Sample records for vertical wind shear

  1. How Does the Eye Warm? Part II: Sensitivity to Vertical Wind Shear and a Trajectory Analysis

    E-Print Network [OSTI]

    How Does the Eye Warm? Part II: Sensitivity to Vertical Wind Shear and a Trajectory Analysis DANIEL of vertical wind shear on the structure of warming and descent in the eye; results are compared with the no environment, time-averaged eye descent is maximized at 12­13-km height. Warming is not generally maximized

  2. Vertical axis wind turbines

    DOE Patents [OSTI]

    Krivcov, Vladimir (Miass, RU); Krivospitski, Vladimir (Miass, RU); Maksimov, Vasili (Miass, RU); Halstead, Richard (Rohnert Park, CA); Grahov, Jurij (Miass, RU)

    2011-03-08T23:59:59.000Z

    A vertical axis wind turbine is described. The wind turbine can include a top ring, a middle ring and a lower ring, wherein a plurality of vertical airfoils are disposed between the rings. For example, three vertical airfoils can be attached between the upper ring and the middle ring. In addition, three more vertical airfoils can be attached between the lower ring and the middle ring. When wind contacts the vertically arranged airfoils the rings begin to spin. By connecting the rings to a center pole which spins an alternator, electricity can be generated from wind.

  3. COMPARISON OF WIND AND WIND SHEAR CLIMATOLOGIES DERIVED FROM HIGH-RESOLUTION RADIOSONDES AND THE ECMWF MODEL

    E-Print Network [OSTI]

    Stoffelen, Ad

    COMPARISON OF WIND AND WIND SHEAR CLIMATOLOGIES DERIVED FROM HIGH-RESOLUTION RADIOSONDES wind and its vertical gradient, i.e. wind-shear, is characterized as a function of climate region. For a better representation of the average atmospheric wind and shear and their variabilities, high

  4. Vertical axis wind turbine airfoil

    DOE Patents [OSTI]

    Krivcov, Vladimir; Krivospitski, Vladimir; Maksimov, Vasili; Halstead, Richard; Grahov, Jurij Vasiljevich

    2012-12-18T23:59:59.000Z

    A vertical axis wind turbine airfoil is described. The wind turbine airfoil can include a leading edge, a trailing edge, an upper curved surface, a lower curved surface, and a centerline running between the upper surface and the lower surface and from the leading edge to the trailing edge. The airfoil can be configured so that the distance between the centerline and the upper surface is the same as the distance between the centerline and the lower surface at all points along the length of the airfoil. A plurality of such airfoils can be included in a vertical axis wind turbine. These airfoils can be vertically disposed and can rotate about a vertical axis.

  5. Sandia Energy - Innovative Offshore Vertical-Axis Wind Turbine...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vertical-Axis Wind Turbine Rotors Home Stationary Power Energy Conversion Efficiency Wind Energy Offshore Wind Innovative Offshore Vertical-Axis Wind Turbine Rotors Innovative...

  6. Sandia Energy - Innovative Offshore Vertical-Axis Wind Turbine...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovative Offshore Vertical-Axis Wind Turbine Rotors Home Stationary Power Energy Conversion Efficiency Wind Energy Offshore Wind Innovative Offshore Vertical-Axis Wind Turbine...

  7. Logarithmic Wind Profile: A Stability Wind Shear Term

    E-Print Network [OSTI]

    Sakagami, Yoshiaki; Haas, Reinaldo; Passos, Julio C; Taves, Frederico F

    2014-01-01T23:59:59.000Z

    A stability wind shear term of logarithmic wind profile based on the terms of turbulent kinetic energy equation is proposed. The fraction influenced by thermal stratification is considered in the shear production term. This thermally affected shear is compared with buoyant term resulting in a stability wind shear term. It is also considered Reynolds stress as a sum of two components associated with wind shear from mechanical and thermal stratification process. The stability wind shear is responsible to Reynolds stress of thermal stratification term, and also to Reynolds stress of mechanical term at no neutral condition. The wind profile and its derivative are validated with data from Pedra do Sal experiment in a flat terrain and 300m from shoreline located in northeast coast of Brazil. It is close to the Equator line, so the meteorological condition are strongly influenced by trade winds and sea breeze. The site has one 100m tower with five instrumented levels, one 3D sonic anemometer, and a medium-range wind...

  8. Wind shear climatology for large wind turbine generators

    SciTech Connect (OSTI)

    Elliott, D.L.; Wendell, L.L.; Heflick, S.K.

    1982-10-01T23:59:59.000Z

    Climatological wind shear analyses relevant to the design and operation of multimegawatt wind turbines are provided. Insight is provided for relating the wind experienced by a rotating blade in a shear flow to the analysis results. A simple analysis of the wind experienced by a rotating blade for three types of wind shear profiles under steady-state conditions is presented in graphical form. Comparisons of the magnitude and frequency of the variations in 1) the wind sensed by a single blade element, 2) the sum, and 3) the difference of the winds sensed by opposite blade elements show strong sensitivity to profile shape. These three items represent forcing functions that can be related to 1) flatwise bending moment, 2) torque on the shaft, and 3) teeter angle. A computer model was constructed to simulate rotational sampling of 10-s sampled winds from a tall tower for three different types of large wind turbines. Time series produced by the model indicated that the forcing functions on a rotating blade vary according to the shear profile encountered during each revolution as opposed to a profile derived from average wind conditions, e.g., hourly average winds. An analysis scheme was developed to establish a climatology of wind shear profiles derived from 10-s sampled winds and hourly average winds measured over a one-year period at several levels on a tall tower. Because of the sensitivity of the forcing function variability to profile shape, the analyses performed and presented are in the form of joint frequency distributions of velocity differences of the the top-to-hub versus the hub-to-bottom portion of disks of rotation for the three turbine configurations.

  9. A low order model for vertical axis wind turbines

    E-Print Network [OSTI]

    Drela, Mark

    A new computational model for initial sizing and performance prediction of vertical axis wind turbines

  10. Sandia National Laboratories: vertical-axis wind turbine research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    vertical-axis wind turbine research Sandia Vertical-Axis Wind-Turbine Research Presented at Science of Making Torque from Wind Conference On July 8, 2014, in Computational Modeling...

  11. Vertical axis wind turbine acoustics

    E-Print Network [OSTI]

    Pearson, Charlie

    2014-04-08T23:59:59.000Z

    change, there is a strong urge to move away from fossil fuel driven economies to a more sustainable energy supply with renewable power at its core. The UK has embodied its ambition for more green power generation in a series of legally binding obligations... in the UK over the last 12 years [Renewable UK, 2012b]. The UK has the best wind resource of any country in Europe [Renewable UK, 2012a, p.3] and, with the support of government subsidies, has seen rapid growth in the amount of installed wind generating...

  12. Impact of Wind Shear and Tower Shadow Effects on Power System with Large Scale Wind Power

    E-Print Network [OSTI]

    Hu, Weihao

    Impact of Wind Shear and Tower Shadow Effects on Power System with Large Scale Wind Power to wind speed variations, the wind shear and the tower shadow effects. The fluctuating power may be ableSILENT/PowerFactory. In this paper, the impacts of wind shear and tower shadow effects on the small signal stability of power systems

  13. Wind shear for large wind turbine generators at selected tall tower sites

    SciTech Connect (OSTI)

    Elliott, D.L.

    1984-04-01T23:59:59.000Z

    The objective of the study described in this report is to examine the nature of wind shear profiles and their variability over the height of large horizontal-axis wind turbines and to provide information on wind shear relevant to the design and opertion of large wind turbines. Wind turbine fatigue life and power quality are related through the forcing functions on the blade to the shapes of the wind shear profiles and their fluctuations over the disk of rotation.

  14. Vertical axis wind turbine control strategy

    SciTech Connect (OSTI)

    McNerney, G.M.

    1981-08-01T23:59:59.000Z

    Early expensive in automatic operation of the Sandia 17-m vertical axis research wind turbine (VAWT) has demonstrated the need for a systematic study of control algorithms. To this end, a computer model has been developed that uses actual wind time series and turbine performance data to calculate the power produced by the Sandia 17-m VAWT operating in automatic control. The model has been used to investigate the influence of starting algorithms on annual energy production. The results indicate that, depending on turbine and local wind characteristics, a bad choice of a control algorithm can significantly reduce overall energy production. The model can be used to select control algorithms and threshold parameters that maximize long-term energy production. An attempt has been made to generalize these results from local site and turbine characteristics to obtain general guidelines for control algorithm design.

  15. Wind Shear Characteristics at Central Plains Tall Towers: Preprint

    SciTech Connect (OSTI)

    Schwartz, M.; Elliott, D.

    2006-06-01T23:59:59.000Z

    Conference paper for WindPower 2006 held June 4-7, 2006, in Pittsburgh, PA, describing the wind shear characteristics at tall tower sites in the Central Plains of the United States.

  16. Vertical axis wind turbine with continuous blade angle adjustment

    E-Print Network [OSTI]

    Weiss, Samuel Bruce

    2010-01-01T23:59:59.000Z

    The author presents a concept for a vertical axis wind turbine that utilizes each blade's entire rotational cycle for power generation. Each blade has its own vertical axis of rotation and is constrained to rotate at the ...

  17. Response of a Vertical Axis Wind Turbine to Time Varying Wind Conditions found within the Urban

    E-Print Network [OSTI]

    Tullis, Stephen

    Response of a Vertical Axis Wind Turbine to Time Varying Wind Conditions found within the Urban, 2010 PP 389­401 389 ABSTRACT Experimental testing of a vertical axis wind turbine within the urban of the turbine. Temporal variation of the wind with respect to the direction and velocity fluctuations

  18. WIND-TUNNEL STUDY ON AERODYNAMIC PERFORMANCE OF SMALL VERTICAL-AXIS WIND TURBINES

    E-Print Network [OSTI]

    Leu, Tzong-Shyng "Jeremy"

    1 WIND-TUNNEL STUDY ON AERODYNAMIC PERFORMANCE OF SMALL VERTICAL-AXIS WIND TURBINES J. J. Miau*1 were carried out to study the aerodynamic performance of three vertical axis wind turbines (VAWTs. On the other hand, the characteristics of unsteady flow around the helical wind turbine were studied with a hot

  19. Cooling Requirements for the Vertical Shear Instability in Protoplanetary Disks

    E-Print Network [OSTI]

    Lin, Min-Kai

    2015-01-01T23:59:59.000Z

    It is difficult to understand how cold circumstellar disks accrete onto their central stars. A hydrodynamic mechanism, the vertical shear instability (VSI), offers a means to drive angular momentum transport in cold accretion disks such as protoplanetary disks (PPDs). The VSI is driven by a weak vertical gradient in the disk's orbital motion. In order to grow, the VSI must overcome vertical buoyancy, a strongly stabilizing influence in cold disks, where heating is dominated by external irradiation. Rapid cooling, via radiative losses, reduces the effective buoyancy and allows the VSI to operate. In this paper, we quantify the cooling timescale, $t_c$, needed for growth of the VSI. We perform a linear analysis of the VSI with cooling in vertically global and radially local disk models. For irradiated disks, we find that the VSI is most vigorous for rapid cooling with $t_c < \\Omega_\\mathrm{K}^{-1} h |q| / (\\gamma -1)$ in terms of the Keplerian orbital frequency, $\\Omega_\\mathrm{K}$, the disk's aspect ratio, ...

  20. Analytical Modeling of Wood Frame Shear Walls Subjected to Vertical Load

    E-Print Network [OSTI]

    Nguyendinh, Hai

    2011-08-08T23:59:59.000Z

    referred to as Analytical Model of wood frame SHEar walls subjected to Vertical load (AMSHEV) is based on the kinematic behavior of wood frame shear walls and captures significant characteristics observed from experimental testing through appropriate...

  1. Simulated performance of an airborne lidar wind shear detection system

    E-Print Network [OSTI]

    Griffith, Kenneth Scott

    1987-01-01T23:59:59.000Z

    SIMULATED PERFORMANCE OF AN AIRBORNE LIDAR WIND SHEAR DETECTION SYSTEM A Thesis by KENNETH SCOTT GRIFFITH Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE... December 1987 Major Subject: Physics SIMULATED PERFORMANCE OF AN AIRBORNE LIDAR WIND SHEAR DETECTION SYSTEM A Thesis by KENNETH SCOTT GRIFFITH Approved as to style and content by: e . atta ar (Chair an of Committee) T omas . air, III (Member) ic...

  2. Evaluation of Wind Shear Patterns at Midwest Wind Energy Facilities: Preprint

    SciTech Connect (OSTI)

    Smith, K.; Randall, G.; Malcolm, D.; Kelley, N.; Smith, B.

    2002-05-01T23:59:59.000Z

    The U.S. Department of Energy-Electric Power Research Institute (DOE-EPRI) Wind Turbine Verification Program (TVP) has included several wind energy facilities in the Midwestern United States. At several of these projects, a strong diurnal shear pattern has been observed. During the day, low and sometimes negative shear has been measured. During night hours, very high positive shear is frequently observed. These high nighttime shear values are of concern due to the potential for high stresses across the rotor. The resulting loads on turbine components could result in failures. Conversely, the effects of high nighttime wind shear could benefit wind generated energy production in the Midwest by providing a source of greater hub-height wind speeds, particularly for multi-megawatt turbines that utilize tall towers. This paper presents an overview of the observed wind shear at each of the Midwest TVP projects, focusing on diurnal patterns and the frequency of very high nighttime shear at the sites. Turbine fault incidence is examined to determine the presence or absence of a correlation to periods of high shear. Implications of shear-related failures are discussed for other Midwest projects that use megawatt-scale turbines. In addition, this paper discusses the importance of accurate shear estimates for project development.

  3. MODELLING THE VERTICAL WIND SPEED AND TURBULENCE INTENSITY PROFILES AT PROSPECTIVE OFFSHORE WIND FARM SITES

    E-Print Network [OSTI]

    Heinemann, Detlev

    in Europe will come from offshore sites. The first large offshore wind farms are currently being builtMODELLING THE VERTICAL WIND SPEED AND TURBULENCE INTENSITY PROFILES AT PROSPECTIVE OFFSHORE WIND for conditions important for offshore wind energy utilisation are compared and tested: Four models

  4. MODELLING THE VERTICAL WIND SPEED AND TURBULENCE INTENSITY PROFILES AT PROSPECTIVE OFFSHORE WIND FARM SITES

    E-Print Network [OSTI]

    Heinemann, Detlev

    MODELLING THE VERTICAL WIND SPEED AND TURBULENCE INTENSITY PROFILES AT PROSPECTIVE OFFSHORE WIND important for offshore wind energy utilisation are discussed and tested: Four models for the surface tested with data from the offshore field measurement Rdsand by extrapolating the measured 10 m wind

  5. IntroductionIntroduction The use of small scale vertical axis wind turbinesThe use of small scale vertical axis wind turbines

    E-Print Network [OSTI]

    Tullis, Stephen

    IntroductionIntroduction The use of small scale vertical axis wind turbinesThe use of small scale vertical axis wind turbines (VAWT) is being studied at McMaster University using(VAWT) is being studied at McMaster University using a prototype wind turbine provided bya prototype wind turbine provided

  6. Multi-Fidelity Uncertainty Quantification: Application to a Vertical Axis Wind Turbine Under an

    E-Print Network [OSTI]

    Alonso, Juan J.

    Multi-Fidelity Uncertainty Quantification: Application to a Vertical Axis Wind Turbine Under, USA Designing better vertical axis wind turbines (VAWTs) requires considering the uncertain wind cost. Low-fidelity tools are used extensively in the modeling of vertical axis wind turbines (VAWTs)3

  7. Ris-PhD-Report Accounting for the speed shear in wind

    E-Print Network [OSTI]

    Ris-PhD-Report Accounting for the speed shear in wind turbine power performance measurement Rozenn for the speed shear in wind turbine power performance measurement Division: Wind Energy Division Abstract: The power curve of a wind turbine is the primary char- acteristic of the machine as it is the basis

  8. TOWARDS VERTICAL VELOCITY AND HYDROMETEOR CLASSIFICATION FROM ARM WIND PROFILERS

    E-Print Network [OSTI]

    - 98CH10886 with the U.S. Department of Energy. The publisher by accepting the manuscriptTOWARDS VERTICAL VELOCITY AND HYDROMETEOR CLASSIFICATION FROM ARM WIND PROFILERS Scott Giangrande Department/Atmospheric Sciences Division Brookhaven National Laboratory U.S. Department of Energy Office

  9. EVALUATION OF MODELS FOR THE VERTICAL EXTRAPOLATION OF WIND SPEED MEASUREMENTS AT OFFSHORE SITES

    E-Print Network [OSTI]

    Heinemann, Detlev

    sites. The first large offshore wind farms are currently being built in several countries in Europe. For the planning of offshore wind farms the vertical wind speed profile is needed for two main reasons: WindEVALUATION OF MODELS FOR THE VERTICAL EXTRAPOLATION OF WIND SPEED MEASUREMENTS AT OFFSHORE SITES

  10. Experimental investigation of the performance of a diffuser-augmented vertical axis wind turbine

    E-Print Network [OSTI]

    Victoria, University of

    Experimental investigation of the performance of a diffuser- augmented vertical axis wind turbine Experimental investigation of the performance of a diffuser-augmented vertical axis wind turbine by Arash The performance of a vertical axis wind turbine with and without a diffuser was studied using direct force

  11. Performance Testing of a Small Vertical-Axis Wind Turbine , S. Tullis2

    E-Print Network [OSTI]

    Tullis, Stephen

    Performance Testing of a Small Vertical-Axis Wind Turbine R. Bravo1 , S. Tullis2 , S. Ziada3 of electric production [1]. Although most performance testing for small-scale wind turbines is conducted vertical-axis wind turbines (VAWT) in urban settings, full-scale wind tunnel testing of a prototype 3.5 k

  12. Pitch Error and Shear Web Disbond Detection on Wind Turbine Blades...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    American Institute of Aeronautics and Astronautics 1 Pitch Error and Shear Web Disbond Detection on Wind Turbine Blades for Offshore Structural Health and Prognostics Management...

  13. Wind Shear and Turbulence Profiles at Elevated Heights: Great Lakes and Midwest Sites (Poster)

    SciTech Connect (OSTI)

    Elliott, D.; Schwartz, M.; Scott, G.

    2009-05-01T23:59:59.000Z

    Analyzed wind resource characteristics at elevated heights (50 m-200+m) incuding shear and turbulence profiles for some areas of the Great Lakes and M idwest sites.

  14. Vertical-axis wind turbines -- The current status of an old technology

    SciTech Connect (OSTI)

    Berg, D.E.

    1996-12-31T23:59:59.000Z

    Vertical-axis wind turbine technology is not well understood, even though the earliest wind machines rotated about a vertical axis. The operating environment of a vertical-axis wind turbine is quite complex, but detailed analysis capabilities have been developed and verified over the last 30 years. Although vertical-axis technology has not been widely commercialized, it exhibits both advantages and disadvantages compared to horizontal-axis technology, and in some applications, it appears to offer significant advantages.

  15. Inferring Propagation Direction of Nonlinear Internal Waves in a Vertically Sheared Background Flow

    E-Print Network [OSTI]

    Kelley, Dan

    Inferring Propagation Direction of Nonlinear Internal Waves in a Vertically Sheared Background Flow are resistant to heaving. The beamwise method provides accurate predictions of wave propagation angle for cases 2005). Determining the wave propagation di- rection, so that one may in turn identify potential lo

  16. A Low Order Model for Vertical Axis Wind Turbines Isaac M. Asher

    E-Print Network [OSTI]

    Peraire, Jaime

    A Low Order Model for Vertical Axis Wind Turbines Isaac M. Asher , Mark Drela and Jaime Peraire and performance prediction of vertical axis wind turbines is presented. The model uses a 2D hybrid dynamic vortex perpendicular. z perpendicular to the plane (spanwise direction). I. Introduction Darrieus-type vertical axis

  17. Vibration Analysis of a Vertical Axis Wind Turbine Blade , S.Tullis 2

    E-Print Network [OSTI]

    Tullis, Stephen

    Vibration Analysis of a Vertical Axis Wind Turbine Blade K. Mc Laren 1 , S.Tullis 2 and S.Ziada 3 1 vibration source of a small-scale vertical axis wind turbine currently undergoing field-testing. The turbine at a blade-tip speed ratio (the ratio of the blade rotational velocity to the ambient wind velocity) of 1

  18. Blade Offset and Pitch Effects on a High Solidity Vertical Axis Wind Turbine

    E-Print Network [OSTI]

    Tullis, Stephen

    Blade Offset and Pitch Effects on a High Solidity Vertical Axis Wind Turbine Andrzej J. Fiedler ABSTRACT A high solidity, small scale, 2.5m diameter by 3m high Vertical Axis Wind Turbine (VAWT in an open-air wind tunnel facility to investigate the effects of preset toe-in and toe-out turbine blade

  19. Importance of wind conditions, fetch, and water levels on wave-generated shear stresses in shallow intertidal basins

    E-Print Network [OSTI]

    Fagherazzi, Sergio

    Importance of wind conditions, fetch, and water levels on wave-generated shear stresses in shallow, and wind direction on water depth, fetch, and the resulting wave-generated shear stresses. We identify four. Wiberg (2009), Importance of wind conditions, fetch, and water levels on wave-generated shear stresses

  20. Design and Test of a Vertical-Axis Wind Turbine with Pitch Control J. J. Miau1,a

    E-Print Network [OSTI]

    Leu, Tzong-Shyng "Jeremy"

    Design and Test of a Vertical-Axis Wind Turbine with Pitch Control J. J. Miau1,a , S. Y. Liang2 , R, USA a jjmiau@mail.ncku.edu.tw Keywords: vertical-axis wind turbine, pitch control, wind of a small vertical-axis wind turbine. Benefits gained can be shown by the experimental and numerical results

  1. Potential order-of-magnitude enhancement of wind farm power density via counter-rotating vertical-axis wind

    E-Print Network [OSTI]

    Dabiri, John O.

    Potential order-of-magnitude enhancement of wind farm power density via counter-rotating vertical an alternative approach to wind farming that has the potential to concurrently reduce the cost, size-axis wind turbine arrays John O. Dabiria) Graduate Aeronautical Laboratories and Bioengineering, California

  2. Influences of offshore environmental conditions on wind shear profile parameters in Nantucket Sound

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Influences of offshore environmental conditions on wind shear profile parameters in Nantucket Sound@ecs.umass.edu ABSTRACT Simultaneous wind resource and oceanographic data are available from an offshore monitoring tower how oceanographic data can be used to aid offshore wind resource assessment evaluations. This study

  3. CFD Simulation of Dynamic Thrust and Radial Forces on a Vertical Axis Wind Turbine Blade

    E-Print Network [OSTI]

    Tullis, Stephen

    CFD Simulation of Dynamic Thrust and Radial Forces on a Vertical Axis Wind Turbine Blade K. Mc vibration source of a small scale vertical axis wind turbine. The dynamic loading on the blades of the turbine, as they rotate about the central shaft and travel through a range of relative angles of attack

  4. Use of a Vertical Vorticity Equation in Variational Dual-Doppler Wind Analysis ALAN SHAPIRO

    E-Print Network [OSTI]

    Gao, Jidong

    is explored. The analysis winds are obtained by minimizing a cost function accounting for the discrepanciesUse of a Vertical Vorticity Equation in Variational Dual-Doppler Wind Analysis ALAN SHAPIRO School equation in a weak-constraint (least squares error) variational dual-Doppler wind analysis procedure

  5. EVALUATION OF MODELS FOR THE VERTICAL EXTRAPOLATION OF WIND SPEED MEASUREMENTS AT OFFSHORE SITES

    E-Print Network [OSTI]

    Heinemann, Detlev

    will come from offshore sites. The first large offshore wind farms are currently being built in severalEVALUATION OF MODELS FOR THE VERTICAL EXTRAPOLATION OF WIND SPEED MEASUREMENTS AT OFFSHORE SITES important for offshore wind energy utilisation are discussed and tested: Four models for the surface

  6. THE DEPENDENCE OF MAGNETIC RECONNECTION ON PLASMA {beta} AND MAGNETIC SHEAR: EVIDENCE FROM SOLAR WIND OBSERVATIONS

    SciTech Connect (OSTI)

    Phan, T. D.; Pasma, C.; Oeieroset, M.; Larson, D.; Lin, R. P.; Davis, M. S. [SSL, University of California, Berkeley, CA 94720 (United States); Gosling, J. T. [University of Colorado, Boulder, CO (United States); Paschmann, G. [MPE, Garching (Germany); Drake, J. F., E-mail: phan@ssl.berkeley.ed [University of Maryland, College Park, MD (United States)

    2010-08-20T23:59:59.000Z

    We address the conditions for the onset of magnetic reconnection based on a survey of 197 reconnection events in solar wind current sheets observed by the Wind spacecraft. We report the first observational evidence for the dependence of the occurrence of reconnection on a combination of the magnetic field shear angle, {theta}, across the current sheet and the difference in the plasma {beta} values on the two sides of the current sheet, {Delta}{beta}. For low {Delta}{beta}, reconnection occurred for both low and high magnetic shears, whereas only large magnetic shear events were observed for large {Delta}{beta}: Events with shears as low as 11{sup 0} were observed for {Delta}{beta} < 0.1, but for {Delta}{beta} > 1.5 only events with {theta} > 100{sup 0} were detected. Our observations are in quantitative agreement with a theoretical prediction that reconnection is suppressed in high {beta} plasmas at low magnetic shears due to super-Alfvenic drift of the X-line caused by plasma pressure gradients across the current sheet. The magnetic shear-{Delta}{beta} dependence could account for the high occurrence rate of reconnection observed in current sheets embedded within interplanetary coronal mass ejections, compared to those in the ambient solar wind. It would also suggest that reconnection could occur at a substantially higher rate in solar wind current sheets closer to the Sun than at 1 AU and thus may play an important role in the generation and heating of the solar wind.

  7. A Summary of Convective-Core Vertical Velocity Properties Using ARM UHF Wind Profilers in Oklahoma

    E-Print Network [OSTI]

    Ohta, Shigemi

    A Summary of Convective-Core Vertical Velocity Properties Using ARM UHF Wind Profilers in Oklahoma Sciences Division, Argonne National Laboratory, Argonne, Illinois # University of Oklahoma, Norman, Oklahoma @ Bureau of Meteorology, Melbourne, Victoria, Australia & Cooperative Institute for Research

  8. Order-of-magnitude enhancement of wind farm power density via counter-rotating vertical-axis wind turbine arrays

    E-Print Network [OSTI]

    Dabiri, John O

    2010-01-01T23:59:59.000Z

    Modern wind farms require significant land resources to separate each wind turbine from the adjacent turbine wakes. These aerodynamic constraints limit the amount of power that can be extracted from a given wind farm footprint. We conducted full-scale field tests of vertical-axis wind turbines in counter-rotating configurations under natural wind conditions. Whereas wind farms consisting of propeller-style turbines produce 2 to 3 watts of power per square meter of land area, these field tests indicate that power densities approaching 100 W m^-2 can be achieved by arranging vertical-axis wind turbines in layouts that enable them to extract energy from adjacent wakes. In addition, we calculated that the global wind resource available to 10-m tall turbines based on the present approach is approximately 225 trillion watts (TW), which significantly exceeds the global wind resource available to 80-m tall, propeller-style wind turbines, approximately 75 TW. This improvement is due to the closer spacing that can be a...

  9. average wind shear: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by uncompensated voids. Maria Mattsson; Teppo Mattsson 2010-07-17 7 Probabilistic Wind Speed Forecasting using Ensembles and Bayesian Model Averaging Mathematics Websites Summary:...

  10. Test plan for the 34 meter vertical axis wind turbine test bed located at Bushland, Texas

    SciTech Connect (OSTI)

    Stephenson, W.A.

    1986-12-01T23:59:59.000Z

    A plan is presented for the testing and evaluation of a new 500 kw vertical axis wind turbine test bed. The plan starts with the initial measurements made during construction, proceeds through evaluation of the design, the development of control methods, and finally to the test bed phase where new concepts are evaluated and in-depth studies are performed.

  11. Simulation of a STOL airlifter in wind shear, using total energy and glideslope angular error methods for glidepath control

    E-Print Network [OSTI]

    Johnson, Eric William

    1988-01-01T23:59:59.000Z

    SIMULATION OF A STOL AIRLIFTER IN WIND SHEAR, USING TOTAL ENERGY AND GLIDESLOPE ANGULAR ERROR METHODS FOR GLIDEPATH CONTROL A Thesis by ERIC WILLIAM JOHNSON Submitted to the Graduate College of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE May 1988 Major Subject: Aerospace Engineering SIMULATION OF A STOL AIRLIFTER IN WIND SHEAR, USING TOTAL ENERGY AND GLIDESLOPE ANGULAR ERROR METHODS FOR GLIDEPATH CONTROL A Thesis by ERIC WILLIAM JOHNSON...

  12. Fish schooling as a basis for vertical axis wind turbine farm design

    E-Print Network [OSTI]

    Whittlesey, Robert W; Dabiri, John O

    2010-01-01T23:59:59.000Z

    Most wind farms consist of horizontal axis wind turbines (HAWTs) due to the high power coefficient (mechanical power output divided by the power of the free-stream air through the turbine cross-sectional area) of an isolated turbine. However when in close proximity to neighbouring turbines, HAWTs suffer from a reduced power coefficient. In contrast, previous research on vertical axis wind turbines (VAWTs) suggests that closely-spaced VAWTs may experience only small decreases (or even increases) in an individual turbine's power coefficient when placed in close proximity to neighbours, thus yielding much higher power outputs for a given area of land. A potential flow model of inter-VAWT interactions is developed to investigate the effect of changes in VAWT spatial arrangement on the array performance coefficient, which compares the expected average power coefficient of turbines in an array to a spatially-isolated turbine. A geometric arrangement based on the configuration of shed vortices in the wake of schooli...

  13. Mean vertical wind in the mesosphere-lower thermosphere region (80120 km) deduced from the WINDII observations

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    thermosphere. It is a remote-sensing instrument providing the hori- zontal wind components. In this study at the equator and tropics. Zonal Coriolis acceleration and adiabatic heating and cooling rate associated subsidence heating and adiabatic cool- ing. Thus the knowledge of meridional and vertical winds provides

  14. Satellite detection of severe convective storms by their retrieved vertical profiles of cloud particle effective radius and

    E-Print Network [OSTI]

    Daniel, Rosenfeld

    and intense gust fronts. Wind shear provides additional energy for sustaining the dynamics of tornadic. The respective roles of convective potential available energy (CAPE) and the 06 km vertical wind shear have been Kelman,1 and Daniel T. Lindsey3 Received 1 March 2007; revised 7 October 2007; accepted 16 November 2007

  15. Customized airfoils and their impact on VAWT (Vertical-Axis Wind Turbine) cost of energy

    SciTech Connect (OSTI)

    Berg, D.E.

    1990-01-01T23:59:59.000Z

    Sandia National Laboratories has developed a family of airfoils specifically designed for use in the equatorial portion of a Vertical-Axis Wind Turbine (VAWT) blade. An airfoil of that family has been incorporated into the rotor blades of the DOE/Sandia 34-m diameter VAWT Test Bed. The airfoil and rotor design process is reviewed. Comparisons with data recently acquired from flow visualization tests and from the DOE/Sandia 34-m diameter VAWT Test Bed illustrate the success that was achieved in the design. The economic optimization model used in the design is described and used to evaluate the effect of modifications to the current Test Bed blade. 1 tab., 11 figs., 13 refs.

  16. Analysis of wind shear models and trends in different terrains M.L. Ray *, A.L. Rogers, and J.G. McGowan

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    of characterizing the wind shear at a given site for a utility scale wind turbine cannot be overemphasized. It is important to understand because it directly impacts the power available at different wind turbine hub heights and strongly influences the cyclic loading on the turbine blades. For decades, academic

  17. Medium-solidity Vertical Axis Wind Turbines for use in Urban Environments S. Tullis, A. Fiedler, K. McLaren, S. Ziada

    E-Print Network [OSTI]

    Tullis, Stephen

    high turbine solidities (the ratio of total blade area to turbine swept area), which result in lowMedium-solidity Vertical Axis Wind Turbines for use in Urban Environments S. Tullis, A. Fiedler, K Vertical axis wind turbines are currently experiencing a renewed interest in small- scale applications

  18. Importance of thermal effects and sea surface roughness for wind resource and wind shear at offshore sites

    E-Print Network [OSTI]

    Heinemann, Detlev

    at offshore sites Bernhard Lange*, Sren Larsen# , Jrgen Hjstrup# , Rebecca Barthelmie# *ForWind - Centre of offshore wind power utilisation depends on the favourable wind conditions offshore as compared to sites for this flow. It's applicability for wind power prediction at offshore sites is investigated using data from

  19. Large-eddy simulation of a wind turbine wake in turbulent

    E-Print Network [OSTI]

    Firestone, Jeremy

    Large-eddy simulation of a wind turbine wake in turbulent neutral shear flow Shengbai Xie, Cristina-similar velocity profile existing in the wake after a wind turbine? How does the wake influence the vertical? Motivation #12; Large-eddy simulation for turbulent flow field Actuator-line model for wind turbine ui

  20. Solar-wind turbulence and shear: a superposed-epoch analysis of corotating interaction regions at 1 AU

    SciTech Connect (OSTI)

    Borovsky, Joseph E [Los Alamos National Laboratory; Denton, Michael H [LANCASTER UNIV.

    2009-01-01T23:59:59.000Z

    A superposed-epoch analysis of ACE and OMNI2 measurements is performed on 27 corotating interaction regions (CIRs) in 2003-2008, with the zero epoch taken to be the stream interface as determined by the maximum of the plasma vorticity. The structure of CIRs is investigated. When the flow measurements are rotated into the local-Parker-spiral coordinate system the shear is seen to be abrupt and intense, with vorticities on the order of 10{sup -5}-10{sup -4} sec{sup -1}. Converging flows perpendicular to the stream interface are seen in the local-Parker-spiral coordinate system and about half of the CIRs show a layer of divergent rebound flow away from the stream interface. Arguments indicate that any spreading of turbulence away from the region where it is produced is limited to about 10{sup 6} km, which is very small compared with the thickness of a CrR. Analysis of the turbulence across the CrRs is performed. When possible, the effects of discontinuities are removed from the data. Fluctuation amplitudes, the Alfvenicity, and the level of Alfvenic correlations all vary smoothly across the CrR. The Alfven ratio exhibits a decrease at the shear zone of the stream interface. Fourier analysis of 4.5-hr subintervals of ACE data is performed and the results are superposed averaged as an ensemble of realizations. The spectral slopes of the velocity, magnetic-field, and total-energy fluctuations vary smoothly across the CIR. The total-energy spectral slope is {approx} 3/2 in the slow and fast wind and in the CrRs. Analysis of the Elsasser inward-outward fluctuations shows a smooth transition across the CrR from an inward-outward balance in the slow wind to an outward dominance in the fast wind. A number of signatures of turbulence driving at the shear zone are sought (entropy change, turbulence amplitude, Alfvenicity, Alfven ratio, spectral slopes, in-out nature): none show evidence of driving of turbulence by shear.

  1. Design and construction of vertical axis wind turbines using dual-layer vacuum-forming

    E-Print Network [OSTI]

    Carper, Christopher T

    2010-01-01T23:59:59.000Z

    How does one visualize wind? Is it the way trees bend in a strong gust or the way smoke is carried in a breeze? What if wind could be visualized using design, technology, and light? This thesis documents the design of a ...

  2. The vertical structure of Jupiter's equatorial zonal wind above the cloud deck, derived using mesoscale gravity waves

    E-Print Network [OSTI]

    Watkins, C; 10.1029/2012GL054368

    2013-01-01T23:59:59.000Z

    Data from the Galileo Probe, collected during its descent into Jupiter's atmosphere, is used to obtain a vertical profile of the zonal wind from $\\mathbf{\\sim 0.5}$ bar (upper troposphere) to $\\mathbf{\\sim 0.1\\, \\mu{bar}}$ (lower thermosphere) at the probe entry site. This is accomplished by constructing a map of gravity wave Lomb-Scargle periodograms as a function of altitude. The profile obtained from the map indicates that the wind speed above the visible cloud deck increases with height to $\\mathbf{\\sim 150}$ m\\,s$\\mathbf{^{-1}}$ and then levels off at this value over a broad altitude range. The location of the turbopause, as a region of wide wave spectrum, is also identified from the map. In addition, a cross-equatorial oscillation of a jet, which has previously been linked to the quasi-quadrennial oscillation in the stratosphere, is suggested by the profile.

  3. July 7, 2008 Vertical temperature profile and mesospheric winds retrieval on

    E-Print Network [OSTI]

    ), its abundance vertical profile has been studied in order to understand the recycling of CO into CO2 range (Billebaud et al. 1992, 1998). These observations led to the conclusion that CO has a rel- atively

  4. Generation of large-scale winds in horizontally anisotropic convection

    E-Print Network [OSTI]

    von Hardenberg, J; Provenzale, A; Spiegel, E A

    2015-01-01T23:59:59.000Z

    We simulate three-dimensional, horizontally periodic Rayleigh-B\\'enard convection between free-slip horizontal plates, rotating about a horizontal axis. When both the temperature difference between the plates and the rotation rate are sufficiently large, a strong horizontal wind is generated that is perpendicular to both the rotation vector and the gravity vector. The wind is turbulent, large-scale, and vertically sheared. Horizontal anisotropy, engendered here by rotation, appears necessary for such wind generation. Most of the kinetic energy of the flow resides in the wind, and the vertical turbulent heat flux is much lower on average than when there is no wind.

  5. Sandia Energy - Sandia Vertical-Axis Wind-Turbine Research Presented...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    study of aeroelastic stability of very large VAWTs that used an enhanced version of the Offshore Wind Energy Simu-lation Toolkit for VAWTs. Multiple-megawatt VAWT design...

  6. American Institute of Aeronautics and Astronautics Wind Shear over Forested Areas

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    . Rogers* , James F. Manwell and Anthony F. Ellis Renewable Energy Research Laboratory, University The Renewable Energy Research Laboratory at the University of Massachusetts has been collecting data = wind speed at reference measurement height z = measurement height above ground zref = reference

  7. Radiation and porosity effects on the magnetohydrodynamic flow near a vertical plate that applies shear stress to the fluid with mass diffusion

    SciTech Connect (OSTI)

    Khan, Arshad; Khan, Ilyas; Shafie, Sharidan [Faculty of Science, Universiti Teknologi Malaysia (Malaysia)

    2014-06-19T23:59:59.000Z

    This article studies the radiation and porosity effects on the unsteady magnetohydrodynamic free convection flow of an incompressible viscous fluid past an infinite vertical plate that applies a shear stress f(t) to the fluid. Conjugate phenomenon of heat and mass transfer is considered. General solutions of the dimensionless governing equations along with imposed initial and boundary conditions are determined using Laplace transform technique. The solution of velocity is presented as a sum of mechanical and non mechanical parts. These solutions satisfy all imposed initial and boundary conditions and reduce to some known solutions from the literature as special cases. The results for embedded parameters are shown graphically. Numerical results for skin friction, Nusselt number and Sherwood number are computed and presented in tabular forms.

  8. Low-Maintenance Wind Power System

    E-Print Network [OSTI]

    Rasson, Joseph E

    2010-01-01T23:59:59.000Z

    Improved Vertical Axis Wind Turbine and Aerodynamic ControlDarrieus Vertical Axis Wind Turbines and Aerodynamic Control

  9. Reexamining the Vertical Structure of Tangential Winds in Tropical Cyclones: Observations and Theory

    E-Print Network [OSTI]

    Nolan, David S.

    theory are governed by the dual constraints of thermal wind balance and slantwise moist neutrality- fluences their dynamics in several ways, notably by al- tering the efficiency with which unbalanced heat energy is converted to balanced mean kinetic energy (Hack and Schubert 1986; Nolan et al. 2007

  10. A total energy sensor for glidepath and speed control of a tactical airlifter in wind shear

    E-Print Network [OSTI]

    Anderson, Thomas Edward

    1987-01-01T23:59:59.000Z

    and moments are defined in stability-axes where X, is along the initial aircraft velocity vector (Fig. 2). During the simulation, the velocity vector V snd angle a vary and hence X, will no longer remain along V. Therefore, Lockheed resolved the data..., notation, and sign convention used throughout this research. Xb V, X, HORIZONTAL Z b z a VERTICAL Fig. 2 Aircraft Stability Axes X Harlzaatal x, Fx F? Z Yartical Fz Fig. 3 Aircraft Body Axes The body-fixed equations of rnol. ion (derived...

  11. VELOCITY-SHEAR-INDUCED MODE COUPLING IN THE SOLAR ATMOSPHERE AND SOLAR WIND: IMPLICATIONS FOR PLASMA HEATING AND MHD TURBULENCE

    SciTech Connect (OSTI)

    Hollweg, Joseph V.; Chandran, Benjamin D. G. [Space Science Center, Morse Hall, University of New Hampshire, Durham, NH 03824 (United States); Kaghashvili, Edisher Kh., E-mail: joe.hollweg@unh.edu, E-mail: ekaghash@aer.com, E-mail: benjamin.chandran@unh.edu [Atmospheric and Environmental Research, A Verisk Analytics Company, 131 Hartwell Avenue, Lexington, MA 02421 (United States)

    2013-06-01T23:59:59.000Z

    We analytically consider how velocity shear in the corona and solar wind can cause an initial Alfven wave to drive up other propagating signals. The process is similar to the familiar coupling into other modes induced by non-WKB refraction in an inhomogeneous plasma, except here the refraction is a consequence of velocity shear. We limit our discussion to a low-beta plasma, and ignore couplings into signals resembling the slow mode. If the initial Alfven wave is propagating nearly parallel to the background magnetic field, then the induced signals are mainly a forward-going (i.e., propagating in the same sense as the original Alfven wave) fast mode, and a driven signal propagating like a forward-going Alfven wave but polarized like the fast mode; both signals are compressive and subject to damping by the Landau resonance. For an initial Alfven wave propagating obliquely with respect to the magnetic field, the induced signals are mainly forward- and backward-going fast modes, and a driven signal propagating like a forward-going Alfven wave but polarized like the fast mode; these signals are all compressive and subject to damping by the Landau resonance. A backward-going Alfven wave, thought to be important in the development of MHD turbulence, is also produced, but it is very weak. However, we suggest that for oblique propagation of the initial Alfven wave the induced fast-polarized signal propagating like a forward-going Alfven wave may interact coherently with the initial Alfven wave and distort it at a strong-turbulence-like rate.

  12. Extracting and Applying SV-SV Shear Modes from Vertical Vibrator Data Across Geothermal Prospects Final Report

    SciTech Connect (OSTI)

    Hardage, Bob [Bureau of Economic Geology] [Bureau of Economic Geology

    2013-07-01T23:59:59.000Z

    This 3-year project was terminated at the end of Year 1 because the DOE Geothermal project-evaluation committee decided one Milestone was not met and also concluded that our technology would not be successful. The Review Panel recommended a ?no-go? decision be implemented by DOE. The Principal Investigator and his research team disagreed with the conclusions reached by the DOE evaluation committee and wrote a scientifically based rebuttal to the erroneous claims made by the evaluators. We were not told if our arguments were presented to the people who evaluated our work and made the ?no-go? decision. Whatever the case regarding the information we supplied in rebuttal, we received an official letter from Laura Merrick, Contracting Officer at the Golden Field Office, dated June 11, 2013 in which we were informed that project funding would cease and instructed us to prepare a final report before September 5, 2013. In spite of the rebuttal arguments we presented to DOE, this official letter repeated the conclusions of the Review Panel that we had already proven to be incorrect. This is the final report that we are expected to deliver. The theme of this report will be another rebuttal of the technical deficiencies claimed by the DOE Geothermal Review Panel about the value and accomplishments of the work we did in Phase 1 of the project. The material in this report will present images made from direct-S modes produced by vertical-force sources using the software and research findings we developed in Phase 1 that the DOE Review Panel said would not be successful. We made these images in great haste when we were informed that DOE Geothermal rejected our rebuttal arguments and still regarded our technical work to be substandard. We thought it was more important to respond quickly rather than to take additional time to create better quality images than what we present in this Final Report.

  13. Impact of Dynamics and Atmospheric State on Cloud Vertical Overlap CATHERINE M. NAUD

    E-Print Network [OSTI]

    ;(United Kingdom) during three winter months, Hogan and Illingworth (2000) found that cloudy sublayers be influenced by large-scale vertical motion, wind shear, or convection. Observations from the U.S. Department of Energy Atmospheric Radiation Measurement program ground- based radars and lidars in midlatitude

  14. Optimization of a Savonius rotor vertical-axis wind turbine for use in water pumping systems in rural Honduras

    E-Print Network [OSTI]

    Zingman, Aron (Aron Olesen)

    2007-01-01T23:59:59.000Z

    The D-lab Honduras team designed and constructed a wind-powered water pump in rural Honduras during IAP 2007. Currently, the system does not work under its own power and water must be pumped by hand. This thesis seeks to ...

  15. Sandia National Laboratories: Offshore Wind Energy Simulation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Offshore Wind Energy Simulation Toolkit Sandia Vertical-Axis Wind-Turbine Research Presented at Science of Making Torque from Wind Conference On July 8, 2014, in Computational...

  16. An experimental and numerical study of wind turbine seismic behavior

    E-Print Network [OSTI]

    Prowell, I.

    2011-01-01T23:59:59.000Z

    studied were vertical axis wind turbines, which are nottesting of vertical axis wind turbines (VAWT). For example,vertical axis turbines (VAWTs). Gradually, as the industry matured, most design concepts standardized on horizontal axis wind turbines (

  17. A Comparison of Platform Options for Deep-water Floating Offshore Vertical Axis Wind Turbines: An Initial Study.

    SciTech Connect (OSTI)

    Bull, Diana L; Fowler, Matthew; Goupee, Andrew

    2014-08-01T23:59:59.000Z

    This analysis utilizes a 5 - MW VAWT topside design envelope created by Sandia National Laborator ies to compare floating platform options fo r each turbine in the design space. The platform designs are based on two existing designs, the OC3 Hywind spar - buoy and Principal Power's WindFloat semi - submersible. These designs are scaled using Froude - scaling relationships to determine an appropriately sized spar - buoy and semi - submersible design for each topside. Both the physical size of the required platform as well as mooring configurations are considered. Results are compared with a comparable 5 - MW HAWT in order to identify potential differences in the platform and mooring sizing between the VAWT and HAWT . The study shows that there is potential for cost savings due to reduced platform size requirements for the VAWT.

  18. Influence of refraction on wind turbine noise

    E-Print Network [OSTI]

    Makarewicz, Rufin

    2013-01-01T23:59:59.000Z

    A semi-empirical method is applied to calculate the time-average sound level of wind turbine noise generation and propagation. Both are affected by wind shear refraction. Under upwind conditions the partially ensonified zone separates the fully ensonified zone (close to the turbine) and the shadow zone (far away from the turbine). Refraction is described in terms of the wind speed linear profile fitted to the power law profile. The rotating blades are treated as a two-dimensional circular source in the vertical plane. Inside the partially ensonified zone the effective A-weighted sound power decreases to zero when the receiver moves from the turbine toward the shadow zone. The presented results would be useful in practical applications to give a quick estimate of the effect of refraction on wind turbine noise.

  19. american wind interest: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Aeronautics and Astronautics Aeroelastic Modeling of Large Offshore Vertical-axis Wind Energy Storage, Conversion and Utilization Websites Summary: Vertical-axis Wind...

  20. Strong wind forcing of the ocean

    E-Print Network [OSTI]

    Zedler, Sarah E.

    2007-01-01T23:59:59.000Z

    latitudes, tropical storm force winds may be sufficient tolocation where hurricane force winds arrive at the region.shear data. The wind stress used to force these model was

  1. Low-Maintenance Wind Power System

    E-Print Network [OSTI]

    Rasson, Joseph E

    2010-01-01T23:59:59.000Z

    with widespread adoption of wind energy. The project hasProject: Low-Maintenance Wind Power System Summary of theImproved Vertical Axis Wind Turbine and Aerodynamic Control

  2. Sandia National Laboratories: horizontal-axis wind turbine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    horizontal-axis wind turbine Study Compares Floating-Platform Options for Offshore Vertical-Axis Wind Turbines On December 3, 2014, in Energy, News, News & Events, Partnership,...

  3. LiDAR observations of offshore winds at future wind turbine operating heights

    E-Print Network [OSTI]

    at the Horns Rev offshore wind farm. The influence of atmospheric stability on the surface layer wind shear of offshore wind farms in the coming years. In contrast with the situation over land, the knowledge turbine manufacturers and wind farm developers, although the offshore environment represents other

  4. Theoretical Developments and Practical Aspects of Dynamic Systems in Wind Energy Applications

    E-Print Network [OSTI]

    Owens, Brian C

    2013-11-07T23:59:59.000Z

    for offshore wind technology, however, are significant obstacles that need to be overcome to make offshore wind a viable option. Vertical-axis wind turbines (VAWTs) are potentially ideal candidates for large offshore wind energy applications, and may...

  5. TORSIONAL SHEAR FLOW OF LONG PITCH CHOLESTERIC MESOPHASES IN ELECTRIC AND MAGNETIC FIELDS

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    TORSIONAL SHEAR FLOW OF LONG PITCH CHOLESTERIC MESOPHASES IN ELECTRIC AND MAGNETIC FIELDS J. WAHL Physikalisches Institut der Universitat, D44 Munster, Germany Abstract. -- Torsional shear [1] and vertical. -- In vertical electric (or magnetic) fields thin cholesteric layers with homeotropic boun- daries and small

  6. Wind information derived from hot air

    E-Print Network [OSTI]

    Haak, Hein

    Wind information derived from hot air balloon flights for use in short term wind forecasts E Introduction/Motivation Hot air balloons as wind measuring device Setup of nested HIRLAM models Results Three, The Nertherlands #12;Hot air balloon Displacement/time unit = wind speed Vertical resolution 30m Inertia (500 kg

  7. 7, 1275112779, 2007 Vertical distribution

    E-Print Network [OSTI]

    Boyer, Edmond

    . In an urban area there are many buildings, which cause large inhomogeneities in the energy and wind profilesACPD 7, 1275112779, 2007 Vertical distribution of O3 and VOCs in Mexico City E. Velasco et al of Mexico City E. Velasco1,2 , C. Marquez3 , E. Bueno3 , R. M. Bernabe3 , A. Sanchez3 , O. Fentanes 3 , H

  8. Optimization of a Small Passive Wind Turbine Generator with Multiobjective Genetic Algorithms

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    : Multiobjective Optimization, Genetic Algorithms, Wind Energy, Vertical Axis Wind Turbine hal-00763673,version1 #12;2.2. The Wind Turbine Characteristics A Savonius Vertical Axis Wind Turbine of radius R = 0.5 mOptimization of a Small Passive Wind Turbine Generator with Multiobjective Genetic Algorithms A

  9. Multi-hazard Reliability Assessment of Offshore Wind Turbines

    E-Print Network [OSTI]

    Mardfekri Rastehkenari, Maryam 1981-

    2012-12-04T23:59:59.000Z

    A probabilistic framework is developed to assess the structural reliability of offshore wind turbines. Probabilistic models are developed to predict the deformation, shear force and bending moment demands on the support structure of wind turbines...

  10. Multi-hazard Reliability Assessment of Offshore Wind Turbines

    E-Print Network [OSTI]

    Mardfekri Rastehkenari, Maryam 1981-

    2012-12-04T23:59:59.000Z

    A probabilistic framework is developed to assess the structural reliability of offshore wind turbines. Probabilistic models are developed to predict the deformation, shear force and bending moment demands on the support structure of wind turbines...

  11. Modelling of offshore wind turbine wakes with the wind farm program FLaP

    E-Print Network [OSTI]

    Heinemann, Detlev

    Modelling of offshore wind turbine wakes with the wind farm program FLaP Bernhard Lange(1) , Hans from the Danish offshore wind farm Vindeby. Vertical wake profiles and mean turbulence intensities are not modelled satisfactorily. Keywords: Offshore, wind farm, wake model, Vindeby, turbulence intensity

  12. Control system for a vertical axis windmill

    DOE Patents [OSTI]

    Brulle, Robert V. (St. Louis County, MO)

    1983-10-18T23:59:59.000Z

    A vertical axis windmill having a rotating structure is provided with a series of articulated vertical blades whose positions are controlled to maintain a constant RPM for the rotating structure, when wind speed is sufficient. A microprocessor controller is used to process information on wind speed, wind direction and RPM of the rotating structure to develop an electrical signal for establishing blade position. The preferred embodiment of the invention, when connected to a utility grid, is designed to generate 40 kilowatts of power when exposed to a 20 mile per hour wind. The control system for the windmill includes electrical blade actuators that modulate the blades of the rotating structure. Blade modulation controls the blade angle of attack, which in turn controls the RPM of the rotor. In the preferred embodiment, the microprocessor controller provides the operation logic and control functions. A wind speed sensor provides inputs to start or stop the windmill, and a wind direction sensor is used to keep the blade flip region at 90.degree. and 270.degree. to the wind. The control system is designed to maintain constant rotor RPM when wind speed is between 10 and 40 miles per hour.

  13. Wind Fins: Novel Lower-Cost Wind Power System

    SciTech Connect (OSTI)

    David C. Morris; Dr. Will D. Swearingen

    2007-10-08T23:59:59.000Z

    This project evaluated the technical feasibility of converting energy from the wind with a novel wind fin approach. This patent-pending technology has three major components: (1) a mast, (2) a vertical, hinged wind structure or fin, and (3) a power takeoff system. The wing structure responds to the wind with an oscillating motion, generating power. The overall project goal was to determine the basic technical feasibility of the wind fin technology. Specific objectives were the following: (1) to determine the wind energy-conversion performance of the wind fin and the degree to which its performance could be enhanced through basic design improvements; (2) to determine how best to design the wind fin system to survive extreme winds; (3) to determine the cost-effectiveness of the best wind fin designs compared to state-of-the-art wind turbines; and (4) to develop conclusions about the overall technical feasibility of the wind fin system. Project work involved extensive computer modeling, wind-tunnel testing with small models, and testing of bench-scale models in a wind tunnel and outdoors in the wind. This project determined that the wind fin approach is technically feasible and likely to be commercially viable. Project results suggest that this new technology has the potential to harvest wind energy at approximately half the system cost of wind turbines in the 10kW range. Overall, the project demonstrated that the wind fin technology has the potential to increase the economic viability of small wind-power generation. In addition, it has the potential to eliminate lethality to birds and bats, overcome public objections to the aesthetics of wind-power machines, and significantly expand wind-powers contribution to the national energy supply.

  14. Sandia Energy - Sandia and Partners Complete Phase I of a Vertical...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Partners Complete Phase I of a Vertical-Axis Deep-Water Offshore Turbine Study Home Renewable Energy Energy News Wind Energy News & Events Computational Modeling & Simulation...

  15. Analyzing the temporal variation of wind turbine responses using Gaussian Mixture Model and Gaussian Discriminant Analysis

    E-Print Network [OSTI]

    Stanford University

    such as loads, displacement, fatigue damages and power outputs. However, wind flow is a complex phenomenon Gaussian Discriminant Analysis, representative daytime and nocturnal wind turbine loads are compared, mean wind direction, turbulence intensity and power exponent quantifying the vertical profile

  16. Tornado type wind turbines

    DOE Patents [OSTI]

    Hsu, Cheng-Ting (Ames, IA)

    1984-01-01T23:59:59.000Z

    A tornado type wind turbine has a vertically disposed wind collecting tower with spaced apart inner and outer walls and a central bore. The upper end of the tower is open while the lower end of the structure is in communication with a wind intake chamber. An opening in the wind chamber is positioned over a turbine which is in driving communication with an electrical generator. An opening between the inner and outer walls at the lower end of the tower permits radially flowing air to enter the space between the inner and outer walls while a vertically disposed opening in the wind collecting tower permits tangentially flowing air to enter the central bore. A porous portion of the inner wall permits the radially flowing air to interact with the tangentially flowing air so as to create an intensified vortex flow which exits out of the top opening of the tower so as to create a low pressure core and thus draw air through the opening of the wind intake chamber so as to drive the turbine.

  17. Winding for linear pump

    DOE Patents [OSTI]

    Kliman, G.B.; Brynsvold, G.V.; Jahns, T.M.

    1989-08-22T23:59:59.000Z

    A winding and method of winding for a submersible linear pump for pumping liquid sodium are disclosed. The pump includes a stator having a central cylindrical duct preferably vertically aligned. The central vertical duct is surrounded by a system of coils in slots. These slots are interleaved with magnetic flux conducting elements, these magnetic flux conducting elements forming a continuous magnetic field conduction path along the stator. The central duct has placed therein a cylindrical magnetic conducting core, this core having a cylindrical diameter less than the diameter of the cylindrical duct. The core once placed to the duct defines a cylindrical interstitial pumping volume of the pump. This cylindrical interstitial pumping volume preferably defines an inlet at the bottom of the pump, and an outlet at the top of the pump. Pump operation occurs by static windings in the outer stator sequentially conveying toroidal fields from the pump inlet at the bottom of the pump to the pump outlet at the top of the pump. The winding apparatus and method of winding disclosed uses multiple slots per pole per phase with parallel winding legs on each phase equal to or less than the number of slots per pole per phase. The slot sequence per pole per phase is chosen to equalize the variations in flux density of the pump sodium as it passes into the pump at the pump inlet with little or no flux and acquires magnetic flux in passage through the pump to the pump outlet. 4 figs.

  18. Winding for linear pump

    DOE Patents [OSTI]

    Kliman, Gerald B. (Schenectady, NY); Brynsvold, Glen V. (San Jose, CA); Jahns, Thomas M. (Schenectady, NY)

    1989-01-01T23:59:59.000Z

    A winding and method of winding for a submersible linear pump for pumping liquid sodium is disclosed. The pump includes a stator having a central cylindrical duct preferably vertically aligned. The central vertical duct is surrounded by a system of coils in slots. These slots are interleaved with magnetic flux conducting elements, these magnetic flux conducting elements forming a continuous magnetic field conduction path along the stator. The central duct has placed therein a cylindrical magnetic conducting core, this core having a cylindrical diameter less than the diameter of the cylindrical duct. The core once placed to the duct defines a cylindrical interstitial pumping volume of the pump. This cylindrical interstitial pumping volume preferably defines an inlet at the bottom of the pump, and an outlet at the top of the pump. Pump operation occurs by static windings in the outer stator sequentially conveying toroidal fields from the pump inlet at the bottom of the pump to the pump outlet at the top of the pump. The winding apparatus and method of winding disclosed uses multiple slots per pole per phase with parallel winding legs on each phase equal to or less than the number of slots per pole per phase. The slot sequence per pole per phase is chosen to equalize the variations in flux density of the pump sodium as it passes into the pump at the pump inlet with little or no flux and acquires magnetic flux in passage through the pump to the pump outlet.

  19. Wind-Blown Sand: Threshold of Motion

    E-Print Network [OSTI]

    Swann, Christy Michelle

    2014-11-12T23:59:59.000Z

    ....................................................................................... 43 13 Bedload trap designed for this study .................................................................................. 45 14 Schematic of internal adjustable chimney adjusted to the height of the surface... predicting the threshold for wind-blown sand in natural environments are rooted in the original wind tunnel work of Bagnold (1936). He introduced an empirically-calibrated model of the threshold using shear velocity, 𝑢?: a height independent variable...

  20. Wind turbulence characterization for wind energy development

    SciTech Connect (OSTI)

    Wendell, L.L.; Gower, G.L.; Morris, V.R.; Tomich, S.D.

    1991-09-01T23:59:59.000Z

    As part of its support of the US Department of Energy's (DOE's) Federal Wind Energy Program, the Pacific Northwest Laboratory (PNL) has initiated an effort to work jointly with the wind energy community to characterize wind turbulence in a variety of complex terrains at existing or potential sites of wind turbine installation. Five turbulence characterization systems were assembled and installed at four sites in the Tehachapi Pass in California, and one in the Green Mountains near Manchester, Vermont. Data processing and analyses techniques were developed to allow observational analyses of the turbulent structure; this analysis complements the more traditional statistical and spectral analyses. Preliminary results of the observational analyses, in the rotating framework or a wind turbine blade, show that the turbulence at a site can have two major components: (1) engulfing eddies larger than the rotor, and (2) fluctuating shear due to eddies smaller than the rotor disk. Comparison of the time series depicting these quantities at two sites showed that the turbulence intensity (the commonly used descriptor of turbulence) did not adequately characterize the turbulence at these sites. 9 refs., 10 figs.,

  1. ATMOSPHERIC TURBULENCE MODELING AND IMPLICATIONS FOR WIND ENERGY

    E-Print Network [OSTI]

    Chow, Fotini Katopodes

    turbines off too early in high winds, or may risk severe damage to the rotors and blades by operating under Introduction Wind turbines sit at the very bottom of the at- mospheric boundary layer, where winds are highly turbulent, shear events are intermittent, and land- atmosphere interactions may be strong. Turbine hub

  2. WIND ENERGY Wind Energ. (2014)

    E-Print Network [OSTI]

    Peinke, Joachim

    2014-01-01T23:59:59.000Z

    loads from the wind inflow through rotor aerodynamics, drive train and power electronics is stillWIND ENERGY Wind Energ. (2014) Published online in Wiley Online Library (wileyonlinelibrary wind inflow conditions M. R. Luhur, J. Peinke, J. Schneemann and M. Wchter ForWind-Center for Wind

  3. 2009 ASME WIND ENERGY SYMPOSIUM Static and Fatigue Testing of Thick Adhesive Joints for

    E-Print Network [OSTI]

    1 2009 ASME WIND ENERGY SYMPOSIUM Static and Fatigue Testing of Thick Adhesive Joints for Wind as wind blade size has increased. Typical blade joints use paste adhesives several millimeters thick aircraft, which are also of relevance to wind blades in many instances. The strengths of lap-shear and many

  4. Session: Wind resources and site characterisation 2 (DW3.5) Track: Technical

    E-Print Network [OSTI]

    including wind shear, turbulence intensities etc., at potential wind turbine positions. - ApplicationSession: Wind resources and site characterisation 2 (DW3.5) Track: Technical THE BOLUND EXPERIMENT - A NEW DATASET OF LOCAL WIND CONDITIONS IN COMPLEX TERRAIN (abstract-ID: 357) Jeppe Johansen (Risø DTU

  5. Shear Unzipping of DNA

    E-Print Network [OSTI]

    Buddhapriya Chakrabarti; David R. Nelson

    2009-04-09T23:59:59.000Z

    We study theoretically the mechanical failure of a simple model of double stranded DNA under an applied shear. Starting from a more microscopic Hamiltonian that describes a sheared DNA, we arrive at a nonlinear generalization of a ladder model of shear unzipping proposed earlier by deGennes [deGennes P. G. C. R. Acad. Sci., Ser. IV; Phys., Astrophys. 2001, 1505]. Using this model and a combination of analytical and numerical methods, we study the DNA "unzipping" transition when the shearing force exceeds a critical threshold at zero temperature. We also explore the effects of sequence heterogeneity and finite temperature and discuss possible applications to determine the strength of colloidal nanoparticle assemblies functionalized by DNA.

  6. Bacteria in shear flow

    E-Print Network [OSTI]

    Marcos, Ph.D. Massachusetts Institute of Technology

    2011-01-01T23:59:59.000Z

    Bacteria are ubiquitous and play a critical role in many contexts. Their environment is nearly always dynamic due to the prevalence of fluid flow: creeping flow in soil, highly sheared flow in bodily conduits, and turbulent ...

  7. Magnetohydrodynamic Shearing Waves

    E-Print Network [OSTI]

    Bryan M. Johnson

    2007-02-12T23:59:59.000Z

    I consider the nonaxisymmetric linear theory of a rotating, isothermal magnetohydrodynamic (MHD) shear flow. The analysis is performed in the shearing box, a local model of a thin disk, using a decomposition in terms of shearing waves, i.e., plane waves in a frame comoving with the shear. These waves do not have a definite frequency as in a normal mode decomposition, and numerical integration of a coupled set of amplitude equations is required to characterize their time dependence. Their generic time dependence, however, is oscillatory with slowly-varying frequency and amplitude, and one can construct accurate analytical solutions by applying the Wentzel-Kramers-Brillouin method to the full set of amplitude equations. The solutions have the following properties: 1) Their accuracy increases with wavenumber, so that most perturbations that fit within the disk are well-approximated as modes with time-dependent frequencies and amplitudes. 2) They can be broadly classed as incompressive and compressive perturbations, the former including the nonaxisymmetric extension of magnetorotationally unstable modes, and the latter being the extension of fast and slow modes to a differentially-rotating medium. 3) Wave action is conserved, implying that their energy varies with frequency. 4) Their shear stress is proportional to the slope of their frequency, so that they transport angular momentum outward (inward) when their frequency increases (decreases). The complete set of solutions constitutes a comprehensive linear test suite for numerical MHD algorithms that incorporate a background shear flow. I conclude with a brief discussion of possible astrophysical applications.

  8. LOCAL STUDY OF ACCRETION DISKS WITH A STRONG VERTICAL MAGNETIC FIELD: MAGNETOROTATIONAL INSTABILITY AND DISK OUTFLOW

    SciTech Connect (OSTI)

    Bai, Xue-Ning; Stone, James M., E-mail: xbai@cfa.harvard.edu [Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ 08544 (United States)

    2013-04-10T23:59:59.000Z

    We perform three-dimensional, vertically-stratified, local shearing-box ideal MHD simulations of the magnetorotational instability (MRI) that include a net vertical magnetic flux, which is characterized by midplane plasma {beta}{sub 0} (ratio of gas to magnetic pressure). We have considered {beta}{sub 0} = 10{sup 2}, 10{sup 3}, and 10{sup 4}, and in the first two cases the most unstable linear MRI modes are well resolved in the simulations. We find that the behavior of the MRI turbulence strongly depends on {beta}{sub 0}: the radial transport of angular momentum increases with net vertical flux, achieving {alpha} {approx} 0.08 for {beta} = 10{sup 4} and {alpha} {approx}> 1.0 for {beta}{sub 0} = 100, where {alpha} is the height-integrated and mass-weighted Shakura-Sunyaev parameter. A critical value lies at {beta}{sub 0} {approx} 10{sup 3}: for {beta}{sub 0} {approx}> 10{sup 3}, the disk consists of a gas pressure dominated midplane and a magnetically dominated corona. The turbulent strength increases with net flux, and angular momentum transport is dominated by turbulent fluctuations. The magnetic dynamo that leads to cyclic flips of large-scale fields still exists, but becomes more sporadic as net flux increases. For {beta}{sub 0} {approx}< 10{sup 3}, the entire disk becomes magnetically dominated. The turbulent strength saturates, and the magnetic dynamo is fully quenched. Stronger large-scale fields are generated with increasing net flux, which dominates angular momentum transport. A strong outflow is launched from the disk by the magnetocentrifugal mechanism, and the mass flux increases linearly with net vertical flux and shows sign of saturation at {beta}{sub 0} {approx}< 10{sup 2}. However, the outflow is unlikely to be directly connected to a global wind: for {beta}{sub 0} {approx}> 10{sup 3}, the large-scale field has no permanent bending direction due to dynamo activities, while for {beta}{sub 0} {approx}< 10{sup 3}, the outflows from the top and bottom sides of the disk bend towards opposite directions, inconsistent with a physical disk wind geometry. Global simulations are needed to address the fate of the outflow.

  9. Commonwealth Wind Commercial Wind Program

    Broader source: Energy.gov [DOE]

    Through the Commonwealth Wind Incentive Program Commercial Wind Initiative the Massachusetts Clean Energy Center (MassCEC) offers site assessment grants of services, feasibility study grants, a...

  10. Amplitude modulation of wind turbine noise

    E-Print Network [OSTI]

    Makarewicz, Rufin

    2013-01-01T23:59:59.000Z

    Due to swish and thump amplitude modulation, the noise of wind turbines cause more annoyance than other environmental noise of the same average level. The wind shear accounts for the thump modulation (van den Berg effect). Making use of the wind speed measurements at the hub height, as well as at the top and the bottom of the rotor disc (Fig.1), the non-standard wind profile is applied. It causes variations in the A-weighted sound pressure level, LpA. The difference between the maximum and minimum of LpA characterizes thump modulation (Fig.2).

  11. Wind velocity measurements using a pulsed LIDAR system: first results

    E-Print Network [OSTI]

    Peinke, Joachim

    . A laser beam of 1.54 m wavelength takes measurements of the wind speed in beamwise direction. To obtain the three-dimensinal wind vector, the beam is inclined by 30 from vertical direction and measurements 12345 t [s] vh[m/s] Figure 2. Segment of measured time series of the horizontal wind speed magnitude vh

  12. Establishing a Comprehensive Wind Energy Program

    SciTech Connect (OSTI)

    Fleeter, Sanford [Purdue University

    2012-09-30T23:59:59.000Z

    This project was directed at establishing a comprehensive wind energy program in Indiana, including both educational and research components. A graduate/undergraduate course ME-514 - Fundamentals of Wind Energy has been established and offered and an interactive prediction of VAWT performance developed. Vertical axis wind turbines for education and research have been acquired, instrumented and installed on the roof top of a building on the Calumet campus and at West Lafayette (Kepner Lab). Computational Fluid Dynamics (CFD) calculations have been performed to simulate these urban wind environments. Also, modal dynamic testing of the West Lafayette VAWT has been performed and a novel horizontal axis design initiated. The 50-meter meteorological tower data obtained at the Purdue Beck Agricultural Research Center have been analyzed and the Purdue Reconfigurable Micro Wind Farm established and simulations directed at the investigation of wind farm configurations initiated. The virtual wind turbine and wind turbine farm simulation in the Visualization Lab has been initiated.

  13. Control system for a vertical-axis windmill

    DOE Patents [OSTI]

    Brulle, R.V.

    1981-09-03T23:59:59.000Z

    A vertical-axis windmill having a rotating structure is provided with a series of articulated vertical blades whose positions are controlled to maintain a constant RPM for the rotating structure, when wind speed is sufficient. A microprocessor controller is used to process information on wind speed, wind direction and RPM of the rotating structure to develop an electrical signal for establishing blade position. The preferred embodiment of the invention, when connected to a utility grid, is designed to generate 40 kilowatts of power when exposed to a 20 mile per hour wind. The control system for the windmill includes electrical blade actuators that modulate the blades of the rotating structure. Blade modulation controls the blade angle of attack, which in turn controls the RPM of the rotor. In the preferred embodiment, the microprocessor controller provides the operation logic and control functions. A wind speed sensor provides inputs to start or stop the windmill, and a wind direction sensor is used to keep the blade flip region at 90 and 270/sup 0/ to the wind. The control system is designed to maintain constant rotor RPM when wind speed is between 10 and 40 miles per hour.

  14. WIND ENERGY Wind Energ. (2014)

    E-Print Network [OSTI]

    2014-01-01T23:59:59.000Z

    in the near wake. In conclusion, WiTTS performs satisfactorily in the rotor region of wind turbine wakes under neutral stability. Copyright 2014 John Wiley & Sons, Ltd. KEYWORDS wind turbine wake; wake model; self in wind farms along several rows and columns. Because wind turbines generate wakes that propagate downwind

  15. Rotationally sampled wind characteristics and correlations with MOD-OA wind turbine response

    SciTech Connect (OSTI)

    George, R.L.; Connell, J.R.

    1984-09-01T23:59:59.000Z

    This report presents results of a comprehensive wind and wind turbine measurement program: the Clayton, New Mexico, vertical plane array/MOD-OA project. In this experiment, the turbulent wind was measured for a large array of fixed anemometers located two blade diameters upwind of a 200-kW horizontal-axis wind turbine (HAWT). Simultaneously, key wind turbine response parameters were also measured. The first of two major objectives of this experiment was to determine the turbulent wind, rotationally sampled to emulate the motion of the wind turbine blade, for the range of different wind speeds and stability classes actually experienced by the wind turbine. The second major objective was to correlate this rotationally sampled wind with the wind turbine blade stress and power, in order to assess the usefulness of the wind measurements for wind turbine loads testing a prediction. Time series of rotationally sampled winds and wind turbine blade bending moments and power were converted to frequency spectra using Fourier transform techniques. These spectra were used as the basis for both qualitative and quantitative comparisons among the various cases. A quantitative comparison between the rotationally sampled wind input and blade bending response was made, using the Fourier spectra to estimate the blade transfer function. These transfer functions were then used to calculate an approximate damping coefficient for the MOD-OA fiberglass blade.

  16. Micromachined electrostatic vertical actuator

    DOE Patents [OSTI]

    Lee, Abraham P. (Walnut Creek, CA); Sommargren, Gary E. (Santa Cruz, CA); McConaghy, Charles F. (Livermore, CA); Krulevitch, Peter A. (Pleasanton, CA)

    1999-10-19T23:59:59.000Z

    A micromachined vertical actuator utilizing a levitational force, such as in electrostatic comb drives, provides vertical actuation that is relatively linear in actuation for control, and can be readily combined with parallel plate capacitive position sensing for position control. The micromachined electrostatic vertical actuator provides accurate movement in the sub-micron to micron ranges which is desirable in the phase modulation instrument, such as optical phase shifting. For example, compact, inexpensive, and position controllable micromirrors utilizing an electrostatic vertical actuator can replace the large, expensive, and difficult-to-maintain piezoelectric actuators. A thirty pound piezoelectric actuator with corner cube reflectors, as utilized in a phase shifting diffraction interferometer can be replaced with a micromirror and a lens. For any very precise and small amplitudes of motion` micromachined electrostatic actuation may be used because it is the most compact in size, with low power consumption and has more straightforward sensing and control options.

  17. The role of vertical buoyancy distributions in simulated low-topped supercells

    E-Print Network [OSTI]

    Cantrell, Louis Edward

    1995-01-01T23:59:59.000Z

    . This study examines the role of low-level vertical buoyancy distributions in influencing supercell updraft intensity and persistence, and on mid-level and low-level mesocyclone development. The emphasis is to examine wind, temperature, and moisture profiles...

  18. Project Title: Residential wind turbine design Project Description: This project aims to

    E-Print Network [OSTI]

    Muradoglu, Metin

    that wind is expected to come. Therefore it may be a good idea to consider a vertical-axis wind turbine of the conventional wind turbines use horizontal- axis configuration (see Fig. 1) and is aligned with the directionPROJECT 1: Project Title: Residential wind turbine design Project Description: This project aims

  19. Wind-Energy based Path Planning For Electric Unmanned Aerial Vehicles Using Markov Decision Processes

    E-Print Network [OSTI]

    Smith, Ryan N.

    Wind-Energy based Path Planning For Electric Unmanned Aerial Vehicles Using Markov Decision wind-energy is one possible way to ex- tend flight duration for Unmanned Arial Vehicles. Wind-energy sources of wind energy available to exploit for this problem [5]: 1) Vertical air motion, such as thermal

  20. Offshore Coastal Wind Speed Gradients: issues for the design and development of large offshore windfarms

    E-Print Network [OSTI]

    Pryor, Sara C.

    -situ and remote sensing data from offshore wind farms in Denmark, are used to examine both horizontal and vertical the area of the wind farm appear to be small and negligible. 1. INTRODUCTION As large offshore wind farmsOffshore Coastal Wind Speed Gradients: issues for the design and development of large offshore

  1. Wind Farm

    Office of Energy Efficiency and Renewable Energy (EERE)

    The wind farm in Greensburg, Kansas, was completed in spring 2010, and consists of ten 1.25 megawatt (MW) wind turbines that supply enough electricity to power every house, business, and municipal...

  2. Wind Energy

    Broader source: Energy.gov [DOE]

    Presentation covers wind energy at the Federal Utility Partnership Working Group (FUPWG) meeting, held on November 18-19, 2009.

  3. Wind turbine spoiler

    DOE Patents [OSTI]

    Sullivan, William N. (Albuquerque, NM)

    1985-01-01T23:59:59.000Z

    An aerodynamic spoiler system for a vertical axis wind turbine includes spoilers on the blades initially stored near the rotor axis to minimize drag. A solenoid latch adjacent the central support tower releases the spoilers and centrifugal force causes the spoilers to move up the turbine blades away from the rotor axis, thereby producing a braking effect and actual slowing of the associated wind turbine, if desired. The spoiler system can also be used as an infinitely variable power control by regulated movement of the spoilers on the blades over the range between the undeployed and fully deployed positions. This is done by the use of a suitable powered reel and cable located at the rotor tower to move the spoilers.

  4. On Trade-Wind Cumulus Cold Pools Paquita Zuidema & Zhujun Li

    E-Print Network [OSTI]

    Zuidema, Paquita

    On Trade-Wind Cumulus Cold Pools Paquita Zuidema & Zhujun Li Reg Hill, Ludovic Bariteau, Bob - but precipitation ~ mm/day not mm/hr and no wind shear stratocumulus `squall-line' Jensen et al. 2008 tropical deep rainrate `undisturbed' `disturbed' sensible/latent Tuesday, December 6, 2011 #12;`gust' winds faster than

  5. PILOT and cosmic shear

    E-Print Network [OSTI]

    W. Saunders

    2008-01-29T23:59:59.000Z

    Cosmic shear offers a remarkbly clean way to measure the equation of state of the Universe and its evolution. Resolution over a wide field is paramount, and Antarctica offers unique possibilities in this respect. There is an order of magnitude gain in speed over temperate sites, or a factor three in surface density. This means that PILOT outperforms much larger telescopes elsewhere, and can compete with the proposed DUNE space mission. Keywords: Antarctic astronomy, Surveys, Adaptive optics, Weak lensing

  6. An experimental and numerical study of wind turbine seismic behavior

    E-Print Network [OSTI]

    Prowell, I.

    2011-01-01T23:59:59.000Z

    vertical axis wind turbines (VAWT). For example, in a studyIn another study for a VAWT by Carne and Nord (1983), ahave been successfully applied to a VAWT by Sandia National

  7. Sandia National Laboratories: Wind

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Grid System Planning for Wind: Wind Generator Modeling On June 11, 2014, in Wind generation continues to dominate the interconnection queues and the need for generic,...

  8. ARM - Measurement - Vertical velocity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadap Documentation TDMADAP : XDCnarrowbandheat flux ARM Data DiscoverygovMeasurementsVertical

  9. Shear viscosity of nuclear matter

    E-Print Network [OSTI]

    Jun Xu

    2013-02-01T23:59:59.000Z

    In this talk I report my recent study on the shear viscosity of neutron-rich nuclear matter from a relaxation time approach. An isospin- and momentum-dependent interaction is used in the study. Effects of density, temperature, and isospin asymmetry of nuclear matter on its shear viscosity have been discussed. Similar to the symmetry energy, the symmetry shear viscosity is defined and its density and temperature dependence are studied.

  10. Journal of Wind Engineering and Industrial Aerodynamics, 24 (1986) 215--225 215 Elsevier Science Publishers B.V., Amsterdam --Printed in The Netherlands

    E-Print Network [OSTI]

    McCalley, James D.

    1986-01-01T23:59:59.000Z

    representation for a vertical-axis, Darrieum, wind turbine and give more accurate predictions of turbine coefficient is 0.59 (Glauert [2] ). For vertical-axis wind turbines of the Darrieus type (Templin [3] ) tandem/27. This is the usual Betz limit for the power of horizontal-axis wind turbines. Tandem discs are a more appropriate

  11. Cloud-Scale Vertical Velocity and Turbulent Dissipation Rate Retrievals

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Shupe, Matthew

    Time-height fields of retrieved in-cloud vertical wind velocity and turbulent dissipation rate, both retrieved primarily from vertically-pointing, Ka-band cloud radar measurements. Files are available for manually-selected, stratiform, mixed-phase cloud cases observed at the North Slope of Alaska (NSA) site during periods covering the Mixed-Phase Arctic Cloud Experiment (MPACE, late September through early November 2004) and the Indirect and Semi-Direct Aerosol Campaign (ISDAC, April-early May 2008). These time periods will be expanded in a future submission.

  12. Offshore Wind Power USA

    Broader source: Energy.gov [DOE]

    The Offshore Wind Power USA conference provides the latest offshore wind market updates and forecasts.

  13. 20% Wind Energy 20% Wind Energy

    E-Print Network [OSTI]

    Powell, Warren B.

    (government, industry, utilities, NGOs) Analyzes wind's potential contributions to energy security, economic · Transmission a challenge #12;Wind Power Class Resource Potential Wind Power Density at 50 m W/m 2 Wind Speed20% Wind Energy by 2030 20% Wind Energy by 2030 #12;Presentation and Objectives Overview Background

  14. Advanced wind turbine near-term product development. Final technical report

    SciTech Connect (OSTI)

    None

    1996-01-01T23:59:59.000Z

    In 1990 the US Department of Energy initiated the Advanced Wind Turbine (AWT) Program to assist the growth of a viable wind energy industry in the US. This program, which has been managed through the National Renewable Energy Laboratory (NREL) in Golden, Colorado, has been divided into three phases: (1) conceptual design studies, (2) near-term product development, and (3) next-generation product development. The goals of the second phase were to bring into production wind turbines which would meet the cost goal of $0.05 kWh at a site with a mean (Rayleigh) windspeed of 5.8 m/s (13 mph) and a vertical wind shear exponent of 0.14. These machines were to allow a US-based industry to compete domestically with other sources of energy and to provide internationally competitive products. Information is given in the report on design values of peak loads and of fatigue spectra and the results of the design process are summarized in a table. Measured response is compared with the results from mathematical modeling using the ADAMS code and is discussed. Detailed information is presented on the estimated costs of maintenance and on spare parts requirements. A failure modes and effects analysis was carried out and resulted in approximately 50 design changes including the identification of ten previously unidentified failure modes. The performance results of both prototypes are examined and adjusted for air density and for correlation between the anemometer site and the turbine location. The anticipated energy production at the reference site specified by NREL is used to calculate the final cost of energy using the formulas indicated in the Statement of Work. The value obtained is $0.0514/kWh in January 1994 dollars. 71 figs., 30 tabs.

  15. Wind Energy Leasing Handbook

    E-Print Network [OSTI]

    Balasundaram, Balabhaskar "Baski"

    Wind Energy Leasing Handbook Wind Energy Leasing Handbook E-1033 Oklahoma Cooperative Extension?..................................................................................................................... 31 What do wind developers consider in locating wind energy projects?............................................................................................ 37 How do companies and individuals invest in wind energy projects?....................................................................

  16. Vertical Integration and Market Entry in the Generic Pharmaceutical Industry

    E-Print Network [OSTI]

    Kubo, Kensuke

    2011-01-01T23:59:59.000Z

    Competitive Effects of Vertical Integration . . . . . . .2.2.3 Trend in Vertical Integration . . . . . . . . .for Vertical Integration . . . . . . . . . . . . . . . . . .

  17. The limited growth of vegetated shear layers

    E-Print Network [OSTI]

    Ghisalberti, M.

    In contrast to free shear layers, which grow continuously downstream, shear layers generated by submerged vegetation grow only to a finite thickness. Because these shear layers are characterized by coherent vortex structures ...

  18. Shearing of frictional sphere packings Jean-Franois Mtayer, * Donald J. Suntrup III,

    E-Print Network [OSTI]

    Texas at Austin. University of

    and jammed materials. Abstract We measure shear stress in packings of glass spheres by pulling a thin metal of jamming/unjamming in particulate soft-matter systems such as colloids, foams and emulsions. However, most. 2 Experiment Our experimental set-up [Fig. 1] consists of a vertical glass tube (diameter 38.7 mm

  19. Shearing of frictional sphere packings Jean-Franois Mtayer, * Donald J. Suntrup III,

    E-Print Network [OSTI]

    and jammed materials. Abstract We measure shear stress in packings of glass spheres by pulling a thin metal of jamming/unjamming in particulate soft-matter systems such as colloids, foams and emulsions. However, most of a vertical glass tube (diameter 38.7 mm, height 300 mm) filled with water and soda-lime glass beads (diameter

  20. ICOWES2013 Conference 17-19 June 2013, Lyngby WINDS OBSERVED IN THE NORTHERN EUROPEAN SEAS WITH

    E-Print Network [OSTI]

    Haak, Hein

    ICOWES2013 Conference 17-19 June 2013, Lyngby 1 WINDS OBSERVED IN THE NORTHERN EUROPEAN SEAS and SSM/I have been compared to offshore meteorological data. For the final satellite-based wind atlas 9 shear observed from the lidars. #12;Another aim was to produce a wind atlas based on satellite data

  1. Wind Monitoring Report for Fort Wainwright's Donnelly Training Area

    SciTech Connect (OSTI)

    Orrell, Alice C.; Dixon, Douglas R.

    2011-01-18T23:59:59.000Z

    Using the wind data collected at a location in Fort Wainwrights Donnelly Training Area (DTA) near the Cold Regions Test Center (CRTC) test track, Pacific Northwest National Laboratory (PNNL) estimated the gross and net energy productions that proposed turbine models would have produced exposed to the wind resource measured at the meteorological tower (met tower) location during the year of measurement. Calculations are based on the proposed turbine models standard atmospheric conditions power curves, the annual average wind speeds, wind shear estimates, and standard industry assumptions.

  2. Effects of Changing Atmospheric Conditions on Wind Turbine Performance (Poster)

    SciTech Connect (OSTI)

    Clifton, A.

    2012-12-01T23:59:59.000Z

    Multi-megawatt, utility-scale wind turbines operate in turbulent and dynamic winds that impact turbine performance in ways that are gradually becoming better understood. This poster presents a study made using a turbulent flow field simulator (TurbSim) and a Turbine aeroelastic simulator (FAST) of the response of a generic 1.5 MW wind turbine to changing inflow. The turbine power output is found to be most sensitive to wind speed and turbulence intensity, but the relationship depends on the wind speed with respect to the turbine's rated wind speed. Shear is found to be poorly correlated to power. A machine learning method called 'regression trees' is used to create a simple model of turbine performance that could be used as part of the wind resource assessment process. This study has used simple flow fields and should be extended to more complex flows, and validated with field observations.

  3. Wind Power Production in the Urban Environment S.J. Kooiman, S.W. Tullis*

    E-Print Network [OSTI]

    Tullis, Stephen

    , implementing Vertical Axis Wind Turbines (VAWTs) in urban settings is currently being assessed. Initially, the placement of a wind turbine on top of buildings may seem less than ideal considering the complex flow are typical deterrents to operating wind turbines. However, with the aerodynamic performance advantages

  4. Mesoscale modelling for an offshore wind farm Jake Badger*, Rebecca Barthelmie, Sten Frandsen, Merete Bruun Christiansen

    E-Print Network [OSTI]

    Mesoscale modelling for an offshore wind farm Jake Badger*, Rebecca Barthelmie, Sten Frandsen for an offshore wind farm in a coastal location. Spatial gradients and vertical profiles between 25 m and 70 m offshore wind farms tend to be placed within the coastal zone, the region within around 50km from

  5. Winding Trail

    E-Print Network [OSTI]

    Unknown

    2011-09-05T23:59:59.000Z

    During the past decade, the demand for clean renewable energy continues to rise drastically in Europe, the US, and other countries. Wind energy in the ocean can possibly be one of those future renewable clean energy sources as long...

  6. Sandia Energy - Innovative Offshore Vertical-Axis Wind Turbine Rotors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-VoltagePower Company'sInAs Quantum

  7. Wind Energy Benefits, Wind Powering America (WPA) (Fact Sheet...

    Broader source: Energy.gov (indexed) [DOE]

    Energy Benefits, Wind Powering America (WPA) (Fact Sheet), Wind And Water Power Program (WWPP) Wind Energy Benefits, Wind Powering America (WPA) (Fact Sheet), Wind And Water Power...

  8. The effect of shear on heat budgets in a simulated Mesoscale Convective System

    E-Print Network [OSTI]

    Shaw, Justin David

    2000-01-01T23:59:59.000Z

    in the lowest 2.5 km varying from 10-25 m s?. A fourth simulation was conducted using the weak wind shear profile and incorporating ice microphysics. An analysis domain was produced every two hours for the northern and southern portions of the convective line...

  9. The effect of shear on heat budgets in a simulated Mesoscale Convective System

    E-Print Network [OSTI]

    Shaw, Justin David

    2000-01-01T23:59:59.000Z

    in the lowest 2.5 km varying from 10-25 m s?. A fourth simulation was conducted using the weak wind shear profile and incorporating ice microphysics. An analysis domain was produced every two hours for the northern and southern portions of the convective line...

  10. Energy 101: Wind Turbines

    ScienceCinema (OSTI)

    None

    2013-05-29T23:59:59.000Z

    See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

  11. WIND DATA REPORT Mattapoisett

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Mattapoisett Mattapoisett, Massachusetts December 1, 2006 February 28, 2007...................................................................................................................... 9 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  12. Energy 101: Wind Turbines

    SciTech Connect (OSTI)

    None

    2011-01-01T23:59:59.000Z

    See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

  13. Wind power and Wind power and

    E-Print Network [OSTI]

    Wind power and the CDM #12; Wind power and the CDM Emerging practices in developing wind power 2005 Jyoti P. Painuly, Niels-Erik Clausen, Jrgen Fenhann, Sami Kamel and Romeo Pacudan #12; WIND POWER AND THE CDM Emerging practices in developing wind power projects for the Clean Development Mechanism Energy

  14. Shear shocks in fragile networks

    E-Print Network [OSTI]

    Stephan Ulrich; Nitin Upadhyaya; Bas van Opheusden; Vincenzo Vitelli

    2013-07-29T23:59:59.000Z

    A minimal model for studying the mechanical properties of amorphous solids is a disordered network of point masses connected by unbreakable springs. At a critical value of its mean connectivity, such a network becomes fragile: it undergoes a rigidity transition signaled by a vanishing shear modulus and transverse sound speed. We investigate analytically and numerically the linear and non-linear visco-elastic response of these fragile solids by probing how shear fronts propagate through them. Our approach, that we tentatively label shear front rheology, provides an alternative route to standard oscillatory rheology. In the linear regime, we observe at late times a diffusive broadening of the fronts controlled by an effective shear viscosity that diverges at the critical point. No matter how small the microscopic coefficient of dissipation, strongly disordered networks behave as if they were over-damped because energy is irreversibly leaked into diverging non-affine fluctuations. Close to the transition, the regime of linear response becomes vanishingly small: the tiniest shear strains generate strongly non-linear shear shock waves qualitatively different from their compressional counterparts in granular media. The inherent non-linearities trigger an energy cascade from low to high frequency components that keep the network away from attaining the quasi-static limit. This mechanism, reminiscent of acoustic turbulence, causes a super-diffusive broadening of the shock width.

  15. Wind turbine

    DOE Patents [OSTI]

    Cheney, Jr., Marvin C. (Glastonbury, CT)

    1982-01-01T23:59:59.000Z

    A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

  16. Prediction of wind speed profiles for short-term forecasting in the offshore environment R.J. Barthelmie and G. Giebel

    E-Print Network [OSTI]

    in planning of maintenance visits to offshore wind farms. In most cases the basis for the predictionPrediction of wind speed profiles for short-term forecasting in the offshore environment R wind farms. The main effects considered here are: wind speed gradients in the coastal zone, vertical

  17. Wind Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsingWhat is abig world of tinyWind Industry SoarsWind

  18. Spectrum of wind speed fluctuations encountered by a rotating blade of a wind energy conversion system: observations and theory

    SciTech Connect (OSTI)

    Connell, J.R.

    1981-11-01T23:59:59.000Z

    This report proves that the characteristics of turbulence that are experienced by a rotating wind turbine rotor blade are in principle and in practice very different than those experienced by a nonrotating rotor blade. Thus conventional wind characteristics, which are formulated for the nonrotating frame of reference, are more inaccurate than generally supposed. The measurements and mathematical model that are presented for turbulence observed in the rotating frame of reference represent the third phase of the Pacific Northwest Laboratory work aimed at providing an accurate turbulence description for use in the design and evaluation of the performance of wind turbines. The first phase of work was the measurement of wind with a vertical plane array of anemometers. The second phase was the physical interpretation of the measurements in terms of implications for wind turbine rotors and initiation of development of a model of wind/wind turbine interaction. The third phase involved measurement of turbulence by rotating sensors and mathematical development of a physical model of this representation of turbulence as independent checks and expansions of the vertical plane array results. A fourth phase, to correlate real wind turbine response with rotationally measured turbulence and thereby understand the wind/wind turbine interaction, is in progress and preliminary results are quite promising.

  19. Large CO2 reductions via offshore wind power matched to inherent storage in energy end-uses

    E-Print Network [OSTI]

    Jacobson, Mark

    Large CO2 reductions via offshore wind power matched to inherent storage in energy end-uses Willett develop methods for assessing offshore wind resources, using a model of the vertical structure offshore wind power matched to inherent storage in energy end- uses, Geophys. Res. Lett., 34, L02817, doi

  20. 2 Large CO2 reductions via offshore wind power matched to inherent 3 storage in energy end-uses

    E-Print Network [OSTI]

    Firestone, Jeremy

    2 Large CO2 reductions via offshore wind power matched to inherent 3 storage in energy end-uses 4] We develop methods for assessing offshore wind 9 resources, using a model of the vertical structure. Dhanju, R. W. 26 Garvine, and M. Z. Jacobson (2007), Large CO2 reductions via 27 offshore wind power

  1. Wind Technologies & Evolving Opportunities (Presentation)

    SciTech Connect (OSTI)

    Robichaud, R.

    2014-07-01T23:59:59.000Z

    This presentation covers opportunities for wind technology; wind energy market trends; an overview of the National Wind Technology Center near Boulder, Colorado; wind energy price and cost trends; wind turbine technology improvements; and wind resource characterization improvements.

  2. 2015 Iowa Wind Power Conference and Iowa Wind Energy Association...

    Energy Savers [EERE]

    2015 Iowa Wind Power Conference and Iowa Wind Energy Association Midwest Regional Energy Job Fair 2015 Iowa Wind Power Conference and Iowa Wind Energy Association Midwest Regional...

  3. Community Wind Handbook/Understand Your Wind Resource and Conduct...

    Open Energy Info (EERE)

    Conduct a Preliminary Estimate < Community Wind Handbook Jump to: navigation, search WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHCommunity Wind Handbook WindTurbine-icon.png...

  4. American Wind Energy Association Wind Energy Finance and Investment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    American Wind Energy Association Wind Energy Finance and Investment Seminar American Wind Energy Association Wind Energy Finance and Investment Seminar October 20, 2014 8:00AM EDT...

  5. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    wind turbine components (specifically, generators, bladeschangers. Wind turbine components such as blades, towers,17%). Wind turbine component exports (towers, blades,

  6. A Ventilation Index for Tropical Cyclones

    E-Print Network [OSTI]

    Tang, Brian

    An important environmental control of both tropical cyclone intensity and genesis is vertical wind shear. One hypothesized pathway by which vertical shear affects tropical cyclones is midlevel ventilationor the flux of ...

  7. Measuring the cosmic shear in Fourier space

    E-Print Network [OSTI]

    Zhang, Jun

    2008-01-01T23:59:59.000Z

    Measuring the Cosmic Shear in Fourier Space Bernardeau F. ,the Cosmic Shear in Fourier Space Jun Zhang ? Department ofshould be carried out in Fourier space, in which the point

  8. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    Public Service Wind Integration Cost Impact Study. Preparedequipment-related wind turbine costs, the overall importinstalled wind power project costs, wind turbine transaction

  9. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    Public Service Wind Integration Cost Impact Study. Preparedinstalled wind power project costs, wind turbine transactionand components and wind turbine costs. Excluded from all

  10. Sandia National Laboratories: wind energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Energy Manufacturing Lab Helps Engineers Improve Wind Power On November 15, 2011, in Energy, News, Partnership, Renewable Energy, Wind Energy Researchers at the Wind Energy...

  11. Module Handbook Specialisation Wind Energy

    E-Print Network [OSTI]

    Habel, Annegret

    ;Specialisation Wind Energy, NTU Athens, 2nd Semester Module 1/Wind Energy: Wind potential, Aerodynamics & Loading of Wind Turbines Module name: Wind potential, Aerodynamics & Loading of Wind Turbines Section Classes Evaluation of Wind Energy Potential Wind turbine Aerodynamics Static and dynamic Loading of Wind turbines

  12. Refraction of shear zones in granular materials

    E-Print Network [OSTI]

    Tamas Unger

    2007-01-08T23:59:59.000Z

    We study strain localization in slow shear flow focusing on layered granular materials. A heretofore unknown effect is presented here. We show that shear zones are refracted at material interfaces in analogy with refraction of light beams in optics. This phenomenon can be obtained as a consequence of a recent variational model of shear zones. The predictions of the model are tested and confirmed by 3D discrete element simulations. We found that shear zones follow Snell's law of light refraction.

  13. Shear viscosity of the quark matter

    E-Print Network [OSTI]

    Masaharu Iwasaki; Hiromasa Ohnishi; Takahiko Fukutome

    2007-05-14T23:59:59.000Z

    We discuss shear viscosity of the quark matter by using Kubo formula. The shear viscosity is calculated in the framework of the quasi-particle RPA for the Nambu-Jona-Lasinio model. We obtain a formula that the shear viscosity is expressed by the quadratic form of the quark spectral function in the chiral symmetric phase. The magnitude of the shear viscosity is discussed assuming the Breit-Wigner type for the spectral function.

  14. Horizontal wind rotor. Final technical report

    SciTech Connect (OSTI)

    Guard, E.J.

    1983-06-30T23:59:59.000Z

    A vertical axis wind machine called, ''Horizontal Wind Rotor'' conceived in 1979 by the Grantee E.J. Guard was an effort to marry a new high tech carousel type wind rotor to a basic building design for the purpose of generating practical amounts of electricty. This was directed especially towards high performance power generation, relative to low average wind velocity fields, typically found in Florida. From January 1980 to April 1983 two 1/30 scale wind tunnel type test models of buildings, one round and one square were built. An eight Hartzell shrouded wind tunnel fan machine was designed and built to supply uniform wind velocities for testing. All components of the Horizontal Wind Rotor (HWR) were fabricated, instrumented, mounted on the building models, and tested and modified repeatedly for performance optimization. Aerodynamic consultants, model makers, mechanical and computer engineers and technicians under the direction of E. Guard all teamed up to evolve the size, shape, and placement of the system components. It was recognized early that the machine had to be large in order to extract energy from low wind velocities. It was also noted that there were so many variables in the system, so as to elude analytical computation, that only testing could provide the answers. Consequently, this grant program has provided major contributions to the sparse available data in this little studied field, and set up valuable bench marks in design and power output parameters. This data will be the foundation for incorporating the newly discovered design improvements into the full scale prototype to follow. (Phase II) It is believed that this Rotor design is the only one in the world today that will produce as much power in the lower wind velocity ranges and it is also believed that every objective of the original grant proposal has been met or exceeded.

  15. Shear viscosity and shear thinning in two-dimensional Yukawa , J. Goree2

    E-Print Network [OSTI]

    Goree, John

    Shear viscosity and shear thinning in two-dimensional Yukawa liquids Z. Donko1 , J. Goree2 , P using two different nonequi- librium molecular dynamics simulation methods. Shear viscosity values.e., the viscosity diminishes with increasing shear rate. It is expected that two-dimensional dusty plasmas

  16. SERI Advanced and Innovative Wind-Energy-Concepts Program

    SciTech Connect (OSTI)

    Mitchell, R.L.; Jacobs, E.W.

    1983-06-01T23:59:59.000Z

    In 1978 the Solar Energy Research Institute (SERI) was given the responsibility of managing the Advanced and Innovative Wind Energy Concepts (AIWEC) Task by the US Department of Energy (DOE). The objective of this program has been to determine the technical and economic potential of advanced wind energy concepts. Assessment and R and D efforts in the AIWEC program have included theoretical performance analyses, wind tunnel testing, and/or costing studies. Concepts demonstrating sufficient potential undergo prototype testing in a Proof-of-Concept research phase. Several concepts, such as the Dynamic Inducer, the Diffuser Augmented wind Turbine, the Electrofluid Dynamic Wind-Driven Generator, the Passive Cyclic Pitch concept, and higher performance airfoil configurations for vertical axis wind turbines, have recently made significant progress. The latter has currently reached the Proof-of-Concept phase. The present paper provides an overview of the technical progress and current status of these concepts.

  17. Limits to the power density of very large wind farms

    E-Print Network [OSTI]

    Nishino, Takafumi

    2013-01-01T23:59:59.000Z

    A simple analysis is presented concerning an upper limit of the power density (power per unit land area) of a very large wind farm located at the bottom of a fully developed boundary layer. The analysis suggests that the limit of the power density is about 0.38 times $\\tau_{w0}U_{F0}$, where $\\tau_{w0}$ is the natural shear stress on the ground (that is observed before constructing the wind farm) and $U_{F0}$ is the natural or undisturbed wind speed averaged across the height of the farm to be constructed. Importantly, this implies that the maximum extractable power from such a very large wind farm will not be proportional to the cubic of the wind speed at the farm height, or even the farm height itself, but be proportional to $U_{F0}$.

  18. Aleutian Pribilof Islands Wind Energy Feasibility Study

    SciTech Connect (OSTI)

    Bruce A. Wright

    2012-03-27T23:59:59.000Z

    Under this project, the Aleutian Pribilof Islands Association (APIA) conducted wind feasibility studies for Adak, False Pass, Nikolski, Sand Point and St. George. The DOE funds were also be used to continue APIA's role as project coordinator, to expand the communication network quality between all participants and with other wind interest groups in the state and to provide continued education and training opportunities for regional participants. This DOE project began 09/01/2005. We completed the economic and technical feasibility studies for Adak. These were funded by the Alaska Energy Authority. Both wind and hydro appear to be viable renewable energy options for Adak. In False Pass the wind resource is generally good but the site has high turbulence. This would require special care with turbine selection and operations. False Pass may be more suitable for a tidal project. APIA is funded to complete a False Pass tidal feasibility study in 2012. Nikolski has superb potential for wind power development with Class 7 wind power density, moderate wind shear, bi-directional winds and low turbulence. APIA secured nearly $1M from the United States Department of Agriculture Rural Utilities Service Assistance to Rural Communities with Extremely High Energy Costs to install a 65kW wind turbine. The measured average power density and wind speed at Sand Point measured at 20m (66ft), are 424 W/m2 and 6.7 m/s (14.9 mph) respectively. Two 500kW Vestas turbines were installed and when fully integrated in 2012 are expected to provide a cost effective and clean source of electricity, reduce overall diesel fuel consumption estimated at 130,000 gallons/year and decrease air emissions associated with the consumption of diesel fuel. St. George Island has a Class 7 wind resource, which is superior for wind power development. The current strategy, led by Alaska Energy Authority, is to upgrade the St. George electrical distribution system and power plant. Avian studies in Nikolski and Sand Point have allowed for proper wind turbine siting without killing birds, especially endangered species and bald eagles. APIA continues coordinating and looking for funding opportunities for regional renewable energy projects. An important goal for APIA has been, and will continue to be, to involve community members with renewable energy projects and energy conservation efforts.

  19. Wind Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfires may contribute more to global warmingGlobal »Wind

  20. Wind Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >Internship Program TheSiteEurekaWeekly UserWhat's New Today aboutWind

  1. Wind Power Today

    SciTech Connect (OSTI)

    Not Available

    2006-05-01T23:59:59.000Z

    Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

  2. Wind Power Today

    SciTech Connect (OSTI)

    Not Available

    2007-05-01T23:59:59.000Z

    Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

  3. Sunflower Wind Farm EA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sunflower Wind Farm EA Sunflower Wind Farm Draft EA (25mb pdf) Note: If you have problems downloading this file, pelase contact Lou Hanebury at (406) 255-2812 Sunflower Wind Farm...

  4. Apparatus for shearing spent nuclear fuel assemblies

    DOE Patents [OSTI]

    Weil, Bradley S. (Knoxville, TN); Metz, III, Curtis F. (Knoxville, TN)

    1980-01-01T23:59:59.000Z

    A method and apparatus are described for shearing spent nuclear fuel assemblies of the type comprising an array of fuel pins disposed within an outer metal shell or shroud. A spent fuel assembly is first compacted in a known manner and then incrementally sheared using fixed and movable shear blades having matched laterally projecting teeth which slidably intermesh to provide the desired shearing action. Incremental advancement of the fuel assembly after each shear cycle is limited to a distance corresponding to the lateral projection of the teeth to ensure fuel assembly breakup into small uniform segments which are amenable to remote chemical processing.

  5. Controlled shear/tension fixture

    DOE Patents [OSTI]

    Hsueh, Chun-Hway (Knoxville, TN); Liu, Chain-tsuan (Knoxville, TN); George, Easo P. (Knoxville, TN)

    2012-07-24T23:59:59.000Z

    A test fixture for simultaneously testing two material test samples is provided. The fixture provides substantially equal shear and tensile stresses in each test specimens. By gradually applying a load force to the fixture only one of the two specimens fractures. Upon fracture of the one specimen, the fixture and the load train lose contact and the second specimen is preserved in a state of upset just prior to fracture. Particular advantages of the fixture are (1) to control the tensile to shear load on the specimen for understanding the effect of these stresses on the deformation behavior of advanced materials, (2) to control the location of fracture for accessing localized material properties including the variation of the mechanical properties and residual stresses across the thickness of advanced materials, (3) to yield a fractured specimen for strength measurement and an unfractured specimen for examining the microstructure just prior to fracture.

  6. Wind/Hydro Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WindHydro Integration Feasibility Study Announcements (Updated July 8, 2010) The Final WindHydro Integration Feasibility Study Report, dated June 2, 2009, has been submitted to...

  7. Wind energy bibliography

    SciTech Connect (OSTI)

    None

    1995-05-01T23:59:59.000Z

    This bibliography is designed to help the reader search for information on wind energy. The bibliography is intended to help several audiences, including engineers and scientists who may be unfamiliar with a particular aspect of wind energy, university researchers who are interested in this field, manufacturers who want to learn more about specific wind topics, and librarians who provide information to their clients. Topics covered range from the history of wind energy use to advanced wind turbine design. References for wind energy economics, the wind energy resource, and environmental and institutional issues related to wind energy are also included.

  8. Wind Turbine Tribology Seminar

    Broader source: Energy.gov [DOE]

    Wind turbine reliability issues are often linked to failures of contacting components, such as bearings, gears, and actuators. Therefore, special consideration to tribological design in wind...

  9. Commonwealth Wind Incentive Program Micro Wind Initiative

    Broader source: Energy.gov [DOE]

    Through the Commonwealth Wind Incentive Program Micro Wind Initiative the Massachusetts Clean Energy Center (MassCEC) offers rebates of up to $4/W with a maximum of $130,000 for design and...

  10. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    States. Specifically, Bluewater Wind and Delmarva PowerLLC Babcock & Brown Acquisition Bluewater Wind Good Energies

  11. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    policy support for other renewable energy sources, wind mayrenewable energy and climate policy initiatives. With wind

  12. 3, 57555775, 2003 Vertical distribution

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    of affecting cloud formation and radiative properties (e.g. Ramanathan et al., 2001). These effects take place vertical profiles available in the literature.15 1. Introduction Current global radiative balance estimates and absorption of solar radiation, and of an indirect (larger) effect related to the aerosol20 capability

  13. Balloon-borne sounding system (BBSS): Vaisala-processed winds, press., temp, and RH

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Coulter, Richard; Ritsche, Michael

    Balloon-borne sounding system (BBSS): Vaisala-processed winds, press., temp, and RH. The balloon-borne sounding system (SONDE) provides in situ measurements (vertical profiles) of both the thermodynamic state of the atmosphere, and the wind speed and direction.

  14. Wind Resource Assessment in Europe Using Emergy

    E-Print Network [OSTI]

    Paudel, Subodh; Santarelli, Massimo; Martin, Viktoria; Lacarriere, Bruno; Le Corre, Olivier

    2014-01-01T23:59:59.000Z

    mance characteristics of wind generator. The wind speed atcharacteristics of the wind generator. When wind speed is

  15. Characterization of winds through the rotor plane using a phased array SODAR and recommendations for future work.

    SciTech Connect (OSTI)

    Deola, Regina Anne

    2010-02-01T23:59:59.000Z

    Portable remote sensing devices are increasingly needed to cost effectively characterize the meteorology at a potential wind energy site as the size of modern wind turbines increase. A short term project co-locating a Sound Detection and Ranging System (SODAR) with a 200 meter instrumented meteorological tower at the Texas Tech Wind Technology Field Site was performed to collect and summarize wind information through an atmospheric layer typical of utility scale rotor plane depths. Data collected identified large speed shears and directional shears that may lead to unbalanced loads on the rotors. This report identifies suggestions for incorporation of additional data in wind resource assessments and a few thoughts on the potential for using a SODAR or SODAR data to quantify or investigate other parameters that may be significant to the wind industry.

  16. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    Wind Generation2006. Integrating Wind Generation into Utility Systems.Stand-Alone Wind Generation . 60

  17. Howard County- Wind Ordinance

    Broader source: Energy.gov [DOE]

    This ordinance sets up provisions for allowing small wind energy systems in various zoning districts.

  18. Prediction of shear strength and vertical movement due to moisture diffusion through expansive soils

    E-Print Network [OSTI]

    Long, Xiaoyan

    2006-10-30T23:59:59.000Z

    This dissertation presents an investigation of engineering behavior of expansive soils. An analytical study was undertaken for the development and modification of a Windows-based two-dimensional finite element computer program FLODEF that performs a...

  19. Sheared

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9 SeptemberSetting the StageCanon! Sharedand

  20. Wind energy offers considerable promise; the wind itself is free,

    E-Print Network [OSTI]

    Langendoen, Koen

    Wind energy offers considerable promise; the wind itself is free, wind power is clean. One of these sources, wind energy, offers considerable promise; the wind itself is free, wind power is clean, and it is virtually inexhaustible. In recent years, research on wind energy has accelerated

  1. Estimation of Wind Speed in Connection to a Wind Turbine

    E-Print Network [OSTI]

    Estimation of Wind Speed in Connection to a Wind Turbine X. Ma #3; , N. K. Poulsen #3; , H. Bindner y December 20, 1995 Abstract The wind speed varies over the rotor plane of wind turbine making the wind speed on the rotor plane will be estimated by using a wind turbine as a wind measuring device

  2. Vertically Integrated Circuits at Fermilab

    SciTech Connect (OSTI)

    Deptuch, Grzegorz; Demarteau, Marcel; Hoff, James; Lipton, Ronald; Shenai, Alpana; Trimpl, Marcel; Yarema, Raymond; Zimmerman, Tom; /Fermilab

    2009-01-01T23:59:59.000Z

    The exploration of the vertically integrated circuits, also commonly known as 3D-IC technology, for applications in radiation detection started at Fermilab in 2006. This paper examines the opportunities that vertical integration offers by looking at various 3D designs that have been completed by Fermilab. The emphasis is on opportunities that are presented by through silicon vias (TSV), wafer and circuit thinning and finally fusion bonding techniques to replace conventional bump bonding. Early work by Fermilab has led to an international consortium for the development of 3D-IC circuits for High Energy Physics. The consortium has submitted over 25 different designs for the Fermilab organized MPW run organized for the first time.

  3. Wind Power Outlook 2004

    SciTech Connect (OSTI)

    anon.

    2004-01-01T23:59:59.000Z

    The brochure, expected to be updated annually, provides the American Wind Energy Association's (AWAE's) up-to-date assessment of the wind industry. It provides a summary of the state of wind power in the U.S., including the challenges and opportunities facing the industry. It provides summary information on the growth of the industry, policy-related factors such as the federal wind energy production tax credit status, comparisons with natural gas, and public views on wind energy.

  4. Shear Viscosity of Quark Matter

    E-Print Network [OSTI]

    W. M. Alberico; S. Chiacchiera; H. Hansen; A. Molinari; M. Nardi

    2007-07-30T23:59:59.000Z

    We consider the shear viscosity of a system of quarks and its ratio to the entropy density above the critical temperature for deconfinement. Both quantities are derived and computed for different modeling of the quark self-energy, also allowing for a temperature dependence of the effective mass and width. The behaviour of the viscosity and the entropy density is argued in terms of the strength of the coupling and of the main characteristics of the quark self-energy. A comparison with existing results is also discussed.

  5. Vertical Integration and Technology: Theory and Evidence

    E-Print Network [OSTI]

    Acemoglu, Daron

    We study the determinants of vertical integration. We first derive a number of predictions regarding the relationship between technology intensity and vertical integration from a simple incomplete contracts model. Then, ...

  6. Vertical silicon nanowire arrays for gas sensing

    E-Print Network [OSTI]

    Zhao, Hangbo

    2014-01-01T23:59:59.000Z

    The goal of this research was to fabricate and characterize vertically aligned silicon nanowire gas sensors. Silicon nanowires are very attractive for gas sensing applications and vertically aligned silicon nanowires are ...

  7. Confined Cubic Blue Phases under Shear

    E-Print Network [OSTI]

    O. Henrich; K. Stratford; D. Marenduzzo; P. V. Coveney; M. E. Cates

    2012-03-14T23:59:59.000Z

    We study the behaviour of confined cubic blue phases under shear flow via lattice Boltzmann simulations. We focus on the two experimentally observed phases, blue phase I and blue phase II. The disinclination network of blue phase II continuously breaks and reforms under shear, leading to an oscillatory stress response in time. The oscillations are only regular for very thin samples. For thicker samples, the shear leads to a "stick-slip" motion of part of the network along the vorticity direction. Blue phase I responds very differently: its defect network undergoes seemingly chaotic rearrangements under shear, irrespective of system size.

  8. Collegiate Wind Competition Engages Tomorrow's Wind Energy Innovators...

    Office of Environmental Management (EM)

    Engages Tomorrow's Wind Energy Innovators Collegiate Wind Competition Engages Tomorrow's Wind Energy Innovators January 6, 2014 - 10:00am Addthis 2014 Collegiate Teams Boise State...

  9. 20% Wind Energy by 2030: Increasing Wind Energy's Contribution...

    Energy Savers [EERE]

    : Increasing Wind Energy's Contribution to U.S. Electricity Supply (Executive Summary) 20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply...

  10. National Wind Technology Center (Fact Sheet), National Wind Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NATIONAL WIND TECHNOLOGY CENTER www.nrel.govwind Wind energy is one of the fastest growing electricity generation sources in the world. NREL's National Wind Technology Center...

  11. Sinomatech Wind Power Blade aka Sinoma Science Technology Wind...

    Open Energy Info (EERE)

    Sinomatech Wind Power Blade aka Sinoma Science Technology Wind Turbine Blade Co Ltd Jump to: navigation, search Name: Sinomatech Wind Power Blade (aka Sinoma Science & Technology...

  12. 20% Wind Energy by 2030: Increasing Wind Energy's Contribution...

    Office of Environmental Management (EM)

    a new vision for wind energy through 2050. Taking into account all facets of wind energy (land-based, offshore, distributed), the new Wind Vision Report defines the...

  13. Vane shear determination of the visco-elastic shear modulus of submarine sediments

    E-Print Network [OSTI]

    Stevenson, Herbert Scott

    1973-01-01T23:59:59.000Z

    the process of deformation under shear can be considered and some of the factors affecting the viscoelastic nature of submarine clays can be identified. When the flocculent clay structure is subjected to shear the bonds between the particles ai e first... of MASTER OF SCIENCE December 1973 Major Subject: Civil Engineering VANE SHEAR DETERMINATION OF THE VISCOELASTIC SHEAR MODULUS OF SUBMARINE SEDIMENTS A Thesis by Herbert Scott Stevenson Approved as to style and content by: Chairman of Committ e M...

  14. On production costs in vertical differentiation models

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    EA 4272 On production costs in vertical differentiation models Dorothe BRECARD(*) 2009,version1-1Oct2009 #12;1 On production costs in vertical differentiation models Dorothe Brcard production cost beside a fixed cost of quality improvement in a duopoly model of vertical product

  15. 7, 22492274, 2007 Vertical ozone over

    E-Print Network [OSTI]

    Boyer, Edmond

    ACPD 7, 22492274, 2007 Vertical ozone over Eastern Mediterranean and Central Europe P. D a Creative Commons License. Atmospheric Chemistry and Physics Discussions Vertical ozone measurements (kalabokas pavlos@yahoo.gr) 2249 #12;ACPD 7, 22492274, 2007 Vertical ozone over Eastern Mediterranean

  16. Vertically aligned nanostructure scanning probe microscope tips

    DOE Patents [OSTI]

    Guillorn, Michael A.; Ilic, Bojan; Melechko, Anatoli V.; Merkulov, Vladimir I.; Lowndes, Douglas H.; Simpson, Michael L.

    2006-12-19T23:59:59.000Z

    Methods and apparatus are described for cantilever structures that include a vertically aligned nanostructure, especially vertically aligned carbon nanofiber scanning probe microscope tips. An apparatus includes a cantilever structure including a substrate including a cantilever body, that optionally includes a doped layer, and a vertically aligned nanostructure coupled to the cantilever body.

  17. Sandia Energy - Sandia Wind Turbine Loads Database

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Wind Turbine Loads Database Home Stationary Power Energy Conversion Efficiency Wind Energy Resources Wind Software Downloads Sandia Wind Turbine Loads Database Sandia Wind...

  18. Sandia National Laboratories: Wind Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Energy Staff On March 24, 2011, in Wind Energy On November 10, 2010, in Wind Plant Opt. Rotor Innovation Materials, Reliability & Standards Siting & Barrier Mitigation...

  19. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    the Impact of Significant Wind Generation Facilities on BulkOperations Impacts of Wind Generation Integration Study.Impacts of Integrating Wind Generation into Idaho Power's

  20. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    Operations Impacts of Wind Generation Integration Study.Impacts of Integrating Wind Generation into Idaho Power's2008. Analysis of Wind Generation Impact on ERCOT Ancillary

  1. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    the Impact of Significant Wind Generation Facilities on BulkOperations Impacts of Wind Generation Integration Study.Impacts of Integrating Wind Generation into Idaho Power's

  2. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    Operations Impacts of Wind Generation Integration Study.Impacts of Integrating Wind Generation into Idaho Power'sthe Impact of Significant Wind Generation Facilities on Bulk

  3. WIND DATA REPORT Presque Isle

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Presque Isle June 1, 2005 August 31, 2005 Prepared for United States Department...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  4. WIND DATA REPORT Presque Isle

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Presque Isle December 1, 2004 February 28, 2005 Prepared for United States.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  5. WIND DATA REPORT Presque Isle

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Presque Isle December 1, 2004 December 1, 2005 Prepared for United States ......................................................................................................... 9 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  6. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island June 1, 2003 August 31, 2003 Prepared for Massachusetts...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distribution

  7. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    Prepared for the Utility Wind Integration Group. Arlington,Consult. 2010. International Wind Energy Development: WorldUBS Global I/O: Global Wind Sector. UBS Investment Research.

  8. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island December 1, 2003 February 29, 2004 Prepared for Massachusetts.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distribution

  9. WIND DATA REPORT Presque Isle

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Presque Isle March 1, 2005 May 31, 2005 Prepared for United States Department.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  10. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island March 1, 2003 May 31, 2003 Prepared for Massachusetts Technology...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  11. WIND DATA REPORT FALMOUTH, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT FALMOUTH, MA June1, 2004 to August 31, 2004. Prepared for Massachusetts Technology...................................................................................................................... 8 Wind Speed Time Series............................................................................................................. 8 Wind Speed Distributions

  12. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island September 1, 2003 November 30, 2003 Prepared for Massachusetts...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distribution

  13. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island March 1, 2004 May 31, 2004 Prepared for Massachusetts Technology...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distribution

  14. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    2008. Washington, DC: American Wind Energy Association.American Wind Energy Association ( AWEA).2009b. AWEA Small Wind Turbine Global Market Study: Year

  15. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island June 1, 2004 August 31, 2004 Prepared for Massachusetts...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distribution

  16. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    Table 8 Figure 30. Wind Integration Costs at Various LevelsOperations and Maintenance Costs Wind project operations andPublic Service Wind Integration Cost Impact Study. Prepared

  17. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    wind turbine components (specifically, generators, bladeschangers. Wind turbine components such as blades, towers,Canada (8%). Wind turbine component exports (towers, blades,

  18. 2012 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2014-01-01T23:59:59.000Z

    with the section on offshore wind; Donna Heimiller and Billyof 2012, global cumulative offshore wind capacity stood ats (DOEs) investments in offshore wind energy research and

  19. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    charging wind power projects for balancing services. 81 BPA,in balancing reserves with increased wind power penetrationin balancing reserves with increased wind power penetration

  20. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    charging wind power projects for balancing services. 88 BPA,in balancing reserves with increased wind power penetrationin balancing reserves with increased wind power penetration

  1. 2012 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2014-01-01T23:59:59.000Z

    Xcel Energy. 2011. Wind Induced Coal Plant Cyclingand the Implications of Wind Curtailment for Public Serviceof Colorado 2 GW and 3 GW Wind Integration Cost Study.

  2. Wind Farms in North America

    E-Print Network [OSTI]

    Hoen, Ben

    2014-01-01T23:59:59.000Z

    Opinion About Large Offshore Wind Power: Underlying Factors.Delaware Opinion on Offshore Wind Power - Interim Report.Newark, DE. 16 pages. Global Wind Energy Council (GWEC) (

  3. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    2011. In March 2011, NRG Bluewater Wind?s Delaware projectPurchaser Delmarva NRG Bluewater Wind (Delaware) Universitythe project, while NRG Bluewater would retain the remaining

  4. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    natural gas prices), pushed wind energy to the top of (andperformance, and price of wind energy, policy uncertainty cost, performance, and price of wind energy, some of these

  5. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island December 1, 2004 February 28, 2005 Prepared for Massachusetts.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distribution

  6. WIND DATA REPORT DARTMOUTH, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT DARTMOUTH, MA March 26th 2005 to May 31st 2005. Prepared for Massachusetts...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  7. WIND DATA REPORT FALMOUTH, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT FALMOUTH, MA June 1st 2004- May 31st 2005 Prepared for Massachusetts Technology.................................................................................................................... 10 Wind Speed Distributions......................................................................................................... 11 Monthly Average Wind Speeds

  8. WIND DATA REPORT Kingston, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Kingston, MA March 1, 2006 - May 31, 2006 Prepared for Massachusetts Technology.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distributions.......

  9. WIND DATA REPORT Nantucket, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Nantucket, MA September 1st 2005 to November 30th 2005. Prepared for Massachusetts.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  10. WIND DATA REPORT Wellfleet, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Wellfleet, MA December 1st , 2006 February 28th , 2007 Prepared...................................................................................................................... 8 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  11. WIND DATA REPORT Nantucket, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Nantucket, MA June 1st 2006 to August 31th 2006 Prepared for Massachusetts.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed D

  12. WIND DATA REPORT Truro, Massachusetts

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Truro, Massachusetts March 24th to May 31st , 2006 Prepared for Massachusetts.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distributions

  13. WIND DATA REPORT Chester, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Chester, MA December 2006 February 2007 Prepared for Massachusetts Technology...................................................................................................................... 9 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  14. WIND DATA REPORT Brewster, Massachusetts

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Brewster, Massachusetts December 1, 2005 - February 28, 2006 Prepared.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 12 Wind Speed Di

  15. WIND DATA REPORT Truro, Massachusetts

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Truro, Massachusetts December, 2006 1st to February 28th , 2007 Prepared...................................................................................................................... 9 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  16. WIND DATA REPORT Brewster, Massachusetts

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Brewster, Massachusetts June 1, 2006 - August 31, 2006 Prepared for Massachusetts.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Di

  17. WIND DATA REPORT Chester, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Chester, MA March 2007 May 2007 Prepared for Massachusetts Technology...................................................................................................................... 8 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  18. WIND DATA REPORT Chester, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Chester, MA September November 2006 Prepared for Massachusetts Technology.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distributions

  19. WIND DATA REPORT DARTMOUTH, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT DARTMOUTH, MA September 1st 2005 to November 30th 2005. Prepared for Massachusetts.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  20. WIND DATA REPORT Kingston, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Kingston, MA December 1, 2005 - February 28, 2006 Prepared for Massachusetts.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distribution

  1. WIND DATA REPORT Brewster, Massachusetts

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Brewster, Massachusetts September 1, 2006 - November 30, 2006 Prepared.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distributions..................

  2. WIND DATA REPORT Nantucket, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Nantucket, MA December 1st 2005 to February 28th 2006 Prepared for Massachusetts.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distributions

  3. WIND DATA REPORT Gardner NCCI

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Gardner NCCI March 1, 2007 May 31, 2007 Prepared for Massachusetts Technology...................................................................................................................... 8 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  4. WIND DATA REPORT FALMOUTH, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT FALMOUTH, MA Sep 1st 2004 to Nov 30th 2004. Prepared for Massachusetts Technology...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  5. WIND DATA REPORT Chester, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Chester, MA June August 2006 Prepared for Massachusetts Technology Collaborative.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distributions

  6. WIND DATA REPORT September 2005

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Lynn, MA September 2005 Prepared for Massachusetts Technology Collaborative 75.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Monthly Average Wind Speeds

  7. WIND DATA REPORT Nantucket, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Nantucket, MA June 1st 2005 to August 31st 2005. Prepared for Massachusetts.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  8. WIND DATA REPORT Truro, Massachusetts

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Truro, Massachusetts September 1st to November 30th , 2006 Prepared.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distributions

  9. WIND DATA REPORT Truro, Massachusetts

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Truro, Massachusetts June 1st to August 31st , 2006 Prepared for Massachusetts.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distributions

  10. WIND DATA REPORT DARTMOUTH, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT DARTMOUTH, MA June 1st 2005 to August 31st 2005. Prepared for Massachusetts.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  11. WIND DATA REPORT Brewster, Massachusetts

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Brewster, Massachusetts March 1, 2006 - May 31, 2006 Prepared for Massachusetts.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distributi

  12. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island September 1, 2004 November 30, 2004 Prepared for Massachusetts.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distribution.............

  13. WIND DATA REPORT DARTMOUTH, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT DARTMOUTH, MA December 1st 2005 to February 28th 2006. Prepared for Massachusetts.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distributions

  14. WIND DATA REPORT Dartmouth, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Dartmouth, MA March 1st 2006 to May 31th 2006 Prepared for Massachusetts.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distributions

  15. WIND DATA REPORT Wellfleet, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Wellfleet, MA March 1st , 2007 May 31st , 2007 Prepared for Massachusetts...................................................................................................................... 8 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  16. WIND DATA REPORT Gardner NCCI

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Gardner NCCI September 1, 2007 November 30, 2007 Prepared for Massachusetts...................................................................................................................... 8 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  17. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island March 1, 2005 May 31, 2005 Prepared for Massachusetts Technology.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distribution

  18. WIND DATA REPORT Chester, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Chester, MA April 14 May 31, 2006 Prepared for Massachusetts Technology.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distributions

  19. WIND DATA REPORT FALMOUTH, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT FALMOUTH, MA Dec 1st 2004 to Feb 28th 2005. Prepared for Massachusetts Technology ...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  20. WIND DATA REPORT FALMOUTH, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT FALMOUTH, MA March 1st 2005 to May 31st 2005. Prepared for Massachusetts...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  1. WIND DATA REPORT Dartmouth, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Dartmouth, MA June 1st 2006 to July 31th 2006 Prepared for Massachusetts.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distributions

  2. WIND DATA REPORT Gardner NCCI

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Gardner NCCI June 1, 2007 August 31, 2007 Prepared for Massachusetts Technology...................................................................................................................... 8 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  3. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    studies show that wind energy integration costs are below $do not represent wind energy generation costs. This sectioncomponent of the overall cost of wind energy, but can vary

  4. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    do not represent wind energy generation costs. Based on thisproduction-cost reduction value of wind energy, without anwith wind energy. Generally, these costs are associated with

  5. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    performance, and price of wind energy, policy uncertainty The wind energy integration, transmission, and policyand absent supportive policies for wind energy. That said,

  6. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    The wind energy integration, transmission, and policy2012, however, federal policy towards wind energy remainsin federal policy towards wind energy after 2012 places such

  7. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    The wind energy integration, transmission, and policyPTC. Moreover, federal policy towards wind energy remainsand policy announcements demonstrate accelerated activity in the offshore wind energy

  8. WIND DATA REPORT Nantucket, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Nantucket, MA March 1st 2006 to May 31th 2006 Prepared for Massachusetts.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distribut

  9. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    Market Report vii potential wind energy generation withinthat nearly 8% of potential wind energy generation withinAreas, in GWh (and % of potential wind generation) Electric

  10. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    capacity), with 17% of all potential wind energy generationthat roughly 17% of potential wind energy generation withinexample, roughly 1% of potential wind energy output in 2009

  11. Q-Winds satellite hurricane wind retrievals and H*Wind comparisons

    E-Print Network [OSTI]

    Hennon, Christopher C.

    of the hurricane surface winds from NOAA and U.S. Air Force Weather Squadron aircraft flights. Further, results1 Q-Winds satellite hurricane wind retrievals and H*Wind comparisons Pet Laupattarakasem and W This paper presents a new hurricane ocean vector wind (OVW) product known as Q-Winds produced from the SeaWinds

  12. COE projection for the modular WARP{trademark} wind power system for wind farms and electric utility power transmission

    SciTech Connect (OSTI)

    Weisbrich, A.L. [ENECO, West Simsbury, CT (United States); Ostrow, S.L.; Padalino, J. [Raytheon Engineers and Constructors, New York, NY (United States)

    1995-09-01T23:59:59.000Z

    Wind power has emerged as an attractive alternative source of electricity for utilities. Turbine operating experience from wind farms has provided corroborating data of wind power potential for electric utility application. Now, a patented modular wind power technology, the Toroidal Accelerator Rotor Platform (TARP{trademark}) Windframe{trademark}, forms the basis for next generation megawatt scale wind farm and/or distributed wind power plants. When arranged in tall vertically clustered TARP{trademark} module stacks, such power plant units are designated Wind Amplified Rotor Platform (WARP{trademark}) Systems. While heavily building on proven technology, these systems are projected to surpass current technology windmills in terms of performance, user-friendly operation and ease of maintenance. In its unique generation and transmission configuration, the WARP{trademark}-GT System combines both electricity generation through wind energy conversion and electric power transmission. Furthermore, environmental benefits include dramatically less land requirement, architectural appearance, lower noise and EMI/TV interference, and virtual elimination of bird mortality potential. Cost-of-energy (COE) is projected to be from under $0.02/kWh to less than $0.05/kWh in good to moderate wind resource sites.

  13. Wind Power Career Chat

    SciTech Connect (OSTI)

    Not Available

    2011-01-01T23:59:59.000Z

    This document will teach students about careers in the wind energy industry. Wind energy, both land-based and offshore, is expected to provide thousands of new jobs in the next several decades. Wind energy companies are growing rapidly to meet America's demand for clean, renewable, and domestic energy. These companies need skilled professionals. Wind power careers will require educated people from a variety of areas. Trained and qualified workers manufacture, construct, operate, and manage wind energy facilities. The nation will also need skilled researchers, scientists, and engineers to plan and develop the next generation of wind energy technologies.

  14. Wind energy information guide

    SciTech Connect (OSTI)

    NONE

    1996-04-01T23:59:59.000Z

    This book is divided into nine chapters. Chapters 1--8 provide background and annotated references on wind energy research, development, and commercialization. Chapter 9 lists additional sources of printed information and relevant organizations. Four indices provide alphabetical access to authors, organizations, computer models and design tools, and subjects. A list of abbreviations and acronyms is also included. Chapter topics include: introduction; economics of using wind energy; wind energy resources; wind turbine design, development, and testing; applications; environmental issues of wind power; institutional issues; and wind energy systems development.

  15. Wind power today

    SciTech Connect (OSTI)

    NONE

    1998-04-01T23:59:59.000Z

    This publication highlights initiatives of the US DOE`s Wind Energy Program. 1997 yearly activities are also very briefly summarized. The first article describes a 6-megawatt wind power plant installed in Vermont. Another article summarizes technical advances in wind turbine technology, and describes next-generation utility and small wind turbines in the planning stages. A village power project in Alaska using three 50-kilowatt turbines is described. Very brief summaries of the Federal Wind Energy Program and the National Wind Technology Center are also included in the publication.

  16. Wind Regimes in Complex Terrain of the Great Valley of Eastern Tennessee

    SciTech Connect (OSTI)

    Birdwell, Kevin R [ORNL

    2011-05-01T23:59:59.000Z

    This research was designed to provide an understanding of physical wind mechanisms within the complex terrain of the Great Valley of Eastern Tennessee to assess the impacts of regional air flow with regard to synoptic and mesoscale weather changes, wind direction shifts, and air quality. Meteorological data from 2008 2009 were analyzed from 13 meteorological sites along with associated upper level data. Up to 15 ancillary sites were used for reference. Two-step complete linkage and K-means cluster analyses, synoptic weather studies, and ambient meteorological comparisons were performed to generate hourly wind classifications. These wind regimes revealed seasonal variations of underlying physical wind mechanisms (forced channeled, vertically coupled, pressure-driven, and thermally-driven winds). Synoptic and ambient meteorological analysis (mixing depth, pressure gradient, pressure gradient ratio, atmospheric and surface stability) suggested up to 93% accuracy for the clustered results. Probabilistic prediction schemes of wind flow and wind class change were developed through characterization of flow change data and wind class succession. Data analysis revealed that wind flow in the Great Valley was dominated by forced channeled winds (45 67%) and vertically coupled flow (22 38%). Down-valley pressure-driven and thermally-driven winds also played significant roles (0 17% and 2 20%, respectively), usually accompanied by convergent wind patterns (15 20%) and large wind direction shifts, especially in the Central/Upper Great Valley. The behavior of most wind regimes was associated with detectable pressure differences between the Lower and Upper Great Valley. Mixing depth and synoptic pressure gradients were significant contributors to wind pattern behavior. Up to 15 wind classes and 10 sub-classes were identified in the Central Great Valley with 67 joined classes for the Great Valley at-large. Two-thirds of Great Valley at-large flow was defined by 12 classes. Winds flowed on-axis only 40% of the time. The Great Smoky Mountains helped create down-valley pressure-driven winds, downslope mountain breezes, and divergent air flow. The Cumberland Mountains and Plateau were associated with wind speed reductions in the Central Great Valley, Emory Gap Flow, weak thermally-driven winds, and northwesterly down sloping. Ridge-and-valley terrain enhanced wind direction reversals, pressure-driven winds, as well as locally and regionally produced thermally-driven flow.

  17. Internal and Interface Shear Strength of

    E-Print Network [OSTI]

    Zornberg, Jorge G.

    1 Internal and Interface Shear Strength of Geosynthetic Clay Liners (GCLs): Additional Data by John Liners (GCLs): Additional Data Geosynthetic Clay Liners (GCLs) are prefabricated geocomposite materials., Zornberg, Jorge G., and Swan, Jr., Robert H. Internal and Interface Shear Strength of Geosynthetic Clay

  18. EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI May 3, 2010 EA-1726: Final...

  19. 2008 Wind Energy Projects, Wind Powering America (Poster)

    SciTech Connect (OSTI)

    Not Available

    2009-01-01T23:59:59.000Z

    The Wind Powering America program produces a poster at the end of every calendar year that depicts new U.S. wind energy projects. The 2008 poster includes the following projects: Stetson Wind Farm in Maine; Dutch Hill Wind Farm in New York; Grand Ridge Wind Energy Center in Illinois; Hooper Bay, Alaska; Forestburg, South Dakota; Elbow Creek Wind Project in Texas; Glacier Wind Farm in Montana; Wray, Colorado; Smoky Hills Wind Farm in Kansas; Forbes Park Wind Project in Massachusetts; Spanish Fork, Utah; Goodland Wind Farm in Indiana; and the Tatanka Wind Energy Project on the border of North Dakota and South Dakota.

  20. Particle acceleration efficiencies in astrophysical shear flows

    E-Print Network [OSTI]

    F. M. Rieger; P. Duffy

    2005-02-04T23:59:59.000Z

    The acceleration of energetic particles in astrophysical shear flows is analyzed. We show that in the presence of a non-relativistic gradual velocity shear, power law particle momentum distributions $f(p) \\propto p^{-(3+\\alpha)}$ may be generated, assuming a momentum-dependent scattering time $\\tau \\propto p^{\\alpha}$, with $\\alpha > 0$. We consider possible acceleration sites in astrophysical jets and study the conditions for efficient acceleration. It is shown, for example, that in the presence of a gradual shear flow and a gyro-dependent particle mean free path, synchrotron radiation losses no longer stop the acceleration once it has started to work efficiently. This suggests that shear acceleration may naturally account for a second, non-thermal population of energetic particles in addition to a shock-accelerated one. The possible relevance of shear acceleration is briefly discussed with reference to the relativistic jet in the quasar 3C 273.

  1. A turbulence-driven model for heating and acceleration of the fast wind in coronal holes

    E-Print Network [OSTI]

    Verdini, A; Matthaeus, W H; Oughton, S; Dmitruk, P

    2009-01-01T23:59:59.000Z

    A model is presented for generation of fast solar wind in coronal holes, relying on heating that is dominated by turbulent dissipation of MHD fluctuations transported upwards in the solar atmosphere. Scale-separated transport equations include large-scale fields, transverse Alfvenic fluctuations, and a small compressive dissipation due to parallel shears near the transition region. The model accounts for proton temperature, density, wind speed, and fluctuation amplitude as observed in remote sensing and in situ satellite data.

  2. Shear viscosity of pion gas

    E-Print Network [OSTI]

    Eiji Nakano

    2007-03-21T23:59:59.000Z

    Using chiral perturbation theory we investigate the QCD shear viscosity ($\\eta $) to entropy density ($s$) ratio below the deconfinement temperature ($\\sim 170$ MeV) with zero baryon number density. It is found that $\\eta /s$ of QCD is monotonically decreasing in temperature ($T$) and reaches 0.6 with estimated $\\sim 50%$ uncertainty at T=120 MeV. A naive extrapolation of the leading order result shows that $\\eta /s$ reaches the $1/4\\pi $ minimum bound proposed by Kovtun, Son, and Starinets using string theory methods at $T\\sim 210$ MeV. This suggests a phase transition or cross over might occur at $T\\lesssim 210$ MeV in order for the bound to remain valid. Also, it is natural for $\\eta /s$ to stay close to the minimum bound around the phase transition temperature as was recently found in heavy ion collisions.

  3. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    AWEA?s Wind Energy Weekly, DOE/EPRI?s Turbine Verification10% Wind Energy Penetration New large-scale 9 wind turbineswind energy continues to decline as a result of lower wind turbine

  4. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    AWEAs Wind Energy Weekly, DOE/EPRIs Turbine Verification10% Wind Energy Penetration New large-scale 8 wind turbinesTurbine Market Report. Washington, D.C. : American Wind Energy

  5. Sandia Energy - Wind Plant Optimization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Plant Optimization Home Stationary Power Energy Conversion Efficiency Wind Energy Wind Plant Optimization Wind Plant OptimizationTara Camacho-Lopez2015-05-29T21:33:21+00:00...

  6. Wind Wave Float

    Broader source: Energy.gov (indexed) [DOE]

    Water Power Peer Review WindWaveFloat Alla Weinstein Principle Power, Inc. aweinstein@principlepowerinc.com November 1, 2011 2 | Wind and Water Power Program eere.energy.gov...

  7. Wind Energy Act (Maine)

    Broader source: Energy.gov [DOE]

    The Maine Wind Energy Act is a summary of legislative findings that indicate the state's strong interest in promoting the development of wind energy and establish the state's desire to ease the...

  8. Residential Wind Power

    E-Print Network [OSTI]

    Willis, Gary

    2011-12-16T23:59:59.000Z

    This research study will explore the use of residential wind power and associated engineering and environmental issues. There is various wind power generating devices available to the consumer. The study will discuss the dependencies of human...

  9. Airplane and the wind

    E-Print Network [OSTI]

    Airplane and the wind. An airplane starts from the point A and flies to B. The speed of the airplane with respect to the air is v (constant). There is also a wind of

  10. See the Wind

    Broader source: Energy.gov (indexed) [DOE]

    See the Wind Grades: 5-8 , 9-12 Topic: Wind Energy Owner: Kidwind Project This educational material is brought to you by the U.S. Department of Energy's Office of Energy Efficiency...

  11. Wind JOC Conference - Wind Control Changes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Wind Control Changes JOC August 10, 2012 Presentation updated on July 30, 2012 at 11:00 AM B O N N E V I L L E P O W E R A D M I N I S T R A T I O N 2 Wind Control Changes B O N...

  12. Influence of Mean State on Climate Variability at Interannual and Decadal Time Scales

    E-Print Network [OSTI]

    Zhu, Xiaojie

    2013-05-17T23:59:59.000Z

    for many phenomena associated with variables that are nonlinear by definition, such as the vertical wind shear and surface wind speed. In the first part of this dissertation, the influence of mean flow and anomalous flow on vertical wind shear variability...

  13. WP2 IEA Wind Task 26:The Past and Future Cost of Wind Energy

    E-Print Network [OSTI]

    Lantz, Eric

    2014-01-01T23:59:59.000Z

    Prospects for Offshore Wind Farms. Wind Engineering, 28:Techniques for Offshore Wind Farms. Journal of Solar

  14. Sustainability of Shear-Induced Permeability for EGS Reservoirs...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sustainability of Shear-Induced Permeability for EGS Reservoirs A Laboratory Study Sustainability of Shear-Induced Permeability for EGS Reservoirs A Laboratory Study...

  15. Kent County- Wind Ordinance

    Broader source: Energy.gov [DOE]

    This ordinance establishes provisions and standards for small wind energy systems in various zoning districts in Kent County, Maryland.

  16. Wind Webinar Text Version

    Broader source: Energy.gov [DOE]

    Download the text version of the audio from the DOE Office of Indian Energy webinar on wind renewable energy.

  17. 2012 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2014-01-01T23:59:59.000Z

    regulation and frequency response services charge to wind energyRegulation and Frequency Response Service rate for wind energy

  18. Wind Farms in North America

    E-Print Network [OSTI]

    Hoen, Ben

    2014-01-01T23:59:59.000Z

    Opinion About Large Offshore Wind Power: Underlying Factors.Delaware Opinion on Offshore Wind Power - Interim Report.

  19. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    space constraints. Ohio: The Lake Erie Energy DevelopmentGreat Lakes Ohio Wind, and Great Lakes Wind Energy LLC. In

  20. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    of larger balancing areas, the use of regional wind powerbalancing areas. The successful use of regional wind power

  1. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    directly charging wind power projects for balancing servicesin smaller balancing areas. The successful use of wind power

  2. A comparison of predicted wind turbine blade loads to test measurements

    SciTech Connect (OSTI)

    Wright, A.D.; Thresher, R.W.

    1987-01-01T23:59:59.000Z

    The accurate prediction of wind turbine blade loads and response is important in predicting the fatigue life of wind machines. At the SERI Wind Energy Research Center, a rotor code called FLAP (Force and Loads Analysis Program) is currently being validated by comparing predicted results to machine measurements. The FLAP code has been modified to allow the teetering degrees of freedom. This paper describes these modifications and comparisons of predicted blade bending moments to test measurements. Wind tunnel data for a 1/20th scale model will be used to compare FLAP predictions for the cyclic flap-bending moments at the 33% spanwise station for three different wind speeds. The comparisons will be made for both rigid and teetering hubs. Currently, the FLAP code accounts for deterministic excitations such as wind shear, tower shadow, gravity, and prescribed yawing motions. Conclusions will be made regarding the code's accuracy in predicting the cyclic bending moments.

  3. Wind Economic Development (Postcard)

    SciTech Connect (OSTI)

    Not Available

    2011-08-01T23:59:59.000Z

    The U.S. Department of Energy's Wind Powering America initiative provides information on the economic development benefits of wind energy. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to the economic development benefits section on the Wind Powering America website.

  4. Wind farm electrical system

    DOE Patents [OSTI]

    Erdman, William L.; Lettenmaier, Terry M.

    2006-07-04T23:59:59.000Z

    An approach to wind farm design using variable speed wind turbines with low pulse number electrical output. The output of multiple wind turbines are aggregated to create a high pulse number electrical output at a point of common coupling with a utility grid network. Power quality at each individual wind turbine falls short of utility standards, but the aggregated output at the point of common coupling is within acceptable tolerances for utility power quality. The approach for aggregating low pulse number electrical output from multiple wind turbines relies upon a pad mounted transformer at each wind turbine that performs phase multiplication on the output of each wind turbine. Phase multiplication converts a modified square wave from the wind turbine into a 6 pulse output. Phase shifting of the 6 pulse output from each wind turbine allows the aggregated output of multiple wind turbines to be a 24 pulse approximation of a sine wave. Additional filtering and VAR control is embedded within the wind farm to take advantage of the wind farm's electrical impedence characteristics to further enhance power quality at the point of common coupling.

  5. Wind power outlook 2006

    SciTech Connect (OSTI)

    anon.

    2006-04-15T23:59:59.000Z

    This annual brochure provides the American Wind Energy Association's up-to-date assessment of the wind industry in the United States. This 2006 general assessment shows positive signs of growth, use and acceptance of wind energy as a vital component of the U.S. energy mix.

  6. Wind Turbine Competition Introduction

    E-Print Network [OSTI]

    Wang, Xiaorui "Ray"

    Wind Turbine Competition Introduction: The Society of Hispanic Professional Engineers, SHPE at UTK, wishes to invite you to participate in our first `Wind Turbine' competition as part of Engineer's Week). You will be evaluated by how much power your wind turbine generates at the medium setting of our fan

  7. Offshore Wind Geoff Sharples

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Offshore Wind Geoff Sharples geoff@clearpathenergyllc.com #12;Frequently Unanswered Ques?ons Why don't "they" build more offshore wind? Why not make States Cape Wind PPA at 18 c/kWh #12;The cycle of non-innova?on Offshore

  8. CONGRESSIONAL BRIEFING Offshore Wind

    E-Print Network [OSTI]

    Firestone, Jeremy

    CONGRESSIONAL BRIEFING Offshore Wind Lessons Learned from Europe: Reducing Costs and Creating Jobs Thursday, June 12, 2014 Capitol Visitors Center, Room SVC 215 Enough offshore wind capacity to power six the past decade. What has Europe learned that is applicable to a U.S. effort to deploy offshore wind off

  9. Why do meteorologists use wind vanes? Wind vanes are used to determine the direction of the wind. Wind

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    Fun Facts Why do meteorologists use wind vanes? Wind vanes are used to determine the direction of the wind. Wind vanes are also called weather vanes. What do wind vanes look like on a weather station? Wind vanes that are on weather stations look a lot like the one you made! The biggest differences

  10. assessment modeling productivity: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    approximates boundary layer turbulent kinetic energy (TKE) by parameterizing vertical wind shear, responsible for mechanical production, and kinematic heat flux, responsible...

  11. Mesoscale Simulations of a Wind Ramping Event for Wind Energy Prediction

    SciTech Connect (OSTI)

    Rhodes, M; Lundquist, J K

    2011-09-21T23:59:59.000Z

    Ramping events, or rapid changes of wind speed and wind direction over a short period of time, present challenges to power grid operators in regions with significant penetrations of wind energy in the power grid portfolio. Improved predictions of wind power availability require adequate predictions of the timing of ramping events. For the ramping event investigated here, the Weather Research and Forecasting (WRF) model was run at three horizontal resolutions in 'mesoscale' mode: 8100m, 2700m, and 900m. Two Planetary Boundary Layer (PBL) schemes, the Yonsei University (YSU) and Mellor-Yamada-Janjic (MYJ) schemes, were run at each resolution as well. Simulations were not 'tuned' with nuanced choices of vertical resolution or tuning parameters so that these simulations may be considered 'out-of-the-box' tests of a numerical weather prediction code. Simulations are compared with sodar observations during a wind ramping event at a 'West Coast North America' wind farm. Despite differences in the boundary-layer schemes, no significant differences were observed in the abilities of the schemes to capture the timing of the ramping event. As collaborators have identified, the boundary conditions of these simulations probably dominate the physics of the simulations. They suggest that future investigations into characterization of ramping events employ ensembles of simulations, and that the ensembles include variations of boundary conditions. Furthermore, the failure of these simulations to capture not only the timing of the ramping event but the shape of the wind profile during the ramping event (regardless of its timing) indicates that the set-up and execution of such simulations for wind power forecasting requires skill and tuning of the simulations for a specific site.

  12. Shear Viscosity from Effective Couplings of Gravitons

    E-Print Network [OSTI]

    Rong-Gen Cai; Zhang-Yu Nie; Ya-Wen Sun

    2008-12-12T23:59:59.000Z

    We calculate the shear viscosity of field theories with gravity duals using Kubo-formula by calculating the Green function of dual transverse gravitons and confirm that the value of the shear viscosity is fully determined by the effective coupling of transverse gravitons on the horizon. We calculate the effective coupling of transverse gravitons for Einstein and Gauss-Bonnet gravities coupled with matter fields, respectively. Then we apply the resulting formula to the case of AdS Gauss-Bonnet gravity with $F^4$ term corrections of Maxwell field and discuss the effect of $F^4$ terms on the ratio of the shear viscosity to entropy density.

  13. Wind energy applications guide

    SciTech Connect (OSTI)

    anon.

    2001-01-01T23:59:59.000Z

    The brochure is an introduction to various wind power applications for locations with underdeveloped transmission systems, from remote water pumping to village electrification. It includes an introductory section on wind energy, including wind power basics and system components and then provides examples of applications, including water pumping, stand-alone systems for home and business, systems for community centers, schools, and health clinics, and examples in the industrial area. There is also a page of contacts, plus two specific example applications for a wind-diesel system for a remote station in Antarctica and one on wind-diesel village electrification in Russia.

  14. Aerodynamic testing of a rotating wind turbine blade

    SciTech Connect (OSTI)

    Butterfield, C.P.; Nelsen, E.N.

    1990-01-01T23:59:59.000Z

    Aerodynamic, load, flow-visualization, and inflow measurements were taken on a downwind horizontal-axis wind turbine (HAWT). A video camera mounted on the rotor recorded video images of tufts attached to the low-pressure side of the blade. Strain gages, mounted every 10% of the blade's span, provided load and pressure measurements. Pressure taps at 32 chordwise positions recorded pressure distributions. Wind inflow was measured via a vertical-plane array of anemometers located 10 m upwind. The objectives of the test were to address whether airfoil pressure distributions measured on a rotating blade differed from those measured in the wind tunnel, if radial flow near or in the boundary layer of the airfoil affected pressure distributions, if dynamic stall could result in increased dynamic loads, and if the location of the separation boundary measured on the rotating blade agreed with that measured in two-dimensional flow in the wind tunnel. 6 refs., 9 figs., 1 tab.

  15. Wind pressure distribution on shell structures

    E-Print Network [OSTI]

    Yancey, Kenneth Earl, Jr

    1963-01-01T23:59:59.000Z

    of calculating wind pressures on buildings is illustrated in the following example: it is desired to find the velocity pressure 35 feet above the ground at Corpus Christi, Texas. The following is known: Anemometer height 42 feet Desired lifetime of structure... at the height of the anemometer, 42 feet, proceed vertically to 98 miles per hour; then 100 90 80 70 60 o 50 ~c 40 g 30 20 40 35 30 25 e 20 3 15 -' o + 10 e 0 9 0 0) 0 z C + 0 0 ) o' 10 20 30 40 50 100 200 300 400 500 Height in Feet...

  16. Jet spoiler arrangement for wind turbine

    DOE Patents [OSTI]

    Cyrus, Jack D. (Corrales, NM); Kadlec, Emil G. (Albuquerque, NM); Klimas, Paul C. (Albuquerque, NM)

    1985-01-01T23:59:59.000Z

    An air jet spoiler arrangement is provided for a Darrieus-type vertical axis wind-powered turbine. Air is drawn into hollow turbine blades through air inlets at the ends thereof and is ejected in the form of air jets through small holes or openings provided along the lengths of the blades. The air jets create flow separation at the surfaces of the turbine blades, thereby inducing stall conditions and reducing the output power. A feedback control unit senses the power output of the turbine and controls the amount of air drawn into the air inlets accordingly.

  17. Jet spoiler arrangement for wind turbine

    DOE Patents [OSTI]

    Cyrus, J.D.; Kadlec, E.G.; Klimas, P.C.

    1983-09-15T23:59:59.000Z

    An air jet spoiler arrangement is provided for a Darrieus-type vertical axis wind-powered turbine. Air is drawn into hollow turbine blades through air inlets at the end thereof and is ejected in the form of air jets through small holes or openings provided along the lengths of the blades. The air jets create flow separation at the surfaces of the turbine blades, thereby including stall conditions and reducing the output power. A feedback control unit senses the power output of the turbine and controls the amount of air drawn into the air inlets accordingly.

  18. Wind turbine generator with improved operating subassemblies

    DOE Patents [OSTI]

    Cheney, Jr., Marvin C. (24 Stonepost Rd., Glastonbury, CT 06033)

    1985-01-01T23:59:59.000Z

    A wind turbine includes a yaw spring return assembly to return the nacelle from a position to which it has been rotated by yawing forces, thus preventing excessive twisting of the power cables and control cables. It also includes negative coning restrainers to limit the bending of the flexible arms of the rotor towards the tower, and stop means on the rotor shaft to orient the blades in a vertical position during periods when the unit is upwind when the wind commences. A pendulum pitch control mechanism is improved by orienting the pivot axis for the pendulum arm at an angle to the longitudinal axis of its support arm, and excessive creep is of the synthetic resin flexible beam support for the blades is prevented by a restraining cable which limits the extent of pivoting of the pendulum during normal operation but which will permit further pivoting under abnormal conditions to cause the rotor to stall.

  19. Analyzing the Effects of Temporal Wind Patterns on the Value ofWind-Generated Electricity at Different Sites in California and theNorthwest

    SciTech Connect (OSTI)

    Fripp, Matthias; Wiser, Ryan

    2006-05-31T23:59:59.000Z

    Wind power production varies on a diurnal and seasonal basis. In this report, we use wind speed data modeled by TrueWind Solutions, LLC (now AWS Truewind) to assess the effects of wind timing on the value of electric power from potential wind farm locations in California and the Northwest. (Data from this dataset are referred to as ''TrueWind data'' throughout this report.) The intra-annual wind speed variations reported in the TrueWind datasets have not previously been used in published work, however, so we also compare them to a collection of anemometer wind speed measurements and to a limited set of actual wind farm production data. The research reported in this paper seeks to answer three specific questions: (1) How large of an effect can the temporal variation of wind power have on the value of wind in different wind resource areas? (2) Which locations are affected most positively or negatively by the seasonal and diurnal timing of wind speeds? (3) How compatible are wind resources in the Northwest and California with wholesale power prices and loads in either region? The latter question is motivated by the fact that wind power projects in the Northwest could sell their output into California (and vice versa), and that California has an aggressive renewable energy policy that may ultimately yield such imports. Based on our research, we reach three key conclusions. (1) Temporal patterns have a moderate impact on the wholesale market value of wind power and a larger impact on the capacity factor during peak hours. The best-timed wind power sites have a wholesale market value that is up to 4 percent higher than the average market price, while the worst-timed sites have a market value that is up to 11 percent below the average market price. The best-timed wind sites could produce as much as 30-40 percent more power during peak hours than they do on average during the year, while the worst timed sites may produce 30-60 percent less power during peak hours. (2) Northwestern markets appear to be well served by Northwestern wind and poorly served by California wind; results are less clear for California markets. Both the modeled TrueWind data and the anemometer data indicate that many Northwestern wind sites are reasonably well-matched to the Northwest's historically winter-peaking wholesale electricity prices and loads, while most California sites are poorly matched to these prices and loads. However, the TrueWind data indicate that most California and Northwestern wind sites are poorly matched to California's summer-afternoon-peaking prices and loads, while the anemometer data suggest that many of these same sites are well matched to California's wholesale prices and loads. (3) TrueWind and anemometer data agree about wind speeds in most times and places, but disagree about California's summer afternoon wind speeds: The TrueWind data indicate that wind speeds at sites in California's coastal mountains and some Northwestern locations dip deeply during summer days and stay low through much of the afternoon. In contrast, the anemometer data indicate that winds at these sites begin to rise during the afternoon and are relatively strong when power is needed most. At other times and locations, the two datasets show good agreement. This disagreement may be due in part to time-varying wind shear between the anemometer heights (20-25m) and the TrueWind reference height (50m or 70m), but may also be due to modeling errors or data collection inconsistencies.

  20. Conventional Energy Forum & Associated Vertical Business Development...

    Office of Environmental Management (EM)

    & Casino The Office of Indian Energy Tribal Leader Energy Forum on "Conventional Energy (Oil, Gas, and Coal) Forum & Associated Vertical Business Development: Best Practices in...

  1. Wind tower service lift

    DOE Patents [OSTI]

    Oliphant, David; Quilter, Jared; Andersen, Todd; Conroy, Thomas

    2011-09-13T23:59:59.000Z

    An apparatus used for maintaining a wind tower structure wherein the wind tower structure may have a plurality of legs and may be configured to support a wind turbine above the ground in a better position to interface with winds. The lift structure may be configured for carrying objects and have a guide system and drive system for mechanically communicating with a primary cable, rail or other first elongate member attached to the wind tower structure. The drive system and guide system may transmit forces that move the lift relative to the cable and thereby relative to the wind tower structure. A control interface may be included for controlling the amount and direction of the power into the guide system and drive system thereby causing the guide system and drive system to move the lift relative to said first elongate member such that said lift moves relative to said wind tower structure.

  2. Wind energy conversion system

    DOE Patents [OSTI]

    Longrigg, Paul (Golden, CO)

    1987-01-01T23:59:59.000Z

    The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

  3. West Winds Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to: navigation,Goff,Holt WindInformationWestWinds Wind

  4. the risk issue of wind measurement for wind turbine operation

    E-Print Network [OSTI]

    Leu, Tzong-Shyng "Jeremy"

    Sciences, National Taiwan University #12;outline Wind measurement in meteorology and wind farm design-related issues on wind turbine operation 3/31/2011 2 #12;WIND MEASUREMENT IN METEOROLOGY & WIND FARM DESIGN 3.brainybetty.com 11 wind farm at ChangHwa Coastal Industrial Park 70m wind tower 70m 50m 30m 10m #12;1 2 3 4 5 1 (70M

  5. Particle acceleration in astrophysical shear flows

    E-Print Network [OSTI]

    Frank M. Rieger; Peter Duffy

    2005-01-10T23:59:59.000Z

    We consider the acceleration of particles due to a velocity shear in relativistic astrophysical flows. The basic physical picture and the formation of power law momentum spectra is discussed for a non-relativistic velocity field using a microscopic approach. We identify possible sites for shear acceleration in relativistic astrophysical jets and analyze their associated acceleration timescales. It is shown in particular that for a mean scattering time $\\tau$ scaling with the gyro-radius, the acceleration timescale for gradual shear scales in the same manner as the synchrotron cooling timescale, so that losses may no longer be able to stop the acceleration once it has started to work efficiently. Finally, the possible role of shear acceleration is discussed with reference to the relativistic jet in the quasar 3C~273.

  6. Shear viscosity of degenerate electron matter

    E-Print Network [OSTI]

    P. S. Shternin

    2008-03-27T23:59:59.000Z

    We calculate the partial electron shear viscosity $\\eta_{ee}$ limited by electron-electron collisions in a strongly degenerate electron gas taking into account the Landau damping of transverse plasmons. The Landau damping strongly suppresses $\\eta_{ee}$ in the domain of ultrarelativistic degenerate electrons and modifies its %asymptotic temperature behavior. The efficiency of the electron shear viscosity in the cores of white dwarfs and envelopes of neutron stars is analyzed.

  7. Shear banding in soft glassy materials

    E-Print Network [OSTI]

    Suzanne M. Fielding

    2014-08-20T23:59:59.000Z

    Many soft materials, including foams, dense emulsions, micro gel bead suspensions, star polymers, dense packing of surfactant onion micelles, and textured morphologies of liquid crystals, share the basic "glassy" features of structural disorder and metastability. These in turn give rise to several notable features in the low frequency shear rheology (deformation and flow properties) of these materials: in particular, the existence of a yield stress below which the material behaves like a solid, and above which it flows like a liquid. In the last decade, intense experimental activity has also revealed that these materials often display a phenomenon known as shear banding, in which the flow profile across the shear cell exhibits macroscopic bands of different viscosity. Two distinct classes of yield stress fluid have been identified: those in which the shear bands apparently persist permanently (for as long as the flow remains applied), and those in which banding arises only transiently during a process in which a steady flowing state is established out of an initial rest state (for example, in a shear startup or step stress experiment). After surveying the motivating experimental data, we describe recent progress in addressing it theoretically, using the soft glassy rheology model and a simple fluidity model. We also briefly place these theoretical approaches in the context of others in the literature, including elasto-plastic models, shear transformation zone theories, and molecular dynamics simulations. We discuss finally some challenges that remain open to theory and experiment alike.

  8. Evolution of shear zones in granular materials

    E-Print Network [OSTI]

    Balazs Szabo; Janos Torok; Ellak Somfai; Sandra Wegner; Ralf Stannarius; Axel Bose; Georg Rose; Frank Angenstein; Tamas Borzsonyi

    2014-08-07T23:59:59.000Z

    The evolution of wide shear zones (or shear bands) was investigated experimentally and numerically for quasistatic dry granular flows in split bottom shear cells. We compare the behavior of materials consisting of beads, irregular grains (e.g. sand) and elongated particles. Shearing an initially random sample, the zone width was found to significantly decrease in the first stage of the process. The characteristic shear strain associated with this decrease is about unity and it is systematically increasing with shape anisotropy, i.e. when the grain shape changes from spherical to irregular (e.g. sand) and becomes elongated (pegs). The strongly decreasing tendency of the zone width is followed by a slight increase which is more pronounced for rod like particles than for grains with smaller shape anisotropy (beads or irregular particles). The evolution of the zone width is connected to shear induced density change and for nonspherical particles it also involves grain reorientation effects. The final zone width is significantly smaller for irregular grains than for spherical beads.

  9. Vertical Contracts and Mandatory Universal Distribution

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Vertical Contracts and Mandatory Universal Distribution Larry S. Karp Jeffrey M. Perloff July 2012 vendor. If a monopoly uses a single vendor, the government may impose a mandatory universal distribution consumer welfare. Keywords: vertical restrictions, mandatory universal distribution, new product oligopoly

  10. Downstream Competition, Foreclosure, and Vertical Integration

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    Downstream Competition, Foreclosure, and Vertical Integration Gilles Chemla July 8, 2002 and Management Strategy 12, 2 (2003) 261-289." #12;Downstream Competition, Forclosure, and Vertical Integration Abstract This paper analyzes the impact of competition among downstream rms on an upstream rm's payo

  11. Wind Resource Assessment in Europe Using Emergy

    E-Print Network [OSTI]

    Paudel, Subodh; Santarelli, Massimo; Martin, Viktoria; Lacarriere, Bruno; Le Corre, Olivier

    2014-01-01T23:59:59.000Z

    Wind energy assessment and wind farm simulation in Triunfo- Pernambuco, Brazil,wind resources for electrical energy production. Wind resources as- sessment of Brazil

  12. Sandia Energy - Wind & Water Power Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind & Water Power Newsletter Home Stationary Power Energy Conversion Efficiency Wind Energy Resources Wind & Water Power Newsletter Wind & Water Power NewsletterTara...

  13. Wind Tunnel Building - 3

    E-Print Network [OSTI]

    Unknown

    2005-06-30T23:59:59.000Z

    1 Energy Systems Laboratory 1 A METHODOLOGY FOR CALCULATING EMISSIONS REDUCTIONS FROM RENEWABLE ENERGY PROGRAMS AND ITS APPLICATION TO THE WIND FARMS IN THE TEXAS ERCOT REGION Zi Liu, Jeff Haberl, Juan-Carlos Baltazar, Kris Subbarao, Charles... on Sweetwater I Wind Farm Capacity Factor Analysis Application to All Wind Farms Uncertainty Analysis Emissions Reduction Summary Energy Systems Laboratory 3 SUMMARYEMISSIONS REDUCTION UNCERTAINTY ANALYSIS APPLICATIONMETHODOLOGYINTRODUCTION Background...

  14. Wind Energy and Spatial Technology

    E-Print Network [OSTI]

    Schweik, Charles M.

    2/3/2011 1 Wind Energy and Spatial Technology Lori Pelech Why Wind Energy? A clean, renewable 2,600 tons of carbon emissions annually The economy Approximately 85,000 wind energy workers to Construct a Wind Farm... Geo-Spatial Components of Wind Farm Development Process Selecting a Project Site

  15. Wind Engineering & Natural Disaster Mitigation

    E-Print Network [OSTI]

    Denham, Graham

    Wind Engineering & Natural Disaster Mitigation For more than 45 years, Western University has been internationally recognized as the leading university for wind engineering and wind- related research. Its of environmental disaster mitigation, with specific strengths in wind and earthquake research. Boundary Layer Wind

  16. Proceedings Nordic Wind Power Conference

    E-Print Network [OSTI]

    Estimation of Possible Power for Wind Plant Control Power Fluctuations from Offshore Wind Farms; Model Validation System grounding of wind farm medium voltage cable grids Faults in the Collection Grid of Offshore systems of wind turbines and wind farms. NWPC presents the newest research results related to technical

  17. Enabling Wind Power Nationwide

    Office of Environmental Management (EM)

    hub heights of 110 meters (m) (which are already in wide commercial deployment in Germany and other European countries), the technical potential for wind deployment is...

  18. Allegany County Wind Ordinance

    Broader source: Energy.gov [DOE]

    This ordinance sets requirements for industrial wind energy conversion systems. These requirements include minimum separation distances, setback requirements, electromagnetic interference analysis ...

  19. Talkin Bout Wind Generation

    Broader source: Energy.gov [DOE]

    The amount of electricity generated by the wind industry started to grow back around 1999, and since 2007 has been increasing at a rapid pace.

  20. Enabling Wind Power Nationwide

    Office of Environmental Management (EM)

    including natural gas, and competing renewable power resources such as solar photovoltaics. Figure 4-3. Wind turbine hub height trends in Germany from 2007 to 2014 Source:...

  1. Accelerating Offshore Wind Development

    Broader source: Energy.gov [DOE]

    Today the Energy Department announced investments in seven offshore wind demonstration projects. Check out our map to see where these projects will be located.

  2. wind_guidance

    Broader source: Energy.gov [DOE]

    Guidance to Accompany Non-Availability Waiver of the Recovery Act Buy American Provisions for 5kW and 50kW Wind Turbines

  3. Barstow Wind Turbine Project

    Broader source: Energy.gov [DOE]

    Presentation covers the Barstow Wind Turbine project for the Federal Utility Partnership Working Group (FUPWG) meeting, held on November 18-19, 2009.

  4. Wind | Department of Energy

    Office of Environmental Management (EM)

    in the world. To stay competitive in this sector, the Energy Department invests in wind projects, both on land and offshore, to advance technology innovations, create job...

  5. Northern Wind Farm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    facilities to accommodate the interconnection. The EA also includes a review of the potential environmental impacts of Northern Wind, LLC, constructing, operating, and...

  6. Wind Power Today, 2010, Wind and Water Power Program (WWPP)

    SciTech Connect (OSTI)

    Not Available

    2010-05-01T23:59:59.000Z

    Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Water Power Program.

  7. DOE Offers Conditional Commitment to Cape Wind Offshore Wind...

    Broader source: Energy.gov (indexed) [DOE]

    step toward issuing a 150 million loan guarantee to support the construction of the Cape Wind offshore wind project with a conditional commitment to Cape Wind Associates, LLC. The...

  8. WINS: Market Simulation Tool for Facilitating Wind Energy Integration

    SciTech Connect (OSTI)

    Shahidehpour, Mohammad [Illinois Institute of Technology

    2012-10-30T23:59:59.000Z

    Integrating 20% or more wind energy into the system and transmitting large sums of wind energy over long distances will require a decision making capability that can handle very large scale power systems with tens of thousands of buses and lines. There is a need to explore innovative analytical and implementation solutions for continuing reliable operations with the most economical integration of additional wind energy in power systems. A number of wind integration solution paths involve the adoption of new operating policies, dynamic scheduling of wind power across interties, pooling integration services, and adopting new transmission scheduling practices. Such practices can be examined by the decision tool developed by this project. This project developed a very efficient decision tool called Wind INtegration Simulator (WINS) and applied WINS to facilitate wind energy integration studies. WINS focused on augmenting the existing power utility capabilities to support collaborative planning, analysis, and wind integration project implementations. WINS also had the capability of simulating energy storage facilities so that feasibility studies of integrated wind energy system applications can be performed for systems with high wind energy penetrations. The development of WINS represents a major expansion of a very efficient decision tool called POwer Market Simulator (POMS), which was developed by IIT and has been used extensively for power system studies for decades. Specifically, WINS provides the following superiorities: (1) An integrated framework is included in WINS for the comprehensive modeling of DC transmission configurations, including mono-pole, bi-pole, tri-pole, back-to-back, and multi-terminal connection, as well as AC/DC converter models including current source converters (CSC) and voltage source converters (VSC). (2) An existing shortcoming of traditional decision tools for wind integration is the limited availability of user interface, i.e., decision results are often text-based demonstrations. WINS includes a powerful visualization tool and user interface capability for transmission analyses, planning, and assessment, which will be of great interest to power market participants, power system planners and operators, and state and federal regulatory entities. (3) WINS can handle extended transmission models for wind integration studies. WINS models include limitations on transmission flow as well as bus voltage for analyzing power system states. The existing decision tools often consider transmission flow constraints (dc power flow) alone which could result in the over-utilization of existing resources when analyzing wind integration. WINS can be used to assist power market participants including transmission companies, independent system operators, power system operators in vertically integrated utilities, wind energy developers, and regulatory agencies to analyze economics, security, and reliability of various options for wind integration including transmission upgrades and the planning of new transmission facilities. WINS can also be used by industry for the offline training of reliability and operation personnel when analyzing wind integration uncertainties, identifying critical spots in power system operation, analyzing power system vulnerabilities, and providing credible decisions for examining operation and planning options for wind integration. Researches in this project on wind integration included (1) Development of WINS; (2) Transmission Congestion Analysis in the Eastern Interconnection; (3) Analysis of 2030 Large-Scale Wind Energy Integration in the Eastern Interconnection; (4) Large-scale Analysis of 2018 Wind Energy Integration in the Eastern U.S. Interconnection. The research resulted in 33 papers, 9 presentations, 9 PhD degrees, 4 MS degrees, and 7 awards. The education activities in this project on wind energy included (1) Wind Energy Training Facility Development; (2) Wind Energy Course Development.

  9. Pressure-shear experiments on granular materials.

    SciTech Connect (OSTI)

    Reinhart, William Dodd (Sandia National Laboratories, Albuquerque, NM); Thornhill, Tom Finley, III (, Sandia National Laboratories, Albuquerque, NM); Vogler, Tracy John; Alexander, C. Scott (Sandia National Laboratories, Albuquerque, NM)

    2011-10-01T23:59:59.000Z

    Pressure-shear experiments were performed on granular tungsten carbide and sand using a newly-refurbished slotted barrel gun. The sample is a thin layer of the granular material sandwiched between driver and anvil plates that remain elastic. Because of the obliquity, impact generates both a longitudinal wave, which compresses the sample, and a shear wave that probes the strength of the sample. Laser velocity interferometry is employed to measure the velocity history of the free surface of the anvil. Since the driver and anvil remain elastic, analysis of the results is, in principal, straightforward. Experiments were performed at pressures up to nearly 2 GPa using titanium plates and at higher pressure using zirconium plates. Those done with the titanium plates produced values of shear stress of 0.1-0.2 GPa, with the value increasing with pressure. On the other hand, those experiments conducted with zirconia anvils display results that may be related to slipping at an interface and shear stresses mostly at 0.1 GPa or less. Recovered samples display much greater particle fracture than is observed in planar loading, suggesting that shearing is a very effective mechanism for comminution of the grains.

  10. Aeroelastic stability analysis of a Darrieus wind turbine

    SciTech Connect (OSTI)

    Popelka, D.

    1982-02-01T23:59:59.000Z

    An aeroelastic stability analysis has been developed for predicting flutter instabilities on vertical axis wind turbines. The analytical model and mathematical formulation of the problem are described as well as the physical mechanism that creates flutter in Darrieus turbines. Theoretical results are compared with measured experimental data from flutter tests of the Sandia 2 Meter turbine. Based on this comparison, the analysis appears to be an adequate design evaluation tool.

  11. Kahuku Wind Power (First Wind) | Department of Energy

    Office of Environmental Management (EM)

    The project employs the integration of Clipper LibertyTM wind turbine generators and a control system to more efficiently integrate wind power with the utility's power grid....

  12. American Wind Energy Association Wind Energy Finance and Investment Seminar

    Broader source: Energy.gov [DOE]

    The American Wind Energy Association Wind Energy Finance and Investment Seminar will be attended by representatives in the financial sector, businesses, bankers, government and other nonprofit...

  13. WIND POWER PROGRAM WIND PROGRAM ACCOMPLISHMENTS U.S. Department...

    Office of Environmental Management (EM)

    capturing more wind than ever before through the installation of innovative offshore wind turbines and systems in U.S. waters, the Atmosphere to Electrons initiative which...

  14. Public Acceptance of Wind: Foundational Study Near US Wind Facilities

    Wind Powering America (EERE)

    Group * Energy Analysis and Environmental Impacts Department Public Acceptance of Wind Power Ben Hoen Lawrence Berkeley National Laboratory WindExchange Webinar June 17, 2015...

  15. 20% Wind Energy by 2030 - Chapter 2: Wind Turbine Technology...

    Energy Savers [EERE]

    Wind Energy's Contribution to U.S. Electricity Supply Testing, Manufacturing, and Component Development Projects U.S. Offshore Wind Manufacturing and Supply Chain Development...

  16. Shear induced rigidity in athermal materials: a unified statistical framework

    E-Print Network [OSTI]

    Sumantra Sarkar; Bulbul Chakraborty

    2015-02-18T23:59:59.000Z

    Recent studies of athermal systems such as dry grains and dense, non-Brownian suspensions have shown that shear can lead to solidification through the process of shear jamming in grains and discontinuous shear thickening in suspensions. The similarities observed between these two distinct phenomena suggest that the physical processes leading to shear-induced rigidity in athermal materials are universal. We present a non-equilibrium statistical mechanics model, which exhibits the phenomenology of these shear-driven transitions: shear jamming and discontinuous shear thickening in different regions of the predicted phase diagram. Our analysis identifies the crucial physical processes underlying shear-driven rigidity transitions, and clarifies the distinct roles played by shearing forces and the density of grains.

  17. Fort Carson Wind Resource Assessment

    SciTech Connect (OSTI)

    Robichaud, R.

    2012-10-01T23:59:59.000Z

    This report focuses on the wind resource assessment, the estimated energy production of wind turbines, and economic potential of a wind turbine project on a ridge in the southeastern portion of the Fort Carson Army base.

  18. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    and the drop in wind power plant installations, for example,the decrease in new wind power plant construction. A GrowingRelative Economics of Wind Power Plants Installed in Recent

  19. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    and the drop in wind power plant installations since 2009and the drop in wind power plant installations since 2009towers used in U.S. wind power plants increases from 80% in

  20. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    ET2/TL-08-1474. May 19, 2010 Wind Technologies Market ReportAssociates. 2010. SPP WITF Wind Integration Study. Little10, 2010. David, A. 2009. Wind Turbines: Industry and Trade

  1. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    Associates. 2010. SPP WITF Wind Integration Study. LittlePool. David, A. 2011. U.S. Wind Turbine Trade in a Changing2011. David, A. 2010. Impact of Wind Energy Installations on

  2. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    Public Service Wind Integration Cost Impact Study. Preparedused to estimate wind integration costs and the ability toColorado 2 GW and 3 GW Wind Integration Cost Study. Denver,

  3. Wind Farms in North America

    E-Print Network [OSTI]

    Hoen, Ben

    2014-01-01T23:59:59.000Z

    Economic Analysis of a Wind Farm in Nantucket Sound. BeaconP. and Mueller, A. (2010) Wind Farm Announcements and RuralProposed Rail Splitter Wind Farm. Prepared for Hinshaw &

  4. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    to natural gas. 2008 Wind Technologies Market Report 1% windforward gas market. 2008 Wind Technologies Market Report 4.Market Report Wind Penetration (Capacity Basis) Arizona Public Service Avista Utilities California RPS Idaho Power Xcel-PSCo-2008 at 2006 Gas

  5. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    forward gas market. 2009 Wind Technologies Market Report TheMarket Report Wind Penetration (Capacity Basis) Xcel-PSCo-2008 at 2006 Gasgas facilities run at even lower capacity factors. 2009 Wind Technologies Market Report

  6. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    Technologies Market Report Wind Gas Coal Other Renewablethe forward gas market. 2011 Wind Technologies Market ReportMarket Report Nameplate Capacity (GW) Entered queue in 2011 Total in queue at end of 2011 Wind Natural Gas

  7. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    AWEAs Wind Energy Weekly, DOE/EPRIs Turbine Verification10% Wind Energy Penetration New large-scale 10 wind turbineswind energy became more challenging, orders for new turbines

  8. Wind Farms in North America

    E-Print Network [OSTI]

    Hoen, Ben

    2014-01-01T23:59:59.000Z

    P. and Mueller, A. (2010) Wind Farm Announcements and RuralProposed Rail Splitter Wind Farm. Prepared for Hinshaw &Economic Analysis of a Wind Farm in Nantucket Sound. Beacon

  9. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    natural gas prices), pushed wind energy from the bottom toover the cost and price of wind energy that it receives. Asweighted-average price of wind energy in 1999 was $65/MWh (

  10. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    natural gas prices, though the economic value of wind energyenergy and climate policy initiatives. With wind turbine pricesprices reported here would be at least $20/MWh higher without the PTC), they do not represent wind energy

  11. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    weighted-average price of wind energy in 1999 was roughly $reduced near-term price expectations, wind energy?s primaryelectricity prices in 2009 pushed wind energy to the top of

  12. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    AWEA). 2010b. AWEA Small Wind Turbine Global Market Survey,html David, A. 2009. Wind Turbines: Industry and Tradewhich new large-scale wind turbines were installed in 2009 (

  13. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    shows that 8.5% of potential wind energy generation withinin GWh (and as a % of potential wind generation) Electricreport also laid out a potential wind power deployment path

  14. Carbon smackdown: wind warriors

    SciTech Connect (OSTI)

    Glen Dahlbacka of the Accelerator & Fusion Research Division and Ryan Wiser of the Environmental Energy Technologies Division are the speakers.

    2010-07-21T23:59:59.000Z

    July 16. 2010 carbon smackdown summer lecture: learn how Berkeley Lab scientists are developing wind turbines to be used in an urban setting, as well as analyzing what it will take to increase the adoption of wind energy in the U.S.

  15. VARIABLE SPEED WIND TURBINE

    E-Print Network [OSTI]

    Chatinderpal Singh

    Wind energy is currently the fastest-growing renewable source of energy in India; India is a key market for the wind industry, presenting substantial opportunities for both the international and domestic players. In India the research is carried out on wind energy utilization on big ways.There are still many unsolved challenges in expanding wind power, and there are numerous problems of interest to systems and control researchers. In this paper we study the pitch control mechanism of wind turbine. The pitch control system is one of the most widely used control techniques to regulate the output power of a wind turbine generator. The pitch angle is controlled to keep the generator power at rated power by reducing the angle of the blades. By regulating, the angle of stalling, fast torque changes from the wind will be reutilized. It also describes the design of the pitch controller and discusses the response of the pitch-controlled system to wind velocity variations. The pitch control system is found to have a large output power variation and a large settling time.

  16. Small Wind Information (Postcard)

    SciTech Connect (OSTI)

    Not Available

    2011-08-01T23:59:59.000Z

    The U.S. Department of Energy's Wind Powering America initiative maintains a website section devoted to information about small wind turbines for homeowners, ranchers, and small businesses. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to this online resource.

  17. Carbon smackdown: wind warriors

    ScienceCinema (OSTI)

    Glen Dahlbacka of the Accelerator & Fusion Research Division and Ryan Wiser of the Environmental Energy Technologies Division are the speakers.

    2010-09-01T23:59:59.000Z

    July 16. 2010 carbon smackdown summer lecture: learn how Berkeley Lab scientists are developing wind turbines to be used in an urban setting, as well as analyzing what it will take to increase the adoption of wind energy in the U.S.

  18. Diablo Winds Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision hasda62829c05bGabbs TypeWinds Wind Farm Jump to:

  19. Shear Viscosity of a Hot Pion Gas

    E-Print Network [OSTI]

    Robert Lang; Norbert Kaiser; Wolfram Weise

    2012-09-04T23:59:59.000Z

    The shear viscosity of an interacting pion gas is studied using the Kubo formalism as a microscopic description of thermal systems close to global equilibrium. We implement the skeleton expansion in order to approximate the retarded correlator of the viscous part of the energy-momentum tensor. After exploring this in $g\\phi^4$ theory we show how the skeleton expansion can be consistently applied to pions in chiral perturbation theory. The shear viscosity $\\eta$ is determined by the spectral width, or equivalently, the mean free path of pions in the heat bath. We derive a new analytical result for the mean free path which is well-conditioned for numerical evaluation and discuss the temperature and pion-mass dependence of the mean free path and the shear viscosity. The ratio $\\eta/s$ of the interacting pion gas exceeds the lower bound $1/4\\pi$ from AdS/CFT correspondence.

  20. Illinois Wind Workers Group

    SciTech Connect (OSTI)

    David G. Loomis

    2012-05-28T23:59:59.000Z

    The Illinois Wind Working Group (IWWG) was founded in 2006 with about 15 members. It has grown to over 200 members today representing all aspects of the wind industry across the State of Illinois. In 2008, the IWWG developed a strategic plan to give direction to the group and its activities. The strategic plan identifies ways to address critical market barriers to the further penetration of wind. The key to addressing these market barriers is public education and outreach. Since Illinois has a restructured electricity market, utilities no longer have a strong control over the addition of new capacity within the state. Instead, market acceptance depends on willing landowners to lease land and willing county officials to site wind farms. Many times these groups are uninformed about the benefits of wind energy and unfamiliar with the process. Therefore, many of the project objectives focus on conferences, forum, databases and research that will allow these stakeholders to make well-educated decisions.

  1. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    regulation and frequency response services charge for wind energyRegulation and Frequency Response Service that charges a higher rate for wind energy

  2. Wind Events | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Below is an industry calendar with meetings, conferences, and webinars of interest to the wind energy technology communities. IEA Wind Task 34 (WREN) Quarterly Webinar 3:...

  3. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    forward gas market. 2010 Wind Technologies Market Report 4.Market Report Entered queue in 2010 Total in queue at end of 2010 Nameplate Capacity (GW) Wind Natural Gas

  4. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    AWEAs Wind Energy Weekly, DOE/EPRIs Turbine VerificationTurbine Global Market Study: Year Ending 2008. Washington, DC: American Wind Energy

  5. Wind Energy Resources and Technologies

    Broader source: Energy.gov [DOE]

    This page provides a brief overview of wind energy resources and technologies supplemented by specific information to apply wind energy within the Federal sector.

  6. Large Wind Property Tax Reduction

    Broader source: Energy.gov [DOE]

    In 2001, North Dakota established property tax reductions for commercial wind turbines constructed before 2011. Originally, the law reduced the taxable value of centrally-assessed* wind turbines...

  7. 2012 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2014-01-01T23:59:59.000Z

    wind power projects in the United States to date have been installed on land,on developing wind power projects on public lands. State

  8. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    wind power projects in the United States to date have been installed on land,of developing wind power projects on public lands. State

  9. Nonlinear Saturation of Vertically Propagating Rossby Waves

    E-Print Network [OSTI]

    Giannitsis, Constantine

    The interaction between vertical Rossby wave propagation and wave breaking is studied in the idealized context of a beta-plane channel model. Considering the problem of propagation through a uniform zonal flow in an ...

  10. Vertical Farrning in the Windy City

    E-Print Network [OSTI]

    Saniie, Jafar

    vegetable and fish waste into fertilizer and biogas to power a heating, cooling, and 280-kilowatt electricalIIScience News Vertical Farrning in the Windy City In Chicago's meatpacking district, developer

  11. American Institute of Aeronautics and Astronautics An Experimental Investigation on the Aeromechanics and Near

    E-Print Network [OSTI]

    Hu, Hui

    Layer HAWT = Horizontal axis wind turbine SRWT = Single-rotor wind turbine DRWT(co) = Dual-rotor wind of the wind turbine model TKE = Turbulent kinetic energy Ruv = Reynolds shear stress in vertical. This necessitates the installation of wind turbines in large arrays (farms). Today, Horizontal Axis Wind Turbines

  12. Shear Viscosity of a Unitary Fermi Gas

    E-Print Network [OSTI]

    Gabriel Wlaz?owski; Piotr Magierski; Joaqun E. Drut

    2012-07-12T23:59:59.000Z

    We present the first ab initio determination of the shear viscosity eta of the Unitary Fermi Gas, based on finite temperature quantum Monte Carlo calculations and the Kubo linear-response formalism. We determine the temperature dependence of the shear viscosity to entropy density ratio eta/s. The minimum of eta/s appears to be located above the critical temperature for the superfluid-to-normal phase transition with the most probable value being eta/s approx 0.2 hbar/kB, which almost saturates the Kovtun-Son-Starinets universal value hbar/(4 pi kB).

  13. Energetic particle acceleration in shear layers

    E-Print Network [OSTI]

    M. Ostrowski

    1999-11-05T23:59:59.000Z

    A plasma velocity shear layer and/or a tangential flow discontinuity provide conditions allowing for energetic particle acceleration. We review such acceleration processes acting both in non-relativistic and in relativistic flows. In heliospheric conditions shear layers can provide particles with energies compatible with the observed values (from several keV up to MeV), while in relativistic extragalactic jets proton energies even in excess of 10^{19} eV can be obtained. Application of the discussed theory to particular astrophysical objects is severely limited by inadequate knowledge of local physical conditions.

  14. Shear strain localization in elastodynamic rupture simulations

    E-Print Network [OSTI]

    Daub, Eric G; Carlson, Jean M

    2008-01-01T23:59:59.000Z

    We study strain localization as an enhanced velocity weakening mechanism on earthquake faults. Fault friction is modeled using Shear Transformation Zone (STZ) Theory, a microscopic physical model for non-affine rearrangements in granular fault gouge. STZ Theory is implemented in spring slider and dynamic rupture models of faults. We compare dynamic shear localization to deformation that is uniform throughout the gouge layer, and find that localized slip enhances the velocity weakening of the gouge. Localized elastodynamic ruptures have larger stress drops and higher peak slip rates than ruptures with homogeneous strain.

  15. Ris National Laboratory DTU Wind Energy Department

    E-Print Network [OSTI]

    wind speed, wind direction relative to the spinner and flow inclination angle. A wind tunnel concept anemometer is a wind measurement concept in which measurements of wind speed in the flow over a wind turbine on a modified 300kW wind turbine spinner, was mounted with three 1D sonic wind speed sensors. The flow around

  16. Wind Resource Assessment in Europe Using Emergy

    E-Print Network [OSTI]

    Paudel, Subodh; Santarelli, Massimo; Martin, Viktoria; Lacarriere, Bruno; Le Corre, Olivier

    2014-01-01T23:59:59.000Z

    potential on Hong Kong islands - an analysis of wind power and wind turbine characteristics, Renewable Energy,

  17. Dynamic Modes of Red Blood Cells in Oscillatory Shear Flow

    E-Print Network [OSTI]

    Hiroshi Noguchi

    2010-06-12T23:59:59.000Z

    The dynamics of red blood cells (RBCs) in oscillatory shear flow was studied using differential equations of three variables: a shape parameter, the inclination angle $\\theta$, and phase angle $\\phi$ of the membrane rotation. In steady shear flow, three types of dynamics occur depending on the shear rate and viscosity ratio. i) tank-treading (TT): $\\phi$ rotates while the shape and $\\theta$ oscillate. ii) tumbling (TB): $\\theta$ rotates while the shape and $\\phi$ oscillate. iii) intermediate motion: both $\\phi$ and $\\theta$ rotate synchronously or intermittently. In oscillatory shear flow, RBCs show various dynamics based on these three motions. For a low shear frequency with zero mean shear rate, a limit-cycle oscillation occurs, based on the TT or TB rotation at a high or low shear amplitude, respectively. This TT-based oscillation well explains recent experiments. In the middle shear amplitude, RBCs show an intermittent or synchronized oscillation. As shear frequency increases, the vesicle oscillation becomes delayed with respect to the shear oscillation. At a high frequency, multiple limit-cycle oscillations coexist. For a high mean shear rate with small shear oscillation, the shape and $\\theta$ oscillate in the TT motion but only one attractor exists even at high shear frequencies. The measurement of these oscillatory modes is a promising tool for quantifying the viscoelasticity of RBCs and synthetic capsules.

  18. The rotating wind of the quasar PG 1700+518

    E-Print Network [OSTI]

    S. Young; D. J. Axon; A. Robinson; J. H. Hough; J. E. Smith

    2008-02-27T23:59:59.000Z

    It is now widely accepted that most galaxies undergo an active phase, during which a central super-massive black hole generates vast radiant luminosities through the gravitational accretion of gas. Winds launched from a rotating accretion disk surrounding the black hole are thought to play a critical role, allowing the disk to shed angular momentum that would otherwise inhibit accretion. Such winds are capable of depositing large amounts of mechanical energy in the host galaxy and its environs, profoundly affecting its formation and evolution, and perhaps regulating the formation of large-scale cosmological structures in the early Universe. Although there are good theoretical grounds for believing that outflows from active galactic nuclei originate as disk winds, observational verification has proven elusive. Here we show that structures observed in polarized light across the broad H-alpha emission line in the quasar PG 1700+158 originate close to the accretion disk in an electron scattering wind. The wind has large rotational motions (~4,000 km/s), providing direct observational evidence that outflows from active galactic nuclei are launched from the disks. Moreover, the wind rises nearly vertically from the disk, favouring launch mechanisms that impart an initial acceleration perpendicular to the disk plane.

  19. Wind Energy Program: Top 10 Program Accomplishments

    Broader source: Energy.gov [DOE]

    Brochure on the top accomplishments of the Wind Energy Program, including the development of large wind machines, small machines for the residential market, wind tunnel testing, computer codes for modeling wind systems, high definition wind maps, and successful collaborations.

  20. Saturation wind power potential and its implications for wind energy

    E-Print Network [OSTI]

    Saturation wind power potential and its implications for wind energy Mark Z. Jacobsona,1 at 10 km above ground in the jet streams assuming airborne wind energy devices ("jet stream the theoretical limit of wind energy available at these altitudes, particularly because some recent studies

  1. Reference wind farm selection for regional wind power prediction models

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    1 Reference wind farm selection for regional wind power prediction models Nils Siebert George.siebert@ensmp.fr, georges.kariniotakis@ensmp.fr Abstract Short-term wind power forecasting is recognized today as a major requirement for a secure and economic integration of wind generation in power systems. This paper deals

  2. Wind Energy at NREL's National Wind Technology Center

    SciTech Connect (OSTI)

    None

    2010-01-01T23:59:59.000Z

    It is a pure, plentiful natural resource. Right now wind is in high demand and it holds the potential to transform the way we power our homes and businesses. NREL is at the forefront of wind energy research and development. NREL's National Wind Technology Center (NWTC) is a world-class facility dedicated to accelerating and deploying wind technology.

  3. Quantifying Offshore Wind Resources from Satellite Wind Maps

    E-Print Network [OSTI]

    Pryor, Sara C.

    the spatial extent of the wake behind large offshore wind farms. Copyright 2006 John Wiley & Sons, LtdQuantifying Offshore Wind Resources from Satellite Wind Maps: Study Area the North Sea C. B National Laboratory, Roskilde, Denmark Offshore wind resources are quantified from satellite synthetic

  4. Wind Energy at NREL's National Wind Technology Center

    ScienceCinema (OSTI)

    None

    2013-05-29T23:59:59.000Z

    It is a pure, plentiful natural resource. Right now wind is in high demand and it holds the potential to transform the way we power our homes and businesses. NREL is at the forefront of wind energy research and development. NREL's National Wind Technology Center (NWTC) is a world-class facility dedicated to accelerating and deploying wind technology.

  5. WIND ENERGY Wind Energ. 2013; 16:7790

    E-Print Network [OSTI]

    Papalambros, Panos

    energy industry lags far behind the wind energy industry, it has the potential to become a role player is equal to the long-term potential of onshore wind energy.1,2 Therefore, the utilisation of marineWIND ENERGY Wind Energ. 2013; 16:77­90 Published online 19 March 2012 in Wiley Online Library

  6. Shear and Extensional Rheology of Cellulose/Ionic Liquid Solutions

    E-Print Network [OSTI]

    Haward, Simon J.

    In this study, we characterize the shear and extensional rheology of dilute to semidilute solutions of cellulose in the ionic liquid 1-ethyl-3-methylimidazolium acetate (EMIAc). In steady shear flow, the semidilute solutions ...

  7. Title of dissertation: TURBULENT SHEAR FLOW IN A RAPIDLY ROTATING

    E-Print Network [OSTI]

    Lathrop, Daniel P.

    ABSTRACT Title of dissertation: TURBULENT SHEAR FLOW IN A RAPIDLY ROTATING SPHERICAL ANNULUS Daniel S. Zimmerman, Doctor of Philosophy, 2010 Dissertation directed by: Professor Daniel P. Lathrop Department of Physics This dissertation presents experimental measurements of torque, wall shear stress

  8. Turbulent Transport in Tokamak Plasmas with Rotational Shear

    SciTech Connect (OSTI)

    Barnes, M.; Highcock, E. G. [Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3NP (United Kingdom); Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Parra, F. I.; Schekochihin, A. A. [Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3NP (United Kingdom); Cowley, S. C.; Roach, C. M. [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom)

    2011-04-29T23:59:59.000Z

    Nonlinear gyrokinetic simulations are conducted to investigate turbulent transport in tokamak plasmas with rotational shear. At sufficiently large flow shears, linear instabilities are suppressed, but transiently growing modes drive subcritical turbulence whose amplitude increases with flow shear. This leads to a local minimum in the heat flux, indicating an optimal ExB shear value for plasma confinement. Local maxima in the momentum fluxes are observed, implying the possibility of bifurcations in the ExB shear. The critical temperature gradient for the onset of turbulence increases with flow shear at low flow shears; at higher flow shears, the dependence of heat flux on temperature gradient becomes less stiff. The turbulent Prandtl number is found to be largely independent of temperature and flow gradients, with a value close to unity.

  9. Shear-wave splitting and reservoir crack characterization: the...

    Open Energy Info (EERE)

    Shear-wave splitting and reservoir crack characterization: the Coso geothermal field Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Shear-wave...

  10. Variational bounds for the shear viscosity of gelling melts

    E-Print Network [OSTI]

    Claas H. Khler; Henning Lwe; Peter Mller; Annette Zippelius

    2007-05-03T23:59:59.000Z

    We study shear stress relaxation for a gelling melt of randomly crosslinked, interacting monomers. We derive a lower bound for the static shear viscosity $\\eta$, which implies that it diverges algebraically with a critical exponent $k\\ge 2\

  11. Shear viscosity of CFT plasma at finite coupling

    E-Print Network [OSTI]

    Alex Buchel

    2008-05-29T23:59:59.000Z

    We present evidence for the universality of the shear viscosity of conformal gauge theory plasmas beyond infinite coupling. We comment of subtleties of computing the shear viscosity in effective models of gauge/gravity correspondence rather than in string theory.

  12. Shear Viscosity from the Effective Coupling of Gravitons

    E-Print Network [OSTI]

    Rong-Gen Cai; Zhang-Yu Nie; Ya-Wen Sun

    2010-07-14T23:59:59.000Z

    We review the progress in the holographic calculation of shear viscosity for strongly coupled field theories. We focus on the calculation of shear viscosity from the effective coupling of transverse gravitons and present some explicit examples.

  13. Modeling of strain rate effects on clay in simple shear

    E-Print Network [OSTI]

    Jung, Byoung Chan

    2006-08-16T23:59:59.000Z

    in monotonic and cyclic simple shear tests. Nevertheless, the few available experimental results cover a very limited range of loading conditions and rates. The existing literature established that the soil response display a unique relationship between shear...

  14. ERRATUM DARCY SHEAR STRESS MICHEL LOUGE

    E-Print Network [OSTI]

    Lipson, Michal

    ERRATUM DARCY SHEAR STRESS MICHEL LOUGE This document arises from a conversation with Renaud paper on sand ripples [1], we state "A consequence of equation (9) is that (1 - )[( v) + ( v)T ] 0. The viscous macroscopic Ergun's equation is (1) u = -(K/) p, where u (1 - )v is the superficial gas velocity

  15. Hydrodynamic Modeling and the QGP Shear Viscosity

    E-Print Network [OSTI]

    Huichao Song

    2012-07-10T23:59:59.000Z

    In this article, we will briefly review the recent progress on hydrodynamic modeling and the extraction of the quark-gluon plasma (QGP) specific shear viscosity with an emphasis on results obtained from the hybrid model VISHNU that couples viscous hydrodynamics for the macroscopic expansion of the QGP to the hadron cascade model for the microscopic evolution of the late hadronic stage.

  16. Shear viscosity of a nonperturbative gluon plasma

    E-Print Network [OSTI]

    Dmitri Antonov

    2012-02-10T23:59:59.000Z

    Shear viscosity is evaluated within a model of the gluon plasma, which is based entirely on the stochastic nonperturbative fields. We consider two types of excitations of such fields, which are characterized by the thermal correlation lengths ~ 1/(g^2 T) and ~ 1/(g^4 T), where "g" is the finite-temperature Yang-Mills coupling. Excitations of the first type correspond to the genuine nonperturbative stochastic Yang-Mills fields, while excitations of the second type mimic the known result for the shear viscosity of the perturbative Yang-Mills plasma. We show that the excitations of the first type produce only an O(g^{10})-correction to this result. Furthermore, a possible interference between excitations of these two types yields a somewhat larger, O(g^7), correction to the leading perturbative Yang-Mills result. Our analysis is based on the Fourier transformed Euclidean Kubo formula, which represents an integral equation for the shear spectral density. This equation is solved by seeking the spectral density in the form of the Lorentzian Ans\\"atze, whose widths are defined by the two thermal correlation lengths and by their mean value, which corresponds to the said interference between the two types of excitations. Thus, within one and the same formalism, we reproduce the known result for the shear viscosity of the perturbative Yang-Mills plasma, and account for possible nonperturbative corrections to it.

  17. Internal and Interface Shear Strength of

    E-Print Network [OSTI]

    Zornberg, Jorge G.

    i Internal and Interface Shear Strength of Geosynthetic Clay Liners (GCLs) by John Scott Mc Strength of Geosynthetic Clay Liners (GCLs) Geosynthetic Clay Liners (GCLs) are prefabricated geocomposite materials used as an alternative to compacted clay liners in hydraulic barriers. They often offer hydraulic

  18. Wind | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sureReportsofDepartmentSeries |Attacksof EnergyWhenWindWind ResearchWind

  19. Small Wind Guidebook/What are the Basic Parts of a Small Wind...

    Open Energy Info (EERE)

    What are the Basic Parts of a Small Wind Electric System < Small Wind Guidebook Jump to: navigation, search Print PDF WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind...

  20. 20% Wind Energy by 2030 - Chapter 6: Wind Power Markets Summary...

    Energy Savers [EERE]

    6: Wind Power Markets Summary Slides 20% Wind Energy by 2030 - Chapter 6: Wind Power Markets Summary Slides Summary slides overviewing wind power markets, growth, applications, and...

  1. WP2 IEA Wind Task 26:The Past and Future Cost of Wind Energy

    E-Print Network [OSTI]

    Lantz, Eric

    2014-01-01T23:59:59.000Z

    Looking forward, offshore wind costs are generally expectedachieving the U.S. 20% wind cost and performance trajectoryDissecting Wind Turbine Costs. WindStats Newsletter (21:

  2. WP2 IEA Wind Task 26:The Past and Future Cost of Wind Energy

    E-Print Network [OSTI]

    Lantz, Eric

    2014-01-01T23:59:59.000Z

    Carbon Trust. (2008). Offshore Wind Power: Big Challenge,Financial Support for Offshore Wind. The UK Department ofCost Reduction Prospects for Offshore Wind Farms. Wind

  3. Rheo-PIV of a shear-banding wormlike micellar solution under large amplitude oscillatory shear

    E-Print Network [OSTI]

    Dimitriou, Christopher J.

    We explore the behavior of a wormlike micellar solution under both steady and large amplitude oscillatory shear (LAOS) in a coneplate geometry through simultaneous bulk rheometry and localized velocimetric measurements. ...

  4. Turbulent transport across shear layers in magnetically confined plasmas

    SciTech Connect (OSTI)

    Nold, B.; Ramisch, M. [Institut fr Grenzflchenverfahrenstechnik und Plasmatechnologie, Universitt Stuttgart, D-70569 Stuttgart (Germany); Manz, P.; Birkenmeier, G. [Physik-Department E28, Technische Universitt Mnchen, James-Franck-Str.1, D-85748 Garching (Germany); Max-Planck-Institut fr Plasmaphysik, Boltzmannstr. 2, D-85748 Garching (Germany); Ribeiro, T. T.; Mller, H. W.; Scott, B. D. [Max-Planck-Institut fr Plasmaphysik, Boltzmannstr. 2, D-85748 Garching (Germany); Fuchert, G. [IJL, Universit de Lorraine, CNRS (UMR 7198), BP 40239 Vandoeuvre-ls-Nancy (France); Stroth, U. [Max-Planck-Institut fr Plasmaphysik, Boltzmannstr. 2, D-85748 Garching (Germany); Physik-Department E28, Technische Universitt Mnchen, James-Franck-Str.1, D-85748 Garching (Germany)

    2014-10-15T23:59:59.000Z

    Shear layers modify the turbulence in diverse ways and do not only suppress it. A spatial-temporal investigation of gyrofluid simulations in comparison with experiments allows to identify further details of the transport process across shear layers. Blobs in and outside a shear layer merge, thereby exchange particles and heat and subsequently break up. Via this mechanism particles and heat are transported radially across shear layers. Turbulence spreading is the immanent mechanism behind this process.

  5. wind engineering & natural disaster mitigation

    E-Print Network [OSTI]

    Denham, Graham

    wind engineering & natural disaster mitigation #12;wind engineering & natural disaster mitigation Investment WindEEE Dome at Advanced Manufacturing Park $31million Insurance Research Lab for Better Homes $8million Advanced Facility for Avian Research $9million #12;wind engineering & natural disaster mitigation

  6. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    some wind turbine manufacturers experienced blade andwind turbine manufacturers: Vestas (nacelles, blades, and

  7. Community Wind Benefits (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-11-01T23:59:59.000Z

    This fact sheet explores the benefits of community wind projects, including citations to published research.

  8. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    Cost Analysis: Multi-Year Analysis Results and Recommendations. Consultant report prepared by the California Wind

  9. Kentish Flats Offshore Wind Farm

    E-Print Network [OSTI]

    Firestone, Jeremy

    Kentish Flats Offshore Wind Farm #12;By August 2005 the offshore wind farm at Kentish Flats plateau just outside the main Thames shipping lanes. The Kentish Flats wind farm will comprise 30 of the wind farm could be up to 90 MW. For the benefit of the environment The British Government has set

  10. Optimization of Wind Turbine Operation

    E-Print Network [OSTI]

    Optimization of Wind Turbine Operation by Use of Spinner Anemometer TF Pedersen, NN Sørensen, L Title: Optimization of Wind Turbine Operation by Use of Spinner Anemometer Department: Wind Energy prototype wind turbine. Statistics of the yaw error showed an average of about 10°. The average flow

  11. Wind Electrolysis: Hydrogen Cost Optimization

    SciTech Connect (OSTI)

    Saur, G.; Ramsden, T.

    2011-05-01T23:59:59.000Z

    This report describes a hydrogen production cost analysis of a collection of optimized central wind based water electrolysis production facilities. The basic modeled wind electrolysis facility includes a number of low temperature electrolyzers and a co-located wind farm encompassing a number of 3MW wind turbines that provide electricity for the electrolyzer units.

  12. Spurious Shear in Weak Lensing with LSST

    SciTech Connect (OSTI)

    Chang, C.; Kahn, S.M.; Jernigan, J.G.; Peterson, J.R.; AlSayyad, Y.; Ahmad, Z.; Bankert, J.; Bard, D.; Connolly, A.; Gibson, R.R.; Gilmore, K.; Grace, E.; Hannel, M.; Hodge, M.A.; Jee, M.J.; Jones, L.; Krughoff, S.; Lorenz, S.; Marshall, P.J.; Marshall, S.; Meert, A.

    2012-09-19T23:59:59.000Z

    The complete 10-year survey from the Large Synoptic Survey Telescope (LSST) will image {approx} 20,000 square degrees of sky in six filter bands every few nights, bringing the final survey depth to r {approx} 27.5, with over 4 billion well measured galaxies. To take full advantage of this unprecedented statistical power, the systematic errors associated with weak lensing measurements need to be controlled to a level similar to the statistical errors. This work is the first attempt to quantitatively estimate the absolute level and statistical properties of the systematic errors on weak lensing shear measurements due to the most important physical effects in the LSST system via high fidelity ray-tracing simulations. We identify and isolate the different sources of algorithm-independent, additive systematic errors on shear measurements for LSST and predict their impact on the final cosmic shear measurements using conventional weak lensing analysis techniques. We find that the main source of the errors comes from an inability to adequately characterise the atmospheric point spread function (PSF) due to its high frequency spatial variation on angular scales smaller than {approx} 10{prime} in the single short exposures, which propagates into a spurious shear correlation function at the 10{sup -4}-10{sup -3} level on these scales. With the large multi-epoch dataset that will be acquired by LSST, the stochastic errors average out, bringing the final spurious shear correlation function to a level very close to the statistical errors. Our results imply that the cosmological constraints from LSST will not be severely limited by these algorithm-independent, additive systematic effects.

  13. STEEL PLATE SHEAR WALL BUILDINGS: DESIGN REQUIREMENTS AND RESEARCH

    E-Print Network [OSTI]

    Bruneau, Michel

    , University at Buffalo, Buffalo, NY 14260. #12;plate shear wall design and use of light-gage cold form platesSTEEL PLATE SHEAR WALL BUILDINGS: DESIGN REQUIREMENTS AND RESEARCH Michel Bruneau, P.E. 1 Dr areas. This paper provides an overview of the current state-of-the-art in steel plate shear wall design

  14. Reflective cracking of shear keys in multi-beam bridges

    E-Print Network [OSTI]

    Sharpe, Graeme Peter

    2009-06-02T23:59:59.000Z

    ..............................................2 Figure 2: PCI 33? Box Girder with Shear Keys................................................................5 Figure 3: TxDOT 34? Box Girder with Shear Keys .........................................................5 Figure 4: Test Specimen... Under Tension.........................................................................12 Figure 5: Test Specimen in Bending ...............................................................................12 Figure 6: Test Specimen in Shear...

  15. The Dependence of the Strength and Thickness of Field-Aligned Currents on Solar Wind and Ionospheric Parameters

    SciTech Connect (OSTI)

    Johnson, Jay R. [PPPL; Wing, Simon [Johns Hopkins University

    2014-08-01T23:59:59.000Z

    Sheared plasma flows at the low-latitude boundary layer correlate well with early afternoon auroral arcs and #12;eld-aligned currents [Sonnerup, 1980; Lundin and Evans, 1985]. We present a simple analytic model that relates solar wind and ionospheric parameters to the strength and thickness of field-aligned currents in a region of sheared velocity, such as the low latitude boundary layer. We compare the predictions of the model with DMSP observations and #12;nd remarkably good scaling of the currents with solar wind and ionospheric parameters. The sheared boundary layer thickness is inferred to be around 3000km consistent with observational studies. The analytic model provides a simple way to organize data and to infer boundary layer structures from ionospheric data.

  16. Elastic capsules in shear flow: Analytical solutions for constant and time-dependent shear rates

    E-Print Network [OSTI]

    Steffen Kessler; Reimar Finken; Udo Seifert

    2009-02-26T23:59:59.000Z

    We investigate the dynamics of microcapsules in linear shear flow within a reduced model with two degrees of freedom. In previous work for steady shear flow, the dynamic phases of this model, i.e. swinging, tumbling and intermittent behaviour, have been identified using numerical methods. In this paper, we integrate the equations of motion in the quasi-spherical limit analytically for time-constant and time-dependent shear flow using matched asymptotic expansions. Using this method, we find analytical expressions for the mean tumbling rate in general time-dependent shear flow. The capsule dynamics is studied in more detail when the inverse shear rate is harmonically modulated around a constant mean value for which a dynamic phase diagram is constructed. By a judicious choice of both modulation frequency and phase, tumbling motion can be induced even if the mean shear rate corresponds to the swinging regime. We derive expressions for the amplitude and width of the resonance peaks as a function of the modulation frequency.

  17. Reduction in transport by the parallel velocity shear instability due to reversed magnetic shear

    SciTech Connect (OSTI)

    McCarthy, D. R.; Fuselier, E. J.; Sen, S.

    2001-08-01T23:59:59.000Z

    A nonlocal theory of the electrostatic parallel velocity shear instability in a three-dimensional slab with a uniformly sheared magnetic field has been developed. It is shown that in the limit of a weak parallel velocity gradient, the linear growth rate can be increased depending upon the direction of the magnetic shear (s) with respect to the radial curvature of the parallel velocity profile (d{sup 2}v{sub {parallel}}/dx{sup 2}). When these parameters have the same sign, the growth rate can actually be stronger than in the limit of no magnetic shear. In this limit of increased instability, the eigenmode is broadened, thus producing enhanced transport. This effect should be observable when the scale length of the curvature is of order {approx}L{sub s}{rho}{sub s}. For strong parallel velocity gradients that are more typical of flows in tokamaks, the effect of the varying Doppler shift becomes more prominent on the stability of the mode, the net result being that the sensitivity of the growth rates on the sign of the magnetic shear becomes insignificant. This effect, however, is effectively offset when a finite density gradient is included. When the density scale length is of order the scale length of v{sub {parallel}}, the growth rate is moderately reduced, but becomes dependent again upon the sign of the magnetic shear.

  18. Wind Plant Ramping Behavior

    SciTech Connect (OSTI)

    Ela, E.; Kemper, J.

    2009-12-01T23:59:59.000Z

    With the increasing wind penetrations, utilities and operators (ISOs) are quickly trying to understand the impacts on system operations and planning. This report focuses on ramping imapcts within the Xcel service region.

  19. Wind Energy Systems Exemption

    Broader source: Energy.gov [DOE]

    Tennessee House Bill 809, enacted into law in Public Chapter 377, Acts of 2003 and codified under Title 67, Chapter 5, states that wind energy systems operated by public utilities, businesses or...

  20. Wind Energy Permitting Standards

    Broader source: Energy.gov [DOE]

    All wind facilities larger than 0.5 megawatts (MW) that begin construction after July 1, 2010, must obtain a permit from any county in which the facility is located. Facilities must also obtain...

  1. Wind Turbines Benefit Crops

    ScienceCinema (OSTI)

    Takle, Gene

    2013-03-01T23:59:59.000Z

    Ames Laboratory associate scientist Gene Takle talks about research into the effect of wind turbines on nearby crops. Preliminary results show the turbines may have a positive effect by cooling and drying the crops and assisting with carbon dioxide uptake.

  2. Wind Agreements (Nebraska)

    Broader source: Energy.gov [DOE]

    These regulations address leases or lease options securing land for the study or production of wind-generated energy. The regulations describe agreement terms, compliance, and a prohibition on land...

  3. Suite for Wind Ensemble

    E-Print Network [OSTI]

    Oliver, Theodore

    2014-05-31T23:59:59.000Z

    "Suite for Wind Ensemble" consists of three movements, each of which contains a main theme and several smaller themes. Each main theme is introduced within the first minute of the movement, and the main themes from the ...

  4. Airborne Wind Turbine

    SciTech Connect (OSTI)

    None

    2010-09-01T23:59:59.000Z

    Broad Funding Opportunity Announcement Project: Makani Power is developing an Airborne Wind Turbine (AWT) that eliminates 90% of the mass of a conventional wind turbine and accesses a stronger, more consistent wind at altitudes of near 1,000 feet. At these altitudes, 85% of the country can offer viable wind resources compared to only 15% accessible with current technology. Additionally, the Makani Power wing can be economically deployed in deep offshore waters, opening up a resource which is 4 times greater than the entire U.S. electrical generation capacity. Makani Power has demonstrated the core technology, including autonomous launch, land, and power generation with an 8 meter wingspan, 20 kW prototype. At commercial scale, Makani Power aims to develop a 600 kW, 28 meter wingspan product capable of delivering energy at an unsubsidized cost competitive with coal, the current benchmark for low-cost power.

  5. Wind Turbines Benefit Crops

    SciTech Connect (OSTI)

    Takle, Gene

    2010-01-01T23:59:59.000Z

    Ames Laboratory associate scientist Gene Takle talks about research into the effect of wind turbines on nearby crops. Preliminary results show the turbines may have a positive effect by cooling and drying the crops and assisting with carbon dioxide uptake.

  6. After the Wind Storm

    E-Print Network [OSTI]

    Unknown

    2011-09-05T23:59:59.000Z

    Solar and wind power can be economical and environmentally friendly ways to pump water for homes, irrigation and/or livestock water wells. This publication explains how these pumps work, the advantages and disadvantages of using renewable energy...

  7. Wind Tunnel Building - 1

    E-Print Network [OSTI]

    Unknown

    2005-06-30T23:59:59.000Z

    This paper describes a simple graphic tool that enables a building designer to evaluate the potential for wind induced ventilation cooling in several climate zones. Long term weather data were analyzed to determine the conditions for which available...

  8. The Vertical Force-Couple Generator Shear waves may be generated by a force or force-couple acting on a single interface, or by vertical

    E-Print Network [OSTI]

    Kristoffersen, Yngve

    a vessel. The source impulse was from a horizontal flywheel brought to a sudden stop from running at 500 generator was designed and built by Y. Kristoffersen (Fig. 1). A 150 kg flywheel is mounted in a case of the rotating flywheel is transferred to the medium by the case and wings. Theoretical calculation

  9. Assessing the Importance of Nonlinearities in the Development of a Substructure Model for the Wind Turbine CAE Tool FAST: Preprint

    SciTech Connect (OSTI)

    Damiani, R.; Jonkman, J.; Robertson, A.; Song, H.

    2013-03-01T23:59:59.000Z

    Design and analysis of wind turbines are performed using aero-servo-elastic tools that account for the nonlinear coupling between aerodynamics, controls, and structural response. The NREL-developed computer-aided engineering (CAE) tool FAST also resolves the hydrodynamics of fixed-bottom structures and floating platforms for offshore wind applications. This paper outlines the implementation of a structural-dynamics module (SubDyn) for offshore wind turbines with space-frame substructures into the current FAST framework, and focuses on the initial assessment of the importance of structural nonlinearities. Nonlinear effects include: large displacements, axial shortening due to bending, cross-sectional transverse shear effects, etc.

  10. Wind Tunnel Building - 7

    E-Print Network [OSTI]

    Unknown

    2005-06-30T23:59:59.000Z

    DETERMINATION OF WIND FROM NIMBUS-6 SATELLITE SOUNDING DATA A Thesis by WILLIAM EVERETT CARLE Submitted to the Graduate College of Texas A&M University in partial fulfil!. ment of the requirement for the deg. . ec of MASTER OF SCIENCE... December 1979 Major Subject: Meteorology DETEIQ&INATION OE WIND PROS1 NINEDS-6 SATELLITE SOUNDING DATA A Thesis WILLIA11 EVERETT CARLE Aporoved as to style and content by: (Chairman of Commi tee) Nember) (Head of Department) December 1979...

  11. Previous Wind Power Announcements (generation/wind)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah ProjectPRE-AWARDenergyEnergytransmission-rates Sign In About |Wind

  12. Effect of Shear Displacement Rate on the Internal Shear Strength of GCLs J. S. McCartney1

    E-Print Network [OSTI]

    Zornberg, Jorge G.

    shear strength of geosynthetic clay liners (GCLs) is to replicate behavior noted in the field. However a wider range of shear displacement rates. Introduction The internal shear strength of geosynthetic clay are prefabricated geocomposite materials used in hydraulic barriers as an alternative to compacted clay liners

  13. Aeroelastic Modeling of Large Off-shore Vertical-axis Wind Turbines: Development of the Offshore Wind Energy Simulation Toolkit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973 1BP-14Scripting for AdvancedSensitivity AnalysisBusiness

  14. Wind energy: Program overview, FY 1992

    SciTech Connect (OSTI)

    Not Available

    1993-06-01T23:59:59.000Z

    The DOE Wind Energy Program assists utilities and industry in developing advanced wind turbine technology to be economically competitive as an energy source in the marketplace and in developing new markets and applications for wind systems. This program overview describes the commercial development of wind power, wind turbine development, utility programs, industry programs, wind resources, applied research in wind energy, and the program structure.

  15. An experimental and numerical study of wind turbine seismic behavior

    E-Print Network [OSTI]

    Prowell, I.

    2011-01-01T23:59:59.000Z

    and Scope Wind energy is growing and turbines are regularlyfor Design of Wind Turbines. Wind Energy Department of Risloads on wind turbines. European Wind Energy Conference

  16. Wind Powering America Podcasts, Wind Powering America (WPA)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01T23:59:59.000Z

    Wind Powering America and the National Association of Farm Broadcasters produce a series of radio interviews featuring experts discussing wind energy topics. The interviews are aimed at a rural stakeholder audience and are available as podcasts. On the Wind Powering America website, you can access past interviews on topics such as: Keys to Local Wind Energy Development Success, What to Know about Installing a Wind Energy System on Your Farm, and Wind Energy Development Can Revitalize Rural America. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to this online resource for podcast episodes.

  17. The Wind Integration National Dataset (WIND) toolkit (Presentation)

    SciTech Connect (OSTI)

    Caroline Draxl: NREL

    2014-01-01T23:59:59.000Z

    Regional wind integration studies require detailed wind power output data at many locations to perform simulations of how the power system will operate under high penetration scenarios. The wind datasets that serve as inputs into the study must realistically reflect the ramping characteristics, spatial and temporal correlations, and capacity factors of the simulated wind plants, as well as being time synchronized with available load profiles.As described in this presentation, the WIND Toolkit fulfills these requirements by providing a state-of-the-art national (US) wind resource, power production and forecast dataset.

  18. Direct measurement of shear properties of microfibers

    SciTech Connect (OSTI)

    Behlow, H.; Saini, D.; Durham, L.; Simpson, J.; Skove, M. J.; Rao, A. M. [Department of Physics and Astronomy, and Clemson Nanomaterials Center, Clemson University, Clemson, South Carolina 29634 (United States); Oliveira, L. [School of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634 (United States); Serkiz, S. M. [Department of Physics and Astronomy, and Clemson Nanomaterials Center, Clemson University, Clemson, South Carolina 29634 (United States); Savannah River National Laboratory, Aiken, South Carolina 29808 (United States)

    2014-09-15T23:59:59.000Z

    As novel fibers with enhanced mechanical properties continue to be synthesized and developed, the ability to easily and accurately characterize these materials becomes increasingly important. Here we present a design for an inexpensive tabletop instrument to measure shear modulus (G) and other longitudinal shear properties of a micrometer-sized monofilament fiber sample, such as nonlinearities and hysteresis. This automated system applies twist to the sample and measures the resulting torque using a sensitive optical detector that tracks a torsion reference. The accuracy of the instrument was verified by measuring G for high purity copper and tungsten fibers, for which G is well known. Two industrially important fibers, IM7 carbon fiber and Kevlar{sup } 119, were also characterized with this system and were found to have G = 16.5 2.1 and 2.42 0.32 GPa, respectively.

  19. Free energy of sheared colloidal glasses

    E-Print Network [OSTI]

    M. T. Dang; V. Chikkadi; R. Zargar; D. M. Miedema; D. Bonn; A. Zaccone; P. Schall

    2015-05-25T23:59:59.000Z

    We develop a free energy framework to describe the response of glasses to applied stress. Unlike crystals, for which the free energy increases quadratically with strain due to affine displacements, for glasses, the nonequilibrium free energy decreases due to complex interplay of non-affine displacements and dissipation. We measure this free energy directly in strained colloidal glasses, and use mean-field theory to relate it to affine and nonaffine displacements. Nonaffine displacements grow with applied shear due to shear-induced loss of structural connectivity. Our mean-field model allows for the first time to disentangle the complex contributions of affine and nonaffine displacements and dissipation in the transient deformation of glasses.

  20. Shear viscosity, cavitation and hydrodynamics at LHC

    E-Print Network [OSTI]

    Jitesh R. Bhatt; Hiranmaya Mishra; V. Sreekanth

    2011-09-28T23:59:59.000Z

    We study evolution of quark-gluon matter in the ultrarelativistic heavy-ion collisions within the frame work of relativistic second-order viscous hydrodynamics. In particular, by using the various prescriptions of a temperature-dependent shear viscosity to the entropy ratio, we show that the hydrodynamic description of the relativistic fluid become invalid due to the phenomenon of cavitation. For most of the initial conditions relevant for LHC, the cavitation sets in very early during the evolution of the hydrodynamics in time $\\lesssim 2 $fm/c. The cavitation in this case is entirely driven by the large values of shear viscosity. Moreover we also demonstrate that the conformal term used in equations of the relativistic dissipative hydrodynamic can influence the cavitation time.

  1. Robi, Robichaud, Wind Technologies and Evolving Opportunities

    Broader source: Energy.gov (indexed) [DOE]

    RPS * Wind Technology Overview * Larger Rotors * Taller Towers * Improved Controls * Wind Resource * Improved Assessment 2 Innova+on for Our Energy Future National Wind Technology...

  2. ANNUAL WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    ANNUAL WIND DATA REPORT Thompson Island March 1, 2002 February 28, 2003 Prepared.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distributions

  3. Correlations in thermal comfort and natural wind

    E-Print Network [OSTI]

    Kang, Ki-Nam; Song, Doosam; Schiavon, Stefano

    2013-01-01T23:59:59.000Z

    Chaotic ?uctuation in natural wind and its application toof natural and mechanical wind in built environment usingcharacteristics of natural wind. Refrigeration 71 (821),

  4. Wind Turbine Acoustic Noise A white paper

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Wind Turbine Acoustic Noise A white paper Prepared by the Renewable Energy Research Laboratory...................................................................... 8 Sound from Wind Turbines .............................................................................................. 10 Sources of Wind Turbine Sound

  5. WIND DATA REPORT January -December, 2003

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Vinalhaven January - December, 2003 Prepared for Fox Islands Electric Cooperative...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  6. Strong wind forcing of the ocean

    E-Print Network [OSTI]

    Zedler, Sarah E.

    2007-01-01T23:59:59.000Z

    of mesoscale and steady wind driven 1. Introduction 2. Modelparameterization at high wind speeds 1. Introduction 2. DataSupplementary Formulae 1. Wind Stress 2. Rankine Vortex A .

  7. WIND DATA REPORT January -March, 2004

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Vinalhaven January - March, 2004 Prepared for Fox Islands Electric Cooperative...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  8. WIND DATA REPORT Deer Island Outfall

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Deer Island Outfall August 18, 2003 December 4, 2003 Prepared for Massachusetts...................................................................................................................... 7 Wind Speed Time Series............................................................................................................. 7 Wind Speed Distributions

  9. WIND DATA REPORT Deer Island Parking Lot

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Deer Island Parking Lot May 1, 2003 July 15, 2003 Prepared for Massachusetts...................................................................................................................... 7 Wind Speed Time Series............................................................................................................. 7 Wind Speed Distributions

  10. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    Wind Integration Costs ..adequacy costs. Wind generation costs are also significantlyvalue. 3. We add wind integration cost to the levelized cost

  11. Wavelet Analysis for Wind Fields Estimation

    E-Print Network [OSTI]

    Leite, Gladeston C.

    2013-01-01T23:59:59.000Z

    resource assessment and wind farm development in the UK. Inevaluation of oil spills and wind farms. Keywords: SAR; Winddata to characterize wind farms and their potential energy

  12. Wind Resource Assessment in Europe Using Emergy

    E-Print Network [OSTI]

    Paudel, Subodh; Santarelli, Massimo; Martin, Viktoria; Lacarriere, Bruno; Le Corre, Olivier

    2014-01-01T23:59:59.000Z

    of the Northern Europe offshore wind resource, Journal ofof theoretical offshore wind farm for Jacksonville, Florida,interesting areas for offshore wind farm construction and

  13. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    Coal Wind Hybrid: Economic Analysis additional cost of fuelWind Hybrid: Economic Analysis Levelized Generation CostCoal Wind Hybrid: Economic Analysis Notes: All Cost are in

  14. Wind Webinar Presentation Slides | Department of Energy

    Office of Environmental Management (EM)

    Wind Webinar Presentation Slides Wind Webinar Presentation Slides Download presentation slides from the DOE Office of Indian Energy webinar on wind renewable energy. DOE Office of...

  15. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    of Figures Figure ES-1. Advanced Coal Wind Hybrid: Basicviii Figure 1. Advanced-Coal Wind Hybrid: Basic21 Figure 6. Comparison of ACWH and CCGT-Wind

  16. Wind Resource Assessment in Europe Using Emergy

    E-Print Network [OSTI]

    Paudel, Subodh; Santarelli, Massimo; Martin, Viktoria; Lacarriere, Bruno; Le Corre, Olivier

    2014-01-01T23:59:59.000Z

    of theoretical offshore wind farm for Jacksonville, Florida,interesting areas for offshore wind farm construction andof theoretical offshore wind farm on Jacksonville, Florida

  17. WIND DATA REPORT Quincy DPW, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Quincy DPW, MA September 1st 2006 to November 30th 2006 Prepared for Massachusetts.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distributions

  18. WIND DATA REPORT Bishop and Clerks

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Bishop and Clerks March 1, 2005 May 31, 2005 Prepared for Massachusetts.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distributions

  19. WIND DATA REPORT Quincy Quarry Hills

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Quincy Quarry Hills December 2006 to February 2007 Prepared for Massachusetts...................................................................................................................... 9 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  20. WIND DATA REPORT Quincy DPW, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Quincy DPW, MA June 1st 2006 to August 31st 2006 Prepared for Massachusetts.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distributions