National Library of Energy BETA

Sample records for vertical closed loop

  1. Dehumidification -- Closed loop systems

    SciTech Connect (OSTI)

    Wyatt, C.H.; Crowe, A.R.

    1996-05-01

    Dehumidification is the removal of water from the air. Dehumidification equipment treats the ambient air before it is introduced to the enclosure. A closed loop system is one that theoretically routes all the air exiting an enclosure through the appropriate filter media and treatment equipment and then returns it to the enclosure. By establishing a closed loop system, the ``treated`` air is continuously processed, which improves the efficiency of this operation. The generic types of dehumidification equipment and their application in a closed loop system will be presented. This article will deal solely with the use of dehumidification and other related equipment used to control the environment within the work enclosure.

  2. Closed loop steam cooled airfoil

    DOE Patents [OSTI]

    Widrig, Scott M.; Rudolph, Ronald J.; Wagner, Gregg P.

    2006-04-18

    An airfoil, a method of manufacturing an airfoil, and a system for cooling an airfoil is provided. The cooling system can be used with an airfoil located in the first stages of a combustion turbine within a combined cycle power generation plant and involves flowing closed loop steam through a pin array set within an airfoil. The airfoil can comprise a cavity having a cooling chamber bounded by an interior wall and an exterior wall so that steam can enter the cavity, pass through the pin array, and then return to the cavity to thereby cool the airfoil. The method of manufacturing an airfoil can include a type of lost wax investment casting process in which a pin array is cast into an airfoil to form a cooling chamber.

  3. Study of the Open Loop and Closed Loop Oscillator Techniques

    SciTech Connect (OSTI)

    Imel, George R.; Baker, Benjamin; Riley, Tony; Langbehn, Adam; Aryal, Harishchandra; Benzerga, M. Lamine

    2015-04-11

    This report presents the progress and completion of a five-year study undertaken at Idaho State University of the measurement of very small worth reactivity samples comparing open and closed loop oscillator techniques.The study conclusively demonstrated the equivalency of the two techniques with regard to uncertainties in reactivity values, i.e., limited by reactor noise. As those results are thoroughly documented in recent publications, in this report we will concentrate on the support work that was necessary. For example, we describe in some detail the construction and calibration of a pilot rod for the closed loop system. We discuss the campaign to measure the required reactor parameters necessary for inverse-kinetics. Finally, we briefly discuss the transfer of the open loop technique to other reactor systems.

  4. Power Generating Stationary Engines Nox Control: A Closed Loop...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Generating Stationary Engines Nox Control: A Closed Loop Control Technology Power Generating Stationary Engines Nox Control: A Closed Loop Control Technology Poster presented at...

  5. Closed-loop pulsed helium ionization detector

    DOE Patents [OSTI]

    Ramsey, Roswitha S. (Knoxville, TN); Todd, Richard A. (Knoxville, TN)

    1987-01-01

    A helium ionization detector for gas chromatography is operated in a constant current, pulse-modulated mode by configuring the detector, electrometer and a high voltage pulser in a closed-loop control system. The detector current is maintained at a fixed level by varying the frequency of fixed-width, high-voltage bias pulses applied to the detector. An output signal proportional to the pulse frequency is produced which is indicative of the charge collected for a detected species.

  6. ORC Closed Loop Control Systems for Transient and Steady State...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    models using iterative concept analysis are being used on a closed loop controlled, waste heat recovery system running automatically over various drive cycles. PDF icon...

  7. Direct-contact closed-loop heat exchanger

    DOE Patents [OSTI]

    Berry, Gregory F. (Naperville, IL); Minkov, Vladimir (Skokie, IL); Petrick, Michael (Joliet, IL)

    1984-01-01

    A high temperature heat exchanger with a closed loop and a heat transfer liquid within the loop, the closed loop having a first horizontal channel with inlet and outlet means for providing direct contact of a first fluid at a first temperature with the heat transfer liquid, a second horizontal channel with inlet and outlet means for providing direct contact of a second fluid at a second temperature with the heat transfer liquid, and means for circulating the heat transfer liquid.

  8. Power Generating Stationary Engines Nox Control: A Closed Loop Control

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology | Department of Energy Generating Stationary Engines Nox Control: A Closed Loop Control Technology Power Generating Stationary Engines Nox Control: A Closed Loop Control Technology Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. PDF icon p-11_servati.pdf More Documents & Publications A Low-Cost Continuous Emissions Monitoring System for Mobile and Stationary Engine SCR/DPF

  9. Project Profile: Heliostat System with Wireless Closed-Loop Control |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Heliostat System with Wireless Closed-Loop Control Project Profile: Heliostat System with Wireless Closed-Loop Control Thermata Logo Thermata, under the 2012 SunShot Concentrating Solar Power (CSP) R&D funding opportunity announcement (FOA), is demonstrating a collector system with enhanced optical tracking capability. The unit includes a control system that provides real-time information to adjust the location of the reflected sunlight. It demonstrates a prototype

  10. Energy Cost Savings Calculator for Commercial Boilers: Closed Loop, Space

    Office of Environmental Management (EM)

    Heating Applications Only | Department of Energy Commercial Boilers: Closed Loop, Space Heating Applications Only Energy Cost Savings Calculator for Commercial Boilers: Closed Loop, Space Heating Applications Only This cost calculator is a screening tool that estimates a product's lifetime energy cost savings at various efficiency levels. Learn more about the base model and other assumptions. Project Type Is this a new installation or a replacement? New Replacement What is the deliverable

  11. Direct-contact closed-loop heat exchanger

    DOE Patents [OSTI]

    Berry, G.F.; Minkov, V.; Petrick, M.

    1981-11-02

    A high temperature heat exchanger is disclosed which has a closed loop and a heat transfer liquid within the loop, the closed loop having a first horizontal channel with inlet and outlet means for providing direct contact of a first fluid at a first temperature with the heat transfer liquid, a second horizontal channel with inlet and outlet means for providing direct contact of a second fluid at a second temperature with the heat transfer liquid, and means for circulating the heat transfer liquid.

  12. Diesel Combustion Control with Closed-Loop Control of the Injection...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion Control with Closed-Loop Control of the Injection Strategy Diesel Combustion Control with Closed-Loop Control of the Injection Strategy New control strategies are ...

  13. Heliostat System with Wireless Closed-Loop Control

    Broader source: Energy.gov [DOE]

    This fact sheet summarizes a SunShot Initiative project led by Thermata to develop and demonstrate the first practical heliostat to use closed-loop tracking that can optically sense and control the reflected sunlight beam at the target. The expected benefits of this system include the reduction in the total installed cost of the heliostat field in a power tower concentrating solar power project.

  14. Closed-loop air cooling system for a turbine engine

    DOE Patents [OSTI]

    North, William Edward (Winter Springs, FL)

    2000-01-01

    Method and apparatus are disclosed for providing a closed-loop air cooling system for a turbine engine. The method and apparatus provide for bleeding pressurized air from a gas turbine engine compressor for use in cooling the turbine components. The compressed air is cascaded through the various stages of the turbine. At each stage a portion of the compressed air is returned to the compressor where useful work is recovered.

  15. Closed loop air cooling system for combustion turbines

    DOE Patents [OSTI]

    Huber, David John (North Canton, OH); Briesch, Michael Scot (Orlando, FL)

    1998-01-01

    Convective cooling of turbine hot parts using a closed loop system is disclosed. Preferably, the present invention is applied to cooling the hot parts of combustion turbine power plants, and the cooling provided permits an increase in the inlet temperature and the concomitant benefits of increased efficiency and output. In preferred embodiments, methods and apparatus are disclosed wherein air is removed from the combustion turbine compressor and delivered to passages internal to one or more of a combustor and turbine hot parts. The air cools the combustor and turbine hot parts via convection and heat is transferred through the surfaces of the combustor and turbine hot parts.

  16. Closed loop air cooling system for combustion turbines

    DOE Patents [OSTI]

    Huber, D.J.; Briesch, M.S.

    1998-07-21

    Convective cooling of turbine hot parts using a closed loop system is disclosed. Preferably, the present invention is applied to cooling the hot parts of combustion turbine power plants, and the cooling provided permits an increase in the inlet temperature and the concomitant benefits of increased efficiency and output. In preferred embodiments, methods and apparatus are disclosed wherein air is removed from the combustion turbine compressor and delivered to passages internal to one or more of a combustor and turbine hot parts. The air cools the combustor and turbine hot parts via convection and heat is transferred through the surfaces of the combustor and turbine hot parts. 1 fig.

  17. Particle sorter comprising a fluid displacer in a closed-loop fluid circuit

    SciTech Connect (OSTI)

    Perroud, Thomas D.; Patel, Kamlesh D.; Renzi, Ronald F.

    2012-04-24

    Disclosed herein are methods and devices utilizing a fluid displacer in a closed-loop fluid circuit.

  18. Closed loop computer control for an automatic transmission

    DOE Patents [OSTI]

    Patil, Prabhakar B.

    1989-01-01

    In an automotive vehicle having an automatic transmission that driveably connects a power source to the driving wheels, a method to control the application of hydraulic pressure to a clutch, whose engagement produces an upshift and whose disengagement produces a downshift, the speed of the power source, and the output torque of the transmission. The transmission output shaft torque and the power source speed are the controlled variables. The commanded power source torque and commanded hydraulic pressure supplied to the clutch are the control variables. A mathematical model is formulated that describes the kinematics and dynamics of the powertrain before, during and after a gear shift. The model represents the operating characteristics of each component and the structural arrangement of the components within the transmission being controlled. Next, a close loop feedback control is developed to determine the proper control law or compensation strategy to achieve an acceptably smooth gear ratio change, one in which the output torque disturbance is kept to a minimum and the duration of the shift is minimized. Then a computer algorithm simulating the shift dynamics employing the mathematical model is used to study the effects of changes in the values of the parameters established from a closed loop control of the clutch hydraulic and the power source torque on the shift quality. This computer simulation is used also to establish possible shift control strategies. The shift strategies determined from the prior step are reduced to an algorithm executed by a computer to control the operation of the power source and the transmission.

  19. Diesel Combustion Control with Closed-Loop Control of the Injection

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Strategy | Department of Energy Combustion Control with Closed-Loop Control of the Injection Strategy Diesel Combustion Control with Closed-Loop Control of the Injection Strategy New control strategies are enabler for new combustion concepts for further reduction of engine out emission PDF icon deer09_tatur.pdf More Documents & Publications Future Directions in Engines and Fuels An Innovative Pressure Sensor Glow Plug Offers Improved Diesel Engine Closed-loop Control Partially Premixed

  20. ORC Closed Loop Control Systems for Transient and Steady State Duty Cycles

    Broader source: Energy.gov [DOE]

    System-level models using iterative concept analysis are being used on a closed loop controlled, waste heat recovery system running automatically over various drive cycles.

  1. Closed-form decomposition of one-loop massive amplitudes

    SciTech Connect (OSTI)

    Britto, Ruth; Feng Bo; Mastrolia, Pierpaolo

    2008-07-15

    We present formulas for the coefficients of 2-, 3-, 4-, and 5-point master integrals for one-loop massive amplitudes. The coefficients are derived from unitarity cuts in D dimensions. The input parameters can be read off from any unitarity-cut integrand, as assembled from tree-level expressions, after simple algebraic manipulations. The formulas presented here are suitable for analytical as well as numerical evaluation. Their validity is confirmed in two known cases of helicity amplitudes contributing to gg{yields}gg and gg{yields}gH, where the masses of the Higgs and the fermion circulating in the loop are kept as free parameters.

  2. ICFT- An Initial Closed-Loop Flow Test of the Fenton Hill Phase...

    Open Energy Info (EERE)

    ICFT- An Initial Closed-Loop Flow Test of the Fenton Hill Phase II HDR Reservoir Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: ICFT- An Initial...

  3. Film cooling air pocket in a closed loop cooled airfoil

    DOE Patents [OSTI]

    Yu, Yufeng Phillip (Simpsonville, SC); Itzel, Gary Michael (Simpsonville, SC); Osgood, Sarah Jane (East Thetford, VT); Bagepalli, Radhakrishna (Schenectady, NY); Webbon, Waylon Willard (Greenville, SC); Burdgick, Steven Sebastian (Schenectady, NY)

    2002-01-01

    Turbine stator vane segments have radially inner and outer walls with vanes extending between them. The inner and outer walls are compartmentalized and have impingement plates. Steam flowing into the outer wall plenum passes through the impingement plate for impingement cooling of the outer wall upper surface. The spent impingement steam flows into cavities of the vane having inserts for impingement cooling the walls of the vane. The steam passes into the inner wall and through the impingement plate for impingement cooling of the inner wall surface and for return through return cavities having inserts for impingement cooling of the vane surfaces. To provide for air film cooing of select portions of the airfoil outer surface, at least one air pocket is defined on a wall of at least one of the cavities. Each air pocket is substantially closed with respect to the cooling medium in the cavity and cooling air pumped to the air pocket flows through outlet apertures in the wall of the airfoil to cool the same.

  4. Closed loop control of the induction heating process using miniature magnetic sensors

    DOE Patents [OSTI]

    Bentley, Anthony E.; Kelley, John Bruce; Zutavern, Fred J.

    2003-05-20

    A method and system for providing real-time, closed-loop control of the induction hardening process. A miniature magnetic sensor located near the outer surface of the workpiece measures changes in the surface magnetic field caused by changes in the magnetic properties of the workpiece as it heats up during induction heating (or cools down during quenching). A passive miniature magnetic sensor detects a distinct magnetic spike that appears when the saturation field, B.sub.sat, of the workpiece has been exceeded. This distinct magnetic spike disappears when the workpiece's surface temperature exceeds its Curie temperature, due to the sudden decrease in its magnetic permeability. Alternatively, an active magnetic sensor can measure changes in the resonance response of the monitor coil when the excitation coil is linearly swept over 0-10 MHz, due to changes in the magnetic permeability and electrical resistivity of the workpiece as its temperature increases (or decreases).

  5. Linear motor drive system for continuous-path closed-loop position control of an object

    DOE Patents [OSTI]

    Barkman, William E. (Oak Ridge, TN)

    1980-01-01

    A precision numerical controlled servo-positioning system is provided for continuous closed-loop position control of a machine slide or platform driven by a linear-induction motor. The system utilizes filtered velocity feedback to provide system stability required to operate with a system gain of 100 inches/minute/0.001 inch of following error. The filtered velocity feedback signal is derived from the position output signals of a laser interferometer utilized to monitor the movement of the slide. Air-bearing slides mounted to a stable support are utilized to minimize friction and small irregularities in the slideway which would tend to introduce positioning errors. A microprocessor is programmed to read command and feedback information and converts this information into the system following error signal. This error signal is summed with the negative filtered velocity feedback signal at the input of a servo amplifier whose output serves as the drive power signal to the linear motor position control coil.

  6. Apparatus and method for closed-loop control of reactor power in minimum time

    DOE Patents [OSTI]

    Bernard, Jr., John A.

    1988-11-01

    Closed-loop control law for altering the power level of nuclear reactors in a safe manner and without overshoot and in minimum time. Apparatus is provided for moving a fast-acting control element such as a control rod or a control drum for altering the nuclear reactor power level. A computer computes at short time intervals either the function: .rho.=(.beta.-.rho.).omega.-.lambda..sub.e '.rho.-.SIGMA..beta..sub.i (.lambda..sub.i -.lambda..sub.e ')+l* .omega.+l* [.omega..sup.2 +.lambda..sub.e '.omega.] or the function: .rho.=(.beta.-.rho.).omega.-.lambda..sub.e .rho.-(.lambda..sub.e /.lambda..sub.e)(.beta.-.rho.)+l* .omega.+l* [.omega..sup.2 +.lambda..sub.e .omega.-(.lambda..sub.e /.lambda..sub.e).omega.] These functions each specify the rate of change of reactivity that is necessary to achieve a specified rate of change of reactor power. The direction and speed of motion of the control element is altered so as to provide the rate of reactivity change calculated using either or both of these functions thereby resulting in the attainment of a new power level without overshoot and in minimum time. These functions are computed at intervals of approximately 0.01-1.0 seconds depending on the specific application.

  7. MEMS closed-loop control incorporating a memristor as feedback sensing element

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Garcia, Ernest J.; Almeida, Sergio F.; Mireles, Jr., Jose; Zubia, David

    2015-12-01

    In this work the integration of a memristor with a MEMS parallel plate capacitor coupled by an amplification stage is simulated. It is shown that the MEMS upper plate position can be controlled up to 95% of the total gap. Due to its common operation principle, the change in the MEMS plate position can be interpreted by the change in the memristor resistance, or memristance. A memristance modulation of ~1 KΩ was observed. A polynomial expression representing the MEMS upper plate displacement as a function of the memristance is presented. Thereafter a simple design for a voltage closed-loop control ismore » presented showing that the MEMS upper plate can be stabilized up to 95% of the total gap using the memristor as a feedback sensing element. As a result, the memristor can play important dual roles in overcoming the limited operation range of MEMS parallel plate capacitors and in simplifying read-out circuits of those devices by representing the motion of the upper plate in the form of resistance change instead of capacitance change.« less

  8. Closed loop engine control for regulating NOx emissions, using a two-dimensional fuel-air curve

    DOE Patents [OSTI]

    Bourn, Gary D.; Smith, Jack A.; Gingrich, Jess W.

    2007-01-30

    An engine control strategy that ensures that NOx emissions from the engine will be maintained at an acceptable level. The control strategy is based on a two-dimensional fuel-air curve, in which air manifold pressure (AMP) is a function of fuel header pressure and engine speed. The control strategy provides for closed loop NOx adjustment to a base AMP value derived from the fuel-air curve.

  9. Open-cycle magnetohydrodynamic power plant based upon direct-contact closed-loop high-temperature heat exchanger

    DOE Patents [OSTI]

    Berry, Gregory F. (Naperville, IL); Minkov, Vladimir (Skokie, IL); Petrick, Michael (Joliet, IL)

    1988-01-01

    A magnetohydrodynamic (MHD) power generating system in which ionized combustion gases with slag and seed are discharged from an MHD combustor and pressurized high temperature inlet air is introduced into the combustor for supporting fuel combustion at high temperatures necessary to ionize the combustion gases, and including a heat exchanger in the form of a continuous loop with a circulating heat transfer liquid such as copper oxide. The heat exchanger has an upper horizontal channel for providing direct contact between the heat transfer liquid and the combustion gases to cool the gases and condense the slag which thereupon floats on the heat transfer liquid and can be removed from the channel, and a lower horizontal channel for providing direct contact between the heat transfer liquid and pressurized air for preheating the inlet air. The system further includes a seed separator downstream of the heat exchanger.

  10. Open-cycle magnetohydrodynamic power plant based upon direct-contact closed-loop high-temperature heat exchanger

    DOE Patents [OSTI]

    Berry, G.F.; Minkov, V.; Petrick, M.

    1981-11-02

    A magnetohydrodynamic (MHD) power generating system is described in which ionized combustion gases with slag and seed are discharged from an MHD combustor and pressurized high temperature inlet air is introduced into the combustor for supporting fuel combustion at high temperatures necessary to ionize the combustion gases, and including a heat exchanger in the form of a continuous loop with a circulating heat transfer liquid such as copper oxide. The heat exchanger has an upper horizontal channel for providing direct contact between the heat transfer liquid and the combustion gases to cool the gases and condense the slag which thereupon floats on the heat transfer liquid and can be removed from the channel, and a lower horizontal channel for providing direct contact between the heat transfer liquid and pressurized air for preheating the inlet air. The system further includes a seed separator downstream of the heat exchanger.

  11. Central Safety Factor and #12;N Control on NSTX-U via Beam Power and Plasma Boundary Shape Modification, using TRANSP for Closed Loop Simulations

    SciTech Connect (OSTI)

    Boyer, M. D.; Andre, R.; Gates, David A.; Gerhardt, S.; Goumiri, I. R.; Menard, Jon

    2014-08-01

    The high-performance operational goals of NSTX-U will require development of advanced feedback control algorithms, including control of N and the safety factor profile. In this work, a novel approach to simultaneously controlling #12;N and the value of the safety factor on the magnetic axis, q0, through manipulation of the plasma boundary shape and total beam power, is proposed. Simulations of the proposed scheme show promising results and motivate future experimental implementation and eventual integration into a more complex current profile control scheme planned to include actuation of individual beam powers, density, and loop voltage. As part of this work, a flexible framework for closed loop simulations within the high-fidelity code TRANSP was developed. The framework, used here to identify control-design-oriented models and to tune and test the proposed controller, exploits many of the predictive capabilities of TRANSP and provides a means for performing control calculations based on user-supplied data (controller matrices, target waveforms, etc.). The flexible framework should enable high-fidelity testing of a variety of control algorithms, thereby reducing the amount of expensive experimental time needed to implement new control algorithms on NSTX-U and other devices.

  12. CNCC Craig Campus Geothermal Project: 82-well closed loop GHP well field to provide geothermal energy as a common utilitiy for a new community college campus

    SciTech Connect (OSTI)

    Chevron Energy Solutions; Matt Rush; Scott Shulda

    2011-01-03

    Colorado Northwestern Community College (CNCC) is working collaboratively with recipient vendor Chevron Energy Solutions, an energy services company (ESCO), to develop an innovative GHP project at the new CNCC Campus constructed in 2010/2011 in Craig, Colorado. The purpose of the CNCC Craig Campus Geothermal Program scope was to utilize an energy performance contracting approach to develop a geothermal system with a shared closed-loop field providing geothermal energy to each building's GHP mechanical system. Additional benefits to the project include promoting good jobs and clean energy while reducing operating costs for the college. The project has demonstrated that GHP technology is viable for new construction using the energy performance contracting model. The project also enabled the project team to evaluate several options to give the College a best value proposition for not only the initial design and construction costs but build high performance facilities that will save the College for many years to come. The design involved comparing the economic feasibility of GHP by comparing its cost to that of traditional HVAC systems via energy model, financial life cycle cost analysis of energy savings and capital cost, and finally by evaluating the compatibility of the mechanical design for GHP compared to traditional HVAC design. The project shows that GHP system design can be incorporated into the design of new commercial buildings if the design teams, architect, contractor, and owner coordinate carefully during the early phases of design. The public also benefits because the new CNCC campus is a center of education for the much of Northwestern Colorado, and students in K-12 programs (Science Spree 2010) through the CNCC two-year degree programs are already integrating geothermal and GHP technology. One of the greatest challenges met during this program was coordination of multiple engineering and development stakeholders. The leadership of Principle Investigator Pres. John Boyd of CNCC met this challenge by showing clear leadership in setting common goals and resolving conflicts early in the program.

  13. Mathematical Analysis of High-Temperature Co-electrolysis of CO2 and O2 Production in a Closed-Loop Atmosphere Revitalization System

    SciTech Connect (OSTI)

    Michael G. McKellar; Manohar S. Sohal; Lila Mulloth; Bernadette Luna; Morgan B. Abney

    2010-03-01

    NASA has been evaluating two closed-loop atmosphere revitalization architectures based on Sabatier and Bosch carbon dioxide, CO2, reduction technologies. The CO2 and steam, H2O, co-electrolysis process is another option that NASA has investigated. Utilizing recent advances in the fuel cell technology sector, the Idaho National Laboratory, INL, has developed a CO2 and H2O co-electrolysis process to produce oxygen and syngas (carbon monoxide, CO and hydrogen, H2 mixture) for terrestrial (energy production) application. The technology is a combined process that involves steam electrolysis, CO2 electrolysis, and the reverse water gas shift (RWGS) reaction. A number of process models have been developed and analyzed to determine the theoretical power required to recover oxygen, O2, in each case. These models include the current Sabatier and Bosch technologies and combinations of those processes with high-temperature co-electrolysis. The cases of constant CO2 supply and constant O2 production were evaluated. In addition, a process model of the hydrogenation process with co-electrolysis was developed and compared. Sabatier processes require the least amount of energy input per kg of oxygen produced. If co-electrolysis replaces solid polymer electrolyte (SPE) electrolysis within the Sabatier architecture, the power requirement is reduced by over 10%, but only if heat recuperation is used. Sabatier processes, however, require external water to achieve the lower power results. Under conditions of constant incoming carbon dioxide flow, the Sabatier architectures require more power than the other architectures. The Bosch, Boudouard with co-electrolysis, and the hydrogenation with co-electrolysis processes require little or no external water. The Bosch and hydrogenation processes produce water within their reactors, which aids in reducing the power requirement for electrolysis. The Boudouard with co-electrolysis process has a higher electrolysis power requirement because carbon dioxide is split instead of water, which has a lower heat of formation. Hydrogenation with co-electrolysis offers the best overall power performance for two reasons: it requires no external water, and it produces its own water, which reduces the power requirement for co-electrolysis.

  14. Loop-bed combustion apparatus

    DOE Patents [OSTI]

    Shang, Jer-Yu (Fairfax, VA); Mei, Joseph S. (Morgantown, WV); Slagle, Frank D. (Kingwood, WV); Notestein, John E. (Morgantown, WV)

    1984-01-01

    The present invention is directed to a combustion apparatus in the configuration of a oblong annulus defining a closed loop. Particulate coal together with a sulfur sorbent such as sulfur or dolomite is introduced into the closed loop, ignited, and propelled at a high rate of speed around the loop. Flue gas is withdrawn from a location in the closed loop in close proximity to an area in the loop where centrifugal force imposed upon the larger particulate material maintains these particulates at a location spaced from the flue gas outlet. Only flue gas and smaller particulates resulting from the combustion and innerparticle grinding are discharged from the combustor. This structural arrangement provides increased combustion efficiency due to the essentially complete combustion of the coal particulates as well as increased sulfur absorption due to the innerparticle grinding of the sorbent which provides greater particle surface area.

  15. Thermal Analysis of Closed Systems

    Energy Science and Technology Software Center (OSTI)

    1987-10-01

    TAP-LOOP is a finite-difference program designed for steady-state and transient thermal analysis of recirculating fluid loops and associated heat transfer equipment; however, it is not limited to loop analysis. TAP-LOOP was developed to perform scoping and conceptual design analyses for closed test loops in the Fast Flux Test Facility (FFTF), but it can handle a variety of problems which can be described in terms of potentials, sources, sinks, and storage including, in addition to heatmore » transfer problems, studies of potential fluid flow, electrical networks, and stress analysis.« less

  16. Window-closing safety system

    DOE Patents [OSTI]

    McEwan, T.E.

    1997-08-26

    A safety device includes a wire loop embedded in the glass of a passenger car window and routed near the closing leading-edge of the window. The wire loop carries microwave pulses around the loop to and from a transceiver with separate output and input ports. An evanescent field only an inch or two in radius is created along the wire loop by the pulses. Just about any object coming within the evanescent field will dramatically reduce the energy of the microwave pulses received back by the transceiver. Such a loss in energy is interpreted as a closing area blockage, and electrical interlocks are provided to halt or reverse a power window motor that is actively trying to close the window. 5 figs.

  17. Window-closing safety system

    DOE Patents [OSTI]

    McEwan, Thomas E. (Livermore, CA)

    1997-01-01

    A safety device includes a wire loop embedded in the glass of a passenger car window and routed near the closing leading-edge of the window. The wire loop carries microwave pulses around the loop to and from a transceiver with separate output and input ports. An evanescent field only and inch or two in radius is created along the wire loop by the pulses. Just about any object coming within the evanescent field will dramatically reduce the energy of the microwave pulses received back by the transceiver. Such a loss in energy is interpreted as a closing area blockage, and electrical interlocks are provided to halt or reverse a power window motor that is actively trying to close the window.

  18. Fast flux locked loop

    DOE Patents [OSTI]

    Ganther, Jr., Kenneth R. (Olathe, KS); Snapp, Lowell D. (Independence, MO)

    2002-09-10

    A flux locked loop for providing an electrical feedback signal, the flux locked loop employing radio-frequency components and technology to extend the flux modulation frequency and tracking loop bandwidth. The flux locked loop of the present invention has particularly useful application in read-out electronics for DC SQUID magnetic measurement systems, in which case the electrical signal output by the flux locked loop represents an unknown magnetic flux applied to the DC SQUID.

  19. Vertical axis wind turbines

    DOE Patents [OSTI]

    Krivcov, Vladimir (Miass, RU); Krivospitski, Vladimir (Miass, RU); Maksimov, Vasili (Miass, RU); Halstead, Richard (Rohnert Park, CA); Grahov, Jurij (Miass, RU)

    2011-03-08

    A vertical axis wind turbine is described. The wind turbine can include a top ring, a middle ring and a lower ring, wherein a plurality of vertical airfoils are disposed between the rings. For example, three vertical airfoils can be attached between the upper ring and the middle ring. In addition, three more vertical airfoils can be attached between the lower ring and the middle ring. When wind contacts the vertically arranged airfoils the rings begin to spin. By connecting the rings to a center pole which spins an alternator, electricity can be generated from wind.

  20. Vertical tube liquid pollutant separators

    SciTech Connect (OSTI)

    Lynch, W.M.

    1982-06-08

    A plurality of elongated hollow, circular, foraminous substantially vertical tubes contiguously stacked transversely to the direction flowing liquid such as waste water containing foreign matter, I.E., settable solids and free oil, in a coalescer-separator apparatus provide a filter body providing for significant surface area contact by the liquid on both inside and outside surfaces of the tubes to entrap the foreign matter but defining substantially vertical passages permitting the entrapped foreign matter to be gravity separated with the lighter matter coalescing and floating upwardly and the heavier matter settling downwardly so that substantially clarified effluent flows from the apparatus. The stacked tube filter body is contained within an insulated closed container of a sufficient capacity, and the arrays of holes in the tube walls are coordinated with respect to the intended volumetric capacity of the apparatus, so that turbulence in the liquid flowing through the filter body is minimized.

  1. Closing Plenary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Closing Plenary Deputy Assistant Secretary for Transportation U.S. Department of Energy - Office of Energy Efficiency & Renewable Energy Reuben Sarkar Workplace Charging Challenge 2 New Resources Workplace Charging Challenge 3 Summit Session Takeaways * Session 1, Track A: Promoting your workplace charging programs * Need for data that can be used concisely and creatively to promote workplace charging to employees and organizational leadership * Partners can find ways to creatively involve

  2. Vertical Axis Wind Turbine

    Energy Science and Technology Software Center (OSTI)

    2002-04-01

    Blade fatigue life is an important element in determining the economic viability of the Vertical-Axis Wind Turbine (VAWT). VAWT-SAL Vertical Axis Wind Turbine- Stochastic Aerodynamic Loads Ver 3.2 numerically simulates the stochastic (random0 aerodynamic loads of the Vertical-Axis Wind Turbine (VAWT) created by the atomspheric turbulence. The program takes into account the rotor geometry, operating conditions, and assumed turbulence properties.

  3. ARM - Measurement - Vertical velocity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsVertical velocity ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Vertical velocity The component of the velocity vector, along the local vertical. Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements,

  4. Vertical Velocity Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and improving cloud parameterization in global climate models (GCMs) is not straightforward, due to gigantic scale mismatches. Consider this... Looking only vertically...

  5. In situ conversion process utilizing a closed loop heating system

    DOE Patents [OSTI]

    Sandberg, Chester Ledlie (Palo Alto, CA); Fowler, Thomas David (Houston, TX); Vinegar, Harold J. (Bellaire, TX); Schoeber, Willen Jan Antoon Henri (Houston, TX)

    2009-08-18

    An in situ conversion system for producing hydrocarbons from a subsurface formation is described. The system includes a plurality of u-shaped wellbores in the formation. Piping is positioned in at least two of the u-shaped wellbores. A fluid circulation system is coupled to the piping. The fluid circulation system is configured to circulate hot heat transfer fluid through at least a portion of the piping to form at least one heated portion of the formation. An electrical power supply is configured to provide electrical current to at least a portion of the piping located below an overburden in the formation to resistively heat at least a portion of the piping. Heat transfers from the piping to the formation.

  6. CNCC Craig Campus Geothermal Program: 82-well closed loop GHP...

    Open Energy Info (EERE)

    source heat pump system will reduce consumption of electricity (60% is from coal) and natural gas resources compared to traditional heating and cooling systems. This project...

  7. Heliostat System with Wireless Closed-Loop Control (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-09-01

    Thermata is one of the 2012 SunShot CSP R&D awardees for their advanced collectors. This fact sheet explains the motivation, description, and impact of the project.

  8. Film cooling for a closed loop cooled airfoil

    DOE Patents [OSTI]

    Burdgick, Steven Sebastian (Schenectady, NY); Yu, Yufeng Phillip (Simpsonville, SC); Itzel, Gary Michael (Simpsonville, SC)

    2003-01-01

    Turbine stator vane segments have radially inner and outer walls with vanes extending therebetween. The inner and outer walls are compartmentalized and have impingement plates. Steam flowing into the outer wall plenum passes through the impingement plate for impingement cooling of the outer wall upper surface. The spent impingement steam flows into cavities of the vane having inserts for impingement cooling the walls of the vane. The steam passes into the inner wall and through the impingement plate for impingement cooling of the inner wall surface and for return through return cavities having inserts for impingement cooling of the vane surfaces. At least one film cooling hole is defined through a wall of at least one of the cavities for flow communication between an interior of the cavity and an exterior of the vane. The film cooling hole(s) are defined adjacent a potential low LCF life region, so that cooling medium that bleeds out through the film cooling hole(s) reduces a thermal gradient in a vicinity thereof, thereby the increase the LCF life of that region.

  9. Apparatus for externally controlled closed-loop feedback digital epitaxy

    DOE Patents [OSTI]

    Eres, Djula (Knoxville, TN); Sharp, Jeffrey W. (Knoxville, TN)

    1996-01-01

    A method and apparatus for digital epitaxy. The apparatus includes a pulsed gas delivery assembly that supplies gaseous material to a substrate to form an adsorption layer of the gaseous material on the substrate. Structure is provided for measuring the isothermal desorption spectrum of the growth surface to monitor the active sites which are available for adsorption. The vacuum chamber housing the substrate facilitates evacuation of the gaseous material from the area adjacent the substrate following exposure. In use, digital epitaxy is achieved by exposing a substrate to a pulse of gaseous material to form an adsorption layer of the material on the substrate. The active sites on the substrate are monitored during the formation of the adsorption layer to determine if all the active sites have been filled. Once the active sites have been filled on the growth surface of the substrate, the pulse of gaseous material is terminated. The unreacted portion of the gas pulse is evacuated by continuous pumping. Subsequently, a second pulse is applied when availability of active sites is determined by studying the isothermal desorption spectrum. These steps are repeated until a thin film of sufficient thickness is produced.

  10. Apparatus for externally controlled closed-loop feedback digital epitaxy

    DOE Patents [OSTI]

    Eres, D.; Sharp, J.W.

    1996-07-30

    A method and apparatus for digital epitaxy are disclosed. The apparatus includes a pulsed gas delivery assembly that supplies gaseous material to a substrate to form an adsorption layer of the gaseous material on the substrate. Structure is provided for measuring the isothermal desorption spectrum of the growth surface to monitor the active sites which are available for adsorption. The vacuum chamber housing the substrate facilitates evacuation of the gaseous material from the area adjacent the substrate following exposure. In use, digital epitaxy is achieved by exposing a substrate to a pulse of gaseous material to form an adsorption layer of the material on the substrate. The active sites on the substrate are monitored during the formation of the adsorption layer to determine if all the active sites have been filled. Once the active sites have been filled on the growth surface of the substrate, the pulse of gaseous material is terminated. The unreacted portion of the gas pulse is evacuated by continuous pumping. Subsequently, a second pulse is applied when availability of active sites is determined by studying the isothermal desorption spectrum. These steps are repeated until a thin film of sufficient thickness is produced. 5 figs.

  11. MEMS closed-loop control incorporating a memristor as feedback...

    Office of Scientific and Technical Information (OSTI)

    IEEE Transactions on Circuits and Systems. II, Express Briefs Additional Journal Information: Journal Volume: 119; Journal Issue: 50; Journal ID: ISSN 1549-7747 Publisher: IEEE ...

  12. Micromachined electrostatic vertical actuator

    DOE Patents [OSTI]

    Lee, Abraham P.; Sommargren, Gary E.; McConaghy, Charles F.; Krulevitch, Peter A.

    1999-10-19

    A micromachined vertical actuator utilizing a levitational force, such as in electrostatic comb drives, provides vertical actuation that is relatively linear in actuation for control, and can be readily combined with parallel plate capacitive position sensing for position control. The micromachined electrostatic vertical actuator provides accurate movement in the sub-micron to micron ranges which is desirable in the phase modulation instrument, such as optical phase shifting. For example, compact, inexpensive, and position controllable micromirrors utilizing an electrostatic vertical actuator can replace the large, expensive, and difficult-to-maintain piezoelectric actuators. A thirty pound piezoelectric actuator with corner cube reflectors, as utilized in a phase shifting diffraction interferometer can be replaced with a micromirror and a lens. For any very precise and small amplitudes of motion` micromachined electrostatic actuation may be used because it is the most compact in size, with low power consumption and has more straightforward sensing and control options.

  13. Livermore Compiler Analysis Loop Suite

    Energy Science and Technology Software Center (OSTI)

    2013-03-01

    LCALS is designed to evaluate compiler optimizations and performance of a variety of loop kernels and loop traversal software constructs. Some of the loop kernels are pulled directly from "Livermore Loops Coded in C", developed at LLNL (see item 11 below for details of earlier code versions). The older suites were used to evaluate floating-point performances of hardware platforms prior to porting larger application codes. The LCALS suite is geared toward assissing C++ compiler optimizationsmore » and platform performance related to SIMD vectorization, OpenMP threading, and advanced C++ language features. LCALS contains 20 of 24 loop kernels from the older Livermore Loop suites, plus various others representative of loops found in current production appkication codes at LLNL. The latter loops emphasize more diverse loop constructs and data access patterns than the others, such as multi-dimensional difference stencils. The loops are included in a configurable framework, which allows control of compilation, loop sampling for execution timing, which loops are run and their lengths. It generates timing statistics for analysis and comparing variants of individual loops. Also, it is easy to add loops to the suite as desired.« less

  14. NETL - Chemical Looping Reactor

    SciTech Connect (OSTI)

    2013-07-24

    NETL's Chemical Looping Reactor unit is a high-temperature integrated CLC process with extensive instrumentation to improve computational simulations. A non-reacting test unit is also used to study solids flow at ambient temperature. The CLR unit circulates approximately 1,000 pounds per hour at temperatures around 1,800 degrees Fahrenheit.

  15. NETL - Chemical Looping Reactor

    ScienceCinema (OSTI)

    None

    2014-06-26

    NETL's Chemical Looping Reactor unit is a high-temperature integrated CLC process with extensive instrumentation to improve computational simulations. A non-reacting test unit is also used to study solids flow at ambient temperature. The CLR unit circulates approximately 1,000 pounds per hour at temperatures around 1,800 degrees Fahrenheit.

  16. Coupled dual loop absorption heat pump

    DOE Patents [OSTI]

    Sarkisian, Paul H. (Watertown, MA); Reimann, Robert C. (Lafayette, NY); Biermann, Wendell J. (Fayetteville, NY)

    1985-01-01

    A coupled dual loop absorption system which utilizes two separate complete loops. Each individual loop operates at three temperatures and two pressures. This low temperature loop absorber and condenser are thermally coupled to the high temperature loop evaporator, and the high temperature loop condenser and absorber are thermally coupled to the low temperature generator.

  17. Instrument Development Tethered Balloon Sounding System for Vertical Radiation Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tethered Balloon Sounding System for Vertical Radiation Profiles C. D. Whiteman J. M. Alzheimer G. A. Anderson M. R. Garnich W. J. Shaw Pacific Northwest Laboratory Richland, WA 99352 platform is built on a triangular frame identical to the one on the Sky Platform, but the MSP carries no radiometric sensors, control loop, or leveling motors. Rather. the MSP is instrumented to measure the motions to which the Sky Platform will be subjected; the data provide engineering information to be used in

  18. Chemical Looping | Open Energy Information

    Open Energy Info (EERE)

    to convert fossil fuels to electricity and provide carbon capture without significant efficiency or cost penalties. Chemical looping combustion is very similar to oxy-fuel...

  19. Multicolored Vertical Silicon Nanowires

    SciTech Connect (OSTI)

    Seo, Kwanyong; Wober, Munib; Steinvurzel, P.; Schonbrun, E.; Dan, Yaping; Ellenbogen, T.; Crozier, K. B.

    2011-04-13

    We demonstrate that vertical silicon nanowires take on a surprising variety of colors covering the entire visible spectrum, in marked contrast to the gray color of bulk silicon. This effect is readily observable by bright-field microscopy, or even to the naked eye. The reflection spectra of the nanowires each show a dip whose position depends on the nanowire radii. We compare the experimental data to the results of finite difference time domain simulations to elucidate the physical mechanisms behind the phenomena we observe. The nanowires are fabricated as arrays, but the vivid colors arise not from scattering or diffractive effects of the array, but from the guided mode properties of the individual nanowires. Each nanowire can thus define its own color, allowing for complex spatial patterning. We anticipate that the color filter effect we demonstrate could be employed in nanoscale image sensor devices.

  20. Thermoelectric Power Generation System with Loop Thermosyphon...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Generation System with Loop Thermosyphon in Future High Efficiency Hybrid Vehicles Thermoelectric Power Generation System with Loop Thermosyphon in Future High Efficiency ...

  1. Sandia Energy - Molten Salt Test Loop Commissioning

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Energy News EC News & Events Concentrating Solar Power Solar Molten Salt Test Loop Commissioning Previous Next Molten Salt Test Loop Commissioning The Molten Salt...

  2. VERSATILE TWO-AXIS OPEN-LOOP SOLAR TRACKER CONTROLLER*

    SciTech Connect (OSTI)

    Ward, Christina D; Maxey, L Curt; Evans III, Boyd Mccutchen; Lapsa, Melissa Voss

    2008-01-01

    A versatile single-board controller for two-axis solar tracking applications has been developed and tested on operating solar tracking systems with over two years of field experience. The operating experience gained from the two systems and associated modifications are discussed as representative examples of the practical issues associated with implementing a new two-axis solar tracker design. In this research, open and closed loop control methods were evaluated; however, only the open loop method met the 0.125 tracking accuracy requirement and the requirement to maintain pointing accuracy in hazy and scattered cloudy skies. The open loop algorithm was finally implemented in a microcontroller-based tracking system. Methods of applying this controller hardware to different tracker geometries and hardware are discussed along with the experience gained to date.

  3. Vertical axis wind turbine airfoil

    DOE Patents [OSTI]

    Krivcov, Vladimir; Krivospitski, Vladimir; Maksimov, Vasili; Halstead, Richard; Grahov, Jurij Vasiljevich

    2012-12-18

    A vertical axis wind turbine airfoil is described. The wind turbine airfoil can include a leading edge, a trailing edge, an upper curved surface, a lower curved surface, and a centerline running between the upper surface and the lower surface and from the leading edge to the trailing edge. The airfoil can be configured so that the distance between the centerline and the upper surface is the same as the distance between the centerline and the lower surface at all points along the length of the airfoil. A plurality of such airfoils can be included in a vertical axis wind turbine. These airfoils can be vertically disposed and can rotate about a vertical axis.

  4. Closed Brayton cycle power conversion systems for nuclear reactors :

    SciTech Connect (OSTI)

    Wright, Steven A.; Lipinski, Ronald J.; Vernon, Milton E.; Sanchez, Travis

    2006-04-01

    This report describes the results of a Sandia National Laboratories internally funded research program to study the coupling of nuclear reactors to gas dynamic Brayton power conversion systems. The research focused on developing integrated dynamic system models, fabricating a 10-30 kWe closed loop Brayton cycle, and validating these models by operating the Brayton test-loop. The work tasks were performed in three major areas. First, the system equations and dynamic models for reactors and Closed Brayton Cycle (CBC) systems were developed and implemented in SIMULINKTM. Within this effort, both steady state and dynamic system models for all the components (turbines, compressors, reactors, ducting, alternators, heat exchangers, and space based radiators) were developed and assembled into complete systems for gas cooled reactors, liquid metal reactors, and electrically heated simulators. Various control modules that use proportional-integral-differential (PID) feedback loops for the reactor and the power-conversion shaft speed were also developed and implemented. The simulation code is called RPCSIM (Reactor Power and Control Simulator). In the second task an open cycle commercially available Capstone C30 micro-turbine power generator was modified to provide a small inexpensive closed Brayton cycle test loop called the Sandia Brayton test-Loop (SBL-30). The Capstone gas-turbine unit housing was modified to permit the attachment of an electrical heater and a water cooled chiller to form a closed loop. The Capstone turbine, compressor, and alternator were used without modification. The Capstone systems nominal operating point is 1150 K turbine inlet temperature at 96,000 rpm. The annular recuperator and portions of the Capstone control system (inverter) and starter system also were reused. The rotational speed of the turbo-machinery is controlled by adjusting the alternator load by using the electrical grid as the load bank. The SBL-30 test loop was operated at the manufacturers site (Barber-Nichols Inc.) and installed and operated at Sandia. A sufficiently detailed description of the loop is provided in this report along with the design characteristics of the turbo-alternator-compressor set to allow other researchers to compare their results with those measured in the Sandia test-loop. The third task consisted of a validation effort. In this task the test loop was operated and compared with the modeled results to develop a more complete understanding of this electrically heated closed power generation system and to validate the model. The measured and predicted system temperatures and pressures are in good agreement, indicating that the model is a reasonable representation of the test loop. Typical deviations between the model and the hardware results are less than 10%. Additional tests were performed to assess the capability of the Brayton engine to continue to remove decay heat after the reactor/heater is shutdown, to develop safe and effective control strategies, and to access the effectiveness of gas inventory control as an alternative means to provide load following. In one test the heater power was turned off to simulate a rapid reactor shutdown, and the turbomachinery was driven solely by the sensible heat stored in the heater for over 71 minutes without external power input. This is an important safety feature for CBC systems as it means that the closed Brayton loop will keep cooling the reactor without the need for auxiliary power (other than that needed to circulate the waste heat rejection coolant) provided the heat sink is available.

  5. Vertically Integrated Circuits at Fermilab

    SciTech Connect (OSTI)

    Deptuch, Grzegorz; Demarteau, Marcel; Hoff, James; Lipton, Ronald; Shenai, Alpana; Trimpl, Marcel; Yarema, Raymond; Zimmerman, Tom; /Fermilab

    2009-01-01

    The exploration of the vertically integrated circuits, also commonly known as 3D-IC technology, for applications in radiation detection started at Fermilab in 2006. This paper examines the opportunities that vertical integration offers by looking at various 3D designs that have been completed by Fermilab. The emphasis is on opportunities that are presented by through silicon vias (TSV), wafer and circuit thinning and finally fusion bonding techniques to replace conventional bump bonding. Early work by Fermilab has led to an international consortium for the development of 3D-IC circuits for High Energy Physics. The consortium has submitted over 25 different designs for the Fermilab organized MPW run organized for the first time.

  6. Chemical Looping Combustion | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical Looping Combustion chemical-looping-combustion.jpg An economical option for using our abundant, domestic coal resources while eliminating CO2 emissions may sound like science fiction, but NETL researchers are working to bring this technology of the future into the present. Chemical looping is the solution. This cost-effective indirect combustion technology has CO2 capture "built in," effectively eradicating greenhouse gas emissions from coal. Although still a few years away

  7. Vertically aligned nanostructure scanning probe microscope tips

    DOE Patents [OSTI]

    Guillorn, Michael A.; Ilic, Bojan; Melechko, Anatoli V.; Merkulov, Vladimir I.; Lowndes, Douglas H.; Simpson, Michael L.

    2006-12-19

    Methods and apparatus are described for cantilever structures that include a vertically aligned nanostructure, especially vertically aligned carbon nanofiber scanning probe microscope tips. An apparatus includes a cantilever structure including a substrate including a cantilever body, that optionally includes a doped layer, and a vertically aligned nanostructure coupled to the cantilever body.

  8. UWB communication receiver feedback loop

    DOE Patents [OSTI]

    Spiridon, Alex (Palo Alto, CA); Benzel, Dave (Livermore, CA); Dowla, Farid U. (Castro Valley, CA); Nekoogar, Faranak (San Ramon, CA); Rosenbury, Erwin T. (Castro Valley, CA)

    2007-12-04

    A novel technique and structure that maximizes the extraction of information from reference pulses for UWB-TR receivers is introduced. The scheme efficiently processes an incoming signal to suppress different types of UWB as well as non-UWB interference prior to signal detection. Such a method and system adds a feedback loop mechanism to enhance the signal-to-noise ratio of reference pulses in a conventional TR receiver. Moreover, sampling the second order statistical function such as, for example, the autocorrelation function (ACF) of the received signal and matching it to the ACF samples of the original pulses for each transmitted bit provides a more robust UWB communications method and system in the presence of channel distortions.

  9. Method and apparatus for operating a powertrain system upon detecting a stuck-closed clutch

    DOE Patents [OSTI]

    Hansen, R. Anthony

    2014-02-18

    A powertrain system includes a multi-mode transmission having a plurality of torque machines. A method for controlling the powertrain system includes identifying all presently applied clutches including commanded applied clutches and the stuck-closed clutch upon detecting one of the torque-transfer clutches is in a stuck-closed condition. A closed-loop control system is employed to control operation of the multi-mode transmission accounting for all the presently applied clutches.

  10. Category:Vertical Flowmeter Test | Open Energy Information

    Open Energy Info (EERE)

    Vertical Flowmeter Test Jump to: navigation, search Geothermalpower.jpg Looking for the Vertical Flowmeter Test page? For detailed information on Vertical Flowmeter Test, click...

  11. Directly induced swing for closed loop control of electroslag remelting furnace

    DOE Patents [OSTI]

    Damkroger, B.

    1998-04-07

    An apparatus and method are disclosed for controlling an electroslag remelting furnace, imposing a periodic fluctuation on electrode drive speed and thereby generating a predictable voltage swing signal. The fluctuation is preferably done by imposition of a sine, square, or sawtooth wave on the drive dc offset signal. 8 figs.

  12. Closed-loop torque feedback for a universal field-oriented controller

    DOE Patents [OSTI]

    De Doncker, R.W.A.A.; King, R.D.; Sanza, P.C.; Haefner, K.B.

    1992-11-24

    A torque feedback system is employed in a universal field-oriented (UFO) controller to tune a torque-producing current command and a slip frequency command in order to achieve robust torque control of an induction machine even in the event of current regulator errors and during transitions between pulse width modulated (PWM) and square wave modes of operation. 1 figure.

  13. Closed loop adaptive control of spectrum-producing step using neural networks

    DOE Patents [OSTI]

    Fu, Chi Yung (San Francisco, CA)

    1998-01-01

    Characteristics of the plasma in a plasma-based manufacturing process step are monitored directly and in real time by observing the spectrum which it produces. An artificial neural network analyzes the plasma spectrum and generates control signals to control one or more of the process input parameters in response to any deviation of the spectrum beyond a narrow range. In an embodiment, a plasma reaction chamber forms a plasma in response to input parameters such as gas flow, pressure and power. The chamber includes a window through which the electromagnetic spectrum produced by a plasma in the chamber, just above the subject surface, may be viewed. The spectrum is conducted to an optical spectrometer which measures the intensity of the incoming optical spectrum at different wavelengths. The output of optical spectrometer is provided to an analyzer which produces a plurality of error signals, each indicating whether a respective one of the input parameters to the chamber is to be increased or decreased. The microcontroller provides signals to control respective controls, but these lines are intercepted and first added to the error signals, before being provided to the controls for the chamber. The analyzer can include a neural network and an optional spectrum preprocessor to reduce background noise, as well as a comparator which compares the parameter values predicted by the neural network with a set of desired values provided by the microcontroller.

  14. Closed-loop torque feedback for a universal field-oriented controller

    DOE Patents [OSTI]

    De Doncker, Rik W. A. A. (Schenectady, NY); King, Robert D. (Schenectady, NY); Sanza, Peter C. (Clifton Park, NY); Haefner, Kenneth B. (Schenectady, NY)

    1992-01-01

    A torque feedback system is employed in a universal field-oriented (UFO) controller to tune a torque-producing current command and a slip frequency command in order to achieve robust torque control of an induction machine even in the event of current regulator errors and during transitions between pulse width modulated (PWM) and square wave modes of operation.

  15. In situ heat treatment process utilizing a closed loop heating system

    DOE Patents [OSTI]

    Vinegar, Harold J. (Bellaire, TX); Nguyen, Scott Vinh (Houston, TX)

    2010-12-07

    Systems and methods for an in situ heat treatment process that utilizes a circulation system to heat one or more treatment areas are described herein. The circulation system may use a heated liquid heat transfer fluid that passes through piping in the formation to transfer heat to the formation. In some embodiments, the piping may be positioned in at least two of the wellbores.

  16. Closed loop adaptive control of spectrum-producing step using neural networks

    DOE Patents [OSTI]

    Fu, C.Y.

    1998-11-24

    Characteristics of the plasma in a plasma-based manufacturing process step are monitored directly and in real time by observing the spectrum which it produces. An artificial neural network analyzes the plasma spectrum and generates control signals to control one or more of the process input parameters in response to any deviation of the spectrum beyond a narrow range. In an embodiment, a plasma reaction chamber forms a plasma in response to input parameters such as gas flow, pressure and power. The chamber includes a window through which the electromagnetic spectrum produced by a plasma in the chamber, just above the subject surface, may be viewed. The spectrum is conducted to an optical spectrometer which measures the intensity of the incoming optical spectrum at different wavelengths. The output of optical spectrometer is provided to an analyzer which produces a plurality of error signals, each indicating whether a respective one of the input parameters to the chamber is to be increased or decreased. The microcontroller provides signals to control respective controls, but these lines are intercepted and first added to the error signals, before being provided to the controls for the chamber. The analyzer can include a neural network and an optional spectrum preprocessor to reduce background noise, as well as a comparator which compares the parameter values predicted by the neural network with a set of desired values provided by the microcontroller. 7 figs.

  17. Installation of a close loop water system for cooling the turbine bearing oil

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    KAPLAN TURBINE BLADE CRACK WELD REPAIR BUILDING STRONG US Army Corps of Engineers Presented by Beau Biffle P. E. Chief, Hydropower Tulsa District Keystone Power Plant Sam Rayburn Power Plant BUILDING STRONG ® Keystone Power Plant Unit # 2 Technical Data Rated at 35 MW Average yearly generation - 127,000 MWH Unit placed online May 1968 Sam Rayburn Power Plant Unit #2 Technical Data Rated at 26 MW Average yearly generation - 30,000 MWH Unit placed online 1965 BUILDING STRONG ® General

  18. Method of digital epilaxy by externally controlled closed-loop feedback

    DOE Patents [OSTI]

    Eres, Djula (Knoxville, TN); Sharp, Jeffrey W. (Knoxville, TN)

    1994-01-01

    A method and apparatus for digital epitaxy. The apparatus includes a pulsed gas delivery assembly that supplies gaseous material to a substrate to form an adsorption layer of the gaseous material on the substrate. Structure is provided for measuring the isothermal desorption spectrum of the growth surface to monitor the active sites which are available for adsorption. The vacuum chamber housing the substrate facilitates evacuation of the gaseous material from the area adjacent the substrate following exposure. In use, digital epitaxy is achieved by exposing a substrate to a pulse of gaseous material to form an adsorption layer of the material on the substrate. The active sites on the substrate are monitored during the formation of the adsorption layer to determine if all the active sites have been filled. Once the active sites have been filled on the growth surface of the substrate, the pulse of gaseous material is terminated. The unreacted portion of the gas pulse is evacuated by continuous pumping. Subsequently, a second pulse is applied when availability of active sites is determined by studying the isothermal desorption spectrum. These steps are repeated until a thin film of sufficient thickness is produced.

  19. Method of digital epitaxy by externally controlled closed-loop feedback

    DOE Patents [OSTI]

    Eres, D.; Sharp, J.W.

    1994-07-19

    A method and apparatus for digital epitaxy are disclosed. The apparatus includes a pulsed gas delivery assembly that supplies gaseous material to a substrate to form an adsorption layer of the gaseous material on the substrate. Structure is provided for measuring the isothermal desorption spectrum of the growth surface to monitor the active sites which are available for adsorption. The vacuum chamber housing the substrate facilitates evacuation of the gaseous material from the area adjacent the substrate following exposure. In use, digital epitaxy is achieved by exposing a substrate to a pulse of gaseous material to form an adsorption layer of the material on the substrate. The active sites on the substrate are monitored during the formation of the adsorption layer to determine if all the active sites have been filled. Once the active sites have been filled on the growth surface of the substrate, the pulse of gaseous material is terminated. The unreacted portion of the gas pulse is evacuated by continuous pumping. Subsequently, a second pulse is applied when availability of active sites is determined by studying the isothermal desorption spectrum. These steps are repeated until a thin film of sufficient thickness is produced. 4 figs.

  20. Directly induced swing for closed loop control of electroslag remelting furnace

    DOE Patents [OSTI]

    Damkroger, Brian (Corrales, NM)

    1998-01-01

    An apparatus and method for controlling an electroslag remelting furnace, imposing a periodic fluctuation on electrode drive speed and thereby generating a predictable voltage swing signal. The fluctuation is preferably done by imposition of a sine, square, or sawtooth wave on the drive dc offset signal.

  1. Single Packaged Vertical Units | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Single Packaged Vertical Units Single Packaged Vertical Units The Department of Energy (DOE) develops standardized data templates for reporting the results of tests conducted in accordance with current DOE test procedures. Templates may be used by third-party laboratories under contract with DOE that conduct testing in support of ENERGY STAR® verification, DOE rulemakings, and enforcement of the federal energy conservation standards. File Single Packaged Vertical Units -- v2.0 More Documents

  2. ARM - Evaluation Product - Convective Vertical Velocity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ProductsConvective Vertical Velocity ARM Data Discovery Browse Data Documentation Use the Data File Inventory tool to view data availability at the file level. Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : Convective Vertical Velocity Convective processes play an important role in Earth's energy balance by distributing heat and moisture throughout the atmosphere. In particular, vertical air motions associated with these

  3. Category:Vertical Electrical Sounding Configurations | Open Energy...

    Open Energy Info (EERE)

    Vertical Electrical Sounding Configurations Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Vertical Electrical Sounding...

  4. Vertical Flowmeter Logging | Open Energy Information

    Open Energy Info (EERE)

    Logging Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Vertical Flowmeter Logging Author U.S. Geological Survey Published USGS Groundwater...

  5. Vertical Circuits Inc | Open Energy Information

    Open Energy Info (EERE)

    and intellectual property for the manufacture of low cost ultra high-speedhigh-density semiconductor components. References: Vertical Circuits, Inc.1 This article is a...

  6. Vertical Flowmeter Test | Open Energy Information

    Open Energy Info (EERE)

    Test Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Vertical Flowmeter Test Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration...

  7. Single Packaged Vertical Units | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    standards. File Single Packaged Vertical Units -- v2.0 More Documents & Publications Room Air Conditioners Commercial Refrigeration Equipment Commercial Refrigeration Equipment

  8. Widget:RAPID-Loop11 | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Pages that call this widget will include javascript for usability testing, used with Loop11. Parameters none Usage Widget:RAPID-Loop1...

  9. Sandia Energy - Molten Salt Test Loop Pump Installed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Energy News Concentrating Solar Power Solar Energy Storage Systems Molten Salt Test Loop Pump Installed Previous Next Molten Salt Test Loop Pump Installed The pump was...

  10. Sandia Energy - Molten Salt Test Loop Melted Salt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Salt Home Renewable Energy Energy News Concentrating Solar Power Solar Molten Salt Test Loop Melted Salt Previous Next Molten Salt Test Loop Melted Salt The Molten Salt Test...

  11. Zero point energy of renormalized Wilson loops (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    Zero point energy of renormalized Wilson loops Citation Details In-Document Search Title: Zero point energy of renormalized Wilson loops The quark-antiquark potential, and its ...

  12. Museum Closed for Thanksgiving Holiday

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Museum Closed for Thanksgiving Holiday Museum Closed for Thanksgiving Holiday WHEN: Nov 26, 2015 12:00 AM - 11:59 PM WHERE: Bradbury Science Museum 1350 Central Ave, Los Alamos, NM...

  13. Vertical two chamber reaction furnace

    DOE Patents [OSTI]

    Blaugher, R.D.

    1999-03-16

    A vertical two chamber reaction furnace is disclosed. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700 and 800 C) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800 to 950 C to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product. 2 figs.

  14. Museum Closed for Christmas Holiday

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Museum Closed for Christmas Holiday Museum Closed for Christmas Holiday WHEN: Dec 25, 2015 12:00 AM - 11:59 PM WHERE: Bradbury Science Museum 1350 Central Ave, Los Alamos, NM 87544, USA CATEGORY: Bradbury INTERNAL: Calendar Login Museum Closed for Christmas Holiday Event Description The Bradbury Science Museum will be CLOSED for the Christmas holiday. The Bradbury Science Museum is open to the public every day except for Thanksgiving Day, Christmas Day and New Year's Day. Admission is always

  15. Museum Closed for Thanksgiving Holiday

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Museum Closed for Thanksgiving Holiday Museum Closed for Thanksgiving Holiday WHEN: Nov 26, 2015 12:00 AM - 11:59 PM WHERE: Bradbury Science Museum 1350 Central Ave, Los Alamos, NM 87544 USA CATEGORY: Bradbury INTERNAL: Calendar Login Museum Closed for Thanksgiving Holiday Event Description The museum will be CLOSED for the Thanksgiving holiday. The Bradbury Science Museum is open to the public every day except for Thanksgiving Day, Christmas Day and New Year's Day. Admission is always free.

  16. Multiple Flow Loop SCADA System Implemented on the Production Prototype Loop

    SciTech Connect (OSTI)

    Baily, Scott A.; Dalmas, Dale Allen; Wheat, Robert Mitchell; Woloshun, Keith Albert; Dale, Gregory E.

    2015-11-16

    The following report covers FY 15 activities to develop supervisory control and data acquisition (SCADA) system for the Northstar Moly99 production prototype gas flow loop. The goal of this effort is to expand the existing system to include a second flow loop with a larger production-sized blower. Besides testing the larger blower, this system will demonstrate the scalability of our solution to multiple flow loops.

  17. Hybrid Combustion-Gasification Chemical Looping

    SciTech Connect (OSTI)

    Herbert Andrus; Gregory Burns; John Chiu; Gregory Lijedahl; Peter Stromberg; Paul Thibeault

    2009-01-07

    For the past several years Alstom Power Inc. (Alstom), a leading world-wide power system manufacturer and supplier, has been in the initial stages of developing an entirely new, ultra-clean, low cost, high efficiency power plant for the global power market. This new power plant concept is based on a hybrid combustion-gasification process utilizing high temperature chemical and thermal looping technology The process consists of the oxidation, reduction, carbonation, and calcination of calcium-based compounds, which chemically react with coal, biomass, or opportunity fuels in two chemical loops and one thermal loop. The chemical and thermal looping technology can be alternatively configured as (i) a combustion-based steam power plant with CO{sub 2} capture, (ii) a hybrid combustion-gasification process producing a syngas for gas turbines or fuel cells, or (iii) an integrated hybrid combustion-gasification process producing hydrogen for gas turbines, fuel cells or other hydrogen based applications while also producing a separate stream of CO{sub 2} for use or sequestration. In its most advanced configuration, this new concept offers the promise to become the technology link from today's Rankine cycle steam power plants to tomorrow's advanced energy plants. The objective of this work is to develop and verify the high temperature chemical and thermal looping process concept at a small-scale pilot facility in order to enable AL to design, construct and demonstrate a pre-commercial, prototype version of this advanced system. In support of this objective, Alstom and DOE started a multi-year program, under this contract. Before the contract started, in a preliminary phase (Phase 0) Alstom funded and built the required small-scale pilot facility (Process Development Unit, PDU) at its Power Plant Laboratories in Windsor, Connecticut. Construction was completed in calendar year 2003. The objective for Phase I was to develop the indirect combustion loop with CO{sub 2} separation, and also syngas production from coal with the calcium sulfide (CaS)/calcium sulfate (CaSO{sub 4}) loop utilizing the PDU facility. The results of Phase I were reported in Reference 1, 'Hybrid Combustion-Gasification Chemical Looping Coal Power Development Technology Development Phase I Report' The objective for Phase II was to develop the carbonate loop--lime (CaO)/calcium carbonate (CaCO{sub 3}) loop, integrate it with the gasification loop from Phase I, and ultimately demonstrate the feasibility of hydrogen production from the combined loops. The results of this program were reported in Reference 3, 'Hybrid Combustion-Gasification Chemical Looping Coal Power Development Technology Development Phase II Report'. The objective of Phase III is to operate the pilot plant to obtain enough engineering information to design a prototype of the commercial Chemical Looping concept. The activities include modifications to the Phase II Chemical Looping PDU, solids transportation studies, control and instrumentation studies and additional cold flow modeling. The deliverable is a report making recommendations for preliminary design guidelines for the prototype plant, results from the pilot plant testing and an update of the commercial plant economic estimates.

  18. Closed Solicitations | Department of Energy

    Office of Environmental Management (EM)

    Closed Solicitations Closed Solicitations Office Solicitation Title Open Date Close Date Manufacturing Funding Opportunity: Next Generation Electric Machines: Megawatt Class Motors The Advanced Manufacturing Office of the Office of Energy Efficiency and Renewable Energy 3/19/15 6/3/15 Manufacturing Notice of Intent (NOI): Clean Energy Manufacturing Innovation Institute on Smart Manufacturing: Advanced Sensors, Controls, Platforms and Modeling for Manufacturing The Advanced Manufacturing Office

  19. Bootstrapping the Three-Loop Hexagon

    SciTech Connect (OSTI)

    Dixon, Lance J.; Drummond, James M.; Henn, Johannes M.; /Humboldt U., Berlin /Santa Barbara, KITP

    2011-11-08

    We consider the hexagonal Wilson loop dual to the six-point MHV amplitude in planar N = 4 super Yang-Mills theory. We apply constraints from the operator product expansion in the near-collinear limit to the symbol of the remainder function at three loops. Using these constraints, and assuming a natural ansatz for the symbol's entries, we determine the symbol up to just two undetermined constants. In the multi-Regge limit, both constants drop out from the symbol, enabling us to make a non-trivial confirmation of the BFKL prediction for the leading-log approximation. This result provides a strong consistency check of both our ansatz for the symbol and the duality between Wilson loops and MHV amplitudes. Furthermore, we predict the form of the full three-loop remainder function in the multi-Regge limit, beyond the leading-log approximation, up to a few constants representing terms not detected by the symbol. Our results confirm an all-loop prediction for the real part of the remainder function in multi-Regge 3 {yields} 3 scattering. In the multi-Regge limit, our result for the remainder function can be expressed entirely in terms of classical polylogarithms. For generic six-point kinematics other functions are required.

  20. Plasma dynamics above solar flare soft x-ray loop tops

    SciTech Connect (OSTI)

    Doschek, G. A.; Warren, H. P.; McKenzie, D. E.

    2014-06-10

    We measure non-thermal motions in flare loop tops and above the loop tops using profiles of highly ionized spectral lines of Fe XXIV and Fe XXIII formed at multimillion-degree temperatures. Non-thermal motions that may be due to turbulence or multiple flow regions along the line of sight are extracted from the line profiles. The non-thermal motions are measured for four flares seen at or close to the solar limb. The profile data are obtained using the Extreme-ultraviolet Imaging Spectrometer on the Hinode spacecraft. The multimillion-degree non-thermal motions are between 20 and 60 km s{sup 1} and appear to increase with height above the loop tops. Motions determined from coronal lines (i.e., lines formed at about 1.5 MK) tend to be smaller. The multimillion-degree temperatures in the loop tops and above range from about 11 MK to 15 MK and also tend to increase with height above the bright X-ray-emitting loop tops. The non-thermal motions measured along the line of sight, as well as their apparent increase with height, are supported by Solar Dynamics Observatory Atmospheric Imaging Assembly measurements of turbulent velocities in the plane of the sky.

  1. Well-observed dynamics of flaring and peripheral coronal magnetic loops during an M-class limb flare

    SciTech Connect (OSTI)

    Shen, Jinhua; Zhou, Tuanhui; Ji, Haisheng; Feng, Li; Wiegelmann, Thomas; Inhester, Bernd

    2014-08-20

    In this paper, we present a variety of well-observed dynamic behaviors for the flaring and peripheral magnetic loops of the M6.6 class extreme limb flare that occurred on 2011 February 24 (SOL2011-02-24T07:20) from EUV observations by the Atmospheric Imaging Assembly on the Solar Dynamics Observatory and X-ray observations by RHESSI. The flaring loop motion confirms the earlier contraction-expansion picture. We find that the U-shaped trajectory delineated by the X-ray corona source of the flare roughly follows the direction of a filament eruption associated with the flare. Different temperature structures of the coronal source during the contraction and expansion phases strongly suggest different kinds of magnetic reconnection processes. For some peripheral loops, we discover that their dynamics are closely correlated with the filament eruption. During the slow rising to abrupt, fast rising of the filament, overlying peripheral magnetic loops display different responses. Two magnetic loops on the elbow of the active region had a slow descending motion followed by an abrupt successive fast contraction, while magnetic loops on the top of the filament were pushed outward, slowly being inflated for a while and then erupting as a moving front. We show that the filament activation and eruption play a dominant role in determining the dynamics of the overlying peripheral coronal magnetic loops.

  2. Selective purge for hydrogenation reactor recycle loop

    DOE Patents [OSTI]

    Baker, Richard W. (Palo Alto, CA); Lokhandwala, Kaaeid A. (Union City, CA)

    2001-01-01

    Processes and apparatus for providing improved contaminant removal and hydrogen recovery in hydrogenation reactors, particularly in refineries and petrochemical plants. The improved contaminant removal is achieved by selective purging, by passing gases in the hydrogenation reactor recycle loop or purge stream across membranes selective in favor of the contaminant over hydrogen.

  3. User's manual for the vertical axis wind turbine performance...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: User's manual for the vertical axis wind turbine performance computer code darter Citation Details In-Document Search Title: User's manual for the vertical axis...

  4. User's manual for the vertical axis wind turbine performance...

    Office of Scientific and Technical Information (OSTI)

    User's manual for the vertical axis wind turbine performance computer code darter Citation Details In-Document Search Title: User's manual for the vertical axis wind turbine...

  5. Herrenknecht Vertical GmbH | Open Energy Information

    Open Energy Info (EERE)

    Specialized company that builds vertical drilling equipment for the development of geothermal resources. References: Herrenknecht Vertical GmbH1 This article is a stub....

  6. Stabilization of the Vertical Mode in Tokamaks by Localized Nonaxisymm...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Stabilization of the Vertical Mode in Tokamaks by Localized Nonaxisymmetric Fields Citation Details In-Document Search Title: Stabilization of the Vertical Mode in ...

  7. Vertical Seismic Profiling At Rye Patch Area (DOE GTP, 2011)...

    Open Energy Info (EERE)

    Vertical Seismic Profiling At Rye Patch Area (DOE GTP, 2011) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Vertical Seismic Profiling At Rye...

  8. Vertical Seismic Profiling At Snake River Plain Region (DOE GTP...

    Open Energy Info (EERE)

    Vertical Seismic Profiling At Snake River Plain Region (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Vertical Seismic Profiling At...

  9. Heating mechanisms for intermittent loops in active region cores from AIA/SDO EUV observations

    SciTech Connect (OSTI)

    Cadavid, A. C.; Lawrence, J. K.; Christian, D. J.; Jess, D. B.; Nigro, G.

    2014-11-01

    We investigate intensity variations and energy deposition in five coronal loops in active region cores. These were selected for their strong variability in the AIA/SDO 94 Å intensity channel. We isolate the hot Fe XVIII and Fe XXI components of the 94 Å and 131 Å by modeling and subtracting the 'warm' contributions to the emission. HMI/SDO data allow us to focus on 'inter-moss' regions in the loops. The detailed evolution of the inter-moss intensity time series reveals loops that are impulsively heated in a mode compatible with a nanoflare storm, with a spike in the hot 131 Å signals leading and the other five EUV emission channels following in progressive cooling order. A sharp increase in electron temperature tends to follow closely after the hot 131 Å signal confirming the impulsive nature of the process. A cooler process of growing emission measure follows more slowly. The Fourier power spectra of the hot 131 Å signals, when averaged over the five loops, present three scaling regimes with break frequencies near 0.1 min{sup –1} and 0.7 min{sup –1}. The low frequency regime corresponds to 1/f noise; the intermediate indicates a persistent scaling process and the high frequencies show white noise. Very similar results are found for the energy dissipation in a 2D 'hybrid' shell model of loop magneto-turbulence, based on reduced magnetohydrodynamics, that is compatible with nanoflare statistics. We suggest that such turbulent dissipation is the energy source for our loops.

  10. String loops in the field of braneworld spherically symmetric black holes and naked singularities

    SciTech Connect (OSTI)

    Stuchlk, Z.; Kolo, M. E-mail: martin.kolos@fpf.slu.cz

    2012-10-01

    We study motion of current-carrying string loops in the field of braneworld spherically symmetric black holes and naked singularities. The spacetime is described by the Reissner-Nordstrm geometry with tidal charge b reflecting the non-local tidal effects coming from the external dimension; both positive and negative values of the spacetime parameter b are considered. We restrict attention to the axisymmetric motion of string loops when the motion can be fully governed by an appropriately defined effective potential related to the energy and angular momentum of the string loops. In dependence on these two constants of the motion, the string loops can be captured, trapped, or can escape to infinity. In close vicinity of stable equilibrium points at the centre of trapped states the motion is regular. We describe how it is transformed to chaotic motion with growing energy of the string loop. In the field of naked singularities the trapped states located off the equatorial plane of the system exist and trajectories unable to cross the equatorial plane occur, contrary to the trajectories in the field of black holes where crossing the equatorial plane is always admitted. We concentrate our attention to the so called transmutation effect when the string loops are accelerated in the deep gravitational field near the black hole or naked singularity by transforming the oscillatory energy to the energy of the transitional motion. We demonstrate that the influence of the tidal charge can be substantial especially in the naked singularity spacetimes with b > 1 where the acceleration to ultrarelativistic velocities with Lorentz factor ? ? 100 can be reached, being more than one order higher in comparison with those obtained in the black hole spacetimes.

  11. MESSAGE: WIA W/O CLOSING REF CLOSING REF

    Office of Legacy Management (LM)

    MESSAGE: WIA W/O CLOSING REF CLOSING REF _ CONSTRUCTION COMPL DATE J. King SAIC J. Waddell SAIC R. Wright SAIC T. Gangwer SAIC M. Khan SAIC T. Patterson SAIC R. Tucker SAIC C.Helie SAIC K. Renfro SAIC S. Heptinstall SAIC PLEASE RETURN TO PDCC FOR CORRECTIONS MGMT. SYSTEMS: PROGRAM ADMIN.: DEPUTY PROGRAM MGR: PROJECT MANAGER: () I PROGRAM MANAGER: I I ANL: AJ. Dvorak ANL A Geisler ANL G. Maraman ANL D. Dunning ANL J. Wing BNI DIRECTOR. FSRD: L Price FSRD DEP. DIRECTOR. FSRD: W.Seay FSRD SITE

  12. Hydrogen-bond driven loop-closure kinetics in unfolded polypeptide chains

    SciTech Connect (OSTI)

    Daidone, Isabella [University of Heidelberg; Neuweiler, H [University of Heidelberg; Doose, S [University of Heidelberg; Sauer, M [University of Heidelberg; Smith, Jeremy C [ORNL

    2010-12-01

    Characterization of the length dependence of end-to-end loop-closure kinetics in unfolded polypeptide chains provides an understanding of early steps in protein folding. Here, loop-closure in poly-glycine-serine peptides is investigated by combining single-molecule fluorescence spectroscopy with molecular dynamics simulation. For chains containing more than 10 peptide bonds loop-closing rate constants on the 20-100 nanosecond time range exhibit a power-law length dependence. However, this scaling breaks down for shorter peptides, which exhibit slower kinetics arising from a perturbation induced by the dye reporter system used in the experimental setup. The loop-closure kinetics in the longer peptides is found to be determined by the formation of intra-peptide hydrogen bonds and transient beta-sheet structure, that accelerate the search for contacts among residues distant in sequence relative to the case of a polypeptide chain in which hydrogen bonds cannot form. Hydrogen-bond-driven polypeptide-chain collapse in unfolded peptides under physiological conditions found here is not only consistent with hierarchical models of protein folding, that highlights the importance of secondary structure formation early in the folding process, but is also shown to speed up the search for productive folding events.

  13. hardware-in-the-loop system

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hardware-in-the-loop system - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  14. Bootstrapping One-Loop QCD Amplitudes

    SciTech Connect (OSTI)

    Berger, Carola F.; /SLAC

    2006-09-08

    We review the recently developed bootstrap method for the computation of high-multiplicity QCD amplitudes at one loop. We illustrate the general algorithm step by step with a six-point example. The method combines (generalized) unitarity with on-shell recursion relations to determine the not cut-constructible, rational terms of these amplitudes. Our bootstrap approach works for arbitrary configurations of gluon helicities and arbitrary numbers of external legs.

  15. MAGNETIC LOOPS IN THE QUIET SUN

    SciTech Connect (OSTI)

    Wiegelmann, T.; Solanki, S. K.; Barthol, P.; Gandorfer, A.; Borrero, J. M.; Schmidt, W.; Pillet, V. MartInez; Bonet, J. A.; Domingo, V.; Knoelker, M.; Title, A. M.

    2010-11-10

    We investigate the fine structure of magnetic fields in the atmosphere of the quiet Sun. We use photospheric magnetic field measurements from SUNRISE/IMaX with unprecedented spatial resolution to extrapolate the photospheric magnetic field into higher layers of the solar atmosphere with the help of potential and force-free extrapolation techniques. We find that most magnetic loops that reach into the chromosphere or higher have one footpoint in relatively strong magnetic field regions in the photosphere. Ninety-one percent of the magnetic energy in the mid-chromosphere (at a height of 1 Mm) is in field lines, whose stronger footpoint has a strength of more than 300 G, i.e., above the equipartition field strength with convection. The loops reaching into the chromosphere and corona are also found to be asymmetric in the sense that the weaker footpoint has a strength B < 300 G and is located in the internetwork (IN). Such loops are expected to be strongly dynamic and have short lifetimes, as dictated by the properties of the IN fields.

  16. Gas Test Loop Booster Fuel Hydraulic Testing

    SciTech Connect (OSTI)

    Gas Test Loop Hydraulic Testing Staff

    2006-09-01

    The Gas Test Loop (GTL) project is for the design of an adaptation to the Advanced Test Reactor (ATR) to create a fast-flux test space where fuels and materials for advanced reactor concepts can undergo irradiation testing. Incident to that design, it was found necessary to make use of special booster fuel to enhance the neutron flux in the reactor lobe in which the Gas Test Loop will be installed. Because the booster fuel is of a different composition and configuration from standard ATR fuel, it is necessary to qualify the booster fuel for use in the ATR. Part of that qualification is the determination that required thermal hydraulic criteria will be met under routine operation and under selected accident scenarios. The Hydraulic Testing task in the GTL project facilitates that determination by measuring flow coefficients (pressure drops) over various regions of the booster fuel over a range of primary coolant flow rates. A high-fidelity model of the NW lobe of the ATR with associated flow baffle, in-pile-tube, and below-core flow channels was designed, constructed and located in the Idaho State University Thermal Fluids Laboratory. A circulation loop was designed and constructed by the university to provide reactor-relevant water flow rates to the test system. Models of the four booster fuel elements required for GTL operation were fabricated from aluminum (no uranium or means of heating) and placed in the flow channel. One of these was instrumented with Pitot tubes to measure flow velocities in the channels between the three booster fuel plates and between the innermost and outermost plates and the side walls of the flow annulus. Flow coefficients in the range of 4 to 6.5 were determined from the measurements made for the upper and middle parts of the booster fuel elements. The flow coefficient for the lower end of the booster fuel and the sub-core flow channel was lower at 2.3.

  17. Thermoelectric power generator with intermediate loop

    DOE Patents [OSTI]

    Bell, Lon E; Crane, Douglas Todd

    2013-05-21

    A thermoelectric power generator is disclosed for use to generate electrical power from heat, typically waste heat. An intermediate heat transfer loop forms a part of the system to permit added control and adjustability in the system. This allows the thermoelectric power generator to more effectively and efficiently generate power in the face of dynamically varying temperatures and heat flux conditions, such as where the heat source is the exhaust of an automobile, or any other heat source with dynamic temperature and heat flux conditions.

  18. Thermoelectric power generator with intermediate loop

    DOE Patents [OSTI]

    Bel,; Lon E.; Crane, Douglas Todd

    2009-10-27

    A thermoelectric power generator is disclosed for use to generate electrical power from heat, typically waste heat. An intermediate heat transfer loop forms a part of the system to permit added control and adjustability in the system. This allows the thermoelectric power generator to more effectively and efficiently generate power in the face of dynamically varying temperatures and heat flux conditions, such as where the heat source is the exhaust of an automobile, or any other heat source with dynamic temperature and heat flux conditions.

  19. Electrically floating, near vertical incidence, skywave antenna

    DOE Patents [OSTI]

    Anderson, Allen A.; Kaser, Timothy G.; Tremblay, Paul A.; Mays, Belva L.

    2014-07-08

    An Electrically Floating, Near Vertical Incidence, Skywave (NVIS) Antenna comprising an antenna element, a floating ground element, and a grounding element. At least part of said floating ground element is positioned between said antenna element and said grounding element. The antenna is separated from the floating ground element and the grounding element by one or more electrical insulators. The floating ground element is separated from said antenna and said grounding element by one or more electrical insulators.

  20. DOE Closes Investigation of Arcelik's Blomberg Refrigerator ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Arcelik's Blomberg Refrigerator DOE Closes Investigation of Arcelik's Blomberg Refrigerator September 1, 2010 - 4:37pm Addthis The Department of Energy has closed its investigation...

  1. DOE Closes Investigation of Whirlpool's Maytag Refrigerator ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Whirlpool's Maytag Refrigerator DOE Closes Investigation of Whirlpool's Maytag Refrigerator July 8, 2010 - 3:12pm Addthis The Department of Energy has closed its investigation...

  2. On Closed Shells in Nuclei

    DOE R&D Accomplishments [OSTI]

    Mayer, M. G.

    1948-02-01

    It has been suggested in the past that special numbers of neutrons or protons in the nucleus form a particularly stable configuration.{sup1} The complete evidence for this has never been summarized, nor is it generally recognized how convincing this evidence is. That 20 neutrons or protons (Ca{sup40}) form a closed shell is predicted by the Hartree model. A number of calculations support this fact.{sup2} These considerations will not be repeated here. In this paper, the experimental facts indicating a particular stability of shells of 50 and 82 protons and of 50, 82, and 126 neutrons will be listed.

  3. Closed inductively coupled plasma cell

    DOE Patents [OSTI]

    Manning, T.J.; Palmer, B.A.; Hof, D.E.

    1990-11-06

    A closed inductively coupled plasma cell generates a relatively high power, low noise plasma for use in spectroscopic studies is disclosed. A variety of gases can be selected to form the plasma to minimize spectroscopic interference and to provide a electron density and temperature range for the sample to be analyzed. Grounded conductors are placed at the tube ends and axially displaced from the inductive coil, whereby the resulting electromagnetic field acts to elongate the plasma in the tube. Sample materials can be injected in the plasma to be excited for spectroscopy. 1 fig.

  4. Virtual Vehicle - Component-in-the-Loop | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Virtual Vehicle - Component-in-the-Loop Preparing a plug-in hybrid electric vehicle (PHEV) battery for testing on Argonne's Battery-in-the-Loop system Preparing a plug-in hybrid electric vehicle (PHEV) battery for testing on Argonne's Battery-in-the-Loop system How do you evaluate unique vehicle configurations without building each vehicle from the ground up? Argonne researchers have developed sophisticated tools that enable creation of "virtual" vehicles using a technique called

  5. Entropy mode loops and cosmological correlations during perturbative reheating

    SciTech Connect (OSTI)

    Kaya, Ali; Kutluk, Emine Seyma E-mail: seymakutluk@gmail.com

    2015-01-01

    Recently, it has been shown that during preheating the entropy modes circulating in the loops, which correspond to the inflaton decay products, meaningfully modify the cosmological correlation functions at superhorizon scales. In this paper, we determine the significance of the same effect when reheating occurs in the perturbative regime. In a typical two scalar field model, the magnitude of the loop corrections are shown to depend on several parameters like the background inflaton amplitude in the beginning of reheating, the inflaton decay rate and the inflaton mass. Although the loop contributions turn out to be small as compared to the preheating case, they still come out larger than the loop effects during inflation.

  6. Static properties of nuclear matter within the Boson Loop Expansion

    SciTech Connect (OSTI)

    Alberico, W.M.; Cenni, R. Garbarino, G.; Quaglia, M.R.

    2008-08-15

    The use of the Boson Loop Expansion is proposed for investigating the static properties of nuclear matter. We explicitly consider a schematic dynamical model in which nucleons interact with the scalar-isoscalar {sigma} meson. The suggested approximation scheme is examined in detail at the mean field level and at the one- and two-loop orders. The relevant formulas are provided to derive the binding energy per nucleon, the pressure and the compressibility of nuclear matter. Numerical results of the binding energy at the one-loop order are presented for Walecka's {sigma}-{omega} model in order to discuss the degree of convergence of the Boson Loop Expansion.

  7. chemical-looping-combustion | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    plant applications. Oxy-combustion power generation provides oxygen to the combustion process by separating oxygen from air. However, chemical looping systems produce oxygen...

  8. Vertical deformation at western part of Sumatra

    SciTech Connect (OSTI)

    Febriyani, Caroline Prijatna, Kosasih Meilano, Irwan

    2015-04-24

    This research tries to make advancement in GPS signal processing to estimate the interseismic vertical deformation field at western part of Sumatra Island. The data derived by Continuous Global Positioning System (CGPS) from Badan Informasi Geospasial (BIG) between 2010 and 2012. GPS Analyze at Massachusetts Institute of Technology (GAMIT) software and Global Kalman Filter (GLOBK) software are used to process the GPS signal to estimate the vertical velocities of the CGPS station. In order to minimize noise due to atmospheric delay, Vienna Mapping Function 1 (VMF1) is used as atmospheric parameter model and include daily IONEX file provided by the Center for Orbit Determination in Europe (CODE) as well. It improves GAMIT daily position accuracy up to 0.8?mm. In a second step of processing, the GLOBK is used in order to estimate site positions and velocities in the ITRF08 reference frame. The result shows that the uncertainties of estimated displacement velocity at all CGPS stations are smaller than 1.5?mm/yr. The subsided deformation patterns are seen at the northern and southern part of west Sumatra. The vertical deformation at northern part of west Sumatra indicates postseismic phase associated with the 2010 and 2012 Northern Sumatra earthquakes and also the long-term postseismic associated with the 2004 and 2005 Northern Sumatra earthquakes. The uplifted deformation patterns are seen from Bukit Tinggi to Seblat which indicate a long-term interseismic phase after the 2007 Bengkulu earthquake and 2010 Mentawai earthquake. GANO station shows a subsidence at rate 12.25?mm/yr, indicating the overriding Indo-Australia Plate which is dragged down by the subducting Southeast Asian Plate.

  9. Long wavelength vertical cavity surface emitting laser

    DOE Patents [OSTI]

    Choquette, Kent D.; Klem, John F.

    2005-08-16

    Selectively oxidized vertical cavity lasers emitting near 1300 nm using InGaAsN quantum wells are reported for the first time which operate continuous wave below, at and above room temperature. The lasers employ two n-type Al.sub.0.94 Ga.sub.0.06 As/GaAs distributed Bragg reflectors each with a selectively oxidized current aperture adjacent to the active region, and the top output mirror contains a tunnel junction to inject holes into the active region. Continuous wave single mode lasing is observed up to 55.degree. C.

  10. Open-loop heat-recovery dryer

    DOE Patents [OSTI]

    TeGrotenhuis, Ward Evan

    2013-11-05

    A drying apparatus is disclosed that includes a drum and an open-loop airflow pathway originating at an ambient air inlet, passing through the drum, and terminating at an exhaust outlet. A passive heat exchanger is included for passively transferring heat from air flowing from the drum toward the exhaust outlet to air flowing from the ambient air inlet toward the drum. A heat pump is also included for actively transferring heat from air flowing from the passive heat exchanger toward the exhaust outlet to air flowing from the passive heat exchanger toward the drum. A heating element is also included for further heating air flowing from the heat pump toward the drum.

  11. Geothermal Loop Experimental Facility. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-04-01

    Research at the Geothermal Loop Experimental Facility was successfully concluded in September 1979. In 13,000 hours of operation over a three and one half year period, the nominal 10 megawatt electrical equivalent GLEF provided the opportunity to identify problems in working with highly saline geothermal fluids and to develop solutions that could be applied to a commercial geothermal power plant producing electricity. A seven and one half year period beginning in April 1972, with early well flow testing and ending in September 1979, with the completion of extensive facility and reservoir operations is covered. During this period, the facility was designed, constructed and operated in several configurations. A comprehensive reference document, addressing or referencing documentation of all the key areas investigated is presented.

  12. Gas Test Loop Functional and Technical Requirements

    SciTech Connect (OSTI)

    Glen R. Longhurst; Soli T. Khericha; James L. Jones

    2004-09-01

    This document defines the technical and functional requirements for a gas test loop (GTL) to be constructed for the purpose of providing a high intensity fast-flux irradiation environment for developers of advanced concept nuclear reactors. This capability is needed to meet fuels and materials testing requirements of the designers of Generation IV (GEN IV) reactors and other programs within the purview of the Advanced Fuel Cycle Initiative (AFCI). Space nuclear power development programs may also benefit by the services the GTL will offer. The overall GTL technical objective is to provide developers with the means for investigating and qualifying fuels and materials needed for advanced reactor concepts. The testing environment includes a fast-flux neutron spectrum of sufficient intensity to perform accelerated irradiation testing. Appropriate irradiation temperature, gaseous environment, test volume, diagnostics, and access and handling features are also needed. This document serves to identify those requirements as well as generic requirements applicable to any system of this kind.

  13. High vertical resolution crosswell seismic imaging

    DOE Patents [OSTI]

    Lazaratos, Spyridon K. (Houston, TX)

    1999-12-07

    A method for producing high vertical resolution seismic images from crosswell data is disclosed. In accordance with one aspect of the disclosure, a set of vertically spaced, generally horizontally extending continuous layers and associated nodes are defined within a region between two boreholes. The specific number of nodes is selected such that the value of a particular characteristic of the subterranean region at each of the nodes is one which can be determined from the seismic data. Once values are established at the nodes, values of the particular characteristic are assigned to positions between the node points of each layer based on the values at node within that layer and without regard to the values at node points within any other layer. A seismic map is produced using the node values and the assigned values therebetween. In accordance with another aspect of the disclosure, an approximate model of the region is established using direct arrival traveltime data. Thereafter, the approximate model is adjusted using reflected arrival data. In accordance with still another aspect of the disclosure, correction is provided for well deviation. An associated technique which provides improvements in ray tracing is also disclosed.

  14. Control system for a vertical axis windmill

    DOE Patents [OSTI]

    Brulle, Robert V. (St. Louis County, MO)

    1983-10-18

    A vertical axis windmill having a rotating structure is provided with a series of articulated vertical blades whose positions are controlled to maintain a constant RPM for the rotating structure, when wind speed is sufficient. A microprocessor controller is used to process information on wind speed, wind direction and RPM of the rotating structure to develop an electrical signal for establishing blade position. The preferred embodiment of the invention, when connected to a utility grid, is designed to generate 40 kilowatts of power when exposed to a 20 mile per hour wind. The control system for the windmill includes electrical blade actuators that modulate the blades of the rotating structure. Blade modulation controls the blade angle of attack, which in turn controls the RPM of the rotor. In the preferred embodiment, the microprocessor controller provides the operation logic and control functions. A wind speed sensor provides inputs to start or stop the windmill, and a wind direction sensor is used to keep the blade flip region at 90.degree. and 270.degree. to the wind. The control system is designed to maintain constant rotor RPM when wind speed is between 10 and 40 miles per hour.

  15. Effective Higgs vertices in the generic MSSM

    SciTech Connect (OSTI)

    Crivellin, Andreas

    2011-03-01

    In this article we consider chirally enhanced corrections to Higgs vertices in the most general MSSM. We include the contributions stemming from bilinear terms, from the trilinear A terms, and from their nonholomorphic analogues, the A{sup '} terms, which couple squarks to the ''wrong'' Higgs field. We perform a consistent renormalization of the Higgs vertices beyond the decoupling limit (M{sub SUSY{yields}{infinity}}), using a purely diagrammatic approach. The cancellation of the different contributions in and beyond the decoupling limit is discussed and the possible size of decoupling effects which occur if the supersymmetry particles are not much heavier than the electroweak scale are examined. In the decoupling limit we recover the results obtained in the effective-field-theory approach. For the nonholomorphic A{sup '} terms we find the well known tan{beta} enhancement in the down sector similar to the one for terms proportional to {mu}. Because of the a priori generic flavor structure of these trilinear terms large flavor-changing neutral Higgs couplings can be induced. We also discover new tan{beta} enhanced contributions involving the usual holomorphic A terms, which were not discussed before in the literature. These corrections occur only if also flavor-diagonal nonholomorphic corrections to the Higgs couplings are present. This reflects the fact that the A terms, and also the chirality-changing self-energies, are physical quantities and cannot be absorbed into renormalization constants.

  16. RECURRENT TWO-SIDED LOOP-TYPE JETS DUE TO A BIPOLE EMERGING BELOW TRANSEQUATORIAL LOOPS

    SciTech Connect (OSTI)

    Jiang, Yunchun; Bi, Yi; Yang, Jiayan; Li, Haidong; Yang, Bo; Zheng, Ruisheng

    2013-10-01

    We report four successive two-sided loop-type jets centered around a small bipole emerging below transequatorial interconnecting loops (TILs). They occurred at the very first emerging stage of the bipole in a short recurrent period of only 12 minutes. During this term, the emerging flux consisted of a main bipole, but showed a mixed-polarity field morphology with the appearance and then disappearance of a small magnetic feature in its interior. However, no associated cancellation of the bipole with the nearby flux was observed in this process. In multi-wavelength EUV images, the jets started nearly simultaneously and were similar in appearance. Each jet consisted of a pair of components that connected to two bright footpoints around the bipole and were ejected from the emergence location to opposite directions. While the two bright footpoints were separated by a gap and had consistent evolution with that of the bipole, the jet base region covering them accordingly showed four episodes of emission enhancement that peaked approximately at the jet start times. Compatible with the magnetic-reconnection jet mechanism, the recurrent two-sided loop-type jets are explained as a result of reconnection between the emerging bipole and the overlying TILs.

  17. Control and optimization system and method for chemical looping processes

    DOE Patents [OSTI]

    Lou, Xinsheng; Joshi, Abhinaya; Lei, Hao

    2014-06-24

    A control system for optimizing a chemical loop system includes one or more sensors for measuring one or more parameters in a chemical loop. The sensors are disposed on or in a conduit positioned in the chemical loop. The sensors generate one or more data signals representative of an amount of solids in the conduit. The control system includes a data acquisition system in communication with the sensors and a controller in communication with the data acquisition system. The data acquisition system receives the data signals and the controller generates the control signals. The controller is in communication with one or more valves positioned in the chemical loop. The valves are configured to regulate a flow of the solids through the chemical loop.

  18. Control and optimization system and method for chemical looping processes

    DOE Patents [OSTI]

    Lou, Xinsheng; Joshi, Abhinaya; Lei, Hao

    2015-02-17

    A control system for optimizing a chemical loop system includes one or more sensors for measuring one or more parameters in a chemical loop. The sensors are disposed on or in a conduit positioned in the chemical loop. The sensors generate one or more data signals representative of an amount of solids in the conduit. The control system includes a data acquisition system in communication with the sensors and a controller in communication with the data acquisition system. The data acquisition system receives the data signals and the controller generates the control signals. The controller is in communication with one or more valves positioned in the chemical loop. The valves are configured to regulate a flow of the solids through the chemical loop.

  19. Dynamics of the Coupled Human-climate System Resulting from Closed-loop Control of Solar Geoengineering

    SciTech Connect (OSTI)

    MacMartin, Douglas; Kravitz, Benjamin S.; Keith, David; Jarvis, Andrew

    2014-07-08

    If solar radiation management (SRM) were ever implemented, feedback of the observed climate state might be used to adjust the radiative forcing of SRM, in order to compensate for uncertainty in either the forcing or the climate response; this would also compensate for unexpected changes in the system, e.g. a nonlinear change in climate sensitivity. This feedback creates an emergent coupled human-climate system, with entirely new dynamics. In addition to the intended response to greenhouse-gas induced changes, the use of feedback would also result in a geoengineering response to natural climate variability. We use a simple box-diffusion dynamic model to understand how changing feedback-control parameters and time delay affect the behavior of this coupled natural-human system, and verify these predictions using the HadCM3L general circulation model. In particular, some amplification of natural variability is unavoidable; any time delay (e.g., to average out natural variability, or due to decision-making) exacerbates this amplification, with oscillatory behavior possible if there is a desire for rapid correction (high feedback gain), but a delayed response needed for decision making. Conversely, the need for feedback to compensate for uncertainty, combined with a desire to avoid excessive amplification, results in a limit on how rapidly SRM could respond to uncertain changes.

  20. Chemical Looping Combustion Reactions and Systems

    SciTech Connect (OSTI)

    Sarofim, Adel; Lighty, JoAnn; Smith, Philip; Whitty, Kevin; Eyring, Edward; Sahir, Asad; Alvarez, Milo; Hradisky, Michael; Clayton, Chris; Konya, Gabor; Baracki, Richard; Kelly, Kerry

    2014-03-01

    Chemical Looping Combustion (CLC) is one promising fuel-combustion technology, which can facilitate economic CO{sub 2} capture in coal-fired power plants. It employs the oxidation/reduction characteristics of a metal, or oxygen carrier, and its oxide, the oxidizing gas (typically air) and the fuel source may be kept separate. This topical report discusses the results of four complementary efforts: (5.1) the development of process and economic models to optimize important design considerations, such as oxygen carrier circulation rate, temperature, residence time; (5.2) the development of high-performance simulation capabilities for fluidized beds and the collection, parameter identification, and preliminary verification/uncertainty quantification; (5.3) the exploration of operating characteristics in the laboratoryscale bubbling bed reactor, with a focus on the oxygen carrier performance, including reactivity, oxygen carrying capacity, attrition resistance, resistance to deactivation, cost and availability; and (5.4) the identification of kinetic data for copper-based oxygen carriers as well as the development and analysis of supported copper oxygen carrier material. Subtask 5.1 focused on the development of kinetic expressions for the Chemical Looping with Oxygen Uncoupling (CLOU) process and validating them with reported literature data. The kinetic expressions were incorporated into a process model for determination of reactor size and oxygen carrier circulation for the CLOU process using ASPEN PLUS. An ASPEN PLUS process model was also developed using literature data for the CLC process employing an iron-based oxygen carrier, and the results of the process model have been utilized to perform a relative economic comparison. In Subtask 5.2, the investigators studied the trade-off between modeling approaches and available simulations tools. They quantified uncertainty in the high-performance computing (HPC) simulation tools for CLC bed applications. Furthermore, they performed a sensitivity analysis for velocity, height and polydispersity and compared results against literature data for experimental studies of CLC beds with no reaction. Finally, they present an optimization space using simple non-reactive configurations. In Subtask 5.3, through a series of experimental studies, behavior of a variety of oxygen carriers with different loadings and manufacturing techniques was evaluated under both oxidizing and reducing conditions. The influences of temperature, degree of carrier conversion and thermodynamic driving force resulting from the difference between equilibrium and system O{sub 2} partial pressures were evaluated through several experimental campaigns, and generalized models accounting for these influences were developed to describe oxidation and oxygen release. Conversion of three solid fuels with widely ranging reactivities was studied in a small fluidized bed system, and all but the least reactive fuel (petcoke) were rapidly converted by oxygen liberated from the CLOU carrier. Attrition propensity of a variety of carriers was also studied, and the carriers produced by freeze granulation or impregnation of preformed substrates displayed the lowest rates of attrition. Subtask 5.4 focused on gathering kinetic data for a copper-based oxygen carrier to assist with modeling of a functioning chemical looping reactor. The kinetics team was also responsible for the development and analysis of supported copper oxygen carrier material.

  1. Vertical-Axis Wind Turbine Mesh Generator

    SciTech Connect (OSTI)

    2014-01-24

    VAWTGen is a mesh generator for creating a finite element beam mesh of arbitrary vertical-axis wind turbines (VAWT). The software accepts input files specifying tower and blade structural and aerodynamic descriptions and constructs a VAWT using a minimal set of inputs. VAWTs with an arbitrary number of blades can be constructed with or without a central tower. Strut connections between the tower and blades can be specified in an arbitrary manner. The software also facilitates specifying arbitrary joints between structural components and concentrated structural tenns (mass and stiffness). The output files which describe the VAWT configuration are intended to be used with the Offshore Wind ENergy Simulation (OWENS) Toolkit software for structural dynamics analysis of VAWTs. Furthermore, VAWTGen is useful for visualizing output from the OWENS analysis software.

  2. Vertical-Axis Wind Turbine Mesh Generator

    Energy Science and Technology Software Center (OSTI)

    2014-01-24

    VAWTGen is a mesh generator for creating a finite element beam mesh of arbitrary vertical-axis wind turbines (VAWT). The software accepts input files specifying tower and blade structural and aerodynamic descriptions and constructs a VAWT using a minimal set of inputs. VAWTs with an arbitrary number of blades can be constructed with or without a central tower. Strut connections between the tower and blades can be specified in an arbitrary manner. The software also facilitatesmore » specifying arbitrary joints between structural components and concentrated structural tenns (mass and stiffness). The output files which describe the VAWT configuration are intended to be used with the Offshore Wind ENergy Simulation (OWENS) Toolkit software for structural dynamics analysis of VAWTs. Furthermore, VAWTGen is useful for visualizing output from the OWENS analysis software.« less

  3. Closed Gap Enzen | Open Energy Information

    Open Energy Info (EERE)

    search Name: Closed Gap-Enzen Place: Bangalore, India Zip: 560 052 Product: Formed as a joint venture, Closed Gap-Enzen provides a new integrated meter enabling seamless customer...

  4. Chemical Looping Combustion Reactions and Systems

    SciTech Connect (OSTI)

    Sarofim, Adel; Lighty, JoAnn; Smith, Philip; Whitty, Kevin; Eyring, Edward; Sahir, Asad; Alvarez, Milo; Hradisky, Michael; Clayton, Chris; Konya, Gabor; Baracki, Richard; Kelly, Kerry

    2011-07-01

    Chemical Looping Combustion (CLC) is one promising fuel-combustion technology, which can facilitate economic CO2 capture in coal-fired power plants. It employs the oxidation/reduction characteristics of a metal, or oxygen carrier, and its oxide, the oxidizing gas (typically air) and the fuel source may be kept separate. This work focused on two classes of oxygen carrier, one that merely undergoes a change in oxidation state, such as Fe3O4/Fe2O3 and one that is converted from its higher to its lower oxidation state by the release of oxygen on heating, i.e., CuO/Cu2O. This topical report discusses the results of four complementary efforts: (1) the development of process and economic models to optimize important design considerations, such as oxygen carrier circulation rate, temperature, residence time; (2) the development of high-performance simulation capabilities for fluidized beds and the collection, parameter identification, and preliminary verification/uncertainty quantification (3) the exploration of operating characteristics in the laboratory-scale bubbling bed reactor, with a focus on the oxygen carrier performance, including reactivity, oxygen carrying capacity, attrition resistance, resistance to deactivation, cost and availability (4) the identification of mechanisms and rates for the copper, cuprous oxide, and cupric oxide system using thermogravimetric analysis.

  5. TS LOOP NON-POTABLE PUMP EVALUATION

    SciTech Connect (OSTI)

    S. Goodin

    1999-05-14

    This analysis evaluates the existing subsurface non-potable water system from the portal pump to the end of the water line in the South Ramp and determines if the pump size and spacing meets the system pressure and flow requirements for construction operations and incipient fire fighting capability as established in the Subsurface Fire Hazards Analysis (CRWMS M&O 1998b). This analysis does not address the non potable water system in the Cross Drift which is covered under a previous design analysis (CRWMS-M&O 1998a). The Subsurface Fire Hazards Analysis references sections of OSHA 29 CFR 1910 Subpart L for requirements applicable to the incipient fire fighting hose stations used underground. This analysis does not address mechanical system valves, fittings, risers and other components of the system piping. This system is not designed or intended to meet all National Fire Protection Association (NFPA) codes for a fire fighting system but is only considered a backup system to fire extinguishers that are installed throughout the Topopah Springs (TS) Loop and may be used to fight small incipient stage fires.

  6. Supercritical binary geothermal cycle experiments with mixed-hydrocarbon working fluids and a vertical, in-tube, counterflow condenser

    SciTech Connect (OSTI)

    Demuth, O.J.; Bliem, C.J.; Mines, G.L.; Swank, W.D.

    1985-12-01

    The objective is improved utilization of moderate temperature geothermal resources. Current testing involves supercritical vaporization and counterflow in-tube condensing in an organic Rankine cycle. This report presents a description of the test facility and results from a part of the program in which the condenser was oriented in a vertical attitude. Results of the experiments for the supercritical heaters and the countercurrent, vertical, in-tube condenser are given for both pure and mixed-hydrocarbon working fluids. The heater and condenser behavior predicted by the Heat Transfer Research, Inc. computer codes used for correlation of the data was in excellent agreement with experimental results. A special series of tests, conducted with propane and up to approximately 40% isopentane concentration, indicated that a close approach to ''integral'' condensation was occurring in the vertically-oriented condenser.

  7. Robotic platform for traveling on vertical piping network

    DOE Patents [OSTI]

    Nance, Thomas A; Vrettos, Nick J; Krementz, Daniel; Marzolf, Athneal D

    2015-02-03

    This invention relates generally to robotic systems and is specifically designed for a robotic system that can navigate vertical pipes within a waste tank or similar environment. The robotic system allows a process for sampling, cleaning, inspecting and removing waste around vertical pipes by supplying a robotic platform that uses the vertical pipes to support and navigate the platform above waste material contained in the tank.

  8. Conventional Energy Forum & Associated Vertical Business Development: Best

    Energy Savers [EERE]

    Practices in Indian Country | Department of Energy Conventional Energy Forum & Associated Vertical Business Development: Best Practices in Indian Country Conventional Energy Forum & Associated Vertical Business Development: Best Practices in Indian Country March 1, 2012 Las Vegas, Nevada Mandalay Bay Resort & Casino The Office of Indian Energy Tribal Leader Energy Forum on "Conventional Energy (Oil, Gas, and Coal) Forum & Associated Vertical Business Development: Best

  9. Stabilization of the Vertical Mode in Tokamaks by Localized Nonaxisymmetric

    Office of Scientific and Technical Information (OSTI)

    Fields (Journal Article) | SciTech Connect Journal Article: Stabilization of the Vertical Mode in Tokamaks by Localized Nonaxisymmetric Fields Citation Details In-Document Search Title: Stabilization of the Vertical Mode in Tokamaks by Localized Nonaxisymmetric Fields Vertical instability of a tokamak plasma can be controlled by nonaxisymmetric magnetic fields localized near the plasma edge at the bottom and top of the torus. The required magnetic fields can be produced by a relatively

  10. Fiber-bragg grating-loop ringdown method and apparatus

    DOE Patents [OSTI]

    Wang, Chuji (Starkville, MS)

    2008-01-29

    A device comprising a fiber grating loop ringdown (FGLRD) system of analysis is disclosed. A fiber Bragg grating (FBG) or Long-Period grating (LPG) written in a section of single mode fused silica fiber is incorporated into a fiber loop. By utilizing the wing areas of the gratings' bandwidth as a wavelength dependent attenuator of the light transmission, a fiber grating loop ringdown concept is formed. One aspect of the present invention is temperature sensing, which has been demonstrated using the disclosed device. Temperature measurements in the areas of accuracy, stability, high temperature, and dynamic range are also described.

  11. Innovative Offshore Vertical-Axis Wind Turbine Rotors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Offshore Vertical-Axis Wind Turbine Rotors - Sandia Energy ... Lab Photovoltaic Systems Evaluation Laboratory PV Regional ... Facility Geomechanics and Drilling Labs National ...

  12. Vertical Electrical Sounding Configurations At Mt Princeton Hot...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Vertical Electrical Sounding Configurations At Mt Princeton Hot Springs Geothermal Area (Zohdy, Et Al.,...

  13. An ultimate storage ring lattice with vertical emittance generated...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: An ultimate storage ring lattice with vertical emittance generated by damping wigglers Citation Details In-Document Search Title: An ultimate storage ring lattice...

  14. Assessing Cloud Spatial and Vertical Distribution with Infrared...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on assessing cloud spatial and vertical distribution with a recently developed infrared (IR) cloud analyzer, named Nephelo. The experiment took place at the ARM's central facility,...

  15. Geothermal Heat Pumps- Heating Mode

    Broader source: Energy.gov [DOE]

    In winter, fluid passing through this vertical, closed loop system is warmed by the heat of the earth; this heat is then transferred to the building.

  16. Geothermal Heat Pump System for the New 500-bed 200,000 SF Student Housing Project at the University at Albanys Main Campus

    Broader source: Energy.gov [DOE]

    This project proposes to heat and cool planned 500-bed apartment-style student housing with closed loop vertical bore geothermal heat pump system installation.

  17. Engineering design of vertical test stand cryostat

    SciTech Connect (OSTI)

    Suhane, S.K.; Sharma, N.K.; Raghavendra, S.; Joshi, S.C.; Das, S.; Kush, P.K.; Sahni, V.C.; Gupta, P.D.; Sylvester, C.; Rabehl, R.; Ozelis, J.; /Fermilab

    2011-03-01

    Under Indian Institutions and Fermilab collaboration, Raja Ramanna Centre for Advanced Technology and Fermi National Accelerator Laboratory are jointly developing 2K Vertical Test Stand (VTS) cryostats for testing SCRF cavities at 2K. The VTS cryostat has been designed for a large testing aperture of 86.36 cm for testing of 325 MHz Spoke resonators, 650 MHz and 1.3 GHz multi-cell SCRF cavities for Fermilab's Project-X. Units will be installed at Fermilab and RRCAT and used to test cavities for Project-X. A VTS cryostat comprises of liquid helium (LHe) vessel with internal magnetic shield, top insert plate equipped with cavity support stand and radiation shield, liquid nitrogen (LN{sub 2}) shield and vacuum vessel with external magnetic shield. The engineering design and analysis of VTS cryostat has been carried out using ASME B&PV Code and Finite Element Analysis. Design of internal and external magnetic shields was performed to limit the magnetic field inside LHe vessel at the cavity surface <1 {micro}T. Thermal analysis for LN{sub 2} shield has been performed to check the effectiveness of LN{sub 2} cooling and for compliance with ASME piping code allowable stresses.

  18. HIGH SPATIAL RESOLUTION OBSERVATIONS OF LOOPS IN THE SOLAR CORONA

    SciTech Connect (OSTI)

    Brooks, David H.; Ugarte-Urra, Ignacio [College of Science, George Mason University, 4400 University Drive, Fairfax, VA 22030 (United States); Warren, Harry P. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Winebarger, Amy R. [NASA Marshall Space Flight Center, ZP 13, Huntsville, AL 35812 (United States)

    2013-08-01

    Understanding how the solar corona is structured is of fundamental importance to determine how the Sun's upper atmosphere is heated to high temperatures. Recent spectroscopic studies have suggested that an instrument with a spatial resolution of 200 km or better is necessary to resolve coronal loops. The High Resolution Coronal Imager (Hi-C) achieved this performance on a rocket flight in 2012 July. We use Hi-C data to measure the Gaussian widths of 91 loops observed in the solar corona and find a distribution that peaks at about 270 km. We also use Atmospheric Imaging Assembly data for a subset of these loops and find temperature distributions that are generally very narrow. These observations provide further evidence that loops in the solar corona are often structured at a scale of several hundred kilometers, well above the spatial scale of many proposed physical mechanisms.

  19. Mechanisms Engineering Test Loop - Phase I Status Report - FY2015

    SciTech Connect (OSTI)

    Hvasta, M.; Grandy, C.; Lisowski, D.; Borowski, A.

    2015-09-01

    This report documents the current status of the Mechanisms Engineering Test Loop (METL) as of the end of FY2015. METL is currently in Phase I of its design and construction.

  20. Oxygen Carriers for Solid Fuel Chemical Looping Combustion Process - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Oxygen Carriers for Solid Fuel Chemical Looping Combustion Process Regenerable Mixed Copper-Iron-Inert Support Oxygen Carriers National Energy Technology Laboratory Contact NETL About This Technology Publications: PDF Document Publication 13159553.pdf (405 KB) Technology Marketing Summary This patent-pending technology, "Regenerable Mixed Copper-Iron-Inert Support Oxygen Carriers for Solid Fuel Chemical Looping Combustion Process," provides a metal-oxide oxygen

  1. Contributions of the interdomain loop, amino terminus, and subunit

    Office of Scientific and Technical Information (OSTI)

    interface to the ligand-facilitated dimerization of neurophysin: Crystal structures and mutation studies of bovine neurophysin-I (Journal Article) | SciTech Connect SciTech Connect Search Results Journal Article: Contributions of the interdomain loop, amino terminus, and subunit interface to the ligand-facilitated dimerization of neurophysin: Crystal structures and mutation studies of bovine neurophysin-I Citation Details In-Document Search Title: Contributions of the interdomain loop, amino

  2. Characterizing Loop Dynamics and Ligand Recognition in Human- and

    Office of Scientific and Technical Information (OSTI)

    Avian-Type Influenza Neuraminidases via Generalized Born Molecular Dynamics and End-Point Free Energy Calculations (Journal Article) | SciTech Connect Journal Article: Characterizing Loop Dynamics and Ligand Recognition in Human- and Avian-Type Influenza Neuraminidases via Generalized Born Molecular Dynamics and End-Point Free Energy Calculations Citation Details In-Document Search Title: Characterizing Loop Dynamics and Ligand Recognition in Human- and Avian-Type Influenza Neuraminidases

  3. Thermoelectric Power Generation System with Loop Thermosyphon in Future

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Efficiency Hybrid Vehicles | Department of Energy Power Generation System with Loop Thermosyphon in Future High Efficiency Hybrid Vehicles Thermoelectric Power Generation System with Loop Thermosyphon in Future High Efficiency Hybrid Vehicles This project discusses preliminary experimental results to find how thermoelectrics can be applied ot future hybrid vehicles and the optimum design of such equipment using heat pipes PDF icon deer09_kim.pdf More Documents & Publications Low and

  4. Triple loop heat exchanger for an absorption refrigeration system

    DOE Patents [OSTI]

    Reimann, Robert C. (Lafayette, NY)

    1984-01-01

    A triple loop heat exchanger for an absorption refrigeration system is disclosed. The triple loop heat exchanger comprises portions of a strong solution line for conducting relatively hot, strong solution from a generator to a solution heat exchanger of the absorption refrigeration system, conduit means for conducting relatively cool, weak solution from the solution heat exchanger to the generator, and a bypass system for conducting strong solution from the generator around the strong solution line and around the solution heat exchanger to an absorber of the refrigeration system when strong solution builds up in the generator to an undesirable level. The strong solution line and the conduit means are in heat exchange relationship with each other in the triple loop heat exchanger so that, during normal operation of the refrigeration system, heat is exchanged between the relatively hot, strong solution flowing through the strong solution line and the relatively cool, weak solution flowing through the conduit means. Also, the strong solution line and the bypass system are in heat exchange relationship in the triple loop heat exchanger so that if the normal flow path of relatively hot, strong solution flowing from the generator to an absorber is blocked, then this relatively, hot strong solution which will then be flowing through the bypass system in the triple loop heat exchanger, is brought into heat exchange relationship with any strong solution which may have solidified in the strong solution line in the triple loop heat exchanger to thereby aid in desolidifying any such solidified strong solution.

  5. The One-Loop Six-Dimensional Hexagon Integral and its Relation to MHV Amplitudes in N=4 SYM

    SciTech Connect (OSTI)

    Dixon, Lance J.; Drummond, James M.; Henn, Johannes M.; /Humboldt U., Berlin

    2011-08-19

    We provide an analytic formula for the (rescaled) one-loop scalar hexagon integral {tilde {Phi}}{sub 6} with all external legs massless, in terms of classical polylogarithms. We show that this integral is closely connected to two integrals appearing in one- and two-loop amplitudes in planar N = 4 super-Yang-Mills theory, {Omega}{sup (1)} and {Omega}{sup (2)}. The derivative of {Omega}{sup (2)} with respect to one of the conformal invariants yields {tilde {Phi}}{sub 6}, while another first-order differential operator applied to {tilde {Phi}}{sub 6} yields {Omega}{sup (1)}. We also introduce some kinematic variables that rationalize the arguments of the polylogarithms, making it easy to verify the latter differential equation. We also give a further example of a six-dimensional integral relevant for amplitudes in N = 4 super-Yang-Mills.

  6. Steerable vertical to horizontal energy transducer for mobile robots

    DOE Patents [OSTI]

    Spletzer, Barry L. (Albuquerque, NM); Fischer, Gary J. (Albuquerque, NM); Feddema, John T. (Albuquerque, NM)

    2001-01-01

    The present invention provides a steerable vertical to horizontal energy transducer for mobile robots that less complex and requires less power than two degree of freedom tilt mechanisms. The present invention comprises an end effector that, when mounted with a hopping actuator, translates along axis (typically vertical) actuation into combined vertical and horizontal motion. The end effector, or foot, mounts with an end of the actuator that moves toward the support surface (typically a floor or the earth). The foot is shaped so that the first contact with the support surface is off the axis of the actuator. Off-axis contact with the support surface generates an on-axis force (typically resulting in vertical motion) and a moment orthogonal to the axis. The moment initiates a horizontal tumbling motion, and tilts the actuator so that its axis is oriented with a horizontal component and continued actuation generates both vertical and horizontal force.

  7. On the Ramsey numbers for complete distance graphs with vertices in {l_brace}0,1{r_brace}{sup n}

    SciTech Connect (OSTI)

    Mikhailov, Kirill A; Raigorodskii, Andrei M [M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Moscow (Russian Federation)

    2009-12-31

    A new problem of Ramsey type is posed for complete distance graphs in R{sup n} with vertices in the Boolean cube. This problem is closely related to the classical Nelson-Erdos-Hadwiger problem on the chromatic number of a space. Several quite sharp estimates are obtained for certain numerical characteristics that appear in the framework of the problem. Bibliography: 15 titles.

  8. Winter Road Closings | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FY 2016 Argonne Winter Road Closings Click image for larger map Winter Road Closings Under the Seasonal Closure Plan for roads and parking lots, several areas will be closed for the entire winter season while other areas will be cleared within a few days after the end of a winter storm. All three of the laboratory's entrance gates will remain open according to their normal operating schedules during the winter season. Areas that will remain closed during the entire winter season are as follows:

  9. Museum Closed for New Year's Holiday

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Museum Closed for New Year's Holiday Museum Closed for New Year's Holiday WHEN: Jan 01, 2016 12:00 AM - 11:59 PM WHERE: Bradbury Science Museum 1350 Central Ave, Los Alamos, NM 87544, USA CATEGORY: Bradbury INTERNAL: Calendar Login Museum Closed for New Year's Holiday Event Description The Bradbury Science Museum will be CLOSED for the New Year's holiday. The Bradbury Science Museum is open to the public every day except for Thanksgiving Day, Christmas Day and New Year's Day. Admission is always

  10. Use of Multiple Reheat Helium Brayton Cycles to Eliminate the Intermediate Heat Transfer Loop for Advanced Loop Type SFRs

    SciTech Connect (OSTI)

    Haihua Zhao; Hongbin Zhang; Samuel E. Bays

    2009-05-01

    The sodium intermediate heat transfer loop is used in existing sodium cooled fast reactor (SFR) plant design as a necessary safety measure to separate the radioactive primary loop sodium from the water of the steam Rankine power cycle. However, the intermediate heat transfer loop significantly increases the SFR plant cost and decreases the plant reliability due to the relatively high possibility of sodium leakage. A previous study shows that helium Brayton cycles with multiple reheat and intercooling for SFRs with reactor outlet temperature in the range of 510C to 650C can achieve thermal efficiencies comparable to or higher than steam cycles or recently proposed supercritical CO2 cycles. Use of inert helium as the power conversion working fluid provides major advantages over steam or CO2 by removing the requirement for safety systems to prevent and mitigate the sodium-water or sodium-CO2 reactions. A helium Brayton cycle power conversion system therefore makes the elimination of the intermediate heat transfer loop possible. This paper presents a pre-conceptual design of multiple reheat helium Brayton cycle for an advanced loop type SFR. This design widely refers the new horizontal shaft distributed PBMR helium power conversion design features. For a loop type SFR with reactor outlet temperature 550C, the design achieves 42.4% thermal efficiency with favorable power density comparing with high temperature gas cooled reactors.

  11. High Temperature Fluoride Salt Test Loop

    SciTech Connect (OSTI)

    Aaron, Adam M.; Cunningham, Richard Burns; Fugate, David L.; Holcomb, David Eugene; Kisner, Roger A.; Peretz, Fred J.; Robb, Kevin R.; Wilson, Dane F.; Yoder, Jr, Graydon L.

    2015-12-01

    Effective high-temperature thermal energy exchange and delivery at temperatures over 600°C has the potential of significant impact by reducing both the capital and operating cost of energy conversion and transport systems. It is one of the key technologies necessary for efficient hydrogen production and could potentially enhance efficiencies of high-temperature solar systems. Today, there are no standard commercially available high-performance heat transfer fluids above 600°C. High pressures associated with water and gaseous coolants (such as helium) at elevated temperatures impose limiting design conditions for the materials in most energy systems. Liquid salts offer high-temperature capabilities at low vapor pressures, good heat transport properties, and reasonable costs and are therefore leading candidate fluids for next-generation energy production. Liquid-fluoride-salt-cooled, graphite-moderated reactors, referred to as Fluoride Salt Reactors (FHRs), are specifically designed to exploit the excellent heat transfer properties of liquid fluoride salts while maximizing their thermal efficiency and minimizing cost. The FHR s outstanding heat transfer properties, combined with its fully passive safety, make this reactor the most technologically desirable nuclear power reactor class for next-generation energy production. Multiple FHR designs are presently being considered. These range from the Pebble Bed Advanced High Temperature Reactor (PB-AHTR) [1] design originally developed by UC-Berkeley to the Small Advanced High-Temperature Reactor (SmAHTR) and the large scale FHR both being developed at ORNL [2]. The value of high-temperature, molten-salt-cooled reactors is also recognized internationally, and Czechoslovakia, France, India, and China all have salt-cooled reactor development under way. The liquid salt experiment presently being developed uses the PB-AHTR as its focus. One core design of the PB-AHTR features multiple 20 cm diameter, 3.2 m long fuel channels with 3 cm diameter graphite-based fuel pebbles slowly circulating up through the core. Molten salt coolant (FLiBe) at 700°C flows concurrently (at significantly higher velocity) with the pebbles and is used to remove heat generated in the reactor core (approximately 1280 W/pebble), and supply it to a power conversion system. Refueling equipment continuously sorts spent fuel pebbles and replaces spent or damaged pebbles with fresh fuel. By combining greater or fewer numbers of pebble channel assemblies, multiple reactor designs with varying power levels can be offered. The PB-AHTR design is discussed in detail in Reference [1] and is shown schematically in Fig. 1. Fig. 1. PB-AHTR concept (drawing taken from Peterson et al., Design and Development of the Modular PB-AHTR Proceedings of ICApp 08). Pebble behavior within the core is a key issue in proving the viability of this concept. This includes understanding the behavior of the pebbles thermally, hydraulically, and mechanically (quantifying pebble wear characteristics, flow channel wear, etc). The experiment being developed is an initial step in characterizing the pebble behavior under realistic PB-AHTR operating conditions. It focuses on thermal and hydraulic behavior of a static pebble bed using a convective salt loop to provide prototypic fluid conditions to the bed, and a unique inductive heating technique to provide prototypic heating in the pebbles. The facility design is sufficiently versatile to allow a variety of other experimentation to be performed in the future. The facility can accommodate testing of scaled reactor components or sub-components such as flow diodes, salt-to-salt heat exchangers, and improved pump designs as well as testing of refueling equipment, high temperature instrumentation, and other reactor core designs.

  12. Gas mixtures for spark gap closing switches

    DOE Patents [OSTI]

    Christophorou, Loucas G. (Oak Ridge, TN); McCorkle, Dennis L. (Knoxville, TN); Hunter, Scott R. (Oak Ridge, TN)

    1988-01-01

    Gas mixtures for use in spark gap closing switches comprised of fluorocarbons and low molecular weight, inert buffer gases. To this can be added a third gas having a low ionization potential relative to the buffer gas. The gas mixtures presented possess properties that optimized the efficiency spark gap closing switches.

  13. Gas mixtures for spark gap closing switches

    DOE Patents [OSTI]

    Christophorou, L.G.; McCorkle, D.L.; Hunter, S.R.

    1987-02-20

    Gas mixtures for use in spark gap closing switches comprised of fluorocarbons and low molecular weight, inert buffer gases. To this can be added a third gas having a low ionization potential relative to the buffer gas. The gas mixtures presented possess properties that optimized the efficiency spark gap closing switches. 6 figs.

  14. Hard thermal loops, to quadratic order, in the background of a spatial 't

    Office of Scientific and Technical Information (OSTI)

    Hooft loop (Journal Article) | SciTech Connect Hard thermal loops, to quadratic order, in the background of a spatial 't Hooft loop Citation Details In-Document Search Title: Hard thermal loops, to quadratic order, in the background of a spatial 't Hooft loop We compute the simplest hard thermal loops for a spatial 't Hooft loop in the deconfined phase of a SU(N) gauge theory. We expand to quadratic order about a constant background field A{sub 0}=Q/g, where Q is a diagonal, color matrix and

  15. Open loop pneumatic control of a Lysholm engine or turbine exhaust pressure

    SciTech Connect (OSTI)

    Plonski, B.A.

    1981-07-17

    A Lysholm engine, or helical screw expander, is currently being evaluated at the University of California, Berkeley for staging with a conventional turbine in geothermal energy conversion. A pneumatic closed loop, proportional-integral control system was implemented to control the Lysholm engine's exhaust pressure for performance testing of the engine at constant inlet/outlet pressure ratios. The control system will also be used to control the exhaust pressure of the conventional turbine during future testing of the staged Lysholm-turbine system. Analytical modeling of the control system was performed and successful tuning was achieved by applying Ziegler-Nichol's tuning method. Stable control and quick response, of approximately 1 minute, was demonstrated for load and set point changes in desired exhaust pressures.

  16. The one-loop six-dimensional hexagon integral with three massive corners

    SciTech Connect (OSTI)

    Del Duca, Vittorio; Dixon, Lance J.; Drummond, James M.; Duhr, Claude; Henn, Johannes M.; Smirnov, Vladimir A.; /Moscow State U.

    2011-11-04

    We compute the six-dimensional hexagon integral with three non-adjacent external masses analytically. After a simple rescaling, it is given by a function of six dual conformally invariant cross-ratios. The result can be expressed as a sum of 24 terms involving only one basic function, which is a simple linear combination of logarithms, dilogarithms, and trilogarithms of uniform degree three transcendentality. Our method uses differential equations to determine the symbol of the function, and an algorithm to reconstruct the latter from its symbol. It is known that six-dimensional hexagon integrals are closely related to scattering amplitudes in N = 4 super Yang-Mills theory, and we therefore expect our result to be helpful for understanding the structure of scattering amplitudes in this theory, in particular at two loops.

  17. Sidewall containment of liquid metal with vertical alternating magnetic fields

    DOE Patents [OSTI]

    Lari, R.J.; Praeg, W.F.; Turner, L.R.; Battles, J.E.; Hull, J.R.; Rote, D.M.

    1988-06-17

    An apparatus for containing molten metal using a magnet producing vertical alternating magnetic field positioned adjacent to the area in which the molten metal is to be confined. This invention can be adapted particularly to the casting of metal between counter-rotating rollers with the vertical alternating magnetic field used to confine the molten metal at the edges of the rollers. Alternately, the vertical alternating magnetic field can be used as a flow regulator in casting molten metal from an opening in a channel. 8 figs.

  18. Sidewall containment of liquid metal with vertical alternating magnetic fields

    DOE Patents [OSTI]

    Lari, R.J.; Praeg, W.F.; Turner, L.R.; Battles, J.E.; Hull, J.R.; Rote, D.M.

    1990-12-04

    An apparatus is disclosed for containing molten metal using a magnet producing vertical alternating magnetic field positioned adjacent the area in which the molten metal is to be confined. This invention can be adapted particularly to the casting of metal between counter-rotating rollers with the vertical alternating magnetic field used to confine the molten metal at the edges of the rollers. Alternately, the vertical alternating magnetic field can be used as a flow regulator in casting molten metal from an opening in a channel. 9 figs.

  19. ARM - Evaluation Product - Vertical Air Motion during Large-Scale

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stratiform Rain ProductsVertical Air Motion during Large-Scale Stratiform Rain ARM Data Discovery Browse Data Documentation Use the Data File Inventory tool to view data availability at the file level. Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : Vertical Air Motion during Large-Scale Stratiform Rain The Vertical Air Motion during Large-Scale Stratiform Rain (VERVELSR) value-added product (VAP) uses the unique

  20. Sidewall containment of liquid metal with vertical alternating magnetic fields

    DOE Patents [OSTI]

    Lari, Robert J. (Aurora, IL); Praeg, Walter F. (Palos Park, IL); Turner, Larry R. (Naperville, IL); Battles, James E. (Oak Forest, IL); Hull, John R. (Hinsdale, IL); Rote, Donald M. (Lagrange, IL)

    1990-01-01

    An apparatus for containing molten metal using a magnet producing vertical alternating magnetic field positioned adjacent the area in which the molten metal is to be confined. This invention can be adapted particularly to the casting of metal between counter-rotating rollers with the vertical alternating magnetic field used to confine the molten metal at the edges of the rollers. Alternately, the vertical alternating magnetic field can be used as a flow regulator in casting molten metal from an opening in a channel.

  1. Visualizations of coherent center domains in local Polyakov loops

    SciTech Connect (OSTI)

    Stokes, Finn M. Kamleh, Waseem; Leinweber, Derek B.

    2014-09-15

    Quantum Chromodynamics exhibits a hadronic confined phase at low to moderate temperatures and, at a critical temperature T{sub C}, undergoes a transition to a deconfined phase known as the quarkgluon plasma. The nature of this deconfinement phase transition is probed through visualizations of the Polyakov loop, a gauge independent order parameter. We produce visualizations that provide novel insights into the structure and evolution of center clusters. Using the HMC algorithm the percolation during the deconfinement transition is observed. Using 3D rendering of the phase and magnitude of the Polyakov loop, the fractal structure and correlations are examined. The evolution of the center clusters as the gauge fields thermalize from below the critical temperature to above it are also exposed. We observe deconfinement proceeding through a competition for the dominance of a particular center phase. We use stout-link smearing to remove small-scale noise in order to observe the large-scale evolution of the center clusters. A correlation between the magnitude of the Polyakov loop and the proximity of its phase to one of the center phases of SU(3) is evident in the visualizations. - Highlights: We produce visualizations of center clusters in Polyakov loops. The evolution of center clusters with HMC simulation time is examined. Visualizations provide novel insights into the percolation of center clusters. The magnitude and phase of the Polyakov loop are studied. A correlation between the magnitude and center phase proximity is evident.

  2. Automated event generation for loop-induced processes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hirschi, Valentin; Mattelaer, Olivier

    2015-10-22

    We present the first fully automated implementation of cross-section computation and event generation for loop-induced processes. This work is integrated in the MadGraph5_aMC@NLO framework. We describe the optimisations implemented at the level of the matrix element evaluation, phase space integration and event generation allowing for the simulation of large multiplicity loop-induced processes. Along with some selected differential observables, we illustrate our results with a table showing inclusive cross-sections for all loop-induced hadronic scattering processes with up to three final states in the SM as well as for some relevant 2 → 4 processes. Furthermore, many of these are computed heremore » for the first time.« less

  3. Expansion-loop enclosure resolves subsea line problems

    SciTech Connect (OSTI)

    Rich, S.K.; Alleyne, A.G.

    1998-08-03

    Recent design and construction of a Gulf of Mexico subsea pipeline illustrate the use of buried, enclosed expansion loops to resolve problems from expansion and upheaval buckling. Buried, subsea pipelines operating at high temperatures and pressures experience extreme compressive loads caused by the axial restraint of the soil. The high axial forces combined with imperfections in the seabed may overstress the pipeline or result in upheaval buckling. Typically, expansion loops, or doglegs, are installed to protect the pipeline risers from expansion and to alleviate axial forces. Buried expansion loops, however, are rendered virtually ineffective by the lateral restraint of the soil. Alternative methods to reduce expansion may increase the potential of upheaval buckling or overstressing the pipeline. Therefore, system design must consider expansion and upheaval buckling together. Discussed here are methods of prevention and control of expansion and upheaval buckling, evaluating the impact on the overall system.

  4. Automated event generation for loop-induced processes

    SciTech Connect (OSTI)

    Hirschi, Valentin; Mattelaer, Olivier

    2015-10-22

    We present the first fully automated implementation of cross-section computation and event generation for loop-induced processes. This work is integrated in the MadGraph5_aMC@NLO framework. We describe the optimisations implemented at the level of the matrix element evaluation, phase space integration and event generation allowing for the simulation of large multiplicity loop-induced processes. Along with some selected differential observables, we illustrate our results with a table showing inclusive cross-sections for all loop-induced hadronic scattering processes with up to three final states in the SM as well as for some relevant 2 → 4 processes. Furthermore, many of these are computed here for the first time.

  5. Doppler Lidar Vertical Velocity Statistics Value-Added Product

    SciTech Connect (OSTI)

    Newsom, RK; Sivaraman, C; Shippert, TR; Riihimaki, LD

    2015-07-01

    fluctuations are crucial for improved understanding of turbulent mixing and diffusion, convective initiation, and cloud life cycles. The Atmospheric Radiation Measurement (ARM) Climate Research Facility operates coherent Doppler lidar systems at several sites around the globe. These instruments provide measurements of clear-air vertical velocity profiles in the lower troposphere with a nominal temporal resolution of 1 sec and height resolution of 30 m. The purpose of the Doppler lidar vertical velocity statistics (DLWSTATS) value-added product (VAP) is to produce height- and time-resolved estimates of vertical velocity variance, skewness, and kurtosis from these raw measurements. The VAP also produces estimates of cloud properties, including cloud-base height (CBH), cloud frequency, cloud-base vertical velocity, and cloud-base updraft fraction.

  6. Development and application of new methods to retrieve vertical structure

    Office of Scientific and Technical Information (OSTI)

    of precipitation above the ARM CART sites from MMCR measurements (Technical Report) | SciTech Connect Development and application of new methods to retrieve vertical structure of precipitation above the ARM CART sites from MMCR measurements Citation Details In-Document Search Title: Development and application of new methods to retrieve vertical structure of precipitation above the ARM CART sites from MMCR measurements The main objective of this project was to develop, validate and apply

  7. Development and application of new methods to retrieve vertical structure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of precipitation above the ARM CART sites from MMCR measurements (Technical Report) | SciTech Connect Technical Report: Development and application of new methods to retrieve vertical structure of precipitation above the ARM CART sites from MMCR measurements Citation Details In-Document Search Title: Development and application of new methods to retrieve vertical structure of precipitation above the ARM CART sites from MMCR measurements The main objective of this project was to develop,

  8. The pomeron in closed bosonic string theory

    SciTech Connect (OSTI)

    Fazio, A. R.

    2010-12-22

    We compute the couplings of the pomeron to the first few mass levels of closed bosonic string states in flat space. We recognize the deviation from the linearity of the Regge trajectories in a five dimensional anti De Sitter background.

  9. NREL Visitors Center Closing Temporarily for Remodeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Visitors Center Closing Temporarily for Remodeling Media may contact: George Douglas, 303-275-4096 email: George Douglas Golden, Colo., Sept. 6, 2000 - The Visitors Center at the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) will be closed Friday, Sept. 8 through Friday, Sept. 22 for the installation of new floor tile and carpet. Visitors Center staff expects to re-open the building for normal operation on Monday, Sept. 25. Contact the Visitors Center volunteer

  10. Appendix IV Closed Corrective Action Units

    National Nuclear Security Administration (NNSA)

    IV Closed Corrective Action Units Revision No.: 26 July 2009 Federal Facility Agreement and Consent Order (FFACO) FFACO Appendix IV - Closed Corrective Action Units Owner: NNSA / Industrial Sites - DP CAU Number: 34 Area 3 Contaminated Waste Sites CAU Notice of Completion: 6/25/2002 Submitted as CADD/CR. CR regulatory milestone not established prior to CADD/CR submittal. CAS Number CAS Description Functional Category Map Name General Location Mud Pit Mud Disposal Crater Yucca Flat U-3ag at Mud

  11. Probability of pipe fracture in the primary coolant loop of a PWR plant. Volume 3: nonseismic stress analysis. Final report

    SciTech Connect (OSTI)

    Chan, A.L.; Curtis, D.J.; Rybicki, E.F.; Lu, S.C.

    1981-08-01

    This volume describes the analyses used to evaluate stresses due to loads other than seismic excitations in the primary coolant loop piping of a selected four-loop pressurized water reactor nuclear power station. The results of the analyses are used as input to a simulation procedure for predicting the probability of pipe fracture in the primary coolant system. Sources of stresses considered in the analyses are pressure, dead weight, thermal expansion, thermal gradients through the pipe wall, residual welding, and mechanical vibrations. Pressure and thermal transients arising from plant operations are best estimates and are based on actual plant operation records supplemented by specified plant design conditions. Stresses due to dead weight and thermal expansion are computed from a three-dimensional finite element model that uses a combination of pipe, truss, and beam elements to represent the reactor coolant loop piping, reactor pressure vessel, reactor coolant pumps, steam generators, and the pressurizer. Stresses due to pressure and thermal gradients are obtained by closed-form solutions. Calculations of residual stresses account for the actual heat impact, welding speed, weld preparation geometry, and pre- and post-heat treatments. Vibrational stresses due to pump operation are estimated by a dynamic analysis using existing measurements of pump vibrations.

  12. EIS-0417: South Mountain Freeway (Loop 202); Phoenix, Arizona

    Broader source: Energy.gov [DOE]

    Federal Highway Administration and Arizona Department of Transportation, with Western Area Power Administration as a cooperating agency, prepared an EIS that analyzes the potential environmental impacts of the proposed South Mountain Freeway (Loop 202) project in the Greater Metropolitan Phoenix Area.

  13. EFFECTS OF ALFVEN WAVES ON ELECTRON CYCLOTRON MASER EMISSION IN CORONAL LOOPS AND SOLAR TYPE I RADIO STORMS

    SciTech Connect (OSTI)

    Zhao, G. Q.; Chen, L.; Wu, D. J.; Yan, Y. H.

    2013-06-10

    Solar type I radio storms are long-lived radio emissions from the solar atmosphere. It is believed that these type I storms are produced by energetic electrons trapped within a closed magnetic structure and are characterized by a high ordinary (O) mode polarization. However, the microphysical nature of these emissions is still an open problem. Recently, Wu et al. found that Alfven waves (AWs) can significantly influence the basic physics of wave-particle interactions by modifying the resonant condition. Taking the effects of AWs into account, this work investigates electron cyclotron maser emission driven by power-law energetic electrons with a low-energy cutoff distribution, which are trapped in coronal loops by closed solar magnetic fields. The results show that the emission is dominated by the O mode. It is proposed that this O mode emission may possibly be responsible for solar type I radio storms.

  14. GRAVITATIONAL INSTABILITY OF ROTATING, PRESSURE-CONFINED, POLYTROPIC GAS DISKS WITH VERTICAL STRATIFICATION

    SciTech Connect (OSTI)

    Kim, Jeong-Gyu; Kim, Woong-Tae; Seo, Young Min; Hong, Seung Soo E-mail: wkim@astro.snu.ac.kr E-mail: sshong@astro.snu.ac.kr

    2012-12-20

    We investigate the gravitational instability (GI) of rotating, vertically stratified, pressure-confined, polytropic gas disks using a linear stability analysis as well as analytic approximations. The disks are initially in vertical hydrostatic equilibrium and bounded by a constant external pressure. We find that the GI of a pressure-confined disk is in general a mixed mode of the conventional Jeans and distortional instabilities, and is thus an unstable version of acoustic-surface-gravity waves. The Jeans mode dominates in weakly confined disks or disks with rigid boundaries. On the other hand, when the disk has free boundaries and is strongly pressure confined, the mixed GI is dominated by the distortional mode that is surface-gravity waves driven unstable under their own gravity and thus incompressible. We demonstrate that the Jeans mode is gravity-modified acoustic waves rather than inertial waves and that inertial waves are almost unaffected by self-gravity. We derive an analytic expression for the effective sound speed c{sub eff} of acoustic-surface-gravity waves. We also find expressions for the gravity reduction factors relative to a razor-thin counterpart that are appropriate for the Jeans and distortional modes. The usual razor-thin dispersion relation, after correcting for c{sub eff} and the reduction factors, closely matches the numerical results obtained by solving a full set of linearized equations. The effective sound speed generalizes the Toomre stability parameter of the Jeans mode to allow for the mixed GI of vertically stratified, pressure-confined disks.

  15. Impact of photonic crystals on LED light extraction efficiency: approaches and limits to vertical structure designs

    SciTech Connect (OSTI)

    Matioli, Elison; Weisbuch, Claude

    2010-08-19

    The enhancement of the extraction efficiency in light emitting diodes (LEDs) through the use of photonic crystals (PhCs) requires a structure design that optimizes the interaction of the guided modes with the PhCs. The main optimization parameters are related to the vertical structure of the LED, such as the thickness of layers, depth of the PhCs, position of the quantum wells as well as the PhC period and fill factor. We review the impact of the vertical design of different approaches of PhC LEDs through a theoretical and experimental standpoint, assessing quantitatively the competing mechanisms that act over each guided mode. Three approaches are described to overcome the main limitation of LEDs with surface PhCs, i.e. the insufficient interaction of low order guided modes with the PhCs. The introduction of an AlGaN confining layer in such structure is shown to be effective in extracting a fraction of the optical energy of low order modes; however, this approach is limited by the growth of the lattice mismatched AlGaN layer on GaN. The second approach, based on thin-film LEDs with PhCs, is limited by the presence of an absorbing reflective metal layer close to the guided modes that plays a major role in the competition between PhC extraction and metal dissipation. Finally, we demonstrate both experimentally and theoretically the superior extraction of the guided light in embedded PhC LEDs due to the higher interaction between all optical modes and the PhCs, which resulted in a close to unity extraction efficiency for this device. The use of high-resolution angle-resolved measurements to experimentally determine the PhC extraction parameters was an essential tool for corroborating the theoretical models and quantifying the competing absorption and extraction mechanisms in LEDs.

  16. Weather Research and Forecasting Model with Vertical Nesting Capability

    Energy Science and Technology Software Center (OSTI)

    2014-08-01

    The Weather Research and Forecasting (WRF) model with vertical nesting capability is an extension of the WRF model, which is available in the public domain, from www.wrf-model.org. The new code modifies the nesting procedure, which passes lateral boundary conditions between computational domains in the WRF model. Previously, the same vertical grid was required on all domains, while the new code allows different vertical grids to be used on concurrently run domains. This new functionality improvesmore » WRF's ability to produce high-resolution simulations of the atmosphere by allowing a wider range of scales to be efficiently resolved and more accurate lateral boundary conditions to be provided through the nesting procedure.« less

  17. PLASMOID EJECTIONS AND LOOP CONTRACTIONS IN AN ERUPTIVE M7.7...

    Office of Scientific and Technical Information (OSTI)

    PLASMOID EJECTIONS AND LOOP CONTRACTIONS IN AN ERUPTIVE M7.7 SOLAR FLARE: EVIDENCE OF ... Title: PLASMOID EJECTIONS AND LOOP CONTRACTIONS IN AN ERUPTIVE M7.7 SOLAR FLARE: EVIDENCE ...

  18. V-212: Samba smbd CPU Processing Loop Lets Remote Users Deny...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2: Samba smbd CPU Processing Loop Lets Remote Users Deny Service V-212: Samba smbd CPU Processing Loop Lets Remote Users Deny Service August 6, 2013 - 6:00am Addthis PROBLEM: A...

  19. Vertical-cavity surface-emitting laser device

    DOE Patents [OSTI]

    Hadley, G. Ronald (Albuquerque, NM); Lear, Kevin L. (Albuquerque, NM); Awyoung, Adelbert (Albuquerque, NM); Choquette, Kent D. (Albuquerque, NM)

    1999-01-01

    A vertical-cavity surface-emitting laser device. The vertical-cavity surface-emitting laser (VCSEL) device comprises one or more VCSELs with each VCSEL having a mode-control region thereabout, with the mode-control region forming an optical cavity with an effective cavity length different from the effective cavity length within each VCSEL. Embodiments of the present invention can be formed as single VCSELs and as one- or two-dimensional arrays of VCSELs, with either an index-guided mode of operation or an index anti-guided mode of operation being defined by a sign of the difference in the two effective cavity lengths.

  20. Cloud-Scale Vertical Velocity and Turbulent Dissipation Rate Retrievals

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Shupe, Matthew

    2013-05-22

    Time-height fields of retrieved in-cloud vertical wind velocity and turbulent dissipation rate, both retrieved primarily from vertically-pointing, Ka-band cloud radar measurements. Files are available for manually-selected, stratiform, mixed-phase cloud cases observed at the North Slope of Alaska (NSA) site during periods covering the Mixed-Phase Arctic Cloud Experiment (MPACE, late September through early November 2004) and the Indirect and Semi-Direct Aerosol Campaign (ISDAC, April-early May 2008). These time periods will be expanded in a future submission.

  1. Cloud-Scale Vertical Velocity and Turbulent Dissipation Rate Retrievals

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Shupe, Matthew

    Time-height fields of retrieved in-cloud vertical wind velocity and turbulent dissipation rate, both retrieved primarily from vertically-pointing, Ka-band cloud radar measurements. Files are available for manually-selected, stratiform, mixed-phase cloud cases observed at the North Slope of Alaska (NSA) site during periods covering the Mixed-Phase Arctic Cloud Experiment (MPACE, late September through early November 2004) and the Indirect and Semi-Direct Aerosol Campaign (ISDAC, April-early May 2008). These time periods will be expanded in a future submission.

  2. Augmented Reality for Close Quarters Combat

    ScienceCinema (OSTI)

    None

    2014-06-23

    Sandia National Laboratories has developed a state-of-the-art augmented reality training system for close-quarters combat (CQB). This system uses a wearable augmented reality system to place the user in a real environment while engaging enemy combatants in virtual space (Boston Dynamics DI-Guy). Umbra modeling and simulation environment is used to integrate and control the AR system.

  3. RELAP-7: Demonstrating the integration of two-phase flow components for an ideal BWR loop

    SciTech Connect (OSTI)

    Hongbin Zhang; Haihua Zhao; Ling Zou; David Andrs; John Peterson; Ray Berry; Richard Martineua

    2013-06-01

    This is DOE Level 3 milestone report documenting RELAP-7's capability to simulate an ideal BWR loop.

  4. Systems Using Hardware-in-the-Loop (Poster) Lundstrom, B.; Shirazi...

    Office of Scientific and Technical Information (OSTI)

    HARDWARE; LOOP; POSTER; Buildings; Electricity, Resources, and Buildings Systems; Solar Energy - Thermal ELECTRICITY; GRID; ICS; INTERCONNECTION; SYSTEM; EVALUATOR;...

  5. Constructing QCD one-loop amplitudes (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Conference: Constructing QCD one-loop amplitudes Citation Details In-Document Search Title: Constructing QCD one-loop amplitudes In the context of constructing one-loop amplitudes using a unitarity bootstrap approach we discuss a general systematic procedure for obtaining the coefficients of the scalar bubble and triangle integral functions of one-loop amplitudes. Coefficients are extracted after examining the behavior of the cut integrand as the unconstrained parameters of a specifically chosen

  6. Development of vertically aligned ZnO-nanowires scintillators for high spatial resolution x-ray imaging

    SciTech Connect (OSTI)

    Kobayashi, Masakazu Komori, Jun; Shimidzu, Kaiji; Izaki, Masanobu; Uesugi, Kentaro; Takeuchi, Akihisa; Suzuki, Yoshio

    2015-02-23

    Newly designed scintillator of (0001)-oriented ZnO vertical nanowires (vnws) for X-ray imaging was prepared on a Ga-doped ZnO/soda-lime glass by electrodeposition, and the light emission feature was estimated in a synchrotron radiation facility. The ZnO-vnws scintillator revealed a strong light emission and improved resolution on CMOS image compared with that for the ZnO-layer scintillator, although the light emission performance was deteriorated in comparison to the Lu{sub 3}Al{sub 5}O{sub 12:}Ce{sup 3+}. The light emission property closely related to the nanostructure and the resultant photoluminescence characteristic.

  7. Operator in-the-loop control of rotary cranes

    SciTech Connect (OSTI)

    Parker, G.G.; Robinett, R.D.; Driessen, B.J.; Dohrmann, C.R.

    1996-03-01

    An open-loop control method is presented for reducing the oscillatory motion of rotary crane payloads during operator commanded maneuvers. A typical rotary crane consists of a multiple degree-of-freedom platform for positioning a spherical pendulum with an attached payload. The crane operator positions the Payload by issuing a combination of translational and rotational commands to the platform as well as load-line length changes. Frequently, these pendulum modes are time-varying and exhibit low natural frequencies. Maneuvers are therefore performed at rates sufficiently slow so as not to excite oscillation. The strategy presented here generates crane commands which suppress vibration of the payload without a priori knowledge of the desired maneuver. Results are presented for operator in-the-loop positioning using a real-time dynamics simulation of a three-axis rotary crane where the residual sway magnitude is reduced in excess of 4OdB.

  8. Longitudinal magnetohydrodynamics oscillations in dissipative, cooling coronal loops

    SciTech Connect (OSTI)

    Al-Ghafri, K. S.; Ruderman, M. S.; Williamson, A.; Erdlyi, R., E-mail: app08ksa@sheffield.ac.uk, E-mail: m.s.ruderman@sheffield.ac.uk, E-mail: app09aw@sheffield.ac.uk, E-mail: robertus@sheffield.ac.uk [Solar Physics and Space Plasma Research Centre (SP2RC), University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom)

    2014-05-01

    This paper investigates the effect of cooling on standing slow magnetosonic waves in coronal magnetic loops. The damping mechanism taken into account is thermal conduction that is a viable candidate for dissipation of slow magnetosonic waves in coronal loops. In contrast to earlier studies, here we assume that the characteristic damping time due to thermal conduction is not small, but arbitrary, and can be of the order of the oscillation period, i.e., a temporally varying plasma is considered. The approximation of low-beta plasma enables us to neglect the magnetic field perturbation when studying longitudinal waves and consider, instead, a one-dimensional motion that allows a reliable first insight into the problem. The background plasma temperature is assumed to be decaying exponentially with time, with the characteristic cooling timescale much larger than the oscillation period. This assumption enables us to use the WKB method to study the evolution of the oscillation amplitude analytically. Using this method we obtain the equation governing the oscillation amplitude. The analytical expressions determining the wave properties are evaluated numerically to investigate the evolution of the oscillation frequency and amplitude with time. The results show that the oscillation period increases with time due to the effect of plasma cooling. The plasma cooling also amplifies the amplitude of oscillations in relatively cool coronal loops, whereas, for very hot coronal loop oscillations the damping rate is enhanced by the cooling. We find that the critical point for which the amplification becomes dominant over the damping is in the region of 4 MK. These theoretical results may serve as impetus for developing the tools of solar magneto-seismology in dynamic plasmas.

  9. Onset of electron acceleration in a flare loop

    SciTech Connect (OSTI)

    Sharykin, Ivan; Liu, Siming [Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing, 210008 (China); Fletcher, Lyndsay, E-mail: liusm@pmo.ac.cn [School of Physics and Astronomy, SUPA, University of Glasgow, Glasgow, G12 8QQ (United Kingdom)

    2014-09-20

    We carried out a detailed analysis of X-ray and radio observations of a simple flare loop that occurred on 2002 August 12, with the impulsive hard X-ray (HXR) light curves dominated by a single pulse. The emission spectra of the early impulsive phase are consistent with an isothermal model in the coronal loop with a temperature reaching several keV. A power-law high-energy spectral tail is evident near the HXR peak time, in accordance with the appearance of footpoints at high energies, and is well correlated with the radio emission. The energy content of the thermal component keeps increasing gradually after the disappearance of this nonthermal component. These results suggest that electron acceleration only covers the central period of a longer and more gradual energy dissipation process and that the electron transport within the loop plays a crucial role in the formation of the inferred power-law electron distribution. The spectral index of power-law photons shows a very gradual evolution, indicating that the electron accelerator is in a quasi-steady state, which is confirmed by radio observations. These results are consistent with the theory of stochastic electron acceleration from a thermal background. Advanced modeling with coupled electron acceleration and spatial transport processes is needed to explain these observations more quantitatively, which may reveal the dependence of the electron acceleration on the spatial structure of the acceleration region.

  10. Cryogenic vertical test facility for the SRF cavities at BNL

    SciTech Connect (OSTI)

    Than, R.; Liaw, CJ; Porqueddu, R.; Grau, M.; Tuozzolo, J.; Tallerico, T.; McIntyre, G.; Lederle, D.; Ben-Zvi, I.; Burrill, A.; Pate, D.

    2011-03-28

    A vertical test facility has been constructed to test SRF cavities and can be utilized for other applications. The liquid helium volume for the large vertical dewar is approximate 2.1m tall by 1m diameter with a clearance inner diameter of 0.95m after the inner cold magnetic shield installed. For radiation enclosure, the test dewar is located inside a concrete block structure. The structure is above ground, accessible from the top, and equipped with a retractable concrete roof. A second radiation concrete facility, with ground level access via a labyrinth, is also available for testing smaller cavities in 2 smaller dewars. The cryogenic transfer lines installation between the large vertical test dewar and the cryo plant's sub components is currently near completion. Controls and instrumentations wiring are also nearing completion. The Vertical Test Facility will allow onsite testing of SRF cavities with a maximum overall envelope of 0.9 m diameter and 2.1 m height in the large dewar and smaller SRF cavities and assemblies with a maximum overall envelope of 0.66 m diameter and 1.6 m height.

  11. Aligned vertical fractures, HTI reservoir symmetry, and Thomsenseismic anisotropy parameters

    SciTech Connect (OSTI)

    Berryman, James G.

    2007-06-27

    The Sayers and Kachanov (1991) crack-influence parametersare shown to be directly related to Thomsen (1986) weak-anisotropyseismic parameters for fractured reservoirs when the crack density issmall enough. These results are then applied to seismic wave propagationin reservoirs having HTI symmetry due to aligned vertical fractures. Theapproach suggests a method of inverting for fracture density from wavespeed data.

  12. Cryogenic infrastructure for Fermilab's ILC vertical cavity test facility

    SciTech Connect (OSTI)

    Carcagno, R.; Ginsburg, C.; Huang, Y.; Norris, B.; Ozelis, J.; Peterson, T.; Poloubotko, V.; Rabehl, R.; Sylvester, C.; Wong, M.; /Fermilab

    2006-06-01

    Fermilab is building a Vertical Cavity Test Facility (VCTF) to provide for R&D and pre-production testing of bare 9-cell, 1.3-GHz superconducting RF (SRF) cavities for the International Linear Collider (ILC) program. This facility is located in the existing Industrial Building 1 (IB1) where the Magnet Test Facility (MTF) also resides. Helium and nitrogen cryogenics are shared between the VCTF and MTF including the existing 1500-W at 4.5-K helium refrigerator with vacuum pumping for super-fluid operation (125-W capacity at 2-K). The VCTF is being constructed in multiple phases. The first phase is scheduled for completion in mid 2007, and includes modifications to the IB1 cryogenic infrastructure to allow helium cooling to be directed to either the VCTF or MTF as scheduling demands require. At this stage, the VCTF consists of one Vertical Test Stand (VTS) cryostat for the testing of one cavity in a 2-K helium bath. Planning is underway to provide a total of three Vertical Test Stands at VCTF, each capable of accommodating two cavities. Cryogenic infrastructure improvements necessary to support these additional VCTF test stands include a dedicated ambient temperature vacuum pump, a new helium purification skid, and the addition of helium gas storage. This paper describes the system design and initial cryogenic operation results for the first VCTF phase, and outlines future cryogenic infrastructure upgrade plans for expanding to three Vertical Test Stands.

  13. Close encounters of three black holes

    SciTech Connect (OSTI)

    Campanelli, Manuela; Lousto, Carlos O.; Zlochower, Yosef

    2008-05-15

    We present the first fully relativistic long-term numerical evolutions of three equal-mass black holes in a system consisting of a third black hole in a close orbit about a black-hole binary. These close-three-black-hole systems have very different merger dynamics from black-hole binaries; displaying complex trajectories, a redistribution of energy that can impart substantial kicks to one of the holes, distinctive waveforms, and suppression of the emitted gravitational radiation. In one configuration the binary is quickly disrupted and the individual holes follow complicated trajectories and merge with the third hole in rapid succession, while in another, the binary completes a half-orbit before the initial merger of one of the members with the third black hole, and the resulting two-black-hole system forms a highly elliptical, well separated binary that shows no significant inspiral for (at least) the first t{approx}1000M of evolution.

  14. NDRF Introduction & Close-Up

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Event Location Date http://www.fema.gov/recoveryframework/ www.fema.gov/ppd8 http://fema.ideascale.com/ 2 NDRF Introduction & Close-Up Deborah Ingram Assistant Administrator Federal Emergency Management Agency 3 Recovery Phases 4 * Defines roles and responsibilities * Promotes the establishment of post-disaster organizations to manage recovery * Promotes a deliberate and transparent process that provides well-coordinated support to the Community * Offers strong, focused recovery leadership

  15. Status Update: Closing Rocky Flats by 2006

    SciTech Connect (OSTI)

    Tuor, N.; Schubert, A.

    2003-02-25

    Safely closing Rocky Flats by December 2006 is a goal shared by many: the State of Colorado, the communities surrounding the site, the U.S. Congress, the Department of Energy (DOE), Kaiser-Hill and its team of subcontractors, the site's employees and taxpayers across the country. This paper will: provide a status of the Closure Project to date; describe important accomplishments of the past year; describe some of the closure-enhancing technologies enabling acceleration; and discuss the remaining challenges ahead.

  16. MHK Technologies/Closed Cycle OTEC | Open Energy Information

    Open Energy Info (EERE)

    Closed Cycle OTEC < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Closed Cycle OTEC.jpg Technology Profile Primary Organization Marine...

  17. Idaho Site Closes Out Decontamination and Decommissioning Project...

    Office of Environmental Management (EM)

    Site Closes Out Decontamination and Decommissioning Project about 440 Million under Cost Idaho Site Closes Out Decontamination and Decommissioning Project about 440 Million under...

  18. LANL closes road, trails for safety reasons; flooding and erosion...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    closed for safety reasons LANL closes road, trails for safety reasons; flooding and erosion control work under way Closure is in response to the increased fire risk and...

  19. Collaborative Lubricating Oil Study on Emissions (CLOSE Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Collaborative Lubricating Oil Study on Emissions (CLOSE Project) Collaborative Lubricating Oil Study on Emissions (CLOSE) Project Lung Toxicity and ...

  20. Collaborative Lubricating Oil Study on Emissions (CLOSE Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Collaborative Lubricating Oil Study on Emissions (CLOSE Project) Collaborative Lubricating Oil Study on Emissions (CLOSE) Project Vehicle Technologies ...

  1. Collaborative Lubricating Oil Study on Emissions (CLOSE) Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CLOSE) Project Collaborative Lubricating Oil Study on Emissions (CLOSE) Project Extensive ... to evaluate relative contributions of fuel and lubricating oil on tailpipe emissions. ...

  2. Closing the Lithium-ion Battery Life Cycle: Poster handout |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Closing the Lithium-ion Battery Life Cycle: Poster handout Title Closing the Lithium-ion Battery Life Cycle: Poster handout Publication Type Miscellaneous Year of Publication 2014...

  3. Closed-field capacitive liquid level sensor

    DOE Patents [OSTI]

    Kronberg, J.W.

    1998-03-03

    A liquid level sensor based on a closed field circuit comprises a ring oscillator using a symmetrical array of plate units that creates a displacement current. The displacement current varies as a function of the proximity of a liquid to the plate units. The ring oscillator circuit produces an output signal with a frequency inversely proportional to the presence of a liquid. A continuous liquid level sensing device and a two point sensing device are both proposed sensing arrangements. A second set of plates may be located inside of the probe housing relative to the sensing plate units. The second set of plates prevent any interference between the sensing plate units. 12 figs.

  4. Closed-field capacitive liquid level sensor

    DOE Patents [OSTI]

    Kronberg, J.W.

    1995-01-01

    A liquid level sensor based on a closed field circuit comprises a ring oscillator using a symmetrical array of plate units that creates a displacement current. The displacement current varies as a function of the proximity of a liquid to the plate units. The ring oscillator circuit produces an output signal with a frequency inversely proportional to the presence of a liquid. A continuous liquid level sensing device and a two point sensing device are both proposed sensing arrangements. A second set of plates may be located inside of the probe housing relative to the sensing plate units. The second set of plates prevent any interference between the sensing plate units.

  5. Close range fault tolerant noncontacting position sensor

    DOE Patents [OSTI]

    Bingham, Dennis N. (Idaho Falls, ID); Anderson, Allen A. (Shelley, ID)

    1996-01-01

    A method and system for locating the three dimensional coordinates of a moving or stationary object in real time. The three dimensional coordinates of an object in half space or full space are determined based upon the time of arrival or phase of the wave front measured by a plurality of receiver elements and an established vector magnitudes proportional to the measured time of arrival or phase at each receiver element. The coordinates of the object are calculated by solving a matrix equation or a set of closed form algebraic equations.

  6. Close range fault tolerant noncontacting position sensor

    DOE Patents [OSTI]

    Bingham, D.N.; Anderson, A.A.

    1996-02-20

    A method and system are disclosed for locating the three dimensional coordinates of a moving or stationary object in real time. The three dimensional coordinates of an object in half space or full space are determined based upon the time of arrival or phase of the wave front measured by a plurality of receiver elements and an established vector magnitudes proportional to the measured time of arrival or phase at each receiver element. The coordinates of the object are calculated by solving a matrix equation or a set of closed form algebraic equations. 3 figs.

  7. Vertical stability requirements for ARIES-I reactor

    SciTech Connect (OSTI)

    Bathke, C.G.; Jardin, S.C.; Leuer, J.A.; Ward, D.J.; Princeton Univ., NJ . Plasma Physics Lab.; General Atomics, San Diego, CA; Princeton Univ., NJ . Plasma Physics Lab.)

    1989-01-01

    The vertical stability of the ARIES-I reactor design is analyzed with the NOVA-W, PSTAB, and TSC codes. A growth rate of {approximately}5.7 s{sup -1} is predicted for a vacuum vessel positioned behind the scrapeoff, first wall, and blanket (0.7 in inboard and 0.9 in outboard thickness) and acting as a passive stabilizer. A reactive power of {approximately}2 MV A would be required for active feedback coils located outside of the TF coils {approximately}3 m to correct a 50-mm vertical displacement of the magnetic axis. A multipolar expansion technique used in the TSC analysis is also used to examine options that minimize stored energy. 10 refs., 8 figs., 2 tabs.

  8. Taxel-addressable matrix of vertical nanowire piezotronic transistors

    DOE Patents [OSTI]

    Wang, Zhong Lin; Wu, Wenzhuo; Wen, Xiaonan

    2015-05-05

    A tactile sensing matrix includes a substrate, a first plurality of elongated electrode structures, a plurality of vertically aligned piezoelectric members, an insulating layer infused into the piezoelectric members and a second plurality of elongated electrode structures. The first plurality of elongated electrode structures is disposed on the substrate along a first orientation. The vertically aligned piezoelectric members is disposed on the first plurality of elongated electrode structures and form a matrix having columns of piezoelectric members disposed along the first orientation and rows of piezoelectric members disposed along a second orientation that is transverse to the first orientation. The second plurality of elongated electrode structures is disposed on the insulating layer along the second orientation. The elongated electrode structures form a Schottky contact with the piezoelectric members. When pressure is applied to the piezoelectric members, current flow therethrough is modulated.

  9. Friction of partially embedded vertically aligned carbon nanofibers inside elastomers

    SciTech Connect (OSTI)

    Aksak, Burak; Sitti, Metin; Cassell, Alan; Li, Jun; Meyyappan, Meyya; Callen, Phillip [NanoRobotics Laboratory, Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States); NASA Ames Research Center, Moffett Field, California 94035 (United States); NASA Johnson Space Center, Houston, Texas 77058 (United States)

    2007-08-06

    Vertically aligned carbon nanofibers partially embedded inside polyurethane (eVACNFs) are proposed as a robust high friction fibrillar material with a compliant backing. Carbon nanofibers with 50-150 nm in diameter and 20-30 {mu}m in length are vertically grown on silicon and transferred completely inside an elastomer by vacuum molding. By using time controlled and selective oxygen plasma etching, fibers are partially released up to 5 {mu}m length. Macroscale friction experiments show that eVACNFs exhibit reproducible effective friction coefficients up to 1. Besides high friction, the proposed fabrication method improves fiber-substrate bond strength, and enables uniform height nanofibers with a compliant backing.

  10. Vertical-cavity surface-emitting laser device

    DOE Patents [OSTI]

    Hadley, G.R.; Lear, K.L.; Awyoung, A.; Choquette, K.D.

    1999-05-11

    A vertical-cavity surface-emitting laser device is disclosed. The vertical-cavity surface-emitting laser (VCSEL) device comprises one or more VCSELs with each VCSEL having a mode-control region thereabout, with the mode-control region forming an optical cavity with an effective cavity length different from the effective cavity length within each VCSEL. Embodiments of the present invention can be formed as single VCSELs and as one- or two-dimensional arrays of VCSELs, with either an index-guided mode of operation or an index anti-guided mode of operation being defined by a sign of the difference in the two effective cavity lengths. 10 figs.

  11. FINGERPRINTS OF GALACTIC LOOP I ON THE COSMIC MICROWAVE BACKGROUND

    SciTech Connect (OSTI)

    Liu, Hao; Mertsch, Philipp

    2014-07-10

    We investigate possible imprints of galactic foreground structures such as the ''radio loops'' in the derived maps of the cosmic microwave background. Surprisingly, there is evidence for these not only at radio frequencies through their synchrotron radiation, but also at microwave frequencies where emission by dust dominates. This suggests the mechanism is magnetic dipole radiation from dust grains enriched by metallic iron or ferrimagnetic molecules. This new foreground we have identified is present at high galactic latitudes, and potentially dominates over the expected B-mode polarization signal due to primordial gravitational waves from inflation.

  12. Development of Hardware-in-the-loop Microgrid Testbed

    SciTech Connect (OSTI)

    Xiao, Bailu; Prabakar, Kumaraguru; Starke, Michael R; Liu, Guodong; Dowling, Kevin; Ollis, T Ben; Irminger, Philip; Xu, Yan; Dimitrovski, Aleksandar D

    2015-01-01

    A hardware-in-the-loop (HIL) microgrid testbed for the evaluation and assessment of microgrid operation and control system has been presented in this paper. The HIL testbed is composed of a real-time digital simulator (RTDS) for modeling of the microgrid, multiple NI CompactRIOs for device level control, a prototype microgrid energy management system (MicroEMS), and a relay protection system. The applied communication-assisted hybrid control system has been also discussed. Results of function testing of HIL controller, communication, and the relay protection system are presented to show the effectiveness of the proposed HIL microgrid testbed.

  13. Sinc function representation and three-loop master diagrams

    SciTech Connect (OSTI)

    Easther, Richard; Guralnik, Gerald; Hahn, Stephen

    2001-04-15

    We test the Sinc function representation, a novel method for numerically evaluating Feynman diagrams, by using it to evaluate the three-loop master diagrams. Analytical results have been obtained for all these diagrams, and we find excellent agreement between our calculations and the exact values. The Sinc function representation converges rapidly, and it is straightforward to obtain accuracies of 1 part in 10{sup 6} for these diagrams and with longer runs we found results better than 1 part in 10{sup 12}. Finally, this paper extends the Sinc function representation to diagrams containing massless propagators.

  14. Rupture loop annex ion exchange RLAIX vault deactivation

    SciTech Connect (OSTI)

    Ham, J.E.; Harris, D.L., Westinghouse Hanford

    1996-08-01

    This engineering report documents the deactivation, stabilization and final conditions of the Rupture Loop Annex Ion Exchange (RLAIX) Vault located northwest of the 309 Building`s Plutonium Recycle Test Reactor (PRTR). Twelve ion exchange columns, piping debris, and column liquid were removed from the vault, packaged and shipped for disposal. The vault walls and floor were decontaminated, and portions of the vault were painted to fix loose contamination. Process piping and drains were plugged, and the cover blocks and rain cover were installed. Upon closure,the vault was empty, stabilized, isolated.

  15. System having unmodulated flux locked loop for measuring magnetic fields

    DOE Patents [OSTI]

    Ganther, Jr., Kenneth R. (Olathe, KS); Snapp, Lowell D. (Blue Springs, MO)

    2006-08-15

    A system (10) for measuring magnetic fields, wherein the system (10) comprises an unmodulated or direct-feedback flux locked loop (12) connected by first and second unbalanced RF coaxial transmission lines (16a, 16b) to a superconducting quantum interference device (14). The FLL (12) operates for the most part in a room-temperature or non-cryogenic environment, while the SQUID (14) operates in a cryogenic environment, with the first and second lines (16a, 16b) extending between these two operating environments.

  16. Method of fabricating vertically aligned group III-V nanowires

    DOE Patents [OSTI]

    Wang, George T; Li, Qiming

    2014-11-25

    A top-down method of fabricating vertically aligned Group III-V micro- and nanowires uses a two-step etch process that adds a selective anisotropic wet etch after an initial plasma etch to remove the dry etch damage while enabling micro/nanowires with straight and smooth faceted sidewalls and controllable diameters independent of pitch. The method enables the fabrication of nanowire lasers, LEDs, and solar cells.

  17. ARM - Publications: Science Team Meeting Documents: Modeling the vertical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    profiles of aerosol characteristics and radiative impacts over the ARM sites Modeling the vertical profiles of aerosol characteristics and radiative impacts over the ARM sites Chuang, Catherine DOE/Lawrence Livermore National Laboratory Chin, Steve DOE/Lawrence Livermore National Laboratory Atmospheric aerosols play an important role in mediating the radiative balance of the Earth-atmosphere system. A global high-resolution aerosol modeling system developed by the Lawrence Livermore National

  18. Determination of vertical profiles of aerosol extinction, single scatter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    albedo and asymmetry parameter at Barrow. Determination of vertical profiles of aerosol extinction, single scatter albedo and asymmetry parameter at Barrow. Sivaraman, Chitra Pacific Northwest National Laboratory Flynn, Connor Pacific Northwest National Laboratory Turner, David University of Wisconsin-Madison Category: Aerosols Efforts are currently underway to run and evaluate the Broadband Heating Rate Profile project at the ARM North Slope of Alaska (NSA) Barrow site for the time period

  19. Innovative Offshore Vertical-Axis Wind Turbine Rotors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Offshore Vertical-Axis Wind Turbine Rotors - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management

  20. Electrically injected visible vertical cavity surface emitting laser diodes

    DOE Patents [OSTI]

    Schneider, Richard P. (Albuquerque, NM); Lott, James A. (Albuquerque, NM)

    1994-01-01

    Visible laser light output from an electrically injected vertical cavity surface emitting laser (VSCEL) diode is enabled by the addition of phase-matching spacer layers on either side of the active region to form the optical cavity. The spacer layers comprise InAlP which act as charge carrier confinement means. Distributed Bragg reflector layers are formed on either side of the optical cavity to act as mirrors.

  1. Doppler Lidar Vertical Velocity Statistics Value-Added Product

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    49 Doppler Lidar Vertical Velocity Statistics Value-Added Product RK Newsom C Sivaraman TR Shippert LD Riihimaki July 2015 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or

  2. Electrically injected visible vertical cavity surface emitting laser diodes

    DOE Patents [OSTI]

    Schneider, R.P.; Lott, J.A.

    1994-09-27

    Visible laser light output from an electrically injected vertical cavity surface emitting laser (VSCEL) diode is enabled by the addition of phase-matching spacer layers on either side of the active region to form the optical cavity. The spacer layers comprise InAlP which act as charge carrier confinement means. Distributed Bragg reflector layers are formed on either side of the optical cavity to act as mirrors. 5 figs.

  3. Low profile, high load vertical rolling positioning stage

    DOE Patents [OSTI]

    Shu, Deming (Darien, IL); Barraza, Juan (Aurora, IL)

    1996-01-01

    A stage or support platform assembly for use in a synchrotron accurately positions equipment to be used in the beam line of the synchrotron. The support platform assembly includes an outer housing in which is disposed a lifting mechanism having a lifting platform or stage at its upper extremity on which the equipment is mounted. A worm gear assembly is located in the housing and is adapted to raise and lower a lifting shaft that is fixed to the lifting platform by an anti-binding connection. The lifting platform is moved vertically as the lifting shaft is moved vertically. The anti-binding connection prevents the shaft from rotating with respect to the platform, but does permit slight canting of the shaft with respect to the lifting platform so as to eliminate binding and wear due to possible tolerance mismatches. In order to ensure that the lifting mechanism does not move in a horizontal direction as it is moved vertically, at least three linear roller bearing assemblies are arranged around the outer-periphery of the lifting mechanism. One of the linear roller bearing assemblies can be adjusted so that the roller bearings apply a loading force against the lifting mechanism. Alternatively, a cam mechanism can be used to provide such a loading force.

  4. Vertical feed stick wood fuel burning furnace system

    DOE Patents [OSTI]

    Hill, Richard C.

    1984-01-01

    A new and improved stove or furnace for efficient combustion of wood fuel including a vertical feed combustion chamber for receiving and supporting wood fuel in a vertical attitude or stack, a major upper portion of the combustion chamber column comprising a water jacket for coupling to a source of water or heat transfer fluid and for convection circulation of the fluid for confining the locus of wood fuel combustion to the bottom of the vertical gravity feed combustion chamber. A flue gas propagation delay channel extending from the laterally directed draft outlet affords delayed travel time in a high temperature environment to assure substantially complete combustion of the gaseous products of wood burning with forced air as an actively induced draft draws the fuel gas and air mixture laterally through the combustion and high temperature zone. Active sources of forced air and induced draft are included, multiple use and circuit couplings for the recovered heat, and construction features in the refractory material substructure and metal component superstructure.

  5. Residential Vertical Geothermal Heat Pump System Models: Calibration to Data:

    SciTech Connect (OSTI)

    Thornton, Jeff W.; McDowell, T. P.; Shonder, John A; Hughes, Patrick; Pahud, D.; Hellstrom, G.

    1997-06-01

    A detailed component-based simulation model of a geothermal heat pump system has been calibrated to monitored data taken from a family housing unit located at Fort Polk, Louisiana. The simulation model represents the housing unit, geothermal heat pump, ground heat exchanger, thermostat, blower, and ground-loop pump. Each of these component models was 'tuned' to better match the measured data from the site. These tuned models were then interconnect to form the system model. The system model was then exercised in order to demonatrate its capabilities.

  6. Residential vertical geothermal heat pump system models: Calibration to data

    SciTech Connect (OSTI)

    Thornton, J.W.; McDowell, T.P.; Shonder, J.A.; Hughes, P.J.; Pahud, D.; Hellstroem, G.A.J.

    1997-12-31

    A detailed component-based simulation model of a geothermal heat pump system has been calibrated to monitored data taken from a family housing unit located at Fort Polk, Louisiana. The simulation model represents the housing unit, geothermal heat pump, ground heat exchanger, thermostat, blower, and ground-loop pump. Each of these component models was tuned to better match the measured data from the site. These tuned models were then interconnected to form the system model. The system model was then exercised in order to demonstrate its capabilities.

  7. Mira close-up | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    close-up Download original image « Back to galleryItem 6

  8. Evidence for small-molecule-mediated loop stabilization in the structure of the isolated Pin1 WW domain

    SciTech Connect (OSTI)

    Mortenson, David E.; Kreitler, Dale F.; Yun, Hyun Gi; Gellman, Samuel H., E-mail: gellman@chem.wisc.edu; Forest, Katrina T., E-mail: gellman@chem.wisc.edu [University of Wisconsin-Madison, Madison, WI 53706 (United States)

    2013-12-01

    Two structures of a small protein with a defined tertiary fold, the isolated Pin1 WW domain, have been determined via racemic crystallization with small-molecule additives. These additives, which are either racemic or achiral, appear to stabilize a dynamic loop region of the structure. The human Pin1 WW domain is a small autonomously folding protein that has been useful as a model system for biophysical studies of ?-sheet folding. This domain has resisted previous attempts at crystallization for X-ray diffraction studies, perhaps because of intrinsic conformational flexibility that interferes with the formation of a crystal lattice. Here, the crystal structure of the human Pin1 WW domain has been obtained via racemic crystallization in the presence of small-molecule additives. Both enantiomers of a 36-residue variant of the Pin1 WW domain were synthesized chemically, and the l- and d-polypeptides were combined to afford diffracting crystals. The structural data revealed packing interactions of small carboxylic acids, either achiral citrate or a d,l mixture of malic acid, with a mobile loop region of the WW-domain fold. These interactions with solution additives may explain our success in crystallization of this protein racemate. Molecular-dynamics simulations starting from the structure of the Pin1 WW domain suggest that the crystal structure closely resembles the conformation of this domain in solution. The structural data presented here should provide a basis for further studies of this important model system.

  9. The four-loop six-gluon NMHV ratio function

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dixon, Lance J.; von Hippel, Matt; McLeod, Andrew J.

    2016-01-11

    We use the hexagon function bootstrap to compute the ratio function which characterizes the next-to-maximally-helicity-violating (NMHV) six-point amplitude in planar N=4 super-Yang-Mills theory at four loops. A powerful constraint comes from dual superconformal invariance, in the form of a Q¯ differential equation, which heavily constrains the first derivatives of the transcendental functions entering the ratio function. At four loops, it leaves only a 34-parameter space of functions. Constraints from the collinear limits, and from the multi-Regge limit at the leading-logarithmic (LL) and next-to-leading-logarithmic (NLL) order, suffice to fix these parameters and obtain a unique result. We test the result againstmore » multi-Regge predictions at NNLL and N3LL, and against predictions from the operator product expansion involving one and two flux-tube excitations; all cross-checks are satisfied. We study the analytical and numerical behavior of the parity-even and parity-odd parts on various lines and surfaces traversing the three-dimensional space of cross ratios. As part of this program, we characterize all irreducible hexagon functions through weight eight in terms of their coproduct. As a result, we also provide representations of the ratio function in particular kinematic regions in terms of multiple polylogarithms.« less

  10. The Four-loop Six-gluon NMHV Ratio Function

    SciTech Connect (OSTI)

    Dixon, Lance J.; von Hippel, Matt; McLeod, Andrew J.

    2015-09-29

    We use the hexagon function bootstrap to compute the ratio function which characterizes the next-to-maximally-helicity-violating (NMHV) six-point amplitude in planar N = 4 super-Yang-Mills theory at four loops. A powerful constraint comes from dual superconformal invariance, in the form of a Q- differential equation, which heavily constrains the first derivatives of the transcendental functions entering the ratio function. At four loops, it leaves only a 34-parameter space of functions. Constraints from the collinear limits, and from the multi-Regge limit at the leading-logarithmic (LL) and next-to-leading-logarithmic (NLL) order, suffice to fix these parameters and obtain a unique result. We test the result against multi- Regge predictions at NNLL and N3LL, and against predictions from the operator product expansion involving one and two flux-tube excitations; all cross-checks are satisfied. We also study the analytical and numerical behavior of the parity-even and parity-odd parts on various lines and surfaces traversing the three-dimensional space of cross ratios. As part of this program, we characterize all irreducible hexagon functions through weight eight in terms of their coproduct. Furthermore, we provide representations of the ratio function in particular kinematic regions in terms of multiple polylogarithms.

  11. State Energy Efficient Appliance Rebate Program is Closed | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy State Energy Efficient Appliance Rebate Program is Closed State Energy Efficient Appliance Rebate Program is Closed February 23, 2012 - 5:22am Addthis Andrea Spikes Former Communicator at DOE's National Renewable Energy Laboratory On Friday, February 17, 2012, the State Energy Efficient Appliance Rebate Program closed officially in all U.S. states and territories. Although the program had already closed in most states by this time, there were 11 states and territories that closed last

  12. On the reversibility of transitions between closed and open cellular convection

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Feingold, G.; Koren, I.; Yamaguchi, T.; Kazil, J.

    2015-07-08

    The two-way transition between closed and open cellular convection is addressed in an idealized cloud-resolving modeling framework. A series of cloud-resolving simulations shows that the transition between closed and open cellular states is asymmetrical and characterized by a rapid ("runaway") transition from the closed- to the open-cell state but slower recovery to the closed-cell state. Given that precipitation initiates the closed–open cell transition and that the recovery requires a suppression of the precipitation, we apply an ad hoc time-varying drop concentration to initiate and suppress precipitation. We show that the asymmetry in the two-way transition occurs even for very rapidmore » drop concentration replenishment. The primary barrier to recovery is the loss in turbulence kinetic energy (TKE) associated with the loss in cloud water (and associated radiative cooling) and the vertical stratification of the boundary layer during the open-cell period. In transitioning from the open to the closed state, the system faces the task of replenishing cloud water fast enough to counter precipitation losses, such that it can generate radiative cooling and TKE. It is hampered by a stable layer below cloud base that has to be overcome before water vapor can be transported more efficiently into the cloud layer. Recovery to the closed-cell state is slower when radiative cooling is inefficient such as in the presence of free tropospheric clouds or after sunrise, when it is hampered by the absorption of shortwave radiation. Tests suggest that recovery to the closed-cell state is faster when the drizzle is smaller in amount and of shorter duration, i.e., when the precipitation causes less boundary layer stratification. Cloud-resolving model results on recovery rates are supported by simulations with a simple predator–prey dynamical system analogue. It is suggested that the observed closing of open cells by ship effluent likely occurs when aerosol intrusions are large, when contact comes prior to the heaviest drizzle in the early morning hours, and when the free troposphere is cloud free.« less

  13. Vertical-axis wind turbines -- The current status of an old technology

    SciTech Connect (OSTI)

    Berg, D.E.

    1996-12-31

    Vertical-axis wind turbine technology is not well understood, even though the earliest wind machines rotated about a vertical axis. The operating environment of a vertical-axis wind turbine is quite complex, but detailed analysis capabilities have been developed and verified over the last 30 years. Although vertical-axis technology has not been widely commercialized, it exhibits both advantages and disadvantages compared to horizontal-axis technology, and in some applications, it appears to offer significant advantages.

  14. Vertical Distribution of Contamination in Ground Water at the Tuba City,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Arizona, Site | Department of Energy Vertical Distribution of Contamination in Ground Water at the Tuba City, Arizona, Site Vertical Distribution of Contamination in Ground Water at the Tuba City, Arizona, Site Vertical Distribution of Contamination in Ground Water at the Tuba City, Arizona, Site PDF icon Vertical Distribution of Contamination in Ground Water at the Tuba City, Arizona, Site More Documents & Publications EA-1268: Final Environmental Assessment Diffusion Multilayer

  15. Hanford Disposal Facility Expands Vertically to Make Room for More Waste |

    Energy Savers [EERE]

    Department of Energy Disposal Facility Expands Vertically to Make Room for More Waste Hanford Disposal Facility Expands Vertically to Make Room for More Waste February 11, 2016 - 12:25pm Addthis This photo illustration of the conceptual view shows the vertical expansion of the Environmental Restoration Disposal Facility. The large area on the right includes the uppermost surface of the vertical expansion, which will be shaped to form a crown and will be covered with a 2 percent grade and

  16. Recovery Act: Novel Oxygen Carriers for Coal-fueled Chemical Looping

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Recovery Act: Novel Oxygen Carriers for Coal-fueled Chemical Looping Citation Details In-Document Search Title: Recovery Act: Novel Oxygen Carriers for Coal-fueled Chemical Looping Chemical Looping Combustion (CLC) could totally negate the necessity of pure oxygen by using oxygen carriers for purification of CO{sub 2} stream during combustion. It splits the single fuel combustion reaction into two linked reactions using oxygen carriers. The two linked

  17. Integrated Vehicle Thermal Management - Combining Fluid Loops in Electric Drive Vehicles (Presentation)

    SciTech Connect (OSTI)

    Rugh, J. P.

    2013-07-01

    Plug-in hybrid electric vehicles and electric vehicles have increased vehicle thermal management complexity, using separate coolant loop for advanced power electronics and electric motors. Additional thermal components result in higher costs. Multiple cooling loops lead to reduced range due to increased weight. Energy is required to meet thermal requirements. This presentation for the 2013 Annual Merit Review discusses integrated vehicle thermal management by combining fluid loops in electric drive vehicles.

  18. Statistical evidence for the existence of Alfvnic turbulence in solar coronal loops

    SciTech Connect (OSTI)

    Liu, Jiajia; McIntosh, Scott W.; Bethge, Christian; De Moortel, Ineke; Threlfall, James

    2014-12-10

    Recent observations have demonstrated that waves capable of carrying large amounts of energy are ubiquitous throughout the solar corona. However, the question of how this wave energy is dissipated (on which timescales and length scales) and released into the plasma remains largely unanswered. Both analytic and numerical models have previously shown that Alfvnic turbulence may play a key role not only in the generation of the fast solar wind, but in the heating of coronal loops. In an effort to bridge the gap between theory and observations, we expand on a recent study by analyzing 37 clearly isolated coronal loops using data from the Coronal Multi-channel Polarimeter instrument. We observe Alfvnic perturbations with phase speeds which range from 250 to 750 km s{sup 1} and periods from 140 to 270 s for the chosen loops. While excesses of high-frequency wave power are observed near the apex of some loops (tentatively supporting the onset of Alfvnic turbulence), we show that this excess depends on loop length and the wavelength of the observed oscillations. In deriving a proportional relationship between the loop length/wavelength ratio and the enhanced wave power at the loop apex, and from the analysis of the line widths associated with these loops, our findings are supportive of the existence of Alfvnic turbulence in coronal loops.

  19. Triviality and vacuum stability bounds in the three-loop neutrino...

    Office of Scientific and Technical Information (OSTI)

    in the three-loop neutrino mass model We study theoretical constraints on the parameter ... The requirement of a strongly first order phase transition for successful electroweak ...

  20. On Loops in Inflation II: IR Effects in Single Clock Inflation...

    Office of Scientific and Technical Information (OSTI)

    On Loops in Inflation II: IR Effects in Single Clock Inflation Authors: Senatore, Leonardo ; Stanford U., ITP KIPAC, Menlo Park ; Zaldarriaga, Matias ; Princeton, Inst....

  1. Involvement of the [beta]3-[alpha]3 Loop of the Proline Dehydrogenase...

    Office of Scientific and Technical Information (OSTI)

    Involvement of the beta3-alpha3 Loop of the Proline Dehydrogenase Domain in Allosteric Regulation of Membrane Association of Proline Utilization A Citation Details In-Document ...

  2. Numerical simulation model for vertical flow in geothermal wells

    SciTech Connect (OSTI)

    Tachimori, M.

    1982-01-01

    A numerical simulation model for vertical flow in geothermal wells is presented. The model consists of equations for the conservation of mass, momentum, and energy, for thermodynamic state of water, for friction losses, for slip velocity relations, and of the criteria for various flow regimes. A new set of correlations and criteria is presented for two-phase flow to improve the accuracy of predictions; bubbly flow - Griffith and Wallis correlation, slug flow - Nicklin et al. one, annular-mist flow - Inoue and Aoki and modified by the author. The simulation method was verified by data from actual wells.

  3. Torque ripple in a Darrieus, vertical axis wind turbine

    SciTech Connect (OSTI)

    Reuter, R.C. Jr.

    1980-09-01

    Interaction between a steady wind and a rotating, Darrieus, vertical axis wind turbine produces time periodic aerodynamic loads which cause time dependent torque variations, referred to as torque ripple, to occur in the mechanical link between the turbine and the electrical generator. There is concern for the effect of torque ripple upon fatigue life of drive train components and upon power quality. An analytical solution characterizing the phenomenon of torque ripple has been obtained which is based upon a Fourier expansion of the time dependent features of the problem. Numerical results for torque ripple, some experimental data, determination of acceptable levels and methods of controlling it, are presented and discussed.

  4. VERTICAL RELAXATION OF A MOONLET PROPELLER IN SATURN'S A RING

    SciTech Connect (OSTI)

    Hoffmann, H.; Seiss, M.; Spahn, F. [Institute of Physics and Astronomy, University of Potsdam, D-14476 Golm (Germany)

    2013-03-01

    Two images, taken by the Cassini spacecraft near Saturn's equinox in 2009 August, show the Earhart propeller casting a 350 km long shadow, offering the opportunity to watch how the ring height, excited by the propeller moonlet, relaxes to an equilibrium state. From the shape of the shadow cast and a model of the azimuthal propeller height relaxation, we determine the exponential cooling constant of this process to be {lambda} = 0.07 {+-} 0.02 km{sup -1}, and thereby determine the collision frequency of the ring particles in the vertically excited region of the propeller to be {omega}{sub c}/{Omega} = 0.9 {+-} 0.2.

  5. SGP and TWP (Manus) Ice Cloud Vertical Velocities

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kalesse, Heike

    Daily netcdf-files of ice-cloud dynamics observed at the ARM sites at SGP (Jan1997-Dec2010) and Manus (Jul1999-Dec2010). The files include variables at different time resolution (10s, 20min, 1hr). Profiles of radar reflectivity factor (dbz), Doppler velocity (vel) as well as retrieved vertical air motion (V_air) and reflectivity-weighted particle terminal fall velocity (V_ter) are given at 10s, 20min and 1hr resolution. Retrieved V_air and V_ter follow radar notation, so positive values indicate downward motion. Lower level clouds are removed, however a multi-layer flag is included.

  6. SGP and TWP (Manus) Ice Cloud Vertical Velocities

    SciTech Connect (OSTI)

    Kalesse, Heike

    2013-06-27

    Daily netcdf-files of ice-cloud dynamics observed at the ARM sites at SGP (Jan1997-Dec2010) and Manus (Jul1999-Dec2010). The files include variables at different time resolution (10s, 20min, 1hr). Profiles of radar reflectivity factor (dbz), Doppler velocity (vel) as well as retrieved vertical air motion (V_air) and reflectivity-weighted particle terminal fall velocity (V_ter) are given at 10s, 20min and 1hr resolution. Retrieved V_air and V_ter follow radar notation, so positive values indicate downward motion. Lower level clouds are removed, however a multi-layer flag is included.

  7. NLO evolution of 3-quark Wilson loop operator

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Balitsky, I.; Grabovsky, A. V.

    2015-01-07

    It is well known that high-energy scattering of a meson from some hadronic target can be described by the interaction of that target with a color dipole formed by two Wilson lines corresponding to fast quark-antiquark pair. Moreover, the energy dependence of the scattering amplitude is governed by the evolution equation of this color dipole with respect to rapidity. Similarly, the energy dependence of scattering of a baryon can be described in terms of evolution of a three-Wilson-lines operator with respect to the rapidity of the Wilson lines. We calculate the evolution of the 3-quark Wilson loop operator in themore » next-to-leading order (NLO) and present a quasi-conformal evolution equation for a composite 3-Wilson-lines operator. Thus we also obtain the linearized version of that evolution equation describing the amplitude of the odderon exchange at high energies.« less

  8. Higgs-Higgsino-gaugino induced two loop electric dipole moments

    SciTech Connect (OSTI)

    Li Yingchuan; Profumo, Stefano; Ramsey-Musolf, Michael

    2008-10-01

    We compute the complete set of Higgs-mediated chargino-neutralino two-loop contributions to the electric dipole moments of the electron and neutron in the minimal supersymmetric standard model (MSSM). We study the dependence of these contributions on the parameters that govern CP-violation in the MSSM gauge-gaugino-Higgs-Higgsino sector. We find that contributions mediated by the exchange of WH{sup {+-}} and ZA{sup 0} pairs, where H{sup {+-}} and A{sup 0} are the charged and CP-odd Higgs scalars, respectively, are comparable to or dominate over those mediated by the exchange of neutral gauge bosons and CP-even Higgs scalars. We also emphasize that the result of this complete set of diagrams is essential for the full quantitative study of a number of phenomenological issues, such as electric dipole moment searches and their implications for electroweak baryogenesis.

  9. Bimetallic Fe-Ni Oxygen Carriers for Chemical Looping Combustion

    SciTech Connect (OSTI)

    Bhavsar, Saurabh; Veser, Goetz

    2013-11-06

    The relative abundance, low cost, and low toxicity of iron make Fe-based oxygen carriers of great interest for chemical looping combustion (CLC), an emerging technology for clean and efficient combustion of fossil and renewable fuels. However, Fe also shows much lower reactivity than other metals (such as Ni and Cu). Here, we demonstrate strong improvement of Fe-based carriers by alloying the metal phase with Ni. Through a combination of carrier synthesis and characterization with thermogravimetric and fixed-bed reactor studies, we demonstrate that the addition of Ni results in a significant enhancement in activity as well as an increase in selectivity for total oxidation. Furthermore, comparing alumina and ceria as support materials highlights the fact that reducible supports can result in a strong increase in oxygen carrier utilization.

  10. Laser Safety Method For Duplex Open Loop Parallel Optical Link

    DOE Patents [OSTI]

    Baumgartner, Steven John (Zumbro Falls, MN); Hedin, Daniel Scott (Rochester, MN); Paschal, Matthew James (Rochester, MN)

    2003-12-02

    A method and apparatus are provided to ensure that laser optical power does not exceed a "safe" level in an open loop parallel optical link in the event that a fiber optic ribbon cable is broken or otherwise severed. A duplex parallel optical link includes a transmitter and receiver pair and a fiber optic ribbon that includes a designated number of channels that cannot be split. The duplex transceiver includes a corresponding transmitter and receiver that are physically attached to each other and cannot be detached therefrom, so as to ensure safe, laser optical power in the event that the fiber optic ribbon cable is broken or severed. Safe optical power is ensured by redundant current and voltage safety checks.

  11. LORENTZ SELF-FORCE OF AN ELLIPSE CURRENT LOOP MODEL

    SciTech Connect (OSTI)

    Olmedo, Oscar; Zhang Jie; Kunkel, Valbona

    2013-07-10

    In this work, the Lorentz self-force of an ellipse current loop model is derived. We are motivated by the fact that it has been reported in the literature that coronal mass ejection morphology can resemble an ellipse in the field of view of coronagraph images. Deriving the Lorentz self-force using an ellipse geometry has the advantage of being able to be solved analytically, as opposed to other more complex geometries. The derived ellipse model is compared with the local curvature approximation, where the Lorentz self-force at the ellipse major/minor axis is compared with the Lorentz self-force of a torus with curvature equal to the local curvature at the ellipses major/minor axis. It is found that the local curvature approximation is valid for moderate values of eccentricity.

  12. Probability of pipe fracture in the primary coolant loop of a PWR Plant. Volume 3. Nonseismic stress analysis. Load Combination Program, Project I final report

    SciTech Connect (OSTI)

    Chan, A.L.; Lu, S.C.; Rybicki, E.F.; Curtis, D.J.

    1981-06-01

    This volume describes the analyses used to evaluate stresses due to loads other than seismic excitations in the primary coolant loop piping of a selected four-loop pressurized water reactor nuclear power station. The results of the analyses are used as input to a simulation procedure for predicting the probability of pipe fracture in the primary coolant system. Sources of stresses considered in the analyses are pressure, dead weight, thermal expansion, thermal gradients through the pipe wall, residual welding, and mechanical vibrations. Stresses due to dead weight and thermal expansion are computed from a three-dimensional finite element model that uses a combination of pipe, truss, and beam elements to represent the reactor coolant loop piping, reactor pressure vessel, reactor coolant pumps, steam generators, and the pressurizer. Stresses due to pressure and thermal gradients are obtained by closed-form solutions. Calculations of residual stresses account for the actual heat impact, welding speed, weld preparation geometry, and pre- and post-heat treatments. Vibrational stresses due to pump operation are estimated by a dynamic analysis using existing measurements of pump vibrations. 13 refs., 16 figs., 11 tabs.

  13. Vertical distribution of structural components in corn stover

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Johnson, Jane M. F.; Karlen, Douglas L.; Gresham, Garold L.; Cantrell, Keri B.; Archer, David W.; Wienhold, Brian J.; Varvel, Gary E.; Laird, David A.; Baker, John; Ochsner, Tyson E.; et al

    2014-11-17

    In the United States, corn (Zea mays L.) stover has been targeted for second generation fuel production and other bio-products. Our objective was to characterize sugar and structural composition as a function of vertical distribution of corn stover (leaves and stalk) that was sampled at physiological maturity and about three weeks later from multiple USA locations. A small subset of samples was assessed for thermochemical composition. Concentrations of lignin, glucan, and xylan were about 10% greater at grain harvest than at physiological maturity, but harvestable biomass was about 25% less due to stalk breakage. Gross heating density above the earmore » averaged 16.3 ± 0.40 MJ kg⁻¹, but with an alkalinity measure of 0.83 g MJ⁻¹, slagging is likely to occur during gasification. Assuming a stover harvest height of 10 cm, the estimated ethanol yield would be >2500 L ha⁻¹, but it would be only 1000 L ha⁻¹ if stover harvest was restricted to the material from above the primary ear. Vertical composition of corn stover is relatively uniform; thus, decision on cutting height may be driven by agronomic, economic and environmental considerations.« less

  14. Electromagnetic confinement for vertical casting or containing molten metal

    DOE Patents [OSTI]

    Lari, Robert J. (Aurora, IL); Praeg, Walter F. (Palos Park, IL); Turner, Larry R. (Naperville, IL)

    1991-01-01

    An apparatus and method adapted to confine a molten metal to a region by means of an alternating electromagnetic field. As adapted for use in the present invention, the alternating electromagnetic field given by B.sub.y =(2.mu..sub.o .rho.gy).sup.1/2 (where B.sub.y is the vertical component of the magnetic field generated by the magnet at the boundary of the region; y is the distance measured downward form the top of the region, .rho. is the metal density, g is the acceleration of gravity and .mu..sub.o is the permeability of free space) induces eddy currents in the molten metal which interact with the magnetic field to retain the molten metal with a vertical boudnary. As applied to an apparatus for the continuous casting of metal sheets or rods, metal in liquid form can be continuously introduced into the region defined by the magnetic field, solidified and conveyed away from the magnetic field in solid form in a continuous process.

  15. Vertical distribution of structural components in corn stover

    SciTech Connect (OSTI)

    Johnson, Jane M. F.; Karlen, Douglas L.; Gresham, Garold L.; Cantrell, Keri B.; Archer, David W.; Wienhold, Brian J.; Varvel, Gary E.; Laird, David A.; Baker, John; Ochsner, Tyson E.; Novak, Jeff M.; Halvorson, Ardell D.; Arriaga, Francisco; Lightle, David T.; Hoover, Amber; Emerson, Rachel; Barbour, Nancy W.

    2014-11-17

    In the United States, corn (Zea mays L.) stover has been targeted for second generation fuel production and other bio-products. Our objective was to characterize sugar and structural composition as a function of vertical distribution of corn stover (leaves and stalk) that was sampled at physiological maturity and about three weeks later from multiple USA locations. A small subset of samples was assessed for thermochemical composition. Concentrations of lignin, glucan, and xylan were about 10% greater at grain harvest than at physiological maturity, but harvestable biomass was about 25% less due to stalk breakage. Gross heating density above the ear averaged 16.3 0.40 MJ kg?, but with an alkalinity measure of 0.83 g MJ?, slagging is likely to occur during gasification. Assuming a stover harvest height of 10 cm, the estimated ethanol yield would be >2500 L ha?, but it would be only 1000 L ha? if stover harvest was restricted to the material from above the primary ear. Vertical composition of corn stover is relatively uniform; thus, decision on cutting height may be driven by agronomic, economic and environmental considerations.

  16. Vertical dispersion of inertial waves in the upper ocean

    SciTech Connect (OSTI)

    Rubenstein, D.M.

    1983-05-20

    A linear model of the vertical dispersion of near-inertial waves is developed. A porosity distribution near the bottom of the computational domain minimizes bottom reflections and simulates an ocean of the infinite depth. The model is used to show that the vertical dispersion of near-inertial waves in the upper ocean may, under certain conditions, contribute significanlty to the observed rapid decay of inertial oscillations in the surface layer. The kinetic energy of inertial oscillations at mid-latitudes decays with an e folding time scale of 10 days or less, when the parameter lambda(km)/N(cph)d(m) is less than or of the order of unity, where lambda is the wavelength of the wind-generated near-inertial waves, N is the Vaeisaelae frequency in the upper pycnocline, and d is the surface layer thickness. At the top of the pycnocline the model predicts a velocity maximum, which develops as energy propagates downward, out of the surface layer. However, when the upper pycnocline is sufficiently peaked, a resonant frequency interference effect is predicted. This effect modulates the dissipation of surface layer inertial oscillations, and their magnitude after a storm need not decay monotonically. We also make qualitative comparisons with deep-ocean current meter observations taken during the Mixed Layer Experiment (MILE) and with shallow water (105 m) observations taken in the Baltic Sea.

  17. Control system for a vertical-axis windmill

    DOE Patents [OSTI]

    Brulle, R.V.

    1981-09-03

    A vertical-axis windmill having a rotating structure is provided with a series of articulated vertical blades whose positions are controlled to maintain a constant RPM for the rotating structure, when wind speed is sufficient. A microprocessor controller is used to process information on wind speed, wind direction and RPM of the rotating structure to develop an electrical signal for establishing blade position. The preferred embodiment of the invention, when connected to a utility grid, is designed to generate 40 kilowatts of power when exposed to a 20 mile per hour wind. The control system for the windmill includes electrical blade actuators that modulate the blades of the rotating structure. Blade modulation controls the blade angle of attack, which in turn controls the RPM of the rotor. In the preferred embodiment, the microprocessor controller provides the operation logic and control functions. A wind speed sensor provides inputs to start or stop the windmill, and a wind direction sensor is used to keep the blade flip region at 90 and 270/sup 0/ to the wind. The control system is designed to maintain constant rotor RPM when wind speed is between 10 and 40 miles per hour.

  18. Vertical feed stick wood fuel burning furnace system

    DOE Patents [OSTI]

    Hill, Richard C.

    1982-01-01

    A stove or furnace for efficient combustion of wood fuel includes a vertical feed combustion chamber (15) for receiving and supporting wood fuel in a vertical attitude or stack. A major upper portion of the combustion chamber column comprises a water jacket (14) for coupling to a source of water or heat transfer fluid for convection circulation of the fluid. The locus (31) of wood fuel combustion is thereby confined to the refractory base of the combustion chamber. A flue gas propagation delay channel (34) extending laterally from the base of the chamber affords delayed travel time in a high temperature refractory environment sufficient to assure substantially complete combustion of the gaseous products of wood burning with forced air prior to extraction of heat in heat exchanger (16). Induced draft draws the fuel gas and air mixture laterally through the combustion chamber and refractory high temperature zone to the heat exchanger and flue. Also included are active sources of forced air and induced draft, multiple circuit couplings for the recovered heat, and construction features in the refractory material substructure and metal component superstructure.

  19. Vertical distribution of structural components in corn stover

    SciTech Connect (OSTI)

    Jane M. F. Johnson; Douglas L. Karlen; Garold L. Gresham; Keri B. Cantrell; David W. Archer; Brian J. Wienhold; Gary E. Varvel; David A. Laird; John Baker; Tyson E. Ochsner; Jeff M. Novak; Ardell D. Halvorson; Francisco Arriaga; David T. Lightle; Amber Hoover; Rachel Emerson; Nancy W. Barbour

    2014-11-01

    In the United States, corn (Zea mays L.) stover has been targeted for second generation fuel production and other bio-products. Our objective was to characterize sugar and structural composition as a function of vertical distribution of corn stover (leaves and stalk) that was sampled at physiological maturity and about three weeks later from multiple USA locations. A small subset of samples was assessed for thermochemical composition. Concentrations of lignin, glucan, and xylan were about 10% greater at grain harvest than at physiological maturity, but harvestable biomass was about 25% less due to stalk breakage. Gross heating density above the ear averaged 16.3 0.40 MJ kg?, but with an alkalinity measure of 0.83 g MJ?, slagging is likely to occur during gasification. Assuming a stover harvest height of 10 cm, the estimated ethanol yield would be >2500 L ha?, but it would be only 1000 L ha? if stover harvest was restricted to the material from above the primary ear. Vertical composition of corn stover is relatively uniform; thus, decision on cutting height may be driven by agronomic, economic and environmental considerations.

  20. Characterization of heat loads from mitigated and unmitigated vertical displacement events in DIII-D

    SciTech Connect (OSTI)

    Hollmann, E. M.; Moyer, R. A.; Commaux, N.; Jernigan, T. J.; Eidietis, N. W.; Humphreys, D. A.; Strait, E. J.; Wesley, J. C.; Lasnier, C. J.; Pitts, R. A.; Sugihara, M.; Watkins, J.

    2013-06-15

    Experiments have been conducted on the DIII-D tokamak to study the distribution and repeatability of heat loads and vessel currents resulting from vertical displacement events (VDEs). For unmitigated VDEs, the radiated power fraction appears to be of order 50%, with the remaining power dominantly conducted to the vessel walls. Shot-to-shot scatter in heat loads measured at one toroidal location is not large (<50%), suggesting that toroidal asymmetries in conducted heat loads are not large. Conducted heat loads are clearly observed during the current quench (CQ) of both mitigated and unmitigated disruptions. Significant poloidal asymmetries in heat loads and radiated power are often observed in the experiments but are not yet understood. Energy dissipated resistively in the conducting walls during the CQ appears to be small (<5%). The mitigating effect of neon massive gas injection (MGI) as a function of MGI trigger delay has also been studied. Improved mitigation is observed as the MGI trigger delay is decreased. For sufficiently early MGI mitigation, close to 100% radiated energy and a reduction of roughly a factor 2 in vessel forces is achieved.

  1. Passive recovery of DNAPL from clayey soil via vertical collection wells

    SciTech Connect (OSTI)

    Tease, B.; Gagnon, D.

    1995-12-01

    A release of dense non-aqueous phase liquids (DNAPL) from two underground storage tanks (USTs), created a contaminant plume that extended approximately 30 feet into lacustrine sediments comprised mainly of varved clay. Subsurfaces investigations indicated that the release was comprised primarily of the chlorinated solvent Trichloroethene which had migrated horizontally approximately 250 feet cross-gradient to groundwater flow. A relatively narrow zone of free phase product extended from the UST area approximately 150-200 feet along the plume of migration at a depth of 20-30 feet below the ground surface. Since clay varves interconnected by vertical fractures is believed to have facilitated the DNAPL migration, 4{close_quotes} diameter stainless steel collection recovery of 10-20 quarts of DNAPL per each collection event, over a 4 month period supported what is believed to be preferential DNAPL migration. DNAPL recovery continued for a total of 6 months before the point of diminimus return (1-2 quarts/month) resulted in adopting a quarterly recovery schedule. To date, 201 quarts of free phase DNAPL have been recovered. DNAPL mobility, delineation, well installation and collection techniques are discussed. Compared to conventional remediation alternatives, this passive recovery system provides an innovative approach to a difficult and costly problem; recovery of DNAPL isolated within clay.

  2. Discussion of and reply to ``Thermoselect: Energy and raw material recovery through thermal chemical transformation in a closed-loop system``

    SciTech Connect (OSTI)

    Norton, J.W.; Stahlberg, R.; Runyon, D.J.

    1995-11-01

    Publication of this paper by Rudi Stahlberg and David J. Runyon has made the public aware of the perfect system which would take garbage in, and produce several streams of valuable by-products while emitting little, if any, pollution streams. Prototype testing of the system was done at Fondotoce, Italy. However, the paper gives the impression that perhaps not all of the suggested processing is a part of the present prototype operation, if this is the case, the reader should be clearly informed as to which of the suggested by-product processing systems is presently operational, and which are thought to be possible. Comments are also made concerning pollution control equipment and the disposition of heavy metals. This article also contains the original authors` reply to the comments.

  3. Gosling and Fehner - Closing the Circle | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gosling and Fehner - Closing the Circle Gosling and Fehner - Closing the Circle F. G. Gosling and Terrence R. Fehner. Closing the Cirlce: The Department of Energy and Environmental Management, 1942-1994. March 1994.Text in each PDF is fully searchable. PDF icon Gosling and Fehner - Closing the Circle (complete).pdf More Documents & Publications EIS-0113: Final Environmental Impact Statement A History of the Energy Research and Development Administration Linking Legacies: Connecting the Cold

  4. Process/Equipment Co-Simulation on Syngas Chemical Looping Process

    SciTech Connect (OSTI)

    Zeng, Liang; Zhou, Qiang; Fan, Liang-Shih

    2012-09-30

    The chemical looping strategy for fossil energy applications promises to achieve an efficient energy conversion system for electricity, liquid fuels, hydrogen and/or chemicals generation, while economically separate CO{sub 2} by looping reaction design in the process. Chemical looping particle performance, looping reactor engineering, and process design and applications are the key drivers to the success of chemical looping process development. In order to better understand and further scale up the chemical looping process, issues such as cost, time, measurement, safety, and other uncertainties need to be examined. To address these uncertainties, advanced reaction/reactor modeling and process simulation are highly desired and the modeling efforts can accelerate the chemical looping technology development, reduce the pilot-scale facility design time and operating campaigns, as well as reduce the cost and technical risks. The purpose of this work is thus to conduct multiscale modeling and simulations on the key aspects of chemical looping technology, including particle reaction kinetics, reactor design and operation, and process synthesis and optimization.

  5. The impact of a filament eruption on nearby high-lying cool loops

    SciTech Connect (OSTI)

    Harra, L. K.; Matthews, S. A.; Long, D. M.; Doschek, G. A.; De Pontieu, B.

    2014-09-10

    The first spectroscopic observations of cool Mg II loops above the solar limb observed by NASA's Interface Region Imaging Spectrograph (IRIS) are presented. During the observation period, IRIS is pointed off-limb, allowing the observation of high-lying loops, which reach over 70 Mm in height. Low-lying cool loops were observed by the IRIS slit-jaw camera for the entire four-hour observing window. There is no evidence of a central reversal in the line profiles, and the Mg II h/k ratio is approximately two. The Mg II spectral lines show evidence of complex dynamics in the loops with Doppler velocities reaching 40 km s{sup 1}. The complex motions seen indicate the presence of multiple threads in the loops and separate blobs. Toward the end of the observing period, a filament eruption occurs that forms the core of a coronal mass ejection. As the filament erupts, it impacts these high-lying loops, temporarily impeding these complex flows, most likely due to compression. This causes the plasma motions in the loops to become blueshifted and then redshifted. The plasma motions are seen before the loops themselves start to oscillate as they reach equilibrium following the impact. The ratio of the Mg h/k lines also increases following the impact of the filament.

  6. THE INTERSTELLAR MAGNETIC FIELD CLOSE TO THE SUN. II

    SciTech Connect (OSTI)

    Frisch, P. C.; Andersson, B-G; Berdyugin, A.; Piirola, V.; DeMajistre, R.; Funsten, H. O.; Magalhaes, A. M.; Seriacopi, D. B.; McComas, D. J.; Schwadron, N. A.; Slavin, J. D.; Wiktorowicz, S. J.

    2012-12-01

    The magnetic field in the local interstellar medium (ISM) provides a key indicator of the galactic environment of the Sun and influences the shape of the heliosphere. We have studied the interstellar magnetic field (ISMF) in the solar vicinity using polarized starlight for stars within 40 pc of the Sun and 90 Degree-Sign of the heliosphere nose. In Frisch et al. (Paper I), we developed a method for determining the local ISMF direction by finding the best match to a group of interstellar polarization position angles obtained toward nearby stars, based on the assumption that the polarization is parallel to the ISMF. In this paper, we extend the analysis by utilizing weighted fits to the position angles and by including new observations acquired for this study. We find that the local ISMF is pointed toward the galactic coordinates l, b =47 Degree-Sign {+-} 20 Degree-Sign , 25 Degree-Sign {+-} 20 Degree-Sign . This direction is close to the direction of the ISMF that shapes the heliosphere, l, b =33 Degree-Sign {+-} 4 Degree-Sign , 55 Degree-Sign {+-} 4 Degree-Sign , as traced by the center of the 'Ribbon' of energetic neutral atoms discovered by the Interstellar Boundary Explorer (IBEX) mission. Both the magnetic field direction and the kinematics of the local ISM are consistent with a scenario where the local ISM is a fragment of the Loop I superbubble. A nearby ordered component of the local ISMF has been identified in the region l Almost-Equal-To 0 Degree-Sign {yields} 80 Degree-Sign and b Almost-Equal-To 0 Degree-Sign {yields} 30 Degree-Sign , where PlanetPol data show a distance-dependent increase of polarization strength. The ordered component extends to within 8 pc of the Sun and implies a weak curvature in the nearby ISMF of {approx}0.{sup 0}25 pc{sup -1}. This conclusion is conditioned on the small sample of stars available for defining this rotation. Variations from the ordered component suggest a turbulent component of {approx}23 Degree-Sign . The ordered component and standard relations between polarization, color excess, and H{sup o} column density predict a reasonable increase of N(H) with distance in the local ISM. The similarity of the ISMF directions traced by the polarizations, the IBEX Ribbon, and pulsars inside the Local Bubble in the third galactic quadrant suggest that the ISMF is relatively uniform over spatial scales of 8-200 pc and is more similar to interarm than spiral-arm magnetic fields. The ISMF direction from the polarization data is also consistent with small-scale spatial asymmetries detected in GeV-TeV cosmic rays with a galactic origin. The peculiar geometrical relation found earlier between the cosmic microwave background dipole moment, the heliosphere nose, and the ISMF direction is supported by this study. The interstellar radiation field at {approx}975 A does not appear to play a role in grain alignment for the low-density ISM studied here.

  7. Ground Source Heat Pump Sub-Slab Heat Exchange Loop Performance in a Cold Climate

    SciTech Connect (OSTI)

    Mittereder, Nick; Poerschke, Andrew

    2013-11-01

    This report presents a cold-climate project that examines an alternative approach to ground source heat pump (GSHP) ground loop design. The innovative ground loop design is an attempt to reduce the installed cost of the ground loop heat exchange portion of the system by containing the entire ground loop within the excavated location beneath the basement slab. Prior to the installation and operation of the sub-slab heat exchanger, energy modeling using TRNSYS software and concurrent design efforts were performed to determine the size and orientation of the system. One key parameter in the design is the installation of the GSHP in a low-load home, which considerably reduces the needed capacity of the ground loop heat exchanger. This report analyzes data from two cooling seasons and one heating season.

  8. POTENTIAL EVIDENCE FOR THE ONSET OF ALFVNIC TURBULENCE IN TRANS-EQUATORIAL CORONAL LOOPS

    SciTech Connect (OSTI)

    De Moortel, I.; Threlfall, J.; McIntosh, S. W.; Bethge, C.; Liu, J. E-mail: mscott@ucar.edu

    2014-02-20

    This study investigates Coronal Multi-channel Polarimeter Doppler-shift observations of a large, off-limb, trans-equatorial loop system observed on 2012 April 10-11. Doppler-shift oscillations with a broad range of frequencies are found to propagate along the loop with a speed of about 500kms{sup 1}. The power spectrum of perturbations travelling up from both loop footpoints is remarkably symmetric, probably due to the almost perfect north-south alignment of the loop system. Compared to the power spectrum at the footpoints of the loop, the Fourier power at the apex appears to be higher in the high-frequency part of the spectrum than expected from theoretical models. We suggest this excess high-frequency power could be tentative evidence for the onset of a cascade of the low-to-mid frequency waves into (Alfvnic) turbulence.

  9. DEEPER BY THE DOZEN: UNDERSTANDING THE CROSS-FIELD TEMPERATURE DISTRIBUTIONS OF CORONAL LOOPS

    SciTech Connect (OSTI)

    Schmelz, J. T.; Pathak, S.; Jenkins, B. S.; Worley, B. T., E-mail: jschmelz@memphis.edu [Physics Department, University of Memphis, Memphis, TN 38152 (United States)

    2013-02-10

    Spectroscopic analysis of coronal loops has revealed a variety of cross-field temperature distributions. Some loops appear to be isothermal while others require multithermal plasma. The EUV Imaging Spectrometer on Hinode has the spatial resolution and temperature coverage required for differential emission measure (DEM) analysis of coronal loops. Our results also use data from the X-Ray Telescope on Hinode as a high-temperature constraint. Of our 12 loops, two were post-flare loops with broad temperature distributions, two were narrow but not quite isothermal, and the remaining eight were in the mid range. We consider our DEM methods to be a significant advance over previous work, and it is also reassuring to learn that our findings are consistent with results available in the literature. For the quiescent loops analyzed here, 10 MK plasma, a signature of nanoflares, appears to be absent at a level of approximately two orders of magnitude down from the DEM peak. We find some evidence that warmer loops require broader DEMs. The cross-field temperatures obtained here cannot be modeled as single flux tubes. Rather, the observed loop must be composed of several or many unresolved strands. The plasma contained in each of these strands could be cooling at different rates, contributing to the multithermal nature of the observed loop pixels. An important implication of our DEM results involves observations from future instruments. Once solar telescopes can truly resolve X-ray and EUV coronal structures, these images would have to reveal the loop substructure implied by our multithermal results.

  10. Unresolved fine-scale structure in solar coronal loop-tops

    SciTech Connect (OSTI)

    Scullion, E.; Van der Voort, L. Rouppe; Wedemeyer, S.; Antolin, P.

    2014-12-10

    New and advanced space-based observing facilities continue to lower the resolution limit and detect solar coronal loops in greater detail. We continue to discover even finer substructures within coronal loop cross-sections, in order to understand the nature of the solar corona. Here, we push this lower limit further to search for the finest coronal loop substructures, through taking advantage of the resolving power of the Swedish 1 m Solar Telescope/CRisp Imaging Spectro-Polarimeter (CRISP), together with co-observations from the Solar Dynamics Observatory/Atmospheric Image Assembly (AIA). High-resolution imaging of the chromospheric H? 656.28 nm spectral line core and wings can, under certain circumstances, allow one to deduce the topology of the local magnetic environment of the solar atmosphere where its observed. Here, we study post-flare coronal loops, which become filled with evaporated chromosphere that rapidly condenses into chromospheric clumps of plasma (detectable in H?) known as a coronal rain, to investigate their fine-scale structure. We identify, through analysis of three data sets, large-scale catastrophic cooling in coronal loop-tops and the existence of multi-thermal, multi-stranded substructures. Many cool strands even extend fully intact from loop-top to footpoint. We discover that coronal loop fine-scale strands can appear bunched with as many as eight parallel strands within an AIA coronal loop cross-section. The strand number density versus cross-sectional width distribution, as detected by CRISP within AIA-defined coronal loops, most likely peaks at well below 100 km, and currently, 69% of the substructure strands are statistically unresolved in AIA coronal loops.

  11. BuD, a helixloophelix DNA-binding domain for genome modification

    SciTech Connect (OSTI)

    Stella, Stefano; Molina, Rafael; Lpez-Mndez, Blanca; Juillerat, Alexandre; Bertonati, Claudia; Daboussi, Fayza; Campos-Olivas, Ramon; Duchateau, Phillippe; Montoya, Guillermo

    2014-07-01

    Crystal structures of BurrH and the BurrHDNA complex are reported. DNA editing offers new possibilities in synthetic biology and biomedicine for modulation or modification of cellular functions to organisms. However, inaccuracy in this process may lead to genome damage. To address this important problem, a strategy allowing specific gene modification has been achieved through the addition, removal or exchange of DNA sequences using customized proteins and the endogenous DNA-repair machinery. Therefore, the engineering of specific proteinDNA interactions in protein scaffolds is key to providing toolkits for precise genome modification or regulation of gene expression. In a search for putative DNA-binding domains, BurrH, a protein that recognizes a 19 bp DNA target, was identified. Here, its apo and DNA-bound crystal structures are reported, revealing a central region containing 19 repeats of a helixloophelix modular domain (BurrH domain; BuD), which identifies the DNA target by a single residue-to-nucleotide code, thus facilitating its redesign for gene targeting. New DNA-binding specificities have been engineered in this template, showing that BuD-derived nucleases (BuDNs) induce high levels of gene targeting in a locus of the human haemoglobin ? (HBB) gene close to mutations responsible for sickle-cell anaemia. Hence, the unique combination of high efficiency and specificity of the BuD arrays can push forward diverse genome-modification approaches for cell or organism redesign, opening new avenues for gene editing.

  12. Vertically Aligned Carbon Nanofiber Based Biosensor Platform for Glucose Sensor

    SciTech Connect (OSTI)

    Mamun, Khandaker Abdullah Al; Tulip, Fahmida S; Macarthur, Kimberly C; McFarlane, Nicole M; Islam, Syed K

    2014-01-01

    Vertically aligned carbon nanofibers (VACNFs) have recently become an important tool for biosensor design. Carbon nanofibers (CNF) have excellent conductive and structural properties with many irregularities and defect sites in addition to exposed carboxyl groups throughout their surfaces. These properties allow a better immobilization matrix compared to carbon nanotubes and offer better resolution when compared with the FET-based biosensors. VACNFs can be deterministically grown on silicon substrates allowing optimization of the structures for various biosensor applications. Two VACNF electrode architectures have been employed in this study and a comparison of their performances has been made in terms of sensitivity, sensing limitations, dynamic range, and response time. The usage of VACNF platform as a glucose sensor has been verified in this study by selecting an optimum architecture based on the VACNF forest density. Read More: http://www.worldscientific.com/doi/abs/10.1142/S0129156414500062

  13. Test reports for K Basins vertical fuel handling tools

    SciTech Connect (OSTI)

    Meling, T.A.

    1995-02-01

    The vertical fuel handling tools, for moving N Reactor fuel elements, were tested in the 305 Building Cold Test Facility (CTF) in the 300 Area. After fabrication was complete, the tools were functionally tested in the CTF using simulated N Reactor fuel rods (inner and outer elements). The tools were successful in picking up the simulated N Reactor fuel rods. These tools were also load tested using a 62 pound dummy to test the structural integrity of each assembly. The tools passed each of these tests, based on the performance objectives. Finally, the tools were subjected to an operations acceptance test where K Basins Operations personnel operated the tool to determine its durability and usefulness. Operations personnel were satisfied with the tools. Identified open items included the absence of a float during testing, and documentation required prior to actual use of the tools in the 100 K fuel storage basin.

  14. 3-D laser patterning process utilizing horizontal and vertical patterning

    DOE Patents [OSTI]

    Malba, Vincent (Livermore, CA); Bernhardt, Anthony F. (Berkeley, CA)

    2000-01-01

    A process which vastly improves the 3-D patterning capability of laser pantography (computer controlled laser direct-write patterning). The process uses commercially available electrodeposited photoresist (EDPR) to pattern 3-D surfaces. The EDPR covers the surface of a metal layer conformally, coating the vertical as well as horizontal surfaces. A laser pantograph then patterns the EDPR, which is subsequently developed in a standard, commercially available developer, leaving patterned trench areas in the EDPR. The metal layer thereunder is now exposed in the trench areas and masked in others, and thereafter can be etched to form the desired pattern (subtractive process), or can be plated with metal (additive process), followed by a resist stripping, and removal of the remaining field metal (additive process). This improved laser pantograph process is simpler, faster, move manufacturable, and requires no micro-machining.

  15. Natural Ores as Oxygen Carriers in Chemical Looping Combustion

    SciTech Connect (OSTI)

    Tian, Hanjing; Siriwardane, Ranjani; Simonyi, Thomas; Poston, James

    2013-08-01

    Chemical looping combustion (CLC) is a combustion technology that utilizes oxygen from oxygen carriers (OC), such as metal oxides, instead of air to combust fuels. The use of natural minerals as oxygen carriers has advantages, such as lower cost and availability. Eight materials, based on copper or iron oxides, were selected for screening tests of CLC processes using coal and methane as fuels. Thermogravimetric experiments and bench-scale fixed-bed reactor tests were conducted to investigate the oxygen transfer capacity, reaction kinetics, and stability during cyclic reduction/oxidation reaction. Most natural minerals showed lower combustion capacity than pure CuO/Fe{sub 2}O{sub 3} due to low-concentrations of active oxide species in minerals. In coal CLC, chryscolla (Cu-based), magnetite, and limonite (Fe-based) demonstrated better reaction performances than other materials. The addition of steam improved the coal CLC performance when using natural ores because of the steam gasification of coal and the subsequent reaction of gaseous fuels with active oxide species in the natural ores. In methane CLC, chryscolla, hematite, and limonite demonstrated excellent reactivity and stability in 50-cycle thermogravimetric analysis tests. Fe{sub 2}O{sub 3}-based ores possess greater oxygen utilization but require an activation period before achieving full performance in methane CLC. Particle agglomeration issues associated with the application of natural ores in CLC processes were also studied by scanning electron microscopy (SEM).

  16. Future singularities and teleparallelism in loop quantum cosmology

    SciTech Connect (OSTI)

    Bamba, Kazuharu; Haro, Jaume de; Odintsov, Sergei D. E-mail: jaime.haro@upc.edu

    2013-02-01

    We demonstrate how holonomy corrections in loop quantum cosmology (LQC) prevent the Big Rip singularity by introducing a quadratic modification in terms of the energy density ? in the Friedmann equation in the Friedmann-Lematre-Robertson-Walker (FLRW) space-time in a consistent and useful way. In addition, we investigate whether other kind of singularities like Type II,III and IV singularities survive or are avoided in LQC when the universe is filled by a barotropic fluid with the state equation P = ???f(?), where P is the pressure and f(?) a function of ?. It is shown that the Little Rip cosmology does not happen in LQC. Nevertheless, the occurrence of the Pseudo-Rip cosmology, in which the phantom universe approaches the de Sitter one asymptotically, is established, and the corresponding example is presented. It is interesting that the disintegration of bound structures in the Pseudo-Rip cosmology in LQC always takes more time than that in Einstein cosmology. Our investigation on future singularities is generalized to that in modified teleparallel gravity, where LQC and Brane Cosmology in the Randall-Sundrum scenario are the best examples. It is remarkable that F(T) gravity may lead to all the kinds of future singularities including Little Rip.

  17. Vertical air motions over the Tropical Western Pacific for validating cloud resolving and regional models

    SciTech Connect (OSTI)

    Williams, Christopher R.

    2015-03-16

    The objective of this project was to estimate the vertical air motion using Doppler velocity spectra from two side-by-side vertically pointing radars. The retrieval technique was applied to two different sets of radars. This first set was 50- and 920-MHz vertically pointing radars near Darwin, Australia. The second set was 449-MHz and 2.8-GHz vertically pointing radars deployed at SGP for MC3E. The retrieval technique uses the longer wavelength radar (50 or 449 MHz) to observe both the vertical air motion and precipitation motion while the shorter wavelength radar (920 MHz or 2.8 GHz) observes just the precipitation motion. By analyzing their Doppler velocity spectra, the precipitation signal in the 920 MHz or 2.8 GHz radar is used to mask-out the precipitation signal in the 50 or 449 MHz radar spectra, leaving just the vertical air motion signal.

  18. Carnot{close_quote}s theorem as Noether{close_quote}s theorem for thermoacoustic engines

    SciTech Connect (OSTI)

    Smith, E.

    1998-09-01

    Onset in thermoacoustic engines, the transition to spontaneous self-generation of oscillations, is studied here as both a dynamical critical transition and a limiting heat engine behavior. The critical transition is interesting because it occurs for both dissipative and conservative systems, with common scaling properties. When conservative, the stable oscillations above the critical point also implement a reversible engine cycle satisfying Carnot{close_quote}s theorem, a universal conservation law for entropy flux. While criticality in equilibrium systems is naturally associated with symmetries and universal conservation laws, these are usually exploited with global minimization principles, which dynamical critical systems may not have if dissipation is essential to their criticality. Acoustic heat engines furnish an example connecting equilibrium methods with dynamical and possibly even dissipative critical transitions: A reversible engine is shown to map, by a change of variables, to an equivalent system in apparent thermal equilibrium; a Noether symmetry in the equilibrium field theory implies Carnot{close_quote}s theorem for the engine. Under the same association, onset is shown to be a process of spontaneous symmetry breaking and the scaling of the quality factor predicted for both the reversible {ital and irreversible} engines is shown to arise from the Ginzburg-Landau description of the broken phase. {copyright} {ital 1998} {ital The American Physical Society}

  19. More on loops in reheating: non-gaussianities and tensor power spectrum

    SciTech Connect (OSTI)

    Katirci, Nihan; Kaya, Ali; Tarman, Merve E-mail: ali.kaya@boun.edu.tr

    2014-06-01

    We consider the single field chaotic m{sup 2}?{sup 2} inflationary model with a period of preheating, where the inflaton decays to another scalar field ? in the parametric resonance regime. In a recent work, one of us has shown that the ? modes circulating in the loops during preheating notably modify the (??) correlation function. We first rederive this result using a different gauge condition hence reconfirm that superhorizon ? modes are affected by the loops in preheating. Further, we examine how ? loops give rise to non-gaussianity and affect the tensor perturbations. For that, all cubic and some higher order interactions involving two ? fields are determined and their contribution to the non-gaussianity parameter f{sub NL} and the tensor power spectrum are calculated at one loop. Our estimates for these corrections show that while a large amount of non-gaussianity can be produced during reheating, the tensor power spectrum receive moderate corrections. We observe that the loop quantum effects increase with more ? fields circulating in the loops indicating that the perturbation theory might be broken down. These findings demonstrate that the loop corrections during reheating are significant and they must be taken into account for precision inflationary cosmology.

  20. DETECTING NANOFLARE HEATING EVENTS IN SUBARCSECOND INTER-MOSS LOOPS USING Hi-C

    SciTech Connect (OSTI)

    Winebarger, Amy R.; Moore, Ronald; Cirtain, Jonathan; Walsh, Robert W.; De Pontieu, Bart; Title, Alan; Hansteen, Viggo; Golub, Leon; Korreck, Kelly; Weber, Mark; Kobayashi, Ken; DeForest, Craig; Kuzin, Sergey

    2013-07-01

    The High-resolution Coronal Imager (Hi-C) flew aboard a NASA sounding rocket on 2012 July 11 and captured roughly 345 s of high-spatial and temporal resolution images of the solar corona in a narrowband 193 A channel. In this paper, we analyze a set of rapidly evolving loops that appear in an inter-moss region. We select six loops that both appear in and fade out of the Hi-C images during the short flight. From the Hi-C data, we determine the size and lifetimes of the loops and characterize whether these loops appear simultaneously along their length or first appear at one footpoint before appearing at the other. Using co-aligned, co-temporal data from multiple channels of the Atmospheric Imaging Assembly on the Solar Dynamics Observatory, we determine the temperature and density of the loops. We find the loops consist of cool ({approx}10{sup 5} K), dense ({approx}10{sup 10} cm{sup -3}) plasma. Their required thermal energy and their observed evolution suggest they result from impulsive heating similar in magnitude to nanoflares. Comparisons with advanced numerical simulations indicate that such dense, cold and short-lived loops are a natural consequence of impulsive magnetic energy release by reconnection of braided magnetic field at low heights in the solar atmosphere.

  1. Phenylnaphthalene Derivatives as Heat Transfer Fluids for Concentrating Solar Power: Loop Experiments and Final Report

    SciTech Connect (OSTI)

    McFarlane, Joanna; Bell, Jason R; Felde, David K; Joseph III, Robert Anthony; Qualls, A L; Weaver, Samuel P

    2013-02-01

    ORNL and subcontractor Cool Energy completed an investigation of higher-temperature, organic thermal fluids for solar thermal applications. Although static thermal tests showed promising results for 1-phenylnaphthalene, loop testing at temperatures to 450 C showed that the material isomerized at a slow rate. In a loop with a temperature high enough to drive the isomerization, the higher melting point byproducts tended to condense onto cooler surfaces. So, as experienced in loop operation, eventually the internal channels of cooler components such as the waste heat rejection exchanger may become coated or clogged and loop performance will decrease. Thus, pure 1-phenylnaphthalene does not appear to be a fluid that would have a sufficiently long lifetime (years to decades) to be used in a loop at the increased temperatures of interest. Hence a decision was made not to test the ORNL fluid in the loop at Cool Energy Inc. Instead, Cool Energy tested and modeled power conversion from a moderate-temperature solar loop using coupled Stirling engines. Cool Energy analyzed data collected on third and fourth generation SolarHeart Stirling engines operating on a rooftop solar field with a lower temperature (Marlotherm) heat transfer fluid. The operating efficiencies of the Stirling engines were determined at multiple, typical solar conditions, based on data from actual cycle operation. Results highlighted the advantages of inherent thermal energy storage in the power conversion system.

  2. Examining System-Wide Impacts of Solar PV Control Systems with a Power Hardware-in-the-Loop Platform

    SciTech Connect (OSTI)

    Williams, Tess L.; Fuller, Jason C.; Schneider, Kevin P.; Palmintier, Bryan; Lundstrom, Blake; Chakraborty, Sudipta

    2014-10-11

    High penetration levels of distributed solar PV power generation can lead to adverse power quality impacts such as excessive voltage rise, voltage flicker, and reactive power values that result in unacceptable voltage levels. Advanced inverter control schemes have been proposed that have the potential to mitigate many power quality concerns. However, closed-loop control may lead to unintended behavior in deployed systems as complex interactions can occur between numerous operating devices. In order to enable the study of the performance of advanced control schemes in a detailed distribution system environment, a Hardware-in-the-Loop (HIL) platform has been developed. In the HIL system, GridLAB-D, a distribution system simulation tool, runs in real-time mode at the Pacific Northwest National Laboratory (PNNL) and supplies power system parameters at a point of common coupling to hardware located at the National Renewable Energy Laboratory (NREL). Hardware inverters interact with grid and PV simulators emulating an operational distribution system and power output from the inverters is measured and sent to PNNL to update the real-time distribution system simulation. The platform is described and initial test cases are presented. The platform is used to study the system-wide impacts and the interactions of controls applied to inverters that are integrated into a simulation of the IEEE 8500-node test feeder, with inverters in either constant power factor control or active volt/VAR control. We demonstrate that this HIL platform is well-suited to the study of advanced inverter controls and their impacts on the power quality of a distribution feeder. Additionally, the results from HIL are used to validate GridLAB-D simulations of advanced inverter controls. ?

  3. Integration of photoactive and electroactive components with vertical cavity surface emitting lasers

    DOE Patents [OSTI]

    Bryan, Robert P. (12700 Indian School Rd. NE., Apt. 604, Albuquerque, NM 87112); Esherick, Peter (1105 Sagebrush Trail SE., Albuquerque, NM 87123); Jewell, Jack L. (12 Timberline Dr., Bridgewater, NJ 08807); Lear, Kevin L. (13713 Vic Rd. NE., Albuquerque, NM 87112); Olbright, Gregory R. (3875 Orange Ct., Boulder, CO 80304)

    1997-01-01

    A monolithically integrated optoelectronic device is provided which integrates a vertical cavity surface emitting laser and either a photosensitive or an electrosensitive device either as input or output to the vertical cavity surface emitting laser either in parallel or series connection. Both vertical and side-by-side arrangements are disclosed, and optical and electronic feedback means are provided. Arrays of these devices can be configured to enable optical computing and neural network applications.

  4. Integration of photoactive and electroactive components with vertical cavity surface emitting lasers

    DOE Patents [OSTI]

    Bryan, R.P.; Esherick, P.; Jewell, J.L.; Lear, K.L.; Olbright, G.R.

    1997-04-29

    A monolithically integrated optoelectronic device is provided which integrates a vertical cavity surface emitting laser and either a photosensitive or an electrosensitive device either as input or output to the vertical cavity surface emitting laser either in parallel or series connection. Both vertical and side-by-side arrangements are disclosed, and optical and electronic feedback means are provided. Arrays of these devices can be configured to enable optical computing and neural network applications. 9 figs.

  5. The impact of vertical shear on the sensitivity of tropical cyclogenes...

    Office of Scientific and Technical Information (OSTI)

    The impact of vertical shear on the sensitivity of tropical cyclogenesis to environmental rotation and thermodynamic state: TROPICAL CYCLOGENESIS AND SHEAR Citation Details ...

  6. ARM - PI Product - Cloud-Scale Vertical Velocity and Turbulent Dissipation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rate Retrievals ProductsCloud-Scale Vertical Velocity and Turbulent Dissipation Rate Retrievals ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Cloud-Scale Vertical Velocity and Turbulent Dissipation Rate Retrievals Time-height fields of retrieved in-cloud vertical wind velocity and turbulent dissipation rate, both retrieved primarily from vertically-pointing, Ka-band cloud radar measurements. Files

  7. NREL: Energy Systems Integration Facility - Hardware-in-the-Loop at

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Megawatt-Scale Power Hardware-in-the-Loop at Megawatt-Scale Power Hardware-in-the-loop simulation is not new, but the Energy System Integration Facility's megawatt-scale power takes this research to another level. It allows researchers and manufacturers to conduct integration tests at full power and actual load levels in real-time simulations to evaluate component and system performance before going to market. For more information, read the power hardware-in-the-loop factsheet. Photo of two

  8. Triviality and vacuum stability bounds in the three-loop neutrino mass

    Office of Scientific and Technical Information (OSTI)

    model (Journal Article) | SciTech Connect Triviality and vacuum stability bounds in the three-loop neutrino mass model Citation Details In-Document Search Title: Triviality and vacuum stability bounds in the three-loop neutrino mass model We study theoretical constraints on the parameter space under the conditions from vacuum stability and triviality in the three-loop radiative seesaw model with TeV-scale right-handed neutrinos which are odd under the Z{sub 2} parity. In this model, some of

  9. Two-loop ultrasoft running of the O(v{sup 2}) QCD quark potentials (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Two-loop ultrasoft running of the O(v{sup 2}) QCD quark potentials Citation Details In-Document Search Title: Two-loop ultrasoft running of the O(v{sup 2}) QCD quark potentials The two-loop ultrasoft contributions to the next-to-leading logarithmic (NLL) running of the QCD potentials at order v{sup 2} are determined. The results represent an important step towards the next-to-next-to-leading logarithmic (NNLL) description of heavy quark pair production and

  10. Energy Department Receives Prestigious Closing the Circle Awards for

    Energy Savers [EERE]

    Environmental Stewardship | Department of Energy Receives Prestigious Closing the Circle Awards for Environmental Stewardship Energy Department Receives Prestigious Closing the Circle Awards for Environmental Stewardship June 13, 2007 - 1:40pm Addthis DOE Won Four Out of Ten Civilian Awards WASHINGTON, DC - The Department of Energy (DOE) this week received four White House Closing the Circle (CTC) awards, which recognize federal leadership in green purchasing, electronics recycling, and

  11. Closing Gaps in Modeling Multifamily Retrofits | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Closing Gaps in Modeling Multifamily Retrofits Closing Gaps in Modeling Multifamily Retrofits This presentation was delivered at the U.S. Department of Energy Building America Technical Update meeting on April 29-30, 2013, in Denver, Colorado. PDF icon cq6_closing_gaps_multifamily_dentz.pdf More Documents & Publications Critical Question #6: What are the Challenges and Solutions for Modeling Multifamily Buildings? Building America Webinar: Central Multifamily Water Heating Systems -

  12. Collaborative Lubricating Oil Study on Emissions (CLOSE) Project |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy CLOSE) Project Collaborative Lubricating Oil Study on Emissions (CLOSE) Project Extensive chemical and physical characterization performed on emissions from normal and high emitting light-, medium-, and heavy-duty vehicles to evaluate relative contributions of fuel and lubricating oil on tailpipe emissions. PDF icon deer08_lawson.pdf More Documents & Publications Collaborative Lubricating Oil Study on Emissions (CLOSE Project) Collaborative Lubricating Oil Study on

  13. Sub-millikelvin stabilization of a closed cycle cryocooler (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | DOE PAGES Sub-millikelvin stabilization of a closed cycle cryocooler « Prev Next » Title: Sub-millikelvin stabilization of a closed cycle cryocooler In this study, intrinsic temperature oscillations (with the amplitude up to 1 K) of a closed cycle cryocooler are stabilized by a simple thermal damping system. It employs three different materials with different thermal conductivity and capacity at various temperatures. The amplitude of oscillations of the sample temperature is

  14. Energy Department Closes Buy American Investigation into Lighting Sales |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Energy Department Closes Buy American Investigation into Lighting Sales Energy Department Closes Buy American Investigation into Lighting Sales September 10, 2010 - 4:56pm Addthis Today, the Department of Energy formally closed its investigation into whether sales to recipients of the Department's Energy Efficiency Community Block Grants by two California companies, US Lighting Tech and American Induction Technologies, Inc., complied with the Buy American provisions of

  15. DOE Closes Investigation into Alleged Lighting Efficiency Violations |

    Office of Environmental Management (EM)

    Department of Energy Closes Investigation into Alleged Lighting Efficiency Violations DOE Closes Investigation into Alleged Lighting Efficiency Violations April 16, 2010 - 10:39am Addthis The U.S. Department of Energy has closed its investigation into the energy efficiency of lighting products manufactured by Habitex Corporation and sold under the Target and Adesso brand names based on test data provided by the companies. The Department requested information from the three companies last

  16. Molten Salt Test Loop (MSTL) system customer interface document.

    SciTech Connect (OSTI)

    Gill, David Dennis; Kolb, William J.; Briggs, Ronald D.

    2013-09-01

    The National Solar Thermal Test Facility at Sandia National Laboratories has a unique test capability called the Molten Salt Test Loop (MSTL) system. MSTL is a test capability that allows customers and researchers to test components in flowing, molten nitrate salt. The components tested can range from materials samples, to individual components such as flex hoses, ball joints, and valves, up to full solar collecting systems such as central receiver panels, parabolic troughs, or linear Fresnel systems. MSTL provides realistic conditions similar to a portion of a concentrating solar power facility. The facility currently uses 60/40 nitrate %E2%80%9Csolar salt%E2%80%9D and can circulate the salt at pressure up to 40 bar (600psi), temperature to 585%C2%B0C, and flow rate of 44-50kg/s(400-600GPM) depending on temperature. The purpose of this document is to provide a basis for customers to evaluate the applicability to their testing needs, and to provide an outline of expectations for conducting testing on MSTL. The document can serve as the basis for testing agreements including Work for Others (WFO) and Cooperative Research and Development Agreements (CRADA). While this document provides the basis for these agreements and describes some of the requirements for testing using MSTL and on the site at Sandia, the document is not sufficient by itself as a test agreement. The document, however, does provide customers with a uniform set of information to begin the test planning process.

  17. An investigation of synthetic fuel production via chemical looping

    SciTech Connect (OSTI)

    Frank Zeman; Marco Castaldi

    2008-04-15

    Producing liquid hydrocarbon fuels with a reduced greenhouse gas emissions profile would ease the transition to a carbon-neutral energy sector with the transportation industry being the immediate beneficiary followed by the power industry. Revolutionary solutions in transportation, such as electricity and hydrogen, depend on the deployment of carbon capture and storage technologies and/or renewable energy systems. Additionally, high oil prices may increase the development of unconventional sources, such as tar sands, that have a higher emissions profile. One process that is gaining interest is a system for producing reduced carbon fuels though chemical looping technologies. An investigation of the implications of such a process using methane and carbon dioxide that is reformed to yield methanol has been done. An important aspect of the investigation is the use of off-the-shelf technologies to achieve the results. The ability of the process to yield reduced emissions fuels depends on the source for the feed and process heat. For the range of conditions considered, the emissions profile of methanol produced in this method varies from 0.475 to 1.645 moles carbon dioxide per mole methanol. The thermal load can be provided by methane, coal or carbon neutral (biogas). The upper bound can be lowered to 0.750 by applying CCS and/or using nonfossil heat sources for the reforming. The process provides an initial pathway to incorporate CO{sub 2} into fuels independent of electrolytic hydrogen or developments in other sectors of the economy. 22 refs., 1 fig., 3 tabs.

  18. Posting Date: July 16, 2015 Posting Close Date: TBD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    July 16, 2015 Posting Close Date: TBD North American Industry Classification System (NAICS) code for the request: 812332 Estimated SubcontractPO Value TBD Estimated Period of...

  19. Sec. Moniz to Georgia, Energy Department Scheduled to Close on...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Nuclear Power Plant Reactors Sec. Moniz to Georgia, Energy Department Scheduled to Close on Loan Guarantees to Construct New Nuclear Power Plant Reactors February 19, 2014 - ...

  20. President Obama's Visit to Alaska: Closing Thoughts | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Obama's Visit to Alaska: Closing Thoughts President Obama's Visit to Alaska: Closing Thoughts September 4, 2015 - 2:41pm Addthis After a three-day journey around Alaska, the President offered his closing thoughts. Here is an excerpt: "On the final day of my trip to Alaska, I understand that I became the first president to travel above the Arctic Circle. It's hard to believe this trip is already coming to a close. Over the course of the past three days, from the decks of Coast

  1. Closed orbit response to quadrupole strength variation (Technical...

    Office of Scientific and Technical Information (OSTI)

    strength variation We derive two formulae relating the variation in closed orbit in a storage ring to variations in quadrupole strength, neglecting nonlinear and dispersive...

  2. Sub-millikelvin stabilization of a closed cycle cryocooler (Journal...

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: Sub-millikelvin stabilization of a closed cycle cryocooler In this study, intrinsic temperature oscillations (with the amplitude up to 1 ...

  3. DOE Closes Investigation into Energy Efficiency of Viking Refrigerator...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    into Energy Efficiency of Viking Refrigerator DOE Closes Investigation into Energy Efficiency of Viking Refrigerator November 9, 2010 - 7:30pm Addthis The Department of Energy has...

  4. ARM - Expectations for Campaign Implementation and Close Out

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CampaignsExpectations for Campaign Implementation and Close Out Guidelines Overview Annual Facility Call Small Field Campaigns Review Criteria Expectations for Principal...

  5. Energy Department Receives Prestigious Closing the Circle Awards...

    Broader source: Energy.gov (indexed) [DOE]

    this week received four White House Closing the Circle (CTC) awards, which recognize federal leadership in green purchasing, electronics recycling, and energy efficiency practices. ...

  6. Control, Close-out, and Storage of Documentation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 Revision 1 Effective June 2008 Control, Close-out, and Storage of Documentation Prepared ... proper methods for the control of records during and subsequent to testing activities. ...

  7. Kink modes and surface currents associated with vertical displacement events

    SciTech Connect (OSTI)

    Manickam, Janardhan; Boozer, Allen; Gerhardt, Stefan

    2012-08-15

    The fast termination phase of a vertical displacement event (VDE) in a tokamak is modeled as a sequence of shrinking equilibria, where the core current profile remains constant so that the safety-factor at the axis, q{sub axis}, remains fixed and the q{sub edge} systematically decreases. At some point, the n = 1 kink mode is destabilized. Kink modes distort the magnetic field lines outside the plasma, and surface currents are required to nullify the normal component of the B-field at the plasma boundary and maintain equilibrium at finite pressure. If the plasma touches a conductor, the current can be transferred to the conductor, and may be measurable by the halo current monitors. This report describes a practical method to model the plasma as it evolves during a VDE, and determine the surface currents, needed to maintain equilibrium. The main results are that the onset conditions for the disruption are that the growth-rate of the n = 1 kink exceeds half the Alfven time and the associated surface current needed to maintain equilibrium exceeds one half of the core plasma current. This occurs when q{sub edge} drops below a low integer, usually 2. Application to NSTX provides favorable comparison with non-axisymmetric halo-current measurements. The model is also applied to ITER and shows that the 2/1 mode is projected to be the most likely cause of the final disruption.

  8. Prefabricated vertical drains flow resistance under vacuum conditions

    SciTech Connect (OSTI)

    Quaranta, J.D.; Gabr, M.A.

    2000-01-01

    The results of experimental research are presented and discussed with focus on the internal well resistance of prefabricated vertical drains (PVD) under vacuum-induced water flow. Measured results included fluid flow rates for two different cross-sectional hydraulic profiles (Types 1 and 2 PVDs). Experimental results indicated linear relationship, independent of the PVD widths, between extracted fluid velocity and the applied hydraulic gradient. Data showed a laminar flow regime to predominate for test velocities corresponding to hydraulic gradients {lt}0.5. The larger nominal hydraulic radius of the Type 2 PVD is credited with providing a flow rate equal to approximately 3.2 times that of the Type 1 PVD at approximately the same operating total head. There was no apparent dependency of the transmissivity {theta} on the width or lengths (3, 4, and 5 m) of the PVDs tested. In the case of the 100-mm-wide Type 1 PVD, {theta} = 618 mm{sup 2}/s was estimated from the measured data versus {theta} = 1,996 mm{sup 2}/s for Type 2 PVD with the same dimensions.

  9. Visible light emitting vertical cavity surface emitting lasers

    DOE Patents [OSTI]

    Bryan, Robert P. (Boulder, CO); Olbright, Gregory R. (Boulder, CO); Lott, James A. (Albuquerque, NM); Schneider, Jr., Richard P. (Albuquerque, NM)

    1995-01-01

    A vertical cavity surface emitting laser that emits visible radiation is built upon a substrate, then having mirrors, the first mirror on top of the substrate; both sets of mirrors being a distributed Bragg reflector of either dielectrics or other materials which affect the resistivity or of semiconductors, such that the structure within the mirror comprises a plurality of sets, each having a thickness of .lambda./2n where n is the index of refraction of each of the sets; each of the mirrors adjacent to spacers which are on either side of an optically active bulk or quantum well layer; and the spacers and the optically active layer are from one of the following material systems: In.sub.z (Al.sub.y Ga.sub.1-y).sub.1-z P, InAlGaAs, AlGaAs, InGaAs, or AlGaP/GaP, wherein the optically active region having a length equal to m .lambda./2n.sub.eff where m is an integer and n.sub.eff is the effective index of refraction of the laser cavity, and the spacer layer and one of the mirrors being transmissive to radiation having a wavelength of .lambda./n, typically within the green to red portion of the visible spectrum.

  10. Visible light emitting vertical cavity surface emitting lasers

    DOE Patents [OSTI]

    Bryan, R.P.; Olbright, G.R.; Lott, J.A.; Schneider, R.P. Jr.

    1995-06-27

    A vertical cavity surface emitting laser that emits visible radiation is built upon a substrate, then having mirrors, the first mirror on top of the substrate; both sets of mirrors being a distributed Bragg reflector of either dielectrics or other materials which affect the resistivity or of semiconductors, such that the structure within the mirror comprises a plurality of sets, each having a thickness of {lambda}/2n where n is the index of refraction of each of the sets; each of the mirrors adjacent to spacers which are on either side of an optically active bulk or quantum well layer; and the spacers and the optically active layer are from one of the following material systems: In{sub z}(Al{sub y}Ga{sub 1{minus}y}){sub 1{minus}z}P, InAlGaAs, AlGaAs, InGaAs, or AlGaP/GaP, wherein the optically active region having a length equal to m {lambda}/2n{sub eff} where m is an integer and n{sub eff} is the effective index of refraction of the laser cavity, and the spacer layer and one of the mirrors being transmissive to radiation having a wavelength of {lambda}/n, typically within the green to red portion of the visible spectrum. 10 figs.

  11. 24-CHANNEL GEOPHONE ARRAY FOR HORIZONTAL OR VERTICAL BOREHOLES

    SciTech Connect (OSTI)

    Erik C. Westman

    2003-10-24

    Improved ground-imaging capabilities have enormous potential to increase energy, environmental, and economic benefits by improving exploration accuracy and reducing energy consumption during the mining cycle. Seismic tomography has been used successfully to monitor and evaluate geologic conditions ahead of a mining face. A primary limitation to existing seismic tomography, however, is the placement of sensors. The goal of this project is to develop an array of 24 seismic sensors capable of being mounted in either a vertical or horizontal borehole. Development of this technology reduces energy usage in excavation, transportation, ventilation, and processing phases of the mining operation because less waste is mined and the mining cycle suffers fewer interruptions. This new technology benefits all types of mines, including metal/nonmetal, coal, and quarrying. The primary research tasks focused on sensor placement method, sensor housing and clamping design, and cabling and connector selection. An initial design is described in the report. Following assembly, a prototype was tested in the laboratory as well as at a surface stone quarry. Data analysis and tool performance were used for subsequent design modifications. A final design is described, of which several components are available for patent application. Industry partners have shown clear support for this research and demonstrated an interest in commercialization following project completion.

  12. Rivulet Flow In Vertical Parallel-Wall Channel

    SciTech Connect (OSTI)

    D. M. McEligot; G. E. Mc Creery; P. Meakin

    2006-04-01

    In comparison with studies of rivulet flow over external surfaces, rivulet flow confined by two surfaces has received almost no attention. Fully-developed rivulet flow in vertical parallel-wall channels was characterized, both experimentally and analytically for flows intermediate between a lower flow limit of drop flow and an upper limit where the rivulets meander. Although this regime is the most simple rivulet flow regime, it does not appear to have been previously investigated in detail. Experiments were performed that measured rivulet widths for aperture spacing ranging from 0.152 mm to 0.914 mm. The results were compared with a simple steadystate analytical model for laminar flow. The model divides the rivulet cross-section into an inner region, which is dominated by viscous and gravitational forces and where essentially all flow is assumed to occur, and an outer region, dominated by capillary forces, where the geometry is determined by the contact angle between the fluid and the wall. Calculations using the model provided excellent agreement with data for inner rivulet widths and good agreement with measurements of outer rivulet widths.

  13. Droplet sizes, dynamics and deposition in vertical annular flow

    SciTech Connect (OSTI)

    Lopes, J C.B.; Dukler, A E

    1985-10-01

    The role of droplets in vertical upwards annular flow is investigated, focusing on the droplet size distributions, dynamics, and deposition phenomena. An experimental program was performed based on a new laser optical technique developed in these laboratories and implemented here for annular flow. This permitted the simultaneous measurement of droplet size, axial and radial velocity. The dependence of droplet size distributions on flow conditions is analyzed. The Upper-Log Normal function proves to be a good model for the size distribution. The mechanism controlling the maximum stable drop size was found to result from the interaction of the pressure fluctuations of the turbulent flow of the gas core with the droplet. The average axial droplet velocity showed a weak dependence on gas rates. This can be explained once the droplet size distribution and droplet size-velocity relationship are analyzed simultaneously. The surprising result from the droplet conditional analysis is that larger droplet travel faster than smaller ones. This dependence cannot be explained if the drag curves used do not take into account the high levels of turbulence present in the gas core in annular flow. If these are considered, then interesting new situations of multiplicity and stability of droplet terminal velocities are encountered. Also, the observed size-velocity relationship can be explained. A droplet deposition is formulated based on the particle inertia control. This permitted the calculation of rates of drop deposition directly from the droplet size and velocities data.

  14. Probability of pipe fracture in the primary coolant loop of a PWR plant. Volume 2: primary coolant loop model. Final report

    SciTech Connect (OSTI)

    Eberhardt, A.C.

    1981-09-01

    This report describes the Zion Station reactor coolant loop model developed by Sargent and Lundy Engineers for Lawrence Livermore National Laboratory as part of its Load Combination Program. This model was developed for use in performing seismic time history analyses of an actual pressurized water reactor (PWR) system. It includes all major items affecting the seismic response of a 4-loop Westinghouse nuclear steam supply system: the components, supports, and interconnecting piping. The model was further expanded to permit static analysis of dead weight, thermal, and internal pressure load conditions.

  15. Probability of pipe fracture in the primary coolant loop of a PWR Plant. Volume 2. Primary Coolant Loop Model. Load Combination Program, Project I final report

    SciTech Connect (OSTI)

    Eberhardt, A.C.

    1981-06-01

    This report describes the Zion Station reactor coolant loop model developed by Sargent and Lundy Engineers for Lawrence Livermore National Laboratory as part of its Load Combination Program. This model was developed for use in performing seismic time history analyses of an actual pressurized water reactor (PWR) system. It includes all major items affecting the seismic response of a 4-loop Westinghouse nuclear steam supply system: the components, supports, and interconnecting piping. The model was further expanded to permit static analysis of dead weight, thermal, and internal pressure load conditions. 7 refs., 42 figs., 9 tabs.

  16. A Block-Structured KIVA Program for Engines with Vertical or Canted Valves

    Energy Science and Technology Software Center (OSTI)

    1999-08-23

    KIVA3VRELEASE2 is a computer program for the numerical calculation of transient, two and three-dimensional, chemically reactive flows with sprays. It is a newer version of the earlier KIVA3 (1993) that has now been extended to model vertical of canted valves in the cylinder head of a gasoline or diesel engine. KIVA3, in turn, was based on the earlier KIVA2 (1989) and uses the same numerical solution procedure and solves the same sort of equations. KIVA3VRELEASE2more » uses a block-structured mesh with connectivity defined through indirect addressing. The departure from a single rectangular structure in logical space allows complex geometries to be modeled with significantly greater efficiency because large regions of deactivated cells are no longer necessary. Cell-face boundary conditions permit greater flexibility and simplification in the application of boundary conditions. KIVA3VRELEASE2 contains a number of significant changes. New features enhance the robustness, efficiency, and usefullness of the overall program for engine modeling. Automatic restart of the cycle with a reduced timestep in case of iteration limit or temperature overflow will reduce code crashes. A new option provides automatic deactivation of a port region when it is closed from the cylinder and reactivation when it communicates with the cylinder. Corrections in the code improve accuracy; extensions to the particle-based liquid wall film model makes the model more complete and a spli injection option has been added. A new subroutine monitors the liquid and gaseous fuel phases and energy balance data and emissions are monitored and printed. New features have been added to the grid generator K3PREP and the graphics post processor, K3POST.« less

  17. Development of Computational Approaches for Simulation and Advanced Controls for Hybrid Combustion-Gasification Chemical Looping

    SciTech Connect (OSTI)

    Joshi, Abhinaya; Lou, Xinsheng; Neuschaefer, Carl; Chaudry, Majid; Quinn, Joseph

    2012-07-31

    This document provides the results of the project through September 2009. The Phase I project has recently been extended from September 2009 to March 2011. The project extension will begin work on Chemical Looping (CL) Prototype modeling and advanced control design exploration in preparation for a scale-up phase. The results to date include: successful development of dual loop chemical looping process models and dynamic simulation software tools, development and test of several advanced control concepts and applications for Chemical Looping transport control and investigation of several sensor concepts and establishment of two feasible sensor candidates recommended for further prototype development and controls integration. There are three sections in this summary and conclusions. Section 1 presents the project scope and objectives. Section 2 highlights the detailed accomplishments by project task area. Section 3 provides conclusions to date and recommendations for future work.

  18. Study of the fast photoswitching of spin crossover nanoparticles outside and inside their thermal hysteresis loop

    SciTech Connect (OSTI)

    Galle, G.; Degert, J.; Freysz, E.; Etrillard, C.; Letard, J.-F.; Guillaume, F.

    2013-02-11

    We have studied the low spin to high spin phase transition induced by nanosecond laser pulses outside and within the thermal hysteresis loop of the [Fe(Htrz){sub 2} trz](BF{sub 4}){sub 2}-H{sub 2}O spin crossover nanoparticles. We demonstrate that, whatever the temperature of the compound, the photo-switching is achieved in less than 12.5 ns. Outside the hysteresis loop, the photo-induced high spin state remains up to 100 {mu}s and then relaxes. Within the thermal hysteresis loop, the photo-induced high spin state remains as long as the temperature of the sample is kept within the thermal loop. A Raman study indicates that the photo-switching can be completed using single laser pulse excitation.

  19. An Automated Implementation of On-shell Methods for One-Loop...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: An Automated Implementation of On-shell Methods for One-Loop Amplitudes Citation Details In-Document Search Title: An Automated Implementation of On-shell Methods...

  20. Optical interconnect loop-back switch for in-situ diagnostics. (Conference)

    Office of Scientific and Technical Information (OSTI)

    | SciTech Connect interconnect loop-back switch for in-situ diagnostics. Citation Details In-Document Search Title: Optical interconnect loop-back switch for in-situ diagnostics. No abstract prepared. Authors: Spahn, Olga Blum ; Iannotti, Joe [1] ; Lewek, Daniel [2] ; Kornrumpf, Bill [3] ; Forman, Glenn [4] ; Kryzak, Chuck [5] ; Thorson, Kevin [6] ; Cowan, Bill ; Dagel, Daryl James ; Grossetete, Grant David + Show Author Affiliations (General Electric Global Research Center, Niskayuna, NY)

  1. PLASMOID EJECTIONS AND LOOP CONTRACTIONS IN AN ERUPTIVE M7.7 SOLAR FLARE:

    Office of Scientific and Technical Information (OSTI)

    EVIDENCE OF PARTICLE ACCELERATION AND HEATING IN MAGNETIC RECONNECTION OUTFLOWS (Journal Article) | SciTech Connect PLASMOID EJECTIONS AND LOOP CONTRACTIONS IN AN ERUPTIVE M7.7 SOLAR FLARE: EVIDENCE OF PARTICLE ACCELERATION AND HEATING IN MAGNETIC RECONNECTION OUTFLOWS Citation Details In-Document Search Title: PLASMOID EJECTIONS AND LOOP CONTRACTIONS IN AN ERUPTIVE M7.7 SOLAR FLARE: EVIDENCE OF PARTICLE ACCELERATION AND HEATING IN MAGNETIC RECONNECTION OUTFLOWS Where particle acceleration

  2. Involvement of the [beta]3-[alpha]3 Loop of the Proline Dehydrogenase

    Office of Scientific and Technical Information (OSTI)

    Domain in Allosteric Regulation of Membrane Association of Proline Utilization A (Journal Article) | SciTech Connect Involvement of the [beta]3-[alpha]3 Loop of the Proline Dehydrogenase Domain in Allosteric Regulation of Membrane Association of Proline Utilization A Citation Details In-Document Search Title: Involvement of the [beta]3-[alpha]3 Loop of the Proline Dehydrogenase Domain in Allosteric Regulation of Membrane Association of Proline Utilization A Authors: Zhu, Weidong ; Haile,

  3. All orders results for self-crossing Wilson loops mimicking double parton

    Office of Scientific and Technical Information (OSTI)

    scattering (Journal Article) | SciTech Connect All orders results for self-crossing Wilson loops mimicking double parton scattering Citation Details In-Document Search Title: All orders results for self-crossing Wilson loops mimicking double parton scattering × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize

  4. Crossreactivity of a human autoimmune TCR is dominated by a single TCR loop

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect SciTech Connect Search Results Journal Article: Crossreactivity of a human autoimmune TCR is dominated by a single TCR loop Citation Details In-Document Search Title: Crossreactivity of a human autoimmune TCR is dominated by a single TCR loop Authors: Sethi, Dhruv K. ; Gordo, Susana ; Schubert, David A. ; Wucherpfennig, Kai W. [1] ; DFCI) [2] + Show Author Affiliations (Harvard-Med) [Harvard-Med ( Publication Date: 2013-11-06 OSTI Identifier: 1097300

  5. Exhaust Aftertreatment and Low Pressure Loop EGR Applied to an Off-Highway

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engine | Department of Energy Aftertreatment and Low Pressure Loop EGR Applied to an Off-Highway Engine Exhaust Aftertreatment and Low Pressure Loop EGR Applied to an Off-Highway Engine 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters PDF icon 2005_deer_baumgard.pdf More Documents & Publications Full Useful Life (120,000 miles) Exhaust Emission Performance of a NOx Adsorber and Diesel Particle Filter Equipped Passenger Car and Medium-Duty Engine in

  6. ADR Lunchtime Program: WHERE DO YOU STAND IN THE FEEDBACK LOOP? MAKE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FEEDBACK WORK FOR YOU | Department of Energy WHERE DO YOU STAND IN THE FEEDBACK LOOP? MAKE FEEDBACK WORK FOR YOU ADR Lunchtime Program: WHERE DO YOU STAND IN THE FEEDBACK LOOP? MAKE FEEDBACK WORK FOR YOU This interactive session during Conflict Resolution Month will delve into the complex topic of giving and receiving feedback. The presenter - a preeminent trainer and coach - will discuss how to use our skills and knowledge to help people in organizations work together effectively on

  7. 98th LHCC meeting Agenda OPEN Session and CLOSED Session

    ScienceCinema (OSTI)

    None

    2011-10-06

    OPEN Session on Wednesday, 8 July at 9h00-11h00 in Main Auditorium, Live webcast, followed by CLOSED Session, Conference room 160-1-009 11h20-17h00. CLOSED Session continued on Thursday, 9 July at 9h00-12h30

  8. Integration of a waveguide self-electrooptic effect device and a vertically coupled interconnect waveguide

    DOE Patents [OSTI]

    Vawter, G. Allen (Corrales, NM)

    2008-02-26

    A self-electrooptic effect device ("SEED") is integrated with waveguide interconnects through the use of vertical directional couplers. Light initially propagating in the interconnect waveguide is vertically coupled to the active waveguide layer of the SEED and, if the SEED is in the transparent state, the light is coupled back to the interconnect waveguide.

  9. Ground Source Heat Pump Sub-Slab Heat Exchange Loop Performance in a Cold Climate

    SciTech Connect (OSTI)

    Mittereder, N.; Poerschke, A.

    2013-11-01

    This report presents a cold-climate project that examines an alternative approach to ground source heat pump (GSHP) ground loop design. The innovative ground loop design is an attempt to reduce the installed cost of the ground loop heat exchange portion of the system by containing the entire ground loop within the excavated location beneath the basement slab. Prior to the installation and operation of the sub-slab heat exchanger, energy modeling using TRNSYS software and concurrent design efforts were performed to determine the size and orientation of the system. One key parameter in the design is the installation of the GSHP in a low-load home, which considerably reduces the needed capacity of the ground loop heat exchanger. This report analyzes data from two cooling seasons and one heating season. Upon completion of the monitoring phase, measurements revealed that the initial TRNSYS simulated horizontal sub-slab ground loop heat exchanger fluid temperatures and heat transfer rates differed from the measured values. To determine the cause of this discrepancy, an updated model was developed utilizing a new TRNSYS subroutine for simulating sub-slab heat exchangers. Measurements of fluid temperature, soil temperature, and heat transfer were used to validate the updated model.

  10. Performance of a Thermally Stable Polyaromatic Hydrocarbon in a Simulated Concentrating Solar Power Loop

    SciTech Connect (OSTI)

    McFarlane, Joanna; Bell, Jason R; Felde, David K; Joseph III, Robert Anthony; Qualls, A L; Weaver, Samuel P

    2014-01-01

    Polyaromatic hydrocarbon thermal fluids showing thermally stability to 600 C have been tested for solar thermal-power applications. Although static thermal tests showed promising results for 1-phenylnaphthalene, loop testing at temperatures to 450 C indicated that the fluid isomerized and degraded at a slow rate. In a loop with a temperature high enough to drive the isomerization, the higher melting point byproducts tended to condense onto cooler surfaces. So, as experienced in loop operation, eventually the internal channels of cooler components in trough solar electric generating systems, such as the waste heat rejection exchanger, may become coated or clogged affecting loop performance. Thus, pure 1-phenylnaphthalene, without addition of stabilizers, does not appear to be a fluid that would have a sufficiently long lifetime (years to decades) to be used in a loop at the temperatures greater than 500 C. The performance of a concentrating solar loop using high temperature fluids was modeled based on the National Renewable Laboratory Solar Advisory Model. It was determined that a solar-to-electricity efficiency of up to 30% and a capacity factor of near 60% could be achieved using a high efficiency collector and 12 h thermal energy storage.

  11. Design and Analysis of the ITER Vertical Stability Coils

    SciTech Connect (OSTI)

    Peter H. Titus, et. al.

    2012-09-06

    The ITER vertical stability (VS) coils have been developed through the preliminary design phase by Princeton Plasma Physics Laboratory (PPPL). Final design, prototyping and construction will be carried out by the Chinese Participant Team contributing lab, Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP). The VS coils are a part of the in-vessel coil systems which include edge localized mode (ELM) coils as well as the VS coils. An overview of the ELM coils is provided in another paper at this conference. 15 The VS design employs four turns of stainless steel jacketed mineral insulated copper (SSMIC) conductors The mineral insulation is Magnesium Oxide (MgO). Joule and nuclear heat is removed by water flowing at 3 m/s through the hollow copper conductor. A key element in the design is that slightly elevated temperatures in the conductor and its support spine during operation impose compressive stresses that mitigate fatigue damage. Away from joints, and break-outs, conductor thermal stresses are low because of the axisymmetry of the winding (there are no corner bends as in the ELM coils).The 120 degree segment joint, and break-out or terminal regions are designed with similar but imperfect constraint compared with the ring coil portion of the VS. The support for the break-out region is made from a high strength copper alloy, CuCrZr. This is needed to conduct nuclear heat to the actively cooled conductor and to the vessel wall. The support "spine" for the ring coil portion of the VS is 316 stainless steel, held to the vessel with preloaded 718 bolts. Lorentz loads resulting from normal operating loads, disruption loads and loads from disruption currents in the support spine shared with vessel, are applied to the VS coil. The transmission of the Lorentz and thermal expansion loads from the "spine" to the vessel rails is via friction augmented with a restraining "lip" to ensure the coil frictional slip is minimal and acceptable. Stresses in the coil, joints, and break-outs are presented. These are compared with static and fatigue allowables. Design for fatigue is much less demanding than for the ELM coils. A total of 30,000 cycles is required for VS design. Loads on the vessel due to the thermal expansion of the coil and spine are significant. Efforts to reduce these by reducing the cross section of the spine have been made but the vessel still must support loads resulting from restraint of thermal expansion.

  12. Chimneys: Keep 'em Clean... and Closed | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chimneys: Keep 'em Clean... and Closed October 27, 2008 - 3:34pm Addthis Drew Bittner WriterEditor, Office of Energy Efficiency and Renewable Energy Growing up in Wisconsin and ...

  13. Closing_Language_Patent_Waiver_Grant_Cases.pdf | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    ClosingLanguagePatentWaiverGrantCases.pdf More Documents & Publications Identified Patent Waiver W(I)2009-004 Identified Patent Waiver W(I)2010-004 Advance Patent Waiver...

  14. Sub-millikelvin stabilization of a closed cycle cryocooler (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Sub-millikelvin stabilization of a closed cycle cryocooler Citation Details In-Document Search Title: Sub-millikelvin stabilization of a closed cycle cryocooler × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science and technology. A paper

  15. Collaborative Lubricating Oil Study on Emissions (CLOSE Project) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon ace046_lawson_2011_o.pdf More Documents & Publications Collaborative Lubricating Oil Study on Emissions (CLOSE Project) Collaborative Lubricating Oil Study on Emissions (CLOSE) Project Vehicle Technologies Office: 2012 Fuel and Lubricant Technologies R&D Annual Progress Report

  16. Collaborative Lubricating Oil Study on Emissions (CLOSE Project) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon ace046_lawson_2010_o.pdf More Documents & Publications Collaborative Lubricating Oil Study on Emissions (CLOSE Project) Collaborative Lubricating Oil Study on Emissions (CLOSE) Project Lung Toxicity and Mutagenicity of Emissions From Heavy-Duty Compressed Natural Gas (CNG)-Powered Vehicles

  17. Solar Flare Activity Closely Monitored | Department of Energy

    Energy Savers [EERE]

    Solar Flare Activity Closely Monitored Solar Flare Activity Closely Monitored September 11, 2014 - 5:30pm Addthis Dr. Ken Friedman Senior Policy Advisor in the Office of Electricity Delivery and Energy Reliability The National Oceanic and Atmospheric Administration's (NOAA) Space Weather Prediction Center, which provides important resources to describe the space environment, including geomagnetic storms, solar radiation storms and radio blackouts, is forecasting the possibility of

  18. Conceptual Design of Forced Convection Molten Salt Heat Transfer Testing Loop

    SciTech Connect (OSTI)

    Manohar S. Sohal; Piyush Sabharwall; Pattrick Calderoni; Alan K. Wertsching; S. Brandon Grover

    2010-09-01

    This report develops a proposal to design and construct a forced convection test loop. A detailed test plan will then be conducted to obtain data on heat transfer, thermodynamic, and corrosion characteristics of the molten salts and fluid-solid interaction. In particular, this report outlines an experimental research and development test plan. The most important initial requirement for heat transfer test of molten salt systems is the establishment of reference coolant materials to use in the experiments. An earlier report produced within the same project highlighted how thermophysical properties of the materials that directly impact the heat transfer behavior are strongly correlated to the composition and impurities concentration of the melt. It is therefore essential to establish laboratory techniques that can measure the melt composition, and to develop purification methods that would allow the production of large quantities of coolant with the desired purity. A companion report describes the options available to reach such objectives. In particular, that report outlines an experimental research and development test plan that would include following steps: Molten Salts: The candidate molten salts for investigation will be selected. Materials of Construction: Materials of construction for the test loop, heat exchangers, and fluid-solid corrosion tests in the test loop will also be selected. Scaling Analysis: Scaling analysis to design the test loop will be performed. Test Plan: A comprehensive test plan to include all the tests that are being planned in the short and long term time frame will be developed. Design the Test Loop: The forced convection test loop will be designed including extensive mechanical design, instrument selection, data acquisition system, safety requirements, and related precautionary measures. Fabricate the Test Loop. Perform the Tests. Uncertainty Analysis: As a part of the data collection, uncertainty analysis will be performed to develop probability of confidence in what is measured in the test loop. Overall, the testing loop will allow development of needed heat transfer related thermophysical parameters for all the salts, validate existing correlations, validate measuring instruments under harsh environment, and have extensive corrosion testing of materials of construction.

  19. Floating Refrigerant Loop Based on R-134a Refrigerant Cooling of High-Heat Flux Electronics

    SciTech Connect (OSTI)

    Lowe, K.T.

    2005-10-07

    The Oak Ridge National Laboratory (ORNL) Power Electronics and Electric Machinery Research Center (PEEMRC) have been developing technologies to address the thermal issues associated with hybrid vehicles. Removal of the heat generated from electrical losses in traction motors and their associated power electronics is essential for the reliable operation of motors and power electronics. As part of a larger thermal control project, which includes shrinking inverter size and direct cooling of electronics, ORNL has developed U.S. Patent No. 6,772,603 B2, ''Methods and Apparatus for Thermal Management of Vehicle Systems and Components'' [1], and patent pending, ''Floating Loop System for Cooling Integrated Motors and Inverters Using Hot Liquid Refrigerant'' [2]. The floating-loop system provides a large coefficient of performance (COP) for hybrid-drive component cooling. This loop (based on R-134a) is integrated with a vehicle's existing air-conditioning (AC) condenser, which dissipates waste heat to the ambient air. Because the temperature requirements for cooling of power electronics and electric machines are not as low as that required for passenger compartment air, this adjoining loop can operate on the high-pressure side of the existing AC system. This arrangement also allows the floating loop to run without the need for the compressor and only needs a small pump to move the liquid refrigerant. For the design to be viable, the loop must not adversely affect the existing system. The loop should also provide a high COP, a flat-temperature profile, and low-pressure drop. To date, the floating-loop test prototype has successfully removed 2 kW of heat load in a 9 kW automobile passenger AC system with and without the automotive AC system running. The COP for the tested floating-loop system ranges from 40-45, as compared to a typical AC system COP of about 2-4. The estimated required waste-heat load for future hybrid applications is 5.5 kW and the existing system could be easily scaleable for this larger load.

  20. COMBINING PARTICLE ACCELERATION AND CORONAL HEATING VIA DATA-CONSTRAINED CALCULATIONS OF NANOFLARES IN CORONAL LOOPS

    SciTech Connect (OSTI)

    Gontikakis, C.; Efthymiopoulos, C.; Georgoulis, M. K.; Patsourakos, S.; Anastasiadis, A.

    2013-07-10

    We model nanoflare heating of extrapolated active-region coronal loops via the acceleration of electrons and protons in Harris-type current sheets. The kinetic energy of the accelerated particles is estimated using semi-analytical and test-particle-tracing approaches. Vector magnetograms and photospheric Doppler velocity maps of NOAA active region 09114, recorded by the Imaging Vector Magnetograph, were used for this analysis. A current-free field extrapolation of the active-region corona was first constructed. The corresponding Poynting fluxes at the footpoints of 5000 extrapolated coronal loops were then calculated. Assuming that reconnecting current sheets develop along these loops, we utilized previous results to estimate the kinetic energy gain of the accelerated particles. We related this energy to nanoflare heating and macroscopic loop characteristics. Kinetic energies of 0.1-8 keV (for electrons) and 0.3-470 keV (for protons) were found to cause heating rates ranging from 10{sup -6} to 1 erg s{sup -1} cm{sup -3}. Hydrodynamic simulations show that such heating rates can sustain plasma in coronal conditions inside the loops and generate plasma thermal distributions that are consistent with active-region observations. We concluded the analysis by computing the form of X-ray spectra generated by the accelerated electrons using the thick-target approach. These spectra were found to be in agreement with observed X-ray spectra, thus supporting the plausibility of our nanoflare-heating scenario.

  1. ENTHALPY-BASED THERMAL EVOLUTION OF LOOPS. II. IMPROVEMENTS TO THE MODEL

    SciTech Connect (OSTI)

    Cargill, P. J.; Bradshaw, S. J.; Klimchuk, J. A.

    2012-06-20

    This paper develops the zero-dimensional (0D) hydrodynamic coronal loop model 'Enthalpy-based Thermal Evolution of Loops' (EBTEL) proposed by Klimchuk et al., which studies the plasma response to evolving coronal heating, especially impulsive heating events. The basis of EBTEL is the modeling of mass exchange between the corona and transition region (TR) and chromosphere in response to heating variations, with the key parameter being the ratio of the TR to coronal radiation. We develop new models for this parameter that now include gravitational stratification and a physically motivated approach to radiative cooling. A number of examples are presented, including nanoflares in short and long loops, and a small flare. The new features in EBTEL are important for accurate tracking of, in particular, the density. The 0D results are compared to a 1D hydro code (Hydrad) with generally good agreement. EBTEL is suitable for general use as a tool for (1) quick-look results of loop evolution in response to a given heating function, (2) extensive parameter surveys, and (3) situations where the modeling of hundreds or thousands of elemental loops is needed. A single run takes a few seconds on a contemporary laptop.

  2. Impact of Resolution on Simulation of Closed Mesoscale Cellular Convection Identified by Dynamically Guided Watershed Segmentation

    SciTech Connect (OSTI)

    Martini, Matus; Gustafson, William I.; Yang, Qing; Xiao, Heng

    2014-11-27

    Organized mesoscale cellular convection (MCC) is a common feature of marine stratocumulus that forms in response to a balance between mesoscale dynamics and smaller scale processes such as cloud radiative cooling and microphysics. We use the Weather Research and Forecasting model with chemistry (WRF-Chem) and fully coupled cloud-aerosol interactions to simulate marine low clouds during the VOCALS-REx campaign over the southeast Pacific. A suite of experiments with 3- and 9-km grid spacing indicates resolution-dependent behavior. The simulations with finer grid spacing have smaller liquid water paths and cloud fractions, while cloud tops are higher. The observed diurnal cycle is reasonably well simulated. To isolate organized MCC characteristics we develop a new automated method, which uses a variation of the watershed segmentation technique that combines the detection of cloud boundaries with a test for coincident vertical velocity characteristics. This ensures that the detected cloud fields are dynamically consistent for closed MCC, the most common MCC type over the VOCALS-REx region. We demonstrate that the 3-km simulation is able to reproduce the scaling between horizontal cell size and boundary layer height seen in satellite observations. However, the 9-km simulation is unable to resolve smaller circulations corresponding to shallower boundary layers, instead producing invariant MCC horizontal scale for all simulated boundary layers depths. The results imply that climate models with grid spacing of roughly 3 km or smaller may be needed to properly simulate the MCC structure in the marine stratocumulus regions.

  3. Three tritium systems test assembly (TSTA) off-loop experiments

    SciTech Connect (OSTI)

    Talcott, C.L.; Anderson, J.L.; Carlson, R.V.; Coffin, D.O.; Walthers, C.R.; Hamerdinger, D.; Binning, K.; Trujillo, R.D.; Moya, J.S.; Hayashi, T.; Okuno, K.; Yamanishi, T.

    1993-11-01

    This report contains the results from three different experiments. Experiment one was initiated to establish the possibility of using a soft elastomer in ITER (International Thermonuclear Experimental Reactor) applications. Used in this application, the sealing material is anticipated to be in tritium at pressures in the range of 1 {times} 10{sup {minus}3} torr for many years. Here two O-ring valve seals each of Viton-A, Buna-N, and EDPM were exposed to 1, 40, or 400 torr of tritium while being cycled open and closed approximately 11,500 times in 192 days. EDPM is the least susceptible to damage from the tritium. Both Buna-N and Viton-A showed deterioration following the first cycling at 400 torr. Using commercially available materials, the Tritium Systems Test Assembly (TSTA) designed and built a Portable Water Removal (PWR) Unit to reduce tritium oxide emissions during glovebox breaches. The PWR removes 99.9% of all tritium and saves between 0.7 and 3.5 curies of tritium oxide from being stacked during each of the five tests. Finally, a series of tests are done to determine whether the presence of SF{sub 6} changes the ability of palladium and platinum to catalyze the T{sub 2}-O{sub 2} reaction to form T{sub 2}O. No deterioration of the catalytic activity is observed. This is important because the Tokamak Fusion Test Reactor (TFTR) requires information about the effect of SF{sub 6}, an electrical insulator, on the catalytic behavior of Pt and Pd in a T{sub 2} environment. This information is necessary for the accident analysis in the Safety Analysis Report for TFTR. This study is done using an apparatus supplied to TSTA by TFTR.

  4. One-loop calculations in quantum field theory: from Feynman diagrams to unitarity cuts

    SciTech Connect (OSTI)

    Ellis, R. Keith; Kunszt, Zoltan; Melnikov, Kirill; Zanderighi, Giulia

    2012-09-01

    The success of the experimental program at the Tevatron re-inforced the idea that precision physics at hadron colliders is desirable and, indeed, possible. The Tevatron data strongly suggests that one-loop computations in QCD describe hard scattering well. Extrapolating this observation to the LHC, we conclude that knowledge of many short-distance processes at next-to-leading order may be required to describe the physics of hard scattering. While the field of one-loop computations is quite mature, parton multiplicities in hard LHC events are so high that traditional computational techniques become inefficient. Recently new approaches based on unitarity have been developed for calculating one-loop scattering amplitudes in quantum field theory. These methods are especially suitable for the description of multi-particle processes in QCD and are amenable to numerical implementations. We present a systematic pedagogical description of both conceptual and technical aspects of the new methods.

  5. Development of Water Radiolysis Code for the JMTR IASCC Test Loop

    SciTech Connect (OSTI)

    Satoshi Hanawa; Tomonori Sato; Yuichiro Mori; Jin Oogiyanagi; Yoshiyuki Kaji; Shunsuke Uchida

    2006-07-01

    In order to evaluate the water chemistry in the irradiation field during IASCC irradiation test, a water radiolysis code for IASCC irradiation loop system was developed. In the water radiolysis code, a multiple node model was introduced since the irradiation loop system has a wide rage temperature distribution as well as the dose distribution. To investigate the applicability of developed water radiolysis code, water chemistry at the water sampling point of the irradiation loop system was measured and compared with analytical results under several water chemistry conditions. Further, water chemistry distribution in the in-pile region as well as in the out-pile region was calculated by the developed water radiolysis code. (authors)

  6. Solid oxide fuel cell power plant with an anode recycle loop turbocharger

    DOE Patents [OSTI]

    Saito, Kazuo; Skiba, Tommy; Patel, Kirtikumar H.

    2015-07-14

    An anode exhaust recycle turbocharger (100) has a turbocharger turbine (102) secured in fluid communication with a compressed oxidant stream within an oxidant inlet line (218) downstream from a compressed oxidant supply (104), and the anode exhaust recycle turbocharger (100) also includes a turbocharger compressor (106) mechanically linked to the turbocharger turbine (102) and secured in fluid communication with a flow of anode exhaust passing through an anode exhaust recycle loop (238) of the solid oxide fuel cell power plant (200). All or a portion of compressed oxidant within an oxidant inlet line (218) drives the turbocharger turbine (102) to thereby compress the anode exhaust stream in the recycle loop (238). A high-temperature, automotive-type turbocharger (100) replaces a recycle loop blower-compressor (52).

  7. Sensitivity of the blue loops of intermediate-mass stars to nuclear reactions

    SciTech Connect (OSTI)

    Halabi, Ghina M.; El Eid, Mounib

    2012-11-20

    We investigate the effects of a modification of the {sup 14}N(p,{gamma}){sup 15}O reaction rate, as suggested by recent evaluations, on the formation and extension of the blue loops encountered during the evolution of the stars in the mass range 5M{sub Circled-Dot-Operator} to 12M{sub Circled-Dot-Operator }. We show that the blue loops of stars in the mass range 5M{sub Circled-Dot-Operator} to 8M{sub Circled-Dot-Operator }, that is the range of super ABG stars, are severely affected by a modification of the important {sup 14}N(p,{gamma}){sup 15}O reaction rate. We also show that the blue loops can be restored if envelope overshooting is included, which is necessary to explain the observations of the Cepheid stars.

  8. A digital optical phase-locked loop for diode lasers based on field programmable gate array

    SciTech Connect (OSTI)

    Xu Zhouxiang; Zhang Xian; Huang Kaikai; Lu Xuanhui

    2012-09-15

    We have designed and implemented a highly digital optical phase-locked loop (OPLL) for diode lasers in atom interferometry. The three parts of controlling circuit in this OPLL, including phase and frequency detector (PFD), loop filter and proportional integral derivative (PID) controller, are implemented in a single field programmable gate array chip. A structure type compatible with the model MAX9382/MCH12140 is chosen for PFD and pipeline and parallelism technology have been adapted in PID controller. Especially, high speed clock and twisted ring counter have been integrated in the most crucial part, the loop filter. This OPLL has the narrow beat note line width below 1 Hz, residual mean-square phase error of 0.14 rad{sup 2} and transition time of 100 {mu}s under 10 MHz frequency step. A main innovation of this design is the completely digitalization of the whole controlling circuit in OPLL for diode lasers.

  9. A Proposal for a Standard Interface Between Monte Carlo Tools And One-Loop Programs

    SciTech Connect (OSTI)

    Binoth, T.; Boudjema, F.; Dissertori, G.; Lazopoulos, A.; Denner, A.; Dittmaier, S.; Frederix, R.; Greiner, N.; Hoeche, Stefan; Giele, W.; Skands, P.; Winter, J.; Gleisberg, T.; Archibald, J.; Heinrich, G.; Krauss, F.; Maitre, D.; Huber, M.; Huston, J.; Kauer, N.; Maltoni, F.; /Louvain U., CP3 /Milan Bicocca U. /INFN, Turin /Turin U. /Granada U., Theor. Phys. Astrophys. /CERN /NIKHEF, Amsterdam /Heidelberg U. /Oxford U., Theor. Phys.

    2011-11-11

    Many highly developed Monte Carlo tools for the evaluation of cross sections based on tree matrix elements exist and are used by experimental collaborations in high energy physics. As the evaluation of one-loop matrix elements has recently been undergoing enormous progress, the combination of one-loop matrix elements with existing Monte Carlo tools is on the horizon. This would lead to phenomenological predictions at the next-to-leading order level. This note summarises the discussion of the next-to-leading order multi-leg (NLM) working group on this issue which has been taking place during the workshop on Physics at TeV Colliders at Les Houches, France, in June 2009. The result is a proposal for a standard interface between Monte Carlo tools and one-loop matrix element programs.

  10. Vertically-tapered optical waveguide and optical spot transformer formed therefrom

    DOE Patents [OSTI]

    Bakke, Thor; Sullivan, Charles T.

    2004-07-27

    An optical waveguide is disclosed in which a section of the waveguide core is vertically tapered during formation by spin coating by controlling the width of an underlying mesa structure. The optical waveguide can be formed from spin-coatable materials such as polymers, sol-gels and spin-on glasses. The vertically-tapered waveguide section can be used to provide a vertical expansion of an optical mode of light within the optical waveguide. A laterally-tapered section can be added adjacent to the vertically-tapered section to provide for a lateral expansion of the optical mode, thereby forming an optical spot-size transformer for efficient coupling of light between the optical waveguide and a single-mode optical fiber. Such a spot-size transformer can also be added to a III-V semiconductor device by post processing.

  11. Sandia Energy - Sandia and Partners Complete Phase I of a Vertical...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Texas A&M University have completed the first phase of a project to explore the feasibility of large-scale vertical-axis wind turbines (VAWTs) for deep-water offshore...

  12. Development of bottom-emitting 1300 nm vertical-cavity surface-emitting

    Office of Scientific and Technical Information (OSTI)

    lasers. (Journal Article) | SciTech Connect Journal Article: Development of bottom-emitting 1300 nm vertical-cavity surface-emitting lasers. Citation Details In-Document Search Title: Development of bottom-emitting 1300 nm vertical-cavity surface-emitting lasers. No abstract prepared. Authors: Fish, M. A. [1] ; Serkland, Darwin Keith ; Guilfoyle, Peter S. [1] ; Stone, Richard V. [1] ; Klem, John Frederick ; Louderback, Duane A. [1] ; Choquette, Kent D. [2] ; Pickrell, G. W. [1] + Show Author

  13. "Covalent functionalization and electron-transfer properties of vertically

    Office of Scientific and Technical Information (OSTI)

    aligned carbon nanofibers: The importance of edge-plane sites" (Journal Article) | SciTech Connect "Covalent functionalization and electron-transfer properties of vertically aligned carbon nanofibers: The importance of edge-plane sites" Citation Details In-Document Search Title: "Covalent functionalization and electron-transfer properties of vertically aligned carbon nanofibers: The importance of edge-plane sites" The use of covalently bonded molecular layers

  14. Design and analysis of a vertical axis ocean current power plant

    SciTech Connect (OSTI)

    Richard, C.C.; Hartzog, J.R.; Sorge, R.V.; Quigley, J.V.; Adams, G.R.

    1981-01-01

    This paper discusses a calculation of the power generated by a vertical axis ocean current power plant. An analytical model is presented and a computer solution described. Results of the calculation show the optimum angles of the blades about the vertical axis to maximize power output, as well as the total extractable power of the plant for various ocean current velocities. Tow tank tests are described for a scale model of the plant.

  15. Three-dimensional Numerical Analysis on Blade Response of Vertical Axis

    Office of Scientific and Technical Information (OSTI)

    Tidal Current Turbine Under Operational Condition (Journal Article) | SciTech Connect Three-dimensional Numerical Analysis on Blade Response of Vertical Axis Tidal Current Turbine Under Operational Condition Citation Details In-Document Search Title: Three-dimensional Numerical Analysis on Blade Response of Vertical Axis Tidal Current Turbine Under Operational Condition Tidal power as a large-scale renewable source of energy has been receiving significant attention recently because of its

  16. Electric characteristics of germanium Vertical Multijunction (VMJ) photovoltaic cells under high intensity illumination

    SciTech Connect (OSTI)

    Unishkov, V.A.

    1997-03-01

    This paper presents the results of the performance evaluation of Vertical Multijunction (VMJ) germanium (Ge) photovoltaic (PV) cells. Vertical Multijunction Germanium Photovoltaic cells offer several advantages for Thermophotovoltaic (TPV) applications such as high intensity light conversion, low series resistance, more efficient coupling to lower temperature sources, high output voltage, simplified heat rejection system as well as potentially simple fabrication technology and low cost photovoltaic converter device. {copyright} {ital 1997 American Institute of Physics.}

  17. Measured water heating performance of a vertical-bore water-to-water ground source heat pump (WW-GSHP) for domestic water heating over twelve months under simulated occupancy loads

    SciTech Connect (OSTI)

    Ally, Moonis Raza; Munk, Jeffrey D; Baxter, Van D; Gehl, Anthony C

    2014-01-01

    This paper presents monthly performance metrics of a 5.275 kW (1.5 ton) WW-GSHP providing 227 L day-1 domestic hot water at 49 C. Daily water use is simulated as stipulated in the Building America Research Benchmark Definition capturing the living habits of the average U.S household. The 94.5m vertical-bore ground loop is shared with a separate GSHP for space conditioning the 251m2 residential home. Data on entering water temperatures, energy extracted from the ground, delivered energy, compressor electricity use, COP, WW-GSHP run times, and the impact of fan and pump energy consumption on efficiency are presented for each month. Factors influencing performance metrics are highlighted.

  18. Floating Loop System For Cooling Integrated Motors And Inverters Using Hot Liquid Refrigerant

    DOE Patents [OSTI]

    Hsu, John S [Oak Ridge, TN; Ayers, Curtis W [Kingston, TN; Coomer, Chester [Knoxville, TN; Marlino, Laura D [Oak Ridge, TN

    2006-02-07

    A floating loop vehicle component cooling and air-conditioning system having at least one compressor for compressing cool vapor refrigerant into hot vapor refrigerant; at least one condenser for condensing the hot vapor refrigerant into hot liquid refrigerant by exchanging heat with outdoor air; at least one floating loop component cooling device for evaporating the hot liquid refrigerant into hot vapor refrigerant; at least one expansion device for expanding the hot liquid refrigerant into cool liquid refrigerant; at least one air conditioning evaporator for evaporating the cool liquid refrigerant into cool vapor refrigerant by exchanging heat with indoor air; and piping for interconnecting components of the cooling and air conditioning system.

  19. N 3 LO Higgs boson and Drell-Yan production at threshold: The one-loop

    Office of Scientific and Technical Information (OSTI)

    two-emission contribution (Journal Article) | SciTech Connect N 3 LO Higgs boson and Drell-Yan production at threshold: The one-loop two-emission contribution Citation Details In-Document Search Title: N 3 LO Higgs boson and Drell-Yan production at threshold: The one-loop two-emission contribution Authors: Li, Ye ; von Manteuffel, Andreas ; Schabinger, Robert M. ; Zhu, Hua Xing Publication Date: 2014-09-08 OSTI Identifier: 1180352 Grant/Contract Number: DEAC0276SF00515 Type: Publisher's

  20. All orders results for self-crossing Wilson loops mimicking double parton

    Office of Scientific and Technical Information (OSTI)

    scattering (Journal Article) | SciTech Connect SciTech Connect Search Results Journal Article: All orders results for self-crossing Wilson loops mimicking double parton scattering Citation Details In-Document Search Title: All orders results for self-crossing Wilson loops mimicking double parton scattering Authors: Dixon, Lance J. ; /SLAC /Caltech ; Esterlis, Ilya ; /SLAC Publication Date: 2016-02-05 OSTI Identifier: 1237021 Report Number(s): SLAC-PUB-16467 arXiv:1602.02107 DOE Contract

  1. An Automated Implementation of On-shell Methods for One-Loop Amplitudes

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Journal Article: An Automated Implementation of On-shell Methods for One-Loop Amplitudes Citation Details In-Document Search Title: An Automated Implementation of On-shell Methods for One-Loop Amplitudes Authors: Berger, C.F. ; Bern, Z. ; Dixon, L.J. ; Febres Cordero, F. ; Forde, D. ; Ita, H. ; Kosower, D.A. ; Maitre, D. ; /MIT, LNS /Santa Barbara, KITP /SLAC /UCLA /Saclay Publication Date: 2008-04-11 OSTI Identifier: 927069 Report Number(s):

  2. Intermediate Heat Transfer Loop Study for High Temperature Gas-Cooled Reactor

    SciTech Connect (OSTI)

    C. H. Oh; C. Davis; S. Sherman

    2008-08-01

    A number of possible configurations for a system that transfers heat between the nuclear reactor and the hydrogen and/or electrical generation plants were identified. These configurations included both direct and indirect cycles for the production of electricity. Both helium and liquid salts were considered as the working fluid in the intermediate heat transport loop. Methods were developed to perform thermal-hydraulic and cycleefficiency evaluations of the different configurations and coolants. The thermal-hydraulic evaluations estimated the sizes of various components in the intermediate heat transport loop for the different configurations. This paper also includes a portion of stress analyses performed on pipe configurations.

  3. Geek-Up[08.27.10] -- Geothermal Stores, Graphene Loops, Nozzle Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and the 1918 El Niño | Department of Energy 7.10] -- Geothermal Stores, Graphene Loops, Nozzle Technology and the 1918 El Niño Geek-Up[08.27.10] -- Geothermal Stores, Graphene Loops, Nozzle Technology and the 1918 El Niño August 27, 2010 - 5:21pm Addthis Blue flame generated by natural gas. Blue flame generated by natural gas. Elizabeth Meckes Elizabeth Meckes Director of User Experience & Digital Technologies, Office of Public Affairs With the opening of a new IKEA in suburban Denver

  4. Control Strategy for a Dual Loop EGR System to Meet Euro 6 and Beyond |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Control Strategy for a Dual Loop EGR System to Meet Euro 6 and Beyond Control Strategy for a Dual Loop EGR System to Meet Euro 6 and Beyond Presentation given at the 2009 DEER Conference. This presentation focues on EGR and Boost systems for reducing the cost and lowering emissions of diesel engines. PDF icon deer09_czarnowski.pdf More Documents & Publications Can Future Emissions Limits be Met with a Hybrid EGR System Alone? Strategies for In-Cylinder Reductions to

  5. Dual Loop Parallel/Series Waste Heat Recovery System | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dual Loop Parallel/Series Waste Heat Recovery System Dual Loop Parallel/Series Waste Heat Recovery System This system captures all the jacket water, intercooler, and exhaust heat from the engine by utilizing a single condenser to reject leftover heat to the atmosphere. PDF icon p-04_cook.pdf More Documents & Publications Light weight and economical exhaust heat exchanger for waste heat recovery using mixed radiant and convective heat transfer CNG-Hybrid: A Practical Path to "Net Zero

  6. Large mass expansion in two-loop QCD corrections of paracharmonium decay

    SciTech Connect (OSTI)

    Hasegawa, K.; Pak, Alexey

    2008-01-01

    We calculate the two-loop QCD corrections to paracharmonium decays {eta}{sub c}{yields}{gamma}{gamma} and {eta}{sub c}{yields}gg involving light-by-light scattering diagrams with light quark loops. Artificial large mass expansion and convergence improvement techniques are used to evaluate these corrections. The obtained corrections to the decays {eta}{sub c}{yields}{gamma}{gamma} and {eta}{sub c}{yields}gg account for -1.25% and -0.73% of the leading order contribution, respectively.

  7. Method and apparatus for determining vertical heat flux of geothermal field

    DOE Patents [OSTI]

    Poppendiek, Heinz F. (LaJolla, CA)

    1982-01-01

    A method and apparatus for determining vertical heat flux of a geothermal field, and mapping the entire field, is based upon an elongated heat-flux transducer (10) comprised of a length of tubing (12) of relatively low thermal conductivity with a thermopile (20) inside for measuring the thermal gradient between the ends of the transducer after it has been positioned in a borehole for a period sufficient for the tube to reach thermal equilibrium. The transducer is thermally coupled to the surrounding earth by a fluid annulus, preferably water or mud. A second transducer comprised of a length of tubing of relatively high thermal conductivity is used for a second thermal gradient measurement. The ratio of the first measurement to the second is then used to determine the earth's thermal conductivity, k.sub..infin., from a precalculated graph, and using the value of thermal conductivity thus determined, then determining the vertical earth temperature gradient, b, from predetermined steady state heat balance equations which relate the undisturbed vertical earth temperature distributions at some distance from the borehole and earth thermal conductivity to the temperature gradients in the transducers and their thermal conductivity. The product of the earth's thermal conductivity, k.sub..infin., and the earth's undisturbed vertical temperature gradient, b, then determines the earth's vertical heat flux. The process can be repeated many times for boreholes of a geothermal field to map vertical heat flux.

  8. Pore-fluid effects on seismic waves in vertically fractured earth with orthotropic symmetry

    SciTech Connect (OSTI)

    Berryman, J.G.

    2010-05-15

    For elastically noninteracting vertical-fracture sets at arbitrary orientation angles to each other, a detailed model is presented in which the resulting anisotropic fractured medium generally has orthorhombic symmetry overall. Some of the analysis methods and ideas of Schoenberg are emphasized, together with their connections to other similarly motivated and conceptually related methods by Sayers and Kachanov, among others. Examples show how parallel vertical-fracture sets having HTI (horizontal transversely isotropic) symmetry transform into orthotropic fractured media if some subsets of the vertical fractures are misaligned with the others, and then the fractured system can have VTI (vertical transversely isotropic) symmetry if all of the fractures are aligned randomly or half parallel and half perpendicular to a given vertical plane. An orthotropic example having vertical fractures in an otherwise VTI earth system (studied previously by Schoenberg and Helbig) is compared with the other examples treated and it is finally shown how fluids in the fractures affect the orthotropic poroelastic system response to seismic waves. The key result is that fracture-influence parameters are multiplied by a factor of (1-B), where 0 {le} B < 1 is Skempton's second coefficient for poroelastic media. Skempton's B coefficient is itself a measurable characteristic of fluid-saturated porous rocks, depending on porosity, solid moduli, and the pore-fluid bulk modulus. For heterogeneous porous media, connections between the present work and earlier related results of Brown and Korringa are also established.

  9. Take the the Annual NERSC Survey - Closes January 31

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Take the the Annual NERSC Survey Take the the Annual NERSC Survey - Closes January 31 January 9, 2014 by Francesca Verdier User input on the annual NERSC survey is important to us. We use the survey to help us set priorities and to get a realistic view of which things are going well and which need more attention. Here is the link to the survey, which closes January 31: https://www.nersc.gov/news-publications/publications-reports/user-surveys/2013/ Subscribe via RSS Subscribe Browse by Date

  10. When Galaxies Collide: Ripples Indicate Recent Impact Close to Home |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy When Galaxies Collide: Ripples Indicate Recent Impact Close to Home When Galaxies Collide: Ripples Indicate Recent Impact Close to Home June 28, 2012 - 11:16am Addthis This is a graphic representation of the Milky Way, the galaxy in which Earth is contained. Scientists know of more than 20 visible satellite galaxies that circle the center of the Milky Way, with masses ranging from one million to one billion solar masses. Occasionally, one of these orbiting galaxies pass

  11. How Close Are We to Nuclear Fusion? | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Close Are We to Nuclear Fusion? Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) How Close Are We to Nuclear Fusion? 2012.05.15 Chief Scientist Jim Bray discusses how light atoms combine to form heavy atoms and give off energy, and how we might harness this process for use outside of nuclear weaponry. 1 Comment Comment

  12. Method Of Making Closed End Ceramic Fuel Cell Tubes

    DOE Patents [OSTI]

    Borglum, Brian P. (Edgewood, PA)

    2002-04-30

    A method of manufacturing closed end ceramic fuel cell tubes with improved properties and higher manufacturing yield is disclosed. The method involves bonding an unfired cap to a hollow unfired tube to form a compound joint. The assembly is then fired to net shape without subsequent machining. The resultant closed end tube is superior in that it provides a leak-tight seal and its porosity is substantially identical to that of the tube wall. The higher manufacturing yield associated with the present method decreases overall fuel cell cost significantly.

  13. Closing the Gender Gap in Energy Policy | Department of Energy

    Office of Environmental Management (EM)

    Closing the Gender Gap in Energy Policy Closing the Gender Gap in Energy Policy April 7, 2011 - 3:07pm Addthis Melanie A. Kenderdine Melanie A. Kenderdine Director of the Office of Energy Policy and Systems Analysis What are the key facts? There's not just a shortage of women in technical energy-related fields, there's also a shortage of women in energy policy. Women hold only 27 percent of the science and engineering jobs in the United States. Editor's Note: Join the conversation surrounding

  14. 2007 Solar Decathlon Closing Ceremony and Awards | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7 Solar Decathlon Closing Ceremony and Awards 2007 Solar Decathlon Closing Ceremony and Awards October 19, 2007 - 3:21pm Addthis Remarks as Prepared for Secretary Bodman Thank you, Andy. I want to thank you once again for your leadership in making the Solar Decathlon such a success. The Solar Decathlon is now a permanent part of America. I also want to thank everyone sponsors, DOE employees, Members of Congress, any parents and faculty who might be with us and anyone else who came out this week

  15. Particle image velocimetry measurements for opposing flow in a vertical channel with a differential and asymmetric heating condition

    SciTech Connect (OSTI)

    Martinez-Suastegui, L. [Graduate Student, Facultad de Ingenieria, Universidad Nacional Autonoma de Mexico, C.U., Mexico 04510 D.F. (Mexico); Trevino, C. [Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, C.U., Mexico 04510 D.F. (Mexico)

    2007-10-15

    Particle image velocimetry (PIV) measurements were carried out in an experimental investigation of laminar mixed convection in a vertical duct with a square cross-section. The main downward water-flow is driven by gravity while a portion of a lateral side is heated, and buoyancy forces produce non-stationary vortex structures close to the heated region. Various ranges of the Grashof number, Gr are studied in combination with the Reynolds number, Re varying from 300 to 700. The values of the generalized buoyancy parameter or Richardson number, Ri = Gr/Re{sup 2} parallel to the Grashof number are included in the results. The influence of these nondimensional parameters and how they affect the fluid flow structure and vortex sizes and locations are reported. The flow patterns are nonsymmetric, periodic, and exhibit increasing complexity and frequency for increasing buoyancy. For the averaged values of the resulting vortex dimensions, it was found that a better and more congruent representation occurs when employing the Grashof and Reynolds numbers as independent parameters. (author)

  16. Exergy Analysis of a Two-Stage Ground Source Heat Pump with a Vertical Bore for Residential Space Conditioning under Simulated Occupancy

    SciTech Connect (OSTI)

    Ally, Moonis Raza; Munk, Jeffrey D; Baxter, Van D; Gehl, Anthony C

    2015-01-01

    This twelve-month field study analyzes the performance of a 7.56W (2.16- ton) water-to-air-ground source heat pump (WA-GSHP) to satisfy domestic space conditioning loads in a 253 m2 house in a mixed-humid climate in the United States. The practical feasibility of using the ground as a source of renewable energy is clearly demonstrated. Better than 75% of the energy needed for space heating was extracted from the ground. The average monthly electricity consumption for space conditioning was only 40 kWh at summer and winter thermostat set points of 24.4oC and 21.7oC, respectively. The WA-GSHP shared the same 94.5 m vertical bore ground loop with a separate water-to-water ground-source heat pump (WW-GSHP) for meeting domestic hot water needs in the same house. Sources of systemic irreversibility, the main cause of lost work are identified using Exergy and energy analysis. Quantifying the sources of Exergy and energy losses is essential for further systemic improvements. The research findings suggest that the WA-GSHPs are a practical and viable technology to reduce primary energy consumption and greenhouse gas emissions under the IECC 2012 Standard, as well as the European Union (EU) 2020 targets of using renewable energy resources.

  17. The One and Two Loops Renormalization Group Equations in the Standard Model

    SciTech Connect (OSTI)

    Juarez W, S. Rebeca; Solis R, H. Gabriel; Kielanowski, P.

    2006-01-06

    In the context of the Standard Model (SM), we compare the analytical and the numerical solutions of the Renormalization Group Equations (RGE) for the relevant couplings to one and two loops. This information will be an important ingredient for the precise evaluation of boundary values on the physical Higgs Mass.

  18. Hardware-in-the-loop testing of wireless systems in realistic environments.

    SciTech Connect (OSTI)

    Burkholder, R. J. (Ohio State University ElectroScience Laboratory); Mariano, Robert J.; Gupta, I. J. (Ohio State University ElectroScience Laboratory); Schniter, P. (Ohio State University ElectroScience Laboratory)

    2006-06-01

    This document describes an approach for testing of wireless systems in realistic environments that include intentional as well as unintentional radio frequency interference. In the approach, signal generators along with radio channel simulators are used to carry out hardware-in-the-loop testing. The channel parameters are obtained independently via channel sounding measurements and/or EM simulations.

  19. Structural properties of the histidine-containing loop in HIV-1RNase H

    SciTech Connect (OSTI)

    Kern, G.; Pelton, J.; Marqusee, S.; Kern, D.

    2001-01-02

    The isolated HIV-1 RNase H domain is inactive. This inactivity has been linked to the lack of structure in the C-terminus of the isolated domain. His539 residing in a loop preceding the C-terminal Helix was studies by NMR to determine the stability and conformational properties of this region.

  20. On One Master Integral for Three-loop On-shell HQET Propagator Diagrams with Mass

    SciTech Connect (OSTI)

    Grozin, A.G.; Huber, T.; Maitre, D.; /SLAC

    2007-06-26

    An exact expression for the master integral I{sub 2} [1] arising in three-loop on-shell HQET propagator diagrams with mass is derived and its analytical expansion in the dimensional regularization parameter {var_epsilon} is given.

  1. Benefits and concerns of a closed nuclear fuel cycle

    SciTech Connect (OSTI)

    Widder, Sarah H.

    2010-11-17

    Nuclear power can play an important role in our energy future, contributing to increasing electricity demand while at the same time decreasing carbon dioxide emissions. However, the nuclear fuel cycle in the United States today is unsustainable. As stated in the 1982 Nuclear Waste Policy Act, the U.S. Department of Energy is responsible for disposing of spent nuclear fuel generated by commercial nuclear power plants operating in a once-through fuel cycle in the deep geologic repository located at Yucca Mountain. However, unyielding political opposition to the site has hindered the commissioning process to the extant that the current administration has recently declared the unsuitability of the Yucca Mountain site. In light of this the DOE is exploring other options, including closing the fuel cycle through recycling and reprocessing of spent nuclear fuel. The possibility of closing the fuel cycle is receiving special attention because of its ability to minimize the final high level waste (HLW) package as well as recover additional energy value from the original fuel. The technology is, however, still very controversial because of the increased cost and proliferation risk it can present. To lend perspective on the closed fuel cycle alternative, this presents the arguments for and against closing the fuel cycle with respect to sustainability, proliferation risk, commercial viability, waste management, and energy security.

  2. Self-closing shielded container for use with radioactive materials

    DOE Patents [OSTI]

    Smith, Jay E.

    1984-01-01

    A container for storage of radioactive material comprising a container body nd a closure member. The closure member being coupled to the container body to enable the closure body to move automatically from a first position (e.g., closed) to a second position (open).

  3. Self-closing shielded container for use with radioactive materials

    DOE Patents [OSTI]

    Smith, J.E.

    A container for storage of radioactive material comprises a container body and a closure member. The closure member is coupled to the container body to enable the closure body to move automatically from a first position (e.g., closed) to a second position (open).

  4. Self-closing shielded container for use with radioactive materials

    DOE Patents [OSTI]

    Smith, J.E.

    1984-10-16

    A container is described for storage of radioactive material comprising a container body and a closure member. The closure member being coupled to the container body to enable the closure body to move automatically from a first position (e.g., closed) to a second position (open). 1 fig.

  5. 96th LHCC meeting Agenda OPEN Session and CLOSED Session

    ScienceCinema (OSTI)

    None

    2011-10-06

    OPEN Session on Wednesday, 19 November 2008 at 9h00-11h00 in Main Auditorium, Live webcast. Followed by CLOSED Session , 6th floor Conference room and continued on Thursday, 20 November 2008 9h00-13h00

  6. Measurement of multijunction cells under close-match conditions

    SciTech Connect (OSTI)

    Wilkinson, V.A.; Goodbody, C.; Williams, W.G.

    1997-12-31

    This paper presents details of a new close-match solar simulator developed for DERA`s Space Power Laboratory for the accurate characterization of multijunction solar cells. The authors present data on the simulator measurements of dual and triple junction cells. The measurements are compared with those made under less ideal spectral conditions.

  7. Workplace Charging Challenge Summit 2014: Closing Plenary | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy The Closing Plenary summarizes takeaways from the Summit and highlights partners who fulfilled all of the voluntary requirements of the Challenge. PDF icon Reuben Sarkar More Documents & Publications Workplace Charging Challenge Summit 2014: Agenda Workplace Charging Challenge Summit 2014: Opening Plenary Workplace Charging Challenge Summit 2014: Session 3, Track A

  8. Strategic Need for Multi-Purpose Thermal Hydraulic Loop for Support of Advanced Reactor Technologies

    SciTech Connect (OSTI)

    James E. O'Brien; Piyush Sabharwall; Su-Jong Yoon; Gregory K. Housley

    2014-09-01

    This report presents a conceptual design for a new high-temperature multi fluid, multi loop test facility for the INL to support thermal hydraulic, materials, and thermal energy storage research for nuclear and nuclear-hybrid applications. In its initial configuration, the facility will include a high-temperature helium loop, a liquid salt loop, and a hot water/steam loop. The three loops will be thermally coupled through an intermediate heat exchanger (IHX) and a secondary heat exchanger (SHX). Research topics to be addressed with this facility include the characterization and performance evaluation of candidate compact heat exchangers such as printed circuit heat exchangers (PCHEs) at prototypical operating conditions, flow and heat transfer issues related to core thermal hydraulics in advanced helium-cooled and salt-cooled reactors, and evaluation of corrosion behavior of new cladding materials and accident-tolerant fuels for LWRs at prototypical conditions. Based on its relevance to advanced reactor systems, the new facility has been named the Advanced Reactor Technology Integral System Test (ARTIST) facility. Research performed in this facility will advance the state of the art and technology readiness level of high temperature intermediate heat exchangers (IHXs) for nuclear applications while establishing the INL as a center of excellence for the development and certification of this technology. The thermal energy storage capability will support research and demonstration activities related to process heat delivery for a variety of hybrid energy systems and grid stabilization strategies. Experimental results obtained from this research will assist in development of reliable predictive models for thermal hydraulic design and safety codes over the range of expected advanced reactor operating conditions. Proposed/existing IHX heat transfer and friction correlations and criteria will be assessed with information on materials compatibility and instrumentation needs. The experimental database will guide development of appropriate predictive methods and be available for code verification and validation (V&V) related to these systems.

  9. Frequency multiplexed flux locked loop architecture providing an array of DC SQUIDS having both shared and unshared components

    DOE Patents [OSTI]

    Ganther, Jr., Kenneth R. (Olathe, KS); Snapp, Lowell D. (Independence, MO)

    2002-01-01

    Architecture for frequency multiplexing multiple flux locked loops in a system comprising an array of DC SQUID sensors. The architecture involves dividing the traditional flux locked loop into multiple unshared components and a single shared component which, in operation, form a complete flux locked loop relative to each DC SQUID sensor. Each unshared flux locked loop component operates on a different flux modulation frequency. The architecture of the present invention allows a reduction from 2N to N+1 in the number of connections between the cryogenic DC SQUID sensors and their associated room temperature flux locked loops. Furthermore, the 1.times.N architecture of the present invention can be paralleled to form an M.times.N array architecture without increasing the required number of flux modulation frequencies.

  10. Vertical group III-V nanowires on si, heterostructures, flexible arrays and fabrication

    DOE Patents [OSTI]

    Wang, Deli; Soci, Cesare; Bao, Xinyu; Wei, Wei; Jing, Yi; Sun, Ke

    2015-01-13

    Embodiments of the invention provide a method for direct heteroepitaxial growth of vertical III-V semiconductor nanowires on a silicon substrate. The silicon substrate is etched to substantially completely remove native oxide. It is promptly placed in a reaction chamber. The substrate is heated and maintained at a growth temperature. Group III-V precursors are flowed for a growth time. Preferred embodiment vertical Group III-V nanowires on silicon have a core-shell structure, which provides a radial homojunction or heterojunction. A doped nanowire core is surrounded by a shell with complementary doping. Such can provide high optical absorption due to the long optical path in the axial direction of the vertical nanowires, while reducing considerably the distance over which carriers must diffuse before being collected in the radial direction. Alloy composition can also be varied. Radial and axial homojunctions and heterojunctions can be realized. Embodiments provide for flexible Group III-V nanowire structures. An array of Group III-V nanowire structures is embedded in polymer. A fabrication method forms the vertical nanowires on a substrate, e.g., a silicon substrate. Preferably, the nanowires are formed by the preferred methods for fabrication of Group III-V nanowires on silicon. Devices can be formed with core/shell and core/multi-shell nanowires and the devices are released from the substrate upon which the nanowires were formed to create a flexible structure that includes an array of vertical nanowires embedded in polymer.

  11. Surveillance for Western equine encephalitis St. Louis encephalitis and West Nile viruses using reverse transcription loop-mediated isothermal amplification

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Meagher, Robert J.; Ball, Cameron Scott; Langevin, Stanley A.; Fang, Ying; Wheeler, Sarah S.; Coffey, Lark L.

    2016-01-25

    In this study, collection of mosquitoes and testing for vector-borne viruses is a key surveillance activity that directly influences the vector control efforts of public health agencies, including determining when and where to apply insecticides. Vector control districts in California routinely monitor for three human pathogenic viruses including West Nile virus (WNV), Western equine encephalitis virus (WEEV), and St. Louis encephalitis virus (SLEV). Reverse transcription quantitative polymerase chain reaction (RT-qPCR) offers highly sensitive and specific detection of these three viruses in a single multiplex reaction, but this technique requires costly, specialized equipment that is generally only available in centralized publicmore » health laboratories. We report the use of reverse transcription loop-mediated isothermal amplification (RT-LAMP) to detect WNV, WEEV, and SLEV RNA extracted from pooled mosquito samples collected in California, including novel primer sets for specific detection of WEEV and SLEV, targeting the nonstructural protein 4 (nsP4) gene of WEEV and the 3’ untranslated region (3’-UTR) of SLEV. Our WEEV and SLEV RT-LAMP primers allowed detection of <0.1 PFU/reaction of their respective targets in <30 minutes, and exhibited high specificity without cross reactivity when tested against a panel of alphaviruses and flaviviruses. Furthermore, the SLEV primers do not cross-react with WNV, despite both viruses being closely related members of the Japanese encephalitis virus complex. The SLEV and WEEV primers can also be combined in a single RT-LAMP reaction, with discrimination between amplicons by melt curve analysis. Although RT-qPCR is approximately one order of magnitude more sensitive than RT-LAMP for all three targets, the RT-LAMP technique is less instrumentally intensive than RT-qPCR and provides a more cost-effective method of vector-borne virus surveillance.« less

  12. Dismantling of Loop-Type Channel Equipment of MR Reactor in NRC 'Kurchatov Institute' - 13040

    SciTech Connect (OSTI)

    Volkov, Victor; Danilovich, Alexey; Zverkov, Yuri; Ivanov, Oleg; Kolyadin, Vyacheslav; Lemus, Alexey; Pavlenko, Vitaly; Semenov, Sergey; Fadin, Sergey; Shisha, Anatoly; Chesnokov, Alexander

    2013-07-01

    In 2009 the project of decommissioning of MR and RTF reactors was developed and approved by the Expert Authority of the Russian Federation (Gosexpertiza). The main objective of the decommissioning works identified in this project: - complete dismantling of reactor equipment and systems; - decontamination of reactor premises and site in accordance with the established sanitary and hygienic standards. At the preparatory stage (2008-2010) of the project the following works were executed: loop-type channels' dismantling in the storage pool; experimental fuel assemblies' removal from spent fuel repositories in the central hall; spent fuel assembly removal from the liquid-metal-cooled loop-type channel of the reactor core and its placement into the SNF repository; and reconstruction of engineering support systems to the extent necessary for reactor decommissioning. The project assumes three main phases of dismantling and decontamination: - dismantling of equipment/pipelines of cooling circuits and loop-type channels, and auxiliary reactor equipment (2011-2012); - dismantling of equipment in underground reactor premises and of both MR and RTF in-vessel devices (2013-2014); - decontamination of reactor premises; rehabilitation of the reactor site; final radiation survey of reactor premises, loop-type channels and site; and issuance of the regulatory authorities' de-registration statement (2015). In 2011 the decommissioning license for the two reactors was received and direct MR decommissioning activities started. MR primary pipelines and loop-type facilities situated in the underground reactor hall were dismantled. Works were also launched to dismantle the loop-type channels' equipment in underground reactor premises; reactor buildings were reconstructed to allow removal of dismantled equipment; and the MR/RTF decommissioning sequence was identified. In autumn 2011 - spring 2012 results of dismantling activities performed are: - equipment from underground rooms (No. 66, 66A, 66B, 72, 64, 63) - as well as from water and gas loop corridors - was dismantled, with the total radwaste weight of 53 tons and the total removed activity of 5,0 x 10{sup 10} Bq; - loop-type channel equipment from underground reactor hall premises was dismantled; - 93 loop-type channels were characterized, chopped and removed, with radwaste of 2.6 x 10{sup 13} Bq ({sup 60}Co) and 1.5 x 10{sup 13} Bq ({sup 137}Cs) total activity removed from the reactor pool, fragmented and packaged. Some of this waste was placed into the high-level waste (HLW) repository of the Center. Dismantling works were executed with application of remotely operated mechanisms, which promoted decrease of radiation impact on the personnel. The average individual dose for the personnel was 1.9 mSv/year in 2011, and the collective dose is estimated as 0.0605 man x Sv/year. (authors)

  13. Close-packed array of light emitting devices

    DOE Patents [OSTI]

    Ivanov, Ilia N.; Simpson, John T.

    2013-04-09

    A close-packed array of light emitting diodes includes a nonconductive substrate having a plurality of elongate channels extending therethrough from a first side to a second side, where each of the elongate channels in at least a portion of the substrate includes a conductive rod therein. The conductive rods have a density over the substrate of at least about 1,000 rods per square centimeter and include first conductive rods and second conductive rods. The close-packed array further includes a plurality of light emitting diodes on the first side of the substrate, where each light emitting diode is in physical contact with at least one first conductive rod and in electrical contact with at least one second conductive rod.

  14. Final Scientific/Technical Report. A closed path methane and water vapor gas analyzer

    SciTech Connect (OSTI)

    Liukang, Xu; Dayle, McDermitt; Tyler, Anderson; Brad, Riensche; Anatoly, Komissarov; Julie, Howe

    2012-05-01

    Robust, economical, low-power and reliable closed-path methane (CH4), carbon dioxide (CO2), and water vapor (H2O) analyzers suitable for long-term measurements are not readily available commercially. Such analyzers are essential for quantifying the amount of CH4 and CO2 released from various ecosystems (wetlands, rice paddies, forests, etc.) and other surface contexts (e.g. landfills, animal husbandry lots, etc.), and for understanding the dynamics of the atmospheric CH4 and CO2 budget and their impact on climate change and global warming. The purpose of this project is to develop a closed-path methane, carbon dioxide gas and water vapor analyzer capable of long-term measurements in remote areas for global climate change and environmental research. The analyzer will be capable of being deployed over a wide range of ecosystems to understand methane and carbon dioxide exchange between the atmosphere and the surface. Measurements of methane and carbon dioxide exchange need to be made all year-round with limited maintenance requirements. During this Phase II effort, we successfully completed the design of the electronics, optical bench, trace gas detection method and mechanical infrastructure. We are using the technologies of two vertical cavity surface emitting lasers, a multiple-pass Herriott optical cell, wavelength modulation spectroscopy and direct absorption to measure methane, carbon dioxide, and water vapor. We also have designed the instrument application software, Field Programmable Gate Array (FPGA), along with partial completion of the embedded software. The optical bench has been tested in a lab setting with very good results. Major sources of optical noise have been identified and through design, the optical noise floor is approaching -60dB. Both laser modules can be temperature controlled to help maximize the stability of the analyzer. Additionally, a piezo electric transducer has been utilized to randomize the noise introduced from potential etalons. It is expected that all original specifications contained within the initial proposal will be met. We are currently in the beginning stages of assembling the first generation prototypes and finalizing the remaining design elements. The first prototypes will initially be tested in our environmental calibration chamber in which specific gas concentrations, temperature and humidity levels can be controlled. Once operation in this controlled setting is verified, the prototypes will be deployed at LI-COR?¢????s Experimental Research Station (LERS). Deployment at the LERS site will test the instrument?¢????s robustness in a real-world situation.

  15. 100th LHCC meeting AGENDA OPEN and CLOSED Sessions

    ScienceCinema (OSTI)

    None

    2011-10-06

    OPEN Sessions on Wednesday, 17 February at 8h30-13h00 and 18 February at 9h00-11h00 in MAIN AUDITORIUM, CERN staff and Users are welcome to attend Open Sessions - LIVE WEBCAST. CLOSED Sessions in Conference room 60-6-015 Wednesday 17 February at 14h00-19h00 and continued on Thursday, 18 February at 11h00-17h00.

  16. Closing Statement to the GNEP Ministerial | Department of Energy

    Energy Savers [EERE]

    Statement to the GNEP Ministerial Closing Statement to the GNEP Ministerial October 1, 2008 - 3:43pm Addthis Remarks as Prepared for Secretary Bodman Thank you, Minister Borloo . . . and many thanks to the French government for hosting this meeting and for your leadership within GNEP. I also want to acknowledge the four newest members of our Partnership: Armenia, Estonia, Morocco and Oman, each of which signed our Statement of Principles today. As Minister Borloo indicated, today the GNEP

  17. Posting Date: July 16, 2015 Posting Close Date: TBD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    July 16, 2015 Posting Close Date: TBD North American Industry Classification System (NAICS) code for the request: 812332 Estimated Subcontract/PO Value TBD Estimated Period of Performance 8-03-15 Estimated RFP/RFQ Release Date: TBD Estimated Award Date: FY 2018 Competition Type: Open Buyer Contact Email: pbeauparlant@lanl.gov Title: Radioactive Laundry and Respirator Services Description of Product or Service Required Radioactive Laundry and Respirator Services * Current forecasted bid

  18. THE ALBEDOS OF KEPLER'S CLOSE-IN SUPER-EARTHS

    SciTech Connect (OSTI)

    Demory, Brice-Olivier

    2014-07-01

    Exoplanet research focusing on the characterization of super-Earths is currently limited to the handful of targets orbiting bright stars that are amenable to detailed study. This Letter proposes to look at alternative avenues to probe the surface and atmospheric properties of this category of planets, known to be ubiquitous in our galaxy. I conduct Markov Chain Monte Carlo light-curves analyses for 97 Kepler close-in R{sub P} ? 2.0 R {sub ?} super-Earth candidates with the aim of detecting their occultations at visible wavelengths. Brightness temperatures and geometric albedos in the Kepler bandpass are constrained for 27 super-Earth candidates. A hierarchical Bayesian modeling approach is then employed to characterize the population-level reflective properties of these close-in super-Earths. I find median geometric albedos A{sub g} in the Kepler bandpass ranging between 0.16 and 0.30, once decontaminated from thermal emission. These super-Earth geometric albedos are statistically larger than for hot Jupiters, which have medians A{sub g} ranging between 0.06 and 0.11. A subset of objects, including Kepler-10b, exhibit significantly larger albedos (A{sub g} ? 0.4). I argue that a better understanding of the incidence of stellar irradation on planetary surface and atmospheric processes is key to explain the diversity in albedos observed for close-in super-Earths.

  19. Large-scale fabrication of vertically aligned ZnO nanowire arrays

    DOE Patents [OSTI]

    Wang, Zhong Lin; Hu, Youfan; Zhang, Yan; Xu, Chen; Zhu, Guang

    2014-09-09

    A generator includes a substrate, a first electrode layer, a dense plurality of vertically-aligned piezoelectric elongated nanostructures, an insulating layer and a second electrode layer. The substrate has a top surface and the first electrode layer is disposed on the top surface of the substrate. The dense plurality of vertically-aligned piezoelectric elongated nanostructures extends from the first electrode layer. Each of the nanostructures has a top end. The insulating layer is disposed on the top ends of the nanostructures. The second electrode layer is disposed on the non-conductive layer and is spaced apart from the nanostructures.

  20. Vertical dispersion methods in x-ray spectroscopy of high temperature plasmas

    SciTech Connect (OSTI)

    Renner, O.; Missalla, T.; Foerster, E.

    1995-12-31

    General formulae for the applying the vertical dispersion principle in x-ray spectroscopy of multiple charged ions are summarized, the characteristics of the experimental schemes based on flat and bent crystals are discussed. The unique properties of the novel spectroscopic methods, i.e., their extremely high dispersion, high spectral and 1-D spatial resolution and good collection efficiency, make them very attractive for ultrahigh-resolution spectroscopy. The examples of successful use of the vertical dispersion modifications of the double-crystal and the Johann spectrometer in diagnostics of several types of laser-generated plasma are presented.

  1. Biases of CO2 Storage in Eddy Flux Measurements pertinent to Vertical

    Office of Scientific and Technical Information (OSTI)

    Configurations of a Profile System and CO2 Density Averaging (Journal Article) | SciTech Connect Biases of CO2 Storage in Eddy Flux Measurements pertinent to Vertical Configurations of a Profile System and CO2 Density Averaging Citation Details In-Document Search Title: Biases of CO2 Storage in Eddy Flux Measurements pertinent to Vertical Configurations of a Profile System and CO2 Density Averaging CO2 storage in a 30-minute period in a tall forest canopy often makes significant

  2. THE CONTRACTION OF OVERLYING CORONAL LOOP AND THE ROTATING MOTION OF A SIGMOID FILAMENT DURING ITS ERUPTION

    SciTech Connect (OSTI)

    Yan, X. L.; Qu, Z. Q.; Xue, Z. K.; Deng, L. H.; Ma, L.; Kong, D. F.; Liu, J. H.

    2013-06-15

    We present an observation of overlying coronal loop contraction and rotating motion of the sigmoid filament during its eruption on 2012 May 22 observed by the Solar Dynamics Observatory (SDO). Our results show that the twist can be transported into the filament from the lower atmosphere to the higher atmosphere. The successive contraction of the coronal loops was due to a suddenly reduced magnetic pressure underneath the filament, which was caused by the rising of the filament. Before the sigmoid filament eruption, there was a counterclockwise flow in the photosphere at the right feet of the filament and the contraction loops and a convergence flow at the left foot of the filament. The hot and cool materials have inverse motion along the filament before the filament eruption. Moreover, two coronal loops overlying the filament first experienced brightening, expansion, and contraction successively. At the beginning of the rising and rotation of the left part of the filament, the second coronal loop exhibited rapid contraction. The top of the second coronal loop also showed counterclockwise rotation during the contraction process. After the contraction of the second loop, the left part of the filament rotated counterclockwise and expanded toward the right of NOAA AR 11485. During the filament expansion, the right part of the filament also exhibited counterclockwise rotation like a tornado.

  3. THE POSSIBLE ROLE OF CORONAL STREAMERS AS MAGNETICALLY CLOSED STRUCTURES IN SHOCK-INDUCED ENERGETIC ELECTRONS AND METRIC TYPE II RADIO BURSTS

    SciTech Connect (OSTI)

    Kong, Xiangliang; Chen, Yao; Feng, Shiwei; Wang, Bing; Du, Guohui; Guo, Fan; Li, Gang

    2015-01-10

    Two solar typeII radio bursts, separated by ?24 hr in time, are examined together. Both events are associated with coronal mass ejections (CMEs) erupting from the same active region (NOAA 11176) beneath a well-observed helmet streamer. We find that the typeII emissions in both events ended once the CME/shock fronts passed the white-light streamer tip, which is presumably the magnetic cusp of the streamer. This leads us to conjecture that the closed magnetic arcades of the streamer may play a role in electron acceleration and typeII excitation at coronal shocks. To examine such a conjecture, we conduct a test-particle simulation for electron dynamics within a large-scale partially closed streamer magnetic configuration swept by a coronal shock. We find that the closed field lines play the role of an electron trap via which the electrons are sent back to the shock front multiple times and therefore accelerated to high energies by the shock. Electrons with an initial energy of 300 eV can be accelerated to tens of keV concentrating at the loop apex close to the shock front with a counter-streaming distribution at most locations. These electrons are energetic enough to excite Langmuir waves and radio bursts. Considering the fact that most solar eruptions originate from closed field regions, we suggest that the scenario may be important for the generation of more metric typeIIs. This study also provides an explanation of the general ending frequencies of metric typeIIs at or above 20-30 MHz and the disconnection issue between metric and interplanetary typeIIs.

  4. Analytic Result for the Two-loop Six-point NMHV Amplitude in N = 4 Super Yang-Mills Theory

    SciTech Connect (OSTI)

    Dixon, Lance J.; Drummond, James M.; Henn, Johannes M.; /Humboldt U., Berlin /Princeton, Inst. Advanced Study

    2012-02-15

    We provide a simple analytic formula for the two-loop six-point ratio function of planar N = 4 super Yang-Mills theory. This result extends the analytic knowledge of multi-loop six-point amplitudes beyond those with maximal helicity violation. We make a natural ansatz for the symbols of the relevant functions appearing in the two-loop amplitude, and impose various consistency conditions, including symmetry, the absence of spurious poles, the correct collinear behavior, and agreement with the operator product expansion for light-like (super) Wilson loops. This information reduces the ansatz to a small number of relatively simple functions. In order to fix these parameters uniquely, we utilize an explicit representation of the amplitude in terms of loop integrals that can be evaluated analytically in various kinematic limits. The final compact analytic result is expressed in terms of classical polylogarithms, whose arguments are rational functions of the dual conformal cross-ratios, plus precisely two functions that are not of this type. One of the functions, the loop integral {Omega}{sup (2)}, also plays a key role in a new representation of the remainder function R{sub 6}{sup (2)} in the maximally helicity violating sector. Another interesting feature at two loops is the appearance of a new (parity odd) x (parity odd) sector of the amplitude, which is absent at one loop, and which is uniquely determined in a natural way in terms of the more familiar (parity even) x (parity even) part. The second non-polylogarithmic function, the loop integral {tilde {Omega}}{sup (2)}, characterizes this sector. Both {Omega}{sup (2)} and {tilde {Omega}}{sup (2)} can be expressed as one-dimensional integrals over classical polylogarithms with rational arguments.

  5. TRUEX Radiolysis Testing Using the INL Radiolysis Test Loop: FY-2012 Status Report

    SciTech Connect (OSTI)

    Dean R. Peterman; Lonnie G. Olson; Richard D. Tillotson; Rocklan G. McDowell; Jack D. Law

    2012-09-01

    The INL radiolysis test loop has been used to evaluate the affect of radiolytic degradation upon the efficacy of the strip section of the TRUEX flowsheet for the recovery of trivalent actinides and lanthanides from acidic solution. The nominal composition of the TRUEX solvent used in this study is 0.2 M CMPO and 1.4 M TBP dissolved in n-dodecane and the nominal composition of the TRUEX strip solution is 1.5 M lactic acid and 0.050 M diethylenetriaminepentaacetic acid. Gamma irradiation of a mixture of TRUEX process solvent and stripping solution in the test loop does not adversely impact flowsheet performance as measured by stripping americium ratios. The observed increase in americium stripping distribution ratios with increasing absorbed dose indicates the radiolytic production of organic soluble degradation compounds.

  6. Membrane loop process for separating carbon dioxide for use in gaseous form from flue gas

    DOE Patents [OSTI]

    Wijmans, Johannes G; Baker, Richard W; Merkel, Timothy C

    2014-10-07

    The invention is a process involving membrane-based gas separation for separating and recovering carbon dioxide emissions from combustion processes in partially concentrated form, and then transporting the carbon dioxide and using or storing it in a confined manner without concentrating it to high purity. The process of the invention involves building up the concentration of carbon dioxide in a gas flow loop between the combustion step and a membrane separation step. A portion of the carbon dioxide-enriched gas can then be withdrawn from this loop and transported, without the need to liquefy the gas or otherwise create a high-purity stream, to a destination where it is used or confined, preferably in an environmentally benign manner.

  7. Probing deconfinement in a chiral effective model with Polyakov loop at imaginary chemical potential

    SciTech Connect (OSTI)

    Morita, Kenji [GSI, Helmholzzentrum fuer Schwerionenforschung, Planckstr. 1, D-64291 Darmstadt (Germany); Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan); Skokov, Vladimir; Friman, Bengt [GSI, Helmholzzentrum fuer Schwerionenforschung, Planckstr. 1, D-64291 Darmstadt (Germany); Redlich, Krzysztof [Institute of Theoretical Physics, University of Wroclaw, PL-50204 Wroclaw (Poland); Extreme Matter Institute EMMI, GSI, Planckstr. 1, D-64291 Darmstadt (Germany)

    2011-10-01

    The phase structure of the two-flavor Polyakov-loop extended Nambu-Jona-Lashinio model is explored at finite temperature and imaginary chemical potential with a particular emphasis on the confinement-deconfinement transition. We point out that the confined phase is characterized by a cos3{mu}{sub I}/T dependence of the chiral condensate on the imaginary chemical potential while in the deconfined phase this dependence is given by cos{mu}{sub I}/T and accompanied by a cusp structure induced by the Z(3) transition. We demonstrate that the phase structure of the model strongly depends on the choice of the Polyakov loop potential U. Furthermore, we find that by changing the four fermion coupling constant G{sub s}, the location of the critical end point of the deconfinement transition can be moved into the real chemical potential region. We propose a new parameter characterizing the confinement-deconfinement transition.

  8. Non-Gaussianity at tree and one-loop levels from vector field perturbations

    SciTech Connect (OSTI)

    Valenzuela-Toledo, Cesar A.; Rodriguez, Yeinzon; Lyth, David H.

    2009-11-15

    We study the spectrum P{sub {zeta}} and bispectrum B{sub {zeta}} of the primordial curvature perturbation {zeta} when the latter is generated by scalar and vector field perturbations. The tree-level and one-loop contributions from vector field perturbations are worked out considering the possibility that the one-loop contributions may be dominant over the tree-level terms [both (either) in P{sub {zeta}} and (or) in B{sub {zeta}}] and vice versa. The level of non-Gaussianity in the bispectrum, f{sub NL}, is calculated and related to the level of statistical anisotropy in the power spectrum, g{sub {zeta}}. For very small amounts of statistical anisotropy in the power spectrum, the level of non-Gaussianity may be very high, in some cases exceeding the current observational limit.

  9. MAGNETOHYDRODYNAMIC SEISMOLOGY OF A CORONAL LOOP SYSTEM BY THE FIRST TWO MODES OF STANDING KINK WAVES

    SciTech Connect (OSTI)

    Guo, Y.; Hao, Q.; Cheng, X.; Chen, P. F.; Ding, M. D.; Erdélyi, R.; Srivastava, A. K.; Dwivedi, B. N.

    2015-02-01

    We report the observation of the first two harmonics of the horizontally polarized kink waves excited in a coronal loop system lying southeast of AR 11719 on 2013 April 11. The detected periods of the fundamental mode (P {sub 1}), its first overtone (P {sub 2}) in the northern half, and that in the southern one are 530.2 ± 13.3, 300.4 ± 27.7, and 334.7 ± 22.1 s, respectively. The periods of the first overtone in the two halves are the same considering uncertainties in the measurement. We estimate the average electron density, temperature, and length of the loop system as (5.1 ± 0.8) × 10{sup 8} cm{sup –3}, 0.65 ± 0.06 MK, and 203.8 ± 13.8 Mm, respectively. As a zeroth-order estimation, the magnetic field strength, B = 8.2 ± 1.0 G, derived by the coronal seismology using the fundamental kink mode matches with that derived by a potential field model. The extrapolation model also shows the asymmetric and nonuniform distribution of the magnetic field along the coronal loop. Using the amplitude profile distributions of both the fundamental mode and its first overtone, we observe that the antinode positions of both the fundamental mode and its first overtone shift toward the weak field region along the coronal loop. The results indicate that the density stratification and the temperature difference effects are larger than the magnetic field variation effect on the period ratio. On the other hand, the magnetic field variation has a greater effect on the eigenfunction of the first overtone than the density stratification does for this case.

  10. Structural Basis of Transcription: Role of the Trigger Loop in Substrate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Specificity and Catalysis of Transcription: Role of the Trigger Loop in Substrate Specificity and Catalysis Transcription is the first step and the key control point in the pathway of gene expression. Transcriptional regulation underlies development, oncogenesis, and other fundamental processes. The central enzyme in transcription is RNA polymerase, in eukaryotic cells there are three forms of RNA polymerase, designated I, II, and III (or A, B, and C), made up of 10-15 polypeptides. The

  11. Power Hardware-in-the-Loop-Based Anti-Islanding Evaluation and Demonstration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power Hardware-in-the-Loop- Based Anti-Islanding Evaluation and Demonstration Karl Schoder, James Langston, John Hauer, Ferenc Bogdan, and Michael Steurer Center for Advanced Power Systems (CAPS) Florida State University Barry Mather National Renewable Energy Laboratory Technical Report NREL/TP-5D00-64241 October 2015 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report

  12. Hardware-in-the-Loop Testing of Utility-Scale Wind Turbine Generators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hardware-in-the-Loop Testing of Utility-Scale Wind Turbine Generators Ryan Schkoda, Curtiss Fox, and Ramtin Hadidi Clemson University Vahan Gevorgian, Robb Wallen, and Scott Lambert National Renewable Energy Laboratory Technical Report NREL/TP-5000-64787 January 2016 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable

  13. Customer Interface Document for the Molten Salt Test Loop at the NSTTF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interface Document for the Molten Salt Test Loop at the NSTTF - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle

  14. Pantex High Pressure Fire Loop Project Completed On Time, Under Budget |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration High Pressure Fire Loop Project Completed On Time, Under Budget | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets

  15. ON THE POLARIMETRIC SIGNATURE OF EMERGING MAGNETIC LOOPS IN THE QUIET SUN

    SciTech Connect (OSTI)

    Viticchie, B.

    2012-03-10

    The abundance of Stokes V profiles dominated by one lobe at the locations of emergence of {Omega}-shaped magnetic loops is evaluated. The emergence events were found in Hinode Solar Optical Telescope/spectro-polarimeter time sequences of quiet-Sun regions. Such a study has the aim of confirming a prediction based on the basic geometrical and physical properties of emerging magnetic loops: Stokes V profiles dominated by one lobe are possibly the main polarimetric signature of these structures. In agreement with this prediction, 47% of the Stokes V profiles analyzed have an amplitude asymmetry |{delta}a| > 0.3, while in the quiet Sun the abundance is of about 30%. This excess with respect to the quiet Sun is found consistently for any value of the threshold on the amplitude asymmetry. Such a result proves the goodness of the physical scenarios so far proposed for the interpretation of loop emergence events and may prompt the use of Stokes V profiles dominated by one lobe as a new proxy for their identification in observations with a good spectral sampling.

  16. Simplifying Multi-loop Integrands of Gauge Theory and Gravity Amplitudes

    SciTech Connect (OSTI)

    Bern, Z.; Carrasco, J.J.M.; Dixon, L.J.; Johansson, H.; Roiban, R.

    2012-02-15

    We use the duality between color and kinematics to simplify the construction of the complete four-loop four-point amplitude of N = 4 super-Yang-Mills theory, including the nonplanar contributions. The duality completely determines the amplitude's integrand in terms of just two planar graphs. The existence of a manifestly dual gauge-theory amplitude trivializes the construction of the corresponding N = 8 supergravity integrand, whose graph numerators are double copies (squares) of the N = 4 super-Yang-Mills numerators. The success of this procedure provides further nontrivial evidence that the duality and double-copy properties hold at loop level. The new form of the four-loop four-point supergravity amplitude makes manifest the same ultraviolet power counting as the corresponding N = 4 super-Yang-Mills amplitude. We determine the amplitude's ultraviolet pole in the critical dimension of D = 11/2, the same dimension as for N = 4 super-Yang-Mills theory. Strikingly, exactly the same combination of vacuum integrals (after simplification) describes the ultraviolet divergence of N = 8 supergravity as the subleading-in-1/N{sub c}{sup 2} single-trace divergence in N = 4 super-Yang-Mills theory.

  17. Compact fluorescent lamp using horizontal and vertical insulating septums and convective venting geometry

    DOE Patents [OSTI]

    Siminovitch, Michael (El Sobrante, CA)

    1998-01-01

    A novel design for a compact fluorescent lamp, including a lamp geometry which will increase light output and efficacy of the lamp in a base down operating position by providing horizontal and vertical insulating septums positioned in the ballast compartment of the lamp to provide a cooler coldspot. Selective convective venting provides additional cooling of the ballast compartment.

  18. Compact fluorescent lamp using horizontal and vertical insulating septums and convective venting geometry

    DOE Patents [OSTI]

    Siminovitch, M.

    1998-02-10

    A novel design is described for a compact fluorescent lamp, including a lamp geometry which will increase light output and efficacy of the lamp in a base down operating position by providing horizontal and vertical insulating septums positioned in the ballast compartment of the lamp to provide a cooler coldspot. Selective convective venting provides additional cooling of the ballast compartment. 9 figs.

  19. CVD growth of graphene under exfoliated hexagonal boron nitride for vertical hybrid structures

    SciTech Connect (OSTI)

    Wang, Min; Jang, Sung Kyu; Song, Young Jae; Lee, Sungjoo

    2015-01-15

    Graphical abstract: We have demonstrated a novel yet simple method for fabricating graphene-based vertical hybrid structures by performing the CVD growth of graphene at an h-BN/Cu interface. Our systematic Raman measurements combined with plasma etching process indicate that a graphene film is grown under exfoliated h-BN rather than on its top surface, and that an h-BN/graphene vertical hybrid structure has been fabricated. Electrical transport measurements of this h-BN/graphene, transferred on SiO2, show the carrier mobility up to approximately 2250 cm{sup 2} V{sup ?1} s{sup ?1}. The developed method would enable the exploration of the possibility of novel hybrid structure integration with two-dimensional material systems. - Abstract: We have demonstrated a novel yet simple method for fabricating graphene-based vertical hybrid structures by performing the CVD growth of graphene at an h-BN/Cu interface. Our systematic Raman measurements combined with plasma etching process indicate that a graphene film is grown under exfoliated h-BN rather than on its top surface, and that an h-BN/graphene vertical hybrid structure has been fabricated. Electrical transport measurements of this h-BN/graphene, transferred on SiO{sub 2}, show the carrier mobility up to approximately 2250 cm{sup 2} V{sup ?1} s{sup ?1}. The developed method would enable the exploration of the possibility of novel hybrid structure integration with two-dimensional material systems.

  20. Method to estimate the vertical dispersion parameter in a 10 Km range

    SciTech Connect (OSTI)

    Xiaoen, L.; Xinyuan, J.; Jinte, Y.

    1983-12-01

    Based on the Monin-Batchelor Similarity Theory and the concept of effective roughness length, this paper presented an empirical vertical dispersion model in a 10 kilometer range. It could be used under a flat and homogeneous, as well as complex, topographical condition.

  1. Coupled-resonator vertical-cavity lasers with two active gain regions

    DOE Patents [OSTI]

    Fischer, Arthur J.; Choquette, Kent D.; Chow, Weng W.

    2003-05-20

    A new class of coupled-resonator vertical-cavity semiconductor lasers has been developed. These lasers have multiple resonant cavities containing regions of active laser media, resulting in a multi-terminal laser component with a wide range of novel properties.

  2. Production of vertical arrays of small diameter single-walled carbon nanotubes

    DOE Patents [OSTI]

    Hauge, Robert H; Xu, Ya-Qiong

    2013-08-13

    A hot filament chemical vapor deposition method has been developed to grow at least one vertical single-walled carbon nanotube (SWNT). In general, various embodiments of the present invention disclose novel processes for growing and/or producing enhanced nanotube carpets with decreased diameters as compared to the prior art.

  3. Please take the 2012 NERSC Usr Survey (now closed)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Please take the 2012 NERSC Usr Survey Please take the 2012 NERSC Usr Survey (now closed) January 1, 2013 by Francesca Verdier Please take a few minutes to fill out NERSC's annual user survey. Your feedback is important because it allows us to judge the quality of our services, give DOE information on how we are doing, and point us to areas in which we can improve. The survey is on the web at the URL: https://www.nersc.gov/news-publications/publications-reports/user-surveys/2012/ The survey,

  4. Closing of the GNEP Ministerial Meeting | Department of Energy

    Energy Savers [EERE]

    of the GNEP Ministerial Meeting Closing of the GNEP Ministerial Meeting May 21, 2007 - 12:55pm Addthis Remarks as Prepared for Secretary Bodman Thank you all for coming. Ministers, distinguished guests, ladies and gentlemen of the press, thank you all for being here. I'm Sam Bodman, the United States Secretary of Energy. As I think most of you know, President Bush proposed a Global Nuclear Energy Partnership - or GNEP - to allow developing nations to share in the benefits of nuclear power in an

  5. Cryogenic system for the Energy Recovery Linac and vertical test facility at BNL

    SciTech Connect (OSTI)

    Than, R.; Soria, V.; Lederle, D.; Orfin, P.; Porqueddu, R.; Talty, P.; Zhang, Y.; Tallerico, T.; Masi, L.

    2011-03-28

    A small cryogenic system and warm helium vacuum pumping system provides cooling to either the Energy Recovery Linac's (ERL) cryomodules that consist of a 5-cell cavity and an SRF gun or a large Vertical Test Dewar (VTD) at any given time. The cryogenic system consists of a model 1660S PSI piston plant, a 3800 liter storage dewar, subcooler, a wet expander, a 50 g/s main helium compressor, and a 170 m{sup 3} storage tank. A system description and operating plan of the cryogenic plant and cryomodules is given. The cryogenic system for ERL and the Vertical Test Dewar has a plant that can produce the equivalent of 300W at 4.5K with the addition of a wet expander 350 W at 4.5K. Along with this system, a sub-atmospheric, warm compression system provides pumping to produce 2K at the ERL cryomodules or the Vertical Test Dewar. The cryogenic system for ERL and the Vertical Test Dewar makes use of existing equipment for putting a system together. It can supply either the ERL side or the Vertical Test Dewar side, but not both at the same time. Double valve isolation on the liquid helium supply line allows one side to be warmed to room temperature and worked on while the other side is being held at operating temperature. The cryogenic system maintain the end loads from 4.4K to 2K or colder depending on capacity. Liquid helium storage dewar capacity allows ERL or the VTD to operate above the plant's capacity when required and ERL cryomodules ballast reservoirs and VTD reservoir allows the end loads to operate on full vacuum pump capacity when required.

  6. Escape behavior of a quantum particle in a loop coupled to a lead

    SciTech Connect (OSTI)

    Jacquet, Ph. A. [Department of Physics, Kwansei Gakuin University, Sanda 669-1337 (Japan)

    2011-12-15

    We consider a one-dimensional loop of circumference L crossed by a constant magnetic flux {Phi} and connected to an infinite lead with coupling parameter {epsilon}. Assuming that the initial state {psi}{sub 0} of the particle is confined inside the loop and evolves freely, we analyze the time evolution of the nonescape probability P({psi}{sub 0},L,{Phi},{epsilon},t), which is the probability that the particle will still be inside the loop at some later time t. In appropriate units, we found that P({psi}{sub 0},L,{Phi},{epsilon},t)=P{sub {infinity}}({psi}{sub 0},{Phi})+{Sigma}{sub k=1}{sup {infinity}}C{sub k}({psi}{sub 0},L,{Phi},{epsilon})/t{sup k}. The constant P{sub {infinity}}({psi}{sub 0},{Phi}) is independent of L and {epsilon}, and vanishes if {psi}{sub 0} has no bound state components or if |cos({Phi})|{ne}1. The coefficients C{sub 1}({psi}{sub 0},L,{Phi},{epsilon}) and C{sub 3}({psi}{sub 0},L,{Phi},{epsilon}) depend on the initial state {psi}{sub 0} of the particle, but only the momentum k={Phi}/L is involved. There are initial states {psi}{sub 0} for which P({psi}{sub 0},L,{Phi},{epsilon},t){approx}C{sub {delta}}({psi}{sub 0},L,{Phi},{epsilon})/t{sup {delta}}, as t{yields}{infinity}, where {delta}=1 if cos({Phi})=1 and {delta}=3 if cos({Phi}){ne}1. Thus, by submitting the loop to an external magnetic flux, one may induce a radical change in the asymptotic decay rate of P({psi}{sub 0},L,{Phi},{epsilon},t). Interestingly, if cos({Phi})=1, then C{sub 1}({psi}{sub 0},L,{Phi},{epsilon}) decreases with {epsilon} (i.e., the particle escapes faster in the long run) while in the case cos({Phi}){ne}1, the coefficient C{sub 3}({psi}{sub 0},L,{Phi},{epsilon}) increases with {epsilon} (i.e., the particle escapes slower in the long run). Assuming the particle to be initially in a bound state of the loop with {Phi}=0, we compute explicit relations and present some numerical results showing a global picture in time of P({psi}{sub 0},L,{Phi},{epsilon},t). Finally, by using the pseudospectral method, we consider the interacting case with soft-core Coulomb potentials.

  7. Report (Vertical)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    death. It is the responsibility of each Eligible Survivor (or the Eligible Survivor's guardian) to keep the LANL Benefits Office advised of any change of address and to...

  8. Report (Vertical)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANS 401(k) Savings Plan Summary Plan Description December 1, 2009 This Summary Plan Description (SPD) is intended to provide a summary of the principal features of the LANS 401(k) Savings Plan ("Plan") and is not meant to interpret, extend or change the Plan in any way. This SPD will continue to be updated. Please check back on a regular basis for the most recent version and check with the Los Alamos National Laboratory (LANL) Benefits Office for any changes to the Plan that may not

  9. Report (Vertical)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANS HR-Benefits Group September 1, 2012 918425-3 LANS 401(k) Retirement Plan Summary Plan Description This Summary Plan Description (SPD) is intended to provide a summary of the principal features of the LANS 401(k) Retirement Plan ("Plan") and is not meant to interpret, extend or change the Plan in any way. This SPD will continue to be updated. Please check back on a regular basis for the most recent version and check with the Los Alamos National Laboratory (LANL) Benefits Office for

  10. Enabling comparative modeling of closely related genomes: Example genus Brucella

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Faria, José P.; Edirisinghe, Janaka N.; Davis, James J.; Disz, Terrence; Hausmann, Anna; Henry, Christopher S.; Olson, Robert; Overbeek, Ross A.; Pusch, Gordon D.; Shukla, Maulik; et al

    2014-03-08

    For many scientific applications, it is highly desirable to be able to compare metabolic models of closely related genomes. In this study, we attempt to raise awareness to the fact that taking annotated genomes from public repositories and using them for metabolic model reconstructions is far from being trivial due to annotation inconsistencies. We are proposing a protocol for comparative analysis of metabolic models on closely related genomes, using fifteen strains of genus Brucella, which contains pathogens of both humans and livestock. This study lead to the identification and subsequent correction of inconsistent annotations in the SEED database, as wellmore » as the identification of 31 biochemical reactions that are common to Brucella, which are not originally identified by automated metabolic reconstructions. We are currently implementing this protocol for improving automated annotations within the SEED database and these improvements have been propagated into PATRIC, Model-SEED, KBase and RAST. This method is an enabling step for the future creation of consistent annotation systems and high-quality model reconstructions that will support in predicting accurate phenotypes such as pathogenicity, media requirements or type of respiration.« less

  11. Optimum design point for a closed-cycle OTEC system

    SciTech Connect (OSTI)

    Ikegami, Yasuyuki; Uehara, Haruo

    1994-12-31

    Performance analysis is performed for optimum design point of a closed-cycle Ocean Thermal Energy Conversion (OTEC) system. Calculations are made for an OTEC model plant with a gross power of 100 MW, which was designed by the optimization method proposed by Uehara and Ikegami for the design conditions of 21 C--29 C warm sea water temperature and 4 C cold sea water temperature. Ammonia is used as working fluid. Plate type evaporator and condenser are used as heat exchangers. The length of the cold sea water pipe is 1,000 m. This model plant is a floating-type OTEC plant. The objective function of optimum design point is defined as the total heat transfer area of heat exchangers per the annual net power.

  12. THE VERTICAL COMPOSITION OF NEUTRINO-DOMINATED ACCRETION DISKS IN GAMMA-RAY BURSTS

    SciTech Connect (OSTI)

    Liu, Tong; Xue, Li; Gu, Wei-Min; Lu, Ju-Fu, E-mail: tongliu@xmu.edu.cn [Department of Physics and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen, Fujian 361005 (China)] [Department of Physics and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen, Fujian 361005 (China)

    2013-01-10

    We investigate the vertical structure and element distribution of neutrino-dominated accretion flows around black holes in spherical coordinates using the reasonable nuclear statistical equilibrium. According to our calculations, heavy nuclei tend to be produced in a thin region near the disk surface, whose mass fractions are primarily determined by the accretion rate and vertical distribution of temperature and density. In this thin region, we find that {sup 56}Ni is dominant for the flow with a low accretion rate (e.g., 0.05 M {sub Sun} s{sup -1}), but {sup 56}Fe is dominant for the flow with a high accretion rate (e.g., 1 M {sub Sun} s{sup -1}). The dominant {sup 56}Ni in the aforementioned region may provide a clue to understanding the bumps in the optical light curve of core-collapse supernovae.

  13. First measurements of Hiro currents in vertical displacement event in tokamaks

    SciTech Connect (OSTI)

    Xiong, Hao; Xu, Guosheng; Wang, Huiqian; Zakharov, Leonid E.; Li, Xujing

    2015-06-15

    Specially designed tiles were setup in the 2012 campaign of the Experimental Advanced Superconducting Tokamak (EAST), to directly measure the toroidal surface currents during the disruptions. Hiro currents with direction opposite to the plasma currents have been observed, confirming the sign prediction by the Wall Touching Vertical Mode (WTVM) theory and numerical simulations. During the initial phase of the disruption, when the plasma begins to touch the wall, the surface currents can be excited by WTVM along the plasma facing tile surface, varying with the mode magnitude. The currents are not observed in the cases when the plasma moves away from the tile surface. This discovery addresses the importance of the plasma motion into the wall in vertical disruptions. WTVM, acting as a current generator, forces the Hiro currents to flow through the gaps between tiles. This effect, being overlooked so far in disruption analysis, may damage the edges of the tiles and is important for the ITER device.

  14. Performance and breakdown characteristics of irradiated vertical power GaN P-i-N diodes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    King, M. P.; Armstrong, A. M.; Dickerson, J. R.; Vizkelethy, G.; Fleming, R. M.; Campbell, J.; Wampler, W. R.; Kizilyalli, I. C.; Bour, D. P.; Aktas, O.; et al

    2015-10-29

    Electrical performance and defect characterization of vertical GaN P-i-N diodes before and after irradiation with 2.5 MeV protons and neutrons is investigated. Devices exhibit increase in specific on-resistance following irradiation with protons and neutrons, indicating displacement damage introduces defects into the p-GaN and n- drift regions of the device that impact on-state device performance. The breakdown voltage of these devices, initially above 1700 V, is observed to decrease only slightly for particle fluence <; 1013 cm-2. Furthermore, the unipolar figure of merit for power devices indicates that while the on-resistance and breakdown voltage degrade with irradiation, vertical GaN P-i-Ns remainmore » superior to the performance of the best available, unirradiated silicon devices and on-par with unirradiated modern SiC-based power devices.« less

  15. Characterization of vertical strain silicon MOSFET incorporating dielectric pocket (SDP-VMOSFET)

    SciTech Connect (OSTI)

    Napiah, Z. A. F. M. E-mail: nazirah6969@gmail.com E-mail: idzdihar@utem.edu.my E-mail: yashidar@yahoo.com Makhtar, N. E-mail: nazirah6969@gmail.com E-mail: idzdihar@utem.edu.my E-mail: yashidar@yahoo.com Othman, M. A. E-mail: nazirah6969@gmail.com E-mail: idzdihar@utem.edu.my E-mail: yashidar@yahoo.com Idris, M. I. E-mail: nazirah6969@gmail.com E-mail: idzdihar@utem.edu.my E-mail: yashidar@yahoo.com Arith, F. E-mail: nazirah6969@gmail.com E-mail: idzdihar@utem.edu.my E-mail: yashidar@yahoo.com Yasin, N. Y. M. E-mail: nazirah6969@gmail.com E-mail: idzdihar@utem.edu.my E-mail: yashidar@yahoo.com Taib, S. N. E-mail: nazirah6969@gmail.com E-mail: idzdihar@utem.edu.my E-mail: yashidar@yahoo.com

    2014-02-24

    The vertical Metal-Oxide-Semiconductor Field-Effect-Transistor (MOSFET) leads to a double channel width that can increase the packaging density. The strained silicon MOSFET was introduced to modify the carrier transport properties of silicon in order to enhance transport of both electrons and holes within strained layer. Dielectric pocket was act to control encroachment of the drain doping into the channel and reduce short channel effects (SCE). SDP-VMOSFET which was a combination of those advantages was proposed to overcome the SCE in term of leakage current, threshold voltage roll-off also Drain Induce Barrier Lowering (DIBL). As a result, SDP-VMOSFET produces a better threshold voltage and DIBL compared to related structures. Meanwhile, it gives slightly increased for leakage current compared to Vertical MOSFET Incorporating Dielectric Pocket. The characteristics of the SDP-VMOSFET are analyzed in order to optimize the performance of the device and leading to the next generation of IC technology.

  16. Metrology for x-ray telescope mirrors in a vertical configuration

    SciTech Connect (OSTI)

    Li, Haizhang; Li, Xiaodan; Grindel, M.W.

    1995-09-01

    Mirrors used in x-ray telescope systems for observations outside of the earth`s atmosphere are usually made of several thin nested shells, each formed by a pair of paraboloidal and hyperboloidal surfaces. The thin shells are very susceptible to self-weight deflection caused by gravity and are nearly impossible to test by conventional interferometric techniques. The metrology requirements for these mirrors are extremely challenging. This paper presents a prototype of a Vertical Scanning Long Trace Profiler (VSLTP) which is optimized to measure the surface figure of x-ray telescope mirrors in a vertical orientation. The optical system of the VSLTP is described. Experimental results from measurements on an x-ray telescope mandrel and tests of the accuracy and repeatability of the prototype VSLTP are presented. The prototype instrument has achieved a height measurement accuracy of about 50 nanometers with a repeatability of better than 20 nanometers, and a slope measurement accuracy of about 1 microradian.

  17. In situ oil shale retort with a generally T-shaped vertical cross section

    DOE Patents [OSTI]

    Ricketts, Thomas E. (Grand Junction, CO)

    1981-01-01

    An in situ oil shale retort is formed in a subterranean formation containing oil shale. The retort contains a fragmented permeable mass of formation particles containing oil shale and has a production level drift in communication with a lower portion of the fragmented mass for withdrawing liquid and gaseous products of retorting during retorting of oil shale in the fragmented mass. The principal portion of the fragmented mass is spaced vertically above a lower production level portion having a generally T-shaped vertical cross section. The lower portion of the fragmented mass has a horizontal cross sectional area smaller than the horizontal cross sectional area of the upper principal portion of the fragmented mass above the production level.

  18. Structure and Characterization of Vertically Aligned Single-Walled Carbon Nanotube Bundles

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Márquez, Francisco; López, Vicente; Morant, Carmen; Roque-Malherbe, Rolando; Domingo, Concepción; Elizalde, Eduardo; Zamora, Félix

    2010-01-01

    Arrmore » ays of vertically aligned single-walled carbon nanotube bundles, SWCNTs, have been synthesized by simple alcohol catalytic chemical vapor deposition process, carried out at 800°C. The formed SWCNTs are organized in small groups perpendicularly aligned and attached to the substrate. These small bundles show a constant diameter of ca. 30 nm and are formed by the adhesion of no more than twenty individual SWCNTs perfectly aligned along their length.« less

  19. Sandia Vertical-Axis Wind-Turbine Research Presented at Science of Making

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Torque from Wind Conference Vertical-Axis Wind-Turbine Research Presented at Science of Making Torque from Wind Conference - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power &

  20. Bistable laser device with multiple coupled active vertical-cavity resonators

    DOE Patents [OSTI]

    Fischer, Arthur J.; Choquette, Kent D.; Chow, Weng W.

    2003-08-19

    A new class of bistable coupled-resonator vertical-cavity semiconductor laser devices has been developed. These bistable laser devices can be switched, either electrically or optically, between lasing and non-lasing states. A switching signal with a power of a fraction of a milliwatt can change the laser output of such a device by a factor of a hundred, thereby enabling a range of optical switching and data encoding applications.

  1. Proposal for the development of 3D Vertically Integrated Pattern Recognition Associative Memory (VIPRAM)

    SciTech Connect (OSTI)

    Deptuch, Gregory; Hoff, Jim; Kwan, Simon; Lipton, Ron; Liu, Ted; Ramberg, Erik; Todri, Aida; Yarema, Ray; Demarteua, Marcel,; Drake, Gary; Weerts, Harry; /Argonne /Chicago U. /Padua U. /INFN, Padua

    2010-10-01

    Future particle physics experiments looking for rare processes will have no choice but to address the demanding challenges of fast pattern recognition in triggering as detector hit density becomes significantly higher due to the high luminosity required to produce the rare process. The authors propose to develop a 3D Vertically Integrated Pattern Recognition Associative Memory (VIPRAM) chip for HEP applications, to advance the state-of-the-art for pattern recognition and track reconstruction for fast triggering.

  2. Vertical Variability of Aerosols and Water Vapor Over the Southern Great Plains

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vertical Variability of Aerosols and Water Vapor Over the Southern Great Plains R. A. Ferrare National Aeronautics and Space Administration Langley Research Center Hampton, Virginia D. D. Turner Pacific Northwest National Laboratory Richland, Washington M. Clayton and V. Brackett Science Applications International Corporation National Aeronautics and Space Administration Langley Research Center Hampton, Virginia T. P. Tooman and J. E. M. Goldsmith Sandia National Laboratories Livermore,

  3. Current Drive for Plasma Via Vertically-Structured Permanent Magnet System.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Princeton Plasma Physics Lab Current Drive for Plasma Via Vertically-Structured Permanent Magnet System. This invention uses the rotatoin of permanent magnets to generate a plasma current with toroidal fusion confinement devices. This particular device strategically places two rings of magnets above and below the ferromagnetic core in order to maximize both the efficiency and plasma current. No.: M-872 Inventor(s): Ali Zolfaghari

  4. An after-market, five-port vertical beam line extension for the PETtrace

    SciTech Connect (OSTI)

    Barnhart, T. E.; Engle, J. W.; Severin, G. W.; Valdovinos, H. F.; Gagnon, K.; Nickles, R. J.

    2012-12-19

    Most commercial cyclotrons intended for medical isotope production provide a limited number of beam ports crowded into a minimal vault space. Taking advantage of our new lab construction, we planned and installed a beam-line on port Music-Sharp-Sign 2 of our GEMS PETtrace to bring beam to an additional 5 target positions. These are oriented in the vertical plane, with the downward directed beam well suited for molten target substrates.

  5. Growth and characterization of 4-chloro-3-nitrobenzophenone single crystals using vertical Bridgman technique

    SciTech Connect (OSTI)

    Aravinth, K. Babu, G. Anandha Ramasamy, P.

    2014-04-24

    4-chloro-3-nitrobenzophenone (4C3N) has been grown by using vertical Bridgman technique. The grown crystal was confirmed by Powder X-ray diffraction analysis. The crystalline perfection of the grown crystal was examined by high-resolution X-ray diffraction study. The fluorescence spectra of grown 4C3N single crystals exhibit emission peak at 575 nm. The micro hardness measurements were used to analyze the mechanical property of the grown crystal.

  6. Modification and Application of a New Method for Retrieving Water-Cloud Microphysics Vertical Profile

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modification and Application of a New Method for Retrieving Water-Cloud Microphysics Vertical Profile F.-L Chang and Z. Li Earth System Science Interdisciplinary Center University of Maryland College Park, Maryland Z. Li Department of Meteorology University of Maryland College Park, Maryland X. Dong Department of Atmospheric Sciences University of North Dakota Grand Forks, North Dakota Introduction Low- level boundary layer clouds have the most significant influence on cloud radiative forcing

  7. LBNL Report-54360 ATF-03-09 Closed Orbit Response to Quadrupole...

    Office of Scientific and Technical Information (OSTI)

    ... At the ATF, for example, there are three quadrupoles (including the gradient bending magnet) per arc cell, but only two BPMs and one horizontal corrector magnet and one vertical ...

  8. Two loop neutrino model and dark matter particles with global B?L symmetry

    SciTech Connect (OSTI)

    Baek, Seungwon; Okada, Hiroshi; Toma, Takashi E-mail: hokada@kias.re.kr

    2014-06-01

    We study a two loop induced seesaw model with global U(1){sub B?L} symmetry, in which we consider two component dark matter particles. The dark matter properties are investigated together with some phenomenological constraints such as electroweak precision test, neutrino masses and mixing and lepton flavor violation. In particular, the mixing angle between the Standard Model like Higgs and an extra Higgs is extremely restricted by the direct detection experiment of dark matter. We also discuss the contribution of Goldstone boson to the effective number of neutrino species ?N{sub eff} ? 0.39 which has been reported by several experiments.

  9. Kinks, loops, and protein folding, with protein A as an example

    SciTech Connect (OSTI)

    Krokhotin, Andrey, E-mail: Andrei.Krokhotine@cern.ch [Department of Physics and Astronomy and Science for Life Laboratory, Uppsala University, P.O. Box 803, S-75108 Uppsala (Sweden)] [Department of Physics and Astronomy and Science for Life Laboratory, Uppsala University, P.O. Box 803, S-75108 Uppsala (Sweden); Liwo, Adam, E-mail: adam@chem.univ.gda.pl [Faculty of Chemistry, University of Gdansk, ul. Sobieskiego 18, 80-952 Gdansk (Poland)] [Faculty of Chemistry, University of Gdansk, ul. Sobieskiego 18, 80-952 Gdansk (Poland); Maisuradze, Gia G., E-mail: gm56@cornell.edu; Scheraga, Harold A., E-mail: has5@cornell.edu [Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301 (United States); Niemi, Antti J., E-mail: Antti.Niemi@physics.uu.se [Department of Physics and Astronomy and Science for Life Laboratory, Uppsala University, P.O. Box 803, S-75108 Uppsala (Sweden); Laboratoire de Mathematiques et Physique Theorique CNRS UMR 6083, Fdration Denis Poisson, Universit de Tours, Parc de Grandmont, F37200 Tours, France and Department of Physics, Beijing Institute of Technology, Haidian District, Beijing 100081 (China)

    2014-01-14

    The dynamics and energetics of formation of loops in the 46-residue N-terminal fragment of the B-domain of staphylococcal protein A has been studied. Numerical simulations have been performed using coarse-grained molecular dynamics with the united-residue (UNRES) force field. The results have been analyzed in terms of a kink (heteroclinic standing wave solution) of a generalized discrete nonlinear Schrdinger (DNLS) equation. In the case of proteins, the DNLS equation arises from a C{sup ?}-trace-based energy function. Three individual kink profiles were identified in the experimental three-?-helix structure of protein A, in the range of the Glu16-Asn29, Leu20-Asn29, and Gln33-Asn44 residues, respectively; these correspond to two loops in the native structure. UNRES simulations were started from the full right-handed ?-helix to obtain a clear picture of kink formation, which would otherwise be blurred by helix formation. All three kinks emerged during coarse-grained simulations. It was found that the formation of each is accompanied by a local free energy increase; this is expressed as the change of UNRES energy which has the physical sense of the potential of mean force of a polypeptide chain. The increase is about 7 kcal/mol. This value can thus be considered as the free energy barrier to kink formation in full ?-helical segments of polypeptide chains. During the simulations, the kinks emerge, disappear, propagate, and annihilate each other many times. It was found that the formation of a kink is initiated by an abrupt change in the orientation of a pair of consecutive side chains in the loop region. This resembles the formation of a Bloch wall along a spin chain, where the C{sup ?} backbone corresponds to the chain, and the amino acid side chains are interpreted as the spin variables. This observation suggests that nearest-neighbor side chainside chain interactions are responsible for initiation of loop formation. It was also found that the individual kinks are reflected as clear peaks in the principal modes of the analyzed trajectory of protein A, the shapes of which resemble the directional derivatives of the kinks along the chain. These observations suggest that the kinks of the DNLS equation determine the functionally important motions of proteins.

  10. Measurement of Hydrogen Absorption in Ternary Alloys with Volumetric (Sieverts Loop) Techniques

    SciTech Connect (OSTI)

    Aceves, S.

    2015-10-26

    The Sieverts loop is an inexpensive, robust and reliable methodology for calculating hydrogen absorption in materials [1]. In this approach, we start by storing a sample of the material being tested in the volume Vcell (Figure 1) and initiate the process by producing a high vacuum in the system while the material sample is heated to eliminate (most of) the hydrogen and other impurities previously absorbed. The system typically operates isothermally, with the volume Vref at ambient temperature and the sample at a temperature of interest high enough to liquefy the alloy for the current application to nuclear fusion.

  11. Power Hardware-in-the-Loop (PHIL) Testing Facility for Distributed Energy Storage (Poster)

    SciTech Connect (OSTI)

    Neubauer.J.; Lundstrom, B.; Simpson, M.; Pratt, A.

    2014-06-01

    The growing deployment of distributed, variable generation and evolving end-user load profiles presents a unique set of challenges to grid operators responsible for providing reliable and high quality electrical service. Mass deployment of distributed energy storage systems (DESS) has the potential to solve many of the associated integration issues while offering reliability and energy security benefits other solutions cannot. However, tools to develop, optimize, and validate DESS control strategies and hardware are in short supply. To fill this gap, NREL has constructed a power hardware-in-the-loop (PHIL) test facility that connects DESS, grid simulator, and load bank hardware to a distribution feeder simulation.

  12. Characterization of Vertical Velocity and Drop Size Distribution Parameters in Widespread Precipitation at ARM Facilities

    SciTech Connect (OSTI)

    Giangrande S. E.; Luke, E. P.; Kollias, P.

    2012-02-01

    Extended, high-resolution measurements of vertical air motion and median volume drop diameter D0 in widespread precipitation from three diverse Atmospheric Radiation Measurement Program (ARM) locations [Lamont, Oklahoma, Southern Great Plains site (SGP); Niamey, Niger; and Black Forest, Germany] are presented. The analysis indicates a weak (0-10 cm{sup -1}) downward air motion beneath the melting layer for all three regions, a magnitude that is to within the typical uncertainty of the retrieval methods. On average, the hourly estimated standard deviation of the vertical air motion is 0.25 m s{sup -1} with no pronounced vertical structure. Profiles of D0 vary according to region and rainfall rate. The standard deviation of 1-min-averaged D0 profiles for isolated rainfall rate intervals is 0.3-0.4 mm. Additional insights into the form of the raindrop size distribution are provided using available dual-frequency Doppler velocity observations at SGP. The analysis suggests that gamma functions better explain paired velocity observations and radar retrievals for the Oklahoma dataset. This study will be useful in assessing uncertainties introduced in the measurement of precipitation parameters from ground-based and spaceborne remote sensors that are due to small-scale variability.

  13. VERTICAL STRUCTURE AND CORONAL POWER OF ACCRETION DISKS POWERED BY MAGNETOROTATIONAL-INSTABILITY TURBULENCE

    SciTech Connect (OSTI)

    Uzdensky, Dmitri A.

    2013-10-01

    In this paper, we consider two outstanding intertwined problems in modern high-energy astrophysics: (1) the vertical-thermal structure of an optically thick accretion disk heated by the dissipation of magnetohydrodynamic turbulence driven by the magnetorotational instability (MRI), and (2) determining the fraction of the accretion power released in the corona above the disk. For simplicity, we consider a gas-pressure-dominated disk and assume a constant opacity. We argue that the local turbulent dissipation rate due to the disruption of the MRI channel flows by secondary parasitic instabilities should be uniform across most of the disk, almost up to the disk photosphere. We then obtain a self-consistent analytical solution for the vertical thermal structure of the disk, governed by the balance between the heating by MRI turbulence and the cooling by radiative diffusion. Next, we argue that the coronal power fraction is determined by the competition between the Parker instability, viewed as a parasitic instability feeding off of MRI channel flows, and other parasitic instabilities. We show that the Parker instability inevitably becomes important near the disk surface, leading to a certain lower limit on the coronal power. While most of the analysis in this paper focuses on the case of a disk threaded by an externally imposed vertical magnetic field, we also discuss the zero net flux case, in which the magnetic field is produced by the MRI dynamo itself, and show that most of our arguments and conclusions should be valid in this case as well.

  14. GaAs buffer layer technique for vertical nanowire growth on Si substrate

    SciTech Connect (OSTI)

    Xu, Xiaoqing Parizi, Kokab B.; Huo, Yijie; Kang, Yangsen; Philip Wong, H.-S.; Li, Yang

    2014-02-24

    Gold catalyzed vapor-liquid-solid method is widely applied to IIIV nanowire (NW) growth on Si substrate. However, the easy oxidation of Si, possible Si contamination in the NWs, high defect density in the NWs, and high sensitivity of the NW morphology to growth conditions largely limit its controllability. In this work, we developed a buffer layer technique by introducing a GaAs thin film with predefined polarity as a template. It is found that samples grown on these buffer layers all have high vertical NW yields in general, due to the single-orientation of the buffer layers. Low temperature buffer with smoother surface leads to highest yield of vertical NWs, while high temperature (HT) buffer with better crystallinity results in perfect NW quality. The defect-free property we observed here is very promising for optoelectronic device applications based on GaAs NW. Moreover, the buffer layers can eliminate Si contamination by preventing Si-Au alloy formation and by increasing the thickness of the Si diffusion barrier, thus providing more flexibility to vertical NW growth. The buffer layer technique we demonstrated here could be easily extended to other III-V on Si system for electronic and photonic applications.

  15. Displacement Fields and Self-Energies of Circular and Polygonal Dislocation Loops in Homogeneous and Layered Anisotropic Solids

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gao, Yanfei; Larson, Ben C.

    2015-06-19

    There are large classes of materials problems that involve the solutions of stress, displacement, and strain energy of dislocation loops in elastically anisotropic solids, including increasingly detailed investigations of the generation and evolution of irradiation induced defect clusters ranging in sizes from the micro- to meso-scopic length scales. Based on a two-dimensional Fourier transform and Stroh formalism that are ideal for homogeneous and layered anisotropic solids, we have developed robust and computationally efficient methods to calculate the displacement fields for circular and polygonal dislocation loops. Using the homogeneous nature of the Green tensor of order -1, we have shown thatmore » the displacement and stress fields of dislocation loops can be obtained by numerical quadrature of a line integral. In addition, it is shown that the sextuple integrals associated with the strain energy of loops can be represented by the product of a pre-factor containing elastic anisotropy effects and a universal term that is singular and equal to that for elastic isotropic case. Furthermore, we have found that the self-energy pre-factor of prismatic loops is identical to the effective modulus of normal contact, and the pre-factor of shear loops differs from the effective indentation modulus in shear by only a few percent. These results provide a convenient method for examining dislocation reaction energetic and efficient procedures for numerical computation of local displacements and stresses of dislocation loops, both of which play integral roles in quantitative defect analyses within combined experimental–theoretical investigations.« less

  16. CEMENTITIOUS GROUT FOR CLOSING SRS HIGH LEVEL WASTE TANKS - #12315

    SciTech Connect (OSTI)

    Langton, C.; Burns, H.; Stefanko, D.

    2012-01-10

    In 1997, the first two United States Department of Energy (US DOE) high level waste tanks (Tanks 17-F and 20-F: Type IV, single shell tanks) were taken out of service (permanently closed) at the Savannah River Site (SRS). In 2012, the DOE plans to remove from service two additional Savannah River Site (SRS) Type IV high-level waste tanks, Tanks 18-F and 19-F. These tanks were constructed in the late 1950's and received low-heat waste and do not contain cooling coils. Operational closure of Tanks 18-F and 19-F is intended to be consistent with the applicable requirements of the Resource Conservation and Recovery Act (RCRA) and the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and will be performed in accordance with South Carolina Department of Health and Environmental Control (SCDHEC). The closure will physically stabilize two 4.92E+04 cubic meter (1.3 E+06 gallon) carbon steel tanks and isolate and stabilize any residual contaminants left in the tanks. The closure will also fill, physically stabilize and isolate ancillary equipment abandoned in the tanks. A Performance Assessment (PA) has been developed to assess the long-term fate and transport of residual contamination in the environment resulting from the operational closure of the F-Area Tank Farm (FTF) waste tanks. Next generation flowable, zero-bleed cementitious grouts were designed, tested, and specified for closing Tanks 18-F and 19-F and for filling the abandoned equipment. Fill requirements were developed for both the tank and equipment grouts. All grout formulations were required to be alkaline with a pH of 12.4 and chemically reduction potential (Eh) of -200 to -400 to stabilize selected potential contaminants of concern. This was achieved by including Portland cement and Grade 100 slag in the mixes, respectively. Ingredients and proportions of cementitious reagents were selected and adjusted, respectively, to support the mass placement strategy developed by closure operations. Subsequent down selection was based on compressive strength and saturated hydraulic conductivity results. Fresh slurry property results were used as the first level of screening. A high range water reducing admixture and a viscosity modifying admixture were used to adjust slurry properties to achieve flowable grouts. Adiabatic calorimeter results were used as the second level screening. The third level of screening was used to design mixes that were consistent with the fill material parameters used in the F-Tank Farm Performance Assessment which was developed to assess the long-term fate and transport of residual contamination in the environment resulting from the operational closures.

  17. ATMOSPHERIC IMAGING ASSEMBLY OBSERVATIONS OF CORONAL LOOPS: CROSS-FIELD TEMPERATURE DISTRIBUTIONS

    SciTech Connect (OSTI)

    Schmelz, J. T.; Jenkins, B. S.; Pathak, S., E-mail: jschmelz@memphis.edu [Physics Department, University of Memphis, Memphis, TN 38152 (United States)

    2013-06-10

    We construct revised response functions for the Atmospheric Imaging Assembly (AIA) using the new atomic data, ionization equilibria, and coronal abundances available in CHIANTI 7.1. We then use these response functions in multithermal analysis of coronal loops, which allows us to determine a specific cross-field temperature distribution without ad hoc assumptions. Our method uses data from the six coronal filters and the Monte Carlo solutions available from our differential emission measure (DEM) analysis. The resulting temperature distributions are not consistent with isothermal plasma. Therefore, the observed loops cannot be modeled as single flux tubes and must be composed of a collection of magnetic strands. This result is now supported by observations from the High-resolution Coronal Imager, which show fine-scale braiding of coronal strands that are reconnecting and releasing energy. Multithermal analysis is one of the major scientific goals of AIA, and these results represent an important step toward the successful achievement of that goal. As AIA DEM analysis becomes more straightforward, the solar community will be able to take full advantage of the state-of-the-art spatial, temporal, and temperature resolution of the instrument.

  18. Non-singular bounce scenarios in loop quantum cosmology and the effective field description

    SciTech Connect (OSTI)

    Cai, Yi-Fu; Wilson-Ewing, Edward E-mail: wilson-ewing@phys.lsu.edu

    2014-03-01

    A non-singular bouncing cosmology is generically obtained in loop quantum cosmology due to non-perturbative quantum gravity effects. A similar picture can be achieved in standard general relativity in the presence of a scalar field with a non-standard kinetic term such that at high energy densities the field evolves into a ghost condensate and causes a non-singular bounce. During the bouncing phase, the perturbations can be stabilized by introducing a Horndeski operator. Taking the matter content to be a dust field and an ekpyrotic scalar field, we compare the dynamics in loop quantum cosmology and in a non-singular bouncing effective field model with a non-standard kinetic term at both the background and perturbative levels. We find that these two settings share many important properties, including the result that they both generate scale-invariant scalar perturbations. This shows that some quantum gravity effects of the very early universe may be mimicked by effective field models.

  19. Keeping Energy Savings in the LOOP: Mesa Lane Partners Case Study

    SciTech Connect (OSTI)

    2013-03-01

    Mesa Lane Partners (MLP) partnered with the U.S. Department of Energy (DOE) to develop and implement solutions to a build a new, low-energy mixed-use building that consumes at least 50% less energy than requirements set by Energy Standard 90.1-2007 of the American Society of Heating, Refrigerating, and Air-conditioning Engineers (ASHRAE), the American National Standards Institute (ANSI), and the Illuminating Engineering Society of America (IESNA), as part of DOEs Commercial Building Partnerships (CBP) Program. Lawrence Berkeley National Laboratory (LBNL) provided technical expertise in support of this DOE program. The privately developed 46,000-square-foot LOOP project, which is intended to provide affordable off-campus student housing in an underserved community next to University of California at Santa Barbara, will contain more than 7,000 square feet of retail space, a roof deck, an event space, a gym, and 48 apartments. The project developer, MLP, is aiming to exceed CBP requirement, targeting energy consumption that is at least 65% less than that required by the standard. If the LOOP meets this goal, it is expected to achieve Leadership in Energy and Environmental Design (LEED) Gold certification.

  20. Non-local order in Mott insulators, duality and Wilson loops

    SciTech Connect (OSTI)

    Rath, Steffen Patrick; Simeth, Wolfgang; Endres, Manuel; Zwerger, Wilhelm

    2013-07-15

    It is shown that the Mott insulating and superfluid phases of bosons in an optical lattice may be distinguished by a non-local parity order parameter which is directly accessible via single site resolution imaging. In one dimension, the lattice Bose model is dual to a classical interface roughening problem. We use known exact results from the latter to prove that the parity order parameter exhibits long range order in the Mott insulating phase, consistent with recent experiments by Endres et al. [M. Endres, M. Cheneau, T. Fukuhara, C. Weitenberg, P. Schau, C. Gross, L. Mazza, M.C. Bauls, L. Pollet, I. Bloch, et al., Science 334 (2011) 200]. In two spatial dimensions, the parity order parameter can be expressed in terms of an equal time Wilson loop of a non-trivial U(1) gauge theory in 2+1 dimensions which exhibits a transition between a Coulomb and a confining phase. The negative logarithm of the parity order parameter obeys a perimeter law in the Mott insulator and is enhanced by a logarithmic factor in the superfluid. -- Highlights: Number statistics of cold atoms in optical lattices show non-local correlations. These correlations are measurable via single site resolution imaging. Incompressible phases exhibit an area law in particle number fluctuations. This leads to long-range parity order of Mott-insulators in one dimension. Parity order in 2d is connected with a Wilson-loop in a lattice gauge theory.

  1. BUOYANT MAGNETIC LOOPS IN A GLOBAL DYNAMO SIMULATION OF A YOUNG SUN

    SciTech Connect (OSTI)

    Nelson, Nicholas J.; Toomre, Juri; Brown, Benjamin P.; Brun, Allan Sacha

    2011-10-01

    The current dynamo paradigm for the Sun and Sun-like stars places the generation site for strong toroidal magnetic structures deep in the solar interior. Sunspots and starspots on Sun-like stars are believed to arise when sections of these magnetic structures become buoyantly unstable and rise from the deep interior to the photosphere. Here, we present the first three-dimensional global magnetohydrodynamic (MHD) simulation in which turbulent convection, stratification, and rotation combine to yield a dynamo that self-consistently generates buoyant magnetic loops. We simulate stellar convection and dynamo action in a spherical shell with solar stratification, but rotating three times faster than the current solar rate. Strong wreaths of toroidal magnetic field are realized by dynamo action in the convection zone. By turning to a dynamic Smagorinsky model for subgrid-scale turbulence, we here attain considerably reduced diffusion in our simulation. This permits the regions of strongest magnetic field in these wreaths to rise toward the top of the convection zone via a combination of magnetic buoyancy instabilities and advection by convective giant cells. Such a global simulation yielding buoyant loops represents a significant step forward in combining numerical models of dynamo action and flux emergence.

  2. Wide tracking range, auto ranging, low jitter phase lock loop for swept and fixed frequency systems

    DOE Patents [OSTI]

    Kerner, Thomas M. (Manorville, NY)

    2001-01-01

    The present invention provides a wide tracking range phase locked loop (PLL) circuit that achieves minimal jitter in a recovered clock signal, regardless of the source of the jitter (i.e. whether it is in the source or the transmission media). The present invention PLL has automatic harmonic lockout detection circuitry via a novel lock and seek control logic in electrical communication with a programmable frequency discriminator and a code balance detector. (The frequency discriminator enables preset of a frequency window of upper and lower frequency limits to derive a programmable range within which signal acquisition is effected. The discriminator works in combination with the code balance detector circuit to minimize the sensitivity of the PLL circuit to random data in the data stream). In addition, the combination of a differential loop integrator with the lock and seek control logic obviates a code preamble and guarantees signal acquisition without harmonic lockup. An adaptive cable equalizer is desirably used in combination with the present invention PLL to recover encoded transmissions containing a clock and/or data. The equalizer automatically adapts to equalize short haul cable lengths of coaxial and twisted pair cables or wires and provides superior jitter performance itself. The combination of the equalizer with the present invention PLL is desirable in that such combination permits the use of short haul wires without significant jitter.

  3. Waste Heat Recovery from the Advanced Test Reactor Secondary Coolant Loop

    SciTech Connect (OSTI)

    Donna Post Guillen

    2012-11-01

    This study investigated the feasibility of using a waste heat recovery system (WHRS) to recover heat from the Advanced Test Reactor (ATR) secondary coolant system (SCS). This heat would be used to preheat air for space heating of the reactor building, thus reducing energy consumption, carbon footprint, and energy costs. Currently, the waste heat from the reactor is rejected to the atmosphere via a four-cell, induced-draft cooling tower. Potential energy and cost savings are 929 kW and $285K/yr. The WHRS would extract a tertiary coolant stream from the SCS loop and pump it to a new plate and frame heat exchanger, from which the heat would be transferred to a glycol loop for preheating outdoor air supplied to the heating and ventilation system. The use of glycol was proposed to avoid the freezing issues that plagued and ultimately caused the failure of a WHRS installed at the ATR in the 1980s. This study assessed the potential installation of a new WHRS for technical, logistical, and economic feasibility.

  4. Verification of coronal loop diagnostics using realistic three-dimensional hydrodynamic models

    SciTech Connect (OSTI)

    Winebarger, Amy R.; Lionello, Roberto; Linker, Jon A.; Miki?, Zoran; Mok, Yung E-mail: lionel@predsci.com E-mail: mikicz@predsci.com

    2014-11-10

    Many different techniques have been used to characterize the plasma in the solar corona: density-sensitive spectral line ratios are used to infer the density, the evolution of coronal structures in different passbands is used to infer the temperature evolution, and the simultaneous intensities measured in multiple passbands are used to determine the emission measure distributions. All these analysis techniques assume that the intensity of the structures can be isolated through background subtraction. In this paper, we use simulated observations from a three-dimensional hydrodynamic simulation of a coronal active region to verify these diagnostics. The density and temperature from the simulation are used to generate images in several passbands and spectral lines. We identify loop structures in the simulated images and calculate the background. We then determine the density, temperature, and emission measure distribution as a function of time from the observations and compare these with the true temperature and density of the loop. We find that the overall characteristics of the temperature, density, and emission measure are recovered by the analysis methods, but the details are not. For instance, the emission measure curves calculated from the simulated observations are much broader than the true emission measure distribution, though the average temperature evolution is similar. These differences are due, in part, to a limitation of the analysis methods, but also to inadequate background subtraction.

  5. Close-packed-array (CPA) thermoelectric module development status

    SciTech Connect (OSTI)

    Brittain, W.M. )

    1991-01-05

    Prior effort on the U.S. Department of Energy-sponsored Special Applications Radioisotope Thermoelectric Generator (RTG) Technology Program and Two-Watt RTG Program has focused on terrestrial applications where the RTG will be exposed to relatively low temperature thermal environments (subsea). Thus, effort has been oriented towards design optimization at cold junction temperatures in the 10 to 93 {degree}C (50 to 200 {degree}F) range. However, for other more severe design environments (such as space applications where a high heat rejection radiator temperature in the 177 to 204 {degree}C (350 to 400 {degree}F) range is required to minimize RTG size and weight, and high g shock/vibration capability is necessary) a modified thermoelectric module design is dictated. In order to minimize the RTG system size and weight, and to increase the mechanical strength of the thermoelectric module to withstand increased dynamic loads, a close-packed-array (CPA) module configuration is desirable. The monolithic nature of such a module generally results in greater shear and compression load capability than free-standing individual couples. A CPA module is especially attractive for terrestrial and space applications where severe structural loads will be imposed such as airborne deployment or planetary landers and penetrators.

  6. Effects of cooling time on a closed LWR fuel cycle

    SciTech Connect (OSTI)

    Arnold, R. P.; Forsberg, C. W.; Shwageraus, E.

    2012-07-01

    In this study, the effects of cooling time prior to reprocessing spent LWR fuel has on the reactor physics characteristics of a PWR fully loaded with homogeneously mixed U-Pu or U-TRU oxide (MOX) fuel is examined. A reactor physics analysis was completed using the CASM04e code. A void reactivity feedback coefficient analysis was also completed for an infinite lattice of fresh fuel assemblies. Some useful conclusions can be made regarding the effect that cooling time prior to reprocessing spent LWR fuel has on a closed homogeneous MOX fuel cycle. The computational analysis shows that it is more neutronically efficient to reprocess cooled spent fuel into homogeneous MOX fuel rods earlier rather than later as the fissile fuel content decreases with time. Also, the number of spent fuel rods needed to fabricate one MOX fuel rod increases as cooling time increases. In the case of TRU MOX fuel, with time, there is an economic tradeoff between fuel handling difficulty and higher throughput of fuel to be reprocessed. The void coefficient analysis shows that the void coefficient becomes progressively more restrictive on fuel Pu content with increasing spent fuel cooling time before reprocessing. (authors)

  7. SDO/AIA AND HINODE/EIS OBSERVATIONS OF INTERACTION BETWEEN AN EUV WAVE AND ACTIVE REGION LOOPS

    SciTech Connect (OSTI)

    Yang, Liheng; Zhang, Jun; Li, Ting; Liu, Wei; Shen, Yuandeng E-mail: zjun@bao.ac.cn

    2013-09-20

    We present detailed analysis of an extreme-ultraviolet (EUV) wave and its interaction with active region (AR) loops observed by the Solar Dynamics Observatory/Atmospheric Imaging Assembly and the Hinode EUV Imaging Spectrometer (EIS). This wave was initiated from AR 11261 on 2011 August 4 and propagated at velocities of 430-910 km s{sup 1}. It was observed to traverse another AR and cross over a filament channel on its path. The EUV wave perturbed neighboring AR loops and excited a disturbance that propagated toward the footpoints of these loops. EIS observations of AR loops revealed that at the time of the wave transit, the original redshift increased by about 3 km s{sup 1}, while the original blueshift decreased slightly. After the wave transit, these changes were reversed. When the EUV wave arrived at the boundary of a polar coronal hole, two reflected waves were successively produced and part of them propagated above the solar limb. The first reflected wave above the solar limb encountered a large-scale loop system on its path, and a secondary wave rapidly emerged 144 Mm ahead of it at a higher speed. These findings can be explained in the framework of a fast-mode magnetosonic wave interpretation for EUV waves, in which observed EUV waves are generated by expanding coronal mass ejections.

  8. UNDERSTANDING THE EVOLUTION OF CLOSE BINARY SYSTEMS WITH RADIO PULSARS

    SciTech Connect (OSTI)

    Benvenuto, O. G.; De Vito, M. A.

    2014-05-01

    We calculate the evolution of close binary systems (CBSs) formed by a neutron star (behaving as a radio pulsar) and a normal donor star, which evolve either to a helium white dwarf (HeWD) or to ultra-short orbital period systems. We consider X-ray irradiation feedback and evaporation due to radio pulsar irradiation. We show that irradiation feedback leads to cyclic mass transfer episodes, allowing CBSs to be observed in between episodes as binary radio pulsars under conditions in which standard, non-irradiated models predict the occurrence of a low-mass X-ray binary. This behavior accounts for the existence of a family of eclipsing binary systems known as redbacks. We predict that redback companions should almost fill their Roche lobe, as observed in PSR J1723-2837. This state is also possible for systems evolving with larger orbital periods. Therefore, binary radio pulsars with companion star masses usually interpreted as larger than expected to produce HeWDs may also result in such quasi-Roche lobe overflow states, rather than hosting a carbon-oxygen WD. We found that CBSs with initial orbital periods of P{sub i} < 1day evolve into redbacks. Some of them produce low-mass HeWDs, and a subgroup with shorter P{sub i} becomes black widows (BWs). Thus, BWs descend from redbacks, although not all redbacks evolve into BWs. There is mounting observational evidence favoring BW pulsars to be very massive (? 2 M {sub ?}). As they should be redback descendants, redback pulsars should also be very massive, since most of the mass is transferred before this stage.

  9. Value Engineering Study for Closing Waste Packages Containing TAD Canisters

    SciTech Connect (OSTI)

    Colleen Shelton-Davis

    2005-11-01

    The Office of Civilian Radioactive Waste Management announced their intention to have the commercial utilities package spent nuclear fuel in shielded, transportable, ageable, and disposable containers prior to shipment to the Yucca Mountain repository. This will change the conditions used as a basis for the design of the waste package closure system. The environment is now expected to be a low radiation, low contamination area. A value engineering study was completed to evaluate possible modifications to the existing closure system using the revised requirements. Four alternatives were identified and evaluated against a set of weighted criteria. The alternatives are (1) a radiation-hardened, remote automated system (the current baseline design); (2) a nonradiation-hardened, remote automated system (with personnel intervention if necessary); (3) a nonradiation-hardened, semi-automated system with personnel access for routine manual operations; and (4) a nonradiation-hardened, fully manual system with full-time personnel access. Based on the study, the recommended design is Alternative 2, a nonradiation-hardened, remote automated system. It is less expensive and less complex than the current baseline system, because nonradiation-hardened equipment can be used and some contamination control equipment is no longer needed. In addition, the inclusion of remote automation ensures throughput requirements are met, provides a more reliable process, and provides greater protection for employees from industrial accidents and radiation exposure than the semi-automated or manual systems. Other items addressed during the value engineering study as requested by OCRWM include a comparison to industry canister closure systems and corresponding lessons learned; consideration of closing a transportable, ageable, and disposable canister; and an estimate of the time required to perform a demonstration of the recommended closure system.

  10. Gas/liquid sampler for closed canisters in KW Basin - test report

    SciTech Connect (OSTI)

    Pitkoff, C.C.

    1995-01-23

    Test report for the gas/liquid sampler designed and developed for sampling closed canisters in the KW Basin.

  11. Process for mounting a protection diode on a vertical multijunction photovoltaic cell structure and photovoltaic cells obtained

    SciTech Connect (OSTI)

    Arnould, J.

    1982-09-07

    In a stack of diodes forming a vertical multijunction photovoltaic cell, an inversely connected diode is firmly secured to this stack with possible insertion of a intermediate wafer made from a conducting material.

  12. Formulation and experimental evaluation of closed-form control laws for the rapid maneuvering of reactor neutronic power

    SciTech Connect (OSTI)

    Bernard, J.A. . Nuclear Reactor Lab.)

    1989-09-01

    This report describes both the theoretical development and the experimental evaluation of a novel, robust methodology for the time-optimal adjustment of a reactor's neutronic power under conditions of closed-loop digital control. Central to the approach are the MIT-SNL Period-Generated Minimum Time Control Laws' which determine the rate at which reactivity should be changed in order to cause a reactor's neutronic power to conform to a specified trajectory. Using these laws, reactor power can be safely raised by five to seven orders of magnitude in a few seconds. The MIT-SNL laws were developed to facilitate rapid increases of neutronic power on spacecraft reactors operating in an SDI environment. However, these laws are generic and have other applications including the rapid recovery of research and test reactors subsequent to an unanticipated shutdown, power increases following the achievement of criticality on commercial reactors, power adjustments on commercial reactors so as to minimize thermal stress, and automated startups. The work reported here was performed by the Massachusetts Institute of Technology under contract to the Sandia National Laboratories. Support was also provided by the US Department of Energy's Division of University and Industry Programs. The work described in this report is significant in that a novel solution to the problem of time-optimal control of neutronic power was identified, in that a rigorous description of a reactor's dynamics was derived in that the rate of change of reactivity was recognized as the proper control signal, and in that extensive experimental trials were conducted of these newly developed concepts on actual nuclear reactors. 43 refs., 118 figs., 11 tabs.

  13. Experimental natural convection on vertical surfaces for building integrated photovoltaic (BIPV) applications

    SciTech Connect (OSTI)

    Fossa, M.; Menezo, C.; Leonardi, E.

    2008-02-15

    An experimental study on natural convection in an open channel is carried out in order to investigate the effect of the geometrical configuration of heat sources on the heat transfer behaviour. To this aim, a series of vertical heaters are cooled by natural convection of air flowing between two parallel walls. The objective of the work is to investigate the physical mechanisms which influence the thermal behaviour of a double-skin photovoltaic (PV) facade. This results in a better understanding of the related phenomena and infers useful engineering information for controlling the energy transfers from the environment to the PV surfaces and from the PV surfaces to the building. Furthermore increasing the heat transfer rate from the PV surfaces increases the conversion efficiency of the PV modules since they operate better as their temperature is lower. The test section consists in a double vertical wall, 2 m high, and each wall is constituted by 10 different heating modules 0.2 m high. The heater arrangement simulates, at a reduced scale, the presence of a series of vertical PV modules. The heat flux at the wall ranges from 75 to 200 W/m{sup 2}. In this study, the heated section is 1.6 m in height, preceded by an adiabatic of 0.4 m in height. Different heating configurations are analyzed, including the uniform heating mode and two different configurations of non uniform, alternate heating. The experimental procedure allows the wall surface temperature, local heat transfer coefficient and local and average Nusselt numbers to be inferred. The experimental evidences show that the proper selection of the separating distance and heating configuration can noticeably decrease the surface temperatures and hence enhance the conversion efficiency of PV modules. (author)

  14. Method and apparatus for drilling horizontal holes in geological structures from a vertical bore

    DOE Patents [OSTI]

    Summers, David A. (Rolla, MO); Barker, Clark R. (Rolla, MO); Keith, H. Dean (Rolla, MO)

    1982-01-01

    This invention is directed to a method and apparatus for drilling horizontal holes in geological strata from a vertical position. The geological structures intended to be penetrated in this fashion are coal seams, as for in situ gasification or methane drainage, or in oil-bearing strata for increasing the flow rate from a pre-existing well. Other possible uses for this device might be for use in the leaching of uranium ore from underground deposits or for introducing horizontal channels for water and steam injections.

  15. The Theory of the Kink Mode during the Vertical Disruption Events in Tokamaks

    SciTech Connect (OSTI)

    Leonid E. Zakharov

    2008-01-14

    This paper explains the locked m/n = 1/1 kink mode during the vertical disruption event when the plasma has an electrical contact with the plasma facing conducting surfaces. It is shown that the kink perturbation can be in equilibrium state even with a stable safety factor q > 1, if the halo currents, excited by the kink mode, can flow through the conducting structure. This suggests a new explanation of the so-called sideway forces on the tokamak in-vessel components during the disruption event. __________________________________________________

  16. Vertical borehole design and completion practices used to remove methane gas from mineable coalbeds

    SciTech Connect (OSTI)

    Lambert, S.W.; Trevits, M.A.; Steidl, P.F.

    1980-08-01

    Coalbed gas drainage from the surface in advance of mining has long been the goal of researchers in mine safety. Bureau of Mines efforts to achieve this goal started about 1965 with the initiation of an applied research program designed to test drilling, completion, and production techniques for vertical boreholes. Under this program, over 100 boreholes were completed in 16 different coalbeds. The field methods derived from these tests, together with a basic understanding of the coalbed reservoir, represent an available technology applicable to any gas drainage program whether designed primarily for mine safety or for gas recovery, or both.

  17. Result of MHI 2-Cell Seamless Dumb-Bell Cavity Vertical Test

    SciTech Connect (OSTI)

    Okihira, K.; Hara, H.; Ikeda, N.; Inoue, F.; Sennyu, K.; Geng, Rongli; Rimmer, Robert A.; Kako, E.

    2014-12-01

    MHI have supplied several 9-cell cavities for STF (R&D of ILC project at KEK) and have been considering production method for stable quality and cost reduction, seamless dumb-bell cavity was one of them. We had fabricated a 2 cell seamless dumb-bell cavity for cost reduction and measured RF performance in collaboration with JLab, KEK and MHI. Surface treatment recipe for ILC was applied for MHI 2-cell cavity and vertical test was performed at JLab. The cavity reached Eacc=32.4MV/m after BCP and EP. Details of the result are reported.

  18. Roles of Wind Shear at Different Vertical Levels, Part I: Cloud System Organization and Properties

    SciTech Connect (OSTI)

    Chen, Qian; Fan, Jiwen; Hagos, Samson M.; Gustafson, William I.; Berg, Larry K.

    2015-07-16

    Understanding of critical processes that contribute to the organization of mesoscale convective systems is important for accurate weather forecast and climate prediction. In this study, we investigate the effects of wind shear at different vertical levels on the organization and properties of cloud systems using the Weather Research & Forecasting (WRF) model with a spectral-bin microphysical scheme. The sensitivity experiments are performed by increasing wind shear at the lower (0-5 km), middle (5-10 km), upper (> 10 km) and the entire troposphere, respectively, based on a control run for a mesoscale convective system (MCS) with weak wind shear. We find that increasing wind shear at the both lower and middle vertical levels reduces the domain-accumulated precipitation and the occurrence of heavy rain, while increasing wind shear at the upper levels changes little on precipitation. Although increasing wind shear at the lower-levels is favorable for a more organized quasi-line system which leads to enlarged updraft core area, and enhanced updraft velocities and vertical mass fluxes, the precipitation is still reduced by 18.6% compared with the control run due to stronger rain evaporation induced by the low-level wind shear. Strong wind shear in the middle levels only produces a strong super-cell over a narrow area, leading to 67.3% reduction of precipitation over the domain. By increasing wind shear at the upper levels only, the organization of the convection is not changed much, but the increased cloudiness at the upper-levels leads to stronger surface cooling and then stabilizes the atmosphere and weakens the convection. When strong wind shear exists over the entire vertical profile, a deep dry layer (2-9 km) is produced and convection is severely suppressed. There are fewer very-high (cloud top height (CTH) > 15 km) and very-deep (cloud thickness > 15 km) clouds, and the precipitation is only about 11.8% of the control run. The changes in cloud microphysical properties further explain the reduction of surface rain by strong wind shear especially at the lower- and middle-levels. The insights obtained from this study help us better understand the cloud system organization and provide foundation for better parameterizing organized MCS.

  19. Control of light polarization using optically spin-injected vertical external cavity surface emitting lasers

    SciTech Connect (OSTI)

    Frougier, J. Jaffrs, H.; Deranlot, C.; George, J.-M.; Baili, G.; Dolfi, D.; Alouini, M.; Sagnes, I.; Garnache, A.

    2013-12-16

    We fabricated and characterized an optically pumped (100)-oriented InGaAs/GaAsP multiple quantum well Vertical External Cavity Surface Emitting Laser (VECSEL). The structure is designed to allow the integration of a Metal-Tunnel-Junction ferromagnetic spin-injector for future electrical injection. We report here the control at room temperature of the electromagnetic field polarization using optical spin injection in the active medium of the VECSEL. The switching between two highly circular polarization states had been demonstrated using an M-shaped extended cavity in multi-modes lasing. This result witnesses an efficient spin-injection in the active medium of the LASER.

  20. Method for accurate growth of vertical-cavity surface-emitting lasers

    DOE Patents [OSTI]

    Chalmers, Scott A. (Albuquerque, NM); Killeen, Kevin P. (Albuquerque, NM); Lear, Kevin L. (Albuquerque, NM)

    1995-01-01

    We report a method for accurate growth of vertical-cavity surface-emitting lasers (VCSELs). The method uses a single reflectivity spectrum measurement to determine the structure of the partially completed VCSEL at a critical point of growth. This information, along with the extracted growth rates, allows imprecisions in growth parameters to be compensated for during growth of the remaining structure, which can then be completed with very accurate critical dimensions. Using this method, we can now routinely grow lasing VCSELs with Fabry-Perot cavity resonance wavelengths controlled to within 0.5%.