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NI (04/2015) SECTION II STANDARD TERMS AND CONDITIONS FOR FIXED PRICE CONTRACTS WITH THE NEWLY INDEPENDENT STATES OF THE FORMER SOVIET UNION THE FOLLOWING CLAUSES APPLY TO REQUESTS FOR QUOTATION AND CONTRACTS AS INDICATED UNLESS SPECIFICALLY DELETED, OR EXCEPT TO THE EXTENT THEY ARE SPECIFICALLY SUPPLEMENTED OR AMENDED IN WRITING IN THE SIGNATURE PAGE OR SECTION I. (CTRL+CLICK ON A LINK BELOW TO ADVANCE DIRECTLY TO THAT SECTION) ACCEPTANCE OF TERMS AND CONDITIONS APPLICABLE LAW ASSIGNMENT

  14. Propagating spectroscopy of backward volume spin waves in a metallic FeNi film

    SciTech Connect (OSTI)

    Sato, N.; Ishida, N.; Kawakami, T.; Sekiguchi, K.

    2014-01-20

    We report a propagating spin wave spectroscopy for a magnetostatic backward volume spin wave in a metallic Fe{sub 19}Ni{sub 81} film. We show that the mutual-inductance between two independent antennas detects a small but clear propagation signal of backward volume spin waves. All experimental data are consistent with the time-domain propagating spin-wave spectroscopy. The control of propagating backward spin wave enables to realize the miniaturize spin-wave circuit.

  15. Intermetallic M-Sn5 (M=Fe, Cu, Co, Ni) Compounds - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicles and Fuels Vehicles and Fuels Advanced Materials Advanced Materials Find More Like This Return to Search Intermetallic M-Sn5 (M=Fe, Cu, Co, Ni) Compounds Brookhaven National Laboratory Contact BNL About This Technology Technology Marketing Summary Among electrode materials for lithium ion batteries, tin offers a high theoretical capacity about 2.5 times that of graphite by weight. Unfortunately, when lithium alloys with tin the matrix undergoes a very large volume change. This change in

  16. Incorporation of trace elements in Portland cement clinker: Thresholds limits for Cu, Ni, Sn or Zn

    SciTech Connect (OSTI)

    Gineys, N.; Aouad, G.; Sorrentino, F.; Damidot, D.

    2011-11-15

    This paper aims at defining precisely, the threshold limits for several trace elements (Cu, Ni, Sn or Zn) which correspond to the maximum amount that could be incorporated into a standard clinker whilst reaching the limit of solid solution of its four major phases (C{sub 3}S, C{sub 2}S, C{sub 3}A and C{sub 4}AF). These threshold limits were investigated through laboratory synthesised clinkers that were mainly studied by X-ray Diffraction and Scanning Electron Microscopy. The reference clinker was close to a typical Portland clinker (65% C{sub 3}S, 18% C{sub 2}S, 8% C{sub 3}A and 8% C{sub 4}AF). The threshold limits for Cu, Ni, Zn and Sn are quite high with respect to the current contents in clinker and were respectively equal to 0.35, 0.5, 0.7 and 1 wt.%. It appeared that beyond the defined threshold limits, trace elements had different behaviours. Ni was associated with Mg as a magnesium nickel oxide (MgNiO{sub 2}) and Sn reacted with lime to form a calcium stannate (Ca{sub 2}SnO{sub 4}). Cu changed the crystallisation process and affected therefore the formation of C{sub 3}S. Indeed a high content of Cu in clinker led to the decomposition of C{sub 3}S into C{sub 2}S and of free lime. Zn, in turn, affected the formation of C{sub 3}A. Ca{sub 6}Zn{sub 3}Al{sub 4}O{sub 15} was formed whilst a tremendous reduction of C{sub 3}A content was identified. The reactivity of cements made with the clinkers at the threshold limits was followed by calorimetry and compressive strength measurements on cement paste. The results revealed that the doped cements were at least as reactive as the reference cement.

  17. Influence of fatigue on the nanohardness of NiTiCr-wires

    SciTech Connect (OSTI)

    Frotscher, M.; Young, M. L.; Bei, Hongbin; George, Easo P; Neuking, K.; Eggeler, G.

    2009-01-01

    Testing parameters, such as rotational speed and bending radius, have a strong influence on the fatigue life of pseudoelastic NiTi shape-memory alloys during bending rotation fatigue (BRF) experiments [M. F. X. Wagner, Int. J. Mat. Res. 97 (2006), p. 1687-1696. and M. Frotscher, et al., Thermomechanical processing, microstructure and bending rotation fatigue of ultra-fine grained NiTiCr-wires, Proceedings of the International Conference for Shape Memory and Superelastic Technologies (SMST 2007), Tsukuba, Japan, ASM International, (2008), p. 149-158.]. Previous studies showed a decrease in the fatigue life for smaller bending radius (i.e. higher equivalent strain) and larger rotational speed. This observation is associated with an increase of dislocation density, the stabilization of stressinduced martensite during cycling, and an increase of the plateau stresses due to self-heating. In the present study, we examine the influence of these fatigue parameters on the nanohardness and shape recovery of pseudoelastic NiTiCr shape-memory alloy wires by nanoindentation. We show that nanoindentation is a suitable method for the characterization of fatigue-related microstructural changes, which affect the mechanical properties.

  18. Stability of precipitate phases in Fe-rich Fe-Cr-Ni-Mo alloys

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yang, Ying; Tan, Lizhen; Busby, Jeremy T

    2015-01-01

    Understanding the stability of precipitate phases in the Fe-rich Fe-Cr-Ni-Mo alloys is critical to the alloy design and application of Mo-containing Austenitic steels. Coupled with thermodynamic modeling, stability of the and phases in two Fe-Cr-Ni-Mo alloys were investigated at 1000, 850 and 700 C for different annealing time. The morphologies, compositions and crystal structures of the matrix and precipitate phases were carefully examined by Scanning Electron Microscopy, Electron Probe Microanalysis, X-ray diffraction and Transmission Electron Microscopy. Two key findings resulted from this work. One is that the phase is stable at high temperature and transformed into the phase at lowmoretemperature. The other is that both the and phases have large solubilites of Cr, Mo and Ni, among which the Mo solubility has a major role on the relative stability of the precipitate phases. The developed thermodynamic models were then applied to evaluating the Mo effect on the stability of precipitate phases in AISI 316 and NF709 alloys.less

  19. Thermal stability of intermetallic phases in Fe-rich Fe-Cr-Ni-Mo alloys

    SciTech Connect (OSTI)

    Yang, Ying; Tan, Lizhen; Busby, Jeremy T.

    2015-06-12

    Understanding the stability of precipitate phases in the Fe-rich Fe-Cr-Ni-Mo alloys is critical to the alloy design and application of Mo-containing Austenitic steels. Coupled with thermodynamic modeling, stability of the chi and Laves phases in two Fe-Cr-Ni-Mo alloys were investigated at 1000, 850 and 700 °C for different annealing time. The morphologies, compositions and crystal structures of the matrix and precipitate phases were carefully examined by Scanning Electron Microscopy, Electron Probe Microanalysis, X-ray diffraction and Transmission Electron Microscopy. The two key findings resulted from this work. One is that the chi phase is stable at high temperature and transformed into the Laves phase at low temperature. The other is that both the chi and Laves phases have large solubilites of Cr, Mo and Ni, among which the Mo solubility has a major role on the relative stability of the precipitate phases. The developed thermodynamic models were then applied to evaluating the Mo effect on the stability of precipitate phases in AISI 316 and NF709 alloys.

  20. Thermal stability of intermetallic phases in Fe-rich Fe-Cr-Ni-Mo alloys

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yang, Ying; Tan, Lizhen; Busby, Jeremy T.

    2015-06-12

    Understanding the stability of precipitate phases in the Fe-rich Fe-Cr-Ni-Mo alloys is critical to the alloy design and application of Mo-containing Austenitic steels. Coupled with thermodynamic modeling, stability of the chi and Laves phases in two Fe-Cr-Ni-Mo alloys were investigated at 1000, 850 and 700 °C for different annealing time. The morphologies, compositions and crystal structures of the matrix and precipitate phases were carefully examined by Scanning Electron Microscopy, Electron Probe Microanalysis, X-ray diffraction and Transmission Electron Microscopy. The two key findings resulted from this work. One is that the chi phase is stable at high temperature and transformed intomore » the Laves phase at low temperature. The other is that both the chi and Laves phases have large solubilites of Cr, Mo and Ni, among which the Mo solubility has a major role on the relative stability of the precipitate phases. The developed thermodynamic models were then applied to evaluating the Mo effect on the stability of precipitate phases in AISI 316 and NF709 alloys.« less

  1. Bulk amorphous Pd{endash}Ni{endash}Fe{endash}P alloys: Preparation and characterization

    SciTech Connect (OSTI)

    Shen, T.D.; He, Y.; Schwarz, R.B. [Materials Science and Technology Division, MS K765, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    1999-05-01

    Bulk amorphous alloys of Pd{sub x}Ni{sub y}Fe{sub 80{minus}x{minus}y}P{sub 20} (25{le}x{le}60, 20{le}y{le}55, x+y{ge}60) were prepared by a flux-melting and water-quenching method. Seven-mm diameter glassy rods of Pd{sub 40}Ni{sub 40{minus}x}Fe{sub x}P{sub 20} (0{le}x{le}20) were studied in greater detail. For these alloys, the difference between the crystallization and glass transition temperatures ranges from 102 K for x=0 to 53 K for x=20. In this composition range, the reduced glass transition temperature, T{sub rg}, ranges from 0.66 to 0.57. The change in density upon crystallization ranges from 0.24{plus_minus}0.04{percent} for x=0 to 1.33{plus_minus}0.24{percent} for x=10. The partial molar volume of Fe in amorphous Pd{sub 40}Ni{sub 40{minus}x}Fe{sub x}P{sub 20} alloys is significantly larger than the molar volume of (metastable) fcc Fe. This, as well as a comparison with the molar volumes of crystalline compounds, suggests chemically selective Fe{endash}Pd bonding in these glasses. {copyright} {ital 1999 Materials Research Society.}

  2. High Energy Density Na-S/NiCl2 Hybrid Battery

    SciTech Connect (OSTI)

    Lu, Xiaochuan; Lemmon, John P.; Kim, Jin Yong; Sprenkle, Vincent L.; Yang, Zhenguo

    2013-02-15

    High temperature (250-350C) sodium-beta alumina batteries (NBBs) are attractive energy storage devices for renewable energy integration and other grid related applications. Currently, two technologies are commercially available in NBBs, e.g., sodium-sulfur (Na-S) battery and sodium-metal halide (ZEBRA) batteries. In this study, we investigated the combination of these two chemistries with a mixed cathode. In particular, the cathode of the cell consisted of molten NaAlCl4 as a catholyte and a mixture of Ni, NaCl and Na2S as active materials. During cycling, two reversible plateaus were observed in cell voltage profiles, which matched electrochemical reactions for Na-S and Na-NiCl2 redox couples. An irreversible reaction between sulfur species and Ni was identified during initial charge at 280C, which caused a decrease in cell capacity. The final products on discharge included Na2Sn with 1< n < 3, which differed from Na2S3 found in traditional Na-S battery. Reduction of sulfur in the mixed cathode led to an increase in overall energy density over ZEBRA batteries. Despite of the initial drop in cell capacity, the mixed cathode demonstrated relatively stable cycling with more than 95% of capacity retained over 60 cycles under 10mA/cm2. Optimization of the cathode may lead to further improvements in battery performance.

  3. Study on structural, optical properties of solvothermally synthesized Ni doped CdS nanorods

    SciTech Connect (OSTI)

    Kaur, Kamaldeep Verma, N. K.

    2015-05-15

    Undoped and alkali metal i.e Ni doped CdS nanorods (Cd{sub x}Ni{sub 1-x}S) with (x = 0.0, 0.3,) has been synthesized by using a convenient solvothermal technique. In order to confirm the structure of the synthesized nanorods X-ray diffraction (XRD) has been done which reveals the formation of hexagonal phase of the dilute magnetic semiconducting nanorods having size of undoped 27.79nm and doped 17.49nm. Energy dispersive X-ray analysis depicts the presence of elements Cd, Ni and S in their stoichiometric ratio. Optical behavior of undoped and doped nanorods has been investigated. UV-visible spectra show the blue shift in the band gap, as compared to the bulk CdS which may be due the quantum confinement occurs in the nanostructures. Morphological analysis has been done with the help of Transmission electron microscope which confirms the polycrystalline nature of the synthesized nanorods.

  4. Experimental study and thermodynamic modeling of the Al–Co–Cr–Ni system

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gheno, Thomas; Liu, Xuan L.; Lindwall, Greta; Liu, Zi -Kui; Gleeson, Brian

    2015-09-21

    In this study, a thermodynamic database for the Al–Co–Cr–Ni system is built via the Calphad method by extrapolating re-assessed ternary subsystems. A minimum number of quaternary parameters are included, which are optimized using experimental phase equilibrium data obtained by electron probe micro-analysis and x-ray diffraction analysis of NiCoCrAlY alloys spanning a wide compositional range, after annealing at 900 °C, 1100 °C and 1200 °C, and water quenching. These temperatures are relevant to oxidation and corrosion resistant MCrAlY coatings, where M corresponds to some combination of nickel and cobalt. Comparisons of calculated and measured phase compositions show excellent agreement for themore » β–γ equilibrium, and good agreement for three-phase β–γ–σ and β–γ–α equilibria. An extensive comparison with existing Ni-base databases (TCNI6, TTNI8, NIST) is presented in terms of phase compositions.« less

  5. Computational study of hydrocarbon adsorption in metal-organic framework Ni2(dhtp)

    SciTech Connect (OSTI)

    Sun, Xiuquan; Wick, Collin D.; Thallapally, Praveen K.; McGrail, B. Peter; Dang, Liem X.

    2011-03-31

    Molecular dynamic simulations were carried out to study the sorption, structural properties, and diffusivities of n-hexane and cyclohexane adsorbed in Ni2(dhtp). The results indicated strong interactions between the alkanes and the host material. The free energy perturbation method was employed to investigate the adsorption free energies of methane, ethane, n-butane, n-hexane and cyclohexane. For linear alkanes, the free energy lowered as the length of the carbon chain increased. Also, the adsorption of n-hexane was preferred over cyclohexane, due to its ability to rearrange its structure to maximize contacts with the host. Furthermore, due to the large pore size of Ni2(dhtp), higher loadings of alkanes did not significantly affect the alkane structure, and enhanced the free energy of adsorption for subsequent alkanes being loaded. According to our studies, Ni2(dhtp) has a very promising potential for adsorption and storage of alkanes. This work was supported by the US Department of Energy Basic Energy Sciences' Chemical Sciences, Geosciences & Biosciences Division. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  6. Molecular dynamics simulations of the melting curve of NiAl alloy under pressure

    SciTech Connect (OSTI)

    Zhang, Wenjin; Peng, Yufeng; Liu, Zhongli

    2014-05-15

    The melting curve of B2-NiAl alloy under pressure has been investigated using molecular dynamics technique and the embedded atom method (EAM) potential. The melting temperatures were determined with two approaches, the one-phase and the two-phase methods. The first one simulates a homogeneous melting, while the second one involves a heterogeneous melting of materials. Both approaches reduce the superheating effectively and their results are close to each other at the applied pressures. By fitting the well-known Simon equation to our melting data, we yielded the melting curves for NiAl: 1783(1 + P/9.801){sup 0.298} (one-phase approach), 1850(1 + P/12.806){sup 0.357} (two-phase approach). The good agreement of the resulting equation of states and the zero-pressure melting point (calc., 1850 25 K, exp., 1911 K) with experiment proved the correctness of these results. These melting data complemented the absence of experimental high-pressure melting of NiAl. To check the transferability of this EAM potential, we have also predicted the melting curves of pure nickel and pure aluminum. Results show the calculated melting point of Nickel agrees well with experiment at zero pressure, while the melting point of aluminum is slightly higher than experiment.

  7. Effect of oxygen vacancy on half metallicity in Ni-doped CeO{sub 2} diluted magnetic semiconductor

    SciTech Connect (OSTI)

    Saini, Hardev S. Saini, G. S. S.; Singh, Mukhtiyar; Kashyap, Manish K.

    2015-05-15

    The electronic and magnetic properties of Ni-doped CeO{sub 2} diluted amgentic semiconductor (DMS) including the effect of oxygen vacancy (V{sub o}) with doping concentration, x = 0.125 have been calculated using FPLAPW method based on Density Functional Theory (DFT) as implemented in WIEN2k. In the present supercell approach, the XC potential was constructed using GGA+U formalism in which Coulomb correction is applied to standard GGA functional within the parameterization of Perdew-Burke-Ernzerhof (PBE). We have found that the ground state properties of bulk CeO{sub 2} compound have been modified significantly due to the substitution of Ni-dopant at the cation (Ce) site with/without V{sub O} and realized that the ferromagnetism in CeO{sub 2} remarkably depends on the V{sub o} concentrations. The presence of V{sub o}, in Ni-doped CeO{sub 2}, can leads to strong ferromagnetic coupling between the nearest neighboring Ni-ions and induces a HMF in this compound. Such ferromagnetic exchange coupling is mainly attributed to spin splitting of Ni-d states, via electrons trapped in V{sub o}. The HMF characteristics of Ni-doped CeO{sub 2} including V{sub o} makes it an ideal material for spintronic devices.

  8. Temperature-dependent phase-specific deformation mechanisms in a directionally solidified NiAl-Cr(Mo) lamellar composite

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yu, Dunji; An, Ke; Chen, Xu; Bei, Hongbin

    2015-10-09

    Phase-specific thermal expansion and mechanical deformation behaviors of a directionally solidified NiAl–Cr(Mo) lamellar in situ composite were investigated by using real-time in situ neutron diffraction during compression at elevated temperatures up to 800 °C. Tensile and compressive thermal residual stresses were found to exist in the NiAl phase and Crss (solid solution) phase, respectively. Then, based on the evolution of lattice spacings and phase stresses, the phase-specific deformation behavior was analyzed qualitatively and quantitatively. Moreover, estimates of phase stresses were derived by Hooke's law on the basis of a simple method for the determination of stress-free lattice spacing in inmore » situ composites. During compressive loading, the NiAl phase yields earlier than the Crss phase. The Crss phase carries much higher stress than the NiAl phase, and displays consistent strain hardening at all temperatures. The NiAl phase exhibits strain hardening at relatively low temperatures and softening at high temperatures. During unloading, the NiAl phase yields in tension whereas the Crss phase unloads elastically. Additionally, post-test microstructural observations show phase-through cracks at room temperature, micro cracks along phase interfaces at 600 °C and intact lamellae kinks at 800 °C, which is due to the increasing deformability of both phases as temperature rises.« less

  9. Ligand-Based Steric Effects in Ni-Catalyzed Chain-Growth Polymerizations Using Bis(dialkylphosphino)ethanes

    SciTech Connect (OSTI)

    Lanni, Erica L.; Locke, Jonas R.; Gleave, Christine M.; McNeil, Anne J.

    2011-07-12

    The role of ligand-based steric effects was investigated in the polymerization of 4-bromo-2,5-bis(hexyloxy)phenylmagnesium chloride. Three different Ni(L-L)Cl? catalysts were synthesized using commercially available bis(dialkylphosphino)ethane ligands with varying steric properties. One of these catalysts (Ni(depe)Cl?) outperformed the others for this polymerization. The polymer characterization data were consistent with a chain-growth mechanism. Rate and spectroscopic studies revealed a rate-limiting reductive elimination for both initiation and propagation with Ni(depe)Cl?. In contrast, less hindered Ni(dmpe)Cl? and more hindered Ni(dcpe)Cl? were ineffective polymerization catalysts; NMR spectroscopic studies indicated that competing decomposition and uncontrolled pathways intervene. For other monomers, Ni(depe)Cl? performed similar to the conventional catalysts. Copolymerization studies revealed that block copolymers could be effectively prepared. Overall, these studies indicate that altering the ligand-based steric properties can have a significant impact on the chain-growth polymerization.

  10. Rationalization of Au concentration and distribution in AuNi@Pt core-shell nanoparticles for oxygen reduction reaction

    SciTech Connect (OSTI)

    An, Wei; Liu, Ping

    2015-09-18

    Improving the activity and stability of Pt-based coreshell nanocatalysts for proton exchange membrane fuel cells while lowering Pt loading has been one of the big challenges in electrocatalysis. Here, using density functional theory, we report the effect of adding Au as the third element to enhance the durability and activity of Ni@Pt coreshell nanoparticles (NPs) during the oxygen reduction reaction (ORR). Our results show that the durability and activity of a Ni@Pt NP can be finely tuned by controlling Au concentration and distribution. For a NiAu@Pt NP, the durability can be greatly promoted by thermodynamically favorable segregation of Au to replace the Pt atoms at vertex, edge, and (100) facets on the shell, while still keeping the ORR activity on the active Pt(111) shell as high as that of Ni@Pt nanoparticles. Such behavior strongly depends on a direct interaction with the Ni interlayer. The results not only highlight the importance of interplay between surface strain on the shell and the interlayershell interaction in determining the durability and activity but also provide guidance on how to maximize the usage of Au to optimize the performance of coreshell (Pt) nanoparticles. As a result, such understanding has allowed us to discover a novel NiAu@Pt nanocatalyst for the ORR.

  11. Rationalization of Au concentration and distribution in AuNi@Pt core-shell nanoparticles for oxygen reduction reaction

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    An, Wei; Liu, Ping

    2015-09-18

    Improving the activity and stability of Pt-based core–shell nanocatalysts for proton exchange membrane fuel cells while lowering Pt loading has been one of the big challenges in electrocatalysis. Here, using density functional theory, we report the effect of adding Au as the third element to enhance the durability and activity of Ni@Pt core–shell nanoparticles (NPs) during the oxygen reduction reaction (ORR). Our results show that the durability and activity of a Ni@Pt NP can be finely tuned by controlling Au concentration and distribution. For a NiAu@Pt NP, the durability can be greatly promoted by thermodynamically favorable segregation of Au tomore » replace the Pt atoms at vertex, edge, and (100) facets on the shell, while still keeping the ORR activity on the active Pt(111) shell as high as that of Ni@Pt nanoparticles. Such behavior strongly depends on a direct interaction with the Ni interlayer. The results not only highlight the importance of interplay between surface strain on the shell and the interlayer–shell interaction in determining the durability and activity but also provide guidance on how to maximize the usage of Au to optimize the performance of core–shell (Pt) nanoparticles. As a result, such understanding has allowed us to discover a novel NiAu@Pt nanocatalyst for the ORR.« less

  12. Preparation and characterization of nanostructured NiO/MnO{sub 2} composite electrode for electrochemical supercapacitors

    SciTech Connect (OSTI)

    Liu Enhui Li Wen; Li Jian; Meng Xiangyun; Ding Rui; Tan Songting

    2009-05-06

    Nanostructured nickel-manganese oxides composite was prepared by the sol-gel and the chemistry deposition combination new route. The surface morphology and structure of the composite were characterized by scanning electron microscope and X-ray diffraction. The as-synthesized NiO/MnO{sub 2} samples exhibit higher surface area of 130-190 m{sup 2} g{sup -1}. Cyclic voltammetry and galvanostatic charge/discharge measurements were applied to investigate the electrochemical performance of the composite electrodes with different ratios of NiO/MnO{sub 2}. When the mass ratio of MnO{sub 2} and NiO in composite material is 80:20, the specific capacitance value of NiO/MnO{sub 2} calculated from the cyclic voltammetry curves is 453 F g{sup -1}, for pure NiO and MnO{sub 2} are 209, 330 F g{sup -1} in 6 mol L{sup -1} KOH electrolyte and at scan rate of 10 mV s{sup -1}, respectively. The specific capacitance of NiO/MnO{sub 2} electrode is much larger than that of each pristine component. Moreover, the composite electrodes showed high power density and stable electrochemical properties.

  13. Bimetallic Ni-Rh catalysts with low amounts of Rh for the steam and autothermal reforming of n-butane for fuel-cell applications.

    SciTech Connect (OSTI)

    Ferrandon, M.; Kropf, A. J.; Krause, T.; Chemical Sciences and Engineering Division

    2010-05-15

    Mono-metallic nickel and rhodium catalysts and bimetallic Ni-Rh catalysts supported on La-Al{sub 2}O{sub 3}, CeZrO{sub 2} and CeMgOx were prepared and evaluated for catalyzing the steam and autothermal reforming of n-butane. The binary Ni-Rh supported on La-Al{sub 2}O{sub 3} catalysts with low weight loading of rhodium exhibited higher H{sub 2} yields than Ni or Rh alone. The Ni-Rh/CeZrO{sub 2} catalyst exhibited higher performance and no coke formation, compared to the same metals on other supports. A NiAl{sub 2}O{sub 4} spinel phase was obtained on all Ni and Ni-Rh catalysts supported on La-Al{sub 2}O{sub 3}. The presence of rhodium stabilized the spinel phase as well as NiOx species upon reforming while Ni alone was mostly reduced into metallic species. Extended X-ray absorption fine-structure analysis showed evidence of Ni-Rh alloy during preparation and even further after an accelerated aging at 900C in a H{sub 2}/H{sub 2}O atmosphere.

  14. A practical grinding-assisted dry synthesis of nanocrystalline NiMoO{sub 4} polymorphs for oxidative dehydrogenation of propane

    SciTech Connect (OSTI)

    Chen Miao; Wu Jialing; Liu Yongmei; Cao Yong; Guo Li; He Heyong; Fan Kangnian

    2011-12-15

    A practical two-stage reactive grinding-assisted pathway waste-free and cost-effective for the synthesis of NiMoO{sub 4} has been successfully developed. It was demonstrated that proper design in synthetic strategy for grinding plays a crucial role in determining the ultimate polymorph of NiMoO{sub 4}. Specifically, direct grinding (DG) of MoO{sub 3} and NiO rendered {alpha}-NiMoO{sub 4} after annealing, whereas sequential grinding (SG) of the two independently pre-ground oxides followed by annealing generated {beta}-NiMoO{sub 4} solid solution. Characterizations in terms of Raman and X-ray diffraction suggest the creation of {beta}-NiMoO{sub 4} precursor in the latter alternative is the key aspect for the formation of {beta}-NiMoO{sub 4}. The DG-derived {alpha}-NiMoO{sub 4} tested by oxidative dehydrogenation of propane exhibited superior activity in contrast to its analog synthesized via conventional coprecipitation. It is suggested that the favorable chemical composition facilely obtained via grinding in contrast to that by coprecipitation was essential for achieving a more selective production of propylene. - Graphical Abstract: Grinding-assisted synthesis of NiMoO{sub 4} offers higher and more reproducible activities in contrast to coprecipitation for oxidative dehydrogenation of propane, and both {alpha}- and {beta}-NiMoO{sub 4} can be synthesized. Highlights: Black-Right-Pointing-Pointer NiMoO{sub 4} was prepared through grinding-assisted pathway. Black-Right-Pointing-Pointer Direct/sequential grinding rendered {alpha}-, {beta}-NiMoO{sub 4}, respectively. Black-Right-Pointing-Pointer Grinding-derived {alpha}-NiMoO{sub 4} showed high and reproducible activity for oxidative dehydrogenation of propane.

  15. Tribological properties of self-lubricating NiAl/Mo-based composites containing AgVO{sub 3} nanowires

    SciTech Connect (OSTI)

    Liu, Eryong; Gao, Yimin; Bai, Yaping; Yi, Gewen; Wang, Wenzhen; Zeng, Zhixiang; Jia, Junhong

    2014-11-15

    Silver vanadate (AgVO{sub 3}) nanowires were synthesized by hydrothermal method and self-lubricating NiAl/Mo-AgVO{sub 3} composites were fabricated by powder metallurgy technique. The composition and microstructure of NiAl/Mo-based composites were characterized and the tribological properties were investigated from room temperature to 900 C. The results showed that NiAl/Mo-based composites were consisted of nanocrystalline B2 ordered NiAl matrix, Al{sub 2}O{sub 3}, Mo{sub 2}C, metallic Ag and vanadium oxide phase. The appearance of metallic Ag and vanadium oxide phase can be attributed to the decomposition of AgVO{sub 3} during sintering. Wear testing results confirmed that NiAl/Mo-based composites have excellent tribological properties over a wide temperature range. For example, the friction coefficient and wear rate of NiAl/Mo-based composites containing AgVO{sub 3} were significantly lower than the composites containing only metallic Mo or AgVO{sub 3} lubricant when the temperature is above 300 C, which can be attributed to the synergistic lubricating action of metallic Mo and AgVO{sub 3} lubricants. Furthermore, Raman results indicated that the composition on the worn surface of NiAl-based composites was self-adjusted after wear testing at different temperatures. For example, Ag{sub 3}VO{sub 4} and Fe{sub 3}O{sub 4} lubricants were responsible for the improvement of tribological properties at 500 C, AgVO{sub 3}, Ag{sub 3}VO{sub 4} and molybdate for 700 C, and AgVO{sub 3} and molybdate for 900 C of NiAl-based composites with the addition of metallic Mo and AgVO{sub 3}. - Highlights: NiAl/Mo-AgVO{sub 3} nanocomposites were prepared by mechanical alloying and sintering. AgVO{sub 3} decomposed to metallic Ag and vanadium oxide during the sintering process. NiAl/Mo-AgVO{sub 3} exhibited superior tribological properties at a board temperature range. Phase composition on the worn surface was varied with temperatures. Self-adjusted action was responsible for the improvement of tribological properties.

  16. Microstructure degradation of YSZ in Ni/YSZ anodes of SOFC operated in phosphine-containing fuels

    SciTech Connect (OSTI)

    Chen, Yun; Chen, Song; Hackett, Gregory; Finklea, Harry; Zondlod, John; Celik, Ismail; Song, Xueyan; Gerdes, Kirk

    2013-03-07

    The interaction of trace (ppm) phosphine with the nickel/yttria stabilized zirconia (YSZ) anode of commercial solid oxide fuel cells has been investigated and evaluated for both synthesis gas and hydrogen fuels in an effort to examine PY reactions. The Ni poisoning effects reported in literature were confirmed and degradation was examined by electrochemical methods and post-test microstructural and chemical analyses. The results indicate that P-induced degradation rates and mechanisms are fuel dependent and that degradation of cells operated in synthesis gas (syngas) with phosphine is more severe than that of cells operated in hydrogen with phosphine. As reported in published literature, a cell operated in syngas containing 10 ppm phosphine demonstrated significant microstructural degradation within the Ni phase, including formation of NiP phases concentrated on the outer layer of the anode and significant pitting corrosion in the Ni grains. In this research, a previously undetected YPO{sub 4} phase is observed at the YSZ/YSZ/Ni triple grain junctions located at the interface with the YSZ electrolyte. Tetragonal YSZ (t-YSZ) and cubic-YSZ (c-YSZ) domains with sizes of several tens of nanometers are also newly observed along the Ni/YSZ interface. These observations contrast with data obtained for a cell operated in dry hydrogen with phosphine, where no YPO{sub 4} phase is observed and the alternating t-YSZ and c-YSZ domains at the Ni/YSZ interface are smaller with typical sizes of 510 nm. The data imply that electrolyte attack by P is a potentially debilitating mode of degradation in SOFC anodes, and that the associated reaction mechanisms and rates are worthy of further examination.

  17. Effect of pulse frequency on microstructural, nanomechanical, and wear properties of electrodeposited NiTiN composite coatings

    SciTech Connect (OSTI)

    Xia, Fafeng; Tian, Jiyu; Ma, Chunyang Guo, Xue; Potts, Matt

    2014-12-21

    The current paper reports successful syntheses of NiTiN composite coatings by pulse electrodeposition. The effect of pulse frequency on the microstructures, nanomechanical, and wear properties of the coatings was investigated using transmission electron microscopy, Xray diffraction, nanoindenter, scanning electron microscopy, and wear test instrument. The results showed that the NiTiN composite coating prepared at the pulse frequency of 100?Hz showed the presence of a less number of TiN particles and some degrees of aggregation in micro-regions. By contrast, in the NiTiN coating deposited at the pulse frequency of 500?Hz, the TiN particles were large in number and dispersed homogeneously, thereby, offering the coating a uniform and fine structure. The average grain diameters of Ni and TiN in the coating prepared at 100?Hz were 154.7 and 44.8?nm, respectively, whereas those for the coating prepared at 500?Hz were 67.3 and 25.9?nm, respectively. The maximum TiN content in the Ni-TiN coating deposited at 800?Hz was approximately 10.5?wt.?%. The maximum microhardness and the Young's modulus values for the NiTiN composite coatings deposited at 800?Hz were 35.7?GPa and 167.4?GPa, respectively. Furthermore, the NiTiN composite coating prepared at 100?Hz had more severe damages, whereas the morphologies of worn surface of the coatings deposited at 500?Hz and 800?Hz were smooth and only a few small pits appeared on the surface.

  18. Rare-earth-rich tellurides: Gd{sub 4}NiTe{sub 2} and Er{sub 5}M{sub 2}Te{sub 2} (M=Co, Ni)

    SciTech Connect (OSTI)

    Magliocchi, Carmela; Meng, Fanqin; Hughbanks, Timothy . E-mail: trh@mail.chem.tamu.edu

    2004-11-01

    Three new rare earth metal-rich compounds, Gd{sub 4}NiTe{sub 2}, and Er{sub 5}M{sub 2}Te{sub 2} (M=Ni, Co), were synthesized in direct reactions using R, R{sub 3}M, and R{sub 2}Te{sub 3} (R=Gd, Er; M=Co, Ni) and single-crystal structures were determined. Gd{sub 4}NiTe{sub 2} is orthorhombic and crystallizes in space group Pnma with four formula units per cell. Lattice parameters at 110(2)K are a=15.548(9), b=4.113(2), c=11.7521(15)A. Er{sub 5}Ni{sub 2}Te{sub 2} and Er{sub 5}Co{sub 2}Te{sub 2} are isostructural and crystallize in the orthorhombic space group Cmcm with two formula units per cell. Lattice parameters at 110(2)K are a=3.934(1), b=14.811(4), c=14.709(4)A, and a=3.898(1), b=14.920(3), c=14.889(3)A, respectively. Metal-metal bonding correlations were analyzed using the empirical Pauling bond order concept.

  19. Tailoring characteristic thermal stability of Ni-Au binary nanocrystals via structure and composition engineering: theoretical insights into structural evolution and atomic inter-diffusion

    SciTech Connect (OSTI)

    Li, Bangquan; Wang, Hailong; Xing, Guozhong; Wang, Rongming E-mail: rmwang@ustb.edu.cn

    2014-11-15

    We report on the structural evolution and atomic inter-diffusion characteristics of the bimetallic Ni-Au nanocrystals (NCs) by molecular dynamics simulations studies. Our results reveal that the thermal stability dynamics of Ni-Au NCs strongly depends on the atomic configurations. By engineering the structural construction with Ni:Au = 1:1 atomic composition, compared with core-shell Au@Ni and alloy NCs, the melting point of core-shell Ni@Au NCs is significantly enhanced up to 1215 K. Unexpectedly, with atomic ratio of Au:Ni= 1:9, the melting process initiates from the atoms in the shell of Ni@Au and alloy NCs, while starts from the core of Au@Ni NCs. The corresponding features and evolution process of structural motifs, mixing and segregation are illustrated via a series of dynamic simulations videos. Moreover, our results revealed that the face centered cubic phase Au{sub 0.75}Ni{sub 0.25} favorably stabilizes in NCs form but does not exist in the bulk counterpart, which elucidates the anomalies of previously reported experimental results on such bimetallic NCs.

  20. High-pressure stability relations, crystal structures, and physical properties of perovskite and post-perovskite of NaNiF{sub 3}

    SciTech Connect (OSTI)

    Shirako, Y.; Shi, Y.G.; Aimi, A.; Mori, D.; Kojitani, H.; Yamaura, K.; Inaguma, Y.; Akaogi, M.

    2012-07-15

    NaNiF{sub 3} perovskite was found to transform to post-perovskite at 16-18 GPa and 1273-1473 K. The equilibrium transition boundary is expressed as P (GPa)=-2.0+0.014 Multiplication-Sign T (K). Structure refinements indicated that NaNiF{sub 3} perovskite and post-perovskite have almost regular NiF{sub 6} octahedra consistent with absence of the first-order Jahn-Teller active ions. Both NaNiF{sub 3} perovskite and post-perovskite are insulators. The perovskite underwent a canted antiferromagnetic transition at 156 K, and the post-perovskite antiferromagnetic transition at 22 K. Magnetic exchange interaction of NaNiF{sub 3} post-perovskite is smaller than that of perovskite, reflecting larger distortion of Ni-F-Ni network and lower dimension of octahedral arrangement in post-perovskite than those in perovskite. - Graphical abstract: Perovskite-post-perovskite transition in NaNiF{sub 3} at high pressure Highlights: Black-Right-Pointing-Pointer NaNiF{sub 3} perovskite (Pv) transforms to post-perovskite (pPv) at 16 GPa and 1300 K. Black-Right-Pointing-Pointer The equilibrium transition boundary is expressed as P (GPa)=-2.0+0.014 T (K). Black-Right-Pointing-Pointer Antiferromagnetic transition occurs at 156 K in Pv and 22 K in pPv.

  1. Superior performance of Ni–W–Ce mixed-metal oxide catalysts for ethanol steam reforming: Synergistic effects of W- and Ni-dopants

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, Zongyuan; Xu, Wenqian; Yao, Siyu; Johnson-Peck, Aaron C.; Zhao, Fuzhen; Michorczyk, Piotr; Kubacka, Anna; Stach, Eric A.; Fernández-García, Marcos; Senanayake, Sanjaya D.; et al

    2014-11-26

    In this study, the ethanol steam reforming (ESR) reaction was examined over a series of Ni-W-Ce oxide catalysts. The structures of the catalysts were characterized using in-situ techniques including X-ray diffraction, Pair Distribution Function, X-ray absorption fine structure and transmission electron microscopy; while possible surface intermediates for the ESR reaction were investigated by Diffuse Reflectance Infrared Fourier Transform Spectroscopy. In these materials, all the W and part of the Ni were incorporated into the CeO₂ lattice, with the remaining Ni forming highly dispersed nano NiO (< 2 nm) outside the Ni-W-Ce oxide structure. The nano NiO was reduced to Nimore » under ESR conditions. The Ni-W-Ce systeme exhibited a much larger lattice strain than those seen for Ni-Ce and W-Ce. Synergistic effects between Ni and W inside ceria produced a substantial amount of defects and O vacancies that led to high catalytic activity, selectivity and stability (i.e. resistance to coke formation) during ethanol steam reforming.« less

  2. Magnetic properties and transmission electron microscopy studies of Ni nanoparticles encapsulated in carbon nanocages and carbon nanotubes

    SciTech Connect (OSTI)

    He Chunnian; Zhao Naiqin Shi Chunsheng; Li Jiajun; Li Haipeng

    2008-08-04

    Three types of carbon nanomaterials, including bamboo-shaped carbon nanotubes with Ni encapsulated and hollow and Ni catalytic particles filled carbon nanocages, have been prepared by methane catalytic decomposition at a relatively low temperature. Transmission electron microscopy observations showed that fascinating fullerene-like Ni-C (graphitic) core-shell nanostructures predominated. Detailed examination of high-resolution transmission electron microscopy showed that the walls of bamboo-shaped carbon nanotubes with quasi-cone catalytic particles encapsulated consisted of oblique graphene planes with respect to the tube axis. The Ni particles encapsulated in the carbon nanocages were larger than that encapsulated in carbon nanotubes, but the diameters of the cores of hollow carbon nanocages were less than that of Ni particles encapsulated in carbon nanotubes, suggesting that the sizes of catalyst particles played an important role during carbon nanomaterial growth. The magnetic properties of the carbon nanomaterials were measured, which showed relatively large coercive force (H{sub c} = 138.4 O{sub e}) and good ferromagnetism (M{sub r}/M{sub s} = 0.325)

  3. Microstructural and chemical evolution near anode triple phase boundary in Ni/YSZ solid oxide fuel cells

    SciTech Connect (OSTI)

    Chen, Yun; Chen, Song; Hackett, Gregory; Finklea, Harry; Song, Xueyan; Gerdes, Kirk

    2011-12-12

    In this study, we report the micro-structural and chemical evolution of anode grain boundaries and triple phase boundary (TPB) junctions of Ni/YSZ anode supported solid oxide fuel cells. A NiO phase was found to develop along the Ni/YSZ interfaces extending to TPBs in the operated cells. The thickness of the NiO ribbon phase remains constant at ~ 5 nm in hydrogen for operating durations up to 540 h. When operating on synthesis gas, an increase in interphase thickness was observed from ~ 11 nm for 24 h of operation to ~ 51 nm for 550 h of operation. YSZ phases are observed to be stable in H{sub 2} over 540 h of operation. However, for the cell operated in syngas for 550 h, a 510 nm tetragonal YSZ (t-YSZ) interfacial layer was identified that originated from the Ni/YSZ interfaces. Yttrium species seem to segregate to the interfaces during operation, leading to the formation of t-YSZ in the Y-depleted regions.

  4. Influence of fabrication technique on the fiber pushout behavior in a sapphire-reinforced NiAl matrix composite

    SciTech Connect (OSTI)

    Asthana, R.; Bowman, R.R. . Materials Division); Tewari, S.N. )

    1995-01-01

    Directional solidification (DS) of powder-cloth'' (PC) processed sapphire-NiAl composites was carried out to examined the influence of fabrication technique on the fiber-matrix interfacial shear strength, measured using a fiber-pushout technique. The DS process replaced the fine, equiaxed NiAl grain structure of the PC composites with an oriented grain structure comprised of large columnar NiAl grains aligned parallel to the fiber axis, with fibers either completely engulfed within the NiAl grains or anchored at one to three grain boundaries. The load-displacement behavior during the pushout test exhibited an initial pseudoelastic'' response, followed by an inelastic'' response, and finally a frictional'' sliding response. The fiber-matrix interfacial shear strength and the fracture behavior during fiber pushout were investigated using an interrupted pushout test and fractography, as functions of specimen thickness and fabrication technique. The composites fabricated using the PC and the DS techniques had different matrix and interface structures and appreciably different interfacial shear strengths. In the DS composites, where the fiber-matrix interfaces were identical for all the fibers, the interfacial debond shear stresses were larger for the fibers embedded completely within the NiAl grains and smaller for the fibers anchored at a few grain boundaries. The matrix grain boundaries coincident on sapphire fibers were observed to be the preferred sties for crack formation and propagation.

  5. Thermal aging modeling and validation on the Mo containing Fe-Cr-Ni alloys

    SciTech Connect (OSTI)

    Yang, Ying; Tan, Lizhen; Busby, Jeremy T.

    2015-04-01

    Thermodynamics of intermetallic phases in Fe-rich Fe-Cr-Ni-Mo alloys is critical knowledge to understand thermal aging effect on the phase stability of Mo-containing austenitic steels, which subsequently facilitates alloy design/improvement and degradation mitigation of these materials for reactor applications. Among the intermetallic phases, Chi (χ), Laves, and Sigma (σ) are often of concern because of their tendency to cause embrittlement of the materials. The focus of this study is thermal stability of the Chi and Laves phases as they were less studied compared to the Sigma phase. Coupled with thermodynamic modeling, thermal stability of intermetallic phases in Mo containing Fe-Cr-Ni alloys was investigated at 1000, 850 and 700 C for different annealing times. The morphologies, compositions and crystal structures of the precipitates of the intermetallic phases were carefully examined by scanning electron microscopy, electron probe microanalysis, X-ray diffraction, and transmission electron microscopy. Three key findings resulted from this study. First, the Chi phase is stable at high temperature, and with decreasing temperature it transforms into the Laves phase that is stable at low temperature. Secondly, Cr, Mo, Ni are soluble in both the Chi and Laves phases, with the solubility of Mo playing a major role in the relative stability of the intermetallic phases. Thirdly, in situ transformation from Chi phase to Laves phase was directly observed, which increased the local strain field, generated dislocations in the intermetallic phases, and altered the precipitate phase orientation relationship with the austenitic matrix. The thermodynamic models that were developed and validated were then applied to evaluating the effect of Mo on the thermal stability of intermetallic phases in type 316 and NF709 stainless steels.

  6. Development and Test Evaluations for Ni-DOBDC Metal Organic Framework (MOF) Engineered Forms

    SciTech Connect (OSTI)

    Troy G. Garn; Mitchell Greenhalgh

    2013-07-01

    A joint effort to prepare engineered forms of a Ni-DOBDC metal organic framework (MOF) was completed with contributions from PNNL, SNL and the INL. Two independent methods were used at INL and SNL to prepare engineered form (EF) sorbents from Ni-DOBDC MOF powder developed and prepared at PNNL. Xe and Kr capacity test evaluations were performed at ambient temperature with the cryostat experimental setup at INL. The initial INL EF MOF test results indicated a Xe capacity of 1.6 mmol/kg sorbent and no Kr capacity. A large loss of surface area also occurred during minimal testing rendering the INL EF MOF unusable. Four capacity tests were completed using the SNL EF MOF at ambient temperature and resulted in Xe capacities of 1.4, 4.2, 5.0 and 3.8 mmol/kg sorbent with no Kr capacity observed in any ambient temperature tests. Two additional capacity tests were performed at 240 K to further evaluate SNL EF MOF performance. Xe capacities of 50.7 and 49.3 mmol/kg of sorbent and Kr capacities of 0.77 and 0.69 mmol/kg of sorbent were obtained, respectively. Following the adsorption evaluations, the SNL EF MOF material had lost about 40 % of the initial mass and 40 % of the initial surface area. In general, the Xe capacity results at ambient temperature for the INL and SNL EF Ni-DOBDC MOFs were lower than 9.8 mmol Xe/kg sorbent test results reported by INL in FY-12 using PNNLs inital EF supplied material.

  7. Effect of Sodium Sulfide on Ni-Containing Carbon Monoxide Dehydrogenases

    SciTech Connect (OSTI)

    Jian Feng; Paul A. Lindahl

    2004-07-28

    OAK-B135 The structure of the active-site C-cluster in CO dehydrogenase from Carboxythermus hydrogenoformans includes a {mu}{sup 2}-sulfide ion bridged to the Ni and unique Fe, while the same cluster in enzymes from Rhodospirillum rubrum (CODH{sub Rr}) and Moorella thermoacetica (CODH{sub Mt}) lack this ion. This difference was investigated by exploring the effects of sodium sulfide on activity and spectral properties. Sulfide partially inhibited the CO oxidation activity of CODH{sub Rr} and generated a lag prior to steady-state. CODH{sub Mt} was inhibited similarly but without a lag. Adding sulfide to CODH{sub Mt} in the C{sub red1} state caused the g{sub av} = 1.82 EPR signal to decline and new features to appear, including one with g = 1.95, 1.85 and (1.70 or 1.62). Removing sulfide caused the g{sub av} = 1.82 signal to reappear and activity to recover. Sulfide did not affect the g{sub av} = 1.86 signal from the C{sub red2} state. A model was developed in which sulfide binds reversibly to C{sub red1}, inhibiting catalysis. Reducing this adduct causes sulfide to dissociate, C{sub red2} to develop, and activity to recover. Using this model, apparent K{sub I} values are 40 {+-} 10 nM for CODH{sub Rr} and 60 {+-} 30 {micro}M for CODH{sub Mt}. Effects of sulfide are analogous to those of other anions, including the substrate hydroxyl group, suggesting that these ions also bridge the Ni and unique Fe. This proposed arrangement raises the possibility that CO binding labilizes the bridging hydroxyl and increases its nucleophilic tendency towards attacking Ni-bound carbonyl.

  8. Vacancy dynamic in Ni-Mn-Ga ferromagnetic shape memory alloys

    SciTech Connect (OSTI)

    Merida, D.; Snchez-Alarcos, V.; Prez-Landazbal, J. I.; Recarte, V.; Plazaola, F.

    2014-06-09

    Vacancies control any atomic ordering process and consequently most of the order-dependent properties of the martensitic transformation in ferromagnetic shape memory alloys. Positron annihilation spectroscopy demonstrates to be a powerful technique to study vacancies in NiMnGa alloys quenched from different temperatures and subjected to post-quench isothermal annealing treatments. Considering an effective vacancy type the temperature dependence of the vacancy concentration has been evaluated. Samples quenched from 1173?K show a vacancy concentration of 1100??200?ppm. The vacancy migration and formation energies have been estimated to be 0.55??0.05?eV and 0.90??0.07?eV, respectively.

  9. Texture memory and strain-texture mapping in a NiTi shape memory alloy

    SciTech Connect (OSTI)

    Ye, B.; Majumdar, B. S.; Dutta, I.

    2007-08-06

    The authors report on the near-reversible strain hysteresis during thermal cycling of a polycrystalline NiTi shape memory alloy at a constant stress that is below the yield strength of the martensite. In situ neutron diffraction experiments are used to demonstrate that the strain hysteresis occurs due to a texture memory effect, where the martensite develops a texture when it is cooled under load from the austenite phase and is thereafter ''remembered.'' Further, the authors quantitatively relate the texture to the strain by developing a calculated strain-texture map or pole figure for the martensite phase, and indicate its applicability in other martensitic transformations.

  10. Functionally grading the shape memory response in NiTi films: Laser irradiation

    SciTech Connect (OSTI)

    Birnbaum, A. J.; Satoh, G.; Yao, Y. L.

    2009-08-15

    A new process and mechanism are presented for controlling the shape memory response spatially within monolithic NiTi thin film structures. This technique is shown to effectively control the martensitic phase transformation temperature and exhibits control over aspects of the mechanical and shape memory responses as well. Specifically, the martensitic phase transformation temperature decreases with incident laser energy density. Concomitant modifications are observed in both the mechanical and shape memory responses in laser processed films. Analysis and characterization are performed via temperature controlled optical microscopy, x-ray diffraction, atomic force microscopy, and nanoindentation.

  11. Direct evidence of detwinning in polycrystalline Ni-Mn-Ga ferromagnetic shape memory alloys during deformation.

    SciTech Connect (OSTI)

    Nie, Z. H.; Lin Peng, R.; Johansson, S.; Oliver, E. C.; Ren, Y.; Wang, Y. D.; Liu, Y. D.; Deng, J. N.; Zuo, L.; Brown, D. E.; Northwestern Univ., China; Linkoping Univ.; Rutherford Appleton Lab.; Northern Illinois Univ.

    2008-01-01

    In situ time-of-flight neutron diffraction and high-energy x-ray diffraction techniques were used to reveal the preferred reselection of martensite variants through a detwinning process in polycrystalline Ni-Mn-Ga ferromagnetic shape memory alloys under uniaxial compressive stress. The variant reorientation via detwinning during loading can be explained by considering the influence of external stress on the grain/variant orientation-dependent distortion energy. These direct observations of detwinning provide a good understanding of the deformation mechanisms in shape memory alloys.

  12. Microsoft Word - TechRef_FeNiCo_Oct05.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Specialty Steels: Sealing Alloys Fe-Ni-Co (code 2401) Prepared by: C. San Marchi, Sandia National Laboratories Editors C. San Marchi B.P. Somerday Sandia National Laboratories This report may be updated and revised periodically in response to the needs of the technical community; up-to-date versions can be requested from the editors at the address given below or found at http://www.ca.sandia.gov/matlsTechRef/. The success of this reference depends upon feedback from the technical community;

  13. Microsoft Word - chapter FeNiCrMo_ver4.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Low-Alloy Ferritic Steels: Tempered Fe-Ni-Cr-Mo Alloys (code 1212) Prepared by: B.P. Somerday, Sandia National Laboratories Editors C. San Marchi B.P. Somerday Sandia National Laboratories This report may be updated and revised periodically in response to the needs of the technical community; up-to-date versions can be requested from the editors at the address given below or downloaded at http://www.ca.sandia.gov/matlsTechRef/ . The success of this reference depends upon feedback from the

  14. Neutron Scattering of CeNi at the SNS-ORNL: A Preliminary Report

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect SNS-ORNL: A Preliminary Report Citation Details In-Document Search Title: Neutron Scattering of CeNi at the SNS-ORNL: A Preliminary Report Authors: Mirmelstein, A V ; Podlesnyak, A ; Kolesnikov, A I ; Saporov, B ; Sefat, A S ; Tobin, J G Publication Date: 2014-04-13 OSTI Identifier: 1132013 Report Number(s): LLNL-PROC-653272 DOE Contract Number: DE-AC52-07NA27344 Resource Type: Conference Resource Relation: Conference: Presented at: 2014 Materials Research

  15. Effect of Substrate Configuration on the Grain Structure and Morphology of Electrodeposited Ni for Prototyping LIGA

    SciTech Connect (OSTI)

    Nacy Y. C. Yang

    2002-07-01

    Synchrotron X-ray lithographic molding of PMMA-Ti/Cu/Ti substrates has been developed and used in the electrodeposition of Ni microparts for prototype LIGA development at SNL, CA. Alternative molding processes that minimize x-ray beam line use and reduce processing time are of interest for the rapid fabrication of large quantities of microparts. The objective of this investigation is to examine, archive, and compare the grain structure and morphology of deposits produced from four different molding technologies currently under development. We conclude that deposit microstructure and uniformity are greatly influenced by substrate material and design configuration. The findings are summarized.

  16. Structural and magnetic stability of Fe{sub 2}NiSi

    SciTech Connect (OSTI)

    Gupta, Dinesh C. Bhat, Idris Hamid Chauhan, Mamta

    2014-04-24

    Full-potential ab-initio calculations in the stable F-43m phase have been performed to investigate the structural and magnetic properties of Fe{sub 2}NiSi inverse Heusler alloys. The spin magnetic moment distributions show that present material is ferromagnetic in stable F-43m phase. Further, spin resolved electronic structure calculations show that the discrepancy in magnetic moments of Fe-I and Fe-II depend upon the hybridization of Fe with the main group element. It is found that the main group electron concentration is predominantly responsible in establishing the magnetic properties, formation of magnetic moments and the magnetic order for present alloy.

  17. Ni, Fe Co-doped ZnO nanoparticles synthesized by solution combustion method

    SciTech Connect (OSTI)

    Dhiman, Pooja Chand, Jagdish Verma, S. Sarveena, Singh, M.

    2014-04-24

    This paper outlines the synthesis and characterization of Ni-Fe co-doped ZnO nanoparticles by facile solution combustion method. The structural characterization by XRD confirmed the phase purity of the samples. Surface morphology studied by scanning electron microscope revealed cubic type shape of grains. EDS analysis conformed the elemental composition. Higher value of DC electrical conductivity and less band gap for co-doped ZnO from UV-Vis studies confirmed the change in defect chemistry of ZnO Matrix.

  18. Corrosion and degradation of a polyurethane/Co-Ni-Cr-Mo pacemaker lead

    SciTech Connect (OSTI)

    Sung, P.; Fraker, A.C.

    1987-12-01

    An investigation to study changes in the metal surfaces and the polyurethane insulation of heart pacemaker leads under controlled in vitro conditions was conducted. A polyurethane (Pellethane 2363-80A)/Co-Ni-Cr-Mo (MP35N) wire lead was exposed in Hanks' physiological saline solution for 14 months and then analyzed using scanning electron microscopy, x-ray energy dispersive analysis, and small angle x-ray scattering. Results showed that some leakage of solution into the lead had occurred and changes were present on both the metal and the polyurethane surfaces.

  19. Primary arm spacing in chill block melt spun Ni-Mo alloys

    SciTech Connect (OSTI)

    Tewari, S.N.; Glasgow, T.K.

    1986-01-01

    Chill block melt spun ribbons of Ni-Mo binary alloys containing 8.0 to 41.8 wt % Mo have been prepared under carefully controlled processing conditions. The growth velocity has been determined as a function of distance from the quench surface from the observed ribbon thickness dependence on the melt puddle residence time. Primary arm spacings measured at the midribbon thickness locations show a dependence on growth velocity and alloy composition which is expected from dendritic growth models for binary alloys directionally solidified in a positive temperature gradient.

  20. INSTALLATION MAG~NiX.ILRI DIVI8ION, CAN.fAN,CONN.

    Office of Legacy Management (LM)

    INSTALLATION MAG~NiX.ILRI DIVI8ION, CAN.fAN,CONN. .PERI,jD Aiq~+ 1, i950 TO: August 31, 195 .:\,.:. ,,., WORK SHEET FOR: I b WSIGNOR I. v DowChemical Go. Velasco, Texas ., Azlterprise Meetala cc Brooklyn, New York Meili $Worthin&m Hatboro, ?'a. LOT NO. '... I [ATERIAL SYnB,fJL KEASURED' NET WT. 100,007~ ( 4;020 I ! 19 ~, ANALYBIS % METAL/100 r, Noi. 23) METAL CONTENT INSTRUCTIONS: This sheet% will be Used.ln.preDarlng Haterlal Balance. 'The totals from the various ltams listed above ~111 be

  1. Calculations of structural, elastic, electronic, magnetic and phonon properties of FeNiMnAl by the first principles

    SciTech Connect (OSTI)

    U?ur, ?ule; ?yigr, Ahmet

    2014-10-06

    The electronic, elastic and dynamical properties of the quaternary alloy FeNiMnAl have been investigated using a pseudopotential plane wave method within the generalized gradient approximation (GGA). We determined the lattice parameters and the bulk modulus B. In addition, the elastic properties such as elastic constans (C{sub 11}, C{sub 12} and C{sub 44}), the shear modulus G, the young modulus E, the poisson's ratio ? and the B/G ratio are also given. The FeNiMnAl Heusler alloy exhibit a ferromagnetic half-metallic behavior with the total magnetic moment of 4.02 ?{sub B}. The phonon dispersion of FeNiMnAl has been performed using the density functional theory and the direct method with 222 supercell.

  2. Magnetic order and crystal structure study of YNi{sub 4}Si-type NdNi{sub 4}Si

    SciTech Connect (OSTI)

    Yao, Jinlei; Isnard, O.; Morozkin, A.V.; Ivanova, T.I.; Koshkid'ko, Yu.S.; Bogdanov, A.E.; Nikitin, S.A.; Suski, W.

    2015-02-15

    Magnetic measurements and neutron powder diffraction investigation of the magnetic structure of the orthorhombic YNi{sub 4}Si-type (space group Cmmm) NdNi{sub 4}Si compound are presented. The magnetocaloric effect of NdNi{sub 4}Si is calculated in terms of the isothermal magnetic entropy change and it reaches the maximum value of –3.3 J/kg K for a field change of 50 kOe near T{sub C}=12 K. Below ∼12 K, NdNi{sub 4}Si exhibits a commensurate b-axis collinear ferromagnetic ordering with the Cmm′m magnetic space group in a zero magnetic field. At 1.5 K, the neodymium atoms have the magnetic moment of 2.37(5) μ{sub B}. The orthorhombic crystal structure and its thermal evolution are discussed in comparison with the CaCu{sub 5}-type compound. - Graphical abstract: The NdNi{sub 4}Si supplement the series of the orthorhombic derivative of the CaCu{sub 5}-type, namely the YNi{sub 4}Si-type, RNi{sub 4}Si compounds (R=Y, La, Ce, Sm, Gd–Ho). Below ∼12 K in a zero applied magnetic field, NdNi{sub 4}Si exhibits a commensurate b-axis collinear ferromagnetic ordering with the Cmm′m magnetic space group. Compared to the CaCu{sub 5}-type NdNi{sub 4}Si compound, the YNi{sub 4}Si-type counterpart has the relatively high ferromagnetic ordering temperature (9.2 K vs. 12 K), the small magnetocaloric effect (–7.3 J/kg K vs. –3.3 J/kg K for ∆H=50 kOe), and the large magnetic anisotropy at low temperatures. In contrast with CaCu{sub 5}-type NdNi{sub 4}Si, YNi{sub 4}Si-type NdNi{sub 4}Si shows distinct hysteresis loop at 2 K.We suggest that orthorhombic distortion may be used as a prospective route for optimization of permanent magnetic properties in the family of CaCu{sub 5}-type rare earth materials. - Highlights: • Below ∼12 K the YNi{sub 4}Si-type NdNi{sub 4}Si shows a ferromagnetic ordering. • MCE of NdNi{sub 4}Si reaches value of –3.3 J/kg K in 0–50 kOe near Curie point. • NdNi{sub 4}Si exhibits b-axis ferromagnetic order with the Cmm′m magnetic space group. • Contrary to CaCu{sub 5}-type, YNi{sub 4}Si-type NdNi{sub 4}Si shows hysteresis loop at 2 K.

  3. First Principles Calculations of Electrochemically Controlled Hydrogen Mobility and Uptake at the Ni(111)H2O Interface

    SciTech Connect (OSTI)

    C Taylor; R Kelly; M Neurock

    2005-11-14

    The binding of hydrogen on Ni(111) in the presence of an water is considered using both a bilayer and a saturated model of the solvent environment. The presence of a water bilayer did not change the binding energies or geometry of hydrogen on the Ni(111) compared to adsorption in ultra-high vacuum. Using the saturated model (four bilayers over the surface) we also monitored the change in hydrogen binding as a function of electrochemical potential. Binding energies for hydrogen at the hcp and octahedral sites shifted endothermically as the potential was made more anodic, indicating that reductive partial charge transfer occurs. Binding at the tetrahedral site was found to be partially oxidizing. Calculation of vibrational modes allowed the extrapolation of ab initio results to ambient and elevated temperatures. Surface Pourbaix diagrams were constructed illustrating the stability of various phases on the Ni(111) surface as a function of pH and potential.

  4. Effect of electronic structures on catalytic properties of CuNi alloy and Pd in MeOH-related reactions

    SciTech Connect (OSTI)

    Tsai, An-Pang; Kimura, Tomofumi; Suzuki, Yukinori; Kameoka, Satoshi; Shimoda, Masahiko; Ishii, Yasushi

    2013-04-14

    We investigated the catalytic properties of a CuNi solid solution and Pd for methanol-related reactions and associated valence electronic structures. Calculations and X-ray photoelectron spectroscopy measurements revealed that the CuNi alloy has a similar valence electronic structure to Pd and hence they exhibited similar CO selectivities in steam reforming of methanol and decomposition of methanol. Samples prepared by various processes were found to have similar CO selectivities. We conjecture that alloying of Cu and Ni dramatically alters the valence electronic structures, making it similar to that of Pd so that the alloy exhibits similar catalytic properties to Pd. First-principles slab calculations of surface electronic structures support this conjecture.

  5. High-resolution transmission electron microscopy study of carbon deposited on the NiO/MgO solid solution catalysts

    SciTech Connect (OSTI)

    Hu, Y.H.; Ruckenstein, E.

    1999-05-15

    The carbon deposition due to the CH{sub 4} decomposition at 790 C over NiO/MgO catalysts was investigated by high-resolution transmission electron microscopy. While no deposits could be detected over the catalysts with a NiO content smaller than 9.1 wt%, they were detected over the catalysts with NiO contents of 23 and 50 wt%. The carbon deposits are composed of platelets located at distances of about 0.34 nm, corresponding to the graphitic carbon. Various structures of the deposited carbon were observed: (a) carbon consisting of platelets parallel to the surface of the particle, which covers a catalyst particle, (b) nanotubes composed of platelets parallel to their axis, and (c) carbon vortexes consisting of platelets parallel to their axis.

  6. Quantum valley Hall states and topological transitions in Pt(Ni, Pd)-decorated silicene: A first-principles study

    SciTech Connect (OSTI)

    Zhao, Bao; Zhang, Jiayong; Wang, Yicheng; Yang, Zhongqin

    2014-12-28

    The electronic states and topological behaviors of Pt(Ni, Pd)-decorated silicene are investigated by using an ab-initio method. All the three kinds of the adatoms prefer hollow sites of the silicene, guaranteeing the Dirac cones unbroken. The Pt(Ni, Pd)-decorated silicene systems all present quantum valley Hall (QVH) states with the gap opened exactly at the Fermi level. The gaps of the QVH states can be increased substantially by applying a positive electric field. Very fascinating phase transitions from QVH to quantum spin Hall (QSH) and then to QVH again are achieved in the Pt/Ni-decorated silicene when a negative electric field is applied. The QSH state in the Pd case with a negative electric field is, however, quenched because of relatively larger Rashba spin-orbit coupling (SOC) than the intrinsic SOC in the system. Our findings may be useful for the applications of silicene-based devices in valleytronics and spintronics.

  7. Influence of fabrication technique and matrix alloying on the interfacial shear strength of sapphire-NiAl composites

    SciTech Connect (OSTI)

    Asthana, R.; Bowman, R.R.; Tewari, S.N.

    1994-12-31

    The influence of fabrication technique and alloying on the fiber matrix interfacial shear strength, measured using a fiber push-out technique, has been examined in sapphire fiber-reinforced NiAl matrix composites. The composites were fabricated using the powder-cloth (P-C) process, a casting process, and the zone directional solidification (DS) process. The NiAl matrix was alloyed with Cr, W or Yb. The results showed that, in general, cast and DS composites had higher interfacial shear strengths compared to the P-C composites containing binders. Neither matrix alloying nor casting and DS impaired the interface strength. The study highlights the potential of the DS process in designing dual-phase ductile microstructures in sapphire-reinforced NiAl alloys for improved toughness and strength.

  8. The Role of FeS in Initial Activation and Performance Degradation of Na-NiCl2 Batteries

    SciTech Connect (OSTI)

    Li, Guosheng; Lu, Xiaochuan; Kim, Jin Yong; Engelhard, Mark H.; Lemmon, John P.; Sprenkle, Vincent L.

    2014-12-25

    The role of iron sulfide (FeS) in initial cell activation and degradation in the Na-NiCl2 battery was investigated in this work. The research focused on identifying the effects of the FeS level on the electrochemical performance and morphological changes in the cathode. The x-ray photoelectron spectroscopy study along with battery tests revealed that FeS plays a critical role in initial battery activation by removing passivation layers on Ni particles. It was also found that the optimum level of FeS in the cathode resulted in minimum Ni particle growth and improved battery cycling performance. The results of electrochemical characterization indicated that sulfur species generated in situ during initial charging, such as polysulfide and sulfur, are responsible for removing the passivation layer. Consequently, the cells containing elemental sulfur in the cathode exhibited similar electrochemical behavior during initial charging compared to that of the cells containing FeS.

  9. Shock Loading of Granular Ni/Al Composites. Part 1. Mechanics of Loading

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cherukara, Mathew J.; Germann, Timothy C.; Kober, Edward M.; Strachan, Alejandro

    2014-10-16

    We present molecular dynamics simulations of the thermomechanical response under shock loading of a granular material consisting of laminated Ni/Al grains. We observe two regimes: At low piston velocities (up ≲ 1km/s), the shock wave is diffuse, and the width of the shock front decreases with increasing piston velocity. Beyond a critical shock strength, however, the width remains relatively constant at approximately the mean grain radius. This change in behavior follows from an evolution of the mechanism of compaction with increasing insult strength. Furthermore, the mechanism evolves from plastic deformation-mediated pore collapse for relatively weak shocks, to solid extrusion andmore » fluid ejecta filling pores ahead of the shock front at intermediate strengths, and finally to atomic jetting into the pore for very strong shocks (up ≳ 2 km/s). High-energy fluid ejecta into pores leads to the formation of flow vorticity and can result in a large fraction of the input energy localizing into translational kinetic energy components including the formation of hot spots. This has implications for the mechanical mixing of Ni and Al in these reactive composites.« less

  10. Sessile dislocations by reactions in NiAl severely deformed at room temperature

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Geist, D.; Gammer, C.; Rentenberger, C.; Karnthaler, H. P.

    2015-02-05

    B2 ordered NiAl is known for its poor room temperature (RT) ductility; failure occurs in a brittle like manner even in ductile single crystals deforming by single slip. In the present study NiAl was severely deformed at RT using the method of high pressure torsion (HPT) enabling the hitherto impossible investigation of multiple slip deformation. Methods of transmission electron microscopy were used to analyze the dislocations formed by the plastic deformation showing that as expected dislocations with Burgers vector a(100) carry the plasticity during HPT deformation at RT. In addition, we observe that they often form a(110) dislocations by dislocationmore » reactions; the a(110) dislocations are considered to be sessile based on calculations found in the literature. It is therefore concluded that the frequently encountered 3D dislocation networks containing sessile a(110) dislocations are pinned and lead to deformation-induced embrittlement. In spite of the severe deformation, the chemical order remains unchanged.« less

  11. Direct production of nanostructured copper-nickel (Cu-Ni) alloy particles

    SciTech Connect (OSTI)

    Apaydin, Ramazan Oguzhan; Ebin, Burcak; Gurmen, Sebahattin

    2013-12-16

    Copper-Nickel (CuNi) nanostructured alloy particles were produced by Ultrasonic Spray Pyrolysis and Hydrogen Reduction Method (USP-HR) from high purity copper and nickel nitrate aqueous solutions. The effect of the precursor solution in the range of 0.1 and 0.5 mol/L on the morphology and crystallite size of CuNi nanoparticles were investigated under 2 h running time, 700 C operating temperature and 0.5 L/min H{sub 2} flow rate. Particle size, morphology, composition and crystallite structure were characterized by Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS) and X-Ray Diffraction (XRD). Particle characterization studies show that nanostructured alloy particles have cubic crystal structure and they are in submicron size range with spherical morphology. The crystallite sizes of the particles calculated with Scherrer formula are 40 and 34 nm and average particles sizes observed from the SEM images are 300 and 510 nm for each experiment respectively.

  12. Shock Loading of Granular Ni/Al Composites. Part 1. Mechanics of Loading

    SciTech Connect (OSTI)

    Cherukara, Mathew J.; Germann, Timothy C.; Kober, Edward M.; Strachan, Alejandro

    2014-10-16

    We present molecular dynamics simulations of the thermomechanical response under shock loading of a granular material consisting of laminated Ni/Al grains. We observe two regimes: At low piston velocities (up ? 1km/s), the shock wave is diffuse, and the width of the shock front decreases with increasing piston velocity. Beyond a critical shock strength, however, the width remains relatively constant at approximately the mean grain radius. This change in behavior follows from an evolution of the mechanism of compaction with increasing insult strength. Furthermore, the mechanism evolves from plastic deformation-mediated pore collapse for relatively weak shocks, to solid extrusion and fluid ejecta filling pores ahead of the shock front at intermediate strengths, and finally to atomic jetting into the pore for very strong shocks (up ? 2 km/s). High-energy fluid ejecta into pores leads to the formation of flow vorticity and can result in a large fraction of the input energy localizing into translational kinetic energy components including the formation of hot spots. This has implications for the mechanical mixing of Ni and Al in these reactive composites.

  13. Exponentially decaying magnetic coupling in sputtered thin film FeNi/Cu/FeCo trilayers

    SciTech Connect (OSTI)

    Wei, Yajun Akansel, Serkan; Thersleff, Thomas; Brucas, Rimantas; Lansaker, Pia; Leifer, Klaus; Svedlindh, Peter; Harward, Ian; Celinski, Zbigniew; Ranjbar, Mojtaba; Dumas, Randy K.; Jana, Somnath; Pogoryelov, Yevgen; Karis, Olof; Åkerman, Johan

    2015-01-26

    Magnetic coupling in trilayer films of FeNi/Cu/FeCo deposited on Si/SiO{sub 2} substrates have been studied. While the thicknesses of the FeNi and FeCo layers were kept constant at 100 Å, the thickness of the Cu spacer was varied from 5 to 50 Å. Both hysteresis loop and ferromagnetic resonance results indicate that all films are ferromagnetically coupled. Micromagnetic simulations well reproduce the ferromagnetic resonance mode positions measured by experiments, enabling the extraction of the coupling constants. Films with a thin Cu spacer are found to be strongly coupled, with an effective coupling constant of 3 erg/cm{sup 2} for the sample with a 5 Å Cu spacer. The strong coupling strength is qualitatively understood within the framework of a combined effect of Ruderman-Kittel-Kasuya-Yosida and pinhole coupling, which is evidenced by transmission electron microscopy analysis. The magnetic coupling constant surprisingly decreases exponentially with increasing Cu spacer thickness, without showing an oscillatory thickness dependence. This is partially connected to the substantial interfacial roughness that washes away the oscillation. The results have implications on the design of multilayers for spintronic applications.

  14. Magnetocaloric properties and critical behavior of high relative cooling power FeNiB nanoparticles

    SciTech Connect (OSTI)

    Chaudhary, V. [Interdisciplinary Graduate School, Nanyang Technological University, Singapore 639798 (Singapore); Energy Research Institute @NTU, Nanyang Technological University, Singapore 637553 (Singapore); School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Maheswar Repaka, D. V.; Chaturvedi, A.; Ramanujan, R. V., E-mail: ramanujan@ntu.edu.sg [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Sridhar, I. [School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

    2014-10-28

    Low cost magnetocaloric nanomaterials have attracted considerable attention for energy efficient applications. We report a very high relative cooling power (RCP) in a study of the magnetocaloric effect in quenched FeNiB nanoparticles. RCP increases from 89.8 to 640?J kg{sup ?1} for a field change of 1 and 5?T, respectively, these values are the largest for rare earth free iron based magnetocaloric nanomaterials. To investigate the magnetocaloric behavior around the Curie temperature (T{sub C}), the critical behavior of these quenched nanoparticles was studied. Detailed analysis of the magnetic phase transition using the modified Arrott plot, Kouvel-Fisher method, and critical isotherm plots yields critical exponents of ??=?0.364, ??=?1.319, ??=?4.623, and ??=??0.055, which are close to the theoretical exponents obtained from the 3D-Heisenberg model. Our results indicate that these FeNiB nanoparticles are potential candidates for magnetocaloric fluid based heat pumps and low grade waste heat recovery.

  15. Mechanical and functional behavior of high-temperature Ni-Ti-Pt shape memory alloys

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Buchheit, Thomas E.; Susan, Donald F.; Massad, Jordan E.; McElhanon, James R.; Noebe, Ronald D.

    2016-01-22

    A series of Ti-rich Ni-Ti-Pt ternary alloys with 13 to 18 at. pct Pt were processed by vacuum arc melting and characterized for their transformation behavior to identify shape memory alloys (SMA) that undergo transformation between 448 K and 498 K (175 °C and 225 °C) and achieve recoverable strain exceeding 2 pct. From this broader set of compositions, three alloys containing 15.5 to 16.5 at. pct Pt exhibited transformation temperatures in the vicinity of 473 K (200 °C), thus were targeted for more detailed characterization. Preliminary microstructural evaluation of these three compositions revealed a martensitic microstructure with small amountsmore » of Ti2(Ni,Pt) particles. Room temperature mechanical testing gave a response characteristic of martensitic de-twinning followed by a typical work-hardening behavior to failure. Elevated mechanical testing, performed while the materials were in the austenitic state, revealed yield stresses of approximately 500 MPa and 3.5 pct elongation to failure. Thermal strain recovery characteristics were more carefully investigated with unbiased incremental strain-temperature tests across the 1 to 5 pct strain range, as well as cyclic strain-temperature tests at 3 pct strain. As a result, the unbiased shape recovery results indicated a complicated strain recovery path, dependent on prestrain level, but overall acceptable SMA behavior within the targeted temperature and recoverable strain range.« less

  16. Castability of Traditionally Wrought Ni-Based Superalloys for USC Steam Turbines

    SciTech Connect (OSTI)

    Jablonski, P D; Cowen, C J; Hawk, J A; Evens, N; Maziasz, P

    2011-02-27

    The high temperature components within conventional coal fired power plants are manufactured from ferritic/martensitic steels. In order to reduce greenhouse gas emissions the efficiency of pulverized coal steam power plants must be increased. The proposed steam temperature in the Advanced Ultra Supercritical (A-USC) power plant is high enough (760C) that ferritic/martensitic steels will not work due to temperature limitations of this class of materials; thus Ni-based superalloys are being considered. The full size castings are quite substantial: ~4in thick, several feet in diameter and weigh 5-10,000lb each half. Experimental castings were quite a bit smaller, but section size was retained and cooling rate controlled in order to produce relevant microstructures. A multi-step homogenization heat treatment was developed in order to better deploy the alloy constituents. The castability of two traditionally wrought Ni-based superalloys to which minor alloy adjustments have been made in order to improve foundry performance is further explored.

  17. Duplex precipitates and their effects on the room-temperature fracture behaviour of a NiAl-strengthened ferritic alloy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sun, Zhiqian; Song, Gian; Ilavsky, Jan; Liaw, Peter K.

    2015-03-23

    Duplex precipitates are presented in a NiAl-strengthened ferritic alloy. They were characterized by the ultra-small angle X-ray scattering and transmission electron microscope. Fine cooling precipitates with the size of several to tens of nanometres harden the matrix considerably at room temperature. Cracks are likely to initiate from precipitates, and coalesce and propagate quickly through the matrix due to the excessive hardening effect of cooling precipitates, which lead to the premature fracture of NiAl-strengthened ferritic alloys.

  18. Structural characterization of metastable hcp-Ni thin films epitaxially grown on Au(100) single-crystal underlayers

    SciTech Connect (OSTI)

    Ohtake, Mitsuru; Tanaka, Takahiro; Futamoto, Masaaki; Kirino, Fumiyoshi

    2010-05-15

    Ni(1120) epitaxial thin films with hcp structure were prepared on Au(100) single-crystal underlayers at 100 deg. C by ultra high vacuum molecular beam epitaxy. The detailed film structure is studied by in situ reflection high energy electron diffraction, x-ray diffraction, and transmission electron microscopy. The hcp-Ni film consists of two types of variants whose c-axes are rotated around the film normal by 90 deg. each other. An atomically sharp boundary is recognized between the film and the underlayer, where misfit dislocations are introduced. Presence of such dislocations seems to relieve the strain caused by the lattice mismatch between the film and the underlayer.

  19. Long-term superelastic cycling at nano-scale in Cu-Al-Ni shape memory alloy micropillars

    SciTech Connect (OSTI)

    San Juan, J. Gómez-Cortés, J. F.

    2014-01-06

    Superelastic behavior at nano-scale has been studied along cycling in Cu-Al-Ni shape memory alloy micropillars. Arrays of square micropillars were produced by focused ion beam milling, on slides of [001] oriented Cu-Al-Ni single crystals. Superelastic behavior of micropillars, due to the stress-induced martensitic transformation, has been studied by nano-compression tests during thousand cycles, and its evolution has been followed along cycling. Each pillar has undergone more than thousand cycles without any detrimental evolution. Moreover, we demonstrate that after thousand cycles they exhibit a perfectly reproducible and completely recoverable superelastic behavior.

  20. Electroless preparation and characterization of Ni-B nanoparticles supported on multi-walled carbon nanotubes and their catalytic activity towards hydrogenation of styrene

    SciTech Connect (OSTI)

    Liu, Zheng; Li, Zhilin; Institute of Carbon Fibers and Composites, Beijing University of Chemical Technology, Beijing 100029 ; Wang, Feng; Institute of Carbon Fibers and Composites, Beijing University of Chemical Technology, Beijing 100029 ; Liu, Jingjun; Ji, Jing; Institute of Carbon Fibers and Composites, Beijing University of Chemical Technology, Beijing 100029 ; Park, Ki Chul; Endo, Morinobu

    2012-02-15

    Graphical abstract: The MWCNT/Ni-B catalyst has been successfully prepared by an electroless deposition process. The Ni-B nanoparticles on the supporter are amorphous and are well-distributed. The catalytic conversion towards hydrogenation of styrene shows excellent catalytic activity of the obtained materials. Highlights: Black-Right-Pointing-Pointer A two-step treatment of MWCNTs enabled the homogeneous growth of Ni-B nanoparticles. Black-Right-Pointing-Pointer Ni-B nanoparticles were amorphous with an average size of 60 nm. Black-Right-Pointing-Pointer There were electron transfer between Ni and B. Black-Right-Pointing-Pointer The catalyst had excellent catalytic activity towards hydrogenation of styrene. -- Abstract: Nickel-boron (Ni-B) nanoparticles supported on multi-walled carbon nanotubes (MWCNTs) were successfully synthesized through an electroless deposition process using the plating bath with sodium borohydride as a reducing agent. The structural and morphological analyses using field-emission scanning electron microscopy, X-ray diffractometry and high-resolution transmission electron microscopy have shown that the Ni-B nanoparticles deposited on the sidewalls of MWCNTs are fine spheres comprised of amorphous structure with the morphologically unique fine-structure like flowers, and homogenously dispersed with a narrow particle size distribution centered at around 60 nm diameter. The catalytic activity of MWCNT/Ni-B nanoparticles was evaluated with respect to hydrogenation of styrene. The hydrogenation catalyzed by MWCNT-supported Ni-B nanoparticles has been found to make styrene selectively converted into ethylbenzene. The highest conversion reaches 99.8% under proper reaction conditions, which demonstrates the high catalytic activity of MWCNT/Ni-B nanoparticles.

  1. Modification of carbon nanotubes by CuO-doped NiO nanocomposite for use as an anode material for lithium-ion batteries

    SciTech Connect (OSTI)

    Mustansar Abbas, Syed; Tajammul Hussain, Syed; Ali, Saqib; Ahmad, Nisar; Ali, Nisar; Abbas, Saghir; Ali, Zulfiqar

    2013-06-15

    CuO-doped NiO (CuNiO) with porous hexagonal morphology is fabricated via a modified in-situ co-precipitation method and its nanocomposite is prepared with carbon nanotubes (CNTs). The electrochemical properties of CuNiO/CNT nanocomposite are investigated by cyclic voltammetry (CV), galvanostatic chargedischarge tests and electrochemical impedance spectroscopy (EIS). Since Cu can both act as conductor and a catalyst, the CuNiO/CNT nanocomposite exhibits higher initial coulombic efficiency (82.7% of the 2nd cycle) and better capacity retention (78.6% on 50th cycle) than bare CuNiO (78.9% of the 2nd cycle), CuO/CNT (76.8% of the 2nd cycle) and NiO/CNT (77.7% of the 2nd cycle) at the current density of 100 mA /g. This high capacity and good cycling ability is attributed to the partial substitution of Cu{sup +2} for Ni{sup +2}, resulting in an increase of holes concentration, and therefore improved p-type conductivity along with an intimate interaction with CNTs providing large surface area, excellent conduction, mechanical strength and chemical stability. - Graphical abstract: The porous CuNiO/CNT nanocomposite synthesized via a modified co-precipitation method in combination with subsequent calcination was applied in the negative electrode materials for lithium-ion batteries and exhibited high electrochemical performance. - Highlights: CuO doped NiO/CNTs nano composite is achieved via a simple co-precipitation method. Monodispersity, shape and sizes of sample particles is specifically controlled. Good quality adhesion between CNTs and CuNiO is visible from TEM image. High electrochemical performance is achieved. Discharge capacity of 686 mA h/g after 50 cycles with coulombic efficiency (82.5%)

  2. Features of the band structure and conduction mechanisms in the n-HfNiSn semiconductor heavily doped with Ru

    SciTech Connect (OSTI)

    Romaka, V. A.; Rogl, P.; Romaka, V. V.; Stadnyk, Yu. V.; Korzh, R. O.; Krayovskyy, V. Ya.; Horyn, A. M.

    2014-12-15

    The crystal and electronic structure and energy and kinetic properties of the n-HfNiSn semiconductor heavily doped with a Ru acceptor impurity are investigated in the temperature and Ru concentration ranges T = 80400 K and N{sub A}{sup Ru} ? 9.5 10{sup 19}?5.7 10{sup 20} cm{sup ?3} (x = 00.03), respectively. The mechanism of structural-defect generation is established, which changes the band gap and degree of compensation of the semiconductor and consists in the simultaneous concentration reduction and elimination of donor structural defects by means of the displacement of ?1% of Ni atoms from the Hf (4a) positions, the generation of acceptor structural defects upon the substitution of Ru atoms for Ni atoms in the 4c positions, and the generation of donor defects in the form of vacancies in the Sn (4b) positions. The calculated electronic structure of HfNi{sub 1?x}Ru{sub x}Sn is consistent with the experiment. The results obtained are discussed within the Shklovsky-Efros model for a heavily doped and compensated semiconductor.

  3. Aging effects in palladium and LaNi{sub 4.25}Al{sub 0.75} tritides

    SciTech Connect (OSTI)

    Nobile, A.; Wermer, J.R.; Walters, R.T.

    1991-12-31

    Palladium and LaNi{sub 5-x}Al{sub x} (x=0.30, 0.75, 0.85), which form reversible hydrides, are used for tritium processing and storage in the Savannah River Site (SRS) tritium facilities. As part of a program to develop technology based on the use of reversible metal hydrides for tritium processing and storage, the effects of aging on the thermodynamic behavior of palladium and LaNi{sub 4.25}Al{sub 0. 75} tritides are under investigation. During aging, the {sup 3}He tritium decay product remains in the tritide lattice and changes the thermodynamics of the tritium-metal tritide system. Aging effects in 755-day-aged palladium and 1423-day-aged LaNi{sub 4.25}Al{sub 0.75} tritides will be reported. Changes in the thermodynamics were determined by measuring tritium desorption isotherms on aging samples. In palladium, aging decreases the desorption isotherm plateau pressure and changes the {alpha}-phase portion of the isotherm. Aging-induced changes in desorption isotherms are more drastic in LaNi{sub 4.25}Al{sub 0.75}. Among the changes noted are: (1) decreased isotherm plateau pressure, (2) increased isotherm plateau slope, and (3) appearance of deep-trapped tritium, removable only by exchange with deuterium.

  4. Structure and magnetic properties of Ce?(Ni/Al/Ga)??A new phase with the La?Al?? structure type

    SciTech Connect (OSTI)

    Janka, Oliver; Shang, Tian; Baumbach, Ryan E.; Bauer, Eric D.; Thompson, Joe D.; Kauzlarich, Susan M.

    2015-03-01

    Single crystals of Ce?(Ni/Al/Ga)?? were obtained from an Al flux reaction. Single crystals of the title compound crystallizing in the orthorhombic space group Immm (No. 71, Z = 2) with a = 436.38(14), b = 1004.5(3) and c = 1293.4(4) pm. This is a standardized unit cell of the previously published La?Al?? structure type. Wavelength dispersive microprobe provides the composition of Ce?.?????Ni?.?????Al?.?????Ga?.?????. Single crystal refinement provides the composition Ce?Ni?.??Al?.??Ga?.?? with substitution of the Ni and Ga on the Al1 and Al4 sites with the Al2 and Al3 solely occupied by Al. Magnetic susceptibility measurements reveal antiferromagnetic ordering with TN = 4.8 K and there is no evidence for a ferromagnetic ordering that has been reported for Ce?Al??. The effective magnetic moment was found to be ?eff = 1.9?B/Ce, which is lower than the expected value for trivalent Ce (2.54?B/Ce).

  5. Electrodeposition, characterization and morphological investigations of NiFe/Cu multilayers prepared by pulsed galvanostatic, dual bath technique

    SciTech Connect (OSTI)

    Esmaili, S.; Bahrololoom, M.E.; Kavanagh, K.L.

    2011-02-15

    NiFe/Cu multilayers were grown sequentially by pulsed electrodeposition on copper (Cu) substrates. The layers were prepared in galvanostatic mode using a dual bath technique. The morphology, thickness, roughness and composition of the layers were studied using scanning electron microscopy, scanning transmission electron microscopy with energy dispersive X-ray spectroscopy, X-ray diffraction and atomic force microscopy. Analysis showed that the resulting multilayers were continuous layers with a root mean square roughness of 30 nm and a grain size of 20-60 nm. The Cu substrate and the electrodeposited Cu layer were preferentially (200) oriented while the NiFe layers were polycrystalline but with a preferred (200) texture. The thinnest multilayers produced were 20/40, NiFe/Cu, respectively. - Research Highlights: {yields} Thin MLs of Cu and Py can be ED utilizing a pulsed-galvanostatic, DBT. {yields} The resulting multilayers were continuous layers with an rms of 30 nm. {yields} The smallest average thickness achieved by DBT was 40 nm/20 nm for Cu/NiFe.

  6. Temperature dependence of carrier spin polarization determined from current-induced domain wall motion in a Co/Ni nanowire

    SciTech Connect (OSTI)

    Ueda, K.; Koyama, T.; Hiramatsu, R.; Kobayashi, K.; Ono, T.; Chiba, D.; Fukami, S.; Tanigawa, H.; Suzuki, T.; Ohshima, N.; Ishiwata, N.; Nakatani, Y.

    2012-05-14

    We have investigated the temperature dependence of the current-induced magnetic domain wall (DW) motion in a perpendicularly magnetized Co/Ni nanowire at various temperatures and with various applied currents. The carrier spin polarization was estimated from the measured domain wall velocity. We found that it decreased more with increasing temperature from 100 K to 530 K than the saturation magnetization did.

  7. Development of Ni1-xCoxO as the cathode/interconnect contact for solid oxide fuel cells

    SciTech Connect (OSTI)

    Lu, Zigui; Xia, Guanguang; Templeton, Joshua D.; Li, Xiaohong S.; Nie, Zimin; Yang, Zhenguo; Stevenson, Jeffry W.

    2011-06-01

    A new type of material, Ni1-xCoxO, was developed for solid oxide fuel cell (SOFC) cathode/interconnect contact applications. The phase structure, coefficient of thermal expansion, sintering behavior, electrical property, and mechanical bonding strength of these materials were evaluated against the requirements of the SOFC cathode/interconnect contact. A dense cathode/interconnect contact layer was developed through reaction sintering from Ni and Co metal powders. An area specific resistance (ASR) as low as 5.5 mohm.cm2 was observed after 1000 h exposure in air at 800 C for the LSM/Ni0.33Co0.67O/AISI441 assembly. Average mechanical strengths of 6.8 and 5.0 MPa were obtained for the cathode/contact/cathode and interconnect/contact/interconnect structures, respectively. The significantly low ASR was probably due to the dense structure and therefore improved electrical conductivity of the Ni0.33Co0.67O contact and the good bonding of the interfaces between the contact and the cathode, and between the contact and the interconnect.

  8. Seed influence on the ferromagnetic resonance response of Co/Ni multilayers

    SciTech Connect (OSTI)

    Sabino, Maria Patricia Rouelli, E-mail: maria-sabino@dsi.a-star.edu.sg; Tran, Michael; Hin Sim, Cheow; Ji Feng, Ying; Eason, Kwaku [Data Storage Institute, Agency for Science, Technology and Research, 5 Engineering Drive 1, Singapore 117608 (Singapore)

    2014-05-07

    The effect of Pd and Ru seed layers on the magnetic properties of [Co/Ni]{sub N} multilayers with varying number of bilayer repeats N is investigated using vector network analyzer ferromagnetic resonance. The effective anisotropy field H{sub Keff} is found to increase with N for Ru seed, but decreases for Pd until N?=?15. As N is increased beyond 15, H{sub Keff} decreases for both seeds. In contrast, the damping parameter ? decreases with N regardless of the seed, showing a 1/N dependence. Taking spin pumping into account, the intrinsic damping ?{sub 0} for both Pd and Ru seeds reduce to ?{sub 0} ? 0.01. These results demonstrate that there can be a strong influence of the seed/Co interface on anisotropy, especially for sufficiently low N, but not necessarily on ?{sub 0}.

  9. Interdiffusion Behavior of Pt-Diffused gamma+gamma' Coatings on Ni-Based Superalloys

    SciTech Connect (OSTI)

    Zhang, Ying; Stacy, J P; Pint, Bruce A; Haynes, James A; Hazel, Brian T; Nagaraj, Ben

    2008-01-01

    Platinum-diffused {gamma} + {gamma}{prime} coatings ({approx} 20 at.% Al, {approx} 22 at.% Pt) were synthesized on Rene 142 and Rene N5 Ni-based superalloys by electroplating the substrates with {approx} 7 {micro}m of Pt, followed by an annealing treatment in vacuum at 1175 C. In order to study the compositional and microstructural evolution of these coatings at elevated temperatures, interdiffusion experiments were carried out on coated specimens in the temperature range of 900-1050 C for various durations. Composition profiles of the alloying elements in the {gamma} + {gamma}{prime} coatings before and after diffusion experiments were determined by electron probe microanalysis. Although the change of the Al content in the coatings was minimal under these interdiffusion conditions, the decrease of the Pt content and increase of the diffusion depth of Pt into the substrate alloys were significant. A preliminary diffusion model was used to estimate the Pt penetration depth after diffusion.

  10. Cu--Ni--Fe anode for use in aluminum producing electrolytic cell

    DOE Patents [OSTI]

    Bergsma, S. Craig; Brown, Craig W.; Bradford, Donald R; Barnett, Robert J.; Mezner, Michael B.

    2006-07-18

    A method of producing aluminum in an electrolytic cell containing alumina dissolved in an electrolyte, the method comprising the steps of providing a molten salt electrolyte at a temperature of less than 900.degree. C. having alumina dissolved therein in an electrolytic cell having a liner for containing the electrolyte, the liner having a bottom and walls extending upwardly from said bottom. A plurality of non-consumable Cu--Ni--Fe anodes and cathodes are disposed in a vertical direction in the electrolyte, the cathodes having a plate configuration and the anodes having a flat configuration to compliment the cathodes. The anodes contain apertures therethrough to permit flow of electrolyte through the apertures to provide alumina-enriched electrolyte between the anodes and the cathodes. Electrical current is passed through the anodes and through the electrolyte to the cathodes, depositing aluminum at the cathodes and producing gas at the anodes.

  11. Magneto-optical spectroscopy of ferromagnetic shape-memory Ni-Mn-Ga alloy

    SciTech Connect (OSTI)

    Veis, M. Beran, L.; Zahradnik, M.; Antos, R.; Straka, L.; Kopecek, J.; Fekete, L.; Heczko, O.

    2014-05-07

    Magneto-optical properties of single crystal of Ni{sub 50.1}Mn{sub 28.4}Ga{sub 21.5} magnetic shape memory alloy in martensite and austenite phase were systematically studied. Crystal orientation was approximately along (100) planes of parent cubic austenite. At room temperature, the sample was in modulated 10M martensite phase and transformed to cubic austenite at 323?K. Spectral dependence of polar magneto-optical Kerr effect was obtained by generalized magneto-optical ellipsometry with rotating analyzer in the photon energy range from 1.2 to 4?eV, and from room temperature to temperature above the Curie point. The Kerr rotation spectra exhibit prominent features typical for complexes containing Mn atoms. Significant spectral changes during transformation to austenite can be explained by different optical properties caused by changes in density of states near the Fermi energy.

  12. Strain-induced dimensionality crossover of precursor modulations in Ni{sub 2}MnGa

    SciTech Connect (OSTI)

    Nie, Zhihua E-mail: ydwang@neu.edu.cn; Wang, Yandong E-mail: ydwang@neu.edu.cn; Shang, Shunli; Wang, Yi; Liu, Zi-Kui; Zeng, Qiaoshi; Ren, Yang; Liu, Dongmei; Yang, Wenge

    2015-01-12

    Precursor modulations often occur in functional materials like magnetic shape memory alloys, ferroelectrics, and superconductors. In this letter, we have revealed the underlying mechanism of the precursor modulations in ferromagnetic shape memory alloys Ni{sub 2}MnGa by combining synchrotron-based x-ray diffraction experiments and first-principles phonon calculations. We discovered the precursor modulations along [011] direction can be eliminated with [001] uniaxial loading, while the precursor modulations or premartensite can be totally suppressed by hydrostatic pressure condition. The TA{sub 2} phonon anomaly is sensitive to stress induced lattice strain, and the entire TA{sub 2} branch is stabilized along the directions where precursor modulations are eliminated by external stress. Our discovery bridges precursor modulations and phonon anomalies, and sheds light on the microscopic mechanism of the two-step superelasticity in precursor martensite.

  13. NaNi sub 3 Mn sub 2 alloy as a tritium storage material

    SciTech Connect (OSTI)

    Ide, T.; Okuno, K.; Konishi, S.; Sakai, F.; Fukui, H.; Enoeda, M.; Naruse, Y.; Anderson, J.L.; Bartlit, J.R.; Los Alamos National Lab., NM )

    1989-01-01

    An all metal apparatus has been constructed and installed in the main cell of the Tritium System Assembly (TSTA) at Los Alamos National Laboratory, as a separate experiment, to handle about 2600 Ci of tritium for study of metal tritides of potential application for storing tritium in fusion fuel processing. The apparatus is similar to that used for protium/deuterium gas but some modifications were made to assure safe handling of tritium. The pressure-composition isotherms for the LaNi{sub 3}Mn{sub 2}-protium (H), deuterium (D) and tritium (T) system were measured to study isotopic effects in the temperature range of 60 {degree}C to 250 {degree}C, the pressure range below 120 kPa. 2 refs., 10 figs.

  14. Electronic structure and weak itinerant magnetism in metallic Y2Ni7

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Singh, David J.

    2015-11-03

    We describe a density functional study of the electronic structure and magnetism of Y₂Ni₇. The results show itinerant magnetism very similar to that in the weak itinerant ferromagnet Ni₃Al. The electropositive Y atoms in Y₂Ni₇ donate charge to the Ni host mostly in the form of s electrons. The non-spin-polarized state shows a high density of states at the Fermi level, N (EF), due to flat bands. This leads to a ferromagnetic instability. However, there are also several much more dispersive bands crossing E(F), which should promote the conductivity. Spin fluctuation effects appear to be comparable to or weaker thanmore » Ni₃Al, based on comparison with experimental data. Y₂Ni₇ provides a uniaxial analog to cubic Ni₃Al, for studying weak itinerant ferromagnetism, suggesting detailed measurements of its low temperature physical properties and spin fluctuations, as well as experiments under pressure.« less

  15. Strain controlled metal-insulator transition in epitaxial NdNiO{sub 3} thin films

    SciTech Connect (OSTI)

    Xiang, P.-H. Zhong, N.; Duan, C.-G.; Tang, X. D.; Hu, Z. G.; Yang, P. X.; Zhu, Z. Q.; Chu, J. H.

    2013-12-28

    We have fabricated epitaxial thin films of NdNiO{sub 3} (NNO) on various single crystal substrates. The transport properties of NNO films are very sensitive to substrate-controlled epitaxial strain. As the strain varies from tensile to compressive, the Mott metal-insulator transition of NNO films shifts to low temperatures. Under a larger compressive strain, the film on LaSrAlO{sub 4} substrate exhibits a practically metallic transport characteristic. We have found that the conductivities of NNO films at low temperatures follow Mott's variable range hopping mechanism rather than thermal activation model and the epitaxial strain has a strong effect on Mott's parameters of NNO films. These findings demonstrate that the electronic transport of NNO thin films can be tuned by the epitaxial strain for next-generation perovskite-based microelectronic devices.

  16. Proton decay from the isoscalar giant dipole resonance in {sup 58}Ni

    SciTech Connect (OSTI)

    Hunyadi, M.; Hashimoto, H.; Fujimura, H.; Fujiwara, M.; Hara, K.; Itoh, M.; Nakanishi, K.; Okumura, S.; Li, T.; Garg, U.; Hoffman, J.; Nayak, B. K.; Akimune, H.; Gacsi, Z.; Harakeh, M. N.

    2009-10-15

    Proton decay from the 3({Dirac_h}/2{pi}){omega} isoscalar giant dipole resonance (ISGDR) in {sup 58}Ni has been measured using the ({alpha},{alpha}{sup '}p) reaction at a bombarding energy of 386 MeV to investigate its decay properties. We have extracted the ISGDR strength under the coincidence condition between inelastically scattered {alpha} particles at forward angles and decay protons emitted at backward angles. Branching ratios for proton decay to low-lying states of {sup 57}Co have been determined, and the results compared with predictions of recent continuum-RPA calculations. The final-state spectra of protons decaying to the low-lying states in {sup 57}Co were analyzed for a more detailed understanding of the structure of the ISGDR. It is found that there are differences in the structure of the ISGDR as a function of excitation energy.

  17. Transition-metal and metalloid substitutions in L1(0)-ordered FeNi

    SciTech Connect (OSTI)

    Manchanda, P; Skomski, R; Bordeaux, N; Lewis, LH; Kashyap, A

    2014-05-07

    The effect of atomic substitutions on the magnetization, exchange, and magnetocrystalline anisotropy energy of L1(0)-ordered FeNi (tetrataenite) is computationally investigated. The compound naturally occurs in meteorites but has attracted renewed attention as a potential material for permanent magnets, and elemental additives will likely be necessary to facilitate the phase formation. Our density functional theory calculations use the Vienna ab-initio simulation package, applied to 4-atom unit cells of Fe2XNi and 32-atom supercells (X = Al, P, S, Ti, V, Cr, Mn, Fe, Co). While it is found that most additives deteriorate the magnetic properties, there are exceptions: excess substitutional Fe and Co additions improve the magnetization, whereas Cr, S, and interstitial B additions improve the magnetocrystalline anisotropy. (C) 2014 AIP Publishing LLC.

  18. Transition-metal and metalloid substitutions in L1{sub 0}-ordered FeNi

    SciTech Connect (OSTI)

    Manchanda, Priyanka; Skomski, Ralph; Bordeaux, N.; Lewis, L. H.; Kashyap, Arti

    2014-05-07

    The effect of atomic substitutions on the magnetization, exchange, and magnetocrystalline anisotropy energy of L1{sub 0}-ordered FeNi (tetrataenite) is computationally investigated. The compound naturally occurs in meteorites but has attracted renewed attention as a potential material for permanent magnets, and elemental additives will likely be necessary to facilitate the phase formation. Our density functional theory calculations use the Vienna ab-initio simulation package, applied to 4-atom unit cells of Fe{sub 2}XNi and 32-atom supercells (X?=?Al, P, S, Ti, V, Cr, Mn, Fe, Co). While it is found that most additives deteriorate the magnetic properties, there are exceptions: excess substitutional Fe and Co additions improve the magnetization, whereas Cr, S, and interstitial B additions improve the magnetocrystalline anisotropy.

  19. REVERSIBLE AND IRREVERSIBLE PASSIVATION OF A LA-NI-AL ALLOY

    SciTech Connect (OSTI)

    Shanahan, K.; Klein, J.

    2009-06-25

    This paper seeks to explore some of the effects of passivating a LaNi{sub 4.25}Al{sub 0.75} sample by air oxidation under controlled conditions. Passivation of this metal hydride alloy seems to have two distinct regimes. The first occurs with air oxidation at 80 C and 20 C. It is characterized by complete reversibility upon hydrogen readsorption, although said readsorption is hindered substantially at room temperature, requiring the material to be heated to produce the reactivation. The second regime is illustrated by 130 C air oxidation and is characterized by irreversible loss of hydrogen absorption capacity. This passivation does not hinder hydrogen readsorption into the remaining hydride material.

  20. Electric and magnetic behaviors observed in NiO-based thin films under light-irradiation

    SciTech Connect (OSTI)

    Luo, Yi-Dong; Song, Kenan; Shun, Li; Gao, Junqi; Xu, Ben, E-mail: xuben@mail.tsinghua.edu.cn, E-mail: linyh@mail.tsinghua.edu.cn; Lin, Yuan-Hua, E-mail: xuben@mail.tsinghua.edu.cn, E-mail: linyh@mail.tsinghua.edu.cn; Nan, Ce-Wen; Liu, Wei [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2014-09-07

    We report the room-temperature ferromagnetic properties that can be tuned by light irradiation in the Li and Mn co-doped NiO films (LMNO) grown by the spinning coating. The optical tunable magnetic behavior is enhanced by the increase of the Li doping concentration. First-principle calculations reveal that the Li doping plays key roles in the optical tuned magnetic behavior, which brings a 3d-like impurity state to enhance a significant hybridization between the Mn{sup 3+} 3d state and the impurity band, thus strengthening the ferromagnetic coupling effects. Additionally, it can tune the band gap of the LMNO films and produce more holes under the light irradiation, enhancing the optical tuned magnetic behavior.

  1. Factors affecting initial permeability of Co-substituted Ni-Zn-Cu ferrites

    SciTech Connect (OSTI)

    Byun, T.Y.; Byeon, S.C.; Hong, K.S.; Kim, C.K.

    1999-09-01

    Iron deficient compositions of (Ni{sub 0.2}Cu{sub 0.2}Zn{sub 0.6}){sub 1.02{minus}x}Co{sub x}Fe{sub 1.98}O{sub 4} (0 {le} x {le} 0.05) were prepared to investigate their initial permeability dependence on cobalt contents. Extrinsic factors such as grain size and sintered density change little in samples sintered at 900 C, so their effects on permeability can be neglected. Intrinsic factors such as saturation magnetization, magnetocrystalline anisotropy (K{sub 1}) and magnetoelastic anisotropy (K{sub {sigma}}) can not account for the variation of initial permeability with Co content. Measurement of thermoelectric power shows that the concentration of cation vacancies increases with Co content. Therefore, the local induced anisotropy increases by the ordering of Co ions cia increased cation vacancy concentration. This increase in induced anisotropy results in the decrease of initial permeability.

  2. Structural and magnetic properties of magnetron sputtered Ni-Mn-Sn ferromagnetic shape memory alloy thin films

    SciTech Connect (OSTI)

    Vishnoi, Ritu; Kaur, Davinder

    2010-05-15

    In the present study, structural and magnetic properties of Mn-rich, off-stoichiometric, nanocrystalline Ni-Mn-Sn ferromagnetic shape memory alloy thin films, grown on Si (100) substrates at 550 deg. C by dc magnetron sputtering have been systematically investigated. The crystallization, surface morphology, and structural features were studied using x-ray diffraction, atomic force microscopy, and field emission scanning electron microscopy. The structural transition from austenite to martensite was observed with an increase of Mn content. Austenitic phase with mixed L2{sub 1}/A2+B2 structure has been observed at room temperature in Ni{sub 52.6}Mn{sub 23.7}Sn{sub 23.6} (S{sub 1}) and Ni{sub 51.5}Mn{sub 26.1}Sn{sub 22.2} (S{sub 2}) films, while those with composition of Ni{sub 58.9}Mn{sub 28.0}Sn{sub 13.0} (S{sub 3}) and Ni{sub 58.3}Mn{sub 29.0}Sn{sub 12.6} (S{sub 4}) show martensitic phase with 14M modulated monoclinic structures. Field induced martensite-austenite transformation has been observed in magnetization studies using superconducting quantum interference device magnetometer. Temperature dependent magnetization measurements demonstrate the influence of magnetic field on the structural phase transition temperature. The investigations reveal an increase of martensitic transformation temperature (T{sub M}) with corresponding increase in substitution of Mn. The films exhibit ferromagnetic behavior at low temperatures below Curie temperature (T{sub C}). The decrease in saturation moment with increasing Mn content, indicates the existence of antiferromagnetic correlations within ferromagnetic matrix.

  3. Solubility Measurements of Crystalline NiO in Aqueous Solution as a Function of Temperature and pH

    SciTech Connect (OSTI)

    Palmer, Donald; Benezeth, Pascale; Xiao, Caibin {nmn}; Wesolowski, David J; Anovitz, Lawrence {Larry} M

    2011-01-01

    Abstract Results of solubility experiments involving crystalline nickel oxide (bunsenite) in aqueous solutions are reported as functions of temperature (0 to 350 C) and pH at pressures slightly exceeding (with one exception) saturation vapor pressure. These experiments were carried out in either flow-through reactors or a hydrogen-electrode concentration cell for mildly acidic to near neutral pH solutions. The results were treated successfully with a thermodynamic model incorporating only the unhydrolyzed aqueous nickel species (viz., Ni2+ ) and the neutrally charged hydrolyzed species (viz., Ni(OH)02 ). The thermodynamic quantities obtained at 25 C and infinite dilution are, with 2 uncertainties: log10Ko s0 = (12.40 0.29), rGo m = (70.8 1.7) kJ mol 1; rHo m = (105.6 1.3) kJ mol 1; rSo m = (116.6 3.2) J K 1 mol 1; rCo p,m = (0 13) J K 1 mol 1; and log10Ko s2 = (8.76 0.15); rGo m = (50.0 1.7) kJ mol 1; rHo m = (17.7 1.7) kJ mol 1; rSo m = (108 7) J K 1 mol 1; rCo p,m = (108 3) J K 1 mol 1. These results are internally consistent, but the latter set differs from those gleaned from previous studies recorded in the literature. The corresponding thermodynamic quantities for the formation of Ni2+ and Ni(OH)02 are also estimated. Moreover, the Ni(OH) 3 anion was never observed, even in relatively strong basic solutions (mOH = 0.1 mol kg 1), contrary to the conclusions drawn from all but one previous study.

  4. Characteristics of a new creep regime in polycrystalline NiAl

    SciTech Connect (OSTI)

    Raj, S.V.; Farmer, S.C. )

    1995-02-01

    Constant-load creep tests were conducted on fine-grained ([approximately]23 [mu]m) Ni-50.6 (at. pct) Al in the temperature range of 1,000 to 1,400 K. Power-law creep with a stress exponent, n [approx] 6.5, and an activation energy, Q[sub c] [approx] 290 kJ mol[sup [minus]1], was observed above 25 MPa, while a new mechanism with n [approx] 2 and Q[sub c] [approx] 100 kJ mol[sup [minus]1] dominates when [sigma] < 25 MPa, where [sigma] is the applied stress. A comparison of the creep behavior of fine- and course-grained NiAl established that the mechanism in the n [approx] 2 region was dependent on grain size, and the magnitude of the grain-size exponent was estimated to be about 2. Transmission electron microscopy (TEM) observations of the deformed specimens revealed a mixture of dislocation tangles, dipoles, loops, and subboundary networks in the power-law creep regime. The deformation microstructures were inhomogeneous in the n [approx] 2 creep regime, and many grains did not reveal any dislocation activity. However, bands of dislocation loops were observed in a few grains, where these loops appeared to have been emitted from the grain boundaries. The observed creep characteristics of the low-stress region suggest the dominance of an accommodated grain-boundary sliding (GBS) mechanism, although the experimental creep rates were lower than those predicted by theoretical models by over seven orders of magnitude. The low value of Q[sub c] in this region, which is approximately one-third that for lattice self-diffusion, is attributed to the possible existence of interconnected vacancy flow channels, or nanotubes'', at the grain boundaries.

  5. Transformation behavior and shape memory characteristics of thermo-mechanically treated Ti(45?x)Ni5CuxV (at%) alloys

    SciTech Connect (OSTI)

    Jang, Jae-young; Chun, Su-jin; Choi, Eunsoo; Liu, Yinong; Yang, Hong; Nam, Tae-hyun

    2012-10-15

    Transformation behavior, shape memory characteristics and superelasticity of thermo-mechanically treated Ti(45?x)Ni5CuxV (at%) (x = 0.52.0) alloys were investigated by means of differential scanning calorimetry, transmission electron microscopy, X-ray diffractions, thermal cycling tests under constant load and tensile tests. The B2B19? transformation occurred when V content was 0.5 at%, above which the B2B19B19? transformation occurred. The B2B19 transformation was not separated clearly from the B19B19? transformation. Thermo-mechanically treated Ti(45?x)Ni5CuxV alloys showed perfect shape memory effect and transformation hysteresis(?T) of Ti43.5Ni5.0Cu1.5V and Ti43.0Ni5.0Cu2.0V alloys was about 9 K which was much smaller than that of a Ti44.5Ni5.0Cu0.5V alloy(23.3 K). More than 90% of superelastic recovery ratio was observed in all specimens and transformation hysteresis (??) of a Ti44.5Ni5.0Cu0.5V alloy was about 70 MPa, which was much larger than that of a Ti43.0Ni5.0Cu2.0V alloy (35 MPa).

  6. Mechanistic Insights of Ethanol Steam Reforming over NiCeO x (111): The Importance of Hydroxyl Groups for Suppressing Coke Formation

    SciTech Connect (OSTI)

    Liu, Zongyuan; Ducho?, Tom; Wang, Huanru; Peterson, Erik W.; Zhou, Yinghui; Luo, Si; Zhou, Jing; Matoln, Vladimir; Stacchiola, Dario J.; Rodriguez, Jos A.; Senanayake, Sanjaya D.

    2015-07-30

    We have studied the reaction of ethanol and water over NiCeO2-x(111) model surfaces to elucidate the mechanistic steps associated with the ethanol steam reforming (ESR) reaction. Our results provide insights about the importance of hydroxyl groups to the ESR reaction over Ni-based catalysts. Systematically, we have investigated the reaction of ethanol on NiCeO2-x(111) at varying Ce? concentrations (CeO1.82.0) with absence/presence of water using a combination of soft X-ray photoelectron spectroscopy (sXPS) and temperature-programmed desorption (TPD). Consistent with previous reports, upon annealing, metallic Ni formed on reduced ceria while NiO was the main component on fully oxidized ceria. Ni? is the active phase leading to both the CC and CH cleavage of ethanol but is also responsible for carbon accumulation or coking. We have identified a Ni?C phase that formed prior to the formation of coke. At temperatures above 600K, the lattice oxygen from ceria and the hydroxyl groups from water interact cooperatively in the removal of coke, likely through a strong metalsupport interaction between nickel and ceria that facilitates oxygen transfer.

  7. Mechanistic insights of ethanol steam reforming over Ni-CeOx(111): The importance of hydroxyl groups for suppressing coke formation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, Zongyuan; Senanayake, Sanjaya D.; Duchon, Tomas; Wang, Huanru; Peterson, Erik W.; Zhou, Yinghui; Luo, Si; Zhou, Jing; Matolin, Vladimir; Stacchiola, Dario J.; et al

    2015-07-10

    We have studied the reaction of ethanol and water over NiCeO2-x(111) model surfaces to elucidate the mechanistic steps associated with the ethanol steam reforming (ESR) reaction. Our results provide insights about the importance of hydroxyl groups to the ESR reaction over Ni-based catalysts. Systematically, we have investigated the reaction of ethanol on NiCeO2-x(111) at varying Ce? concentrations (CeO1.82.0) with absence/presence of water using a combination of soft X-ray photoelectron spectroscopy (sXPS) and temperature-programmed desorption (TPD). Consistent with previous reports, upon annealing, metallic Ni formed on reduced ceria while NiO was the main component on fully oxidized ceria. Ni? is themoreactive phase leading to both the CC and CH cleavage of ethanol but is also responsible for carbon accumulation or coking. We have identified a Ni?C phase that formed prior to the formation of coke. At temperatures above 600K, the lattice oxygen from ceria and the hydroxyl groups from water interact cooperatively in the removal of coke, likely through a strong metalsupport interaction between nickel and ceria that facilitates oxygen transfer.less

  8. Combined Spectroscopic and Electrochemical Detection of a NiIHN Bonding Interaction with Relevance to Electrocatalytic H2 Production

    SciTech Connect (OSTI)

    Kochem, Amelie; O'Hagan, Molly J.; Wiedner, Eric S.; van Gastel, Maurice

    2015-07-13

    The [Ni(PR2NR2)2]2+ family of complexes are exceptionally active catalysts for proton reduction to H2. In this manuscript, we explore the first protonation step of the proposed catalytic cycle by using a catalytically inactive NiI complex possessing a sterically demanding variation of the ligand. Due to the paramagnetic nature of the NiI oxidation state, the protonated NiI intermediate has been characterized through a combination of cyclic voltammetry, ENDOR, and HYSCORE spectroscopy. Both the electrochemical and spectroscopic studies indicate that the NiI complex is protonated at a pendant amine that is endo to Ni, which suggests the presence of an intramolecular NiIHN bonding interaction. Using density functional theory, the proton was found to hydrogen bond to three doubly-occupied, localized molecular orbitals: the 3dxz, 3dz2, and 3dyz orbitals of nickel. These studies provide the first direct experimental evidence for this critical catalytic intermediate, and implications for catalytic H2 production are discussed. Research was supported by the Max Planck Society (EPR, ENDOR, and HYSCORE spectroscopy, computational studies), and as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences (electrochemistry, NMR spectroscopy). Pacific Northwest National Laboratory is operated by Battelle for DOE.

  9. Facile preparation of NiS/CdS-t composite photocatalyst for hydrogen evolution from aqueous solution of sulphide/sulphite under visible light

    SciTech Connect (OSTI)

    Meng, Jianling; Li, Fengyan; Hu, Yiming; Xu, Lin; Sun, Zhixia; Liu, Jian

    2013-06-01

    Highlights: ? The nanostructured NiS/CdS photocatalyst was prepared by a facile two-step method. ? After aged for six days, the photocatalyst achieved a maximal rate of H{sub 2} evolution. ? The rate of H{sub 2} evolution on NiS(0.14)/CdS-6 is about 33 times that of CdS-6. - Abstract: The nanostructured NiS/CdS-t (t = aging period in day number) composite photocatalysts were prepared by a facile two-step synthesis method. The photocatalytic activity of H{sub 2} evolution over NiS/CdS could be greatly enhanced by changing the aging period of CdS. The NiS/CdS achieved a maximal rate of H{sub 2} evolution when CdS was aged for 6 days before hydrothermal treatment. It was demonstrated that the composite NiS(0.14)/CdS-6 could achieve a H{sub 2} evolution rate up to 1517 ?mol h{sup ?1} and show high photocatalytic stability for H{sub 2} evolution under long-term light irradiation. The rate of H{sub 2} evolution on NiS(0.14)/CdS-6 is about 7.5 times that of NiS(0.14)/CdS-3 and 33 times that of CdS-6. The notable improvement can be attributed to the fast electron transfer from CdS to NiS, which is proved by the surface photovoltage spectroscopy and photoluminescent measurements, as well as the increasing percentage of hexagonal-CdS in the mixture of cubic and hexagonal CdS.

  10. COS OBSERVATIONS OF METAL LINE AND BROAD LYMAN-{alpha} ABSORPTION IN THE MULTI-PHASE O VI AND Ne VIII SYSTEM AT z = 0.20701 TOWARD HE 0226-4110

    SciTech Connect (OSTI)

    Savage, B. D. [Department of Astronomy, University of Wisconsin-Madison, 475 North Charter Street, Madison, WI 53706 (United States); Lehner, N. [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); Narayanan, A. [Indian Institute of Space Science and Technology, Thiruvananthapuram 695547, Kerala (India)

    2011-12-20

    Observations of the QSO HE 0226-4110 (z{sub em} = 0.495) with the Cosmic Origins Spectrograph (COS) from 1134 to 1796 A with a resolution of {approx}17 km s{sup -1} and signal-to-noise ratio (S/N) per resolution element of 20-40 are used to study the multi-phase absorption system at z = 0.20701 containing O VI and Ne VIII. The system was previously studied with lower S/N observations with Far-Ultraviolet Spectroscopic Explorer (FUSE) and Space Telescope Imaging Spectrograph (STIS). The COS observations provide more reliable measures of the H I and metal lines present in the system and reveal the clear presence of broad Ly{alpha} (BLA) absorption with b = 72(+13, -6) km s{sup -1} and log N(H I) = 13.87 {+-} 0.08. Detecting BLAs associated with warm gas absorbers is crucial for determining the temperature, metallicity, and total baryonic content of the absorbers. The BLA is probably recording the trace amount of thermally broadened H I in the collisionally ionized plasma with log T {approx} 5.7 that also produces the O VI and Ne VIII absorption. The total hydrogen column in the collisionally ionized gas, log N(H) {approx} 20.1, exceeds that in the cooler photoionized gas in the system by a factor of {approx}22. The oxygen abundance in the collisionally ionized gas is [O/H] = -0.89 {+-} 0.08 {+-} 0.07. The absorber probably occurs in the circumgalactic environment (halo) of a foreground L = 0.25L{sub *} disk galaxy with an impact parameter of 109 h{sub 70}{sup -1} kpc identified by Mulchaey and Chen.

  11. Synthesis of murdochite-type Ni{sub 6}MnO{sub 8} with variable specific surface areas and the application in methane oxidation

    SciTech Connect (OSTI)

    Taguchi, Hideki; Tahara, Shohei; Okumura, Mikoto; Hirota, Ken

    2014-07-01

    To synthesize a murdochite-type Ni{sub 6}MnO{sub 8} with variable specific surface areas, an oxalate precursor was calcined at 350500 C in flowing argon, and the calcined sample was heated to 600 C in air. The lattice constant of the Ni{sub 6}MnO{sub 8} did not depend on the calcination temperature of the precursor, while the specific surface area decreased from 8.4 m{sup 2}/g to 2.6 m{sup 2}/g when increasing the calcination temperature of the precursor. The methane (CH{sub 4}) oxidation data indicated that the temperature corresponding to the 50% conversion (T{sub 50%}) of Ni{sub 6}MnO{sub 8} calcined at 350 C or 400 C was lower than that of all other Ni{sub 6}MnO{sub 8} specimens. However, the intrinsic conversion of Ni{sub 6}MnO{sub 8} calcined at 350 C, which is defined as conversion per specific surface area, was half of that of all other Ni{sub 6}MnO{sub 8} specimens. The degree of crystallinity and catalytic performance of the Ni{sub 6}MnO{sub 8} calcined at 400 C were high. - Graphical abstract: The conversion of CH{sub 4} into CO{sub 2} and H{sub 2}O on Ni{sub 6}MnO{sub 8}, which was heated at 600 C in air after the calcination of the precursor at 350 C, 400 C, 450 C, or 500 C in flowing argon, was measured. Since the specific surface area was strongly affected by the calcination temperature of the precursor, intrinsic conversion (IC) was defined as conversion per the specific surface area. For comparison, the IC value on Ni{sub 6}MnO{sub 8} synthesized by the direct calcination of the precursor at 600 C in air is plotted. - Highlights: The oxalate precursor was calcined at 350500 C in flowing argon. Murdochite-type Ni{sub 6}MnO{sub 8} was obtained by heating the calcined sample in air. The specific surface area of Ni{sub 6}MnO{sub 8} varied with the calcination temperature. The degree of crystallinity and catalysis of Ni{sub 6}MnO{sub 8} calcined at 400 C were high.

  12. Exploring the influence of transfer channels on fusion reactions: The case of 40 Ca + 58,64 Ni

    SciTech Connect (OSTI)

    Bourgin, D.; Courtin, S.; Haas, F.; Goasduff, A.; Stefanini, A. M.; Montagnoli, G.; Montanari, D.; Corradi, L.; Huiming, J.; Scarlassara, F.; Fioretto, E.; Simenel, C.; Rowley, N.; Jiang, C. L.; Szilner, S.; Mijatović, T.

    2015-01-29

    Fusion cross sections have been measured in the 40Ca + 58Ni and 40Ca + 64Ni systems at beam energies ranging from Elab = 104.75 MeV to 153.5 MeV using the Laboratori Nazionali di Legnaro electrostatic deflector. Distributions of barriers have been extracted from the experimental data. Preliminary coupled channel calculations were performed and hints of effects of neutron transfers on the fusion below the barrier in the 40Ca + 64Ni are discussed.

  13. Pressure-Induced Structural Phase Transition in CeNi: X-ray and Neutron Scattering Studies and First-Principles Calculations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mirmelstein, A.; Podlesnyak, Andrey A.; dos Santos, Antonio M.; Ehlers, Georg; Kerbel, O.; Matvienko, V.; Sefat, A. S.; Saporov, B.; Halder, G. J.; Tobin, J. G.

    2015-08-03

    The pressure-induced structural phase transition in the intermediate-valence compound CeNi has been investigated by x-ray and neutron powder diffraction techniques. It is shown that the structure of the pressure-induced CeNi phase (phases) can be described in terms of the Pnma space group. Equations of state for CeNi on both sides of the phase transition are derived and an approximate P-T phase diagram is suggested for Pmorethe phase transition.less

  14. Insulating and metallic spin glass in KxFe2-?-yNiySe2 (0.06 ? y ? 1.44 ) single crystals

    SciTech Connect (OSTI)

    Ryu, Hyejin; Abeykoon, Milinda; Wang, Kefeng; Lei, Hechang; Lazarevic, N.; Warren, J. B.; Bozin, E. S.; Popovic, Z. V.; Petrovic, C.

    2015-05-04

    We report electron doping effects by Ni in KxFe2-?-yNiySe? (0.06 ? y ? 1.44) single crystal alloys. A rich ground state phase diagram is observed. Thus, a small amount of Ni (~ 4%) suppressed superconductivity below 1.8 K, inducing insulating spin glass magnetic ground state for higher Ni content. With further Ni substitution, metallic resistivity is restored. For high Ni concentration in the lattice the unit cell symmetry is high symmetry I4/mmm with no phase separation whereas both I4/m + I4/mmm space groups were detected in the phase separated crystals when concentration of Ni < Fe. The absence of superconductivity coincides with the absence of crystalline Fe vacancy order.

  15. First-principle investigations of K{sub 2}NiF{sub 4}-type double perovskite oxides La{sub 4}B?B?O{sub 8} (B?B??=?Fe, Co, Ni)

    SciTech Connect (OSTI)

    Mao, Hejie; Wei, Yingfen; Gui, Hong; Li, Xin; Zhao, Zhenjie Xie, Wenhui

    2014-06-07

    The K{sub 2}NiF{sub 4}-type structure La{sub 4}CoNiO{sub 8} (LCNO), La{sub 4}FeCoO{sub 8} (LFCO), and La{sub 4}FeNiO{sub 8} (LFNO) are studied by using the first-principle electronic structure calculations. Our results indicate that the ground state of LCNO is a ferrimagnetism (FiM) with a large energy gap about 1.9?eV, LFCO and LFNO are antiferromagnetism with energy gaps about 1.3 and 1.4?eV, respectively. Their orthorhombic distortions, out-of-plane elongation, and tilting of octahedron are discussed. It is indicated that LFCO and LFNO have stronger crystal distortion than LCNO. Our calculations indicate that the in-plane magnetic exchange interaction of LCNO is much stronger than LFCO and LFNO, thus LCNO should have much higher magnetic ordering temperature than LFCO and LFNO.

  16. IMPROVED Ni I log(gf) VALUES AND ABUNDANCE DETERMINATIONS IN THE PHOTOSPHERES OF THE SUN AND METAL-POOR STAR HD 84937

    SciTech Connect (OSTI)

    Wood, M. P.; Lawler, J. E.; Sneden, C.; Cowan, J. J. E-mail: jelawler@wisc.edu E-mail: cowan@nhn.ou.edu

    2014-04-01

    Atomic transition probability measurements for 371 Ni I lines in the UV through near-IR are reported. Branching fractions from data recorded using a Fourier transform spectrometer and a new echelle spectrograph are combined with published radiative lifetimes to determine these transition probabilities. Generally good agreement is found in comparisons to previously reported Ni I transition probability measurements. Use of the new echelle spectrograph, independent radiometric calibration methods, and independent data analysis routines enable a reduction of systematic errors and overall improvement in transition probability uncertainty over previous measurements. The new Ni I data are applied to high-resolution visible and UV spectra of the Sun and metal-poor star HD 84937 to derive new, more accurate Ni abundances. Lines covering a wide range of wavelength and excitation potential are used to search for non-LTE effects.

  17. Elastic scattering and total reaction cross section for the {sup 6}He+{sup 58}Ni system

    SciTech Connect (OSTI)

    Morcelle, V.; Lichtenthler, R.; Lpine-Szily, A.; Guimares, V.; Gasques, L.; Scarduelli, V.; Condori, R. Pampa; Leistenschneider, E.; Mendes Jr, D. R.; Faria, P. N. de; Pires, K. C. C.; Barioni, A.; Morais, M. C.; Shorto, J. M. B.; Zamora, J. C.

    2014-11-11

    Elastic scattering measurements of {sup 6}He + {sup 58}Ni system have been performed at the laboratory energy of 21.7 MeV. The {sup 6}He secondary beam was produced by a transfer reaction {sup 9}Be ({sup 7}Li, {sup 6}He) and impinged on {sup 58}Ni and {sup 197}Au targets, using the Radioactive Ion Beam (RIB) facility, RIBRAS, installed in the Pelletron Laboratory of the Institute of Physics of the University of So Paulo, Brazil. The elastic angular distribution was obtained in the angular range from 15 to 80 in the center of mass frame. Optical model calculations have been performed using a hybrid potential to fit the experimental data. The total reaction cross section was derived.

  18. Enhanced magnetic hysteresis in Ni-Mn-Ga single crystal and its influence on magnetic shape memory effect

    SciTech Connect (OSTI)

    Heczko, O. Drahokoupil, J.; Straka, L.

    2015-05-07

    Enhanced magnetic hysteresis due to boron doping in combination with magnetic shape memory effect in Ni-Mn-Ga single crystal results in new interesting functionality of magnetic shape memory (MSM) alloys such as mechanical demagnetization. In Ni{sub 50.0}Mn{sub 28.5}Ga{sub 21.5} single crystal, the boron doping increased magnetic coercivity from few Oe to 270?Oe while not affecting the transformation behavior and 10?M martensite structure. However, the magnetic field needed for MSM effect also increased in doped sample. The magnetic behavior is compared to undoped single crystal of similar composition. The evidence from the X-ray diffraction, magnetic domain structure, magnetization loops, and temperature evolution of the magnetic coercivity points out that the enhanced hysteresis is caused by stress-induced anisotropy.

  19. Extended investigation of intermartensitic transitions in Ni-Mn-Ga magnetic shape memory alloys: A detailed phase diagram determination

    SciTech Connect (OSTI)

    akir, Asli; Aktrk, Seluk; Righi, Lara

    2013-11-14

    Martensitic transitions in shape memory Ni-Mn-Ga Heusler alloys take place between a high temperature austenite and a low temperature martensite phase. However, intermartensitic transformations have also been encountered that occur from one martensite phase to another. To examine intermartensitic transitions in magnetic shape memory alloys in detail, we carried out temperature dependent magnetization, resistivity, and x-ray diffraction measurements to investigate the intermartensitic transition in Ni{sub 50}Mn{sub 50x}Ga{sub x} in the composition range 12?x?25 at. %. Rietveld refined x-ray diffraction results are found to be consistent with magnetization and resistivity data. Depending on composition, we observe that intermartensitic transitions occur in the sequences 7M?L1{sub 0},?5M?7M, and 5M?7M?L1{sub 0} with decreasing temperature. The L1{sub 0} non-modulated structure is most stable at low temperature.

  20. The effect of helium from tritium decay on the gas-solid equilibrium constant for La-Ni-Al tritides

    SciTech Connect (OSTI)

    Walters, R.T.

    1988-01-01

    Change in the equilibrium vapor pressure over LaNi/sub 4.25/ Al/sub 0.75/ tritide with helium in-growth has been observed for helium concentrations up to 10,000 appm. The change is a decrease in pressure from about 500 torr to 90 torr at 80/degree/C. This decrease is believed to be associated with a crystal lattice expansion due to helium, and is similar to the plateau pressure decrease as function of aluminum concentration for the family of LaNi/sub 5-x/Al/sub x/ alloys with O < x < 1. Subsequent tritium cycling recovers the plateau pressure. These data suggest that helium has very short range diffusion for the time of these observations. 18 refs., 4 figs., 2 tabs.