Powered by Deep Web Technologies
Note: This page contains sample records for the topic "vertical seismic profile" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Subsurface imaging with reverse vertical seismic profiles  

E-Print Network [OSTI]

This thesis presents imaging results from a 3D reverse vertical seismic profile (RVSP) dataset measured at a hydrocarbon bearing pinnacle reef in northern Michigan. The study presented many challenges in seismic data ...

Krasovec, Mary L. (Mary Lee), 1972-

2001-01-01T23:59:59.000Z

2

Vertical Seismic Profiling | Open Energy Information  

Open Energy Info (EERE)

Vertical Seismic Profiling Vertical Seismic Profiling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Vertical Seismic Profiling Details Activities (4) Areas (3) Regions (1) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Borehole Seismic Techniques Parent Exploration Technique: Borehole Seismic Techniques Information Provided by Technique Lithology: Rock unit density influences elastic wave velocities. Stratigraphic/Structural: Structural geology- faults, folds, grabens, horst blocks, sedimentary layering, discontinuities, etc. Hydrological: Combining compressional and shear wave results can indicate the presence of fluid saturation in the formation. Thermal: High temperatures and pressure impact the compressional and shear wave velocities.

3

Definition: Vertical Seismic Profiling | Open Energy Information  

Open Energy Info (EERE)

Profiling Profiling Jump to: navigation, search Dictionary.png Vertical Seismic Profiling Vertical Seismic Profile (VSP) is a technique of seismic measurements used for high resolution seismic imaging. It can also be used for correlation with surface seismic data providing velocity information and information for processing such as deconvolution parameters. The defining characteristic of a VSP is that the detectors are in a borehole.[1][2][3] View on Wikipedia Wikipedia Definition Also Known As Advanced Borehole Seismology (ABS), Related Terms Seismic Techniques, High Resolution Imaging and Monitoring References ↑ Bob Hardage VSP Principles ↑ High resolution 3D seismic imaging using 3C data from large downhole seismic arrays Paulsson et al. (2004) ↑ Mueller Soroka Paulsson (2010)

4

Vertical Seismic Profiling At Rye Patch Area (DOE GTP, 2011)...  

Open Energy Info (EERE)

Vertical Seismic Profiling At Rye Patch Area (DOE GTP, 2011) Exploration Activity Details Location Rye Patch Area Exploration Technique Vertical Seismic Profiling Activity Date...

5

Vertical Seismic Profiling (Majer, 2003) | Open Energy Information  

Open Energy Info (EERE)

(Majer, 2003) (Majer, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Vertical Seismic Profiling (Majer, 2003) Exploration Activity Details Location Unspecified Exploration Technique Vertical Seismic Profiling Activity Date Usefulness not indicated DOE-funding Unknown Notes The goal of this work is to evaluate the most promising methods and approaches that may be used for improved geothermal exploration and reservoir assessment. It is not a comprehensive review of all seismic methods used to date in geothermal environments. This work was motivated by a need to assess current and developing seismic technology that if applied in geothermal cases may greatly improve the chances for locating new geothermal resources and/or improve assessment of current ones.

6

Identification of subsurface fractures in the Austin Chalk using vertical seismic profiles  

E-Print Network [OSTI]

IDENTIFICATION OF SUSSURFACE FRACTURES IN THE AUSTIN CHALK USING VERTICAL SEISMIC PROFILES A Thesis by KYLE THOMAS LEWALLEN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirement... for the degree of MASTER OF SCIENCE August 1992 Major Subject: Geophysics IDENTIFICATION OF SUBSURFACE FRACTURES IN THE AUSTIN CHALK USING VERTICAL SEISMIC PROFILES A Thesis by KYLE THOMAS LEWALLEN Approved as to style and content by: T. W. Spencer...

Lewallen, Kyle Thomas

1992-01-01T23:59:59.000Z

7

Vertical Seismic Profiling At Rye Patch Area (Feighner, Et Al., 1999) |  

Open Energy Info (EERE)

Feighner, Et Al., 1999) Feighner, Et Al., 1999) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Vertical Seismic Profiling At Rye Patch Area (Feighner, Et Al., 1999) Exploration Activity Details Location Rye Patch Area Exploration Technique Vertical Seismic Profiling Activity Date Usefulness useful DOE-funding Unknown Notes In December 1997 LBNL obtained a VSP in well 46-28 to determine the seismic reflectivity in the area and to obtain velocity information for the design and potential processing of the proposed 3-D seismic survey Feighner et al. (1998). Because the results of the VSP indicated apparent reflections, TGI proceeded with the collection of 3.0 square miles of 3-D surface seismic data over the Rye Patch reservoir. References M. Feighner, R. Gritto, T. M. Daley, H. Keers, E. L. Majer (1999)

8

Simulation of anisotropic wave propagation in Vertical Seismic Profiles  

E-Print Network [OSTI]

they are powerful tools to simulate seismic wave propagation in three-dimensional anisotropic subsurface models. The code is currently under development using a C++ object oriented programming approach because it provides high flexibility in the design of new...

Durussel, Vincent Bernard

2004-09-30T23:59:59.000Z

9

Investigation of frequency dependent attenuation in a vertical seismic profile  

E-Print Network [OSTI]

and the results analyzed. Use of monitor geophones allows corrections to be made for source variability. Correction for interference by employment of syn- thetic seismogram modeling is attempted, but without success. The synthetic modeling does reveal... of the Problem. Concepts. CHAPTER II ? SEISMIC DATA PROCESSING. . . 12 The VSP Data Set. 12 Cumulative Attenuation Measurements. 23 Variance. 30 CHAPTER III ? SYNTHETIC SEISMOGRAMS. 35 Data Processing. 35 Interference Correction. 41 CHAPTER IV...

Zeitvogel, Mark Evan

2012-06-07T23:59:59.000Z

10

Methane Hydrate and Free Gas on the Blake Ridge from Vertical Seismic Profiling  

Science Journals Connector (OSTI)

...subtle differences in permeability between lithologically...hydrate filling 2% of porosity at Site 994 and...estimate of 1% of porosity, on average, occupied...estimate of 5 to 7% of porosity (33, 34...UNCONSOLIDATED POROUS SAND RESERVOIRS, GEOPHYSICS 42...SEISMIC-WAVES IN POROUS ROCKS, GEOPHYSICS...

W. Steven Holbrook; Hartley Hoskins; Warren T. Wood; Ralph A. Stephen; Daniel Lizarralde

1996-09-27T23:59:59.000Z

11

Fracture detection using crosshole surveys and reverse vertical seismic profiles at the Conoco Borehole Test Facility, Oklahoma  

Science Journals Connector (OSTI)

......profiles at the Conoco Borehole Test Facility, Oklahoma...RVSPs) at the Conoco Borehole Test Facility, Oklahoma...than 50 m, suggest large fracture densities...granite, Scientific Drilling, 1, 21-26. Crampin...system at the Conoco Borehole Test Facility, Kay......

Enru Liu; Stuart Crampin; John H. Queen

1991-12-01T23:59:59.000Z

12

High vertical resolution crosswell seismic imaging  

DOE Patents [OSTI]

A method for producing high vertical resolution seismic images from crosswell data is disclosed. In accordance with one aspect of the disclosure, a set of vertically spaced, generally horizontally extending continuous layers and associated nodes are defined within a region between two boreholes. The specific number of nodes is selected such that the value of a particular characteristic of the subterranean region at each of the nodes is one which can be determined from the seismic data. Once values are established at the nodes, values of the particular characteristic are assigned to positions between the node points of each layer based on the values at node within that layer and without regard to the values at node points within any other layer. A seismic map is produced using the node values and the assigned values therebetween. In accordance with another aspect of the disclosure, an approximate model of the region is established using direct arrival traveltime data. Thereafter, the approximate model is adjusted using reflected arrival data. In accordance with still another aspect of the disclosure, correction is provided for well deviation. An associated technique which provides improvements in ray tracing is also disclosed.

Lazaratos, Spyridon K. (Houston, TX)

1999-12-07T23:59:59.000Z

13

Continuous Seismic Reflexion Profiles in the Red Sea  

Science Journals Connector (OSTI)

...October 1970 research-article Continuous Seismic Reflexion Profiles in the Red Sea J. D. Phillips D. A. Ross Twenty continuous seismic reflexion profiles have been made across...in the deeper axial trough. A strong seismic reflector is observed at depths up to...

1970-01-01T23:59:59.000Z

14

Continental seismic events observed by the MPL vertical DIFAR array  

SciTech Connect (OSTI)

The vertical DIFAR array, an underwater acoustic sensor system, deployed by the Marine Physical Laboratory (MPL) was in place over the continental shelf off of Southern California and recorded the HUNTERS TROPHY nuclear test and nearly a score of after-shocks of the Landers/Big Bear earthquakes. Data from this array raise the possibility that detection thresholds for continental events may be significantly lower for arrays over the continental shelf than for arrays in the deep ocean basins. Offshore stations could be used to fill gaps in land-based seismic networks for monitoring the NPT and a CTBT, especially for monitoring non-cooperating nations with large coastlines. This preliminary report provides an analysis of the HUNTERS TROPHY observation as well as one of the Landers aftershocks. The analysis suggests detection thresholds for vertical hydrophone arrays below mb 3.0 at ranges between 3 and 4 degrees, and below mb 4.4 out to 6 degrees. This report also describes two signal processing techniques that enhance the detection potential of short vertical arrays. These methods are deterministic null steering to suppress horizontally propagating ambient ocean noise, and matched field processing for vertically-incident acoustic fields. The latter technique is ideally suited for acoustic fields derived from incident seismic waves, and may be viewed as a {open_quotes}synthetic aperture{close_quotes} approach to increase the effective aperture of the array.

Harris, D.B. [Lawrence Livermore National Lab., CA (United States); D`Spain, G. [Scripps Institution of Oceanography, San Diego, CA (United States). Marine Physical Lab.

1993-11-01T23:59:59.000Z

15

Vertical profiles of halocarbons in the stratosphere  

SciTech Connect (OSTI)

Stratospheric air samples collected between 10 and 35 km altitude by means of a cryogenic sampler were analyzed by gaschromatography. Thus vertical profiles of source gases for halogen radicals were derived, such as CCl4, CCl3F, CCl2F2, CClF3, CF4, C2F3Cl3, C2F4Cl2, C2F5Cl, C2F6, CH3Cl, CH3CCl3, CHF2Cl, CH3Br, CBrF3, and CBrCl2F. Systematic discrepancies between measured and modelled halocarbon profiles point to deficiencies of present one- and two-dimensional models. Measurements of fully halogenated hydrocarbons provide a tool for systematically studying these deficiencies and thus improving the models. 40 references.

Fabian, P.; Borchers, R.

1984-01-01T23:59:59.000Z

16

Borehole Seismic Monitoring at Otway Using the Naylor-1 Instrument String  

E-Print Network [OSTI]

LBNL-2337E Borehole Seismic Monitoring at Otway Using thefor performing three distinct seismic measurements, hightime (HRTT), walkaway vertical seismic profiling (WVSP), and

Daley, T.M.

2010-01-01T23:59:59.000Z

17

Remote Sensing of Cirrus Particle Size Vertical Profile Using...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

inhomogeneity in terms of ice crystal sizes and shapes. The vertical variation of ice crystal size can alter the radiative heatingcooling profiles in cirrus cloudy...

18

Determination of vertical profiles of aerosol extinction, single scatter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Determination of vertical profiles of aerosol extinction, single scatter Determination of vertical profiles of aerosol extinction, single scatter albedo and asymmetry parameter at Barrow. Sivaraman, Chitra Pacific Northwest National Laboratory Flynn, Connor Pacific Northwest National Laboratory Turner, David University of Wisconsin-Madison Category: Aerosols Efforts are currently underway to run and evaluate the Broadband Heating Rate Profile project at the ARM North Slope of Alaska (NSA) Barrow site for the time period March 2004 - February 2005. The Aerosol Best-Estimate (ABE) Value-Added Procedure (VAP) is to provide continuous estimates of vertical profiles of aerosol extinction, single-scatter albedo, and asymmetry parameter above the Northern Slopes of Alaska (NSA) facility. In the interest of temporal continuity, we have developed an algorithm that

19

Beam Profile Monitor With Accurate Horizontal And Vertical Beam Profiles  

DOE Patents [OSTI]

A widely used scanner device that rotates a single helically shaped wire probe in and out of a particle beam at different beamline positions to give a pair of mutually perpendicular beam profiles is modified by the addition of a second wire probe. As a result, a pair of mutually perpendicular beam profiles is obtained at a first beamline position, and a second pair of mutually perpendicular beam profiles is obtained at a second beamline position. The simple modification not only provides more accurate beam profiles, but also provides a measurement of the beam divergence and quality in a single compact device.

Havener, Charles C [Knoxville, TN; Al-Rejoub, Riad [Oak Ridge, TN

2005-12-26T23:59:59.000Z

20

Characterizing Vertical Mass Flux Profiles in Aeolian Saltation Systems  

E-Print Network [OSTI]

*) - 0.4133 (r^2=0.65). The values of beta ranged from 6.11 ? 17.83 for all the experiments. The Rouse profiles calculated using this approach predict very similar vertical distributions to the observed data and predicted 86% and 81% of the observed...

Farrell, Eugene

2012-07-16T23:59:59.000Z

Note: This page contains sample records for the topic "vertical seismic profile" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Shear wave seismic velocity profiling and depth to water table earthquake site  

E-Print Network [OSTI]

..................................................................................................... 6 Summary of seismic refraction/reflection methodsShear wave seismic velocity profiling and depth to water table ­ earthquake site response measurements for Valley County, Idaho Lee M. Liberty and Gabriel M. Gribler, Boise State University Center

Barrash, Warren

22

The measurement of attenuation from vertical seismic profiles  

E-Print Network [OSTI]

that attenuation is linear with frequency, the very assumption used to generate the synthetic VSP! To understand how this phenomena comes about, the data processing scheme used to generate the synthetic VSP cumulative attenuation values must be investigated... that attenuation is linear with frequency, the very assumption used to generate the synthetic VSP! To understand how this phenomena comes about, the data processing scheme used to generate the synthetic VSP cumulative attenuation values must be investigated...

Davis, Francis Erwin

2012-06-07T23:59:59.000Z

23

Frequency domain computation of synthetic vertical seismic profiles  

E-Print Network [OSTI]

, and the artifacts in the time function. The algorithm fails when the total attenuation xfx/Qv is so large that underflow occurs. For this model and multi-precision computation the failure point of the algorithm occurs when sfx/Qv is about 30. Synthetic VSPs were... in Figure 6c. The relative amplitude between events Al and A2 at interface 1 has been checked against the theoretical expression: Amp(A2)/Amp(A') = [(r /r )-r r ]exp[ (~f0/Qv)2x] = -1. 2693 exp(-0. 050265f ). 0 (28) This formula is the exact expression...

Wu, Ru-Chuan

2012-06-07T23:59:59.000Z

24

Pore-fluid effects on seismic waves in vertically fractured earth with orthotropic symmetry  

SciTech Connect (OSTI)

For elastically noninteracting vertical-fracture sets at arbitrary orientation angles to each other, a detailed model is presented in which the resulting anisotropic fractured medium generally has orthorhombic symmetry overall. Some of the analysis methods and ideas of Schoenberg are emphasized, together with their connections to other similarly motivated and conceptually related methods by Sayers and Kachanov, among others. Examples show how parallel vertical-fracture sets having HTI (horizontal transversely isotropic) symmetry transform into orthotropic fractured media if some subsets of the vertical fractures are misaligned with the others, and then the fractured system can have VTI (vertical transversely isotropic) symmetry if all of the fractures are aligned randomly or half parallel and half perpendicular to a given vertical plane. An orthotropic example having vertical fractures in an otherwise VTI earth system (studied previously by Schoenberg and Helbig) is compared with the other examples treated and it is finally shown how fluids in the fractures affect the orthotropic poroelastic system response to seismic waves. The key result is that fracture-influence parameters are multiplied by a factor of (1-B), where 0 {le} B < 1 is Skempton's second coefficient for poroelastic media. Skempton's B coefficient is itself a measurable characteristic of fluid-saturated porous rocks, depending on porosity, solid moduli, and the pore-fluid bulk modulus. For heterogeneous porous media, connections between the present work and earlier related results of Brown and Korringa are also established.

Berryman, J.G.

2010-05-15T23:59:59.000Z

25

Instrument Development Tethered Balloon Sounding System for Vertical Radiation Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tethered Balloon Sounding System Tethered Balloon Sounding System for Vertical Radiation Profiles C. D. Whiteman J. M. Alzheimer G. A. Anderson M. R. Garnich W. J. Shaw Pacific Northwest Laboratory Richland, WA 99352 platform is built on a triangular frame identical to the one on the Sky Platform, but the MSP carries no radiometric sensors, control loop, or leveling motors. Rather. the MSP is instrumented to measure the motions to which the Sky Platform will be subjected; the data provide engineering information to be used in the final design of the control loop and structural elements of the Sky Platform. An array of six miniature solid state accelerometers provides the raw data from which balloon motions are determined. Future plans call for the installation of a small attitude gyroscope on the

26

The Influence of Turbulence and Vertical Wind Profile in Wind Turbine Power Curve  

Science Journals Connector (OSTI)

To identify the influence of turbulence and vertical wind profile in wind turbine performance, wind speed measurements at different heights have been ... equipment, specifically a pulsed wave one. The wind profil...

A. Honrubia; A. Vigueras-Rodrguez

2012-01-01T23:59:59.000Z

27

Seismic Ground Motion Response Using SHAKE, EERA and NERA for SRS Soil Profile  

Broader source: Energy.gov [DOE]

Seismic Ground Motion Response Using SHAKE, EERA and NERA for SRS Soil Profile Jay Amin Structural Mechanics, Principal Engineer Shawn Carey, PhD, PE Structural Mechanics, Structural Lead Rucker Williams, PE Geotechnical Engineering Lead October 22, 2014

28

Measurements of Wind Speed, Direction, and Vertical Profiles in an Evergreen Forest in Central Cambodia  

Science Journals Connector (OSTI)

The wind characteristics of speed, direction, and vertical profile were studied ... Thom Province, Cambodia. Three seasonal patterns of wind speeds and directions were identified. The first occurred ... , as well...

Koji Tamai; Akira Shimizu

2007-01-01T23:59:59.000Z

29

Seismic Imaging and Monitoring  

SciTech Connect (OSTI)

I give an overview of LANL's capability in seismic imaging and monitoring. I present some seismic imaging and monitoring results, including imaging of complex structures, subsalt imaging of Gulf of Mexico, fault/fracture zone imaging for geothermal exploration at the Jemez pueblo, time-lapse imaging of a walkway vertical seismic profiling data for monitoring CO{sub 2} inject at SACROC, and microseismic event locations for monitoring CO{sub 2} injection at Aneth. These examples demonstrate LANL's high-resolution and high-fidelity seismic imaging and monitoring capabilities.

Huang, Lianjie [Los Alamos National Laboratory

2012-07-09T23:59:59.000Z

30

Classification of Vertical Wind Speed Profiles Observed Above a Sloping Forest at Nighttime Using the Bulk Richardson Number  

Science Journals Connector (OSTI)

Wind speed profiles above a forest canopy relate to ... atmosphere. Many studies have reported that vertical wind speed profiles above a relatively flat forest can ... be classified by a stability index developed...

Hikaru Komatsu; Norifumi Hotta; Koichiro Kuraji

2005-05-01T23:59:59.000Z

31

MODELLING THE VERTICAL WIND SPEED AND TURBULENCE INTENSITY PROFILES AT PROSPECTIVE OFFSHORE WIND FARM SITES  

E-Print Network [OSTI]

MODELLING THE VERTICAL WIND SPEED AND TURBULENCE INTENSITY PROFILES AT PROSPECTIVE OFFSHORE WIND for conditions important for offshore wind energy utilisation are compared and tested: Four models tested with data from the offshore field measurement Rødsand by extrapolating the measured 10 m wind

Heinemann, Detlev

32

Concept of spinsonde for multi-cycle measurement of vertical wind profile of tropical cyclones  

E-Print Network [OSTI]

Tropical cyclones and cyclogenesis are active areas of research. Chute-operated dropsondes jointly developed by NASA and NCAR are capable of acquiring high resolution vertical wind profile of tropical cyclones. This paper proposes a chute-free vertical retardation technique (termed as spinsonde) that can accurately measure vertical wind profile. Unlike the expendable dropsondes, the spinsonde allows multi-cycle measurement to be performed within a single flight. Proof of principle is demonstrated using a simulation software and results indicate that the GPS ground speed correlates with the wind speeds to within +/-5 km/h. This technique reduces flying weight and increases payload capacity by eliminating bulky chutes. Maximum cruising speed (Vh) achieved by the spinsonde UAV is 372 km/h.

Poh, Chung-How

2014-01-01T23:59:59.000Z

33

Analyses of azimuthal seismic anisotrophy in the vertically fractured Spraberry and Dean formations, Midland County, Texas  

E-Print Network [OSTI]

The configuration of a CDP gather from 3-D seismic reflection has source-receiver pairs located at different azimuths. This can be exploited to observe azimuthal variations of P- wave velocity related to azimuthal anisotropy in fractured media...

Sudarmo, Bernadus Supraptomo

2012-06-07T23:59:59.000Z

34

Unexpected vertical wind speed profiles in the boundary layer over the southern North Sea  

Science Journals Connector (OSTI)

Abstract Shallow atmospheric internal boundary layers over the southern part of the North Sea are common. Analysis of one year of meteorological data from the FINO1 research platform in the German Bight reveals that vertical wind speed profiles frequently do not conform to the expected modified logarithmic profile of MoninObukhov similarity theory. The wind profiles are mostly characterized by local maxima or kinks within the first 100m over the sea surface. The data reveals the most frequent occurrence of a single maximum, but multiple maxima are often present, and there are sometimes even reversed profiles with the wind speed decreasing with height. The expected modified logarithmic profile occurs for a minority of cases. The evidence suggests the frequent presence of internal boundary layers that propagate from coastal land masses that surround the North Sea. A census of vertical wind speed profiles is presented that shows how different inflection states are linked with wind speed and atmospheric stability. The kinks are most prevalent in the upper part of the measurement range near the 100m hub height of modern offshore the wind turbines, so that internal boundary layers represent a possible concern for the offshore wind energy industry in the North Sea region.

Anthony J. Kettle

2014-01-01T23:59:59.000Z

35

Mesozoic(?) lithosphere-scale buckling of the East European Craton in southern Ukraine: DOBRE-4 deep seismic profile  

Science Journals Connector (OSTI)

......buckling of the East European Craton in southern Ukraine: DOBRE-4 deep seismic profile V. Starostenko...Geophysics, National Academy of Sciences of Ukraine, Palladin Av. 32, 03680 Kiev, Ukraine. E-mail: dlysyn@igph.kiev.ua 2 Institute......

V. Starostenko; T. Janik; D. Lysynchuk; P. Sroda; W. Czuba; K. Kolomiyets; P. Aleksandrowski; O. Gintov; V. Omelchenko; K. Komminaho; A. Guterch; T. Tiira; D. Gryn; O. Legostaeva; H. Thybo; A. Tolkunov

2013-01-01T23:59:59.000Z

36

Mapping of volcanic apron and the upper crust between Gran Canaria and Tenerife (Canary Islands) with seismic reflection profiling  

Science Journals Connector (OSTI)

During the Volcanic Island Clastic Apron Project (VICAP), south of the Canary Islands, a total of 700 line-km multichannel seismic profiles were acquired. Two prominent reflectors (A and C) were observed alter...

A. Geisslinger; H. B. Hirschleber; M. Schnaubelt; J. J. Daobeitia

1996-01-01T23:59:59.000Z

37

Analysis of vertical resolution of seismic signals associated with a reservoir  

E-Print Network [OSTI]

will be enhanced by increasing the dominant frequency of the signals through data processing techniques. DATA A seismic reflection survey, line BCR 39, was conducted by AMOCO during 1972 in Grimes county, Texas (Fig. 1). Line BCR 39 trends in a Northwest... configuration the source is located somewhere in the 30 45' 0 30o$0' J 6* 30'3 ICOS 'wxm ~o 30 30I 95 10' ~ r I seaaas 96 Fig. 1 Map showing the location of seismic reflection line BCR 39. SHOT DIAGRAM 10 20 I? Cl 413 30 40 50 10 20 30 40...

Hudgens, Eric Scott

2012-06-07T23:59:59.000Z

38

Reflection seismic profiling in Wabash Valley fault system in southwestern Indiana  

SciTech Connect (OSTI)

During the summer of 1988 common-depth-point (CDP) reflection seismic profiling was initiated by ARPEX in southwestern Indiana in the Wabash Valley fault system. A 2.2-im (1.4-mi) east-west profile was shot across the Mt. Vernon graben in Posey County. Minihole shooting in 21-m (68.9-ft) patterns using 3.4 kg (7.5 lb) of seismic explosives distributed in five 3-m (10-ft) holes provided the energy source. Most shotholes were made with a reversible air-driven penetrating tool that was effective in dense clays. The 12-geophone array length was 43 m (141 ft), and the nominal far-trace offset was 2.1 km (7,000 ft). A 48-channel recording yielded 24-CDP coverage at 11-m (36-ft) intervals. Data were enhanced by gapped deconvolution, bandpass filtering, and CDP stack. The strongest and most continuous reflections at 0.75 and 1.6 sec are associated with the New Albany Shale (Devonian-Mississippian) and Eau Claire Formation (Cambrian), respectively. Within the Mt. Vernon graben and east of the Spenser Consolidated oil field, the depth to Eau Claire Formation apparently increases by approximately 60 m (197 ft) over a horizontal distance of 1.4 km (0.9 mi). Minor faulting east of the Spencer Consolidated field appears to be synthetic to the Hovey lake fault, which bounds the eastern side of the Mt. Vernon graben. Tentative interpretations of faulting and weak reflections from depths greater than 4.5 km (15,000 ft) may be clarified by additional data processing and by additional seismic profiling planned by ARPEX.

Rene, R.M.; Hester, N.C.; Stanonis, F.L. (Indiana Univ., Bloomington (USA))

1989-08-01T23:59:59.000Z

39

J.V. Reynolds-Fleming et al Portable Auton. Vert. Profiler for Estuaries Portable Autonomous Vertical Profiler for Estuarine Applications  

E-Print Network [OSTI]

J.V. Reynolds-Fleming et al Portable Auton. Vert. Profiler for Estuaries Portable Autonomous-Fleming et al 1 Abstract The design and implementation of a portable autonomous vertical profiler are documented and example data sets from a mesotidal estuary and a microtidal, wind-driven estuary are presented

Luettich, Rick

40

ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, Vertical Air Motion (williams-vertair)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

Christopher Williams; Mike Jensen

Note: This page contains sample records for the topic "vertical seismic profile" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, Vertical Air Motion (williams-vertair)  

SciTech Connect (OSTI)

This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

Williams, Christopher; Jensen, Mike

2012-11-06T23:59:59.000Z

42

Category:Borehole Seismic Techniques | Open Energy Information  

Open Energy Info (EERE)

Borehole Seismic Techniques page? Borehole Seismic Techniques page? For detailed information on Borehole Seismic Techniques as exploration techniques, click here. Category:Borehole Seismic Techniques Add.png Add a new Borehole Seismic Techniques Technique Pages in category "Borehole Seismic Techniques" The following 2 pages are in this category, out of 2 total. S Single-Well And Cross-Well Seismic V Vertical Seismic Profiling Retrieved from "http://en.openei.org/w/index.php?title=Category:Borehole_Seismic_Techniques&oldid=601962" Category: Downhole Techniques What links here Related changes Special pages Printable version Permanent link Browse properties About us Disclaimers Energy blogs Linked Data Developer services OpenEI partners with a broad range of international organizations to grow

43

Deep Downhole Seismic Testing at the Waste Treatment Plant Site, Hanford, WA. Volume II P-Wave Measurements in Borehole C4996 Seismic Records, Wave-Arrival Identifications and Interpreted P-Wave Velocity Profile.  

SciTech Connect (OSTI)

In this volume (II), all P-wave measurements are presented that were performed in Borehole C4996 at the Waste Treatment Plant (WTP) with T-Rex as the seismic source and the Lawrence Berkeley National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver. P-wave measurements were performed over the depth range of 360 to 1400 ft, typically in 10-ft intervals. However, in some interbeds, 5-ft depth intervals were used, while below about 1180 ft, depth intervals of 20 ft were used. Compression (P) waves were generated by moving the base plate of T-Rex for a given number of cycles at a fixed frequency as discussed in Section 2. This process was repeated so that signal averaging in the time domain was performed using 3 to about 15 averages, with 5 averages typically used. In addition to the LBNL 3-D geophone, called the lower receiver herein, a 3-D geophone from Redpath Geophysics was fixed at a depth of 22 ft in Borehole C4996, and a 3-D geophone from the University of Texas was embedded near the borehole at about 1.5 ft below the ground surface. This volume is organized into 12 sections as follows: Section 1: Introduction, Section 2: Explanation of Terminology, Section 3: Vp Profile at Borehole C4996, Sections 4 to 6: Unfiltered P-wave records of lower vertical receiver, reaction mass, and reference receiver, Sections 7 to 9: Filtered P-wave signals of lower vertical receiver, reaction mass and reference receiver, Section 10: Expanded and filtered P-wave signals of lower vertical receiver, and Sections 11 and 12: Waterfall plots of unfiltered and filtered lower vertical receiver signals.

Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh

2007-07-06T23:59:59.000Z

44

Deep Downhole Seismic Testing at the Waste Treatment Plant Site, Hanford, WA. Volume I P-Wave Measurements in Borehole C4993 Seismic Records, Wave-Arrival Identifications and Interpreted P-Wave Velocity Profile.  

SciTech Connect (OSTI)

In this volume (I), all P-wave measurements are presented that were performed in Borehole C4993 at the Waste Treatment Plant (WTP) with T-Rex as the seismic source and the Lawrence Berkeley National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver. P-wave measurements were performed over the depth range of 370 to 1400 ft, typically in 10-ft intervals. However, in some interbeds, 5-ft depth intervals were used, while below about 1200 ft, depth intervals of 20 ft were used. Compression (P) waves were generated by moving the base plate of T-Rex for a given number of cycles at a fixed frequency as discussed in Section 2. This process was repeated so that signal averaging in the time domain was performed using 3 to about 15 averages, with 5 averages typically used. In addition to the LBNL 3-D geophone, called the lower receiver herein, a 3-D geophone from Redpath Geophysics was fixed at a depth of 22 ft in Borehole C4993, and a 3-D geophone from the University of Texas was embedded near the borehole at about 1.5 ft below the ground surface. This volume is organized into 12 sections as follows: Section 1: Introduction, Section 2: Explanation of Terminology, Section 3: Vp Profile at Borehole C4993, Sections 4 to 6: Unfiltered P-wave records of lower vertical receiver, reaction mass, and reference receiver, Sections 7 to 9: Filtered P-wave signals of lower vertical receiver, reaction mass and reference receiver, Section 10: Expanded and filtered P-wave signals of lower vertical receiver, and Sections 11 and 12: Waterfall plots of unfiltered and filtered lower vertical receiver signals.

Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh

2007-07-06T23:59:59.000Z

45

Deep Downhole Seismic Testing at the Waste Treatment Plant Site, Hanford, WA. Volume III P-Wave Measurements in Borehole C4997 Seismic Records, Wave-Arrival Identifications and Interpreted P-Wave Velocity Profile.  

SciTech Connect (OSTI)

In this volume (III), all P-wave measurements are presented that were performed in Borehole C4997 at the Waste Treatment Plant (WTP) with T-Rex as the seismic source and the Lawrence Berkeley National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver. P-wave measurements were performed over the depth range of 390 to 1220 ft, typically in 10-ft intervals. However, in some interbeds, 5-ft depth intervals were used. Compression (P) waves were generated by moving the base plate of T-Rex for a given number of cycles at a fixed frequency as discussed in Section 2. This process was repeated so that signal averaging in the time domain was performed using 3 to about 15 averages, with 5 averages typically used. In addition to the LBNL 3-D geophone, called the lower receiver herein, a 3-D geophone from Redpath Geophysics was fixed at a depth of 40 ft (later relocated to 27.5 ft due to visibility in borehole after rain) in Borehole C4997, and a 3-D geophone from the University of Texas was embedded near the borehole at about 1.5 ft below the ground surface. This volume is organized into 12 sections as follows: Section 1: Introduction, Section 2: Explanation of Terminology, Section 3: Vp Profile at Borehole C4997, Sections 4 to 6: Unfiltered P-wave records of lower vertical receiver, reaction mass, and reference receiver, Sections 7 to 9: Filtered P-wave signals of lower vertical receiver, reaction mass and reference receiver, Section 10: Expanded and filtered P-wave signals of lower vertical receiver, and Sections 11 and 12: Waterfall plots of unfiltered and filtered lower vertical receiver signals.

Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh

2007-06-06T23:59:59.000Z

46

Methane Hydrate and Free Gas on the Blake Ridge from Vertical Seismic Profiling  

Science Journals Connector (OSTI)

...expression: The phase boundary between methane hydrate and methane plus...and methane hydrate, CH4-5.75H20...a structure I hydrate construct-ed...documented anomalous behavior in the formation...325 Fig. 1. Phase diagram for the...

W. Steven Holbrook; Hartley Hoskins; Warren T. Wood; Ralph A. Stephen; Daniel Lizarralde

1996-09-27T23:59:59.000Z

47

Geographic variability in the export of moist static energy and vertical motion profiles in the tropical Pacific  

E-Print Network [OSTI]

are primarily due to differences in the shape of the vertical motion profile. In the west Pacific warm pool-coupled equatorial waves match the speeds predicted by shallow water theory with an equivalent depth of about 25 is approximately conserved following air parcels, even as they undergo phase changes between vapor and liquid

Bretherton, Chris

48

Estimating Vertical Motion Profile Shape within Tropical Weather States over the Oceans  

Science Journals Connector (OSTI)

The vertical structure of tropical deep convection strongly influences interactions with larger-scale circulations and climate. This paper focuses on investigating this vertical structure and its relationship with mesoscale tropical weather ...

Zachary J. Handlos; Larissa E. Back

2014-10-01T23:59:59.000Z

49

NETL: News Release - Microhole "Designer" Seismic Testing Its Potential in  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

April 24, 2007 April 24, 2007 Microhole "Designer" Seismic Testing Its Potential in the Field DOE-Funded Technology Offers Low-Cost Deployment of Vertical Seismic Profiling MORGANTOWN, WV - Using microhole technology developed in partnership with the National Energy Technology Laboratory (NETL) to inexpensively deploy sensors for vertical seismic profiling (VSP) could dramatically enhance the oil and gas industry's ability to find and produce huge volumes of by-passed oil and natural gas. VSP's advantages over conventional surface seismic have long been known. Placing seismic recording devices in boreholes results in a much improved signal-to-noise ratio compared with surface seismic. VSP gives an especially high-resolution image of the immediate vicinity of the borehole.

50

Ground magnetic studies along a regional seismic-reflection profile across Bare Mountain, Crater Flat and Yucca Mountain, Nevada  

SciTech Connect (OSTI)

Ground magnetic data were collected along a 26-km-long regional seismic-reflection profile in southwest Nevada that starts in the Amargosa Desert, crosses Bare Mountain, Crater Flat and Yucca Mountain, and ends in Midway Valley. Parallel ground magnetic profiles were also collected about 100 m to either side of the western half of the seismic-reflection line. The magnetic data indicate that the eastern half of Crater Flat is characterized by closely-spaced faulting (1--2 km) in contrast to the western half of Crater Flat. Modeling of the data indicates that the Topopah Spring Tuff is offset about 250 m on the Solitario Canyon fault and about 50 m on the Ghost Dance fault. These estimates of fault offset are consistent with seismic-reflection data and geologic mapping. A broad magnetic high of about 500--600 nT is centered over Crater Flat. Modeling of the magnetic data indicates that the source of this high is not thickening and doming of the Bullfrog Tuff, but more likely lies below the Bullfrog Tuff. Possible source lithologies for this magnetic high include altered argillite of the Eleana Formation, Cretaceous or Tertiary intrusions, and mafic sills.

Langenheim, V.E.; Ponce, D.A.

1995-12-31T23:59:59.000Z

51

Estimation of sector roughness lengths and the effect on prediction of the vertical wind speed profile  

Science Journals Connector (OSTI)

An estimate of roughness length is required by some atmospheric models and is also used in the logarithmic profile to determine the increase of wind speed with height under neutral conditions. The choice ... thei...

R. J. Barthelmie; J. P. Palutikof; T. D. Davies

1993-10-01T23:59:59.000Z

52

High resolution reverse VSP and interwell seismic experiments at the Buckhorn test site in Illinois  

SciTech Connect (OSTI)

Reverse Vertical Seismic Profiling VSP and interwell seismic experiments were conducted at the Western Kentucky Petroleum Buckhorn test site near Quincy, Illinois. The RVSP data were acquired using a 3-component pneumatic probe and the interwell seismic data were acquired using a 24-element hydrophone array. The experiments were conducted to analyze high resolution seismic waveforms and to perform travel time velocity inversion for mapping the Silurian Kankakee formation which is the more prolific oil producer in the Mt. Sterling area. Reverse VSP and interwell seismic measurements together with log data have yielded information on the anisotropic characteristic of the shale formation and in the compressional wave velocity distribution of the limestone formation. These results inferred that reverse VSP (using several 3-component detectors in shallow boreholes) and interwell seismic measurements integrated with log data and seismic modeling can delineate the hydrocarbon reservoir and geological structures at the Buckhorn test site.

Parra, J.O.; Bangs, J.H.

1992-07-01T23:59:59.000Z

53

High resolution reverse VSP and interwell seismic experiments at the Buckhorn test site in Illinois  

SciTech Connect (OSTI)

Reverse Vertical Seismic Profiling VSP and interwell seismic experiments were conducted at the Western Kentucky Petroleum Buckhorn test site near Quincy, Illinois. The RVSP data were acquired using a 3-component pneumatic probe and the interwell seismic data were acquired using a 24-element hydrophone array. The experiments were conducted to analyze high resolution seismic waveforms and to perform travel time velocity inversion for mapping the Silurian Kankakee formation which is the more prolific oil producer in the Mt. Sterling area. Reverse VSP and interwell seismic measurements together with log data have yielded information on the anisotropic characteristic of the shale formation and in the compressional wave velocity distribution of the limestone formation. These results inferred that reverse VSP (using several 3-component detectors in shallow boreholes) and interwell seismic measurements integrated with log data and seismic modeling can delineate the hydrocarbon reservoir and geological structures at the Buckhorn test site.

Parra, J.O.; Bangs, J.H.

1992-01-01T23:59:59.000Z

54

Deep Downhole Seismic Testing at the Waste Treatment Plant Site, Hanford, WA. Volume V S-Wave Measurements in Borehole C4996 Seismic Records, Wave-Arrival Identifications and Interpreted S-Wave Velocity Profile.  

SciTech Connect (OSTI)

Velocity measurements in shallow sediments from ground surface to approximately 370 to 400 feet bgs were collected by Redpath Geophysics using impulsive S- and P-wave seismic sources (Redpath 2007). Measurements below this depth within basalt and sedimentary interbeds were made by UTA between October and December 2006 using the T-Rex vibratory seismic source in each of the three boreholes. Results of these measurements including seismic records, wave-arrival identifications and interpreted velocity profiles are presented in the following six volumes: I. P-Wave Measurements in Borehole C4993 II. P-Wave Measurements in Borehole C4996 III. P-Wave Measurements in Borehole C4997 IV. S-Wave Measurements in Borehole C4993 V. S-Wave Measurements in Borehole C4996 VI. S-Wave Measurements in Borehole C4997 In this volume (V), all S-wave measurements are presented that were performed in Borehole C4996 at the WTP with T-Rex as the seismic source and the Lawrence Berkeley National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver.

Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh

2007-06-06T23:59:59.000Z

55

Deep Downhole Seismic Testing at the Waste Treatment Plant Site, Hanford, WA. Volume VI S-Wave Measurements in Borehole C4997 Seismic Records, Wave-Arrival Identifications and Interpreted S-Wave Velocity Profile.  

SciTech Connect (OSTI)

Velocity measurements in shallow sediments from ground surface to approximately 370 to 400 feet bgs were collected by Redpath Geophysics using impulsive S- and P-wave seismic sources (Redpath 2007). Measurements below this depth within basalt and sedimentary interbeds were made by UTA between October and December 2006 using the T-Rex vibratory seismic source in each of the three boreholes. Results of these measurements including seismic records, wave-arrival identifications and interpreted velocity profiles are presented in the following six volumes: I. P-Wave Measurements in Borehole C4993 II. P-Wave Measurements in Borehole C4996 III. P-Wave Measurements in Borehole C4997 IV. S-Wave Measurements in Borehole C4993 V. S-Wave Measurements in Borehole C4996 VI. S-Wave Measurements in Borehole C4997 In this volume (VI), all S-wave measurements are presented that were performed in Borehole C4997 at the WTP with T-Rex as the seismic source and the Lawrence Berkeley National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver.

Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh

2007-06-06T23:59:59.000Z

56

Advanced Seismic While Drilling System  

SciTech Connect (OSTI)

A breakthrough has been discovered for controlling seismic sources to generate selectable low frequencies. Conventional seismic sources, including sparkers, rotary mechanical, hydraulic, air guns, and explosives, by their very nature produce high-frequencies. This is counter to the need for long signal transmission through rock. The patent pending SeismicPULSER{trademark} methodology has been developed for controlling otherwise high-frequency seismic sources to generate selectable low-frequency peak spectra applicable to many seismic applications. Specifically, we have demonstrated the application of a low-frequency sparker source which can be incorporated into a drill bit for Drill Bit Seismic While Drilling (SWD). To create the methodology of a controllable low-frequency sparker seismic source, it was necessary to learn how to maximize sparker efficiencies to couple to, and transmit through, rock with the study of sparker designs and mechanisms for (a) coupling the sparker-generated gas bubble expansion and contraction to the rock, (b) the effects of fluid properties and dynamics, (c) linear and non-linear acoustics, and (d) imparted force directionality. After extensive seismic modeling, the design of high-efficiency sparkers, laboratory high frequency sparker testing, and field tests were performed at the University of Texas Devine seismic test site. The conclusion of the field test was that extremely high power levels would be required to have the range required for deep, 15,000+ ft, high-temperature, high-pressure (HTHP) wells. Thereafter, more modeling and laboratory testing led to the discovery of a method to control a sparker that could generate low frequencies required for deep wells. The low frequency sparker was successfully tested at the Department of Energy Rocky Mountain Oilfield Test Center (DOE RMOTC) field test site in Casper, Wyoming. An 8-in diameter by 26-ft long SeismicPULSER{trademark} drill string tool was designed and manufactured by TII. An APS Turbine Alternator powered the SeismicPULSER{trademark} to produce two Hz frequency peak signals repeated every 20 seconds. Since the ION Geophysical, Inc. (ION) seismic survey surface recording system was designed to detect a minimum downhole signal of three Hz, successful performance was confirmed with a 5.3 Hz recording with the pumps running. The two Hz signal generated by the sparker was modulated with the 3.3 Hz signal produced by the mud pumps to create an intense 5.3 Hz peak frequency signal. The low frequency sparker source is ultimately capable of generating selectable peak frequencies of 1 to 40 Hz with high-frequency spectra content to 10 kHz. The lower frequencies and, perhaps, low-frequency sweeps, are needed to achieve sufficient range and resolution for realtime imaging in deep (15,000 ft+), high-temperature (150 C) wells for (a) geosteering, (b) accurate seismic hole depth, (c) accurate pore pressure determinations ahead of the bit, (d) near wellbore diagnostics with a downhole receiver and wired drill pipe, and (e) reservoir model verification. Furthermore, the pressure of the sparker bubble will disintegrate rock resulting in an increased overall rates of penetration. Other applications for the SeismicPULSER{trademark} technology are to deploy a low-frequency source for greater range on a wireline for Reverse Vertical Seismic Profiling (RVSP) and Cross-Well Tomography. Commercialization of the technology is being undertaken by first contacting stakeholders to define the value proposition for rig site services utilizing SeismicPULSER{trademark} technologies. Stakeholders include national oil companies, independent oil companies, independents, service companies, and commercial investors. Service companies will introduce a new Drill Bit SWD service for deep HTHP wells. Collaboration will be encouraged between stakeholders in the form of joint industry projects to develop prototype tools and initial field trials. No barriers have been identified for developing, utilizing, and exploiting the low-frequency SeismicPULSER{trademark} source in a

Robert Radtke; John Fontenot; David Glowka; Robert Stokes; Jeffery Sutherland; Ron Evans; Jim Musser

2008-06-30T23:59:59.000Z

57

The retrieval of vertical profiles of chlorine source gases and N2O5 from MIPAS-B-92 limb emission spectra  

SciTech Connect (OSTI)

During the European Arctic Stratospheric Ozone Experiment (EASOE) the balloon-borne cryogenic Fourier transform spectrometer MIPAS (Michelson Interferometer for Passive Atmospheric Sounding) recorded several sequences of mid-infrared limb emission spectra, which were used for the retrieval of vertical profiles of CFC-11, CFC-12, HCFC-22, CF4, and N2O5. These gases are characterized by very dense emission bands of unresolved lines. Results are consistent with the current theories of stratospheric dynamics and chemistry.

Clarmann, T.V.; Linden, A.; Wetzel, G.; Oelhaf, H.

1995-01-01T23:59:59.000Z

58

Full Reviews: Seismicity and Seismic  

Broader source: Energy.gov [DOE]

Below are the project presentations and respective peer reviewer comments for Seismicity and Seismic.

59

Vertical profiles of radar reflectivity of convective cells in tropical and mid-latitude mesoscale convective systems  

E-Print Network [OSTI]

of tropical oceanic and tropical continental MCSs during the monsoon wet seasons of 1987/1988 and 1988/1989. The atmospheric structure, particularly the CAPE and low level vertical wind shear for all the MCS events studied is analyzed to help... lectivity, at a height of 1. 9 km, of the 68 72 2 December 1988 tropical monsoon case at 0542 LT . . 74 36 37 38 As in Fig. 35, except at 0609 LT Time series of zonal wind and CAPE at Darwin during the 1988/1989 monsoon wet season. Contour plot...

Lutz, Kurt Reed

2012-06-07T23:59:59.000Z

60

Comparison of explosive and vibroseis source energy penetration during COCORP deep seismic reflection profiling in the Williston basin  

SciTech Connect (OSTI)

Comparison of high-fold (50) vibroseis recordings with coincident low-fold (6) explosive source data from deep reflection surveys in the Williston Basin indicates that while vibroseis generated energy decays to ambient noise levels at 7--9 s two-way traveltime (twtt) (20--30 km depth), energy from explosive sources remains above ambient levels to 35--60 s twtt (105--180 km depth). Moreover, single, moderately sized (30 kg) and well-placed charges proved to be as effective as larger (90 kg) sources at penetrating to mantle traveltimes in this area. However, the explosive source energy proved highly variable, with source-to-ground coupling being a major limiting factor in shot efficacy. Stacked results from the vibroseis sources provide superior imagery of shallow and moderate crustal levels by virtue of greater redundancy and shot-to-shot uniformity; shot statics, low fold, and ray-path distortion across the relatively large (24--30 km aperture) spreads used during the explosive recording have proven to be especially problematic in producing conventional seismic sections. In spite of these complications, the explosive source recording served its primary purpose in confirming Moho truncation and the presence of a dipping reflection fabric in the upper mantle along the western flank of the Trans-Hudson orogen buried beneath the Williston Basin.

Steer, D.N.; Brown, L.D.; Knapp, J.H.; Baird, D.J. [Cornell Univ., Ithaca, NY (United States)] [Cornell Univ., Ithaca, NY (United States)

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vertical seismic profile" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Reversible rigid coupling apparatus and method for borehole seismic transducers  

DOE Patents [OSTI]

An apparatus and method of high resolution reverse vertical seismic profile (VSP) measurements is shown. By encapsulating the seismic detector and heaters in a meltable substance (such as wax), the seismic detector can be removably secured in a borehole in a manner capable of measuring high resolution signals in the 100 to 1000 hertz range and higher. The meltable substance is selected to match the overall density of the detector package with the underground formation, yet still have relatively low melting point and rigid enough to transmit vibrations to accelerometers in the seismic detector. To minimize voids in the meltable substance upon solidification, the meltable substance is selected for minimum shrinkage, yet still having the other desirable characteristics. Heaters are arranged in the meltable substance in such a manner to allow the lowermost portion of the meltable substance to cool and solidify first. Solidification continues upwards from bottom-to-top until the top of the meltable substance is solidified and the seismic detector is ready for use. To remove, the heaters melt the meltable substance and the detector package is pulled from the borehole.

Owen, Thomas E. (Helotes, TX); Parra, Jorge O. (Helotes, TX)

1992-01-01T23:59:59.000Z

62

Kinematic inversion for the 2-D horizontal and vertical qP-wave velocities and depths to interfaces applied to the TACT seismic profile, southern Alaska  

Science Journals Connector (OSTI)

......the upper 5 km of the crust is anisotropic. The range of anisotropy for...the rock samples, limestone-anisotropic shale. Since the ray path is velocity-dependent...equation (1986) for limestone-anisotropic shale using the following data (Levin......

E. A. Boztepe; L. W. Braile

1994-11-01T23:59:59.000Z

63

Seismic stations  

Science Journals Connector (OSTI)

In the previous chapters, the equipment used for seismic stations has been described. When putting this equipment out in the field, we have a seismic station. Unfortunately it is not as simple as just putting ...

Jens Havskov; Gerardo Alguacil

2004-01-01T23:59:59.000Z

64

UC Berkeley Seismic Guidelines, Appendix II: Ground Motion Time Histories for the UC Berkeley Campus  

E-Print Network [OSTI]

U.C. BERKELEY SEISMIC GUIDELINES APPENDIX II GROUND MOTIONthe deaggregation of the seismic hazard. These values at aK-net site whose soil and seismic wave velocity profiles are

Authors, Various

2010-01-01T23:59:59.000Z

65

Estimating Oceanic Turbulence Dissipation from Seismic Images  

Science Journals Connector (OSTI)

Seismic images of oceanic thermohaline finestructure record vertical displacements from internal waves and turbulence over large sections at unprecedented horizontal resolution. Where reflections follow isopycnals, their displacements can be used ...

W. Steven Holbrook; Ilker Fer; Raymond W. Schmitt; Daniel Lizarralde; Jody M. Klymak; L. Cody Helfrich; Robert Kubichek

2013-08-01T23:59:59.000Z

66

Forbidden vertices  

E-Print Network [OSTI]

Abstract. In this work, we introduce and study the forbidden-vertices problem. Given a polytope P and a subset X of its vertices, we study the complexity of linear...

2014-03-01T23:59:59.000Z

67

Deep Downhole Seismic Testing at the Waste Treatment Plant Site, Hanford, WA. Volume IV S-Wave Measurements in Borehole C4993 Seismic Records, Wave-Arrival Identifications and Interpreted S-Wave Velocity Profile.  

SciTech Connect (OSTI)

In this volume (IV), all S-wave measurements are presented that were performed in Borehole C4993 at the Waste Treatment Plant (WTP) with T-Rex as the seismic source and the Lawrence Berkeley National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver. S-wave measurements were performed over the depth range of 370 to 1300 ft, typically in 10-ft intervals. However, in some interbeds, 5-ft depth intervals were used, while below about 1200 ft, depth intervals of 20 ft were used. Shear (S) waves were generated by moving the base plate of T-Rex for a given number of cycles at a fixed frequency as discussed in Section 2. This process was repeated so that signal averaging in the time domain was performed using 3 to about 15 averages, with 5 averages typically used. In addition, a second average shear wave record was recorded by reversing the polarity of the motion of the T-Rex base plate. In this sense, all the signals recorded in the field were averaged signals. In all cases, the base plate was moving perpendicular to a radial line between the base plate and the borehole which is in and out of the plane of the figure shown in Figure 1.1. The definition of in-line, cross-line, forward, and reversed directions in items 2 and 3 of Section 2 was based on the moving direction of the base plate. In addition to the LBNL 3-D geophone, called the lower receiver herein, a 3-D geophone from Redpath Geophysics was fixed at a depth of 22 ft in Borehole C4993, and a 3-D geophone from the University of Texas (UT) was embedded near the borehole at about 1.5 ft below the ground surface. The Redpath geophone and the UT geophone were properly aligned so that one of the horizontal components in each geophone was aligned with the direction of horizontal shaking of the T-Rex base plate. This volume is organized into 12 sections as follows. Section 1: Introduction, Section 2: Explanation of Terminology, Section 3: Vs Profile at Borehole C4993, Sections 4 to 6: Unfiltered S-wave records of lower horizontal receiver, reaction mass, and reference receiver, respectively, Sections 7 to 9: Filtered S-wave signals of lower horizontal receiver, reaction mass and reference receiver, respectively, Section 10: Expanded and filtered S-wave signals of lower horizontal receiver, and Sections 11 and 12: Waterfall plots of unfiltered and filtered lower horizontal receiver signals, respectively.

Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh

2007-06-06T23:59:59.000Z

68

Final recommendations of the Peer Review Panel on the use of seismic methods for characterizing Yucca Mountain and vicinity  

SciTech Connect (OSTI)

The Peer Review Panel was charged with deciding whether seismic methods, which had been utilized at Yucca Mountain with mixed results in the past, could provide useful information about the Tertiary structure in the Yucca Mountain area. The objectives of using seismic methods at Yucca Mountain are to: (a) obtain information about the structural character of the Paleozoic-Tertiary (Pz-T) contact, and (b) obtain information about the structural and volcanic details within the Tertiary and Quaternary section. The Panel recommends that a four part program be undertaken to test the utility of seismic reflection data for characterizing the structural setting of the Yucca Mountain area. The Panel feels strongly that all four parts of the program must be completed in order to provide the highest probability of success. The four parts of the program are: (a) drill or extend a deep hole in Crater Flat to provide depth control and allow for the identification of seismic reflectors in an area where good quality seismic reflection data are expected; (b) undertake a full seismic noise test in Crater Flat, test 2D receiver arrays as well as linear arrays; perform an expanding spread test using both P and S wave sources to obtain a quick look at the reflection quality in the area and see if shear wave reflections might provide structural information in areas of unsaturated rock; (c) acquire a P wave seismic reflection profile across Crater Flat through the deep control well, across Yucca Mountain, and continuing into Jackass Flats; and (d) acquire a standard VSP (vertical seismic profiling) in the deep control well to tie the seismic data into depth and to identify reflectors correctly.

NONE

1991-01-22T23:59:59.000Z

69

The Seismic Stratigraphy and Sedimentation along the Ninetyeast Ridge  

E-Print Network [OSTI]

examines the stratigraphy and sediment thickness on the ridge using new seismic data to describe the sedimentary history of NER. More than 3700 km of 2D multichannel seismic reflection profiles were collected along NER at seven sites between 5.5? N............................................................................ 28 Figure 2 Seismic Survey Map of KNOX06RR Site 758 .................................. 29 Figure 3 Total Sediment Thickness Isopach Map of KNOX06RR Site 758 .... 30 Figure 4 Seismic Reflection Profile from KNOX06RR Site 758 .................... 31...

Eisin, Amy Elizabeth

2010-10-12T23:59:59.000Z

70

Vertical Velocity Focus Group  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Velocity Focus Group Velocity Focus Group ARM 2008 Science Team Meeting Norfolk, VA March 10-14 Background Vertical velocity measurements have been at the top of the priority list of the cloud modeling community for some time. Doppler measurements from ARM profiling radars operating at 915-MHz, 35-GHz and 94-GHz have been largely unexploited. The purpose of this new focus group is to develop vertical velocity ARM products suitable for modelers. ARM response to their request has been slow. Most ARM instruments are suitable for cloud observations and have limited capabilities in precipitation Using ARM datasets for evaluating and improving cloud parameterization in global climate models (GCMs) is not straightforward, due to gigantic scale mismatches. Consider this... Looking only vertically drastically limits opportunities

71

SSAASSSAP and SSASMP profiles were projected over a 1 cm vertical grid and difference between them was evaluated in terms of RMSD  

E-Print Network [OSTI]

measurements Snow penetration resistance profiles were obtained using the Snow Micro Pen (developed at SLF = structural element size = deflection at rupture Acknowledgments: - We thank M. Schneebeli and H. Loewe (SLF

Ribes, Aurélien

72

Estimating the fracture density of small-scale vertical fractures when large-scale vertical fractures are present  

E-Print Network [OSTI]

When fractures are vertical, aligned and their dimensions are small relative to the seismic wavelength, the medium can be considered to be an equivalent Horizontal Transverse Isotropic (HTI) medium. However, geophysical ...

Liu, Yuwei

2013-01-01T23:59:59.000Z

73

Hanford Sitewide Probabilistic Seismic Hazard Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4.4). In support of this model, Pratt (2012) presented a depth-migrated seismic reflection profile across the Saddle Mountain anticline with the interpretation of a moderately...

74

Energy conservation in high-rise buildings: Changes in air conditioning load induced by vertical temperature and humidity profile in Delhi  

Science Journals Connector (OSTI)

Temperature and humidity profiles in the upper atmosphere are different from those observed by ground level meteorological stations and used to design HVAC systems for high-rise buildings. There exist correlations among solar energy, atmospheric turbidity and pollutants in urban areas, affecting the temperature and humidity profiles with variation in height. In the present study, a theoretical model is developed considering these parameters, and the HVAC load is calculated. The results are compared with the HVAC load calculated from data obtained from the meteorological station, and the comparison showed that the results differ significantly (20%) for a hypothetical 200 m high office building.

S. Sinha; Sanjay Kumar; N. Kumar

1998-01-01T23:59:59.000Z

75

Seismic Monitoring - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Curation Services Ecological Monitoring Environmental Surveillance Meteorology and Climatology Services Seismic Monitoring Seismic Monitoring Email Email Page | Print Print Page...

76

Vertical Circuits Inc | Open Energy Information  

Open Energy Info (EERE)

Circuits Inc Circuits Inc Jump to: navigation, search Name Vertical Circuits, Inc. Place Scotts Valley, California Zip 95066 Sector Services Product Vertical Circuits Inc. is a global supplier of advanced die level vertical interconnect packaging technology, products, services and intellectual property for the manufacture of low cost ultra high-speed/high-density semiconductor components. References Vertical Circuits, Inc.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Vertical Circuits, Inc. is a company located in Scotts Valley, California . References ↑ "Vertical Circuits, Inc." Retrieved from "http://en.openei.org/w/index.php?title=Vertical_Circuits_Inc&oldid=352802"

77

Seismicity Maps  

Science Journals Connector (OSTI)

...density, highly porous airborne vol- canic ejecta near...explosions for such stress-release experiments cannot be...a)+e2 /7 f is the fraction of stress drop and a...Steinbrugge Pacific Fire Rating Bureau San Francisco...fault belt without the release of seismic energy. Hence...

78

Seismic Array Software System  

E-Print Network [OSTI]

Seismic Array Software System Sam Irvine, Martin Lukac,of a Portable Broadband Seismic Array Long - Part of theStudy the propagation of seismic waves in Mexico City Line

2005-01-01T23:59:59.000Z

79

Submarine Seismic Investigations  

Science Journals Connector (OSTI)

...March 1941 research-article Submarine Seismic Investigations E. C. Bullard T. F. Gaskell The refraction seismic method has been used to investigate the...techniques, and results of a refraction seismic survey of the rock surface underlying...

1941-01-01T23:59:59.000Z

80

A Seismic Refraction and Reflexion Study of the Continent--Ocean Transition beneath the North Biscay Margin  

Science Journals Connector (OSTI)

5 May 1982 research-article A Seismic Refraction and Reflexion Study of the...post-rift sediments of Aptian to Recent age. Seismic refraction profiles were occupied on the...expanding spread multichannel (48-trace) seismic reflexion profiles and 30 km fixed offset...

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vertical seismic profile" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Nuclear component horizontal seismic restraint  

DOE Patents [OSTI]

A nuclear component horizontal seismic restraint. Small gaps limit horizontal displacement of components during a seismic occurrence and therefore reduce dynamic loadings on the free lower end. The reactor vessel and reactor guard vessel use thicker section roll-forged rings welded between the vessel straight shell sections and the bottom hemispherical head sections. The inside of the reactor guard vessel ring forging contains local vertical dovetail slots and upper ledge pockets to mount and retain field fitted and installed blocks. As an option, the horizontal displacement of the reactor vessel core support cone can be limited by including shop fitted/installed local blocks in opposing alignment with the reactor vessel forged ring. Beams embedded in the wall of the reactor building protrude into apertures in the thermal insulation shell adjacent the reactor guard vessel ring and have motion limit blocks attached thereto to provide to a predetermined clearance between the blocks and reactor guard vessel ring.

Snyder, Glenn J. (Lynchburg, VA)

1988-01-01T23:59:59.000Z

82

1 Mayne & Schneider EVALUATING AXIAL DRILLED SHAFT RESPONSE BY SEISMIC CONE  

E-Print Network [OSTI]

1 Mayne & Schneider EVALUATING AXIAL DRILLED SHAFT RESPONSE BY SEISMIC CONE Paul W. Mayne1 , M using the results of seismic piezocone penetration tests (SCPTU) to provide continuous profiles of small to discuss the use of seismic piezocone testing for the evaluation of both axial capacity (obtained from

Mayne, Paul W.

83

Seismic sources  

DOE Patents [OSTI]

Apparatus is described for placement in a borehole in the earth, which enables the generation of closely controlled seismic waves from the borehole. Pure torsional shear waves are generated by an apparatus which includes a stator element fixed to the borehole walls and a rotor element which is electrically driven to rapidly oscillate on the stator element to cause reaction forces transmitted through the borehole walls to the surrounding earth. Longitudinal shear waves are generated by an armature that is driven to rapidly oscillate along the axis of the borehole, to cause reaction forces transmitted to the surrounding earth. Pressure waves are generated by electrically driving pistons that press against opposite ends of a hydraulic reservoir that fills the borehole. High power is generated by energizing the elements for more than about one minute. 9 figs.

Green, M.A.; Cook, N.G.W.; McEvilly, T.V.; Majer, E.L.; Witherspoon, P.A.

1987-04-20T23:59:59.000Z

84

Herrenknecht Vertical GmbH | Open Energy Information  

Open Energy Info (EERE)

Herrenknecht Vertical GmbH Herrenknecht Vertical GmbH Jump to: navigation, search Name Herrenknecht Vertical GmbH Place Schwanau, Baden-Württemberg, Germany Zip 77961 Sector Geothermal energy Product Specialized company that builds vertical drilling equipment for the development of geothermal resources. References Herrenknecht Vertical GmbH[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Herrenknecht Vertical GmbH is a company located in Schwanau, Baden-Württemberg, Germany . References ↑ "Herrenknecht Vertical GmbH" Retrieved from "http://en.openei.org/w/index.php?title=Herrenknecht_Vertical_GmbH&oldid=346498" Categories: Clean Energy Organizations Companies

85

Seismic sources  

DOE Patents [OSTI]

Apparatus is described for placement in a borehole in the earth, which enables the generation of closely controlled seismic waves from the borehole. Pure torsional shear waves are generated by an apparatus which includes a stator element fixed to the borehole walls and a rotor element which is electrically driven to rapidly oscillate on the stator element to cause reaction forces transmitted through the borehole walls to the surrounding earth. Logitudinal shear waves are generated by an armature that is driven to rapidly oscillate along the axis of the borehole relative to a stator that is clamped to the borehole, to cause reaction forces transmitted to the surrounding earth. Pressure waves are generated by electrically driving pistons that press against opposite ends of a hydraulic reservoir that fills the borehole. High power is generated by energizing the elements at a power level that causes heating to over 150.degree. C. within one minute of operation, but energizing the elements for no more than about one minute.

Green, Michael A. (Oakland, CA); Cook, Neville G. W. (Lafayette, CA); McEvilly, Thomas V. (Berkeley, CA); Majer, Ernest L. (El Cirrito, CA); Witherspoon, Paul A. (Berkeley, CA)

1992-01-01T23:59:59.000Z

86

Seismic Design Expectations Report  

Broader source: Energy.gov [DOE]

The Seismic Design Expectations Report (SDER) is a tool that assists DOE federal project review teams in evaluating the technical sufficiency of the project seismic design activities prior to...

87

Assessing Beyond Design Basis Seismic Events and Implications on Seismic  

Broader source: Energy.gov (indexed) [DOE]

Assessing Beyond Design Basis Seismic Events and Implications on Assessing Beyond Design Basis Seismic Events and Implications on Seismic Risk Assessing Beyond Design Basis Seismic Events and Implications on Seismic Risk September 19, 2012 Presenter: Jeffrey Kimball, Technical Specialist (Seismologist) Defense Nuclear Facilities Safety Board Topics Covered: Department of Energy Approach to Natural Phenomena Hazards Analysis and Design (Seismic) Design Basis and Beyond Design Basis Seismic Events Seismic Risk Implications - Key Parameters and Insights Conclusions Assessing Beyond Design Basis Seismic Events and Implications on Seismic Risk More Documents & Publications DOE's Approach to Nuclear Facility Safety Analysis and Management Results from Beyond Design Basis Event Pilots Idaho National Laboratory Advanced Test Reactor Probabilistic Risk

88

SEISMIC RAY THEORY Seismic Ray Theory presents the most comprehensive treatment of the seismic  

E-Print Network [OSTI]

#12;SEISMIC RAY THEORY Seismic Ray Theory presents the most comprehensive treatment of the seismic ray method available. This method plays an important role in seismology, seismic exploration, and the interpretation of seismic measurements. The book presents a consistent treatment of the seismic ray method, based

Cerveny, Vlastislav

89

COLORADO FRONT RANGE SEISMICITY AND SEISMIC HAZARD  

E-Print Network [OSTI]

; Herrmann, 1981) and secondary oil recovery in western Colorado at the Rangely oil field (Gibbs et al. 1973COLORADO FRONT RANGE SEISMICITY AND SEISMIC HAZARD Anne F. Sheehan University of Colorado at Boulder, 2200 Colorado Avenue, Boulder, CO 80309 John D. Godchaux Trinity University, San Antonio, TX Noah

Sheehan, Anne F.

90

Seismic velocity estimation from time migration  

E-Print Network [OSTI]

Seismic images . . . . . . . . . . . . . . . . .Algorithms producing the seismic velocities from thethe Dix velocities and the true seismic velocities in 2D . .

Cameron, Maria Kourkina

2007-01-01T23:59:59.000Z

91

Seismic Performance Assessment in Dense Urban Environments  

E-Print Network [OSTI]

Kinematic interaction . . 4.4.2 Seismic footing response 6Deterministic seismic hazard analysis . . . . . . . . . .Probabilistic seismic hazard analysis . . . . . . . . .

Mason, Henry Benjamin

2011-01-01T23:59:59.000Z

92

Seismic Fracture Characterization Methods for Enhanced Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

Seismic Fracture Characterization Methods for Enhanced Geothermal Systems Seismic Fracture Characterization Methods for Enhanced Geothermal Systems Project objective: Make Seismic...

93

Fracture Detection and Water Sweep Characterization Using Single-well Imaging, Vertical Seismic Profiling and Cross-dipole Methods in Tight and Super-k Zones, Haradh II, Saudi Arabia  

E-Print Network [OSTI]

sustain the targeted oil production rates and they die much sooner than expected when water enters the wells. The study attempted to identify fracture systems and their role in the irregular water sweep. Single-well acoustic migration imaging (SWI...

Aljeshi, Hussain Abdulhadi A.

2012-07-16T23:59:59.000Z

94

The statistical nature of the upper continental crystalline crust derived from in situ seismic measurements  

Science Journals Connector (OSTI)

......crystalline crust. A recent large-scale geoscientific...German continental deep drilling project (KTB). It...in central Europe. A large program of seismic and...undertaken around the drilling location near Windischeschenbach...were measurements in the borehole, namely vertical seismic......

Guido Kneib

1995-09-01T23:59:59.000Z

95

Processing of a nine-component near-offset VSP for seismic anisotropy  

SciTech Connect (OSTI)

A convolutional sequence of matrix operators is offered as a convenient deterministic scheme for processing a multicomponent vertical seismic profile (VSP). This sequence is applied to a nine-component near-offset VSP recorded at the Conoco borehole test facility, Kay County, Oklahoma. These data are corrected for tool spin and near-surface anisotropy together with source coupling or imbalance. After wave-field separation using a standard f-k filter, each source and receiver pair for the upgoing waves is adjusted to a common reference depth using a matrix operator based on the downgoing wavefield. The up- and downgoing waves are then processed for anisotropy by a similarity transformation, to separate the qS1 and qS2 waves, from which the anisotropic properties are estimated. These estimates reveal a strong (apparent) vertical birefringence in the near-surface, but weak or moderate values for the majority of the subsurface. The target zone consists of a thin sandstone and deeper shale layer, both of which possess a strong vertical birefringence. The sandstone corresponds to a zone of known fluid flow. An observed qS2 attenuation and polarization change in the shale suggest it contains large fractures.

MacBeth, C.; Li, X.Y.; Zeng, X. [British Geological Survey, Edinburgh (United Kingdom)] [British Geological Survey, Edinburgh (United Kingdom); Cox, D.; Queen, J. [Conoco Inc., Ponca City, OK (United States). Exploration Research/Services Div.] [Conoco Inc., Ponca City, OK (United States). Exploration Research/Services Div.

1997-03-01T23:59:59.000Z

96

Crosswell Seismic Amplitude-Versus-Offset for Detailed Imaging of Facies and Fluid Distribution within Carbonate Oil Reservoirs  

E-Print Network [OSTI]

Crosswell Seismic Amplitude-Versus-Offset for Detailed Imaging of Facies and Fluid Distribution, and demonstrate a method of using crosswell seismic profiling for identification of trapped oil, bypassed reservoir compartments, and location of fluid fronts in carbonate reefs. The method of crosswell seismic

97

Vertical axis wind turbines  

DOE Patents [OSTI]

A vertical axis wind turbine is described. The wind turbine can include a top ring, a middle ring and a lower ring, wherein a plurality of vertical airfoils are disposed between the rings. For example, three vertical airfoils can be attached between the upper ring and the middle ring. In addition, three more vertical airfoils can be attached between the lower ring and the middle ring. When wind contacts the vertically arranged airfoils the rings begin to spin. By connecting the rings to a center pole which spins an alternator, electricity can be generated from wind.

Krivcov, Vladimir (Miass, RU); Krivospitski, Vladimir (Miass, RU); Maksimov, Vasili (Miass, RU); Halstead, Richard (Rohnert Park, CA); Grahov, Jurij (Miass, RU)

2011-03-08T23:59:59.000Z

98

Vertical axis wind turbine  

SciTech Connect (OSTI)

Wind turbines are largely divided into vertical axis wind turbines and propeller (Horizontal axis) wind turbines. The present invention discloses a vertical axis high speed wind turbine provided with a starting and braking control system. This vertical axis wind turbine is formed by having blades of a proper airfoil fitted to respective supporting arms provided radially from a vertical rotary axis by keeping the blade span-wise direction in parallel with the axis and being provided with a low speed control windmill in which the radial position of each operating piece varies with a centrifugal force produced by the rotation of the vertical rotary axis.

Kato, Y.; Seki, K.; Shimizu, Y.

1981-01-27T23:59:59.000Z

99

Seismic Isolation and Decrease of Seismic Effects on Bridges  

Science Journals Connector (OSTI)

A planned road bridge in an active seismic zone near the city of ilina in Slovakia was analysed for seismic effects. The seismic analysis has shown that an inelastic structural ... is very likely. Because of the...

Associate Professor Rudolf roch

2014-01-01T23:59:59.000Z

100

Teleseismic-Seismic Monitoring At Central Nevada Seismic Zone Region  

Open Energy Info (EERE)

Central Nevada Seismic Zone Region Central Nevada Seismic Zone Region (Biasi, Et Al., 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Central Nevada Seismic Zone Region (Biasi, Et Al., 2009) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Teleseismic-Seismic Monitoring Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown References Glenn Biasi, Leiph Preston, Ileana Tibuleac (2009) Body Wave Tomography For Regional Scale Assessment Of Geothermal Indicators In The Western Great Basin Retrieved from "http://en.openei.org/w/index.php?title=Teleseismic-Seismic_Monitoring_At_Central_Nevada_Seismic_Zone_Region_(Biasi,_Et_Al.,_2009)&oldid=425640"

Note: This page contains sample records for the topic "vertical seismic profile" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Vertical Structure of Convective Systems during NAME 2004  

Science Journals Connector (OSTI)

This study describes the vertical structure of mesoscale convective systems (MCSs) that characterized the 2004 North American monsoon utilizing observations from a 2875-MHz (S band) profiler and a dual-polarimetric scanning Doppler radar. Both ...

David G. Lerach; Steven A. Rutledge; Christopher R. Williams; Robert Cifelli

2010-05-01T23:59:59.000Z

102

Seismic characterization of fractures  

E-Print Network [OSTI]

Seismic characterization of fractures. Jos M. Carcione, OGS, Italy. Fractured geological formations are generally represented with a stress-strain relation.

JM Carcione

2014-06-07T23:59:59.000Z

103

Vertical axis wind turbine  

SciTech Connect (OSTI)

Wind turbines are largely divided into vertical axis wind turbines and propeller (Horizontal axis) wind turbines. The present invention discloses a vertical axis high speed wind turbine provided with rotational speed control systems. This vertical axis wind turbine is formed by having blades of a proper airfoil fitted to respective supporting arms provided radially from a vertical rotating shaft by keeping the blade span-wise direction in parallel with the shaft and being provided with aerodynamic control elements operating manually or automatically to control the rotational speed of the turbine.

Kato, Y.; Seki, K.; Shimizu, Y.

1981-01-27T23:59:59.000Z

104

Seismic image waves  

Science Journals Connector (OSTI)

......involved in the seismic imaging process, for example the migration...revisited, 60th Ann. Int. Mtg., Soc. Expl. Geophys...involved in the seismic imaging process, for example the migration...revisited, 60th Ann. Int. Mtg., SOC. Expl. Geophys......

Peter Hubral; Martin Tygel; Jrg Schleicher

1996-05-01T23:59:59.000Z

105

Structure and seismic stratigraphy of the Bonin Trench-Arc system  

E-Print Network [OSTI]

illustrating the nature of the large topographic high located east of the trench axis at 25oN 39 Fig. 10. Location of seismic reflection profiles shown in Figs. 11, 12& 13, and 14 42 Fig. 11. Seismic reflection profile illustrating the nature... structures located in the outer trench slope; recorded by the R. V. Hunt between 0500Z and 2300Z, 18-19 January 1969 (see Fig. 10 and plate 1 for location) 44 Fig. 13- Seismic reflection profile illustrating the typical step fault structures located...

Bandy, William Lee

1982-01-01T23:59:59.000Z

106

New Paradigm for Seismic Networks: Crowd-Sourced Seismic Networks,  

E-Print Network [OSTI]

#12;New Paradigm for Seismic Networks: Crowd-Sourced Seismic Networks, including Buildings Tom Egill Hauksson #12;SCSN: what does it encompass? · ~360 Seismic Stations · ~60 stations from partners SCSN/SCEDC total of ~26 FTE's #12;Crowd Sourced Networks · Current broadband seismic network

Greer, Julia R.

107

Teleseismic-Seismic Monitoring At Central Nevada Seismic Zone Region  

Open Energy Info (EERE)

Biasi, Et Al., 2008) Biasi, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Central Nevada Seismic Zone Region (Biasi, Et Al., 2008) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Teleseismic-Seismic Monitoring Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown References Glenn Biasi, Ileana Tibuleac, Leiph Preston (2008) Regional Resource Area Mapping In Nevada Using The Usarray Seismic Network Retrieved from "http://en.openei.org/w/index.php?title=Teleseismic-Seismic_Monitoring_At_Central_Nevada_Seismic_Zone_Region_(Biasi,_Et_Al.,_2008)&oldid=425638" Category: Exploration Activities What links here

108

Distributed Acoustic and Seismic Sensing  

Science Journals Connector (OSTI)

An overview of fiber optic distributed acoustic and seismic sensor system architectures is presented.

Kirkendall, Clay

109

Seismicity and Reservoir Fracture Characterization  

Broader source: Energy.gov [DOE]

Below are the project presentations and respective peer review results for Seismicity and Reservoir Fracture Characterization.

110

Fracture Properties From Seismic Scattering  

E-Print Network [OSTI]

Fractures scatter seismic energy and this energy can be analyzed to provide information about fracture

Burns, Daniel R.

2007-01-01T23:59:59.000Z

111

Depth profiling ambient noise in the deep ocean  

E-Print Network [OSTI]

al. , 2005). The vertical profile of wind speed over the seavertical directionality Depth-dependence of wind speedVertical noise directional density function versus depth. 93 Measured and acoustically estimated wind speeds.

Barclay, David Readshaw

2011-01-01T23:59:59.000Z

112

Method of migrating seismic records  

DOE Patents [OSTI]

The present invention provides a method of migrating seismic records that retains the information in the seismic records and allows migration with significant reductions in computing cost. The present invention comprises phase encoding seismic records and combining the encoded seismic records before migration. Phase encoding can minimize the effect of unwanted cross terms while still allowing significant reductions in the cost to migrate a number of seismic records.

Ober, Curtis C. (Las Lunas, NM); Romero, Louis A. (Albuquerque, NM); Ghiglia, Dennis C. (Longmont, CO)

2000-01-01T23:59:59.000Z

113

Resonant seismic emission of subsurface objects  

E-Print Network [OSTI]

E . , and S. Keydar, 1998, Seismic monitoring of diffractionthe barrel. The Resonant Seismic Emission Source ReceiverFigure 1. Geometry o f the seismic experiment to locate a

Korneev, Valeri A.

2010-01-01T23:59:59.000Z

114

SEI0: CENS Seismic Research: Overview  

E-Print Network [OSTI]

catastrophe (from Berry 2002). Seismic waves show a smearedSeismology/index.html CENS Seismic Research: OverviewRecent developments in seismic source theory argue that

2005-01-01T23:59:59.000Z

115

Seismic demands in precast concrete diaphragms  

E-Print Network [OSTI]

and Mander, J. B. (2003). Seismic Performance of PrecastState-of-the-Art Report on Seismic Resistance of Prestresseddevelopment of a diaphragm seismic design methodology, PCI

Schoettler, Matthew John

2010-01-01T23:59:59.000Z

116

ARM - Measurement - Vertical velocity  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

govMeasurementsVertical velocity govMeasurementsVertical velocity ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Vertical velocity The component of the velocity vector, along the local vertical. Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments CO2FLX : Carbon Dioxide Flux Measurement Systems ECOR : Eddy Correlation Flux Measurement System KAZR : Ka ARM Zenith Radar MMCR : Millimeter Wavelength Cloud Radar SODAR : Mini Sound Detection and Ranging

117

Micromachined electrostatic vertical actuator  

DOE Patents [OSTI]

A micromachined vertical actuator utilizing a levitational force, such as in electrostatic comb drives, provides vertical actuation that is relatively linear in actuation for control, and can be readily combined with parallel plate capacitive position sensing for position control. The micromachined electrostatic vertical actuator provides accurate movement in the sub-micron to micron ranges which is desirable in the phase modulation instrument, such as optical phase shifting. For example, compact, inexpensive, and position controllable micromirrors utilizing an electrostatic vertical actuator can replace the large, expensive, and difficult-to-maintain piezoelectric actuators. A thirty pound piezoelectric actuator with corner cube reflectors, as utilized in a phase shifting diffraction interferometer can be replaced with a micromirror and a lens. For any very precise and small amplitudes of motion` micromachined electrostatic actuation may be used because it is the most compact in size, with low power consumption and has more straightforward sensing and control options.

Lee, Abraham P. (Walnut Creek, CA); Sommargren, Gary E. (Santa Cruz, CA); McConaghy, Charles F. (Livermore, CA); Krulevitch, Peter A. (Pleasanton, CA)

1999-10-19T23:59:59.000Z

118

3-D Seismic Methods for Geothermal Reservoir Exploration and Assessment--Summary  

SciTech Connect (OSTI)

A wide variety of seismic methods covering the spectrum from DC to kilohertz have been employed at one time or the other in geothermal environments. The reasons have varied from exploration for a heat source to attempting to find individual fractures producing hot fluids. For the purposes here we will assume that overall objective of seismic imaging is for siting wells for successful location of permeable pathways (often fracture permeability) that are controlling flow and transport in naturally fractured reservoirs. The application could be for exploration of new resources or for in-fill/step-out drilling in existing fields. In most geothermal environments the challenge has been to separate the ''background'' natural complexity and heterogeneity of the matrix from the fracture/fault heterogeneity controlling the fluid flow. Ideally one not only wants to find the fractures, but the fractures that are controlling the flow of the fluids. Evaluated in this work is current state-of-the-art surface (seismic reflection) and borehole seismic methods (Vertical Seismic Profiling (VSP), Crosswell and Single Well) to locate and quantify geothermal reservoir characteristics. The focus is on active methods; the assumption being that accuracy is needed for successful well siting. Passive methods are useful for exploration and detailed monitoring for in-fill drilling, but in general the passive methods lack the precision and accuracy for well siting in new or step out areas. In addition, MEQ activity is usually associated with production, after the field has been taken to a mature state, thus in most cases it is assumed that there is not enough MEQ activity in unproduced areas to accurately find the permeable pathways. The premise of this review is that there may new developments in theory and modeling, as well as in data acquisition and processing, which could make it possible to image the subsurface in much more detail than 15 years ago. New understanding of the effect of fractures on seismic wave propagation are now being applied to image fractures in gas and oil environments. It now may be appropriate to apply these methods, with modifications, to geothermal applications. It is assumed that to implement the appropriate methods an industry coupled program tightly linked to actual field cases, iterating between development and application will be pursued. The goal of this work is to evaluate the most promising methods and approaches that may be used for improved geothermal exploration and reservoir assessment. It is not a comprehensive review of all seismic methods used to date in geothermal environments. This work was motivated by a need to assess current and developing seismic technology that if applied in geothermal cases may greatly improve the chances for locating new geothermal resources and/or improve assessment of current ones.

Majer, E.L.

2003-07-14T23:59:59.000Z

119

Optical turbulence vertical distribution with standard and high resolution at Mt Graham  

Science Journals Connector (OSTI)

......are obtained with the standard GS technique. Dotted...achieved so far with standard vertical profilers such...Section 2, we briefly review the principle of the...the C 2 N profiles at standard and high vertical resolution...produce on the detector plan, optically placed below......

E. Masciadri; J. Stoesz; S. Hagelin; F. Lascaux

2010-05-01T23:59:59.000Z

120

Chapter 7 - Prestack Seismic Inversion and Seismic Attribute Analysis  

Science Journals Connector (OSTI)

Abstract Based on seismic, logging, and geological data, the seismic inversion technique can reveal the spatial characteristics (including reservoir thickness, structural characteristics, extending direction, extending range, pinch-out location, and others) of the target layers, such as reservoirs or coal seams. By combining a large area of the continuous distribution of seismic data with high-resolution well logging data, this technique transforms conventional seismic data into a high-resolution well data volume, enabling us to use the acoustic characteristics of rock formations to ascertain lithological interfaces. So we can extrapolate the borehole lithological and physical properties and hydrocarbon features from points to lines and lines to faces, and predict lateral reservoir variations and reservoir properties from known reservoir characteristics. Seismic inversion technology has been one of the core technologies for reservoir characteristics and reservoir prediction. Seismic attribute analysis is the premise of fine reservoir characteristics and fine 3D seismic interpretation, which help us uncover information about lithology and reservoir heterogeneity from seismic data. The work of seismic attribute analysis includes (1) extracting various seismic attributes from poststack seismic data; (2) conducting crossplot analysis of seismic attributes and reservoir properties (including geology, well logging, and petrophysical parameters) to establish relationships between seismic attributes and reservoir parameters; and (3) dynamically interpreting 3D seismic, geological, and logging data, which helps us to study the relationships between seismic reflection characteristics and sedimentary and tectonic information, predict the reservoir spatial distribution, and reveal how fracture systems influence the reservoir distribution. Development of the seismic inversion technique in reservoir characterization can be summarized in four stages: the first stage was in the 1960s. In this stage, the exploration targets were structural reservoirs, and seismic inversion techniques were not used. The second stage was in the 1970s. The exploration targets were structural and lithological reservoirs, and no well-constraint seismic inversion techniques were used. The third stage was in the 1980s, when many new techniques were developed. Seismic inversion techniques, including the prestack amplitude versus offset (AVO) technique and wave impedance inversion technique, developed rapidly and greatly improved our understanding of seismic reservoir characterization. The fourth stage is the stage of reservoir characterization and dynamic monitoring in the 1990s. Seismic inversion techniques are used for reservoir dynamic characterization, such as 3D AVO inversion, well-seismic joint inversion, reservoir characteristics curve reconstruction, multiparameter reservoir inversion, and the elastic wave impedance inversion techniques. Prestack seismic data contain richer information than do poststack data, so prestack seismic inversion and attribute analysis are increasingly important in oil and gas exploration.

Ming Li; Yimin Zhao

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vertical seismic profile" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Seismic refraction survey of the ANS preferred site  

SciTech Connect (OSTI)

Between September 19, 1991 and October 8, 1991 personnel from Martin Marietta Energy Systems, Inc. (Energy Systems), Automated Sciences Group, Inc., and Marrich, Inc. performed a seismic refraction survey at the Advanced Neutron Source (ANS) preferred site. The purpose of this survey was to provide estimates of top-of-rock topography, based on seismic velocities, and to delineate variations in rock and soil velocities. Forty-four seismic refraction spreads were shot to determine top-of-rock depths at 42 locations. Nine of the seismic spreads were shot with long offsets to provide 216 top-of-rock depths for 4 seismic refraction profiles. The refraction spread locations were based on the grid for the ANS Phase I drilling program. Interpretation of the seismic refraction data supports the assumption that the top-of-rock surface generally follows the local topography. The shallow top-of-rock interface interpreted from the seismic refraction data is also supported by limited drill information at the site. Some zones of anomalous data are present that could be the result of locally variable weathering, a localized variation in shale content, or depth to top-of-rock greater than the site norm.

Davis, R.K. (Automated Sciences Group, Inc., Oak Ridge, TN (United States)); Hopkins, R.A. (Marrich, Inc., Knoxville, TN (United States)); Doll, W.E. (Oak Ridge National Lab., TN (United States))

1992-02-01T23:59:59.000Z

122

18 - Seismic Design  

Science Journals Connector (OSTI)

Abstract The damages and disruptions of the subsea pipelines caused by an earthquake may have severe effects on the service life, since it may lead to a significant financial loss due to service interruptions, fires, explosions, and environmental contamination. In general, the seismic analyses of the permanent ground deformation for buried and unburied pipes, and seismic ground waves for unburied pipes are required for designing pipeline systems. Many subsea pipelines are often buried for stability and mechanical protection in the shallow water area; otherwise, they are laid on the seabed. This chapter addresses available seismic design codes, standards and design criteria for subsea pipelines, a general design and analysis methodology for fault crossing and seismic ground wave, design and analysis examples using a static model for buried pipe subjected to permanent ground deformations due to the foundation failure, a time history dynamic model for unburied pipelines subjected to seismic ground waves, the mitigation methods for subsea pipelines to avoid seismic hazards including modifying loading and boundary conditions, modifying pipeline configuration, modifying pipeline route selection, and improving emergency response.

Qiang Bai; Yong Bai

2014-01-01T23:59:59.000Z

123

Chapter 5 - Seismic Attribute Analysis  

Science Journals Connector (OSTI)

Abstract Seismic attributes are the geometry, kinematics, dynamics, and statistical characteristics of seismic waves, which are extracted or derived from prestack and poststack seismic data by mathematical transformation. For a long time, seismic data only have been used to track lineups of seismic waves in order to delineate the geometry and structural characteristics of oil and gas reservoirs. In fact, there is rich information about lithology, physical properties, and fluid composition hidden in seismic data. As we all know, the characteristics of the seismic signal are caused by petrophysical characteristics and its variability. Geoscientists need to do seismic attribute analyses and calibration in order to eliminate data distortion and dig out lithological and physical properties hidden in seismic data. Especially when people are eager to cognize the heterogeneity of lithological and stratigraphic reservoirs, the rich information about the spatial variability in seismic data seems more precious. In recent years, with the advancement of reservoir interpretation and the needs of three dimensional (3-D) seismic data analysis, scientists have found out more and more new attributes on the basis of conventional seismic attributes. At the same time, methods and means used for the calculation and analysis of seismic attributes are increasing. Seismic attribute analysis has been successfully applied in reservoir lithological prediction, hydrocarbon potential prediction, and reservoir property estimates.

Ming Li; Yimin Zhao

2014-01-01T23:59:59.000Z

124

Seismic Fracture Characterization Methods for Enhanced Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

Seismic Fracture Characterization Methods for Enhanced Geothermal Systems; 2010 Geothermal Technology Program Peer Review Report Seismic Fracture Characterization Methods for...

125

Seismic vulnerability assessment of a high voltage disconnect switch  

Science Journals Connector (OSTI)

Abstract This paper deals with the seismic vulnerability of high voltage equipment typically installed in electric substations. In particular, the seismic response of a 380kV vertical disconnect switch has been investigated based on the results of an experimental campaign carried out at Roma Tre University. According to a series of non-linear analyses, the influence of the most significant parameters on the seismic behavior of this apparatus has been analyzed and the corresponding fragility curves have been evaluated by using the Effective Fragility Analysis method. The results showed a limited vulnerability of the disconnect switch, whose most critical parts are the bottom joint of the ceramic support column and the steel column base.

Fabrizio Paolacci; Renato Giannini; Silvia Alessandri; Gianmarco De Felice

2014-01-01T23:59:59.000Z

126

Seismic attribute studies, Mississippian Frobisher-Alida oil fields, northeast Williston basin  

SciTech Connect (OSTI)

Subtle Mississippian stratigraphic traps of the Wiley and Glenburn fields of North Dakota and the Creelman field of southeast Saskatchewan illustrate similar seismic response to distinctly different geologic settings. Shoreline facies change, thick supratidal salt pans, carbonate porosity zones, buried hills, and structure on the top of the Mississippian unconformity can all cause similar seismic response (seismic facies). In each instance, vertical and lateral thickness and lithologic changes are the dominant influence on the seismic response. In addition, pitfalls due to tuning, multiples, and other causes can make it difficult, if not impossible, to differentiate these anomalies based on seismic response alone. Careful attribute studies must be coordinated with sound geologic control and models to explore effectively for these subtle stratigraphic traps.

Davis, T.L.

1988-07-01T23:59:59.000Z

127

Controllable seismic source  

DOE Patents [OSTI]

An apparatus for generating seismic waves includes a housing, a strike surface within the housing, and a hammer movably disposed within the housing. An actuator induces a striking motion in the hammer such that the hammer impacts the strike surface as part of the striking motion. The actuator is selectively adjustable to change characteristics of the striking motion and characteristics of seismic waves generated by the impact. The hammer may be modified to change the physical characteristics of the hammer, thereby changing characteristics of seismic waves generated by the hammer. The hammer may be disposed within a removable shock cavity, and the apparatus may include two hammers and two shock cavities positioned symmetrically about a center of the apparatus.

Gomez, Antonio; DeRego, Paul Jeffrey; Ferrel, Patrick Andrew; Thom, Robert Anthony; Trujillo, Joshua J.; Herridge, Brian

2014-08-19T23:59:59.000Z

128

Seismic viscoelastic attenuation Submitted to  

E-Print Network [OSTI]

Seismic viscoelastic attenuation Submitted to: Encyclopedia of Solid Earth Geophysics Harsh Gupta-3046 USA E-mail: vernon.cormier@uconn.edu Tel: 860-486-3547 Fax: 860-486-3346 #12;SEISMIC VISCOELASTIC ATTENUATION Synonyms Seismic intrinsic attenuation Definitions Linear viscoelastic attenuation. The loss

Cormier, Vernon F.

129

Borehole seismic monitoring of seismic stimulation at Occidental Permian Ltd's -- South Wason Clear Fork Unit  

E-Print Network [OSTI]

the distribution of seismic energy within the reservoir.Field Monitoring of ASR Seismic Stimulation Source at LostField Results from Seismic Stimulation, 17th International

Daley, Tom; Majer, Ernie

2007-01-01T23:59:59.000Z

130

Subduction Zone Seismic Experiment in Peru: Results From a Wireless Seismic Network  

E-Print Network [OSTI]

Sensing Subduction Zone Seismic Experiment in Peru:results from a wireless seismic Network Igor Stubailo,deployed in Peru. UCLA seismic line in Peru Lake Titicaca

2009-01-01T23:59:59.000Z

131

Anisotropic inversion of refracted waves in vertical cable data in the presence of dip  

E-Print Network [OSTI]

the anisotropic parameters of these shales in situ. In these studies, seismic lines were laid out parallelAnisotropic inversion of refracted waves in vertical cable data in the presence of dip Hejie Wang1 isotropic and anisotropic media. Two sets of transversely isotropic models are used to analyse the azimuthal

Edinburgh, University of

132

ARM - Evaluation Product - Vertical Air Motion during Large-Scale  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ProductsVertical Air Motion during Large-Scale ProductsVertical Air Motion during Large-Scale Stratiform Rain Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : Vertical Air Motion during Large-Scale Stratiform Rain Site(s) NIM SGP General Description The Vertical Air Motion during Large-Scale Stratiform Rain (VERVELSR) value-added product (VAP) uses the unique properties of a 95-GHz radar Doppler velocity spectra to produce vertical profiles of air motion during low-to-moderate (1-20 mm/hr) rainfall events It is designed to run at ARM sites that include a W-band ARM cloud radar (WACR) radar with spectra data processing. The VERVELSR VAP, based on the work of Giangrande et al. (2010), operates by exploiting a resonance effect that occurs in

133

A new seismic probe for coal seam hazard detection  

SciTech Connect (OSTI)

An experimental hole-to-hole seismic probe system has been developed for use in coal measure geology as a means of determining the structural conditions of coal seams. The source probe produces a 500-joule electric arc discharge whose seismic wavelet has a spectrum in the 200 to 2,000 Hz frequency range. Low compliance hydrophones contained in the source probe as well as in a separate seismic detector probe are matched to the frequency range of the source. Both probes are constructed with 5.72 cm diameter housings. The transducers in the probes are equipped with fluid-inflatable boots to permit operation in either wet or dry boreholes. Preliminary tests in vertical boreholes drilled 213 m apart in sedimentary rock formations show reliable operation and useful seismic propagation measurements along horizontal and oblique paths up to 232 m in length. Because the seismic wavelet has an accurately repeatable waveshape, multiple shots and signal averaging techniques can be used to enhance the signal-to-noise ratio and extend the transmission distances.

Peters, W.R.; Owen, T.E.; Thill, R.E.

1985-01-01T23:59:59.000Z

134

Seismic design technology for breeder reactor structures. Volume 1. Special topics in earthquake ground motion  

SciTech Connect (OSTI)

This report is divided into twelve chapters: seismic hazard analysis procedures, statistical and probabilistic considerations, vertical ground motion characteristics, vertical ground response spectrum shapes, effects of inclined rock strata on site response, correlation of ground response spectra with intensity, intensity attenuation relationships, peak ground acceleration in the very mean field, statistical analysis of response spectral amplitudes, contributions of body and surface waves, evaluation of ground motion characteristics, and design earthquake motions. (DLC)

Reddy, D.P.

1983-04-01T23:59:59.000Z

135

Seismic signatures of the Lodgepole fractured reservoir in Utah-Wyoming overthrust belt  

SciTech Connect (OSTI)

In low porosity, low permeability zones, natural fractures are the primary source of permeability which affect both production and injection of fluids. The open fractures do not contribute much to porosity, but they provide an increased drainage network to any porosity. An important approach to characterizing the fracture orientation and fracture permeability of reservoir formations is one based upon the effects of such conditions on the propagation of acoustic and seismic waves in the rock. We present the feasibility of using seismic measurement techniques to map the fracture zones between wells spaced 2400 ft at depths of about 1000 ft. For this purpose we constructed computer models (which include azimuthal anisotropy) using Lodgepole reservoir parameters to predict seismic signatures recorded at the borehole scale, crosswell scale, and 3 D seismic scale. We have integrated well logs with existing 2D surfaces seismic to produce petrophysical and geological cross sections to determine the reservoir parameters and geometry for the computer models. In particular, the model responses are used to evaluate if surface seismic and crosswell seismic measurements can capture the anisotropy due to vertical fractures. Preliminary results suggested that seismic waves transmitted between two wells will propagate in carbonate fracture reservoirs, and the signal can be received above the noise level at the distance of 2400 ft. In addition, the large velocities contrast between the main fracture zone and the underlying unfractured Boundary Ridge Member, suggested that borehole reflection imaging may be appropriate to map and fracture zone thickness variation and fracture distributions in the reservoir.

Parra, J.; Collier, H.; Angstman, B.

1997-08-01T23:59:59.000Z

136

Influence of Thermal Stratification on Wind Profiles for Heights up to 140 m  

E-Print Network [OSTI]

.energiemeteorologie.de The vertical wind speed profile has to be know for many wind power applications. Although the large effect speeds are not measured or predicted in the hubheight of the wind turbine. For the vertical trans stratification of the boundary layer has also an important influence on the vertical wind speed profile. Only

Heinemann, Detlev

137

Chapter 6 - Seismic Inversion Techniques  

Science Journals Connector (OSTI)

Abstract Seismic inversion techniques were developed as a discipline at the same time that seismic technologies were widely applied in oil exploration and development starting in the 1980s. Except for basic theories and principles, seismic inversion techniques are different from traditional seismic exploration methods in geological tasks, involving basic information as well as study approaches. In the early stages of exploration, the geological task of seismic exploration was to find structures and identify traps, and seismic exploration techniques always focused on the ups and downs of reflection interfaces. They mainly relied on the travel time for structural interpretation. The main work of reservoir geophysics is to study the heterogeneity of a reservoir, and the main geological task is to make predictions on the reservoir parameters. Scientists focus on the lateral variation of reservoir characteristics and conduct seismic interpretation based on the information extracted from the results of reservoir seismic inversion. Seismic inversion has developed rapidly in recent years, including recursive inversion, log-constrained inversion, and multiparameter lithological seismic inversion. We choose different methods according to the geological characteristics and specific problems of the study area.

Ming Li; Yimin Zhao

2014-01-01T23:59:59.000Z

138

Crosswell seismic study in a seismically poor data area  

SciTech Connect (OSTI)

Crosswell traveltime tomography and reflection imaging assisted a reservoir characterization effort in an area of poor-quality surface seismic data. Both the tomogram and the reflection image proved useful in the description of the fractured reservoir interval. The velocity tomogram shows that: (1) the vertical resolution was sufficient to identify and characterize a 50-ft (15 m) thick lithological unit of brittle rocks, which was the most important interval for the characterization of this fractured reservoir; (2) different lithological units present sufficient velocity contrast to be identifiable on the tomogram; and (3) the tomogram velocity is higher than the sonic velocity implying that the rocks in the interwell area may be anisotropic. Correlation of the lithologies with the tomogram implies that the major controlling factor of the anisotropy is the shale content in the formation. The crosswell reflection image, generated by a VSP-CDP mapping technique defines the fractured reservoir interval in terms of high-frequency reflections. The lateral resolution of this reflection image is difficult to define because the survey coverage is nonuniform as a result of the receiver spacing being much larger than the source spacing. The dips of the reflections do not quite agree with the dips that are inferred from well log ties. The authors believe this disagreement is a result of the anisotropy of the medium and the use of an isotropic imaging algorithm. Improved data acquisition (finer spatial sampling) that would allow better wavefield separation techniques to be used would probably have produced higher quality crosswell reflection images.

Lee, D.S.; Walden, A.F. [Unocal Corp., Brea, CA (United States)] [Unocal Corp., Brea, CA (United States); Lazaratos, S.K. [Tomoseis Inc., Houston, TX (United States)] [Tomoseis Inc., Houston, TX (United States)

1995-05-01T23:59:59.000Z

139

Local perturbations of the Earths radiation belt during the seismic event development in Japan on March 11, 2011  

Science Journals Connector (OSTI)

Energetic electron bursts detected in the ARINA satellite experiment during the development of the catastrophic seismic event in Japan on March 11, 2011 are analyzed. Time profiles of the daily number of parti...

A. M. Galper; S. V. Koldashov; A. A. Ulitin

2011-07-01T23:59:59.000Z

140

Definition: Electromagnetic Profiling Techniques | Open Energy Information  

Open Energy Info (EERE)

Electromagnetic Profiling Techniques Electromagnetic Profiling Techniques Jump to: navigation, search Dictionary.png Electromagnetic Profiling Techniques Electromagnetic profiling techniques map lateral variations in subsurface resistivity.[1] View on Wikipedia Wikipedia Definition Exploration geophysics is the applied branch of geophysics which uses surface methods to measure the physical properties of the subsurface Earth, along with the anomalies in these properties, in order to detect or infer the presence and position of ore minerals, hydrocarbons, geothermal reservoirs, groundwater reservoirs, and other geological structures. Exploration geophysics is the practical application of physical methods (such as seismic, gravitational, magnetic, electrical and electromagnetic) to measure the physical properties of rocks, and in particular, to detect

Note: This page contains sample records for the topic "vertical seismic profile" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Seismic Design Expectations Report  

Broader source: Energy.gov (indexed) [DOE]

Seismic Design Expectations Report Seismic Design Expectations Report March 2010 CD- This Rev of th Se -0 view Module w he overall Cons OFFICE O eismic De C CD-1 was used to dev struction Projec inco OF ENVIRO Standard esign Exp Critical Deci CD-2 M velop the Revie ct Review cond orporated in the ONMENTA Review Pla pectation ision (CD) A C March 2010 ew Plan for the ducted in 2009 e current versio AL MANAG an (SRP) ns Report Applicability D-3 e Oak Ridge Bl 9. Lessons lear on of the Modu GEMENT t (SDER) CD-4 ldg. 3019 60% rned from this r ule. ) Post Ope design review review have be eration w as part een Standard Review Plan, 2 nd Edition, March 2010 i FOREWORD The Standard Review Plan (SRP) 1 provides a consistent, predictable corporate review framework to ensure that issues and risks that could challenge the success of Office of Environmental

142

Seismic stimulation for enhanced oil recovery  

E-Print Network [OSTI]

M. , and Z. Wang, 1992, Seismic properties of pore ?uids:2005, Relationships between seismic and hydrological proper-by d/dt ? ? / ? t ? u ?. Seismic stimulation Biot, M. A. ,

Pride, S.R.

2008-01-01T23:59:59.000Z

143

Vertical distribution of euphausiid life stages in waters adjacent to  

E-Print Network [OSTI]

Basin had a stratified profile of tem- perature and oxygen. Lower abun- dances of the larger euphausiids in the upper layers of Salsipuedes Chan- nel. whereas in Guaymas Basin and Point Eugenia. the youngest larvae. In La Jolla Bight near San Diego, differences in patterns of vertical migration of Euphausia pacifica

144

Seismic Techniques | Open Energy Information  

Open Energy Info (EERE)

Seismic Techniques Seismic Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Seismic Techniques Details Activities (0) Areas (0) Regions (0) NEPA(10) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Seismic Techniques Parent Exploration Technique: Geophysical Techniques Information Provided by Technique Lithology: Rock unit density influences elastic wave velocities. Stratigraphic/Structural: Structural geology- faults, folds, grabens, horst blocks, sedimentary layering, discontinuities, etc. Hydrological: Combining compressional and shear wave results can indicate the presence of fluid saturation in the formation. Thermal: High temperatures and pressure impact the compressional and shear wave velocities.

145

Modeling Three-Dimensional Upper Mantle Seismic Anisotropy with Higher Mode Surface Waves  

E-Print Network [OSTI]

Seismic Anisotropy . . . . . . . . . . . . . . . . . . . .Seismic Wave Propagation in a Weakly Anisotropicof seismic anisotropy . . . . . . . . . . . . . . . .

Yuan, Kaiqing

2014-01-01T23:59:59.000Z

146

Induced Seismicity Impact | Open Energy Information  

Open Energy Info (EERE)

Induced Seismicity Impact Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleInducedSeismicityImpact&oldid612409" Category: NEPA Resources...

147

Seismic Fracture Characterization Methods for Enhanced Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

Seismic Fracture Characterization Methods for Enhanced Geothermal Systems Principal Investigator: John H. Queen Hi-Q Geophysical Inc. Track Name: Seismicity and Reservoir Fracture...

148

A Simple Model of Climatological Rainfall and Vertical Motion Patterns over the Tropical Oceans  

E-Print Network [OSTI]

A simple model is developed that predicts climatological rainfall, vertical motion, and diabatic heating profiles over the tropical oceans given the sea surface temperature (SST), using statistical relationships deduced ...

Back, Larissa E.

149

Seismic expression of Red Fork channels in Major and Kay Counties, Oklahoma  

SciTech Connect (OSTI)

This paper investigates the application of regional seismic to exploration and development Red Fork sands of the Cherokee Group, in Major and Kay Counties, Oklahoma. A computer-aided exploration system (CAEX) was used to justify the subtle seismic expressions with the geological interpretation. Modeling shows that the low-velocity shales are the anomalous rock in the Cherokee package, which is most represented by siltstone and thin sands. Because the Red Fork channel sands were incised into or deposited with laterally time-equivalent siltstones, no strong reflection coefficient is associated with the top of the sands. The objective sands become a seismic anomaly only when they cut into and replace a low-velocity shale. This knowledge allows mapping the channel thickness by interpreting the shale thickness from seismic data. A group shoot line in Major County, Oklahoma, has been tied to the geologic control, and the channel thicknesses have been interpreted assuming a detectable vertical resolution of 10 ft. A personal computer-based geophysical work station is used to construct velocity logs representative of the geology to produce forward-modeled synthetic seismic sections, and to display, in color, the seismic trace attributes. These synthetic sections are used as tools to compare with and interpret the seismic line and to evaluate the interpretative value of lowest cost, lesser quality data versus reprocessing or new data acquisition.

Hanoch, C.A.

1987-08-01T23:59:59.000Z

150

Observations of Nepheloid Layers Made With an Autonomous Vertical Profiler  

E-Print Network [OSTI]

appears to be local resuspension events caused either directly or indirectly by near-inertial internal and maintenance of the bnl in the Great Lakes. These include local resuspension (Chambers and Eadie 1981

151

Induced Seismicity | Open Energy Information  

Open Energy Info (EERE)

Induced Seismicity Induced Seismicity Jump to: navigation, search Contents 1 Geothermal Lab Call Projects for Induced Seismicity 2 Geothermal ARRA Funded Projects for Induced Seismicity Geothermal Lab Call Projects for Induced Seismicity Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":200,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":14,"width":"600px","height":"350px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","icon":"","visitedicon":"","forceshow":true,"showtitle":true,"hidenamespace":false,"template":false,"title":"","label":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"locations":[{"text":"

152

24-CHANNEL GEOPHONE ARRAY FOR HORIZONTAL OR VERTICAL BOREHOLES  

SciTech Connect (OSTI)

Improved ground-imaging capabilities have enormous potential to increase energy, environmental, and economic benefits by improving exploration accuracy and reducing energy consumption during the mining cycle. Seismic tomography has been used successfully to monitor and evaluate geologic conditions ahead of a mining face. A primary limitation to existing seismic tomography, however, is the placement of sensors. The goal of this project is to develop an array of 24 seismic sensors capable of being mounted in either a vertical or horizontal borehole. Development of this technology reduces energy usage in excavation, transportation, ventilation, and processing phases of the mining operation because less waste is mined and the mining cycle suffers fewer interruptions. This new technology benefits all types of mines, including metal/nonmetal, coal, and quarrying. The primary research tasks focused on sensor placement method, sensor housing and clamping design, and cabling and connector selection. An initial design is described in the report. Following assembly, a prototype was tested in the laboratory as well as at a surface stone quarry. Data analysis and tool performance were used for subsequent design modifications. A final design is described, of which several components are available for patent application. Industry partners have shown clear support for this research and demonstrated an interest in commercialization following project completion.

Erik C. Westman

2003-10-24T23:59:59.000Z

153

HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT SEISMIC ANALYSIS OF HANFORD DOUBLE SHELL TANKS  

SciTech Connect (OSTI)

M&D Professional Services, Inc. (M&D) is under subcontract to Pacific Northwest National Laboratory (PNNL) to perform seismic analysis of the Hanford Site double-shell tanks (DSTs) in support of a project entitled ''Double-Shell Tank (DSV Integrity Project--DST Thermal and Seismic Analyses)''. The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the DST system at Hanford in support of Tri-Party Agreement Milestone M-48-14, The work described herein was performed in support of the seismic analysis of the DSTs. The thermal and operating loads analysis of the DSTs is documented in Rinker et al. (2004). The work statement provided to M&D (PNNL 2003) required that the seismic analysis of the DSTs assess the impacts of potentially non-conservative assumptions in previous analyses and account for the additional soil mass due to the as-found soil density increase, the effects of material degradation, additional thermal profiles applied to the full structure including the soil-structure response with the footings, the non-rigid (low frequency) response of the tank roof, the asymmetric seismic-induced soil loading, the structural discontinuity between the concrete tank wall and the support footing and the sloshing of the tank waste. The seismic analysis considers the interaction of the tank with the surrounding soil and the effects of the primary tank contents. The DSTs and the surrounding soil are modeled as a system of finite elements. The depth and width of the soil incorporated into the analysis model are sufficient to obtain appropriately accurate analytical results. The analyses required to support the work statement differ from previous analysis of the DSTs in that the soil-structure interaction (SSI) model includes several (nonlinear) contact surfaces in the tank structure, and the contained waste must be modeled explicitly in order to capture the fluid-structure interaction behavior between the primary tank and contained waste.

MACKEY, T.C.

2006-03-17T23:59:59.000Z

154

Seismic event classification system  

DOE Patents [OSTI]

In the computer interpretation of seismic data, the critical first step is to identify the general class of an unknown event. For example, the classification might be: teleseismic, regional, local, vehicular, or noise. Self-organizing neural networks (SONNs) can be used for classifying such events. Both Kohonen and Adaptive Resonance Theory (ART) SONNs are useful for this purpose. Given the detection of a seismic event and the corresponding signal, computation is made of: the time-frequency distribution, its binary representation, and finally a shift-invariant representation, which is the magnitude of the two-dimensional Fourier transform (2-D FFT) of the binary time-frequency distribution. This pre-processed input is fed into the SONNs. These neural networks are able to group events that look similar. The ART SONN has an advantage in classifying the event because the types of cluster groups do not need to be pre-defined. The results from the SONNs together with an expert seismologist's classification are then used to derive event classification probabilities.

Dowla, Farid U. (Castro Valley, CA); Jarpe, Stephen P. (Brentwood, CA); Maurer, William (Livermore, CA)

1994-01-01T23:59:59.000Z

155

Automating Shallow Seismic Imaging  

SciTech Connect (OSTI)

This seven-year, shallow-seismic reflection research project had the aim of improving geophysical imaging of possible contaminant flow paths. Thousands of chemically contaminated sites exist in the United States, including at least 3,700 at Department of Energy (DOE) facilities. Imaging technologies such as shallow seismic reflection (SSR) and ground-penetrating radar (GPR) sometimes are capable of identifying geologic conditions that might indicate preferential contaminant-flow paths. Historically, SSR has been used very little at depths shallower than 30 m, and even more rarely at depths of 10 m or less. Conversely, GPR is rarely useful at depths greater than 10 m, especially in areas where clay or other electrically conductive materials are present near the surface. Efforts to image the cone of depression around a pumping well using seismic methods were only partially successful (for complete references of all research results, see the full Final Technical Report, DOE/ER/14826-F), but peripheral results included development of SSR methods for depths shallower than one meter, a depth range that had not been achieved before. Imaging at such shallow depths, however, requires geophone intervals of the order of 10 cm or less, which makes such surveys very expensive in terms of human time and effort. We also showed that SSR and GPR could be used in a complementary fashion to image the same volume of earth at very shallow depths. The primary research focus of the second three-year period of funding was to develop and demonstrate an automated method of conducting two-dimensional (2D) shallow-seismic surveys with the goal of saving time, effort, and money. Tests involving the second generation of the hydraulic geophone-planting device dubbed the ''Autojuggie'' showed that large numbers of geophones can be placed quickly and automatically and can acquire high-quality data, although not under rough topographic conditions. In some easy-access environments, this device could make SSR surveying considerably more efficient and less expensive, particularly when geophone intervals of 25 cm or less are required. The most recent research analyzed the difference in seismic response of the geophones with variable geophone spike length and geophones attached to various steel media. Experiments investigated the azimuthal dependence of the quality of data relative to the orientation of the rigidly attached geophones. Other experiments designed to test the hypothesis that the data are being amplified in much the same way that an organ pipe amplifies sound have so far proved inconclusive. Taken together, the positive results show that SSR imaging within a few meters of the earth's surface is possible if the geology is suitable, that SSR imaging can complement GPR imaging, and that SSR imaging could be made significantly more cost effective, at least in areas where the topography and the geology are favorable. Increased knowledge of the Earth's shallow subsurface through non-intrusive techniques is of potential benefit to management of DOE facilities. Among the most significant problems facing hydrologists today is the delineation of preferential permeability paths in sufficient detail to make a quantitative analysis possible. Aquifer systems dominated by fracture flow have a reputation of being particularly difficult to characterize and model. At chemically contaminated sites, including U.S. Department of Energy (DOE) facilities and others at Department of Defense (DOD) installations worldwide, establishing the spatial extent of the contamination, along with the fate of the contaminants and their transport-flow directions, is essential to the development of effective cleanup strategies. Detailed characterization of the shallow subsurface is important not only in environmental, groundwater, and geotechnical engineering applications, but also in neotectonics, mining geology, and the analysis of petroleum reservoir analogs. Near-surface seismology is in the vanguard of non-intrusive approaches to increase knowledge of the shallow subsurface; our

Steeples, Don W.

2004-12-09T23:59:59.000Z

156

SEISMIC INTERFEROMETRY FOR TEMPORAL MONITORING Norimitsu Nakata  

E-Print Network [OSTI]

SEISMIC INTERFEROMETRY FOR TEMPORAL MONITORING by Norimitsu Nakata #12;c Copyright by Norimitsu Seismic interferometry, where one computes coherency of waves between two or more receivers and averages from the first study related to seismic interferometry (although the name of seismic interferometry has

Snieder, Roel

157

Seismicity and seismic stress in the Coso Range, Coso geothermal...  

Open Energy Info (EERE)

are discussed in this paper. An analysis of fault-related seismicity in the region led us to conclude that the Little Lake fault and the Airport Lake fault are the most...

158

Acoustic mapping of pelagic fish distribution and abundance in relation to a seismic shooting area off the Norwegian west coast  

Science Journals Connector (OSTI)

In April 1999 seismic investigations started in an area off western Norway as part of an ordinary three-dimensional survey, using a vessel with two seismic sources, each of 20 air guns and 10 hydrophone streamers. The seismic sources, towed at a depth of 8m, were alternatively fired every 25m along 51 transects, each 51525m long, separated from adjacent transects by 500m. The possible influence of this seismic activity on pelagic fish (herring, blue whiting and mesopelagic species) was investigated in two ways. First, the distribution and abundance within the seismic area and the surrounding waters up to 3050km away were mapped acoustically three times. In all three surveys the acoustic abundance of pelagic fish was higher outside than inside the seismic shooting area, indicating a long-term effect of the seismic activity. Secondly, the acoustic abundance was recorded directly prior to and after shooting along some of the seismic transects. In these comparisons no differences were found, indicating that the shooting had insignificant short-term scaring effects. However, both blue whiting and mesopelagic species were found in deeper waters in periods with shooting compared to periods without shooting, indicating that vertical movement rather than horizontal movement could be a short-term reaction to this noise.

Aril Slotte; Kaare Hansen; John Dalen; Egil Ona

2004-01-01T23:59:59.000Z

159

Seismic and infrasonic source processes in volcanic fluid systems  

E-Print Network [OSTI]

A broadband seismic and infrasound array deployment at MountNumerical experiments . . . . . . . .1. Seismic- acousticFigure 3.2: Infrasonic and seismic waveforms at CDWR for an

Matoza, Robin S.

2009-01-01T23:59:59.000Z

160

Seismic design, testing and analysis of reinforced concrete wall buildings  

E-Print Network [OSTI]

and Priestley M.J.N. (1992). Seismic Design of Reinforced2007). Displacement Based Seismic Design of Structures.318-99 Provisions for Seismic Design of Structural Walls.

Panagiotou, Marios

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vertical seismic profile" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Downhole hydraulic seismic generator  

DOE Patents [OSTI]

A downhole hydraulic seismic generator system for transmitting energy wave vibrations into earth strata surrounding a borehole. The system contains an elongated, unitary housing operably connected to a well head aboveground by support and electrical cabling, and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a hydraulic oscillator containing a double-actuating piston whose movement is controlled by an electro-servovalve regulating a high pressure hydraulic fluid flow into and out of upper and lower chambers surrounding the piston. The spent hydraulic fluid from the hydraulic oscillator is stored and pumped back into the system to provide high pressure fluid for conducting another run at the same, or a different location within the borehole.

Gregory, Danny L. (Corrales, NM); Hardee, Harry C. (Albuquerque, NM); Smallwood, David O. (Albuquerque, NM)

1992-01-01T23:59:59.000Z

162

Evolution of vertical drafts and cloud-to-ground lightning within the convective region of a mesoscale convective complex  

E-Print Network [OSTI]

to ground in every 10 minute dme interval from 0600-1200 UTC for the 4 June 1985 MCC 43 24 Vertical profile of area-averaged vertical velocity for (a) west lobe froin 0905-1042 UTC, (b) east lobe from 0914-0952 UTC, and (c) east lobe from 1002-1042 UTC.... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 25 Vertical profile of variance of the vertical velocity for (a) west lobe from 0905-1042 UTC, (b) east lobe from 0914-0952 UTC, and (c) east lobe froin 1002-1042 UTC...

Saul, Scott Henry

2012-06-07T23:59:59.000Z

163

Frequent-Interval Seismic CPTu  

Broader source: Energy.gov (indexed) [DOE]

Frequent-Interval Frequent-Interval Seismic CPTu D. Bruce Nothdurft, MSCE, PE, PG SRS Geotechnical Engineering Department Savannah River Nuclear Solutions Alec V. McGillivray, PhD, PE Geotechnical Consultant Brent J. Gutierrez, PhD, PE NPH Engineering Manager, DOE-SR Motivation  The seismic piezocone penetration test (SCPTu) utilized at SRS because it provides rapid and thorough site characterization.  Evaluation of non-linear soil behavior...  detailed stratigraphy  small-strain velocity measurements  large-strain non-seismic measurements  Depth scale disparity  large-strain non-seismic measurements nearly continuous with depth  small-strain velocity measurements over 1 m depth intervals. 2 October 25-26, 2011 DOE NPH Conference

164

The problem of vertical zoning  

Science Journals Connector (OSTI)

...deposits, genesis sheet silicates silicates talc United States Vermont Vertical zoning GeoRef, Copyright 2012, American Geosciences...levelgivingasmuchas29ouncesofgold per ton." Similar descriptionsof the Yankee Girl and other minesin the districtconvincinglydemonstrateverticalchangesin...

Charles Frederick Park

165

How to Remedy Non-optimal Seismic Data by Seismic Processing  

Science Journals Connector (OSTI)

Seismic data processing mostly takes into account the ... be done by subtractive coherency filtering. Multiple seismic reflections also can be suppressed by this...

J. Fertig; M. Thomas; R. Thomas

1999-09-01T23:59:59.000Z

166

Down hole periodic seismic generator  

DOE Patents [OSTI]

A down hole periodic seismic generator system for transmitting variable frequency, predominantly shear-wave vibration into earth strata surrounding a borehole. The system comprises a unitary housing operably connected to a well head by support and electrical cabling and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a variable speed pneumatic oscillator and a self-contained pneumatic reservoir for producing a frequency-swept seismic output over a discrete frequency range.

Hardee, Harry C. (Albuquerque, NM); Hills, Richard G. (Las Cruces, NM); Striker, Richard P. (Albuquerque, NM)

1989-01-01T23:59:59.000Z

167

Advanced downhole periodic seismic generator  

DOE Patents [OSTI]

An advanced downhole periodic seismic generator system for transmitting variable frequency, predominantly shear-wave vibration into earth strata surrounding a borehole. The system comprises a unitary housing operably connected to a well head by support and electrical cabling and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a variable speed pneumatic oscillator and a self-contained pneumatic reservoir for producing a frequency-swept seismic output over a discrete frequency range.

Hardee, Harry C. (Albuquerque, NM); Hills, Richard G. (Las Cruces, NM); Striker, Richard P. (Albuquerque, NM)

1991-07-16T23:59:59.000Z

168

Vertical axis wind turbine acoustics  

E-Print Network [OSTI]

Vertical Axis Wind Turbine Acoustics Charlie Pearson Corpus Christi College Cambridge University Engineering Department A thesis submitted for the degree of Doctor of Philosophy September 2013 Declaration Described in this dissertation is work... quickly to changing wind conditions, small- scale vertical axis wind turbines (VAWTs) have been proposed as an efficient solution for deployment in built up areas, where the wind is more gusty in nature. If VAWTs are erected in built up areas...

Pearson, Charlie

2014-04-08T23:59:59.000Z

169

Definition: Active Seismic Techniques | Open Energy Information  

Open Energy Info (EERE)

Seismic Techniques Seismic Techniques Jump to: navigation, search Dictionary.png Active Seismic Techniques Active seismic techniques study the behavior of artificially-generated elastic waves in the subsurface. A seismic wave or pulse is generated at the surface by an active seismic source which can be a vibration, mechanical impact, or near-surface explosion.[1] View on Wikipedia Wikipedia Definition Seismic waves are waves of energy that travel through the Earth's layers, and are a result of an earthquake, explosion, or a volcano that imparts low-frequency acoustic energy. Many other natural and anthropogenic sources create low amplitude waves commonly referred to as ambient vibrations. Seismic waves are studied by geophysicists called seismologists. Seismic wave fields are recorded by a seismometer,

170

Preface: Deep seismic reflection profiling of the continental lithosphere  

Science Journals Connector (OSTI)

......University Department of Earth Sciences. It enabled us to entertain...Secretary of State for Education and Science and to invite two speakers...the Department of Earth Sciences. Two hundred and fifty metres of poster board were constructed......

Drummond Matthews; Catherine Smith

1987-04-01T23:59:59.000Z

171

LUNAR SEISMIC PROFILING EXPERIMENT DESIGN VERIFICATION THERMAL PAGI OF  

E-Print Network [OSTI]

Simulator Environment 1/Sth High Explosive Baseplate Temperatures Thermal Battery Temperature H. E Electronics Power Dissipation High Explosive Baseplate Temperatures Subsequent to Thermal Battery Firing Baseplate Temperatures Thermal Battery Skin LSPE Battery Firing Central Electronics Temperatures ATM 11091

Rathbun, Julie A.

172

The Effect of Vertical Upward Flow on Thermal Plumes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Effect of Vertical Upward Flow on Thermal Plumes The Effect of Vertical Upward Flow on Thermal Plumes Speaker(s): Pierre S. Farrugia Date: November 18, 2010 - 12:05pm Location: 90-3122 Seminar Host/Point of Contact: David Lorenzetti Thermal plumes have been widely investigated in a variety of scenarios, including natural convection and stratified environments. The resulting theory may be used to predict ventilation flow rates in, for example, natural and displacement ventilation, and under-floor air distribution (UFAD) systems. However, there has been little effort in investigating how uniform upward flows affect the plume velocity, rate of growth, and thermal profile. Such situations can arise if, for example, the diffusers of a UFAD system are evenly distributed. In order to study such situations, analytical expressions for the velocity and temperature profiles of a plume

173

Interactive seismic facies classification using textural attributes and neural networks  

Science Journals Connector (OSTI)

...between seismic data, seismic facies, environment of deposition (EOD), and rock property relationships. Here, typical deepwater...between seismic data, seismic facies, environment of deposition (EOD), and rock property relationships. Here, typical deepwater...

Brian P. West; Steve R. May; John E. Eastwood; Christine Rossen

174

How can Seismics, Especially Active, Assist in Geothermal Energy Utilization  

Science Journals Connector (OSTI)

Thus, many possibilities exist where seismics, especially active seismics, may be helpful in the utilization of geothermal energy.

Th. Krey

1980-01-01T23:59:59.000Z

175

MatSeis: A Seismic toolbox for MATLAB  

SciTech Connect (OSTI)

To support the signal processing and data visualization needs of CTBT related projects at SNL, a MATLAB based GUI was developed. This program is known as MatSeis. MatSeis was developed quickly using the available MATLAB functionality. It provides a time-distance profile plot integrating origin, waveform, travel-time, and arrival data. Graphical plot controls, data manipulation, and signal processing functions provide a user friendly seismic analysis package. In addition, the full power of MATLAB (the premier tool for general numeric processing and visualization) is available for prototyping new functions by end users. This package is being made available to the seismic community in the hope that it will aid CTBT research and will facilitate cooperative signal processing development. 2 refs., 5 figs.

Harris, J.M.; Young, C.J.

1996-08-01T23:59:59.000Z

176

Seismic fluid-structure interaction analysis of a large LMFBR reactor  

SciTech Connect (OSTI)

This paper describes a seismic analysis which includes fluid-structure interactions for a large LMFBR reactor with many internal components and structures. Two mathematical models were employed. An axisymmetrical model was used for the vertical excitation analysis whereas a three-dimensional model was used for the horizontal excitation analysis. In both analyses, the sodium coolant was treated by continuum fluid elements. Thus, important seismic effects such as fluid-structure interaction, free-surface sloshing, fluid coupling, etc. are included in the analysis. This study is useful to the design of future LMFBR reactors. The results of this study can be used to improve the margin of safety of LMFBR plants under seismic conditions.

Ma, D.C.; Gvildys, J.; Chang, Y.W.

1984-01-01T23:59:59.000Z

177

Seismic stratigraphy and quaternary evolution of the New York Bight Inner Continental Shelf  

E-Print Network [OSTI]

Approximately 5,300 km of digitally recorded high-resolution, nested, single-channel, seismic-refection data (2.46 m watergun, 200-500 Hz Geopulse acoustic source, and a CHIRP 2-7 kHz subbottom profiler) and coincident sidescan-sonar data collected...

Lotto, Linda L

2012-06-07T23:59:59.000Z

178

People Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

What Is NIF? How NIF Works Seven Wonders Beamline NIF Construction Who Works for NIF & PS? People Profiles Management Awards Honors Fellows Who Partners with NIF? FAQs Visit Us...

179

Radiated seismic energy from coda measurements and no scaling in apparent stress with seismic moment  

E-Print Network [OSTI]

Radiated seismic energy from coda measurements and no scaling in apparent stress with seismic energy are consistent with independent measurements, where available. We find no dependence in individual seismic energy from coda measurements and no scaling in apparent stress with seismic moment, J. Geophys

Prieto, Germán A.

180

Seismic Attribute Analysis Using Higher Order Statistics  

E-Print Network [OSTI]

Seismic data processing depends on mathematical and statistical tools such as convolution, crosscorrelation and stack that employ second-order statistics (SOS). Seismic signals are non-Gaussian and therefore contain information beyond SOS. One...

Greenidge, Janelle Candice

2009-05-15T23:59:59.000Z

Note: This page contains sample records for the topic "vertical seismic profile" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Seismic imaging using higher order statistics  

E-Print Network [OSTI]

Improvements in seismic resolution beyond typical seismic wavelength will have significant implications for hydrocarbon exploration and production. Conventional imaging algorithms can be derived as a least squared optimization problem in which...

Srinivasan, Karthik

2012-06-07T23:59:59.000Z

182

Quality Control and Verification of Weather Radar Wind Profiles IWAN HOLLEMAN  

E-Print Network [OSTI]

- tions of the vertical velocity, which is a sum of the vertical wind velocity and the hydrometeor fall. 1986). Profiles of wind speed and direction, hydrometeor fall speed, and divergence have been obtainedQuality Control and Verification of Weather Radar Wind Profiles IWAN HOLLEMAN Royal Netherlands

Stoffelen, Ad

183

On the Vertical Decay Rate of the Maximum Tangential Winds in Tropical Cyclones DANIEL P. STERN* AND DAVID S. NOLAN  

E-Print Network [OSTI]

On the Vertical Decay Rate of the Maximum Tangential Winds in Tropical Cyclones DANIEL P. STERN independent of both the maximum wind speed and the radius of maximum winds (RMW). This can be seen winds change with height. Above 2-km height, vertical profiles of Vmaxnorm are nearly independent

Nolan, David S.

184

A Lumped Model for a Seismic Source  

Science Journals Connector (OSTI)

...research-article A Lumped Model for a Seismic Source M. S. Giammarinaro S. Micciancio...parameters are dimensionless and describe: the seismic wave quality factor of the medium (Q...results are: (i) the system exhibits a seismic or an aseismic steady state solution...

1993-01-01T23:59:59.000Z

185

Seismic scattering in the subduction zone of the Middle America region  

E-Print Network [OSTI]

vi 4 Scattering of seismic waves in heterogenousvii 6 Evaluation of seismic scattering usingan alternative seismic network . .

Dominguez, Luis Antonio

2012-01-01T23:59:59.000Z

186

Vertical integration and market power  

SciTech Connect (OSTI)

One of the continuing debates of industrial organization surrounds the importance of market structure in determining a firm's performance. This controversy develops naturally from the difficulties in measuring the relevant variables and the hazards of statistical analysis. The focus of this empirical study is the relationship between vertical integration, as an element of market structure, and market power, as a component of a firm's performance. The model presented in this paper differs from previous efforts because vertical integration is measured by the Vertical Industry Connections (VIC) index. VIC is defined as a function of the relative net interactions among the industries in which a firm operates, and is calculated by use of the national input-output tables. A linear regression model is estimated by means of a random sample of firms selected from the Standard and Poor's COMPUSTAT data base for 1963, 1967, and 1972. Combined cross-sectional, time-series methods are employed. The dependent variable is the price-cost margin; the independent variables include not only VIC, but also the concentration ratio, diversification index, value of assets, capital-output ratio, and sales growth. The results indicate that VIC is significant in increasing the price-cost margin, and thus support the hypothesis that vertical integration is a strategy to enhance market power. 1 figure, 3 tables.

Maddigan, R.J.

1980-01-01T23:59:59.000Z

187

Active Seismic Techniques | Open Energy Information  

Open Energy Info (EERE)

Active Seismic Techniques Active Seismic Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Active Seismic Techniques Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Seismic Techniques Parent Exploration Technique: Seismic Techniques Information Provided by Technique Lithology: Rock unit density influences elastic wave velocities. Stratigraphic/Structural: Structural geology- faults, folds, grabens, horst blocks, sedimentary layering, discontinuities, etc. Hydrological: Combining compressional and shear wave results can indicate the presence of fluid saturation in the formation. Thermal: High temperatures and pressure impact the compressional and shear wave velocities.

188

Teleseismic-Seismic Monitoring | Open Energy Information  

Open Energy Info (EERE)

Teleseismic-Seismic Monitoring Teleseismic-Seismic Monitoring Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Teleseismic-Seismic Monitoring Details Activities (33) Areas (18) Regions (5) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Seismic Techniques Parent Exploration Technique: Passive Seismic Techniques Information Provided by Technique Lithology: Rock unit density influences elastic wave velocities. Stratigraphic/Structural: Map geothermal reservoir geometry. Structural geology- faults, folds, grabens, horst blocks, sedimentary layering, discontinuities, etc. Hydrological: Combining compressional and shear wave results can indicate the presence of fluid saturation in the formation.

189

Passive Seismic Techniques | Open Energy Information  

Open Energy Info (EERE)

Passive Seismic Techniques Passive Seismic Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Passive Seismic Techniques Details Activities (0) Areas (0) Regions (0) NEPA(4) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Seismic Techniques Parent Exploration Technique: Seismic Techniques Information Provided by Technique Lithology: Rock unit density influences elastic wave velocities. Stratigraphic/Structural: Structural geology- faults, folds, grabens, horst blocks, sedimentary layering, discontinuities, etc. Hydrological: Combining compressional and shear wave results can indicate the presence of fluid saturation in the formation. Thermal: High temperatures and pressure impact the compressional and shear wave velocities.

190

Aligned vertical fractures, HTI reservoir symmetry, and Thomsenseismic anisotropy parameters for polar media  

SciTech Connect (OSTI)

Sayers and Kachanov (1991) defined crack-influence parameters that are shown to be directly related to Thomsen (1986) weak-anisotropy seismic parameters for fractured reservoirs when the crack/fracture density is small enough. These results are then applied to the problem of seismic wave propagation in polar (i.e., non-isotropic) reservoirs having HTI seismic wave symmetry due to the presence of aligned vertical fractures and resulting in azimuthal seismic wave symmetry at the earth's surface. The approach presented suggests one method of inverting for fracture density from wave-speed data. It is also observed that the angular location {theta}{sub ex} of the extreme value (peak or trough) of the quasi-SV-wave speed for VTI occurs at an angle determined approximately by the formula tan{sup 2} {theta}{sub ex} {approx_equal} tan {theta}{sub m} = [(c{sub 33} - c{sub 44})/(c{sub 11}-c{sub 44})]{sup 1/2}, where {theta}{sub m} is an angle determined directly (as shown) from the c{sub ij} elastic stiffnesses, whenever these are known from either quasi-static or seismic wave measurements. Alternatively, {theta}{sub ex} is given in terms of the Thomsen seismic anisotropy parameters by tan {theta}{sub ex} {approx_equal} ([v{sub p}{sup 2}(0)-v{sub s}{sup 2}(0)]/[(1 + 2{epsilon})v{sub p}{sup 2}(0)-v{sub s}{sup 2}(0)]){sup 1/4}, where {epsilon} = (c{sub 11}-c{sub 33})/2c{sub 33}, v{sub p}{sup 2}(0) = c{sub 33}/{rho}, and v{sub s}{sup 2}(0) = c{sub 44}/{rho}, with {rho} being the background inertial mass density. The axis of symmetry is always treated here as the x{sub 3}-axis for either VTI symmetry (due, for example, to horizontal cracks), or HTI symmetry (due to aligned vertical cracks). Then the meaning of the stiffnesses is derived from the fracture analysis in the same way for VTI and HTI media, but for HTI the wave speeds relative to the earth's surface are shifted by 90{sup o} in the plane perpendicular to the aligned vertical fractures. Skempton's (1954) coefficient is used as a general means of quantifying the effects of fluids inside the fractures. Explicit formulas for Thomsen's parameters are also obtained for either drained or undrained fractures resulting in either VTI or HTI symmetry of the reservoir.

Berryman, James G.

2007-12-12T23:59:59.000Z

191

Frequent-Interval Seismic CPTu  

Broader source: Energy.gov [DOE]

Frequent-Interval Seismic CPTu D. Bruce Nothdurft, MSCE, PE, PG SRS Geotechnical Engineering Department Savannah River Nuclear Solutions Alec V. McGillivray, PhD, PE Geotechnical Consultant Brent J. Gutierrez, PhD, PE NPH Engineering Manager, DOE-SR

192

Deterministic seismic hazard in Egypt  

Science Journals Connector (OSTI)

......interest are represented by a number of flat layers with different thicknesses, densities...one on sandy soil, the other on the rocky soil in Aqaba) were 0.10 and 0.05...Contract UVO-ROSTE 875.669.9 Seismic safety of urban areas: ground motion modelling......

A. El-Sayed; F. Vaccari; G. F. Panza

2001-03-01T23:59:59.000Z

193

USING MICRO-SEISMICITY AND SEISMIC VELOCITIES TO MAP SUBSURFACE GEOLOGIC  

Open Energy Info (EERE)

USING MICRO-SEISMICITY AND SEISMIC VELOCITIES TO MAP SUBSURFACE GEOLOGIC USING MICRO-SEISMICITY AND SEISMIC VELOCITIES TO MAP SUBSURFACE GEOLOGIC AND HYDROLOGIC STRUCTURE WITHIN THE COSO GEOTHERMAL FIELD, CALIFORNIA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: USING MICRO-SEISMICITY AND SEISMIC VELOCITIES TO MAP SUBSURFACE GEOLOGIC AND HYDROLOGIC STRUCTURE WITHIN THE COSO GEOTHERMAL FIELD, CALIFORNIA Details Activities (1) Areas (1) Regions (0) Abstract: We relocate 14 years of seismicity in the Coso Geothermal Field using differential travel times and simultaneously invert for seismic velocities to improve our knowledge of the subsurface geologic and hydrologic structure. We utilize over 60,000 micro-seismic events using waveform crosscorrelation to augment the expansive catalog of Pand S-wave

194

Comparison of Rainfall Profiles in the West African Monsoon as Depicted by TRMM PR and the LMDZ Climate Model  

Science Journals Connector (OSTI)

Vertical rainfall profiles obtained with TRMM-PR 2A25 standard products are compared with rain profiles deduced from the Laboratoire de Mtorologie Dynamique second generation global climate model (LMDZ, the Z stands for zoom capability) with ...

Samo Diatta; Frdric Hourdin; Amadou Thierno Gaye; Nicolas Viltard

2010-05-01T23:59:59.000Z

195

Seismic reflection imaging of a geothermal aquifer in an urban setting  

SciTech Connect (OSTI)

A seismic reflection survey that was conducted in downtown Boise, Idaho, to help city planners site a new well for injection of spent geothermal water illustrates some methods to safely and successfully employ a seismic reflection survey in an urban setting. The objective of the seismic survey was to estimate the depth and continuity of a basalt and rhyolite volcanic sequence. Well siting was based on geothermal aquifer depth, location of interpreted faults, projected thermal impact of injection on existing wells, surface pipe extension costs, and public land availability. Seismic acquisition tests and careful processing were used to ensure high-quality data while minimizing the potential for damage along city streets. A video camera placed in a sewer and a blast vibration monitor were used to confirm that energy from the seismic source (a 75-in{sup 3} land air gun) did not damage nearby buildings, street surfaces, or buried utilities along the survey lines. Walkaway seismic tests were also used to compare signal quality of the air-gun source to an explosive source for imaging targets up to 800 m depth. These tests show less signal bandwidth from the air-gun source compared to the buried explosive source, but the air-gun signal quality was adequate to meet imaging objectives. Seismic reflection results show that the top of this rhyolite/basalt sequence dips ({approximately}8--1{degree}) southwest away from the Boise foothills at depths of 200 to 800 m. Seismic methods enabled interpretation of aquifer depths along the profiles and located fault zones where injected water may encounter fracture permeability and optimally benefit the existing producing system. The acquisition and processing techniques used to locate the Boise injection well may succeed for other hydrogeologic and environmental studies in urban settings.

Liberty, L. [Boise State Univ., ID (United States). Center for Geophysical Investigation of the Shallow Subsurface] [Boise State Univ., ID (United States). Center for Geophysical Investigation of the Shallow Subsurface

1998-07-01T23:59:59.000Z

196

Vertically Integrated Circuits at Fermilab  

SciTech Connect (OSTI)

The exploration of the vertically integrated circuits, also commonly known as 3D-IC technology, for applications in radiation detection started at Fermilab in 2006. This paper examines the opportunities that vertical integration offers by looking at various 3D designs that have been completed by Fermilab. The emphasis is on opportunities that are presented by through silicon vias (TSV), wafer and circuit thinning and finally fusion bonding techniques to replace conventional bump bonding. Early work by Fermilab has led to an international consortium for the development of 3D-IC circuits for High Energy Physics. The consortium has submitted over 25 different designs for the Fermilab organized MPW run organized for the first time.

Deptuch, Grzegorz; Demarteau, Marcel; Hoff, James; Lipton, Ronald; Shenai, Alpana; Trimpl, Marcel; Yarema, Raymond; Zimmerman, Tom; /Fermilab

2009-01-01T23:59:59.000Z

197

Kinematic Fitting of Detached Vertices  

SciTech Connect (OSTI)

The eg3 experiment at the Jefferson Lab CLAS detector aims to determine the existence of the $\\Xi_{5}$ pentaquarks and investigate the excited $\\Xi$ states. Specifically, the exotic $\\Xi_{5}^{--}$ pentaquark will be sought by first reconstructing the $\\Xi^{-}$ particle through its weak decays, $\\Xi^{-}\\to\\pi^{-}\\Lambda$ and $\\Lambda\\to\\pi^{-}$. A kinematic fitting routine was developed to reconstruct the detached vertices of these decays, where confidence level cuts on the fits are used to remove background events. Prior to fitting these decays, the exclusive reaction $\\gamma D\\rightarrow pp\\pi^{-}$ was studied in order to correct the track measurements and covariance matrices of the charged particles. The $\\Lambda\\rightarrow p\\pi^{-}$ and $\\Xi^{-}\\to\\pi^{-}\\Lambda$ decays were then investigated to demonstrate that the kinematic fitting routine reconstructs the decaying particles and their detached vertices correctly.

Paul Mattione

2007-05-01T23:59:59.000Z

198

ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, 449 MHz Profiler(williams-449_prof)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

Christopher Williams; Mike Jensen

199

ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, 449 MHz Profiler(williams-449_prof)  

SciTech Connect (OSTI)

This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

Williams, Christopher; Jensen, Mike

2012-11-06T23:59:59.000Z

200

Vertical Integration and Technology: Theory and Evidence  

E-Print Network [OSTI]

We study the determinants of vertical integration. We first derive a number of predictions regarding the relationship between technology intensity and vertical integration from a simple incomplete contracts model. Then, ...

Acemoglu, Daron

Note: This page contains sample records for the topic "vertical seismic profile" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Mentee Profile  

Broader source: Energy.gov (indexed) [DOE]

Mentee Profile Mentee Profile The information you provide on this form will assist us in providing you with a list of prospective mentor from which to choose the most appropriate match. Once you've completed the form, please email it to doementoringprogram@hq.doe.gov . Thank you for your interest in the DOE Mentoring Program. Name (last/first): Phone Number: Job Title/Series/Grade: Organization (indicate HQ or field - complete address): Email Address: Are you a Veteran? If yes, do want a veteran mentee? If yes, which branch of the service? Are you student or intern? Do you have a preference on mentor? For example, male, female, particular career field, specific person or other? If so, what or who? Do you want a mentor in your career field? What are your career goals?

202

Mentor Profile  

Broader source: Energy.gov (indexed) [DOE]

Mentor Profile Mentor Profile The information you provide on this form will assist us in providing you with a list of prospective mentee from which to choose the most appropriate match. Once you've completed the form, please email it to doementoringprogram@hq.doe.gov . Thank you for your interest in the DOE Mentoring Program. Name (last/first): Phone Number: Job Title/Series/Grade: Organization (indicate HQ or field - complete address): Email Address: Are you a Veteran? If yes, do want a veteran mentee? If yes, which branch of the service? Do you want a student or intern mentee? Do you have a preference on mentee? For example, male, female, particular career field or other? If so, what or state name of pre selected mentee? Do you want a mentee in your career field? What are your hobbies?

203

Seismic Isolation Working Meeting Gap Analysis Report  

SciTech Connect (OSTI)

The ultimate goal in nuclear facility and nuclear power plant operations is operating safety during normal operations and maintaining core cooling capabilities during off-normal events including external hazards. Understanding the impact external hazards, such as flooding and earthquakes, have on nuclear facilities and NPPs is critical to deciding how to manage these hazards to expectable levels of risk. From a seismic risk perspective the goal is to manage seismic risk. Seismic risk is determined by convolving the seismic hazard with seismic fragilities (capacity of systems, structures, and components (SSCs)). There are large uncertainties associated with evolving nature of the seismic hazard curves. Additionally there are requirements within DOE and potential requirements within NRC to reconsider updated seismic hazard curves every 10 years. Therefore opportunity exists for engineered solutions to manage this seismic uncertainty. One engineered solution is seismic isolation. Current seismic isolation (SI) designs (used in commercial industry) reduce horizontal earthquake loads and protect critical infrastructure from the potentially destructive effects of large earthquakes. The benefit of SI application in the nuclear industry is being recognized and SI systems have been proposed, in the American Society of Civil Engineers (ASCE) 4 standard, to be released in 2014, for Light Water Reactors (LWR) facilities using commercially available technology. However, there is a lack of industry application to the nuclear industry and uncertainty with implementing the procedures outlined in ASCE-4. Opportunity exists to determine barriers associated with implementation of current ASCE-4 standard language.

Justin Coleman; Piyush Sabharwall

2014-09-01T23:59:59.000Z

204

MHK Technologies/Vertical Axis Venturi System | Open Energy Information  

Open Energy Info (EERE)

Axis Venturi System Axis Venturi System < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage 275px Technology Profile Primary Organization Warrior Girl Corporation Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The proprietary venturi system uses two venturies one on the upstream side of the vertical axis turbine to force the water flow into the turbine and one at the downstream side of the turbine which creates a lower pressure region that pulls the water through the turbine The vertical axis orientation of the turbine is believed by the company to allow for efficiency gains

205

Seismicity and seismic stress in the Coso Range, Coso geothermal field, and  

Open Energy Info (EERE)

Seismicity and seismic stress in the Coso Range, Coso geothermal field, and Seismicity and seismic stress in the Coso Range, Coso geothermal field, and Indian Wells Valley region, Southeast-Central California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Book: Seismicity and seismic stress in the Coso Range, Coso geothermal field, and Indian Wells Valley region, Southeast-Central California Details Activities (1) Areas (1) Regions (0) Abstract: The temporal and spatial distribution of seismicity in the Coso Range, the Coso geothermal field, and the Indian Wells Valley region of southeast-central California are discussed in this paper. An analysis of fault-related seismicity in the region led us to conclude that the Little Lake fault and the Airport Lake fault are the most significant seismogenic zones. The faulting pattern clearly demarcates the region as a transition

206

GEOPHYSICS, VOL. 66, NO. 5 (SEPTEMBER-OCTOBER 2001); P. 13721378, 11 FIGS. Correlation length and fractal dimension interpretation from seismic data  

E-Print Network [OSTI]

quarry and extracted the statistical parameters for an exposed vertical face. The imaged zone of interest of the quarry face. INTRODUCTION In July 1996, we acquired four high-resolution seismic lines on a nearly level bench of Eagle Picher's section 8 diatomite quarry south of Hazen, Nevada (approximately 40 miles east

207

Tube-wave seismic imaging  

DOE Patents [OSTI]

The detailed analysis of cross well seismic data for a gas reservoir in Texas revealed two newly detected seismic wave effects, recorded approximately 2000 feet above the reservoir. A tube-wave (150) is initiated in a source well (110) by a source (111), travels in the source well (110), is coupled to a geological feature (140), propagates (151) through the geological feature (140), is coupled back to a tube-wave (152) at a receiver well (120), and is and received by receiver(s) (121) in either the same (110) or a different receiving well (120). The tube-wave has been shown to be extremely sensitive to changes in reservoir characteristics. Tube-waves appear to couple most effectively to reservoirs where the well casing is perforated, allowing direct fluid contact from the interior of a well case to the reservoir.

Korneev, Valeri A [LaFayette, CA

2009-05-05T23:59:59.000Z

208

Tube-wave seismic imaging  

DOE Patents [OSTI]

The detailed analysis of cross well seismic data for a gas reservoir in Texas revealed two newly detected seismic wave effects, recorded approximately 2000 feet above the reservoir. A tube-wave (150) is initiated in a source well (110) by a source (111), travels in the source well (110), is coupled to a geological feature (140), propagates (151) through the geological feature (140), is coupled back to a tube-wave (152) at a receiver well (120), and is and received by receiver(s) (121) in either the same (110) or a different receiving well (120). The tube-wave has been shown to be extremely sensitive to changes in reservoir characteristics. Tube-waves appear to couple most effectively to reservoirs where the well casing is perforated, allowing direct fluid contact from the interior of a well case to the reservoir.

Korneev, Valeri A. (Lafayette, CA); Bakulin, Andrey (Houston, TX)

2009-10-13T23:59:59.000Z

209

Seismic Hazard and Public Safety  

E-Print Network [OSTI]

International Seismic Safety Organization (ISSO) has been formed to promote public safety by being prepared for the largest potential events which can happen at any time, rather than for certain probable events which have been exceeded in several recent earthquakes with disastrous consequences. The position of ISSO is available now in English, Italian, Russian, Hebrew, Spanish, and Hindi at http://www.issoquake.org. That position has been misrepresented elsewhere and this short note is to counter such inaccurate viewpoints.

Mualchin, Lalliana

2014-01-01T23:59:59.000Z

210

A seismic signature of river bedload transport during storm events  

E-Print Network [OSTI]

2008), Spectral analysis of seismic noise induced by rivers:analysis of high?frequency seismic noise, J. Geophys. Res. ,and V. Manville (2009), Seismic sig- nals of snow?slurry

Brodsky, Emily E.; Hsu, Leslie; Finnegan, Noah J.

2011-01-01T23:59:59.000Z

211

Performance Based Implementation of Seismic Protective Devices for Structures  

E-Print Network [OSTI]

A.I. , Wu, B. (2012). Seismic Protection of Nonlinearfor the Evaluation of Seismic Mitigation in BuildingM.H. and Sung, Y.C. (2000). Seismic Performance of Highway

Xi, Wang

2014-01-01T23:59:59.000Z

212

Nonlinear seismic response analysis of steel-concrete composite frames  

E-Print Network [OSTI]

frame model 10TN (Northridge seismic input) floor 1 floor 2frame model 10TC (Northridge seismic input) Slip (mm) floorframe models 06TC, 10TC and 14TC (Northridge seismic input)

Barbato, Michele

2008-01-01T23:59:59.000Z

213

Infrasound Generation from the HH Seismic Hammer.  

SciTech Connect (OSTI)

The HH Seismic hammer is a large, %22weight-drop%22 source for active source seismic experiments. This system provides a repetitive source that can be stacked for subsurface imaging and exploration studies. Although the seismic hammer was designed for seismological studies it was surmised that it might produce energy in the infrasonic frequency range due to the ground motion generated by the 13 metric ton drop mass. This study demonstrates that the seismic hammer generates a consistent acoustic source that could be used for in-situ sensor characterization, array evaluation and surface-air coupling studies for source characterization.

Jones, Kyle Richard

2014-10-01T23:59:59.000Z

214

LLNL-TR-400563 Seismic Data  

National Nuclear Security Administration (NNSA)

Seismic Data for Evaluation of Ground Motion Hazards in Las Vegas in Support of Test Site Readiness Ground Motion A. Rodgers January 18, 2008 Disclaimer This document was...

215

Leasing and Exploration * Seismic geophysical surveys  

E-Print Network [OSTI]

#12;Leasing and Exploration * Seismic geophysical surveys * Exploratory drilling using various.S. citizens engaged in a specific activity (other than commercial fishing) in a specified geographical region

216

Seismic Fracture Characterization Methods for Enhanced Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

5 4.5.2 Seismic Fracture Characterization Methods for Enhanced Geothermal Systems Presentation Number: 022 Investigator: Queen, John (Hi-Q Geophysical Inc.) Objectives: To develop...

217

Mapping Diffuse Seismicity for Geothermal Reservoir Management...  

Broader source: Energy.gov (indexed) [DOE]

Templeton David B. Harris Lawrence Livermore Natl. Lab. Seismicity and Reservoir Fracture Characterization May 18, 2010 This presentation does not contain any proprietary...

218

Hanford Sitewide Probabilistic Seismic Hazard Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

seismic events are typically shallow (for example blasts generated in mines, quarries, and roadcuts; volcanoes; atmospheric phenomena). In the crustal earthquake catalog...

219

Borehole Seismic Techniques | Open Energy Information  

Open Energy Info (EERE)

Borehole Seismic Techniques Borehole Seismic Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Borehole Seismic Techniques Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Borehole Seismic Techniques Parent Exploration Technique: Downhole Techniques Information Provided by Technique Lithology: Rock unit density influences elastic wave velocities Stratigraphic/Structural: Structural geology- faults, folds, grabens, horst blocks, sedimentary layering, discontinuities, etc Hydrological: Combining compressional and shear wave results can indicate the presence of fluid saturation in the formation Thermal: High temperatures and pressure impact the compressional and shear wave velocities

220

A parametrization study for surface seismic full waveform inversion in an acoustic vertical transversely isotropic medium  

Science Journals Connector (OSTI)

......acoustic wave equation for anisotropic media, Geophysics, 65...theory and modelling for anisotropic media, Geophys. J. Int...1984. Velocity anisotropy of shales and depth estimation in the...Feasibility study for an anisotropic full waveform inversion of......

R.-. Plessix; Q. Cao

2011-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "vertical seismic profile" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Nonlinear seismic ground response analysis: code usage protocols and verification against vertical array data  

E-Print Network [OSTI]

Response Analysis: Code Usage Protocols and Verificationparameter selection and code usage protocols as well aslinear modeling. Regarding code usage/parameter selection

Stewart, Jonathan P; Kwok, Annie O.L.

2008-01-01T23:59:59.000Z

222

NET-VISA: Network Processing Vertically Integrated Seismic Analysis by Nimar S. Arora, Stuart Russell,*  

E-Print Network [OSTI]

of the International Monitoring System (IMS), a global sensor network developed for the Comprehensive Nuclear Test Ban the IMS output. Introduction The Comprehensive Nuclear Test Ban Treaty (CTBT), which bans all nuclear the risks of nuclear weapons proliferation and testing. To monitor compliance with the treaty, the Prepara

Russell, Stuart

223

Category:Passive Seismic Techniques | Open Energy Information  

Open Energy Info (EERE)

has the following 2 subcategories, out of 2 total. M Micro-Earthquake 1 pages T Teleseismic-Seismic Monitoring 1 pages Pages in category "Passive Seismic...

224

Nonlinear seismic response analysis of steel-concrete composite frames  

E-Print Network [OSTI]

shear connection (Imperial Valley seismic input) Floor #site), and (ii) the 1979 Imperial Valley earthquake recordedFig. 12 relates to the Imperial Valley seismic input. Unless

Barbato, Michele

2008-01-01T23:59:59.000Z

225

Joint inversion of electrical and seismic data for Fracture char...  

Broader source: Energy.gov (indexed) [DOE]

Joint inversion of electrical and seismic data for Fracture char. and Imaging of Fluid Flow in Geothermal Systems Joint inversion of electrical and seismic data for Fracture char....

226

UNIVERSITY OF CALIFORNIA, Effects of Vertically-Resolved Solar Heating, Snow Aging, and Black  

E-Print Network [OSTI]

UNIVERSITY OF CALIFORNIA, IRVINE Effects of Vertically-Resolved Solar Heating, Snow Aging formats: Committee Chair University of California, Irvine 2007 ii #12;To my parents, John and Cindy. iii, albedo, snow grain size, and absorbing impurities. . 8 2.1 Solar absorption profiles prescribed by CLM

Zender, Charles

227

Non-Linear Seismic Soil Structure Interaction (SSI) Method for Developing Non-Linear Seismic SSI Analysis Techniques  

Broader source: Energy.gov [DOE]

Non-Linear Seismic Soil Structure Interaction (SSI) Method for Developing Non-Linear Seismic SSI Analysis Techniques Justin Coleman, P.E. October 25th, 2011

228

Non-linear Seismic Soil Structure Interaction Method for Developing Nonlinear Seismic SSI  

Broader source: Energy.gov (indexed) [DOE]

Linear Seismic Soil Structure Interaction (SSI) Linear Seismic Soil Structure Interaction (SSI) Method for Developing Non-Linear Seismic SSI Analysis Techniques Justin Coleman, P.E. October 25th, 2011 E102003020BDS Presentation Outline  Purpose of Presentation  Linear versus Non-Linear Seismic SSI  Non-Linear seismic Soil Structure Interaction (NLSSI) Studies  The NLSSI Introduction  Non-Linearity in Seismic SSI Analysis  Commercial Software Elements  Commercial Software Non-Linear Constitutive Models  Non-Linear Seismic SSI Damping  Demonstration of Time Domain 2D Model  NLSSI Validation Approach  NLSSI Implementation  Need For NLSSI  Conclusions E102003020BDS Purpose of Presentation  The purpose of the presentation is to establish the need for using non-linear analysis

229

ARM - PI Product - SGP and TWP (Manus) Ice Cloud Vertical Velocities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ProductsSGP and TWP (Manus) Ice Cloud Vertical ProductsSGP and TWP (Manus) Ice Cloud Vertical Velocities Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : SGP and TWP (Manus) Ice Cloud Vertical Velocities 1997.01.01 - 2010.12.31 Site(s) SGP TWP General Description Daily netcdf-files of ice-cloud dynamics observed at the ARM sites at SGP (Jan1997-Dec2010) and Manus (Jul1999-Dec2010). The files include variables at different time resolution (10s, 20min, 1hr). Profiles of radar reflectivity factor (dbz), Doppler velocity (vel) as well as retrieved vertical air motion (V_air) and reflectivity-weighted particle terminal fall velocity (V_ter) are given at 10s, 20min and 1hr resolution. Lower level clouds are removed, however a multi-layer flag is included.

230

Seismic monitoring at The Geysers  

SciTech Connect (OSTI)

During the last several years Lawrence Berkeley Laboratory (LBL) and Lawrence Livermore National Laboratory (LLNL) have been working with industry partners at The Geysers geothermal field to evaluate and develop methods for applying the results of microearthquake (MEQ) monitoring. It is a well know fact that seismicity at The Geysers is a common occurrence, however, there have been many studies and papers written on the origin and significance of the seismicity. The attitude toward MEQ data ranges from being nothing more than an curious artifact of the production activities, to being a critical tool in evaluating the reservoir performance. The purpose of the work undertaken b y LBL and LLNL is to evaluate the utility, as well as the methods and procedures used in of MEQ monitoring, recommend the most cost effective implementation of the methods, and if possible link physical processes and parameters to the generation of MEQ activity. To address the objectives above the MEQ work can be categorized into two types of studies. The first type is the direct analysis of the spatial and temporal distribution of MEQ activity and studying the nature of the source function relative to the physical or chemical processes causing the seismicity. The second broad area of study is imaging the reservoir/geothermal areas with the energy created by the MEQ activity and inferring the physical and/or chemical properties within the zone of imaging. The two types of studies have obvious overlap, and for a complete evaluation and development require high quality data from arrays of multicomponent stations. Much of the effort to date at The Geysers by both DOE and the producers has concentrated establishing a high quality data base. It is only within the last several years that this data base is being fully evaluated for the proper and cost effective use of MEQ activity. Presented here are the results to date of DOE`s effort in the acquisition and analysis of the MEQ data.

Majer, E.L.; Romero, A.; Vasco, D.; Kirkpatrick, A.; Peterson, J.E. [Lawrence Berkeley Lab., CA (United States); Zucca, J.J.; Hutchings, L.J.; Kasameyer, P.W. [Lawrence Livermore National Lab., CA (United States)

1993-04-01T23:59:59.000Z

231

Newberry EGS Seismic Velocity Model  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

We use ambient noise correlation (ANC) to create a detailed image of the subsurface seismic velocity at the Newberry EGS site down to 5 km. We collected continuous data for the 22 stations in the Newberry network, together with 12 additional stations from the nearby CC, UO and UW networks. The data were instrument corrected, whitened and converted to single bit traces before cross correlation according to the methodology in Benson (2007). There are 231 unique paths connecting the 22 stations of the Newberry network. The additional networks extended that to 402 unique paths crossing beneath the Newberry site.

Dennise Templeton

232

Newberry EGS Seismic Velocity Model  

SciTech Connect (OSTI)

We use ambient noise correlation (ANC) to create a detailed image of the subsurface seismic velocity at the Newberry EGS site down to 5 km. We collected continuous data for the 22 stations in the Newberry network, together with 12 additional stations from the nearby CC, UO and UW networks. The data were instrument corrected, whitened and converted to single bit traces before cross correlation according to the methodology in Benson (2007). There are 231 unique paths connecting the 22 stations of the Newberry network. The additional networks extended that to 402 unique paths crossing beneath the Newberry site.

Dennise Templeton

2013-10-01T23:59:59.000Z

233

Teleseismic-Seismic Monitoring At Coso Geothermal Area (1983-1985) | Open  

Open Energy Info (EERE)

Coso Geothermal Area (1983-1985) Coso Geothermal Area (1983-1985) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Coso Geothermal Area (1983-1985) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Teleseismic-Seismic Monitoring Activity Date 1983 - 1985 Usefulness not indicated DOE-funding Unknown Exploration Basis To study anomalous shear wave attenuation in the shallow crust Notes V s and V p wave amplitudes were measured from vertical component seismograms of earthquakes that occurred in the Coso-southern Sierra Nevada region from July 1983 to 1985. Seismograms of 16 small earthquakes show SV amplitudes which are greatly diminished at some azimuths and takeoff angles, indicating strong lateral variations in S wave attenuation in the

234

Seismicity in Azerbaijan and Adjacent Caspian Sea  

SciTech Connect (OSTI)

So far no general view on the geodynamic evolution of the Black Sea to the Caspian Sea region is elaborated. This is associated with the geological and structural complexities of the region revealed by geophysical, geochemical, petrologic, structural, and other studies. A clash of opinions on geodynamic conditions of the Caucasus region, sometimes mutually exclusive, can be explained by a simplified interpretation of the seismic data. In this paper I analyze available data on earthquake occurrences in Azerbaijan and the adjacent Caspian Sea region. The results of the analysis of macroseismic and instrumental data, seismic regime, and earthquake reoccurrence indicate that a level of seismicity in the region is moderate, and seismic event are concentrated in the shallow part of the lithosphere. Seismicity is mostly intra-plate, and spatial distribution of earthquake epicenters does not correlate with the plate boundaries.

Panahi, Behrouz M. [Geology Institute, Azerbaijan National Academy of Sciences, 29-A H. Javid Ave., Baku 1143 (Azerbaijan)

2006-03-23T23:59:59.000Z

235

Three-Dimensional Seismic Imaging of the Ryepatch Geothermal Reservoir  

E-Print Network [OSTI]

hydrothermal al- teration would combine to reduce the effectiveness of standard 3-D seismic processing.

Feighner, Mark A.

2010-01-01T23:59:59.000Z

236

Field location & marking of no-passing zones due to vertical alignments using the global positioning system  

E-Print Network [OSTI]

alternatives need to be developed for the safe, accurate, and efficient location of no- passing zones on two-lane roadways. This thesis addresses the use of Global Positioning System (GPS) coordinates to evaluate sight distance along the vertical profile... of roadways to provide an alternative for an automated no-passing zone location system. A system was developed that processes GPS coordinates and converts them into easting and northing values, smoothes inaccurate vertical elevation data, and evaluates...

Williams, Cameron Lee

2008-10-10T23:59:59.000Z

237

Wind speed vertical distribution at Mt Graham  

Science Journals Connector (OSTI)

......October 2010 research-article Papers Wind speed vertical distribution at Mt Graham...characterization of the vertical distribution of wind speed, V(h), is fundamental for an...many different reasons: (i) the wind speed shear contributes to trigger optical......

S. Hagelin; E. Masciadri; F. Lascaux

2010-10-01T23:59:59.000Z

238

ARM - Evaluation Product - Convective Vertical Velocity  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ProductsConvective Vertical Velocity ProductsConvective Vertical Velocity Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : Convective Vertical Velocity 2011.04.25 - 2011.05.23 Site(s) SGP General Description Convective processes play an important role in Earth's energy balance by distributing heat and moisture throughout the atmosphere. In particular, vertical air motions associated with these processes are inherently linked to the life cycle of these convective systems and are therefore directly tied to their energy budget. However, direct measurements of vertical air motions (e.g., in situ aircraft observations) are sparse, making it difficult to compare them with numerical model output, which relies on convective parameterization schemes that have yet to be extensively

239

Vertical Flowmeter Test | Open Energy Information  

Open Energy Info (EERE)

Vertical Flowmeter Test Vertical Flowmeter Test Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Vertical Flowmeter Test Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Testing Techniques Parent Exploration Technique: Well Testing Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Define permeable zones within a well Thermal: Dictionary.png Vertical Flowmeter Test: A well testing technique done upon completion of a well to identify locations of permeable zones within the well and to quantify the relative permeability of each zone. Other definitions:Wikipedia Reegle Introduction A vertical flowmeter test is also known as a spinner test and is preformed

240

The effect of seismic waves on earthquake nucleation and fault strength  

E-Print Network [OSTI]

Great Earthquakes and Global Seismic Networks, Seismologicaland D. C. Agnew (2006), Seismic waves increase permeability,Great Earthquakes and Global Seismic Networks, Seismological

van der Elst, Nicholas

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vertical seismic profile" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Seismic Performance of Reinforced Concrete Bridges Allowed to Uplift During Multi-Directional Excitation  

E-Print Network [OSTI]

Abghari, A. (1999). Seismic Soil-Pile Structure InteractionNo. 9. Caltrans (2004). Seismic Design Criteria, Versionand Mander, J. (1994). Seismic energy-based fatigue damage

Espinoza, Andres Oscar

2011-01-01T23:59:59.000Z

242

Seismic Performance, Modeling, and Failure Assessment of Reinforced Concrete Shear Wall Buildings  

E-Print Network [OSTI]

T. Y. , and Moehle, J.P. , Seismic safety evaluation of theEffective Stiffness for Seismic Analysis, ACI Journal ofResearch/ California seismic safety commission, The

Tuna, Zeynep

2012-01-01T23:59:59.000Z

243

Seismic bridge response modification due to degradation of viscous dampers performance  

E-Print Network [OSTI]

Soong, & Mahamoodi. (1989). Seismic responce of steel frameUMCE 01/1987). Elastic seismic response of buildings withanalytical investigation of seismic response of structures

Graziotti, Francesco

2010-01-01T23:59:59.000Z

244

Seismic Deployments and Experiments: PeruNet, GeoNet, and SeismoPhone.  

E-Print Network [OSTI]

Networked Sensing Seismic Deployments and Experiments:PeruNet: Installing a UCLA seismic line in Latin Americadata quality controll Seismic tomography to reveal slab

2009-01-01T23:59:59.000Z

245

The Seismic response of precast segmental bridge superstructures with bonded tendons  

E-Print Network [OSTI]

31 2.4. Current Seismic Design Practice inS.H. , and Seible, F. , Seismic Performance of Precastand Commentary for the Seismic Rehabilitation of Buildings,

Veletzos, Marc John

2007-01-01T23:59:59.000Z

246

Seismic and Acoustic Investigations of Rock Fall Initiation, Processes, and Mechanics  

E-Print Network [OSTI]

and Senfaute G. (2005). Seismic precursory patterns F. (2010). The seismic signature of rockslides: statistical analysis of seismic signals. Journal of

Zimmer, Valerie Louise

2011-01-01T23:59:59.000Z

247

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Massachusetts Nuclear Profile 2010 Massachusetts profile Massachusetts total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy...

248

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Iowa Nuclear Profile 2010 Iowa profile Iowa total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw)...

249

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Nuclear Profile 2010 Illinois profile Illinois total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer...

250

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Louisiana Nuclear Profile 2010 Louisiana profile Louisiana total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer...

251

Study of induced seismicity for reservoir characterization  

E-Print Network [OSTI]

The main goal of the thesis is to characterize the attributes of conventional and unconventional reservoirs through passive seismicity. The dissertation is comprised of the development and applications of three new methods, ...

Li, Junlun, Ph. D. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

252

4-D seismic technologies: intersurvey calibration  

E-Print Network [OSTI]

seismic data sets at different times in the production life of a reservoir, calibrating, then comparing the data sets and interpreting intersurvey differences in terms of fluid change or movement. In practice 4-D (time-lapse) analysis is typically...

Kelley, Jeffrey Paul

2012-06-07T23:59:59.000Z

253

The evolution of shallow seismic exploration methods  

E-Print Network [OSTI]

Near-surface seismic methods have developed considerably and have been applied much more widely since the 1970s. Improvements in instrumentation, along with cheaper computer power, have greatly affected the capabilities of these methods in recent...

Steeples, Don W.; Schmeissner, Chris M.; Macy, Brian

1995-07-01T23:59:59.000Z

254

Seismic assessment strategies for masonry structures  

E-Print Network [OSTI]

Masonry structures are vulnerable to earthquakes, but their seismic assessment remains a challenge. This dissertation develops and improves several strategies to better understand the behavior of masonry structures under ...

DeJong, Matthew J. (Matthew Justin)

2009-01-01T23:59:59.000Z

255

Stormwater Pollution Prevention Plan Seismic Phase II  

E-Print Network [OSTI]

Stormwater Pollution Prevention Plan Seismic Phase II Prepared by: Environment, Health and Safety Division Environmental Services Group May 2010 Revision 1 Ernest Orlando Lawrence Berkeley National ..................................................................................................................... 15 2.1.1 Demolition of Building 25/25B

256

Probabilistic seismic hazard maps for Panama  

Science Journals Connector (OSTI)

Probabilistic seismic hazard maps in term of Modified Mercalli (MM) intensity are derived by applying the Cornell-McGuire method to four earthquake source zones in Panama and adjacent areas. The maps contain es...

Aristoteles Vergara Muoz

1991-01-01T23:59:59.000Z

257

Reservoir fracture characterizations from seismic scattered waves  

E-Print Network [OSTI]

The measurements of fracture parameters, such as fracture orientation, fracture density and fracture compliance, in a reservoir is very important for field development and exploration. Traditional seismic methods for ...

Fang, Xinding

2012-01-01T23:59:59.000Z

258

Fluid driven torsional dipole seismic source  

DOE Patents [OSTI]

A compressible fluid powered oscillating downhole seismic source device capable of periodically generating uncontaminated horizontally-propagated, shear waves is provided. A compressible fluid generated oscillation is created within the device which imparts an oscillation to a housing when the device is installed in a housing such as the cylinder off an existing downhole tool, thereby a torsional seismic source is established. Horizontal waves are transferred to the surrounding bore hole medium through downhole clamping.

Hardee, Harry C. (Albuquerque, NM)

1991-01-01T23:59:59.000Z

259

Seismic response of Cfs strap-braced stud walls: Theoretical study  

Science Journals Connector (OSTI)

Abstract The use of cold-formed steel (CFS) profiles in low-rise residential buildings has increased in European construction sector. The reason of this interest is related to potentialities offered by this constructive system, which are the high structural performance, lightness, short construction time, durability and eco-efficiency. Nevertheless, the current structural codes, such as Eurocodes, do not provide enough information about the seismic design of this structural typology. In an effort to investigate the seismic response of CFS structures, a theoretical and experimental research has been carried out at University of Naples Federico II, with the main aim to support the spreading of these systems in seismic areas. This study focuses on an all-steel design solution in which strap-braced stud walls are the main lateral resisting system. In the present paper the outcomes of theoretical phase are shown with the aim of defining the criteria for the seismic design of such structures. In particular, a critical analysis of the requirements for CFS systems provided by the American code AISI S213 has been carried out by comparing it with those given by Eurocodes for traditional braced steel frames.

Vincenzo Macillo; Ornella Iuorio; Maria Teresa Terracciano; Luigi Fiorino; Raffaele Landolfo

2014-01-01T23:59:59.000Z

260

Vertical Electrical Sounding Configurations | Open Energy Information  

Open Energy Info (EERE)

Vertical Electrical Sounding Configurations Vertical Electrical Sounding Configurations Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Vertical Electrical Sounding Configurations Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Direct-Current Resistivity Survey Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature

Note: This page contains sample records for the topic "vertical seismic profile" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Blind seismic deconvolution using variational Bayesian method  

Science Journals Connector (OSTI)

Abstract Blind seismic deconvolution, which comprises seismic wavelet and reflectivity sequence, is a strongly ill-posed problem. The reflectivity sequence is modeled as a BernoulliGaussian (BG) process, depending on four parameters (noise variance, high and low reflector variances, and reflector density). These parameters need to be estimated from the seismic record, which is the convolution of the reflectivity sequence and the seismic wavelet. In this paper, we propose a variational Bayesian method for blind seismic deconvolution which can determine the reflectivity sequence and the seismic wavelet. The connection between variational Bayesian blind deconvolution and the minimization of the KullbackLeibler divergence of two probability distributions is also established. The gamma, beta distributions are used for the unknown parameters (hyperparameters) as prior distribution and also we give how these distributions can be inferred in actual situations. The proposed algorithms are tested by simulation and compared to existing blind deconvolution methods. The results show that variational Bayesian method has better agreement with the actual value.

Li Yanqin; Zhang Guoshan

2014-01-01T23:59:59.000Z

262

Testing to determine relay seismic ruggedness  

Science Journals Connector (OSTI)

The seismic qualification of equipment in operating nuclear plants has been identified as a potential safety concern in U.S. Nuclear Regulatory Commission (USNRC) Unresolved Safety Issue (USI) A-46, Seismic Qualification of Equipment in Operating Nuclear Power Plants. In response to this concern, the Seismic Qualification Utility Group (SQUG), with support from the Electric Power Research Institute (EPRI), has undertaken a program to demonstrate the seismic adequacy of essential equipment by the use of actual experience with such equipment in plants which have undergone significant earthquakes and by the use of available test data for similar equipment. An important part of this program is the development of the methodology and test data for verifying the functionality of electrical relays used in essential circuits needed for plant shutdown during a seismic event. This paper describes the EPRI supported relay testing program to supplement existing relay test data. Many old relays which are used in safe shutdown systems of SQUG plants and for which seismic test data do not exist have been shake-table tested. The testing performed on these relays and the test results for two groups of relays are summarized in this paper.

K.L. Merz; M.P. Wade; Jess Betlack

1990-01-01T23:59:59.000Z

263

Continuous Growth of Vertically Aligned Carbon Nanotubes  

E-Print Network [OSTI]

Vertically aligned carbon nanotubes (VACNTs), sometimes called forests or carpets, are a promising material due to their unique physical and scale-dependent physical properties [1-3]. Continuous production of VACNTs is ...

Guzman de Villoria, R.

264

Nonlinear Saturation of Vertically Propagating Rossby Waves  

E-Print Network [OSTI]

The interaction between vertical Rossby wave propagation and wave breaking is studied in the idealized context of a beta-plane channel model. Considering the problem of propagation through a uniform zonal flow in an ...

Giannitsis, Constantine

265

Vertical Axis Wind Turbine Foundation parameter study  

SciTech Connect (OSTI)

The dynamic failure criterion governing the dimensions of prototype Vertical Axis Wind Turbine Foundations is treated as a variable parameter. The resulting change in foundation dimensions and costs is examined.

Lodde, P.F.

1980-07-01T23:59:59.000Z

266

Vertical Flowmeter Logging | Open Energy Information  

Open Energy Info (EERE)

Flowmeter Logging Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Vertical Flowmeter Logging Author U.S. Geological Survey Published USGS Groundwater...

267

Sandia National Laboratories: Innovative Offshore Vertical-Axis...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

WindInnovative Offshore Vertical-Axis Wind Turbine Rotors Innovative Offshore Vertical-Axis Wind Turbine Rotors This project seeks to advance large offshore vertical-axis wind...

268

User_TalentProfile  

Broader source: Energy.gov (indexed) [DOE]

Accessing and Modifying Talent Profile Accessing and Modifying Talent Profile © 2011 SuccessFactors, Inc. - 1 - SuccessFactors Learning Confidential. All rights reserved. Job Aid: Accessing and Modifying Talent Profile Purpose The purpose of this job aid is to guide users through the step-by-step process of accessing their talent profiles, adding information to their profiles, and editing existing talent profile information. Task A. Access Talent Profile Enter the web address (URL) of the user application into your browser Address field and press the Enter key. Enter your user ID in the User ID textbox. Enter your password in the Password textbox. Click Sign In. Access Talent Profile 4 Steps Task A Add Information to Talent Profile Sections 5 Steps Task B Edit Talent Profile Sections

269

Seismic Line Location Map Hot Pot Project, Humboldt County, Nevada 2010  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Location of seismic lines carried out under DOE funded project Advanced Seismic Data Analysis Program (The Hot Pot Project).

Lane, Michael

270

Seismic Line Location Map Hot Pot Project, Humboldt County, Nevada 2010  

SciTech Connect (OSTI)

Location of seismic lines carried out under DOE funded project Advanced Seismic Data Analysis Program (The Hot Pot Project).

Michael Lane

2012-01-01T23:59:59.000Z

271

Category:Vertical Flowmeter Test | Open Energy Information  

Open Energy Info (EERE)

Category Edit History Facebook icon Twitter icon Category:Vertical Flowmeter Test Jump to: navigation, search Geothermalpower.jpg Looking for the Vertical Flowmeter Test page?...

272

WHICH HYDRAULIC MODEL TO USE IN VERTICAL FLOW CONSTRUCTED WETLANDS?  

E-Print Network [OSTI]

WHICH HYDRAULIC MODEL TO USE IN VERTICAL FLOW CONSTRUCTED WETLANDS? Ania Morvannoua , Nicolas-equilibrium model, preferential flow path, vertical flow constructed wetlands INTRODUCTION Constructed wetlands (CWs

Paris-Sud XI, Université de

273

Vertical sampling flights in support of the 1981 ASCOT cooling tower experiments: field effort and data  

SciTech Connect (OSTI)

During the month of August 1981, three nights of experimental sampling of tracers released into the cooling tower plume of a geothermal power plant were conducted. In these experiments a tethered balloon was used to lift a payload so as to obtain vertical profiles of the cooling tower plume and the entrained tracers. A description of the equipment used, the field effort and the data acquired are presented here.

Gay, G.T.

1982-03-01T23:59:59.000Z

274

Statistics of Storm Updraft Velocities from TWP-ICE Including Verification with Profiling Measurements  

E-Print Network [OSTI]

. The vertical component of storm dynamics has a large impact on the life cycle of convective systems. While use, in which measurements from a dual-frequency radar profiler system and volumetric radar-based wind the profiling system. This prompted a statistical analysis of an extended period of an active monsoon period

Protat, Alain

275

Ground-based C-band tomographic profiling of a conifer forest stand  

Science Journals Connector (OSTI)

We provide a demonstration of the new tomographic profiling TP technique, here applied to forestry for the first time. The portable ground-based synthetic aperture radar GB-SAR system was used to capture profiles of the vertical polarimetric backscattering ...

Keith Morrison; John Bennett; Svein Solberg

2013-11-01T23:59:59.000Z

276

Seismic wave attenuation from borehole and surface records in the top 2.5km beneath the city of Basel, Switzerland  

Science Journals Connector (OSTI)

......Figure 2 Overview of the borehole profile in the injection...from surface (top of drilling basement). 3 Seismic...separate institutions. Borehole sensors of Geothermal...also seen for other borehole stations. The number...stacking and the generally large number of spectra......

Falko Bethmann; Nicholas Deichmann; P. Martin Mai

2012-08-01T23:59:59.000Z

277

Identifying the top of the tropical tropopause layer from vertical mass flux analysis and CALIPSO lidar cloud observations  

E-Print Network [OSTI]

defined as the level of zero net radiative heating, which occurs near 14.5­15 km [e.g., Folkins et al layer (TTL) by analyzing the vertical mass flux profile based on radiative transfer calculations will rise into the stratosphere. Thus convection has to transport air at least to the zero radiative heating

Hochberg, Michael

278

Hostile wells: the borehole seismic challenge | Open Energy Information  

Open Energy Info (EERE)

Hostile wells: the borehole seismic challenge Hostile wells: the borehole seismic challenge Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Hostile wells: the borehole seismic challenge Author William Wills Published Oil and Gas Engineer - Subsea & Seismic, 2013 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Hostile wells: the borehole seismic challenge Citation William Wills. Hostile wells: the borehole seismic challenge [Internet]. 2013. Oil and Gas Engineer - Subsea & Seismic. [cited 2013/10/01]. Available from: http://www.engineerlive.com/content/22907 Retrieved from "http://en.openei.org/w/index.php?title=Hostile_wells:_the_borehole_seismic_challenge&oldid=690045" Categories: References Geothermal References

279

S E R I E S SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES  

E-Print Network [OSTI]

civilization documentary, economic, social and even political or spiritual value #12;SEISMIC ENGINEERINGS E R I E S SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES COMMISSION of Research Infrastructures in Performance-based Earthquake Engineering Shaking table testing of models

280

Time-lapse seismic monitoring of subsurface fluid flow  

E-Print Network [OSTI]

Time-lapse seismic monitoring repeats 3 D seismic imaging over a reservoir to map fluid movements in a reservoir. During hydrocarbon production, the fluid saturation, pressure, and temperature of a reservoir change, thereby altering the acoustic...

Yuh, Sung H.

2004-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "vertical seismic profile" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Seismic Fragility Analysis and Loss Estimation for Concrete Structures  

E-Print Network [OSTI]

The main objective of this study is to develop a methodology to assess seismic vulnerability of concrete structures and to estimate direct losses related to structural damage due to future seismic events. This dissertation contains several...

Bai, Jong Wha

2012-02-14T23:59:59.000Z

282

Annual Hanford Seismic Report for Fiscal Year 2004  

SciTech Connect (OSTI)

This report describes seismic activity at and around the Hanford Site during Fiscal Year 2004. It is also the first description of seismic activity during the fourth quarter of FY04.

Hartshorn, Donald C.; Reidel, Steve P.; Rohay, Alan C.

2004-12-07T23:59:59.000Z

283

Seismic Mapping Of The Subsurface Structure At The Ryepatch Geothermal...  

Open Energy Info (EERE)

In 1998 a 3-D surface seismic survey was conducted to explore the structure of the Rye Patch geothermal reservoir (Nevada) to determine if modern seismic techniques could be...

284

Three dimensional seismic imaging of the Rye Patch geothermal...  

Open Energy Info (EERE)

seismic imaging of the Rye Patch geothermal reservoir Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Three dimensional seismic imaging of the Rye Patch...

285

Seismic diagnostics for transport of angular momentum in stars 1. Rotational splittings from the PMS to the RGB  

E-Print Network [OSTI]

Rotational splittings are currently measured for several main sequence stars and a large number of red giants with the space mission Kepler. This will provide stringent constraints on rotation profiles. Our aim is to obtain seismic constraints on the internal transport and surface loss of angular momentum of oscillating solar-like stars. To this end, we study the evolution of rotational splittings from the pre-main sequence to the red-giant branch for stochastically excited oscillation modes. We modified the evolutionary code CESAM2K to take rotationally induced transport in radiative zones into account. Linear rotational splittings were computed for a sequence of $1.3 M_{\\odot}$ models. Rotation profiles were derived from our evolutionary models and eigenfunctions from linear adiabatic oscillation calculations. We find that transport by meridional circulation and shear turbulence yields far too high a core rotation rate for red-giant models compared with recent seismic observations. We discuss several uncert...

Marques, J P; Lebreton, Y; Talon, S; Palacios, A; Belkacem, K; Ouazzani, R -M; Mosser, B; Moya, A; Morel, P; Pichon, B; Mathis, S; Zahn, J -P; Turck-Chize, S; Nghiem, P A P

2012-01-01T23:59:59.000Z

286

First Quarter Seismic Report for Fiscal Year 2006  

SciTech Connect (OSTI)

This report describes the earthquake data collected from October 2005 to December 2005 from the Hanford Seismic Network

Rohay, Alan C.; Reidel, Stephen P.; Hartshorn, Donald C.; Sweeney, Mark D.; Clayton, Ray E.

2006-09-01T23:59:59.000Z

287

Seismic constraints on open clusters  

E-Print Network [OSTI]

We derive knowledge on the global and structural parameters of low-mass stars using asteroseismology and taking advantage of the stellar collective behavior within open clusters. We build stellar models and compute the seismic signal expected from main sequence objects in the 0.8-1.6 Msun range. We first evaluate apparent magnitudes and oscillations-induced luminosity fluctuations expected in the Hyades, the Pleiades and the alpha Persei clusters. The closest cluster presents a feasible challenge to observational asteroseismology in the present and near future. We combine seismological and classical computations to address three questions: what can be inferred about 1) mass, 2) composition and 3) extension of outer convection zones of solar analogs in the Hyades. The first issue relies on the strong sensitivity of the large separation to mass. Then large separations and second differences are used to respectively constrain metal and helium fractions in the Hyades.When plotted for several masses, the relation of effective temperature vs large separation is found to be strongly dependent on the metal content. Besides this the second difference main modulation is related to the second ionization of helium.The second difference modulations are also partly due to the discontinuity in stellar stratification at the convective envelope / radiative core transition. They permit direct insight in the stellar structure. We compute acoustic radii of the convective bases for different values of the mixing length theoryparameter alpha_MLT in convection modelling, i.e. different convective efficiency in the superadiabatic layers. For a given effectivetemperature we show that the acoustic radius changes with convection efficiency.

L. Piau; J. Ballot; S. Turck-Chieze

2005-03-07T23:59:59.000Z

288

Ionization of Group II A Elements in the Direct Current Plasma: Effects of Ionization Potential on Emission Profiles  

Science Journals Connector (OSTI)

Studies of background corrected ion and atom emission profiles of the group IIA elements in the two-electrode direct current plasma show great variation in both vertical and...

Williams, Ronald R; Coleman, Geoffrey N

1981-01-01T23:59:59.000Z

289

An Alternative Mass Flux Profile in the KainFritsch Convective Parameterization and Its Effects in Seasonal Precipitation  

Science Journals Connector (OSTI)

The authors have altered the vertical profile of updraft mass flux detrainment in an implementation of the KainFritsch2 (KF2) convective parameterization within the fifth-generation Pennsylvania State UniversityNational Center for Atmospheric ...

Christopher J. Anderson; Raymond W. Arritt; John S. Kain

2007-10-01T23:59:59.000Z

290

Tutorial on seismic interferometry: Part 1 --Basic principles and applications  

E-Print Network [OSTI]

Tutorial on seismic interferometry: Part 1 -- Basic principles and applications Kees Wapenaar1 , Deyan Draganov1 , Roel Snieder2 , Xander Campman3 , and Arie Verdel3 ABSTRACT Seismic interferometry is the retrieval of seismic surface-wave responses from ambient noise and the subsequent tomographic determination

Snieder, Roel

291

Exposure to seismic survey alters blue whale acoustic communication  

Science Journals Connector (OSTI)

...research-article Animal behaviour 1001 14 Exposure to seismic survey alters blue whale acoustic communication...their natural functions. Sounds from seismic surveys are intense and have peak frequency...changed their vocal behaviour during a seismic survey that deployed a low-medium power...

2010-01-01T23:59:59.000Z

292

Seismic petrophysics: An applied science for reservoir geophysics  

E-Print Network [OSTI]

Seismic petrophysics: An applied science for reservoir geophysics WAYNE D. PENNINGTON, Michigan a number of seismic attributes, using either prestack or poststack data, or even both in combination's intuition and, per- haps, wishful thinking, as a guide. This short paper introduces a new term "seismic

293

Three-dimensional seismic imaging of a dymanic Earth  

Science Journals Connector (OSTI)

...M. T. Thompson Three-dimensional seismic imaging of a dymanic Earth Lidia Lonergan...UK ( nwhite@esc.cam.ac.uk ) Seismic imaging is the most important tool used...and application of three-dimensional seismic reflection technology. Routinely used...

1999-01-01T23:59:59.000Z

294

Seismic Refraction Shooting in an Area of the Eastern Atlantic  

Science Journals Connector (OSTI)

17 June 1952 research-article Seismic Refraction Shooting in an Area of the...described in this paper a new method of seismic refraction shooting was developed. With...1952002328 Interpretation of results of seismic refraction shooting carried out in the...

1952-01-01T23:59:59.000Z

295

DEMONSTRATION OF NONLINEAR SEISMIC SOIL STRUCTURE INTERACTION AND APPLICABILITY TO NEW SYSTEM FRAGILITY CURVES SEISMIC  

SciTech Connect (OSTI)

Risk calculations should focus on providing best estimate results, and associated insights, for evaluation and decision-making. Specifically, seismic probabilistic risk assessments (SPRAs) are intended to provide best estimates of the various combinations of structural and equipment failures that can lead to a seismic induced core damage event. However, in general this approach has been conservative, and potentially masks other important events (for instance, it wasnt the seismic motions that caused the Fukushima core melt events, but the tsunami ingress into the facility).

Coleman, Justin [Idaho National Laboratory

2014-09-01T23:59:59.000Z

296

Definition: Vertical Electrical Sounding Configurations | Open Energy  

Open Energy Info (EERE)

Sounding Configurations Sounding Configurations Jump to: navigation, search Dictionary.png Vertical Electrical Sounding Configurations A vertical electrical sounding (VES) is a DC resistivity survey which provides information regarding the change in apparent resistivity with depth. A quantitative interpretation of the results from VES measurements enable determination of the parameters for the geoelectric section.[1] Also Known As VES; Schlumberger Sounding References ↑ http://www.nga.com/Flyers_PDF/NGA_DC_Resistivity.pdf http://www.amazon.com/Principles-Electric-Borehole-Geophysics-Geochemistry/dp/0444529942 Ret LikeLike UnlikeLike You like this.Sign Up to see what your friends like. rieved from "http://en.openei.org/w/index.php?title=Definition:Vertical_Electrical_Sounding_Configurations&oldid=596183

297

A low order model for vertical axis wind turbines  

E-Print Network [OSTI]

A new computational model for initial sizing and performance prediction of vertical axis wind turbines

Drela, Mark

298

Decision analysis for seismic retrofit of structures  

E-Print Network [OSTI]

aa a dG S fS GS dS ?? =? ? ?? ?? . (2.3) Annualized seismic hazard exceedance curves containing discrete values of () a GS for locations throughout the United States are available from the United States Geological Survey (USGS). These curves.... Applying the method of integration of seismic vulnerability and hazard, EAL can be defined as ()() 0 a aaa S EAL V y S v S dS ? = = ? (3.1) 14 where V denotes the replacement value of a building, the random variable () a yS is the total damage...

Williams, Ryan J.

2009-05-15T23:59:59.000Z

299

Advanced motor driven clamped borehole seismic receiver  

DOE Patents [OSTI]

A borehole seismic tool including a borehole clamp which only moves perpendicular to the borehole. The clamp is driven by an electric motor, via a right angle drive. When used as a seismic receiver, the tool has a three part housing, two of which are hermetically sealed. Accelerometers or geophones are mounted in one hermetically sealed part, the electric meter in the other hermetically sealed part, and the clamp and right angle drive in the third part. Preferably the tool includes cable connectors at both ends. Optionally a shear plate can be added to the clamp to extend the range of the tool.

Engler, Bruce P. (Sandoval County, NM); Sleefe, Gerard E. (Bernalillo County, NM); Striker, Richard P. (Bernalillo County, NM)

1993-01-01T23:59:59.000Z

300

Down-hole periodic seismic generator  

DOE Patents [OSTI]

A down hole periodic seismic generator system is disclosed for transmitting variable frequency, predominantly shear-wave vibration into earth strata surrounding a borehole. The system comprises a unitary housing operably connected to a well head by support and electrical cabling and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a variable speed pneumatic oscillator and a self-contained pneumatic reservoir for producing a frequency-swept seismic output over a discrete frequency range.

Hardee, H.C.; Hills, R.G.; Striker, R.P.

1982-10-28T23:59:59.000Z

Note: This page contains sample records for the topic "vertical seismic profile" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Seismic Crystals And Earthquake Shield Application  

E-Print Network [OSTI]

We theoretically demonstrate that earthquake shield made of seismic crystal can damp down surface waves, which are the most destructive type for constructions. In the paper, seismic crystal is introduced in aspect of band gaps (Stop band) and some design concepts for earthquake and tsunami shielding were discussed in theoretical manner. We observed in our FDTD based 2D elastic wave simulations that proposed earthquake shield could provide about 0.5 reductions in magnitude of surface wave on the Richter scale. This reduction rate in magnitude can considerably reduce destructions in the case of earthquake.

B. Baykant Alagoz; Serkan Alagoz

2009-02-09T23:59:59.000Z

302

Seismic Search for Strange Quark Nuggets  

E-Print Network [OSTI]

Bounds on masses and abundances of Strange Quark Nuggets (SQNs) are inferred from a seismic search on Earth. Potential SQN bounds from a possible seismic search on the Moon are reviewed and compared with Earth capabilities. Bounds are derived from the data taken by seismometers implanted on the Moon by the Apollo astronauts. We show that the Apollo data implies that the abundance of SQNs in the region of 10 kg to one ton must be at least an order of magnitude less than would saturate the dark matter in the solar neighborhood.

Eugene T. Herrin; Doris C. Rosenbaum; Vigdor L. Teplitz

2005-05-29T23:59:59.000Z

303

Advanced motor driven clamped borehole seismic receiver  

DOE Patents [OSTI]

A borehole seismic tool is described including a borehole clamp which only moves perpendicular to the borehole. The clamp is driven by an electric motor, via a right angle drive. When used as a seismic receiver, the tool has a three part housing, two of which are hermetically sealed. Accelerometers or geophones are mounted in one hermetically sealed part, the electric motor in the other hermetically sealed part, and the clamp and right angle drive in the third part. Preferably the tool includes cable connectors at both ends. Optionally a shear plate can be added to the clamp to extend the range of the tool.

Engler, B.P.; Sleefe, G.E.; Striker, R.P.

1993-02-23T23:59:59.000Z

304

Parametric study of relay seismic capacity  

Science Journals Connector (OSTI)

An evaluation of the existing relay test data base at Brookhaven National Laboratory (BNL) has indicated that the seismic capacity of a relay may depend on various parameters related to the design or the input motion. In order to investigate the effect of these parameters on the seismic fragility level, BNL has conducted a relay test program. Establishing the correlation between the single frequency fragility test input and the corresponding multifrequency response spectrum (TRS) is also an objective of this test program. The testing has been performed at Wyle Laboratories. This paper discusses the methodology used for testing and presents a brief summary of important test results.

K. Bandyopadhyay; C. Hofmayer

1992-01-01T23:59:59.000Z

305

Wyko Optical Profiler This machine investigates variations in topography for surfaces ranging from very smooth to 2mm step  

E-Print Network [OSTI]

Wyko Optical Profiler Purpose This machine investigates variations in topography for surfaces as the interferometric objective moves vertically through sample focus. The vertical position of the optics at peak. · Adjust the tip/tilt to orient the optic head until the rings spread into one large ring (nulling). DO

306

Accelerated Seismic Release and Related Aspects of Seismicity Patterns on Earthquake Faults  

E-Print Network [OSTI]

of seismicity patterns associated with several theoretical frameworks. The subcritical crack growth approach developed to describe deformation on a crack prior to the occurrence of dynamic rupture predicts great

Lyakhovsky, Vladimir

307

MICRO-SEISMICITY, FAULT STRUCTURE AND HYDRAULIC COMPARTMENTALIZATION WITHIN  

Open Energy Info (EERE)

MICRO-SEISMICITY, FAULT STRUCTURE AND HYDRAULIC COMPARTMENTALIZATION WITHIN MICRO-SEISMICITY, FAULT STRUCTURE AND HYDRAULIC COMPARTMENTALIZATION WITHIN THE COSO GETHERMAL FIELD, CALIFORNIA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: MICRO-SEISMICITY, FAULT STRUCTURE AND HYDRAULIC COMPARTMENTALIZATION WITHIN THE COSO GETHERMAL FIELD, CALIFORNIA Details Activities (1) Areas (1) Regions (0) Abstract: High precision earthquake locations and subsurface velocity structure provide potential insights into fracture system geometry, fluid conduits and fluid compartmentalization critical to geothermal reservoir management. We analyze 16 years of seismicity to improve hypocentral locations and simultaneously invert for the seismic velocity structure within the Coso Geothermal Field (CGF). The CGF has been continuously

308

Vertical Arc for ILC Low Emittance Transport  

SciTech Connect (OSTI)

The design and parameters of a vertical arc for the ILC Low Emittance Transport (LET) are reviewed. A 1 TeV CM ILC which relies upon 30 MV/m accelerating cavities with a packing fraction of 65% will require almost 48 km of main linac, which suggests that the total site length including BDS and bunch compressors will be on the order of 53 km. If built in a laser-straight tunnel with the low-energy ends near the surface, and assuming a perfectly spherical ''cue ball'' planetary surface with radius 6370 km, the collider halls will necessarily be 55 meters below grade, as shown in the top plot of Figure 1. Such depths would demand extensive use of deep tunneling, which would potentially drive up the cost and difficulty of ILC construction. An alternate solution is to use discrete vertical arcs at a few locations to allow a ''piecewise straight'' construction in which the depth of the tunnel below grade does not vary by more than a few meters. This approach is shown schematically in the bottom plot of Figure 1. In this Note we consider the issues for a design with one such vertical arc at the 250 GeV/c point (ie, midway down the linac for 1 TeV CM), and a second arc at the entrance to the BDS (ie, the entire BDS lies in one plane, with vertical arcs at each end).

Tenenbaum, P.; Woodley, M.; /SLAC

2005-06-07T23:59:59.000Z

309

Vertical pump with free floating check valve  

DOE Patents [OSTI]

A vertical pump with a bottom discharge having a free floating check valve isposed in the outlet plenum thereof. The free floating check valve comprises a spherical member with a hemispherical cage-like member attached thereto which is capable of allowing forward or reverse flow under appropriate conditions while preventing reverse flow under inappropriate conditions.

Lindsay, Malcolm (O'Hara Township, Allegheny County, PA)

1980-01-01T23:59:59.000Z

310

PATTERI'JSOF VERTICAL AND REPRODUCIIONIN  

E-Print Network [OSTI]

of six corTrrno species of Hawaii-an Oplophoridae are presented. Trvo different patterns of adult conmon species lived above 7OO m and undervrent extensive vertical migrat-ions to shallorver rvaters aE of the adultsl the type of embryonic develop- mentl and Ehe amount of yolk in the embryo aE the time of hatching

Luther, Douglas S.

311

Distributed computing of Seismic Imaging Algorithms  

E-Print Network [OSTI]

The primary use of technical computing in the oil and gas industries is for seismic imaging of the earth's subsurface, driven by the business need for making well-informed drilling decisions during petroleum exploration and production. Since each oil/gas well in exploration areas costs several tens of millions of dollars, producing high-quality seismic images in a reasonable time can significantly reduce the risk of drilling a "dry hole". Similarly, these images are important as they can improve the position of wells in a billion-dollar producing oil field. However seismic imaging is very data- and compute-intensive which needs to process terabytes of data and require Gflop-years of computation (using "flop" to mean floating point operation per second). Due to the data/computing intensive nature of seismic imaging, parallel computing are used to process data to reduce the time compilation. With introducing of Cloud computing, MapReduce programming model has been attracted a lot of attention in parallel and di...

Emami, Masnida; Jaberi, Nasrin

2012-01-01T23:59:59.000Z

312

Seismic Travel-Time Residuals and Plates  

Science Journals Connector (OSTI)

......United States, Canada and Greenland under the auspices of Project Vela Uniform (Long Range Seismic Measurements 1966). Arrival...1 that if we plot residuals on the focal sphere, we are at liberty to ascribe these residuals to source effects, receiver effects......

D. Davies; D. P. McKenzie

1969-09-01T23:59:59.000Z

313

A Seismic Look Under the Continents  

Science Journals Connector (OSTI)

...resources. C. Hamilton's Views of the Solar System includes a presentation by R...presents relief maps of Earth. Views of the Solar System includes an Earth topography animation...information on broadband seismic experiments in Tanzania and South Africa are included. A. Nyblade...

Karen M. Fischers; Rob D. van der Hilst

1999-08-27T23:59:59.000Z

314

Recommissioning the K-1600 Seismic Test Facility  

SciTech Connect (OSTI)

The Center of Natural Phenomena Engineering (CNPE) was established under the technical direction of Dr. James E. Beavers with a mandate to assess, by analyses and testing, the seismic capacity of building structures that house sensitive processes at the Oak Ridge Y-12 Plant. This mandate resulted in a need to recommission the K-1600 Seismic Test Facility (STF) at the Oak Ridge K-25 Site, which had been shutdown for 6 years. This paper documents the history of the facility and fives some salient construction, operation, and performance details of its 8-ton, 20-foot center of gravity payload bi-axial seismic simulator. A log of activities involved in the restart of this valuable resource is included as Table 1. Some of problems and solutions associated with recommissioning the facility under a relatively limited budget are included. The unique attributes of the shake table are discussed. The original mission and performance requirements are compared to current expanded mission and performance capabilities. Potential upgrades to further improve the capabilities of the test facility as an adjunct to the CNPE are considered. Additional uses for the facility are proposed, including seismic qualification testing of devices unique to enrichment technologies and associated hazardous waste treatment and disposal processes. In summary, the STF restart in conjunction with CNPE has added a vital, and unique facility to the list of current national resources utilized for earthquake engineering research and development. 3 figs., 1 tab.

Wynn, C.C. (Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States)); Brewer, D.W. (Oak Ridge National Lab., TN (United States))

1991-10-01T23:59:59.000Z

315

Reservoir permeability from seismic attribute analysis  

SciTech Connect (OSTI)

In case of porous fluid-saturated medium the Biot's poroelasticity theory predicts a movement of the pore fluid relative to the skeleton on seismic wave propagation through the medium. This phenomenon opens an opportunity for investigation of the flow properties of the hydrocarbon-saturated reservoirs. It is well known that relative fluid movement becomes negligible at seismic frequencies if porous material is homogeneous and well cemented. In this case the theory predicts an underestimated seismic wave velocity dispersion and attenuation. Based on Biot's theory, Helle et al. (2003) have numerically demonstrated the substantial effects on both velocity and attenuation by heterogeneous permeability and saturation in the rocks. Besides fluid flow effect, the effects of scattering (Gurevich, et al., 1997) play very important role in case of finely layered porous rocks and heterogeneous fluid saturation. We have used both fluid flow and scattering effects to derive a frequency-dependent seismic attribute which is proportional to fluid mobility and applied it for analysis of reservoir permeability.

Silin, Dmitriy; Goloshubin, G.; Silin, D.; Vingalov, V.; Takkand, G.; Latfullin, M.

2008-02-15T23:59:59.000Z

316

SEISMIC ATTRIBUTES IN GEOTHERMAL FIELDS | Open Energy Information  

Open Energy Info (EERE)

SEISMIC ATTRIBUTES IN GEOTHERMAL FIELDS SEISMIC ATTRIBUTES IN GEOTHERMAL FIELDS Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: SEISMIC ATTRIBUTES IN GEOTHERMAL FIELDS Details Activities (1) Areas (1) Regions (0) Abstract: Large velocity contrasts are regularly encountered in geothermal fields due to poorly consolidated and hydro-thermally altered rocks. The appropriate processing of seismic data is therefore crucial to delineate the geological structure. To assess the benefits of surface seismic surveys in such settings, we applied different migration procedures to image a synthetic reservoir model and seismic data from the Coso Geothermal Field. We have shown that the two-dimensional migration of synthetic seismic data from a typical reservoir model resolves the geological structure very well

317

Multi-Resolution Seismic Tomography Based on Recursive Tessellation Hierarchy  

SciTech Connect (OSTI)

A 3-D global tomographic model that reconstructs velocity structure at multiple scales and incorporates laterally variable seismic discontinuities is currently being developed. The model parameterization is node-based where nodes are placed along vertices defined by triangular tessellations of a spheroidal surface. The triangular tessellation framework is hierarchical. Starting with a tetrahexahedron representing the whole globe (1st level of the hierarchy, 24 faces), they divide each triangle of the tessellation into daughter triangles. The collection of all daughter triangles comprises the 2nd level of the tessellation hierarchy and further recursion produces an arbitrary number of tessellation levels and arbitrarily fine node-spacing. They have developed an inversion procedure that takes advantage of the recursive properties of the tessellation hierarchies by progressively solving for shorter wavelength heterogeneities. In this procedure, we first perform the tomographic inversion using a tessellation level with coarse node spacing. They find that a coarse node spacing of approximately 8{sup o} is adequate to capture bulk regional properties. They then conduct the tomographic inversion on a 4{sup o} tessellation level using the residuals and inversion results from the 8{sup o} run. In practice they find that the progressive tomography approach is robust, providing an intrinsic regularization for inversion stability and avoids the issue of predefining resolution levels. Further, determining average regional properties with coarser tessellation levels enables long-wavelength heterogeneities to account for sparsely sampled regions (or regions of the mantle where longer wavelength patterns of heterogeneity suffice) while allowing shorter length-scale heterogeneities to emerge where necessary. They demonstrate the inversion approach with a set of synthetic test cases that mimic the complex nature of data arrangements (mixed-determined inversion) common to most tomographic problems. They also apply the progressive inversion approach with Pn waves traveling within the Middle East region and compare the results to simple tomographic inversions. As expected from synthetic testing, the progressive approach results in detailed structure where there is high data density and broader regional anomalies where seismic information is sparse. The ultimate goal is to use these methods to produce a seamless, multi-resolution global tomographic model with local model resolution determined by the constraints afforded by available data. They envisage this new technique as the general approach to be employed for future multi-resolution model development with complex arrangements of regional and teleseismic information.

Simmons, N A; Myers, S C; Ramirez, A

2009-07-01T23:59:59.000Z

318

Ultrasonic-to-seismic measurements of shale anisotropy in the North sea well  

SciTech Connect (OSTI)

An extensive data set was collected in a North sea well for the purposes of characterizing the anisotropic elastic properties of the shales. The data set included extensive VSP (Verticle Seismic Profile) surveys, a full logging suite including DSI (Dipole Shear Sonic Imager), and whole core analysis. A walkway VSP survey collected using Schlumberger`s ASI (Array Seismic Imager) tool, was used to estimate the anisotropic elastic properties of the North Sea shale. DSI waveforms were analyzed for depth continuous compressional and shear wave velocities. The core was analyzed for anisotropic elastic properties at in situ overburden and pore pressures. The measurements were taken at ultrasonic frequencies using transducers with a bandwidth approximately from 100 to 900 kHz. Comparisons were made of the P and S wave velocities determined at ultrasonic frequencies in the lab with the sonic frequency DSI measurements and seismic frequency P and S wave velocities estimated from the rig source VSP. Finally, traveltimes acquired with the walkway VSP survey were inverted for the TI elastic parameters of the North Sea shale and compared with the laboratory estimations.

Hornby, B.E.; Miller, D.E.; Christie, P.A.F. [and others

1995-12-31T23:59:59.000Z

319

Category:Vertical Electrical Sounding Configurations | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Category Edit History Facebook icon Twitter icon » Category:Vertical Electrical Sounding Configurations Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Vertical Electrical Sounding Configurations page? For detailed information on Vertical Electrical Sounding Configurations as exploration techniques, click here. Category:Vertical Electrical Sounding Configurations Add.png Add a new Vertical Electrical Sounding Configurations Technique Pages in category "Vertical Electrical Sounding Configurations" The following 2 pages are in this category, out of 2 total.

320

An Evaluation of the Carbon Sequestration Potential of the Cambro-Ordovician Strata of the Illinois and Michigan Basins: Part 1: Evaluation of Phase 2 CO{sub 2} Injection Testing in the Deep Saline Gunter Sandstone Reservoir (Cambro-Ordovician Knox Group), Marvin Blan No. 1 Hancock County, Kentucky Part 2: Time-lapse Three-Dimensional Vertical Seismic Profile (3D-VSP) of Sequestration Target Interval with Injected Fluids  

SciTech Connect (OSTI)

Part 1 of this report focuses on results of the western Kentucky carbon storage test, and provides a basis for evaluating injection and storage of supercritical CO{sub 2} in Cambro-Ordovician carbonate reservoirs throughout the U.S. Midcontinent. This test demonstrated that the Cambro- Ordovician Knox Group, including the Beekmantown Dolomite, Gunter Sandstone, and Copper Ridge Dolomite in stratigraphic succession from shallowest to deepest, had reservoir properties suitable for supercritical CO{sub 2} storage in a deep saline reservoir hosted in carbonate rocks, and that strata with properties sufficient for long-term confinement of supercritical CO{sub 2} were present in the deep subsurface. Injection testing with brine and CO{sub 2} was completed in two phases. The first phase, a joint project by the Kentucky Geological Survey and the Western Kentucky Carbon Storage Foundation, drilled the Marvin Blan No. 1 carbon storage research well and tested the entire Knox Group section in the open borehole â?? including the Beekmantown Dolomite, Gunter Sandstone, and Copper Ridge Dolomite â?? at 1152â??2255 m, below casing cemented at 1116 m. During Phase 1 injection testing, most of the 297 tonnes of supercritical CO{sub 2} was displaced into porous and permeable sections of the lowermost Beekmantown below 1463 m and Gunter. The wellbore was then temporarily abandoned with a retrievable bridge plug in casing at 1105 m and two downhole pressure-temperature monitoring gauges below the bridge plug pending subsequent testing. Pressure and temperature data were recorded every minute for slightly more than a year, providing a unique record of subsurface reservoir conditions in the Knox. In contrast, Phase 2 testing, this study, tested a mechanically-isolated dolomitic-sandstone interval in the Gunter. Operations in the Phase 2 testing program commenced with retrieval of the bridge plug and long-term pressure gauges, followed by mechanical isolation of the Gunter by plugging the wellbore with cement below the injection zone at 1605.7 m, then cementing a section of a 14-cm casing at 1470.4â??1535.6. The resultant 70.1-m test interval at 1535.6â??1605.7 m included nearly all of the Gunter sandstone facies. During the Phase 2 injection, 333 tonnes of CO{sub 2} were injected into the thick, lower sand section in the sandy member of the Gunter. Following the completion of testing, the injection zone below casing at 1116 m in the Marvin Blan No. 1 well, and wellbore below 305 m was permanently abandoned with cement plugs and the wellsite reclaimed. The range of most-likely storage capacities found in the Knox in the Marvin Blan No. 1 is 1000 tonnes per surface hectare in the Phase 2 Gunter interval to 8685 tonnes per surface hectare if the entire Knox section were available including the fractured interval near the base of the Copper Ridge. By itself the Gunter lacks sufficient reservoir volume to be considered for CO{sub 2} storage, although it may provide up to 18% of the reservoir volume available in the Knox. Regional extrapolation of CO{sub 2} storage potential based on the results of a single well test can be problematic, although indirect evidence of porosity and permeability can be demonstrated in the form of active saltwater-disposal wells injecting into the Knox. The western Kentucky region suitable for CO{sub 2} storage in the Knox is limited updip, to the east and south, by the depth at which the base of the Maquoketa shale lies above the depth required to ensure storage of CO{sub 2} in its supercritical state and the deepest a commercial well might be drilled for CO{sub 2} storage. The resulting prospective region has an area of approximately 15,600 km{sup 2}, beyond which it is unlikely that suitable Knox reservoirs may be developed. Faults in the subsurface, which serve as conduits for CO{sub 2} migration and compromise sealing strata, may mitigate the area with Knox reservoirs suitable for CO{sub 2} storage. The results of the injection tes

Richard Bowersox; John Hickman; Hannes Leetaru

2012-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "vertical seismic profile" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Characterization of Vertical Velocity and Drop Size Distribution Parameters in Widespread Precipitation at ARM Facilities  

SciTech Connect (OSTI)

Extended, high-resolution measurements of vertical air motion and median volume drop diameter D0 in widespread precipitation from three diverse Atmospheric Radiation Measurement Program (ARM) locations [Lamont, Oklahoma, Southern Great Plains site (SGP); Niamey, Niger; and Black Forest, Germany] are presented. The analysis indicates a weak (0-10 cm{sup -1}) downward air motion beneath the melting layer for all three regions, a magnitude that is to within the typical uncertainty of the retrieval methods. On average, the hourly estimated standard deviation of the vertical air motion is 0.25 m s{sup -1} with no pronounced vertical structure. Profiles of D0 vary according to region and rainfall rate. The standard deviation of 1-min-averaged D0 profiles for isolated rainfall rate intervals is 0.3-0.4 mm. Additional insights into the form of the raindrop size distribution are provided using available dual-frequency Doppler velocity observations at SGP. The analysis suggests that gamma functions better explain paired velocity observations and radar retrievals for the Oklahoma dataset. This study will be useful in assessing uncertainties introduced in the measurement of precipitation parameters from ground-based and spaceborne remote sensors that are due to small-scale variability.

Giangrande S. E.; Luke, E. P.; Kollias, P.

2012-02-01T23:59:59.000Z

322

Seismic modelling of a fractured carbonate reservoir in Abu Dhabi, United Arab Emirates  

E-Print Network [OSTI]

Seismic modelling of a fractured carbonate reservoir in Abu Dhabi, United Arab Emirates Mohammed Y is required to optimize hydrocarbon production. A rock containing parallel fractures can be seismically to the seismic wavelength. Seismic anisotropy may be detectable from attributes of pre-stack 3-D seismic data

Ali, Mohammed

323

Electrically floating, near vertical incidence, skywave antenna  

DOE Patents [OSTI]

An Electrically Floating, Near Vertical Incidence, Skywave (NVIS) Antenna comprising an antenna element, a floating ground element, and a grounding element. At least part of said floating ground element is positioned between said antenna element and said grounding element. The antenna is separated from the floating ground element and the grounding element by one or more electrical insulators. The floating ground element is separated from said antenna and said grounding element by one or more electrical insulators.

Anderson, Allen A.; Kaser, Timothy G.; Tremblay, Paul A.; Mays, Belva L.

2014-07-08T23:59:59.000Z

324

LANSCE | News & Media | Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Profiles Shea Mosby: Lighting the way for nuclear science discoveries By Diana Del Mauro ADEPS Communications Photos by Richard Robinson, IRM-CAS Shea Mosby Cradling a heavy...

325

EIA - State Electricity Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electricity Profile 2012 Table 1. 2012 Summary statistics (Missouri) Item Value U.S. Rank NERC Region(s) SERCSPP Primary Energy Source Coal Net Summer Capacity (megawatts)...

326

Management's Discussion & Analysis Profile  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7-26-2013. Management's Discussion & Analysis Profile The Bonneville Power Administration is a federal agency under the Department of Energy. BPA markets wholesale electrical power...

327

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Arkansas Electricity Profile 2012 Table 1. 2012 Summary Statistics (Arkansas) Item Value U.S. Rank NERC Region(s) SERCSPP Primary Energy Source Coal Net Summer Capacity...

328

Wind speed vertical distribution at Mt. Graham  

E-Print Network [OSTI]

The characterization of the wind speed vertical distribution V(h) is fundamental for an astronomical site for many different reasons: (1) the wind speed shear contributes to trigger optical turbulence in the whole troposphere, (2) a few of the astroclimatic parameters such as the wavefront coherence time (tau_0) depends directly on V(h), (3) the equivalent velocity V_0, controlling the frequency at which the adaptive optics systems have to run to work properly, depends on the vertical distribution of the wind speed and optical turbulence. Also, a too strong wind speed near the ground can introduce vibrations in the telescope structures. The wind speed at a precise pressure (200 hPa) has frequently been used to retrieve indications concerning the tau_0 and the frequency limits imposed to all instrumentation based on adaptive optics systems, but more recently it has been proved that V_200 (wind speed at 200 hPa) alone is not sufficient to provide exhaustive elements concerning this topic and that the vertical d...

Hagelin, S; Lascaux, F

2010-01-01T23:59:59.000Z

329

Seismic response of reinforced concrete frames on monopile foundations  

Science Journals Connector (OSTI)

Abstract The paper focuses on the effects of soilstructure interaction on the seismic response of reinforced concrete frames on monopile foundations connected by tie beams. Such systems are usually designed by considering fixed restraints at the column bases and the effects of the foundation compliance have not yet been investigated. The soilfoundation system is analysed in the frequency domain by means of a numerical model that allows obtaining the dynamic impedance functions of the system and the foundation input motion necessary for the subsequent nonlinear inertial soilstructure interaction analysis which is performed in the time domain. Tie beams with different stiffness and soil deposits characterised by three different profiles of shear wave velocity are considered. Results of incremental dynamic analyses carried out on frames with monopile foundations are compared with those obtained considering double-pile foundations and the fixed base assumption. Soilstructure interaction is found to affect considerably the response of frames on monopile foundations by increasing the structural deformation and modifying the evolution of the dissipative mechanisms. Analyses accounting for the actual soilfoundation system compliance and the foundation input motion may be crucial for a reliable prediction of the actual distribution of stresses in the superstructure and the foundation elements.

Sandro Carbonari; Francesca Dezi; Fabrizio Gara; Graziano Leoni

2014-01-01T23:59:59.000Z

330

Vertical axis wind turbine with continuous blade angle adjustment  

E-Print Network [OSTI]

The author presents a concept for a vertical axis wind turbine that utilizes each blade's entire rotational cycle for power generation. Each blade has its own vertical axis of rotation and is constrained to rotate at the ...

Weiss, Samuel Bruce

2010-01-01T23:59:59.000Z

331

Environmental Vertical Wind Shear with Hurricane Bertha (1996)  

Science Journals Connector (OSTI)

Hurricane Bertha (1996) was influenced by vertical wind shear with highly variable direction and magnitude. The paper describes a unique method for determining the vertical tilt of a tropical cyclone vortex using satellite and aircraft data. ...

Raymond M. Zehr

2003-04-01T23:59:59.000Z

332

Seismic Emissions Surveys | Open Energy Information  

Open Energy Info (EERE)

Emissions Surveys Emissions Surveys Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Seismic Emissions Surveys Abstract With recent improvements in acquiring, processing and interpreting data, seismic ground noise provides a valuable tool for geothermal exploration. A time domain beam steering array processing technique is employed. This process eliminates the occurrence of false anomalies caused by local geologic amplification effects. Surveys of this type are used to located naturally fractured reservoirs. Results form Dixie Valley and Desert Peak, Nevada correlate well with the location of productive wells or known geology. Authors Katz and Lewis J. Published Journal Geothermal Resources Council Transactions, 1984 DOI Not Provided Check for DOI availability: http://crossref.org

333

Definition: Seismic Techniques | Open Energy Information  

Open Energy Info (EERE)

Techniques Techniques Seismic methods provide information regarding the elastic properties of the subsurface through the measurement of the propagation velocity of elastic waves.[1] View on Wikipedia Wikipedia Definition Seismology /saɪzˈmɒlədʒi/ is the scientific study of earthquakes and the propagation of elastic waves through the Earth or through other planet-like bodies. The field also includes studies of earthquake effects, such as tsunamis as well as diverse seismic sources such as volcanic, tectonic, oceanic, atmospheric, and artificial processes (such as explosions). A related field that uses geology to infer information regarding past earthquakes is paleoseismology. A recording of earth motion as a function of time is called a seismogram. A seismologist

334

Seismic switch for strong motion measurement  

DOE Patents [OSTI]

A seismic switching device that has an input signal from an existing microseismic station seismometer and a signal from a strong motion measuring instrument. The seismic switch monitors the signal level of the strong motion instrument and passes the seismometer signal to the station data telemetry and recording systems. When the strong motion instrument signal level exceeds a user set threshold level, the seismometer signal is switched out and the strong motion signal is passed to the telemetry system. The amount of time the strong motion signal is passed before switching back to the seismometer signal is user controlled between 1 and 15 seconds. If the threshold level is exceeded during a switch time period, the length of time is extended from that instant by one user set time period.

Harben, Philip E. (Oakley, CA); Rodgers, Peter W. (Santa Barbara, CA); Ewert, Daniel W. (Patterson, CA)

1995-01-01T23:59:59.000Z

335

Seismic switch for strong motion measurement  

DOE Patents [OSTI]

A seismic switching device is described that has an input signal from an existing microseismic station seismometer and a signal from a strong motion measuring instrument. The seismic switch monitors the signal level of the strong motion instrument and passes the seismometer signal to the station data telemetry and recording systems. When the strong motion instrument signal level exceeds a user set threshold level, the seismometer signal is switched out and the strong motion signal is passed to the telemetry system. The amount of time the strong motion signal is passed before switching back to the seismometer signal is user controlled between 1 and 15 seconds. If the threshold level is exceeded during a switch time period, the length of time is extended from that instant by one user set time period. 11 figs.

Harben, P.E.; Rodgers, P.W.; Ewert, D.W.

1995-05-30T23:59:59.000Z

336

On seismic signatures of rapid variation  

E-Print Network [OSTI]

We present an improved model for an asteroseismic diagnostic contained in the frequency spacing of low-degree acoustic modes. By modelling in a realistic manner regions of rapid variation of dynamically relevant quantities, which we call acoustic glitches, we can derive signatures of the gross properties of those glitches. In particular, we are interested in measuring properties that are related to the helium ionization zones and to the rapid variation in the background state associated with the lower boundary of the convective envelope. The formula for the seismic diagnostic is tested against a sequence of theoretical models of the Sun, and is compared with seismic diagnostics published previously by Monteiro & Thompson (1998, 2005) and by Basu et al. (2004).

G. Houdek; D. O. Gough

2006-12-01T23:59:59.000Z

337

An Autonomous Doppler Sodar Wind Profiling System PHILIP S. ANDERSON, RUSSELL S. LADKIN, AND IAN A. RENFREW  

E-Print Network [OSTI]

An Autonomous Doppler Sodar Wind Profiling System PHILIP S. ANDERSON, RUSSELL S. LADKIN, AND IAN A form 27 September 2004) ABSTRACT An autonomous Doppler sodar wind profiling system has been designed panels, and two vertical axis wind generators, plus charging control and isolation circuitry. The sodar

Renfrew, Ian

338

Teleseismic-Seismic Monitoring At Coso Geothermal Area (1988) | Open Energy  

Open Energy Info (EERE)

Coso Geothermal Coso Geothermal Area (1988) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Teleseismic-Seismic Monitoring Activity Date 1988 Usefulness useful DOE-funding Unknown Exploration Basis To analyze three-dimensional Vp/Vs variation Notes A tomographic inversion for the 3D variations of the Vp/V s, the ratio of compressional to shear velocity, was performed. Iterative back projection of 2966 shear and compressional wave travel time residuals from local earthquakes recorded on vertical instruments reveals that Vp/Vs is generally high at the surface and decreases systematically to 10 km depth. Near Devil's Kitchen in the Coso Geothermal Area, Vp/Vs values are very low near the surface, consistent with measured values for steam-dominated

339

The sensitivity of seismic responses to gas hydrates  

SciTech Connect (OSTI)

The sensitivity of seismic reflection coefficients and amplitudes, and their variations with changing incidence angles and offsets, was determined with respect to changes in the parameters which characterize marine sediments containing gas hydrates. Using the results of studies of ice saturation effects in permafrost soils, we have introduced rheological effects of hydrate saturation. The replacement of pore fluids in highly porous and unconsolidated marine sediments with crystalline gas hydrates, increases the rigidity of the sediments, and alters the ratio of compressional/shear strength ratio. This causes Vp/Vs ratio variations which have an effect on the amplitudes of P-wave and S-wave reflections. Analysis of reflection coefficient functions has revealed that amplitudes are very sensitive to porosity estimates, and errors in the assumed model porosity can effect the estimates of hydrate saturation. Additionally, we see that the level of free gas saturation is difficult to determine. A review of the effects of free gas and hydrate saturation on shear wave arrivals indicates that far-offset P to S wave converted arrivals may provide a means of characterizing hydrate saturations. Complications in reflection coefficient and amplitude modelling can arise from gradients in hydrate saturation levels and from rough sea floor topography. An increase in hydrate saturation with depth in marine sediments causes rays to bend towards horizontal and increases the reflection incidence angles and subsequent amplitudes. This effect is strongly accentuated when the vertical separation between the source and the hydrate reflection horizon is reduced. The effect on amplitude variations with offset due to a rough sea floor was determined through finite difference wavefield modelling. Strong diffractions in the waveforms add noise to the amplitude versus offset functions.

Foley, J.E.; Burns, D.R.

1992-08-01T23:59:59.000Z

340

The sensitivity of seismic responses to gas hydrates. Final report  

SciTech Connect (OSTI)

The sensitivity of seismic reflection coefficients and amplitudes, and their variations with changing incidence angles and offsets, was determined with respect to changes in the parameters which characterize marine sediments containing gas hydrates. Using the results of studies of ice saturation effects in permafrost soils, we have introduced rheological effects of hydrate saturation. The replacement of pore fluids in highly porous and unconsolidated marine sediments with crystalline gas hydrates, increases the rigidity of the sediments, and alters the ratio of compressional/shear strength ratio. This causes Vp/Vs ratio variations which have an effect on the amplitudes of P-wave and S-wave reflections. Analysis of reflection coefficient functions has revealed that amplitudes are very sensitive to porosity estimates, and errors in the assumed model porosity can effect the estimates of hydrate saturation. Additionally, we see that the level of free gas saturation is difficult to determine. A review of the effects of free gas and hydrate saturation on shear wave arrivals indicates that far-offset P to S wave converted arrivals may provide a means of characterizing hydrate saturations. Complications in reflection coefficient and amplitude modelling can arise from gradients in hydrate saturation levels and from rough sea floor topography. An increase in hydrate saturation with depth in marine sediments causes rays to bend towards horizontal and increases the reflection incidence angles and subsequent amplitudes. This effect is strongly accentuated when the vertical separation between the source and the hydrate reflection horizon is reduced. The effect on amplitude variations with offset due to a rough sea floor was determined through finite difference wavefield modelling. Strong diffractions in the waveforms add noise to the amplitude versus offset functions.

Foley, J.E.; Burns, D.R.

1992-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "vertical seismic profile" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Imaging Vertically Oriented Defects with Multi-Saft  

Science Journals Connector (OSTI)

Imaging vertically oriented defects using the Synthetic Aperture Focusing Technique (SAFT) requires special consideration. When the faces...

M. Lorenz; U. Stelwagen; A. J. Berkhout

1991-01-01T23:59:59.000Z

342

Development Of Active Seismic Vector-Wavefield Imaging Technology For  

Open Energy Info (EERE)

Of Active Seismic Vector-Wavefield Imaging Technology For Of Active Seismic Vector-Wavefield Imaging Technology For Geothermal Applications Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Development Of Active Seismic Vector-Wavefield Imaging Technology For Geothermal Applications Details Activities (2) Areas (2) Regions (0) Abstract: This report describes the development and testing of vector-wavefield seismic sources that can generate shear (S) waves that may be valuable in geothermal exploration and reservoir characterization. Also described is a 3-D seismic data-processing effort to create images of Rye Patch geothermal reservoir from 3-D sign-bit data recorded over the geothermal prospect. Two seismic sources were developed and tested in this study that can be used to illuminate geothermal reservoirs with S-waves.

343

Statistical study of seismicity associated with geothermal reservoirs in  

Open Energy Info (EERE)

study of seismicity associated with geothermal reservoirs in study of seismicity associated with geothermal reservoirs in California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Statistical study of seismicity associated with geothermal reservoirs in California Details Activities (5) Areas (5) Regions (0) Abstract: Statistical methods are outlined to separate spatially, temporally, and magnitude-dependent portions of both the random and non-random components of the seismicity. The methodology employed compares the seismicity distributions with a generalized Poisson distribution. Temporally related events are identified by the distribution of the interoccurrence times. The regions studied to date include the Imperial Valley, Coso, The Geysers, Lassen, and the San Jacinto fault. The spatial characteristics of the random and clustered components of the seismicity

344

Integrative seismic safety evaluation of a high concrete arch dam  

Science Journals Connector (OSTI)

Abstract An integrative seismic safety evaluation of an arch dam should include all sources of nonlinearities, dynamic interactions between different components and the external loads. The present paper investigates the calibration procedure and nonlinear seismic response of an existing high arch dam. The first part explains the conducted analyses for the static and thermal calibrations of the dam based on site measurements. The second part investigates the nonlinear seismic analysis of the calibrated model considering the effect of joints, cracking of mass concrete, reservoirdamrock interaction, hydrodynamic pressure inside the opened joints and the geometric nonlinearity. Penetration of the water inside the opened joints accelerates the damage process. The integrative seismic assessment of a case study shows that the dam will fail under the maximum credible earthquake scenario. The dam is judged to be severely damaged with extensive cracking and the joints undergo opening/sliding. A systematic procedure is proposed for seismic and post-seismic safety of dams.

M.A. Hariri-Ardebili; M.R. Kianoush

2014-01-01T23:59:59.000Z

345

Measurements and modeling of the vertical profile of specific surface area of an alpine snowpack  

E-Print Network [OSTI]

for dry snow ranged between ca. 5 and 80 m2 kg?1 , and generally decreased over time in a given snow layer radius in Crocus, and the other one deter- mined from density and snow type. Both parameterizations metamorphism, i.e. the morphological transformation of snow grains over time, induce variations in snow SSA [20

Ribes, Aurélien

346

July 7, 2008 Vertical temperature profile and mesospheric winds retrieval on  

E-Print Network [OSTI]

General Circulation Model, as provided through the Mars Climate Database (MCD) numerical tool. Methods. We from the Mars Climate Database (MCD) provides satisfactory fits to the 2001 and 2005 data when. Key words. Planets and satellites: individual: Mars ; Radio lines: solar system 1. Introduction

347

ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, Surface Meteorology (williams-surfmet)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

Christopher Williams; Mike Jensen

348

ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, Parcivel Disdrometer (williams-disdro)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

Christopher Williams; Mike Jensen

349

ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, Parcivel Disdrometer (williams-disdro)  

SciTech Connect (OSTI)

This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

Williams, Christopher; Jensen, Mike

2012-11-06T23:59:59.000Z

350

ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, Surface Meteorology (williams-surfmet)  

SciTech Connect (OSTI)

This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

Williams, Christopher; Jensen, Mike

2012-11-06T23:59:59.000Z

351

ADVANCED WAVEFORM SIMULATION FOR SEISMIC MONITORING EVENTS  

SciTech Connect (OSTI)

High-Resolution Source Parameters using Calibration from Ambient Seismic Noise (ASN) Zhongwen Zhan, Shengji Wei, Sidao Ni, and Don V. Helmberger Abstract Several new methods have been developed to retrieve local Green's functions based on the cross-correlation of ambient seismic noise (station-to-station) and conventional (source-to-station) inversions. The latter methods provide the most broadband results but require accurate source parameters for phase-delay recovery which depends on the starting model. Considerable progress is being made in providing such information from 3D modeling, Tape et al. (2008), using Adjoint Tomography. But to match waveforms for the recent Chino Hills event still requires shifting synthetics to align on data. This means that it is difficult to use 3D simulations to refine source locations in near-real time. We can avoid the 3D problems by applying the CAP method and storing shifts from past events, Tan (2006), and/or using ASN, Shapiro et al. (2005), to predict lags for surface waves. Here, we directly compare results from CAP predictions with ASN results using stations near the Chino Hills event. We use the same SC seismic model as used in the Library of Earthquakes to generate Green's functions for noise (single force) for comparison with ASN correlations and allow Cap delays. We apply these delays or corrections to determine precise Centroid locations.

Helmberger, Donald V.; Tromp, Jeroen; Rodgers, Arthur J.

2009-04-30T23:59:59.000Z

352

Relay testing parametric investigation of seismic fragility  

SciTech Connect (OSTI)

The seismic capacity of most electrical equipment is governed by malfunction of relays. An evaluation of the existing relay test data base at Brookhaven National Laboratory (BNL) has indicated that the seismic fragility of a relay may depend on various parameters related to the design or the input motion. In particular, the electrical mode, contact state, adjustment, chatter duration acceptance limit, and the frequency and the direction of the vibration input have been considered to influence the relay fragility level. For a particular relay type, the dynamics of its moving parts depends on the exact model number and vintage and hence, these parameters may also influence the fragility level. In order to investigate the effect of most of these parameters on the seismic fragility level, BNL has conducted a relay test program. The testing has been performed at Wyle Laboratories. Establishing the correlation between the single frequency fragility test input and the corresponding multifrequency response spectrum (TRS) is also an objective of this test program. This paper discusses the methodology used for testing and presents a brief summary of important test results. 1 ref., 10 figs.

Bandyopadhyay, K.; Hofmayer, C.; Kassir, M.; Pepper, S.

1989-01-01T23:59:59.000Z

353

Basis for seismic provisions of DOE-STD-1020  

SciTech Connect (OSTI)

DOE-STD-1020 provides for a graded approach for the seismic design and evaluation of DOE structures, systems, and components (SSC). Each SSC is assigned to a Performance Category (PC) with a performance description and an approximate annual probability of seismic-induced unacceptable performance, P{sub F}. The seismic annual probability performance goals for PC 1 through 4 for which specific seismic design and evaluation criteria are presented. DOE-STD-1020 also provides a seismic design and evaluation procedure applicable to achieve any seismic performance goal annual probability of unacceptable performance specified by the user. The desired seismic performance goal is achieved by defining the seismic hazard in terms of a site-specified design/evaluation response spectrum (called herein, the Design/Evaluation Basis Earthquake, DBE). Probabilistic seismic hazard estimates are used to establish the DBE. The resulting seismic hazard curves define the amplitude of the ground motion as a function of the annual probability of exceedance P{sub H} of the specified seismic hazard. Once the DBE is defined, the SSC is designed or evaluated for this DBE using adequately conservative deterministic acceptance criteria. To be adequately conservative, the acceptance criteria must introduce an additional reduction in the risk of unacceptable performance below the annual risk of exceeding the DBE. The ratio of the seismic hazard exceedance probability P{sub H} to the performance goal probability P{sub F} is defined herein as the risk reduction ratio. The required degree of conservatism in the deterministic acceptance criteria is a function of the specified risk reduction ratio.

Kennedy, R.C. [RPK Structural Mechanics Consulting, Yorba Linda, CA (United States); Short, S.A. [EQE International, Inc., San Francisco, CA (United States)

1994-04-01T23:59:59.000Z

354

Third Quarter Hanford Seismic Report for Fiscal Year 2005  

SciTech Connect (OSTI)

Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 41 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. For the Hanford Seismic Network, there were 337 triggers during the third quarter of fiscal year 2005. Of these triggers, 20 were earthquakes within the Hanford Seismic Network. The largest earthquake within the Hanford Seismic Network was a magnitude 1.3 event May 25 near Vantage, Washington. During the third quarter, stratigraphically 17 (85%) events occurred in the Columbia River basalt (approximately 0-5 km), no events in the pre-basalt sediments (approximately 5-10 km), and three (15%) in the crystalline basement (approximately 10-25 km). During the first quarter, geographically five (20%) earthquakes occurred in swarm areas, 10 (50%) earthquakes were associated with a major geologic structure, and 5 (25%) were classified as random events.

Reidel, Steve P.; Rohay, Alan C.; Hartshorn, Donald C.; Clayton, Ray E.; Sweeney, Mark D.

2005-09-01T23:59:59.000Z

355

The contribution of pattern recognition of seismic and morphostructural data to seismic hazard assessment  

E-Print Network [OSTI]

The reliable statistical characterization of the spatial and temporal properties of large earthquakes occurrence is one of the most debated issues in seismic hazard assessment, due to the unavoidably limited observations from past events. We show that pattern recognition techniques, which are designed in a formal and testable way, may provide significant space-time constraints about impending strong earthquakes. This information, when combined with physically sound methods for ground shaking computation, like the neo-deterministic approach (NDSHA), may produce effectively preventive seismic hazard maps. Pattern recognition analysis of morphostructural data provide quantitative and systematic criteria for identifying the areas prone to the largest events, taking into account a wide set of possible geophysical and geological data, whilst the formal identification of precursory seismicity patterns (by means of CN and M8S algorithms), duly validated by prospective testing, provides useful constraints about impend...

Peresan, Antonella; Soloviev, Alexander; Panza, Giuliano F

2014-01-01T23:59:59.000Z

356

Seismic amplitude and coherency response of channel sand, offshore Louisiana, Gulf of Mexico  

E-Print Network [OSTI]

hazard delineation. This paper describes a new technique for drilling hazard identification using a conventional 3 D seismic amplitude dataset. An event coherence calculation program is applied to a 3 D seismic dataset to derive seismic attributes...

Fischer, Elena Mikhaylovna

2012-06-07T23:59:59.000Z

357

Seismic Performance Assessment and Probabilistic Repair Cost Analysis of Precast Concrete Cladding Systems for Multistory Buildings  

E-Print Network [OSTI]

Nov. 8- 9. Arnold, C. 2008. Seismic Safety of the BuildingTab Connections for Gravity and Seismic Loads. Steel Tips,and Brown, A.T. 1995a. Seismic Performance of Architectural

Hunt, Jeffrey Patrick

2010-01-01T23:59:59.000Z

358

Geodynamic and seismic constraints on the thermochemical structure and dynamics of convection in the deep mantle  

Science Journals Connector (OSTI)

...Brodholt and B. J. Wood Geodynamic and seismic constraints on the thermochemical structure...by this viscosity peak. geodynamics|seismic tomography|mantle viscosity|three-dimensional...anomalies|mantle convection| Geodynamic and seismic constraints on the thermochemical structure...

2002-01-01T23:59:59.000Z

359

Seismic Earth Pressures on Retaining Structures and Basement Walls in Cohesionless Soils  

E-Print Network [OSTI]

50 4.4. Seismic Behavior of Retaining Wall-BackfillWhitman, R. V. (1999). Seismic analysis and design of rigidBalkema, Rotterdam. Building Seismic Safety Council. (2010).

Geraili Mikola, Roozbeh

2012-01-01T23:59:59.000Z

360

Borehole Seismic Monitoring of Injected CO2 at the Frio Site  

E-Print Network [OSTI]

D. , 2001, Orbital vibrator seismic source for simultaneous5: Tomographic image of seismic velocity change due to CO 2Borehole Seismic Monitoring of Injected CO 2 at the Frio

Daley, Thomas M.; Myer, Larry R.; Hoversten, G.M.; Peterson, John E.; Korneev, Valeri A.

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vertical seismic profile" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Review paper Seismic interferometry and ambient noise tomography in the British Isles  

E-Print Network [OSTI]

Review paper Seismic interferometry and ambient noise tomography in the British Isles Heather. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 2. Theory and method of seismic interferometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 4.2. Seismic interferometry across the Scottish Highlands

362

Seismic Assessment and Retrofit of Existing Multi-Column Bent Bridges  

E-Print Network [OSTI]

Seismic Assessment and Retrofit of Existing Multi-Column Bent Bridges By Cole C. Mc ................................................................................................................................... 6 Seismic Activity in Western Washington State Approach ­ Bridge Modeling .............................................11 Seismic Excitations

363

In Vivo Characterization of a Wide area 802.11b Wireless Seismic Array  

E-Print Network [OSTI]

area 802.11b Wireless Seismic Array Martin Lukac, Vinayakpresent a study of the MASE seismic data collection networkthe network. In the case of seismic sensing applications the

Lukac, Martin; Naik, Vineyak; Stubailo, Igor; Husker, Allen; Estrin, D

2007-01-01T23:59:59.000Z

364

Migration of a coarse fluvial sediment pulse detected by hysteresis in bedload generated seismic waves  

E-Print Network [OSTI]

J. , Brodsky, Emily E. , 2011. A seismic signature of riverSpectral anal- ysis of seismic noise induced by rivers: a2010. Location of river-induced seismic signal from noise

Roth, Danica L; Finnegan, Noah J; Brodsky, Emily E; Cook, K.L.; Stark, C.P.; Wang, H.W.

2014-01-01T23:59:59.000Z

365

Effects of Sounds From Seismic Air Guns on Fish Behavior and Catch Rates  

Science Journals Connector (OSTI)

Seismic surveys are performed to explore for oil ... Concerns have been raised about the impacts of seismic air gun emissions on marine life, and fishermen in particular claim that seismic surveys have a serious ...

Svein Lkkeborg; Egil Ona; Aud Vold; Are Salthaug

2012-01-01T23:59:59.000Z

366

Ocean contribution to co-seismic crustal deformation and geoid anomalies: Application to the 2004 December 26 SumatraAndaman earthquake  

Science Journals Connector (OSTI)

Large earthquakes do not only heavily deform the crust in the vicinity of the fault, they also change the gravity field of the area affected by the earthquake due to mass redistribution in the upper layers of the Earth. Besides that, for sub-oceanic earthquakes deformation of the ocean floor causes relative sea level changes and mass redistribution of water that have again a significant effect on the gravity field. To model these deformations, sea level changes and gravity field perturbations self-consistently we use an adapted version of the sea level equation (SLE) that has been used for glacial isostatic adjustment studies. The sea level equation, next to our normal mode model for seismic solid earth modeling, allows us to compute a gravitationally self-consistent solution for the co-seismic relative sea level, surface deformation and geoid height changes. We apply our geographically detailed models to the case of the 2004 December 26 SumatraAndaman earthquake. Recent studies that have modeled the ocean mass effect on co-seismic gravity change for this specific earthquake show model results that indicate a broad negative change in geoid height around the fault due to ocean water redistribution (de Linage et al., 2009; Melini et al., 2010). Our model results for the ocean contribution to geoid height differ from these studies in the sense that we find a pattern similar to the elongated dipole pattern of the solid earth model outputs for gravity and vertical deformation, together with a relatively small broad negative geoid height change. We explain the relation between outcomes for geoid height, relative sea level and vertical deformation of the ocean floor and we confront our model results with a least squares estimation of the co-seismic discontinuity in GRACE-derived gravity field time series. We show that taking into account the contribution of ocean water redistribution to the co-seismic geoid height change next to a compressible solid earth model is essential to explain the predominant negative co-seismic geoid anomalies from the GRACE gravity field solutions. Besides, we introduce a detailed approach to modeling an earthquake in a normal mode model that better approximates realistic continuous slip on the fault plane than models that do not distribute slip with depth. To demonstrate the importance of the slip distribution we show the differences in outcomes for modeled geoid height and vertical deformation.

D.B.T. Broerse; L.L.A. Vermeersen; R.E.M. Riva; W. van der Wal

2011-01-01T23:59:59.000Z

367

Seismic baseline and induction studies- Roosevelt Hot Springs...  

Open Energy Info (EERE)

studies- Roosevelt Hot Springs, Utah and Raft River, Idaho Abstract Local seismic networks were established at the Roosevelt Hot Springs geothermal area, utah and at Raft...

368

Advanced Seismic Data Analysis Program- The "Hot Pot" Project  

Broader source: Energy.gov [DOE]

Advanced Seismic Data Analysis Program- The "Hot Pot" Project presentation at the April 2013 peer review meeting held in Denver, Colorado.

369

Geothermal: Sponsored by OSTI -- Application of seismic tomographic...  

Office of Scientific and Technical Information (OSTI)

Application of seismic tomographic techniques in the investigation of geothermal systems Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On...

370

Seismic Studies of a Massive Hydraulic Fracturing Experiment...  

Open Energy Info (EERE)

a Massive Hydraulic Fracturing Experiment Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Seismic Studies of a Massive Hydraulic Fracturing...

371

Poroelastic modeling of seismic boundary conditions across a fracture  

E-Print Network [OSTI]

seismic wave scattering off nonplanar e.g., curved and intersecting fractures. .... wave studies by Pyrak-Nolte and Cook 1987, and Nihei et al. 1999.

2007-07-20T23:59:59.000Z

372

Geographic Information System At Central Nevada Seismic Zone...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Central Nevada Seismic Zone Region (Coolbaugh, Et Al., 2005 - 2)...

373

Statistical study of seismicity associated with geothermal reservoirs...  

Open Energy Info (EERE)

include the Imperial Valley, Coso, The Geysers, Lassen, and the San Jacinto fault. The spatial characteristics of the random and clustered components of the seismicity are...

374

Seismic damage identification for steel structures using distributed fiber optics  

Science Journals Connector (OSTI)

A distributed fiber optic monitoring methodology based on optic time domain reflectometry technology is developed for seismic damage identification of steel structures. Epoxy with a...

Hou, Shuang; Cai, C S; Ou, Jinping

2009-01-01T23:59:59.000Z

375

Teleseismic-Seismic Monitoring At Geysers Area (Zucca, Et Al...  

Open Energy Info (EERE)

Zucca, Et Al., 1994) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Geysers Area (Zucca, Et Al., 1994)...

376

Teleseismic-Seismic Monitoring At Valles Caldera - Redondo Geothermal...  

Open Energy Info (EERE)

Steck, Et Al., 1998) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Valles Caldera - Redondo Geothermal Area...

377

Towards the Understanding of Induced Seismicity in Enhanced Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

Geothermal Program UCB * EGS operations rely on small-scale seismicity to delineate fracture extent, fracture type and pathways for water * EGS operations need to understand...

378

Seismic Technology Adapted to Analyzing and Developing Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

of geothermal prospects beneath volcanic outcrops. Seismic-based quantification of fracture orientation and intensity will result in optimal positioning of geothermal wells....

379

Seismic Technology Adapted to Analyzing and Developing Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

of geothermal prospects beneath volcanic outcrops. * Seismic-based quantification of fracture orientation and intensity will result in optimal positioning of geothermal wells. *...

380

Towards the Understanding of Induced Seismicity in Enhanced Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

Office eere.energy.gov * EGS operations rely on small-scale seismicity to delineate fracture extent, fracture type and pathways for water * EGS operations need to understand...

Note: This page contains sample records for the topic "vertical seismic profile" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Joint inversion of electrical and seismic data for Fracture char...  

Broader source: Energy.gov (indexed) [DOE]

Joint inversion of electrical and seismic data for Fracture char. and Imaging of Fluid Flow in Geothermal Systems Michael Batzle, PI Colorado School of Mines Track Name: Fluid...

382

Seismic functionality of essential relays in operating nuclear plants  

Science Journals Connector (OSTI)

The regulatory criteria for licensing of nuclear power plants require that certain safety-related equipment and systems be designed to function during and following a postulated, design basis earthquake. Demonstration of seismic adequacy must be performed and formally documented by shake-table testing, analysis or other specified methods. Since many older, operating nuclear power plants were designed and constructed prior to the issuance of the current seismic qualification criteria, the NRC has questioned whether the seismic adequacy of the essential equipment has been adequately demonstrated and documented. This concern is identified in Unresolved Safety Issue A-46, Seismic Qualification of Equipment in Operating Nuclear Power Plants. In response to this concern, a group of affected plant owners, the Seismic Qualification Utility Group (SQUG), with support from the Electric Power Research Institute (EPRI), has undertaken a program to demonstrate the seismic adequacy of essential equipment by the use of actual experience with such equipment in plants which have undergone significant earthquakes and by the use of available seismic qualification data for similar equipment. An important part of this program is the development of data and the methodology for verifying the functionality of electrical relays used in essential circuits needed for plant shutdown during a seismic event. This paper describes this part of the Seismic Qualification Utility Group program. The relay functionality evaluation methodology is being developed under EPRI Project No. RP2849-1.

W.R. Schmidt; R.P. Kassawara

1988-01-01T23:59:59.000Z

383

Data Acquisition-Manipulation At Central Nevada Seismic Zone...  

Open Energy Info (EERE)

- 2) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At Central Nevada Seismic Zone Region (Coolbaugh, Et Al., 2005...

384

Teleseismic-Seismic Monitoring At Valles Caldera - Sulphur Springs...  

Open Energy Info (EERE)

Lee Steck (1997) Heterogeneous Structure Around the Jemez Volcanic Field, New Mexico, USA, as Inferred from the Envelope Inversion of Active-Experiment Seismic Data Additional...

385

An experimental and numerical study of wind turbine seismic behavior  

E-Print Network [OSTI]

of Seismic and Wind Load Combinations 8.5.2 Extremeextrapolation for wind turbine extreme loads. Wind Energy,extrapolation for wind turbine extreme loads. 46th AIAA

Prowell, I.

2011-01-01T23:59:59.000Z

386

Tau-p analysis of large-offset seismic data from the PASSCAL Ouachita Seismic Experiment  

E-Print Network [OSTI]

Kansas (Brown et al, 1983). Interpretations of depth (in km) to Moho along seismic refraction lines from: 1, Cram (1961); 2, Dorman, et al (1972); 3, Ewing et al (1955); 4, Hales et al (1970)l 5, McCamey and hleyer (1966); 6, Mitchell and Landisman... Kansas (Brown et al, 1983). Interpretations of depth (in km) to Moho along seismic refraction lines from: 1, Cram (1961); 2, Dorman, et al (1972); 3, Ewing et al (1955); 4, Hales et al (1970)l 5, McCamey and hleyer (1966); 6, Mitchell and Landisman...

Lizarralde, Daniel

2012-06-07T23:59:59.000Z

387

SciTech Connect: Proceedings of the 23rd Seismic Research Symposium...  

Office of Scientific and Technical Information (OSTI)

3rd Seismic Research Symposium: Worldwide Monitoring of Nuclear Explosions Citation Details In-Document Search Title: Proceedings of the 23rd Seismic Research Symposium: Worldwide...

388

SciTech Connect: Proceedings of the 25th Seismic Research Review...  

Office of Scientific and Technical Information (OSTI)

5th Seismic Research Review -- Nuclear Explosion Monitoring: Building the Knowledge Base Citation Details In-Document Search Title: Proceedings of the 25th Seismic Research Review...

389

SciTech Connect: Proceedings of the 26th Seismic Research Review...  

Office of Scientific and Technical Information (OSTI)

6th Seismic Research Review: Trends in Nuclear Explosion Monitoring Citation Details In-Document Search Title: Proceedings of the 26th Seismic Research Review: Trends in Nuclear...

390

SciTech Connect: Proceedings of the 24th Seismic Research Review...  

Office of Scientific and Technical Information (OSTI)

4th Seismic Research Review: Nuclear Explosion Monitoring: Innovation and Integration Citation Details In-Document Search Title: Proceedings of the 24th Seismic Research Review:...

391

SciTech Connect: Proceedings of the 27th Seismic Research Review...  

Office of Scientific and Technical Information (OSTI)

7th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies Citation Details In-Document Search Title: Proceedings of the 27th Seismic Research Review:...

392

SciTech Connect: Proceedings of the 21st Seismic Research Symposium...  

Office of Scientific and Technical Information (OSTI)

1st Seismic Research Symposium: Technologies for Monitoring The Comprehensive Nuclear Test-Ban Treaty Citation Details In-Document Search Title: Proceedings of the 21st Seismic...

393

A direct displacement-based design of low-rise seismic resistant steel moment frames  

E-Print Network [OSTI]

Lateral Force Distribution for Seismic Design StructuralLateral Force Distribution for Seismic Design . 169stiffness distribution are additional design choices that

Harris, John L.

2006-01-01T23:59:59.000Z

394

Characterization of fracture reservoirs using static and dynamic data: From sonic and 3D seismic to permeability distribution. Annual report, March 1, 1996--February 28, 1997  

SciTech Connect (OSTI)

In low porosity, low permeability zones, natural fractures are the primary source of permeability which affect both production and injection of fluids. The open fractures do not contribute much to porosity, but they provide an increased drainage network to any porosity. They also may connect the borehole to remote zones of better reservoir characteristics. An important approach to characterizing the fracture orientation and fracture permeability of reservoir formations is one based on the effects of such conditions on the propagation of acoustic and seismic waves in the rock. The project is a study directed toward the evaluation of acoustic logging and 3D-seismic measurement techniques as well as fluid flow and transport methods for mapping permeability anisotropy and other petrophysical parameters for the understanding of the reservoir fracture systems and associated fluid dynamics. The principal application of these measurement techniques and methods is to identify and investigate the propagation characteristics of acoustic and seismic waves in the Twin Creek hydrocarbon reservoir owned by Union Pacific Resources (UPR) and to characterize the fracture permeability distribution using production data. This site is located in the overthrust area of Utah and Wyoming. UPR drilled six horizontal wells, and presently UPR has two rigs running with many established drill hole locations. In addition, there are numerous vertical wells that exist in the area as well as 3D seismic surveys. Each horizontal well contains full FMS logs and MWD logs, gamma logs, etc.

Parra, J.O.; Collier, H.A.; Owen, T.E. [and others

1997-06-01T23:59:59.000Z

395

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Michigan Electricity Profile 2010 Michigan profile Michigan Electricity Profile 2010 Michigan profile Table 1. 2010 Summary Statistics (Michigan) Item Value U.S. Rank NERC Region(s) MRO/RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 29,831 11 Electric Utilities 21,639 10 Independent Power Producers & Combined Heat and Power 8,192 14 Net Generation (megawatthours) 111,551,371 13 Electric Utilities 89,666,874 13 Independent Power Producers & Combined Heat and Power 21,884,497 16 Emissions (thousand metric tons) Sulfur Dioxide 254 6 Nitrogen Oxide 89 6 Carbon Dioxide 74,480 11 Sulfur Dioxide (lbs/MWh) 5.0 8 Nitrogen Oxide (lbs/MWh) 1.8 19 Carbon Dioxide (lbs/MWh) 1,472 20 Total Retail Sales (megawatthours) 103,649,219 12 Full Service Provider Sales (megawatthours) 94,565,247 11

396

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Ohio Electricity Profile 2010 Ohio profile Ohio Electricity Profile 2010 Ohio profile Table 1. 2010 Summary Statistics (Ohio) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 33,071 8 Electric Utilities 20,179 13 Independent Power Producers & Combined Heat and Power 12,892 7 Net Generation (megawatthours) 143,598,337 7 Electric Utilities 92,198,096 10 Independent Power Producers & Combined Heat and Power 51,400,241 7 Emissions (thousand metric tons) Sulfur Dioxide 610 1 Nitrogen Oxide 122 3 Carbon Dioxide 121,964 4 Sulfur Dioxide (lbs/MWh) 9.4 1 Nitrogen Oxide (lbs/MWh) 1.9 17 Carbon Dioxide (lbs/MWh) 1,872 8 Total Retail Sales (megawatthours) 154,145,418 4 Full Service Provider Sales (megawatthours) 105,329,797 9

397

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Wisconsin Electricity Profile 2010 Wisconsin profile Wisconsin Electricity Profile 2010 Wisconsin profile Table 1. 2010 Summary Statistics (Wisconsin) Item Value U.S. Rank NERC Region(s) MRO/RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 17,836 23 Electric Utilities 13,098 19 Independent Power Producers & Combined Heat and Power 4,738 20 Net Generation (megawatthours) 64,314,067 24 Electric Utilities 45,579,970 22 Independent Power Producers & Combined Heat and Power 18,734,097 18 Emissions (thousand metric tons) Sulfur Dioxide 145 12 Nitrogen Oxide 49 25 Carbon Dioxide 47,238 19 Sulfur Dioxide (lbs/MWh) 5.0 9 Nitrogen Oxide (lbs/MWh) 1.7 20 Carbon Dioxide (lbs/MWh) 1,619 16 Total Retail Sales (megawatthours) 68,752,417 22 Full Service Provider Sales (megawatthours) 68,752,417 21

398

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Florida Electricity Profile 2010 Florida profile Florida Electricity Profile 2010 Florida profile Table 1. 2010 Summary Statistics (Florida) Item Value U.S. Rank NERC Region(s) FRCC/SERC Primary Energy Source Gas Net Summer Capacity (megawatts) 59,147 3 Electric Utilities 50,853 1 Independent Power Producers & Combined Heat and Power 8,294 13 Net Generation (megawatthours) 229,095,935 3 Electric Utilities 206,062,185 1 Independent Power Producers & Combined Heat and Power 23,033,750 15 Emissions (thousand metric tons) Sulfur Dioxide 160 11 Nitrogen Oxide 101 5 Carbon Dioxide 123,811 2 Sulfur Dioxide (lbs/MWh) 1.5 37 Nitrogen Oxide (lbs/MWh) 1.0 35 Carbon Dioxide (lbs/MWh) 1,191 31 Total Retail Sales (megawatthours) 231,209,614 3 Full Service Provider Sales (megawatthours) 231,209,614 3

399

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Arizona Electricity Profile 2010 Arizona profile Arizona Electricity Profile 2010 Arizona profile Table 1. 2010 Summary Statistics (Arizona) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 26,392 15 Electric Utilities 20,115 14 Independent Power Producers & Combined Heat and Power 6,277 16 Net Generation (megawatthours) 111,750,957 12 Electric Utilities 91,232,664 11 Independent Power Producers & Combined Heat and Power 20,518,293 17 Emissions (thousand metric tons) Sulfur Dioxide 33 33 Nitrogen Oxide 57 17 Carbon Dioxide 55,683 15 Sulfur Dioxide (lbs/MWh) 0.7 43 Nitrogen Oxide (lbs/MWh) 1.1 31 Carbon Dioxide (lbs/MWh) 1,099 35 Total Retail Sales (megawatthours) 72,831,737 21 Full Service Provider Sales (megawatthours) 72,831,737 20

400

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Kentucky Electricity Profile 2010 Kentucky profile Kentucky Electricity Profile 2010 Kentucky profile Table 1. 2010 Summary Statistics (Kentucky) Item Value U.S. Rank NERC Region(s) RFC/SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 20,453 21 Electric Utilities 18,945 16 Independent Power Producers & Combined Heat and Power 1,507 38 Net Generation (megawatthours) 98,217,658 17 Electric Utilities 97,472,144 7 Independent Power Producers & Combined Heat and Power 745,514 48 Emissions (thousand metric tons) Sulfur Dioxide 249 7 Nitrogen Oxide 85 7 Carbon Dioxide 93,160 7 Sulfur Dioxide (lbs/MWh) 5.6 5 Nitrogen Oxide (lbs/MWh) 1.9 15 Carbon Dioxide (lbs/MWh) 2,091 3 Total Retail Sales (megawatthours) 93,569,426 14 Full Service Provider Sales (megawatthours) 93,569,426 12

Note: This page contains sample records for the topic "vertical seismic profile" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Electricity Profile 2010 Alabama profile Alabama Electricity Profile 2010 Alabama profile Table 1. 2010 Summary Statistics (Alabama) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 32,417 9 Electric Utilities 23,642 7 Independent Power Producers & Combined Heat and Power 8,775 12 Net Generation (megawatthours) 152,150,512 6 Electric Utilities 122,766,490 2 Independent Power Producers & Combined Heat and Power 29,384,022 12 Emissions (thousand metric tons) Sulfur Dioxide 218 10 Nitrogen Oxide 66 14 Carbon Dioxide 79,375 9 Sulfur Dioxide (lbs/MWh) 3.2 18 Nitrogen Oxide (lbs/MWh) 1.0 36 Carbon Dioxide (lbs/MWh) 1,150 33 Total Retail Sales (megawatthours) 90,862,645 15 Full Service Provider Sales (megawatthours) 90,862,645 13

402

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Arkansas Electricity Profile 2010 Arkansas profile Arkansas Electricity Profile 2010 Arkansas profile Table 1. 2010 Summary Statistics (Arkansas) Item Value U.S. Rank NERC Region(s) SERC/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 15,981 25 Electric Utilities 11,488 23 Independent Power Producers & Combined Heat and Power 4,493 24 Net Generation (megawatthours) 61,000,185 25 Electric Utilities 47,108,063 20 Independent Power Producers & Combined Heat and Power 13,892,122 27 Emissions (thousand metric tons) Sulfur Dioxide 74 22 Nitrogen Oxide 40 29 Carbon Dioxide 34,018 28 Sulfur Dioxide (lbs/MWh) 2.7 22 Nitrogen Oxide (lbs/MWh) 1.5 24 Carbon Dioxide (lbs/MWh) 1,229 29 Total Retail Sales (megawatthours) 48,194,285 29 Full Service Provider Sales (megawatthours) 48,194,285 27

403

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Maryland Electricity Profile 2010 Maryland profile Maryland Electricity Profile 2010 Maryland profile Table 1. 2010 Summary Statistics (Maryland) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 12,516 33 Electric Utilities 80 47 Independent Power Producers & Combined Heat and Power 12,436 9 Net Generation (megawatthours) 43,607,264 33 Electric Utilities 2,996 48 Independent Power Producers & Combined Heat and Power 43,604,268 9 Emissions (thousand metric tons) Sulfur Dioxide 45 28 Nitrogen Oxide 25 34 Carbon Dioxide 26,369 33 Sulfur Dioxide (lbs/MWh) 2.3 29 Nitrogen Oxide (lbs/MWh) 1.3 29 Carbon Dioxide (lbs/MWh) 1,333 24 Total Retail Sales (megawatthours) 65,335,498 24 Full Service Provider Sales (megawatthours) 36,082,473 31

404

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Hawaii Electricity Profile 2010 Hawaii profile Hawaii Electricity Profile 2010 Hawaii profile Table 1. 2010 Summary Statistics (Hawaii) Item Value U.S. Rank NERC Region(s) -- Primary Energy Source Petroleum Net Summer Capacity (megawatts) 2,536 47 Electric Utilities 1,828 40 Independent Power Producers & Combined Heat and Power 708 47 Net Generation (megawatthours) 10,836,036 45 Electric Utilities 6,416,068 38 Independent Power Producers & Combined Heat and Power 4,419,968 38 Emissions (thousand metric tons) Sulfur Dioxide 17 36 Nitrogen Oxide 21 36 Carbon Dioxide 8,287 42 Sulfur Dioxide (lbs/MWh) 3.4 16 Nitrogen Oxide (lbs/MWh) 4.3 2 Carbon Dioxide (lbs/MWh) 1,686 13 Total Retail Sales (megawatthours) 10,016,509 48 Full Service Provider Sales (megawatthours) 10,016,509 44

405

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Mexico Electricity Profile 2010 New Mexico profile Mexico Electricity Profile 2010 New Mexico profile Table 1. 2010 Summary Statistics (New Mexico) Item Value U.S. Rank NERC Region(s) SPP/WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 8,130 36 Electric Utilities 6,345 33 Independent Power Producers & Combined Heat and Power 1,785 36 Net Generation (megawatthours) 36,251,542 37 Electric Utilities 30,848,406 33 Independent Power Producers & Combined Heat and Power 5,403,136 37 Emissions (thousand metric tons) Sulfur Dioxide 15 38 Nitrogen Oxide 56 19 Carbon Dioxide 29,379 31 Sulfur Dioxide (lbs/MWh) 0.9 42 Nitrogen Oxide (lbs/MWh) 3.4 5 Carbon Dioxide (lbs/MWh) 1,787 11 Total Retail Sales (megawatthours) 22,428,344 39 Full Service Provider Sales (megawatthours) 22,428,344 38

406

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Hampshire Electricity Profile 2010 New Hampshire profile Hampshire Electricity Profile 2010 New Hampshire profile Table 1. 2010 Summary Statistics (New Hampshire) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 4,180 43 Electric Utilities 1,132 41 Independent Power Producers & Combined Heat and Power 3,048 32 Net Generation (megawatthours) 22,195,912 42 Electric Utilities 3,979,333 41 Independent Power Producers & Combined Heat and Power 18,216,579 19 Emissions (thousand metric tons) Sulfur Dioxide 34 32 Nitrogen Oxide 6 46 Carbon Dioxide 5,551 43 Sulfur Dioxide (lbs/MWh) 3.4 17 Nitrogen Oxide (lbs/MWh) 0.6 46 Carbon Dioxide (lbs/MWh) 551 47 Total Retail Sales (megawatthours) 10,890,074 47 Full Service Provider Sales (megawatthours) 7,712,938 45

407

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Oregon Electricity Profile 2010 Oregon profile Oregon Electricity Profile 2010 Oregon profile Table 1. 2010 Summary Statistics (Oregon) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 14,261 29 Electric Utilities 10,846 27 Independent Power Producers & Combined Heat and Power 3,415 28 Net Generation (megawatthours) 55,126,999 27 Electric Utilities 41,142,684 26 Independent Power Producers & Combined Heat and Power 13,984,316 26 Emissions (thousand metric tons) Sulfur Dioxide 16 37 Nitrogen Oxide 15 42 Carbon Dioxide 10,094 40 Sulfur Dioxide (lbs/MWh) 0.6 44 Nitrogen Oxide (lbs/MWh) 0.6 47 Carbon Dioxide (lbs/MWh) 404 48 Total Retail Sales (megawatthours) 46,025,945 30 Full Service Provider Sales (megawatthours) 44,525,865 29

408

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Maine Electricity Profile 2010 Maine profile Maine Electricity Profile 2010 Maine profile Table 1. 2010 Summary Statistics (Maine) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Gas Net Summer Capacity (megawatts) 4,430 42 Electric Utilities 19 49 Independent Power Producers & Combined Heat and Power 4,410 25 Net Generation (megawatthours) 17,018,660 43 Electric Utilities 1,759 49 Independent Power Producers & Combined Heat and Power 17,016,901 22 Emissions (thousand metric tons) Sulfur Dioxide 12 42 Nitrogen Oxide 8 44 Carbon Dioxide 4,948 44 Sulfur Dioxide (lbs/MWh) 1.6 36 Nitrogen Oxide (lbs/MWh) 1.1 33 Carbon Dioxide (lbs/MWh) 641 44 Total Retail Sales (megawatthours) 11,531,568 45 Full Service Provider Sales (megawatthours) 151,588 51 Energy-Only Provider Sales (megawatthours) 11,379,980 10

409

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Mississippi Electricity Profile 2010 Mississippi profile Mississippi Electricity Profile 2010 Mississippi profile Table 1. 2010 Summary Statistics (Mississippi) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Gas Net Summer Capacity (megawatts) 15,691 26 Electric Utilities 10,858 26 Independent Power Producers & Combined Heat and Power 4,833 18 Net Generation (megawatthours) 54,487,260 28 Electric Utilities 40,841,436 27 Independent Power Producers & Combined Heat and Power 13,645,824 28 Emissions (thousand metric tons) Sulfur Dioxide 59 26 Nitrogen Oxide 31 32 Carbon Dioxide 26,845 32 Sulfur Dioxide (lbs/MWh) 2.4 26 Nitrogen Oxide (lbs/MWh) 1.2 30 Carbon Dioxide (lbs/MWh) 1,086 36 Total Retail Sales (megawatthours) 49,687,166 28 Full Service Provider Sales (megawatthours) 49,687,166 26

410

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Washington Electricity Profile 2010 Washington profile Washington Electricity Profile 2010 Washington profile Table 1. 2010 Summary Statistics (Washington) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 30,478 10 Electric Utilities 26,498 5 Independent Power Producers & Combined Heat and Power 3,979 26 Net Generation (megawatthours) 103,472,729 15 Electric Utilities 88,057,219 14 Independent Power Producers & Combined Heat and Power 15,415,510 23 Emissions (thousand metric tons) Sulfur Dioxide 14 39 Nitrogen Oxide 21 37 Carbon Dioxide 13,984 39 Sulfur Dioxide (lbs/MWh) 0.3 47 Nitrogen Oxide (lbs/MWh) 0.4 50 Carbon Dioxide (lbs/MWh) 298 49 Total Retail Sales (megawatthours) 90,379,970 16 Full Service Provider Sales (megawatthours) 88,116,958 14

411

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Mexico Electricity Profile 2010 New Mexico profile Mexico Electricity Profile 2010 New Mexico profile Table 1. 2010 Summary Statistics (New Mexico) Item Value U.S. Rank NERC Region(s) SPP/WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 8,130 36 Electric Utilities 6,345 33 Independent Power Producers & Combined Heat and Power 1,785 36 Net Generation (megawatthours) 36,251,542 37 Electric Utilities 30,848,406 33 Independent Power Producers & Combined Heat and Power 5,403,136 37 Emissions (thousand metric tons) Sulfur Dioxide 15 38 Nitrogen Oxide 56 19 Carbon Dioxide 29,379 31 Sulfur Dioxide (lbs/MWh) 0.9 42 Nitrogen Oxide (lbs/MWh) 3.4 5 Carbon Dioxide (lbs/MWh) 1,787 11 Total Retail Sales (megawatthours) 22,428,344 39 Full Service Provider Sales (megawatthours) 22,428,344 38

412

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Delaware Electricity Profile 2010 Delaware profile Delaware Electricity Profile 2010 Delaware profile Table 1. 2010 Summary Statistics (Delaware) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Gas Net Summer Capacity (megawatts) 3,389 46 Electric Utilities 55 48 Independent Power Producers & Combined Heat and Power 3,334 29 Net Generation (megawatthours) 5,627,645 50 Electric Utilities 30,059 46 Independent Power Producers & Combined Heat and Power 5,597,586 36 Emissions (thousand metric tons) Sulfur Dioxide 13 41 Nitrogen Oxide 5 47 Carbon Dioxide 4,187 45 Sulfur Dioxide (lbs/MWh) 5.2 7 Nitrogen Oxide (lbs/MWh) 1.9 16 Carbon Dioxide (lbs/MWh) 1,640 15 Total Retail Sales (megawatthours) 11,605,932 44 Full Service Provider Sales (megawatthours) 7,582,539 46

413

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Ohio Electricity Profile 2010 Ohio profile Ohio Electricity Profile 2010 Ohio profile Table 1. 2010 Summary Statistics (Ohio) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 33,071 8 Electric Utilities 20,179 13 Independent Power Producers & Combined Heat and Power 12,892 7 Net Generation (megawatthours) 143,598,337 7 Electric Utilities 92,198,096 10 Independent Power Producers & Combined Heat and Power 51,400,241 7 Emissions (thousand metric tons) Sulfur Dioxide 610 1 Nitrogen Oxide 122 3 Carbon Dioxide 121,964 4 Sulfur Dioxide (lbs/MWh) 9.4 1 Nitrogen Oxide (lbs/MWh) 1.9 17 Carbon Dioxide (lbs/MWh) 1,872 8 Total Retail Sales (megawatthours) 154,145,418 4 Full Service Provider Sales (megawatthours) 105,329,797 9

414

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Arkansas Electricity Profile 2010 Arkansas profile Arkansas Electricity Profile 2010 Arkansas profile Table 1. 2010 Summary Statistics (Arkansas) Item Value U.S. Rank NERC Region(s) SERC/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 15,981 25 Electric Utilities 11,488 23 Independent Power Producers & Combined Heat and Power 4,493 24 Net Generation (megawatthours) 61,000,185 25 Electric Utilities 47,108,063 20 Independent Power Producers & Combined Heat and Power 13,892,122 27 Emissions (thousand metric tons) Sulfur Dioxide 74 22 Nitrogen Oxide 40 29 Carbon Dioxide 34,018 28 Sulfur Dioxide (lbs/MWh) 2.7 22 Nitrogen Oxide (lbs/MWh) 1.5 24 Carbon Dioxide (lbs/MWh) 1,229 29 Total Retail Sales (megawatthours) 48,194,285 29 Full Service Provider Sales (megawatthours) 48,194,285 27

415

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Oklahoma Electricity Profile 2010 Oklahoma profile Oklahoma Electricity Profile 2010 Oklahoma profile Table 1. 2010 Summary Statistics (Oklahoma) Item Value U.S. Rank NERC Region(s) SPP Primary Energy Source Gas Net Summer Capacity (megawatts) 21,022 20 Electric Utilities 16,015 18 Independent Power Producers & Combined Heat and Power 5,006 17 Net Generation (megawatthours) 72,250,733 22 Electric Utilities 57,421,195 17 Independent Power Producers & Combined Heat and Power 14,829,538 24 Emissions (thousand metric tons) Sulfur Dioxide 85 21 Nitrogen Oxide 71 12 Carbon Dioxide 49,536 17 Sulfur Dioxide (lbs/MWh) 2.6 24 Nitrogen Oxide (lbs/MWh) 2.2 11 Carbon Dioxide (lbs/MWh) 1,512 17 Total Retail Sales (megawatthours) 57,845,980 25 Full Service Provider Sales (megawatthours) 57,845,980 23

416

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Iowa Electricity Profile 2010 Iowa profile Iowa Electricity Profile 2010 Iowa profile Table 1. 2010 Summary Statistics (Iowa) Item Value U.S. Rank NERC Region(s) MRO/SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 14,592 28 Electric Utilities 11,282 24 Independent Power Producers & Combined Heat and Power 3,310 30 Net Generation (megawatthours) 57,508,721 26 Electric Utilities 46,188,988 21 Independent Power Producers & Combined Heat and Power 11,319,733 30 Emissions (thousand metric tons) Sulfur Dioxide 108 18 Nitrogen Oxide 50 22 Carbon Dioxide 47,211 20 Sulfur Dioxide (lbs/MWh) 4.1 11 Nitrogen Oxide (lbs/MWh) 1.9 14 Carbon Dioxide (lbs/MWh) 1,810 10 Total Retail Sales (megawatthours) 45,445,269 31 Full Service Provider Sales (megawatthours) 45,445,269 28

417

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

West Virginia Electricity Profile 2010 West Virginia profile West Virginia Electricity Profile 2010 West Virginia profile Table 1. 2010 Summary Statistics (West Virginia) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 16,495 24 Electric Utilities 11,719 21 Independent Power Producers & Combined Heat and Power 4,775 19 Net Generation (megawatthours) 80,788,947 20 Electric Utilities 56,719,755 18 Independent Power Producers & Combined Heat and Power 24,069,192 13 Emissions (thousand metric tons) Sulfur Dioxide 105 20 Nitrogen Oxide 49 23 Carbon Dioxide 74,283 12 Sulfur Dioxide (lbs/MWh) 2.9 20 Nitrogen Oxide (lbs/MWh) 1.3 25 Carbon Dioxide (lbs/MWh) 2,027 5 Total Retail Sales (megawatthours) 32,031,803 34 Full Service Provider Sales (megawatthours) 32,031,803 33

418

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Vermont Electricity Profile 2010 Vermont profile Vermont Electricity Profile 2010 Vermont profile Table 1. 2010 Summary Statistics (Vermont) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 1,128 50 Electric Utilities 260 45 Independent Power Producers & Combined Heat and Power 868 43 Net Generation (megawatthours) 6,619,990 49 Electric Utilities 720,853 44 Independent Power Producers & Combined Heat and Power 5,899,137 35 Emissions (thousand metric tons) Sulfur Dioxide * 51 Nitrogen Oxide 1 50 Carbon Dioxide 8 51 Sulfur Dioxide (lbs/MWh) * 51 Nitrogen Oxide (lbs/MWh) 0.2 51 Carbon Dioxide (lbs/MWh) 3 51 Total Retail Sales (megawatthours) 5,594,833 51 Full Service Provider Sales (megawatthours) 5,594,833 48 Direct Use (megawatthours) 19,806 47

419

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Mississippi Electricity Profile 2010 Mississippi profile Mississippi Electricity Profile 2010 Mississippi profile Table 1. 2010 Summary Statistics (Mississippi) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Gas Net Summer Capacity (megawatts) 15,691 26 Electric Utilities 10,858 26 Independent Power Producers & Combined Heat and Power 4,833 18 Net Generation (megawatthours) 54,487,260 28 Electric Utilities 40,841,436 27 Independent Power Producers & Combined Heat and Power 13,645,824 28 Emissions (thousand metric tons) Sulfur Dioxide 59 26 Nitrogen Oxide 31 32 Carbon Dioxide 26,845 32 Sulfur Dioxide (lbs/MWh) 2.4 26 Nitrogen Oxide (lbs/MWh) 1.2 30 Carbon Dioxide (lbs/MWh) 1,086 36 Total Retail Sales (megawatthours) 49,687,166 28 Full Service Provider Sales (megawatthours) 49,687,166 26

420

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Wisconsin Electricity Profile 2010 Wisconsin profile Wisconsin Electricity Profile 2010 Wisconsin profile Table 1. 2010 Summary Statistics (Wisconsin) Item Value U.S. Rank NERC Region(s) MRO/RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 17,836 23 Electric Utilities 13,098 19 Independent Power Producers & Combined Heat and Power 4,738 20 Net Generation (megawatthours) 64,314,067 24 Electric Utilities 45,579,970 22 Independent Power Producers & Combined Heat and Power 18,734,097 18 Emissions (thousand metric tons) Sulfur Dioxide 145 12 Nitrogen Oxide 49 25 Carbon Dioxide 47,238 19 Sulfur Dioxide (lbs/MWh) 5.0 9 Nitrogen Oxide (lbs/MWh) 1.7 20 Carbon Dioxide (lbs/MWh) 1,619 16 Total Retail Sales (megawatthours) 68,752,417 22 Full Service Provider Sales (megawatthours) 68,752,417 21

Note: This page contains sample records for the topic "vertical seismic profile" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Colorado Electricity Profile 2010 Colorado profile Colorado Electricity Profile 2010 Colorado profile Table 1. 2010 Summary Statistics (Colorado) Item Value U.S. Rank NERC Region(s) RFC/WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 13,777 30 Electric Utilities 9,114 28 Independent Power Producers & Combined Heat and Power 4,662 22 Net Generation (megawatthours) 50,720,792 30 Electric Utilities 39,584,166 28 Independent Power Producers & Combined Heat and Power 11,136,626 31 Emissions (thousand metric tons) Sulfur Dioxide 45 29 Nitrogen Oxide 55 20 Carbon Dioxide 40,499 24 Sulfur Dioxide (lbs/MWh) 2.0 32 Nitrogen Oxide (lbs/MWh) 2.4 10 Carbon Dioxide (lbs/MWh) 1,760 12 Total Retail Sales (megawatthours) 52,917,786 27 Full Service Provider Sales (megawatthours) 52,917,786 24

422

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Hampshire Electricity Profile 2010 New Hampshire profile Hampshire Electricity Profile 2010 New Hampshire profile Table 1. 2010 Summary Statistics (New Hampshire) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 4,180 43 Electric Utilities 1,132 41 Independent Power Producers & Combined Heat and Power 3,048 32 Net Generation (megawatthours) 22,195,912 42 Electric Utilities 3,979,333 41 Independent Power Producers & Combined Heat and Power 18,216,579 19 Emissions (thousand metric tons) Sulfur Dioxide 34 32 Nitrogen Oxide 6 46 Carbon Dioxide 5,551 43 Sulfur Dioxide (lbs/MWh) 3.4 17 Nitrogen Oxide (lbs/MWh) 0.6 46 Carbon Dioxide (lbs/MWh) 551 47 Total Retail Sales (megawatthours) 10,890,074 47 Full Service Provider Sales (megawatthours) 7,712,938 45

423

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Carolina Electricity Profile 2010 North Carolina profile Carolina Electricity Profile 2010 North Carolina profile Table 1. 2010 Summary Statistics (North Carolina) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 27,674 12 Electric Utilities 25,553 6 Independent Power Producers & Combined Heat and Power 2,121 34 Net Generation (megawatthours) 128,678,483 10 Electric Utilities 121,251,138 3 Independent Power Producers & Combined Heat and Power 7,427,345 34 Emissions (thousand metric tons) Sulfur Dioxide 131 14 Nitrogen Oxide 57 16 Carbon Dioxide 73,241 13 Sulfur Dioxide (lbs/MWh) 2.2 31 Nitrogen Oxide (lbs/MWh) 1.0 34 Carbon Dioxide (lbs/MWh) 1,255 28 Total Retail Sales (megawatthours) 136,414,947 9 Full Service Provider Sales (megawatthours) 136,414,947 5

424

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Nevada Electricity Profile 2010 Nevada profile Nevada Electricity Profile 2010 Nevada profile Table 1. 2010 Summary Statistics (Nevada) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Gas Net Summer Capacity (megawatts) 11,421 34 Electric Utilities 8,713 29 Independent Power Producers & Combined Heat and Power 2,708 33 Net Generation (megawatthours) 35,146,248 38 Electric Utilities 23,710,917 34 Independent Power Producers & Combined Heat and Power 11,435,331 29 Emissions (thousand metric tons) Sulfur Dioxide 7 44 Nitrogen Oxide 15 40 Carbon Dioxide 17,020 38 Sulfur Dioxide (lbs/MWh) 0.4 46 Nitrogen Oxide (lbs/MWh) 1.0 37 Carbon Dioxide (lbs/MWh) 1,068 37 Total Retail Sales (megawatthours) 33,772,595 33 Full Service Provider Sales (megawatthours) 32,348,879 32

425

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Kansas Electricity Profile 2010 Kansas profile Kansas Electricity Profile 2010 Kansas profile Table 1. 2010 Summary Statistics (Kansas) Item Value U.S. Rank NERC Region(s) MRO/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 12,543 32 Electric Utilities 11,732 20 Independent Power Producers & Combined Heat and Power 812 45 Net Generation (megawatthours) 47,923,762 32 Electric Utilities 45,270,047 24 Independent Power Producers & Combined Heat and Power 2,653,716 44 Emissions (thousand metric tons) Sulfur Dioxide 41 30 Nitrogen Oxide 46 26 Carbon Dioxide 36,321 26 Sulfur Dioxide (lbs/MWh) 1.9 33 Nitrogen Oxide (lbs/MWh) 2.1 13 Carbon Dioxide (lbs/MWh) 1,671 14 Total Retail Sales (megawatthours) 40,420,675 32 Full Service Provider Sales (megawatthours) 40,420,675 30

426

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Nebraska Electricity Profile 2010 Nebraska profile Nebraska Electricity Profile 2010 Nebraska profile Table 1. 2010 Summary Statistics (Nebraska) Item Value U.S. Rank NERC Region(s) MRO/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 7,857 38 Electric Utilities 7,647 30 Independent Power Producers & Combined Heat and Power 210 50 Net Generation (megawatthours) 36,630,006 36 Electric Utilities 36,242,921 30 Independent Power Producers & Combined Heat and Power 387,085 50 Emissions (thousand metric tons) Sulfur Dioxide 65 24 Nitrogen Oxide 40 30 Carbon Dioxide 24,461 34 Sulfur Dioxide (lbs/MWh) 3.9 12 Nitrogen Oxide (lbs/MWh) 2.4 9 Carbon Dioxide (lbs/MWh) 1,472 19 Total Retail Sales (megawatthours) 29,849,460 36 Full Service Provider Sales (megawatthours) 29,849,460 35

427

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Missouri Electricity Profile 2010 Missouri profile Missouri Electricity Profile 2010 Missouri profile Table 1. 2010 Summary Statistics (Missouri) Item Value U.S. Rank NERC Region(s) SERC/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 21,739 18 Electric Utilities 20,360 12 Independent Power Producers & Combined Heat and Power 1,378 39 Net Generation (megawatthours) 92,312,989 18 Electric Utilities 90,176,805 12 Independent Power Producers & Combined Heat and Power 2,136,184 46 Emissions (thousand metric tons) Sulfur Dioxide 233 8 Nitrogen Oxide 56 18 Carbon Dioxide 78,815 10 Sulfur Dioxide (lbs/MWh) 5.6 6 Nitrogen Oxide (lbs/MWh) 1.3 26 Carbon Dioxide (lbs/MWh) 1,882 7 Total Retail Sales (megawatthours) 86,085,117 17 Full Service Provider Sales (megawatthours) 86,085,117 15

428

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Dakota Electricity Profile 2010 North Dakota profile Dakota Electricity Profile 2010 North Dakota profile Table 1. 2010 Summary Statistics (North Dakota) Item Value U.S. Rank NERC Region(s) MRO Primary Energy Source Coal Net Summer Capacity (megawatts) 6,188 40 Electric Utilities 4,912 34 Independent Power Producers & Combined Heat and Power 1,276 40 Net Generation (megawatthours) 34,739,542 39 Electric Utilities 31,343,796 32 Independent Power Producers & Combined Heat and Power 3,395,746 41 Emissions (thousand metric tons) Sulfur Dioxide 116 17 Nitrogen Oxide 52 21 Carbon Dioxide 31,064 30 Sulfur Dioxide (lbs/MWh) 7.3 3 Nitrogen Oxide (lbs/MWh) 3.3 6 Carbon Dioxide (lbs/MWh) 1,971 6 Total Retail Sales (megawatthours) 12,956,263 42 Full Service Provider Sales (megawatthours) 12,956,263 41

429

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Minnesota Electricity Profile 2010 Minnesota profile Minnesota Electricity Profile 2010 Minnesota profile Table 1. 2010 Summary Statistics (Minnesota) Item Value U.S. Rank NERC Region(s) MRO Primary Energy Source Coal Net Summer Capacity (megawatts) 14,715 27 Electric Utilities 11,547 22 Independent Power Producers & Combined Heat and Power 3,168 31 Net Generation (megawatthours) 53,670,227 29 Electric Utilities 45,428,599 23 Independent Power Producers & Combined Heat and Power 8,241,628 32 Emissions (thousand metric tons) Sulfur Dioxide 57 27 Nitrogen Oxide 44 27 Carbon Dioxide 32,946 29 Sulfur Dioxide (lbs/MWh) 2.3 27 Nitrogen Oxide (lbs/MWh) 1.8 18 Carbon Dioxide (lbs/MWh) 1,353 21 Total Retail Sales (megawatthours) 67,799,706 23 Full Service Provider Sales (megawatthours) 67,799,706 22

430

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Louisiana Electricity Profile 2010 Louisiana profile Louisiana Electricity Profile 2010 Louisiana profile Table 1. 2010 Summary Statistics (Louisiana) Item Value U.S. Rank NERC Region(s) SERC/SPP Primary Energy Source Gas Net Summer Capacity (megawatts) 26,744 14 Electric Utilities 16,471 17 Independent Power Producers & Combined Heat and Power 10,272 10 Net Generation (megawatthours) 102,884,940 16 Electric Utilities 51,680,682 19 Independent Power Producers & Combined Heat and Power 51,204,258 8 Emissions (thousand metric tons) Sulfur Dioxide 126 15 Nitrogen Oxide 75 11 Carbon Dioxide 58,706 14 Sulfur Dioxide (lbs/MWh) 2.7 21 Nitrogen Oxide (lbs/MWh) 1.6 21 Carbon Dioxide (lbs/MWh) 1,258 27 Total Retail Sales (megawatthours) 85,079,692 18 Full Service Provider Sales (megawatthours) 85,079,692 16

431

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Utah Electricity Profile 2010 Utah profile Utah Electricity Profile 2010 Utah profile Table 1. 2010 Summary Statistics (Utah) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 7,497 39 Electric Utilities 6,648 32 Independent Power Producers & Combined Heat and Power 849 44 Net Generation (megawatthours) 42,249,355 35 Electric Utilities 39,522,124 29 Independent Power Producers & Combined Heat and Power 2,727,231 43 Emissions (thousand metric tons) Sulfur Dioxide 25 34 Nitrogen Oxide 68 13 Carbon Dioxide 35,519 27 Sulfur Dioxide (lbs/MWh) 1.3 38 Nitrogen Oxide (lbs/MWh) 3.6 4 Carbon Dioxide (lbs/MWh) 1,853 9 Total Retail Sales (megawatthours) 28,044,001 37 Full Service Provider Sales (megawatthours) 28,044,001 36

432

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Virginia Electricity Profile 2010 Virginia profile Virginia Electricity Profile 2010 Virginia profile Table 1. 2010 Summary Statistics (Virginia) Item Value U.S. Rank NERC Region(s) RFC/SERC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 24,109 16 Electric Utilities 19,434 15 Independent Power Producers & Combined Heat and Power 4,676 21 Net Generation (megawatthours) 72,966,456 21 Electric Utilities 58,902,054 16 Independent Power Producers & Combined Heat and Power 14,064,402 25 Emissions (thousand metric tons) Sulfur Dioxide 120 16 Nitrogen Oxide 49 24 Carbon Dioxide 39,719 25 Sulfur Dioxide (lbs/MWh) 3.6 15 Nitrogen Oxide (lbs/MWh) 1.5 23 Carbon Dioxide (lbs/MWh) 1,200 30 Total Retail Sales (megawatthours) 113,806,135 10 Full Service Provider Sales (megawatthours) 113,806,135 7

433

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Dakota Electricity Profile 2010 North Dakota profile Dakota Electricity Profile 2010 North Dakota profile Table 1. 2010 Summary Statistics (North Dakota) Item Value U.S. Rank NERC Region(s) MRO Primary Energy Source Coal Net Summer Capacity (megawatts) 6,188 40 Electric Utilities 4,912 34 Independent Power Producers & Combined Heat and Power 1,276 40 Net Generation (megawatthours) 34,739,542 39 Electric Utilities 31,343,796 32 Independent Power Producers & Combined Heat and Power 3,395,746 41 Emissions (thousand metric tons) Sulfur Dioxide 116 17 Nitrogen Oxide 52 21 Carbon Dioxide 31,064 30 Sulfur Dioxide (lbs/MWh) 7.3 3 Nitrogen Oxide (lbs/MWh) 3.3 6 Carbon Dioxide (lbs/MWh) 1,971 6 Total Retail Sales (megawatthours) 12,956,263 42 Full Service Provider Sales (megawatthours) 12,956,263 41

434

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Alaska Electricity Profile 2010 Alaska profile Alaska Electricity Profile 2010 Alaska profile Table 1. 2010 Summary Statistics (Alaska) Item Value U.S. Rank NERC Region(s) -- Primary Energy Source Gas Net Summer Capacity (megawatts) 2,067 48 Electric Utilities 1,889 39 Independent Power Producers & Combined Heat and Power 178 51 Net Generation (megawatthours) 6,759,576 48 Electric Utilities 6,205,050 40 Independent Power Producers & Combined Heat and Power 554,526 49 Emissions (thousand metric tons) Sulfur Dioxide 3 46 Nitrogen Oxide 16 39 Carbon Dioxide 4,125 46 Sulfur Dioxide (lbs/MWh) 1.0 41 Nitrogen Oxide (lbs/MWh) 5.2 1 Carbon Dioxide (lbs/MWh) 1,345 23 Total Retail Sales (megawatthours) 6,247,038 50 Full Service Provider Sales (megawatthours) 6,247,038 47

435

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Minnesota Electricity Profile 2010 Minnesota profile Minnesota Electricity Profile 2010 Minnesota profile Table 1. 2010 Summary Statistics (Minnesota) Item Value U.S. Rank NERC Region(s) MRO Primary Energy Source Coal Net Summer Capacity (megawatts) 14,715 27 Electric Utilities 11,547 22 Independent Power Producers & Combined Heat and Power 3,168 31 Net Generation (megawatthours) 53,670,227 29 Electric Utilities 45,428,599 23 Independent Power Producers & Combined Heat and Power 8,241,628 32 Emissions (thousand metric tons) Sulfur Dioxide 57 27 Nitrogen Oxide 44 27 Carbon Dioxide 32,946 29 Sulfur Dioxide (lbs/MWh) 2.3 27 Nitrogen Oxide (lbs/MWh) 1.8 18 Carbon Dioxide (lbs/MWh) 1,353 21 Total Retail Sales (megawatthours) 67,799,706 23 Full Service Provider Sales (megawatthours) 67,799,706 22

436

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Maryland Electricity Profile 2010 Maryland profile Maryland Electricity Profile 2010 Maryland profile Table 1. 2010 Summary Statistics (Maryland) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 12,516 33 Electric Utilities 80 47 Independent Power Producers & Combined Heat and Power 12,436 9 Net Generation (megawatthours) 43,607,264 33 Electric Utilities 2,996 48 Independent Power Producers & Combined Heat and Power 43,604,268 9 Emissions (thousand metric tons) Sulfur Dioxide 45 28 Nitrogen Oxide 25 34 Carbon Dioxide 26,369 33 Sulfur Dioxide (lbs/MWh) 2.3 29 Nitrogen Oxide (lbs/MWh) 1.3 29 Carbon Dioxide (lbs/MWh) 1,333 24 Total Retail Sales (megawatthours) 65,335,498 24 Full Service Provider Sales (megawatthours) 36,082,473 31

437

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

York Electricity Profile 2010 New York profile York Electricity Profile 2010 New York profile Table 1. 2010 Summary Statistics (New York) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Gas Net Summer Capacity (megawatts) 39,357 6 Electric Utilities 11,032 25 Independent Power Producers & Combined Heat and Power 28,325 5 Net Generation (megawatthours) 136,961,654 9 Electric Utilities 34,633,335 31 Independent Power Producers & Combined Heat and Power 102,328,319 5 Emissions (thousand metric tons) Sulfur Dioxide 62 25 Nitrogen Oxide 44 28 Carbon Dioxide 41,584 22 Sulfur Dioxide (lbs/MWh) 1.0 40 Nitrogen Oxide (lbs/MWh) 0.7 44 Carbon Dioxide (lbs/MWh) 669 42 Total Retail Sales (megawatthours) 144,623,573 7 Full Service Provider Sales (megawatthours) 79,119,769 18

438

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Carolina Electricity Profile 2010 North Carolina profile Carolina Electricity Profile 2010 North Carolina profile Table 1. 2010 Summary Statistics (North Carolina) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 27,674 12 Electric Utilities 25,553 6 Independent Power Producers & Combined Heat and Power 2,121 34 Net Generation (megawatthours) 128,678,483 10 Electric Utilities 121,251,138 3 Independent Power Producers & Combined Heat and Power 7,427,345 34 Emissions (thousand metric tons) Sulfur Dioxide 131 14 Nitrogen Oxide 57 16 Carbon Dioxide 73,241 13 Sulfur Dioxide (lbs/MWh) 2.2 31 Nitrogen Oxide (lbs/MWh) 1.0 34 Carbon Dioxide (lbs/MWh) 1,255 28 Total Retail Sales (megawatthours) 136,414,947 9 Full Service Provider Sales (megawatthours) 136,414,947 5

439

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Montana Electricity Profile 2010 Montana profile Montana Electricity Profile 2010 Montana profile Table 1. 2010 Summary Statistics (Montana) Item Value U.S. Rank NERC Region(s) MRO/WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 5,866 41 Electric Utilities 2,340 38 Independent Power Producers & Combined Heat and Power 3,526 27 Net Generation (megawatthours) 29,791,181 41 Electric Utilities 6,271,180 39 Independent Power Producers & Combined Heat and Power 23,520,001 14 Emissions (thousand metric tons) Sulfur Dioxide 22 35 Nitrogen Oxide 21 35 Carbon Dioxide 20,370 35 Sulfur Dioxide (lbs/MWh) 1.6 35 Nitrogen Oxide (lbs/MWh) 1.6 22 Carbon Dioxide (lbs/MWh) 1,507 18 Total Retail Sales (megawatthours) 13,423,138 41 Full Service Provider Sales (megawatthours) 10,803,422 43

440

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Iowa Electricity Profile 2010 Iowa profile Iowa Electricity Profile 2010 Iowa profile Table 1. 2010 Summary Statistics (Iowa) Item Value U.S. Rank NERC Region(s) MRO/SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 14,592 28 Electric Utilities 11,282 24 Independent Power Producers & Combined Heat and Power 3,310 30 Net Generation (megawatthours) 57,508,721 26 Electric Utilities 46,188,988 21 Independent Power Producers & Combined Heat and Power 11,319,733 30 Emissions (thousand metric tons) Sulfur Dioxide 108 18 Nitrogen Oxide 50 22 Carbon Dioxide 47,211 20 Sulfur Dioxide (lbs/MWh) 4.1 11 Nitrogen Oxide (lbs/MWh) 1.9 14 Carbon Dioxide (lbs/MWh) 1,810 10 Total Retail Sales (megawatthours) 45,445,269 31 Full Service Provider Sales (megawatthours) 45,445,269 28

Note: This page contains sample records for the topic "vertical seismic profile" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Electricity Profile 2010 Illinois profile Illinois Electricity Profile 2010 Illinois profile Table 1. 2010 Summary Statistics (Illinois) Item Value U.S. Rank NERC Region(s) MRO/RFC/SERC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 44,127 5 Electric Utilities 4,800 35 Independent Power Producers & Combined Heat and Power 39,327 3 Net Generation (megawatthours) 201,351,872 5 Electric Utilities 12,418,332 35 Independent Power Producers & Combined Heat and Power 188,933,540 3 Emissions (thousand metric tons) Sulfur Dioxide 232 9 Nitrogen Oxide 83 8 Carbon Dioxide 103,128 6 Sulfur Dioxide (lbs/MWh) 2.5 25 Nitrogen Oxide (lbs/MWh) 0.9 38 Carbon Dioxide (lbs/MWh) 1,129 34 Total Retail Sales (megawatthours) 144,760,674 6 Full Service Provider Sales (megawatthours) 77,890,532 19

442

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Louisiana Electricity Profile 2010 Louisiana profile Louisiana Electricity Profile 2010 Louisiana profile Table 1. 2010 Summary Statistics (Louisiana) Item Value U.S. Rank NERC Region(s) SERC/SPP Primary Energy Source Gas Net Summer Capacity (megawatts) 26,744 14 Electric Utilities 16,471 17 Independent Power Producers & Combined Heat and Power 10,272 10 Net Generation (megawatthours) 102,884,940 16 Electric Utilities 51,680,682 19 Independent Power Producers & Combined Heat and Power 51,204,258 8 Emissions (thousand metric tons) Sulfur Dioxide 126 15 Nitrogen Oxide 75 11 Carbon Dioxide 58,706 14 Sulfur Dioxide (lbs/MWh) 2.7 21 Nitrogen Oxide (lbs/MWh) 1.6 21 Carbon Dioxide (lbs/MWh) 1,258 27 Total Retail Sales (megawatthours) 85,079,692 18 Full Service Provider Sales (megawatthours) 85,079,692 16

443

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

California Electricity Profile 2010 California profile California Electricity Profile 2010 California profile Table 1. 2010 Summary Statistics (California) Item Value U.S. Rank NERC Region(s) SPP/WECC Primary Energy Source Gas Net Summer Capacity (megawatts) 67,328 2 Electric Utilities 28,689 2 Independent Power Producers & Combined Heat and Power 38,639 4 Net Generation (megawatthours) 204,125,596 4 Electric Utilities 96,939,535 8 Independent Power Producers & Combined Heat and Power 107,186,061 4 Emissions (thousand metric tons) Sulfur Dioxide 3 47 Nitrogen Oxide 80 9 Carbon Dioxide 55,406 16 Sulfur Dioxide (lbs/MWh) * 49 Nitrogen Oxide (lbs/MWh) 0.9 41 Carbon Dioxide (lbs/MWh) 598 46 Total Retail Sales (megawatthours) 258,525,414 2 Full Service Provider Sales (megawatthours) 240,948,673 2

444

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Dakota Electricity Profile 2010 South Dakota profile Dakota Electricity Profile 2010 South Dakota profile Table 1. 2010 Summary Statistics (South Dakota) Item Value U.S. Rank NERC Region(s) MRO/WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 3,623 45 Electric Utilities 2,994 37 Independent Power Producers & Combined Heat and Power 629 48 Net Generation (megawatthours) 10,049,636 46 Electric Utilities 8,682,448 36 Independent Power Producers & Combined Heat and Power 1,367,188 47 Emissions (thousand metric tons) Sulfur Dioxide 12 43 Nitrogen Oxide 12 43 Carbon Dioxide 3,611 47 Sulfur Dioxide (lbs/MWh) 2.6 23 Nitrogen Oxide (lbs/MWh) 2.6 8 Carbon Dioxide (lbs/MWh) 792 41 Total Retail Sales (megawatthours) 11,356,149 46 Full Service Provider Sales (megawatthours) 11,356,149 42

445

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Jersey Electricity Profile 2010 New Jersey profile Jersey Electricity Profile 2010 New Jersey profile Table 1. 2010 Summary Statistics (New Jersey) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 18,424 22 Electric Utilities 460 43 Independent Power Producers & Combined Heat and Power 17,964 6 Net Generation (megawatthours) 65,682,494 23 Electric Utilities -186,385 50 Independent Power Producers & Combined Heat and Power 65,868,878 6 Emissions (thousand metric tons) Sulfur Dioxide 14 40 Nitrogen Oxide 15 41 Carbon Dioxide 19,160 37 Sulfur Dioxide (lbs/MWh) 0.5 45 Nitrogen Oxide (lbs/MWh) 0.5 48 Carbon Dioxide (lbs/MWh) 643 43 Total Retail Sales (megawatthours) 79,179,427 20 Full Service Provider Sales (megawatthours) 50,482,035 25

446

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Massachusetts Electricity Profile 2010 Massachusetts profile Massachusetts Electricity Profile 2010 Massachusetts profile Table 1. 2010 Summary Statistics (Massachusetts) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Gas Net Summer Capacity (megawatts) 13,697 31 Electric Utilities 937 42 Independent Power Producers & Combined Heat and Power 12,760 8 Net Generation (megawatthours) 42,804,824 34 Electric Utilities 802,906 43 Independent Power Producers & Combined Heat and Power 42,001,918 10 Emissions (thousand metric tons) Sulfur Dioxide 35 31 Nitrogen Oxide 17 38 Carbon Dioxide 20,291 36 Sulfur Dioxide (lbs/MWh) 1.8 34 Nitrogen Oxide (lbs/MWh) 0.9 39 Carbon Dioxide (lbs/MWh) 1,045 38 Total Retail Sales (megawatthours) 57,123,422 26 Full Service Provider Sales (megawatthours) 31,822,942 34

447

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Nebraska Electricity Profile 2010 Nebraska profile Nebraska Electricity Profile 2010 Nebraska profile Table 1. 2010 Summary Statistics (Nebraska) Item Value U.S. Rank NERC Region(s) MRO/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 7,857 38 Electric Utilities 7,647 30 Independent Power Producers & Combined Heat and Power 210 50 Net Generation (megawatthours) 36,630,006 36 Electric Utilities 36,242,921 30 Independent Power Producers & Combined Heat and Power 387,085 50 Emissions (thousand metric tons) Sulfur Dioxide 65 24 Nitrogen Oxide 40 30 Carbon Dioxide 24,461 34 Sulfur Dioxide (lbs/MWh) 3.9 12 Nitrogen Oxide (lbs/MWh) 2.4 9 Carbon Dioxide (lbs/MWh) 1,472 19 Total Retail Sales (megawatthours) 29,849,460 36 Full Service Provider Sales (megawatthours) 29,849,460 35

448

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Montana Electricity Profile 2010 Montana profile Montana Electricity Profile 2010 Montana profile Table 1. 2010 Summary Statistics (Montana) Item Value U.S. Rank NERC Region(s) MRO/WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 5,866 41 Electric Utilities 2,340 38 Independent Power Producers & Combined Heat and Power 3,526 27 Net Generation (megawatthours) 29,791,181 41 Electric Utilities 6,271,180 39 Independent Power Producers & Combined Heat and Power 23,520,001 14 Emissions (thousand metric tons) Sulfur Dioxide 22 35 Nitrogen Oxide 21 35 Carbon Dioxide 20,370 35 Sulfur Dioxide (lbs/MWh) 1.6 35 Nitrogen Oxide (lbs/MWh) 1.6 22 Carbon Dioxide (lbs/MWh) 1,507 18 Total Retail Sales (megawatthours) 13,423,138 41 Full Service Provider Sales (megawatthours) 10,803,422 43

449

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Maine Electricity Profile 2010 Maine profile Maine Electricity Profile 2010 Maine profile Table 1. 2010 Summary Statistics (Maine) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Gas Net Summer Capacity (megawatts) 4,430 42 Electric Utilities 19 49 Independent Power Producers & Combined Heat and Power 4,410 25 Net Generation (megawatthours) 17,018,660 43 Electric Utilities 1,759 49 Independent Power Producers & Combined Heat and Power 17,016,901 22 Emissions (thousand metric tons) Sulfur Dioxide 12 42 Nitrogen Oxide 8 44 Carbon Dioxide 4,948 44 Sulfur Dioxide (lbs/MWh) 1.6 36 Nitrogen Oxide (lbs/MWh) 1.1 33 Carbon Dioxide (lbs/MWh) 641 44 Total Retail Sales (megawatthours) 11,531,568 45 Full Service Provider Sales (megawatthours) 151,588 51 Energy-Only Provider Sales (megawatthours) 11,379,980 10

450

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Texas Electricity Profile 2010 Texas profile Texas Electricity Profile 2010 Texas profile Table 1. 2010 Summary Statistics (Texas) Item Value U.S. Rank NERC Region(s) SERC/SPP/TRE/WECC Primary Energy Source Gas Net Summer Capacity (megawatts) 108,258 1 Electric Utilities 26,533 4 Independent Power Producers & Combined Heat and Power 81,724 1 Net Generation (megawatthours) 411,695,046 1 Electric Utilities 95,099,161 9 Independent Power Producers & Combined Heat and Power 316,595,885 1 Emissions (thousand metric tons) Sulfur Dioxide 430 2 Nitrogen Oxide 204 1 Carbon Dioxide 251,409 1 Sulfur Dioxide (lbs/MWh) 2.3 28 Nitrogen Oxide (lbs/MWh) 1.1 32 Carbon Dioxide (lbs/MWh) 1,346 22 Total Retail Sales (megawatthours) 358,457,550 1 Full Service Provider Sales (megawatthours) 358,457,550 1

451

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Florida Electricity Profile 2010 Florida profile Florida Electricity Profile 2010 Florida profile Table 1. 2010 Summary Statistics (Florida) Item Value U.S. Rank NERC Region(s) FRCC/SERC Primary Energy Source Gas Net Summer Capacity (megawatts) 59,147 3 Electric Utilities 50,853 1 Independent Power Producers & Combined Heat and Power 8,294 13 Net Generation (megawatthours) 229,095,935 3 Electric Utilities 206,062,185 1 Independent Power Producers & Combined Heat and Power 23,033,750 15 Emissions (thousand metric tons) Sulfur Dioxide 160 11 Nitrogen Oxide 101 5 Carbon Dioxide 123,811 2 Sulfur Dioxide (lbs/MWh) 1.5 37 Nitrogen Oxide (lbs/MWh) 1.0 35 Carbon Dioxide (lbs/MWh) 1,191 31 Total Retail Sales (megawatthours) 231,209,614 3 Full Service Provider Sales (megawatthours) 231,209,614 3

452

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Hawaii Electricity Profile 2010 Hawaii profile Hawaii Electricity Profile 2010 Hawaii profile Table 1. 2010 Summary Statistics (Hawaii) Item Value U.S. Rank NERC Region(s) -- Primary Energy Source Petroleum Net Summer Capacity (megawatts) 2,536 47 Electric Utilities 1,828 40 Independent Power Producers & Combined Heat and Power 708 47 Net Generation (megawatthours) 10,836,036 45 Electric Utilities 6,416,068 38 Independent Power Producers & Combined Heat and Power 4,419,968 38 Emissions (thousand metric tons) Sulfur Dioxide 17 36 Nitrogen Oxide 21 36 Carbon Dioxide 8,287 42 Sulfur Dioxide (lbs/MWh) 3.4 16 Nitrogen Oxide (lbs/MWh) 4.3 2 Carbon Dioxide (lbs/MWh) 1,686 13 Total Retail Sales (megawatthours) 10,016,509 48 Full Service Provider Sales (megawatthours) 10,016,509 44

453

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Connecticut Electricity Profile 2010 Connecticut profile Connecticut Electricity Profile 2010 Connecticut profile Table 1. 2010 Summary Statistics (Connecticut) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 8,284 35 Electric Utilities 160 46 Independent Power Producers & Combined Heat and Power 8,124 15 Net Generation (megawatthours) 33,349,623 40 Electric Utilities 65,570 45 Independent Power Producers & Combined Heat and Power 33,284,053 11 Emissions (thousand metric tons) Sulfur Dioxide 2 48 Nitrogen Oxide 7 45 Carbon Dioxide 9,201 41 Sulfur Dioxide (lbs/MWh) 0.1 48 Nitrogen Oxide (lbs/MWh) 0.5 49 Carbon Dioxide (lbs/MWh) 608 45 Total Retail Sales (megawatthours) 30,391,766 35 Full Service Provider Sales (megawatthours) 13,714,958 40

454

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Wyoming Electricity Profile 2010 Wyoming profile Wyoming Electricity Profile 2010 Wyoming profile Table 1. 2010 Summary Statistics (Wyoming) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 7,986 37 Electric Utilities 6,931 31 Independent Power Producers & Combined Heat and Power 1,056 41 Net Generation (megawatthours) 48,119,254 31 Electric Utilities 44,738,543 25 Independent Power Producers & Combined Heat and Power 3,380,711 42 Emissions (thousand metric tons) Sulfur Dioxide 67 23 Nitrogen Oxide 61 15 Carbon Dioxide 45,703 21 Sulfur Dioxide (lbs/MWh) 3.1 19 Nitrogen Oxide (lbs/MWh) 2.8 7 Carbon Dioxide (lbs/MWh) 2,094 2 Total Retail Sales (megawatthours) 17,113,458 40 Full Service Provider Sales (megawatthours) 17,113,458 39

455

profiles | OpenEI  

Open Energy Info (EERE)

profiles profiles Dataset Summary Description This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols). This dataset also includes the Residential Energy Consumption Survey (RECS) for statistical references of building types by location. Source Commercial and Residential Reference Building Models Date Released April 18th, 2013 (9 months ago) Date Updated July 02nd, 2013 (7 months ago) Keywords building building demand building load Commercial data demand Energy Consumption energy data hourly kWh load profiles Residential Data Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually

456

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Idaho Electricity Profile 2010 Idaho profile Idaho Electricity Profile 2010 Idaho profile Table 1. 2010 Summary Statistics (Idaho) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 3,990 44 Electric Utilities 3,035 36 Independent Power Producers & Combined Heat and Power 955 42 Net Generation (megawatthours) 12,024,564 44 Electric Utilities 8,589,208 37 Independent Power Producers & Combined Heat and Power 3,435,356 40 Emissions (thousand metric tons) Sulfur Dioxide 7 45 Nitrogen Oxide 4 48 Carbon Dioxide 1,213 49 Sulfur Dioxide (lbs/MWh) 1.2 39 Nitrogen Oxide (lbs/MWh) 0.8 43 Carbon Dioxide (lbs/MWh) 222 50 Total Retail Sales (megawatthours) 22,797,668 38 Full Service Provider Sales (megawatthours) 22,797,668 37

457

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

California Electricity Profile 2010 California profile California Electricity Profile 2010 California profile Table 1. 2010 Summary Statistics (California) Item Value U.S. Rank NERC Region(s) SPP/WECC Primary Energy Source Gas Net Summer Capacity (megawatts) 67,328 2 Electric Utilities 28,689 2 Independent Power Producers & Combined Heat and Power 38,639 4 Net Generation (megawatthours) 204,125,596 4 Electric Utilities 96,939,535 8 Independent Power Producers & Combined Heat and Power 107,186,061 4 Emissions (thousand metric tons) Sulfur Dioxide 3 47 Nitrogen Oxide 80 9 Carbon Dioxide 55,406 16 Sulfur Dioxide (lbs/MWh) * 49 Nitrogen Oxide (lbs/MWh) 0.9 41 Carbon Dioxide (lbs/MWh) 598 46 Total Retail Sales (megawatthours) 258,525,414 2 Full Service Provider Sales (megawatthours) 240,948,673 2

458

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Carolina Electricity Profile 2010 South Carolina profile Carolina Electricity Profile 2010 South Carolina profile Table 1. 2010 Summary Statistics (South Carolina) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 23,982 17 Electric Utilities 22,172 9 Independent Power Producers & Combined Heat and Power 1,810 35 Net Generation (megawatthours) 104,153,133 14 Electric Utilities 100,610,887 6 Independent Power Producers & Combined Heat and Power 3,542,246 39 Emissions (thousand metric tons) Sulfur Dioxide 106 19 Nitrogen Oxide 30 33 Carbon Dioxide 41,364 23 Sulfur Dioxide (lbs/MWh) 2.2 30 Nitrogen Oxide (lbs/MWh) 0.6 45 Carbon Dioxide (lbs/MWh) 876 40 Total Retail Sales (megawatthours) 82,479,293 19 Full Service Provider Sales (megawatthours) 82,479,293 17

459

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

District of Columbia Electricity Profile 2010 District of Columbia profile District of Columbia Electricity Profile 2010 District of Columbia profile Table 1. 2010 Summary Statistics (District of Columbia) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Petroleum Net Summer Capacity (megawatts) 790 51 Independent Power Producers & Combined Heat and Power 790 46 Net Generation (megawatthours) 199,858 51 Independent Power Producers & Combined Heat and Power 199,858 51 Emissions (thousand metric tons) Sulfur Dioxide 1 49 Nitrogen Oxide * 51 Carbon Dioxide 191 50 Sulfur Dioxide (lbs/MWh) 8.8 2 Nitrogen Oxide (lbs/MWh) 4.0 3 Carbon Dioxide (lbs/MWh) 2,104 1 Total Retail Sales (megawatthours) 11,876,995 43 Full Service Provider Sales (megawatthours) 3,388,490 50 Energy-Only Provider Sales (megawatthours) 8,488,505 12

460

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Virginia Electricity Profile 2010 Virginia profile Virginia Electricity Profile 2010 Virginia profile Table 1. 2010 Summary Statistics (Virginia) Item Value U.S. Rank NERC Region(s) RFC/SERC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 24,109 16 Electric Utilities 19,434 15 Independent Power Producers & Combined Heat and Power 4,676 21 Net Generation (megawatthours) 72,966,456 21 Electric Utilities 58,902,054 16 Independent Power Producers & Combined Heat and Power 14,064,402 25 Emissions (thousand metric tons) Sulfur Dioxide 120 16 Nitrogen Oxide 49 24 Carbon Dioxide 39,719 25 Sulfur Dioxide (lbs/MWh) 3.6 15 Nitrogen Oxide (lbs/MWh) 1.5 23 Carbon Dioxide (lbs/MWh) 1,200 30 Total Retail Sales (megawatthours) 113,806,135 10 Full Service Provider Sales (megawatthours) 113,806,135 7

Note: This page contains sample records for the topic "vertical seismic profile" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Delaware Electricity Profile 2010 Delaware profile Delaware Electricity Profile 2010 Delaware profile Table 1. 2010 Summary Statistics (Delaware) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Gas Net Summer Capacity (megawatts) 3,389 46 Electric Utilities 55 48 Independent Power Producers & Combined Heat and Power 3,334 29 Net Generation (megawatthours) 5,627,645 50 Electric Utilities 30,059 46 Independent Power Producers & Combined Heat and Power 5,597,586 36 Emissions (thousand metric tons) Sulfur Dioxide 13 41 Nitrogen Oxide 5 47 Carbon Dioxide 4,187 45 Sulfur Dioxide (lbs/MWh) 5.2 7 Nitrogen Oxide (lbs/MWh) 1.9 16 Carbon Dioxide (lbs/MWh) 1,640 15 Total Retail Sales (megawatthours) 11,605,932 44 Full Service Provider Sales (megawatthours) 7,582,539 46

462

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Colorado Electricity Profile 2010 Colorado profile Colorado Electricity Profile 2010 Colorado profile Table 1. 2010 Summary Statistics (Colorado) Item Value U.S. Rank NERC Region(s) RFC/WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 13,777 30 Electric Utilities 9,114 28 Independent Power Producers & Combined Heat and Power 4,662 22 Net Generation (megawatthours) 50,720,792 30 Electric Utilities 39,584,166 28 Independent Power Producers & Combined Heat and Power 11,136,626 31 Emissions (thousand metric tons) Sulfur Dioxide 45 29 Nitrogen Oxide 55 20 Carbon Dioxide 40,499 24 Sulfur Dioxide (lbs/MWh) 2.0 32 Nitrogen Oxide (lbs/MWh) 2.4 10 Carbon Dioxide (lbs/MWh) 1,760 12 Total Retail Sales (megawatthours) 52,917,786 27 Full Service Provider Sales (megawatthours) 52,917,786 24

463

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Kansas Electricity Profile 2010 Kansas profile Kansas Electricity Profile 2010 Kansas profile Table 1. 2010 Summary Statistics (Kansas) Item Value U.S. Rank NERC Region(s) MRO/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 12,543 32 Electric Utilities 11,732 20 Independent Power Producers & Combined Heat and Power 812 45 Net Generation (megawatthours) 47,923,762 32 Electric Utilities 45,270,047 24 Independent Power Producers & Combined Heat and Power 2,653,716 44 Emissions (thousand metric tons) Sulfur Dioxide 41 30 Nitrogen Oxide 46 26 Carbon Dioxide 36,321 26 Sulfur Dioxide (lbs/MWh) 1.9 33 Nitrogen Oxide (lbs/MWh) 2.1 13 Carbon Dioxide (lbs/MWh) 1,671 14 Total Retail Sales (megawatthours) 40,420,675 32 Full Service Provider Sales (megawatthours) 40,420,675 30

464

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Pennsylvania Electricity Profile 2010 Pennsylvania profile Pennsylvania Electricity Profile 2010 Pennsylvania profile Table 1. 2010 Summary Statistics (Pennsylvania) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 45,575 4 Electric Utilities 455 44 Independent Power Producers & Combined Heat and Power 45,120 2 Net Generation (megawatthours) 229,752,306 2 Electric Utilities 1,086,500 42 Independent Power Producers & Combined Heat and Power 228,665,806 2 Emissions (thousand metric tons) Sulfur Dioxide 387 3 Nitrogen Oxide 136 2 Carbon Dioxide 122,830 3 Sulfur Dioxide (lbs/MWh) 3.7 13 Nitrogen Oxide (lbs/MWh) 1.3 27 Carbon Dioxide (lbs/MWh) 1,179 32 Total Retail Sales (megawatthours) 148,963,968 5 Full Service Provider Sales (megawatthours) 114,787,417 6

465

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Pennsylvania Electricity Profile 2010 Pennsylvania profile Pennsylvania Electricity Profile 2010 Pennsylvania profile Table 1. 2010 Summary Statistics (Pennsylvania) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 45,575 4 Electric Utilities 455 44 Independent Power Producers & Combined Heat and Power 45,120 2 Net Generation (megawatthours) 229,752,306 2 Electric Utilities 1,086,500 42 Independent Power Producers & Combined Heat and Power 228,665,806 2 Emissions (thousand metric tons) Sulfur Dioxide 387 3 Nitrogen Oxide 136 2 Carbon Dioxide 122,830 3 Sulfur Dioxide (lbs/MWh) 3.7 13 Nitrogen Oxide (lbs/MWh) 1.3 27 Carbon Dioxide (lbs/MWh) 1,179 32 Total Retail Sales (megawatthours) 148,963,968 5 Full Service Provider Sales (megawatthours) 114,787,417 6

466

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Wyoming Electricity Profile 2010 Wyoming profile Wyoming Electricity Profile 2010 Wyoming profile Table 1. 2010 Summary Statistics (Wyoming) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 7,986 37 Electric Utilities 6,931 31 Independent Power Producers & Combined Heat and Power 1,056 41 Net Generation (megawatthours) 48,119,254 31 Electric Utilities 44,738,543 25 Independent Power Producers & Combined Heat and Power 3,380,711 42 Emissions (thousand metric tons) Sulfur Dioxide 67 23 Nitrogen Oxide 61 15 Carbon Dioxide 45,703 21 Sulfur Dioxide (lbs/MWh) 3.1 19 Nitrogen Oxide (lbs/MWh) 2.8 7 Carbon Dioxide (lbs/MWh) 2,094 2 Total Retail Sales (megawatthours) 17,113,458 40 Full Service Provider Sales (megawatthours) 17,113,458 39

467

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Kentucky Electricity Profile 2010 Kentucky profile Kentucky Electricity Profile 2010 Kentucky profile Table 1. 2010 Summary Statistics (Kentucky) Item Value U.S. Rank NERC Region(s) RFC/SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 20,453 21 Electric Utilities 18,945 16 Independent Power Producers & Combined Heat and Power 1,507 38 Net Generation (megawatthours) 98,217,658 17 Electric Utilities 97,472,144 7 Independent Power Producers & Combined Heat and Power 745,514 48 Emissions (thousand metric tons) Sulfur Dioxide 249 7 Nitrogen Oxide 85 7 Carbon Dioxide 93,160 7 Sulfur Dioxide (lbs/MWh) 5.6 5 Nitrogen Oxide (lbs/MWh) 1.9 15 Carbon Dioxide (lbs/MWh) 2,091 3 Total Retail Sales (megawatthours) 93,569,426 14 Full Service Provider Sales (megawatthours) 93,569,426 12

468

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Michigan Electricity Profile 2010 Michigan profile Michigan Electricity Profile 2010 Michigan profile Table 1. 2010 Summary Statistics (Michigan) Item Value U.S. Rank NERC Region(s) MRO/RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 29,831 11 Electric Utilities 21,639 10 Independent Power Producers & Combined Heat and Power 8,192 14 Net Generation (megawatthours) 111,551,371 13 Electric Utilities 89,666,874 13 Independent Power Producers & Combined Heat and Power 21,884,497 16 Emissions (thousand metric tons) Sulfur Dioxide 254 6 Nitrogen Oxide 89 6 Carbon Dioxide 74,480 11 Sulfur Dioxide (lbs/MWh) 5.0 8 Nitrogen Oxide (lbs/MWh) 1.8 19 Carbon Dioxide (lbs/MWh) 1,472 20 Total Retail Sales (megawatthours) 103,649,219 12 Full Service Provider Sales (megawatthours) 94,565,247 11

469

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Alabama Electricity Profile 2010 Alabama profile Alabama Electricity Profile 2010 Alabama profile Table 1. 2010 Summary Statistics (Alabama) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 32,417 9 Electric Utilities 23,642 7 Independent Power Producers & Combined Heat and Power 8,775 12 Net Generation (megawatthours) 152,150,512 6 Electric Utilities 122,766,490 2 Independent Power Producers & Combined Heat and Power 29,384,022 12 Emissions (thousand metric tons) Sulfur Dioxide 218 10 Nitrogen Oxide 66 14 Carbon Dioxide 79,375 9 Sulfur Dioxide (lbs/MWh) 3.2 18 Nitrogen Oxide (lbs/MWh) 1.0 36 Carbon Dioxide (lbs/MWh) 1,150 33 Total Retail Sales (megawatthours) 90,862,645 15 Full Service Provider Sales (megawatthours) 90,862,645 13

470

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Electricity Profile 2012 Table 1. 2012 Summary Statistics (Indiana) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 26,837 14...

471

EIA - State Electricity Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electricity Profile 2012 Table 1. 2012 Summary Statistics (Arizona) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 27,587...

472

Profiling for Performance  

Science Journals Connector (OSTI)

Performance and profiling are critical words in our everyday conversations in the office where I work, in our engagements with clients, and in our teaching. Both words apply equally well to all aspec...

Ron Crisco

2011-01-01T23:59:59.000Z

473

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Connecticut Electricity Profile 2010 Connecticut profile Connecticut Electricity Profile 2010 Connecticut profile Table 1. 2010 Summary Statistics (Connecticut) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 8,284 35 Electric Utilities 160 46 Independent Power Producers & Combined Heat and Power 8,124 15 Net Generation (megawatthours) 33,349,623 40 Electric Utilities 65,570 45 Independent Power Producers & Combined Heat and Power 33,284,053 11 Emissions (thousand metric tons) Sulfur Dioxide 2 48 Nitrogen Oxide 7 45 Carbon Dioxide 9,201 41 Sulfur Dioxide (lbs/MWh) 0.1 48 Nitrogen Oxide (lbs/MWh) 0.5 49 Carbon Dioxide (lbs/MWh) 608 45 Total Retail Sales (megawatthours) 30,391,766 35 Full Service Provider Sales (megawatthours) 13,714,958 40

474

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Utah Electricity Profile 2010 Utah profile Utah Electricity Profile 2010 Utah profile Table 1. 2010 Summary Statistics (Utah) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 7,497 39 Electric Utilities 6,648 32 Independent Power Producers & Combined Heat and Power 849 44 Net Generation (megawatthours) 42,249,355 35 Electric Utilities 39,522,124 29 Independent Power Producers & Combined Heat and Power 2,727,231 43 Emissions (thousand metric tons) Sulfur Dioxide 25 34 Nitrogen Oxide 68 13 Carbon Dioxide 35,519 27 Sulfur Dioxide (lbs/MWh) 1.3 38 Nitrogen Oxide (lbs/MWh) 3.6 4 Carbon Dioxide (lbs/MWh) 1,853 9 Total Retail Sales (megawatthours) 28,044,001 37 Full Service Provider Sales (megawatthours) 28,044,001 36

475

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Carolina Electricity Profile 2010 South Carolina profile Carolina Electricity Profile 2010 South Carolina profile Table 1. 2010 Summary Statistics (South Carolina) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 23,982 17 Electric Utilities 22,172 9 Independent Power Producers & Combined Heat and Power 1,810 35 Net Generation (megawatthours) 104,153,133 14 Electric Utilities 100,610,887 6 Independent Power Producers & Combined Heat and Power 3,542,246 39 Emissions (thousand metric tons) Sulfur Dioxide 106 19 Nitrogen Oxide 30 33 Carbon Dioxide 41,364 23 Sulfur Dioxide (lbs/MWh) 2.2 30 Nitrogen Oxide (lbs/MWh) 0.6 45 Carbon Dioxide (lbs/MWh) 876 40 Total Retail Sales (megawatthours) 82,479,293 19 Full Service Provider Sales (megawatthours) 82,479,293 17

476

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Electricity Profile 2010 Alaska profile Alaska Electricity Profile 2010 Alaska profile Table 1. 2010 Summary Statistics (Alaska) Item Value U.S. Rank NERC Region(s) -- Primary Energy Source Gas Net Summer Capacity (megawatts) 2,067 48 Electric Utilities 1,889 39 Independent Power Producers & Combined Heat and Power 178 51 Net Generation (megawatthours) 6,759,576 48 Electric Utilities 6,205,050 40 Independent Power Producers & Combined Heat and Power 554,526 49 Emissions (thousand metric tons) Sulfur Dioxide 3 46 Nitrogen Oxide 16 39 Carbon Dioxide 4,125 46 Sulfur Dioxide (lbs/MWh) 1.0 41 Nitrogen Oxide (lbs/MWh) 5.2 1 Carbon Dioxide (lbs/MWh) 1,345 23 Total Retail Sales (megawatthours) 6,247,038 50 Full Service Provider Sales (megawatthours) 6,247,038 47

477

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Nevada Electricity Profile 2010 Nevada profile Nevada Electricity Profile 2010 Nevada profile Table 1. 2010 Summary Statistics (Nevada) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Gas Net Summer Capacity (megawatts) 11,421 34 Electric Utilities 8,713 29 Independent Power Producers & Combined Heat and Power 2,708 33 Net Generation (megawatthours) 35,146,248 38 Electric Utilities 23,710,917 34 Independent Power Producers & Combined Heat and Power 11,435,331 29 Emissions (thousand metric tons) Sulfur Dioxide 7 44 Nitrogen Oxide 15 40 Carbon Dioxide 17,020 38 Sulfur Dioxide (lbs/MWh) 0.4 46 Nitrogen Oxide (lbs/MWh) 1.0 37 Carbon Dioxide (lbs/MWh) 1,068 37 Total Retail Sales (megawatthours) 33,772,595 33 Full Service Provider Sales (megawatthours) 32,348,879 32

478

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Washington Electricity Profile 2010 Washington profile Washington Electricity Profile 2010 Washington profile Table 1. 2010 Summary Statistics (Washington) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 30,478 10 Electric Utilities 26,498 5 Independent Power Producers & Combined Heat and Power 3,979 26 Net Generation (megawatthours) 103,472,729 15 Electric Utilities 88,057,219 14 Independent Power Producers & Combined Heat and Power 15,415,510 23 Emissions (thousand metric tons) Sulfur Dioxide 14 39 Nitrogen Oxide 21 37 Carbon Dioxide 13,984 39 Sulfur Dioxide (lbs/MWh) 0.3 47 Nitrogen Oxide (lbs/MWh) 0.4 50 Carbon Dioxide (lbs/MWh) 298 49 Total Retail Sales (megawatthours) 90,379,970 16 Full Service Provider Sales (megawatthours) 88,116,958 14

479

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Oregon Electricity Profile 2010 Oregon profile Oregon Electricity Profile 2010 Oregon profile Table 1. 2010 Summary Statistics (Oregon) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 14,261 29 Electric Utilities 10,846 27 Independent Power Producers & Combined Heat and Power 3,415 28 Net Generation (megawatthours) 55,126,999 27 Electric Utilities 41,142,684 26 Independent Power Producers & Combined Heat and Power 13,984,316 26 Emissions (thousand metric tons) Sulfur Dioxide 16 37 Nitrogen Oxide 15 42 Carbon Dioxide 10,094 40 Sulfur Dioxide (lbs/MWh) 0.6 44 Nitrogen Oxide (lbs/MWh) 0.6 47 Carbon Dioxide (lbs/MWh) 404 48 Total Retail Sales (megawatthours) 46,025,945 30 Full Service Provider Sales (megawatthours) 44,525,865 29

480

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Texas Electricity Profile 2010 Texas profile Texas Electricity Profile 2010 Texas profile Table 1. 2010 Summary Statistics (Texas) Item Value U.S. Rank NERC Region(s) SERC/SPP/TRE/WECC Primary Energy Source Gas Net Summer Capacity (megawatts) 108,258 1 Electric Utilities 26,533 4 Independent Power Producers & Combined Heat and Power 81,724 1 Net Generation (megawatthours) 411,695,046 1 Electric Utilities 95,099,161 9 Independent Power Producers & Combined Heat and Power 316,595,885 1 Emissions (thousand metric tons) Sulfur Dioxide 430 2 Nitrogen Oxide 204 1 Carbon Dioxide 251,409 1 Sulfur Dioxide (lbs/MWh) 2.3 28 Nitrogen Oxide (lbs/MWh) 1.1 32 Carbon Dioxide (lbs/MWh) 1,346 22 Total Retail Sales (megawatthours) 358,457,550 1 Full Service Provider Sales (megawatthours) 358,457,550 1

Note: This page contains sample records for the topic "vertical seismic profile" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Indiana Electricity Profile 2010 Indiana profile Indiana Electricity Profile 2010 Indiana profile Table 1. 2010 Summary Statistics (Indiana) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 27,638 13 Electric Utilities 23,008 8 Independent Power Producers & Combined Heat and Power 4,630 23 Net Generation (megawatthours) 125,180,739 11 Electric Utilities 107,852,560 5 Independent Power Producers & Combined Heat and Power 17,328,179 20 Emissions (thousand metric tons) Sulfur Dioxide 385 4 Nitrogen Oxide 120 4 Carbon Dioxide 116,283 5 Sulfur Dioxide (lbs/MWh) 6.8 4 Nitrogen Oxide (lbs/MWh) 2.1 12 Carbon Dioxide (lbs/MWh) 2,048 4 Total Retail Sales (megawatthours) 105,994,376 11 Full Service Provider Sales (megawatthours) 105,994,376 8

482

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Oklahoma Electricity Profile 2010 Oklahoma profile Oklahoma Electricity Profile 2010 Oklahoma profile Table 1. 2010 Summary Statistics (Oklahoma) Item Value U.S. Rank NERC Region(s) SPP Primary Energy Source Gas Net Summer Capacity (megawatts) 21,022 20 Electric Utilities 16,015 18 Independent Power Producers & Combined Heat and Power 5,006 17 Net Generation (megawatthours) 72,250,733 22 Electric Utilities 57,421,195 17 Independent Power Producers & Combined Heat and Power 14,829,538 24 Emissions (thousand metric tons) Sulfur Dioxide 85 21 Nitrogen Oxide 71 12 Carbon Dioxide 49,536 17 Sulfur Dioxide (lbs/MWh) 2.6 24 Nitrogen Oxide (lbs/MWh) 2.2 11 Carbon Dioxide (lbs/MWh) 1,512 17 Total Retail Sales (megawatthours) 57,845,980 25 Full Service Provider Sales (megawatthours) 57,845,980 23

483

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Jersey Electricity Profile 2010 New Jersey profile Jersey Electricity Profile 2010 New Jersey profile Table 1. 2010 Summary Statistics (New Jersey) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 18,424 22 Electric Utilities 460 43 Independent Power Producers & Combined Heat and Power 17,964 6 Net Generation (megawatthours) 65,682,494 23 Electric Utilities -186,385 50 Independent Power Producers & Combined Heat and Power 65,868,878 6 Emissions (thousand metric tons) Sulfur Dioxide 14 40 Nitrogen Oxide 15 41 Carbon Dioxide 19,160 37 Sulfur Dioxide (lbs/MWh) 0.5 45 Nitrogen Oxide (lbs/MWh) 0.5 48 Carbon Dioxide (lbs/MWh) 643 43 Total Retail Sales (megawatthours) 79,179,427 20 Full Service Provider Sales (megawatthours) 50,482,035 25

484

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Idaho Electricity Profile 2010 Idaho profile Idaho Electricity Profile 2010 Idaho profile Table 1. 2010 Summary Statistics (Idaho) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 3,990 44 Electric Utilities 3,035 36 Independent Power Producers & Combined Heat and Power 955 42 Net Generation (megawatthours) 12,024,564 44 Electric Utilities 8,589,208 37 Independent Power Producers & Combined Heat and Power 3,435,356 40 Emissions (thousand metric tons) Sulfur Dioxide 7 45 Nitrogen Oxide 4 48 Carbon Dioxide 1,213 49 Sulfur Dioxide (lbs/MWh) 1.2 39 Nitrogen Oxide (lbs/MWh) 0.8 43 Carbon Dioxide (lbs/MWh) 222 50 Total Retail Sales (megawatthours) 22,797,668 38 Full Service Provider Sales (megawatthours) 22,797,668 37

485

Seismic data obtained using. 50-caliber machine gun as high-resolution seismic source  

SciTech Connect (OSTI)

A seismic line across a shoestring sandstone served as a test of a .50-caliber machine gun as a high-resolution seismic source in exploring for shallow sandstones. The line crosses part of the Bronson-Xenia oil field, which produces from the Bartlesville sandstone of the Cherokee Group (Pennsylvanian) in Bourbon County, Kansas, at a depth of 622 ft (190 m). The reservoir, which has a flat base and an irregular top, may represent a superposition of fluvial sandstones. The seismic line clearly depicts a lenticular sandstone that is up to 56 ft (17 m) thick. Both the lateral extent of the sandstone body and a slight velocity pull-up of the underlying layers are evident. In addition to the target sandstone, two additional sandstone bodies may be present at the east end of the line, where well control is not available. Analysis of the seismic data indicates that the frequency of the .50-caliber sources is from 30 to 170 Hz. The high frequencies are retained deep into the section. Two shots per shotpoint are the minimum number necessary for acquiring high-quality data, and 12-fold is the minimum acceptable common-depth-point (CDP) coverage. 11 figures.

Seeber, M.D.; Steeples, D.

1986-08-01T23:59:59.000Z

486

HANFORD DOUBLE SHELL TANK THERMAL AND SEISMIC PROJECT SEISMIC ANALYSIS OF HANFORD DOUBLE SHELL TANKS  

SciTech Connect (OSTI)

M&D Professional Services, Inc. (M&D) is under subcontract to Pacific Northwest National Laboratories (PNNL) to perform seismic analysis of the Hanford Site Double-Shell Tanks (DSTs) in support of a project entitled Double-Shell Tank (DST) Integrity Project - DST Thermal and Seismic Analyses. The original scope of the project was to complete an up-to-date comprehensive analysis of record of the DST System at Hanford in support of Tri-Party Agreement Milestone M-48-14. The work described herein was performed in support of the seismic analysis of the DSTs. The thermal and operating loads analysis of the DSTs is documented in Rinker et al. (2004). Although Milestone M-48-14 has been met, Revision I is being issued to address external review comments with emphasis on changes in the modeling of anchor bolts connecting the concrete dome and the steel primary tank. The work statement provided to M&D (PNNL 2003) required that a nonlinear soil structure interaction (SSI) analysis be performed on the DSTs. The analysis is required to include the effects of sliding interfaces and fluid sloshing (fluid-structure interaction). SSI analysis has traditionally been treated by frequency domain computer codes such as SHAKE (Schnabel, et al. 1972) and SASSI (Lysmer et al. 1999a). Such frequency domain programs are limited to the analysis of linear systems. Because of the contact surfaces, the response of the DSTs to a seismic event is inherently nonlinear and consequently outside the range of applicability of the linear frequency domain programs. That is, the nonlinear response of the DSTs to seismic excitation requires the use of a time domain code. The capabilities and limitations of the commercial time domain codes ANSYS{reg_sign} and MSC Dytran{reg_sign} for performing seismic SSI analysis of the DSTs and the methodology required to perform the detailed seismic analysis of the DSTs has been addressed in Rinker et al (2006a). On the basis of the results reported in Rinker et al. (2006a), it is concluded that time-domain SSI analysis using ANSYS{reg_sign} is justified for predicting the global response of the DSTs. The most significant difference between the current revision (Revision 1) of this report and the original issue (Revision 0) is the treatment of the anchor bolts that tie the steel dome of the primary tank to the concrete tank dome.

MACKEY TC; RINKER MW; CARPENTER BG; HENDRIX C; ABATT FG

2009-01-15T23:59:59.000Z

487

First Quarter Hanford Seismic Report for Fiscal Year 2011  

SciTech Connect (OSTI)

The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. The Hanford Seismic Network recorded 16 local earthquakes during the first quarter of FY 2011. Six earthquakes were located at shallow depths (less than 4 km), seven earthquakes at intermediate depths (between 4 and 9 km), most likely in the pre-basalt sediments, and three earthquakes were located at depths greater than 9 km, within the basement. Geographically, thirteen earthquakes were located in known swarm areas and three earthquakes were classified as random events. The highest magnitude event (1.8 Mc) was recorded on October 19, 2010 at depth 17.5 km with epicenter located near the Yakima River between the Rattlesnake Mountain and Horse Heaven Hills swarm areas.

Rohay, Alan C.; Sweeney, Mark D.; Clayton, Ray E.; Devary, Joseph L.

2011-03-31T23:59:59.000Z

488

DESIGN PHILOSOPHY FOR STEEL STRUCTURES IN MODERATE SEISMIC REGIONS  

E-Print Network [OSTI]

DESIGN PHILOSOPHY FOR STEEL STRUCTURES IN MODERATE SEISMIC REGIONS E.M. Hines1 and L.A. Fahnestock2 ABSTRACT The authors propose a design philosophy for steel buildings in moderate seismic regions that draws to the continued development and validation of this philosophy. Introduction Recent widespread adoption

Hines, Eric

489

Rayleigh's Principle in Finite Element Calculations of Seismic Wave Response  

Science Journals Connector (OSTI)

......of Seismic Wave Response Warwick D. Smith...resulting error in frequency is of second order...conserve computer storage for large models...estimatesof the seismic response of irregular Earth...complex one, and this frequency is then accurate...to the potential energy and the denominator......

Warwick D. Smith; Bruce A. Bolt

1958-12-01T23:59:59.000Z

490

First Quarter Hanford Seismic Report for Fiscal Year 2009  

SciTech Connect (OSTI)

The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. This includes three recently acquired Transportable Array stations located at Cold Creek, Didier Farms, and Phinney Hill. For the Hanford Seismic Network, ten local earthquakes were recorded during the first quarter of fiscal year 2009. All earthquakes were considered as minor with magnitudes (Mc) less than 1.0. Two earthquakes were located at shallow depths (less than 4 km), most likely in the Columbia River basalts; five earthquakes at intermediate depths (between 4 and 9 km), most likely in the sub-basalt sediments); and three earthquakes were located at depths greater than 9 km, within the basement. Geographically, four earthquakes occurred in known swarm areas and six earthquakes were classified as random events.

Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

2009-03-15T23:59:59.000Z

491

Three-component borehole wall-locking seismic detector  

DOE Patents [OSTI]

A seismic detector for boreholes is described that has an accelerometer sensor block for sensing vibrations in geologic formations of the earth. The density of the seismic detector is approximately matched to the density of the formations in which the detector is utilized. A simple compass is used to orient the seismic detector. A large surface area shoe having a radius approximately equal to the radius of the borehole in which the seismic detector is located may be pushed against the side of the borehole by actuating cylinders contained in the seismic detector. Hydraulic drive of the cylinders is provided external to the detector. By using the large surface area wall-locking shoe, force holding the seismic detector in place is distributed over a larger area of the borehole wall thereby eliminating concentrated stresses. Borehole wall-locking forces up to ten times the weight of the seismic detector can be applied thereby ensuring maximum detection frequency response up to 2,000 hertz using accelerometer sensors in a triaxial array within the seismic detector.

Owen, Thomas E. (Helotes, TX)

1994-01-01T23:59:59.000Z

492

FOCUSED GAUSSIAN BEAMS FOR SEISMIC IMAGING ROBERT L. NOWACK  

E-Print Network [OSTI]

FOCUSED GAUSSIAN BEAMS FOR SEISMIC IMAGING ROBERT L. NOWACK Abstract. The application of focused Gaussian beams is investigated for the seismic imaging of common-shot reflection data. The focusing of Gaussian beams away from the source and receiver surface adds flexibility to beam imaging algorithms

Nowack, Robert L.

493

Detection of Underground Marlpit Quarries Using High Resolution Seismic  

E-Print Network [OSTI]

Detection of Underground Marlpit Quarries Using High Resolution Seismic B. Piwakowski* (Ecole of high resolution reflection seismic for the detection and location of underground marlpit quarries of the geological structure, the results show that the detection of marlpit underground quarries, often considered

Boyer, Edmond

494

Seismic active control by neutral networks  

SciTech Connect (OSTI)

A study on the application of artificial neural networks (ANNs) to active structural control under seismic loads is carried out. The structure considered is a single-degree-of-freedom (SDF) system with an active bracing device. The control force is computed by a trained neural network. The feedforward neural network architecture and an adaptive backpropagation training algorithm is used in the study. The neural net is trained to reproduce the function that represents the response-excitation relationship of the SDF system under seismic loads. The input-output training patterns are generated randomly. In the backpropagation training algorithm, the learning rate is determined by ensuring the decrease of the error function at each epoch. The computer program implemented is validated by solving the classification of the XOR problem. Then, the trained ANN is used to compute the control force according to the control strategy. If the control force exceeds the actuator`s capacity limit, it is set equal to that limit. The concept of the control strategy employed herein is to apply the control force at every time step to cancel the system velocity induced at the preceding time step so that the gradual rhythmic buildup of the response is destroyed. The ground motions considered in the numerical example are the 1940 El Centro earthquake and the 1979 Imperial Valley earthquake in California. The system responses with and without the control are calculated and compared. The feasibility and potential of applying ANNs to seismic active control is asserted by the promising results obtained from the numerical examples studied.

Tang, Yu

1995-12-31T23:59:59.000Z

495

Seismic active control by neural networks.  

SciTech Connect (OSTI)

A study on the application of artificial neural networks (ANNs) to activate structural control under seismic loads is carried out. The structure considered is a single-degree-of-freedom (SDF) system with an active bracing device. The control force is computed by a trained neural network. The feed-forward neural network architecture and an adaptive back-propagation training algorithm is used in the study. The neural net is trained to reproduce the function that represents the response-excitation relationship of the SDF system under seismic loads. The input-output training patterns are generated randomly. In the back-propagation training algorithm, the learning rate is determined by ensuring the decrease of the error function at each epoch. The computer program implemented is validated by solving the classification of the XOR problem. Then, the trained ANN is used to compute the control force according to the control strategy. If the control force exceeds the actuator's capacity limit, it is set equal to that limit. The concept of the control strategy employed herein is to apply the control force at every time step to cancel the system velocity induced at the preceding time step so that the gradual rhythmic buildup of the response is destroyed. The ground motions considered in the numerical example are the 1940 El Centro earthquake and the 1979 Imperial Valley earthquake in California. The system responses with and without the control are calculated and compared. The feasibility and potential of applying ANNs to seismic active control is asserted by the promising results obtained from the numerical examples studied.

Tang, Y.

1998-01-01T23:59:59.000Z

496

Development of a HT seismic downhole tool.  

SciTech Connect (OSTI)

Enhanced Geothermal Systems (EGS) require the stimulation of the drilled well, likely through hydraulic fracturing. Whether fracturing of the rock occurs by shear destabilization of natural fractures or by extensional failure of weaker zones, control of the fracture process will be required to create the flow paths necessary for effective heat mining. As such, microseismic monitoring provides one method for real-time mapping of the fractures created during the hydraulic fracturing process. This monitoring is necessary to help assess stimulation effectiveness and provide the information necessary to properly create the reservoir. In addition, reservoir monitoring of the microseismic activity can provide information on reservoir performance and evolution over time. To our knowledge, no seismic tool exists that will operate above 125 C for the long monitoring durations that may be necessary. Replacing failed tools is costly and introduces potential errors such as depth variance, etc. Sandia has designed a high temperature seismic tool for long-term deployment in geothermal applications. It is capable of detecting microseismic events and operating continuously at temperatures up to 240 C. This project includes the design and fabrication of two High Temperature (HT) seismic tools that will have the capability to operate in both temporary and long-term monitoring modes. To ensure the developed tool meets industry requirements for high sampling rates (>2ksps) and high resolution (24-bit Analog-to-Digital Converter) two electronic designs will be implemented. One electronic design will utilize newly developed 200 C electronic components. The other design will use qualified Silicon-on-Insulator (SOI) devices and will have a continuous operating temperature of 240 C.

Maldonado, Frank P.; Greving, Jeffrey J.; Henfling, Joseph Anthony; Chavira, David J.; Uhl, James Eugene; Polsky, Yarom

2009-06-01T23:59:59.000Z

497

High Resolution/High Fidelity Seismic Imaging and Parameter Estimation for Geological Structure and Material Characterization  

SciTech Connect (OSTI)

In this project, we develop new theories and methods for multi-domain one-way wave-equation based propagators, and apply these techniques to seismic modeling, seismic imaging, seismic illumination and model parameter estimation in 3D complex environments. The major progress of this project includes: (1) The development of the dual-domain wave propagators. We continue to improve the one-way wave-equation based propagators. Our target is making propagators capable of handling more realistic velocity models. A wide-angle propagator for transversely isotropic media with vertically symmetric axis (VTI) has been developed for P-wave modeling and imaging. The resulting propagator is accurate for large velocity perturbations and wide propagation angles. The thin-slab propagator for one-way elastic-wave propagation is further improved. With the introduction of complex velocities, the quality factors Qp and Qs have been incorporated into the thin-slab propagator. The resulting viscoelastic thin-slab propagator can handle elastic-wave propagation in models with intrinsic attenuations. We apply this method to complex models for AVO modeling, random media characterization and frequency-dependent reflectivity simulation. (2) Exploring the Information in the Local Angle Domain. Traditionally, the local angle information can only be extracted using the ray-based method. We develop a wave-equation based technique to process the local angle domain information. The approach can avoid the singularity problem usually linked to the high-frequency asymptotic method. We successfully apply this technique to seismic illumination and the resulting method provides a practical tool for three-dimensional full-volume illumination analysis in complex structures. The directional illumination also provides information for angle-domain imaging corrections. (3) Elastic-Wave Imaging. We develop a multicomponent elastic migration method. The application of the multicomponent one-way elastic propagator and the wide-angle correction preserve more dynamic information carried by the elastic waves. The vector imaging condition solves the polarization problem of converted wave imaging. Both P-P and P-S images can be calculated. We also use converted waves to improve the image of steep sub-salt structures. The synthetic data for the SEG/EAGE salt model are migrated with a generalized screen algorithm and for the converted PSS-wave path. All the sub-salt faults are properly imaged.

Ru-Shan Wu, Xiao-Bi Xie, Thorne Lay

2005-06-06T23:59:59.000Z

498

Multi-crosswell profile 3D imaging and method  

DOE Patents [OSTI]

Characterizing the value of a particular property, for example, seismic velocity, of a subsurface region of ground is described. In one aspect, the value of the particular property is represented using at least one continuous analytic function such as a Chebychev polynomial. The seismic data may include data derived from at least one crosswell dataset for the subsurface region of interest and may also include other data. In either instance, data may simultaneously be used from a first crosswell dataset in conjunction with one or more other crosswell datasets and/or with the other data. In another aspect, the value of the property is characterized in three dimensions throughout the region of interest using crosswell and/or other data. In still another aspect, crosswell datasets for highly deviated or horizontal boreholes are inherently useful. The method is performed, in part, by fitting a set of vertically spaced layer boundaries, represented by an analytic function such as a Chebychev polynomial, within and across the region encompassing the boreholes such that a series of layers is defined between the layer boundaries. Initial values of the particular property are then established between the layer boundaries and across the subterranean region using a series of continuous analytic functions. The continuous analytic functions are then adjusted to more closely match the value of the particular property across the subterranean region of ground to determine the value of the particular property for any selected point within the region.

Washbourne, John K. (Houston, TX); Rector, III, James W. (Kensington, CA); Bube, Kenneth P. (Seattle, WA)

2002-01-01T23:59:59.000Z

499

On the seismic age of the Sun  

E-Print Network [OSTI]

We use low-degree acoustic modes obtained by the BiSON to estimate the main-sequence age $t_\\odot$ of the Sun. The calibration is accomplished by linearizing the deviations from a standard solar model the seismic frequencies of which are close to those of the Sun. Formally, we obtain the preliminary value $t_\\odot=4.68\\pm0.02 $Gy, coupled with an initial heavy-element abundance $Z=0.0169\\pm0.0005$. The quoted standard errors, which are not independent, are upper bounds implied under the assumption that the standard errors in the observed frequencies are independent.

G. Houdek; D. O. Gough

2007-10-03T23:59:59.000Z

500

Geographic Information System At Central Nevada Seismic Zone Region  

Open Energy Info (EERE)

Central Nevada Seismic Zone Region Central Nevada Seismic Zone Region (Coolbaugh, Et Al., 2005 - 2) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Central Nevada Seismic Zone Region (Coolbaugh, Et Al., 2005 - 2) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Geographic Information System Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown References Mark Coolbaugh, Richard Zehner, Corne Kreemer, David Blackwell, Gary Oppliger (2005) A Map Of Geothermal Potential For The Great Basin, Usa- Recognition Of Multiple Geothermal Environments Retrieved from "http://en.openei.org/w/index.php?title=Geographic_Information_System_At_Central_Nevada_Seismic_Zone_Region_(Coolbaugh,_Et_Al.,_2005_-_2)&oldid=401371