Powered by Deep Web Technologies
Note: This page contains sample records for the topic "vertical axis turbines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Vertical axis wind turbine  

SciTech Connect (OSTI)

Wind turbines are largely divided into vertical axis wind turbines and propeller (Horizontal axis) wind turbines. The present invention discloses a vertical axis high speed wind turbine provided with a starting and braking control system. This vertical axis wind turbine is formed by having blades of a proper airfoil fitted to respective supporting arms provided radially from a vertical rotary axis by keeping the blade span-wise direction in parallel with the axis and being provided with a low speed control windmill in which the radial position of each operating piece varies with a centrifugal force produced by the rotation of the vertical rotary axis.

Kato, Y.; Seki, K.; Shimizu, Y.

1981-01-27T23:59:59.000Z

2

Vertical axis wind turbine  

SciTech Connect (OSTI)

Wind turbines are largely divided into vertical axis wind turbines and propeller (Horizontal axis) wind turbines. The present invention discloses a vertical axis high speed wind turbine provided with rotational speed control systems. This vertical axis wind turbine is formed by having blades of a proper airfoil fitted to respective supporting arms provided radially from a vertical rotating shaft by keeping the blade span-wise direction in parallel with the shaft and being provided with aerodynamic control elements operating manually or automatically to control the rotational speed of the turbine.

Kato, Y.; Seki, K.; Shimizu, Y.

1981-01-27T23:59:59.000Z

3

Vertical axis wind turbines  

DOE Patents [OSTI]

A vertical axis wind turbine is described. The wind turbine can include a top ring, a middle ring and a lower ring, wherein a plurality of vertical airfoils are disposed between the rings. For example, three vertical airfoils can be attached between the upper ring and the middle ring. In addition, three more vertical airfoils can be attached between the lower ring and the middle ring. When wind contacts the vertically arranged airfoils the rings begin to spin. By connecting the rings to a center pole which spins an alternator, electricity can be generated from wind.

Krivcov, Vladimir (Miass, RU); Krivospitski, Vladimir (Miass, RU); Maksimov, Vasili (Miass, RU); Halstead, Richard (Rohnert Park, CA); Grahov, Jurij (Miass, RU)

2011-03-08T23:59:59.000Z

4

Vertical axis wind turbine acoustics  

E-Print Network [OSTI]

Vertical Axis Wind Turbine Acoustics Charlie Pearson Corpus Christi College Cambridge University Engineering Department A thesis submitted for the degree of Doctor of Philosophy September 2013 Declaration Described in this dissertation is work... quickly to changing wind conditions, small- scale vertical axis wind turbines (VAWTs) have been proposed as an efficient solution for deployment in built up areas, where the wind is more gusty in nature. If VAWTs are erected in built up areas...

Pearson, Charlie

2014-04-08T23:59:59.000Z

5

Vertical axis wind turbine airfoil  

DOE Patents [OSTI]

A vertical axis wind turbine airfoil is described. The wind turbine airfoil can include a leading edge, a trailing edge, an upper curved surface, a lower curved surface, and a centerline running between the upper surface and the lower surface and from the leading edge to the trailing edge. The airfoil can be configured so that the distance between the centerline and the upper surface is the same as the distance between the centerline and the lower surface at all points along the length of the airfoil. A plurality of such airfoils can be included in a vertical axis wind turbine. These airfoils can be vertically disposed and can rotate about a vertical axis.

Krivcov, Vladimir; Krivospitski, Vladimir; Maksimov, Vasili; Halstead, Richard; Grahov, Jurij Vasiljevich

2012-12-18T23:59:59.000Z

6

Vertical Axis Wind Turbine Foundation parameter study  

SciTech Connect (OSTI)

The dynamic failure criterion governing the dimensions of prototype Vertical Axis Wind Turbine Foundations is treated as a variable parameter. The resulting change in foundation dimensions and costs is examined.

Lodde, P.F.

1980-07-01T23:59:59.000Z

7

A low order model for vertical axis wind turbines  

E-Print Network [OSTI]

A new computational model for initial sizing and performance prediction of vertical axis wind turbines

Drela, Mark

8

Sandia National Laboratories: Sandia Vertical-Axis Wind-Turbine...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ClimateECEnergyComputational Modeling & SimulationSandia Vertical-Axis Wind-Turbine Research Presented at Science of Making Torque from Wind Conference Sandia Vertical-Axis...

9

Vertical axis wind turbine control strategy  

SciTech Connect (OSTI)

Early expensive in automatic operation of the Sandia 17-m vertical axis research wind turbine (VAWT) has demonstrated the need for a systematic study of control algorithms. To this end, a computer model has been developed that uses actual wind time series and turbine performance data to calculate the power produced by the Sandia 17-m VAWT operating in automatic control. The model has been used to investigate the influence of starting algorithms on annual energy production. The results indicate that, depending on turbine and local wind characteristics, a bad choice of a control algorithm can significantly reduce overall energy production. The model can be used to select control algorithms and threshold parameters that maximize long-term energy production. An attempt has been made to generalize these results from local site and turbine characteristics to obtain general guidelines for control algorithm design.

McNerney, G.M.

1981-08-01T23:59:59.000Z

10

Vertical axis wind turbine with continuous blade angle adjustment  

E-Print Network [OSTI]

The author presents a concept for a vertical axis wind turbine that utilizes each blade's entire rotational cycle for power generation. Each blade has its own vertical axis of rotation and is constrained to rotate at the ...

Weiss, Samuel Bruce

2010-01-01T23:59:59.000Z

11

IntroductionIntroduction The use of small scale vertical axis wind turbinesThe use of small scale vertical axis wind turbines  

E-Print Network [OSTI]

IntroductionIntroduction The use of small scale vertical axis wind turbinesThe use of small scale vertical axis wind turbines (VAWT) is being studied at McMaster University using(VAWT) is being studied at McMaster University using a prototype wind turbine provided bya prototype wind turbine provided

Tullis, Stephen

12

Effect of Dynamic Stall on the Aerodynamics of Vertical-Axis Wind Turbines  

E-Print Network [OSTI]

Effect of Dynamic Stall on the Aerodynamics of Vertical-Axis Wind Turbines Frank Scheurich of the aerodynamic performance of vertical-axis wind turbines pose a significant challenge for computational fluid of the aerodynamics of a vertical- axis wind turbine that consists of three curved rotor blades that are twisted

McCalley, James D.

13

Experimental investigation of the performance of a diffuser-augmented vertical axis wind turbine  

E-Print Network [OSTI]

Experimental investigation of the performance of a diffuser- augmented vertical axis wind turbine Experimental investigation of the performance of a diffuser-augmented vertical axis wind turbine by Arash The performance of a vertical axis wind turbine with and without a diffuser was studied using direct force

Victoria, University of

14

Torque ripple in a Darrieus, vertical axis wind turbine  

SciTech Connect (OSTI)

Interaction between a steady wind and a rotating, Darrieus, vertical axis wind turbine produces time periodic aerodynamic loads which cause time dependent torque variations, referred to as torque ripple, to occur in the mechanical link between the turbine and the electrical generator. There is concern for the effect of torque ripple upon fatigue life of drive train components and upon power quality. An analytical solution characterizing the phenomenon of torque ripple has been obtained which is based upon a Fourier expansion of the time dependent features of the problem. Numerical results for torque ripple, some experimental data, determination of acceptable levels and methods of controlling it, are presented and discussed.

Reuter, R.C. Jr.

1980-09-01T23:59:59.000Z

15

Vertical-axis wind turbines -- The current status of an old technology  

SciTech Connect (OSTI)

Vertical-axis wind turbine technology is not well understood, even though the earliest wind machines rotated about a vertical axis. The operating environment of a vertical-axis wind turbine is quite complex, but detailed analysis capabilities have been developed and verified over the last 30 years. Although vertical-axis technology has not been widely commercialized, it exhibits both advantages and disadvantages compared to horizontal-axis technology, and in some applications, it appears to offer significant advantages.

Berg, D.E.

1996-12-31T23:59:59.000Z

16

WIND-TUNNEL STUDY ON AERODYNAMIC PERFORMANCE OF SMALL VERTICAL-AXIS WIND TURBINES  

E-Print Network [OSTI]

1 WIND-TUNNEL STUDY ON AERODYNAMIC PERFORMANCE OF SMALL VERTICAL-AXIS WIND TURBINES J. J. Miau*1 were carried out to study the aerodynamic performance of three vertical axis wind turbines (VAWTs. On the other hand, the characteristics of unsteady flow around the helical wind turbine were studied with a hot

Leu, Tzong-Shyng "Jeremy"

17

Performance Testing of a Small Vertical-Axis Wind Turbine , S. Tullis2  

E-Print Network [OSTI]

Performance Testing of a Small Vertical-Axis Wind Turbine R. Bravo1 , S. Tullis2 , S. Ziada3 of electric production [1]. Although most performance testing for small-scale wind turbines is conducted vertical-axis wind turbines (VAWT) in urban settings, full-scale wind tunnel testing of a prototype 3.5 k

Tullis, Stephen

18

Response of a Vertical Axis Wind Turbine to Time Varying Wind Conditions found within the Urban  

E-Print Network [OSTI]

Response of a Vertical Axis Wind Turbine to Time Varying Wind Conditions found within the Urban, 2010 PP 389­401 389 ABSTRACT Experimental testing of a vertical axis wind turbine within the urban of the turbine. Temporal variation of the wind with respect to the direction and velocity fluctuations

Tullis, Stephen

19

Blade Offset and Pitch Effects on a High Solidity Vertical Axis Wind Turbine  

E-Print Network [OSTI]

Blade Offset and Pitch Effects on a High Solidity Vertical Axis Wind Turbine Andrzej J. Fiedler ABSTRACT A high solidity, small scale, 2.5m diameter by 3m high Vertical Axis Wind Turbine (VAWT in an open-air wind tunnel facility to investigate the effects of preset toe-in and toe-out turbine blade

Tullis, Stephen

20

CFD Simulation of Dynamic Thrust and Radial Forces on a Vertical Axis Wind Turbine Blade  

E-Print Network [OSTI]

CFD Simulation of Dynamic Thrust and Radial Forces on a Vertical Axis Wind Turbine Blade K. Mc vibration source of a small scale vertical axis wind turbine. The dynamic loading on the blades of the turbine, as they rotate about the central shaft and travel through a range of relative angles of attack

Tullis, Stephen

Note: This page contains sample records for the topic "vertical axis turbines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Vibration Analysis of a Vertical Axis Wind Turbine Blade , S.Tullis 2  

E-Print Network [OSTI]

Vibration Analysis of a Vertical Axis Wind Turbine Blade K. Mc Laren 1 , S.Tullis 2 and S.Ziada 3 1 vibration source of a small-scale vertical axis wind turbine currently undergoing field-testing. The turbine at a blade-tip speed ratio (the ratio of the blade rotational velocity to the ambient wind velocity) of 1

Tullis, Stephen

22

Coriolis Effect on Dynamic Stall in a Vertical Axis Wind Turbine at Moderate Reynolds Number  

E-Print Network [OSTI]

axis wind turbines (VAWT) offer several advantages over horizontal axis wind turbines (HAWT), namely to yaw wind direction (because they are omnidirectional), and their increased power output in skewed flowCoriolis Effect on Dynamic Stall in a Vertical Axis Wind Turbine at Moderate Reynolds Number Hsieh

Colonius, Tim

23

A Low Order Model for Vertical Axis Wind Turbines Isaac M. Asher  

E-Print Network [OSTI]

A Low Order Model for Vertical Axis Wind Turbines Isaac M. Asher , Mark Drela and Jaime Peraire and performance prediction of vertical axis wind turbines is presented. The model uses a 2D hybrid dynamic vortex taken into account. Fast convergence is obtained for a large range of solidity and tip speed ratio

Peraire, Jaime

24

Multi-Body Unsteady Aerodynamics in 2D Applied to aVertical-Axis Wind Turbine Using a Vortex Method.  

E-Print Network [OSTI]

?? Vertical axis wind turbines (VAWT) have many advantages over traditional Horizontalaxis wind turbines (HAWT).One of the more severe problem of VAWTs are the complicated… (more)

Österberg, David

2010-01-01T23:59:59.000Z

25

Design and Test of a Vertical-Axis Wind Turbine with Pitch Control J. J. Miau1,a  

E-Print Network [OSTI]

Design and Test of a Vertical-Axis Wind Turbine with Pitch Control J. J. Miau1,a , S. Y. Liang2 , R, USA a jjmiau@mail.ncku.edu.tw Keywords: vertical-axis wind turbine, pitch control, wind of a small vertical-axis wind turbine. Benefits gained can be shown by the experimental and numerical results

Leu, Tzong-Shyng "Jeremy"

26

FSI Modeling of Vertical-Axis Wind Turbines Y. Bazilevs, A. Korobenko, X. Deng, and J. Yan  

E-Print Network [OSTI]

FSI Modeling of Vertical-Axis Wind Turbines Y. Bazilevs, A. Korobenko, X. Deng, and J. Yan-dependent aerodynamics and fluid-structure interaction (FSI) simula- tions of a Darrieus-type vertical-axis wind turbine compared to the vertical-axis wind turbine (VAWT) designs. However, smaller-size VAWTs are more suitable

Dabiri, John O.

27

Wind Tunnel Blockage Corrections: An Application to Vertical-Axis Wind Turbines.  

E-Print Network [OSTI]

?? An investigation into wake and solid blockage effects of Vertical-Axis Wind Turbines (VAWTs) in closed test-section wind tunnel testing is described. Static wall pressures… (more)

Ross, Ian Jonathan

2010-01-01T23:59:59.000Z

28

Multi-Fidelity Uncertainty Quantification: Application to a Vertical Axis Wind Turbine Under an  

E-Print Network [OSTI]

. Introduction Quantifying the response of a wind turbine to an extreme wind gust is an important designMulti-Fidelity Uncertainty Quantification: Application to a Vertical Axis Wind Turbine Under an Extreme Gust A. Santiago Padr´on , Juan J. Alonso and Francisco Palacios Stanford University, Stanford, CA

Alonso, Juan J.

29

Fish schooling as a basis for vertical axis wind turbine farm design  

E-Print Network [OSTI]

Most wind farms consist of horizontal axis wind turbines (HAWTs) due to the high power coefficient (mechanical power output divided by the power of the free-stream air through the turbine cross-sectional area) of an isolated turbine. However when in close proximity to neighbouring turbines, HAWTs suffer from a reduced power coefficient. In contrast, previous research on vertical axis wind turbines (VAWTs) suggests that closely-spaced VAWTs may experience only small decreases (or even increases) in an individual turbine's power coefficient when placed in close proximity to neighbours, thus yielding much higher power outputs for a given area of land. A potential flow model of inter-VAWT interactions is developed to investigate the effect of changes in VAWT spatial arrangement on the array performance coefficient, which compares the expected average power coefficient of turbines in an array to a spatially-isolated turbine. A geometric arrangement based on the configuration of shed vortices in the wake of schooli...

Whittlesey, Robert W; Dabiri, John O

2010-01-01T23:59:59.000Z

30

Test plan for the 34 meter vertical axis wind turbine test bed located at Bushland, Texas  

SciTech Connect (OSTI)

A plan is presented for the testing and evaluation of a new 500 kw vertical axis wind turbine test bed. The plan starts with the initial measurements made during construction, proceeds through evaluation of the design, the development of control methods, and finally to the test bed phase where new concepts are evaluated and in-depth studies are performed.

Stephenson, W.A.

1986-12-01T23:59:59.000Z

31

Three-dimensional Numerical Analysis on Blade Response of Vertical Axis Tidal Current Turbine Under Operational Condition  

SciTech Connect (OSTI)

Tidal power as a large-scale renewable source of energy has been receiving significant attention recently because of its advantages over the wind and other renewal energy sources. The technology used to harvest energy from tidal current is called a tidal current turbine. Though some of the principles of wind turbine design are applicable to tidal current turbines, the design of latter ones need additional considerations like cavitation damage, corrosion etc. for the long-term reliability of such turbines. Depending up on the orientation of axis, tidal current turbines can be classified as vertical axis turbines or horizontal axis turbines. Existing studies on the vertical axis tidal current turbine focus more on the hydrodynamic aspects of the turbine rather than the structural aspects. This paper summarizes our recent efforts to study the integrated hydrodynamic and structural aspects of the vertical axis tidal current turbines. After reviewing existing methods in modeling tidal current turbines, we developed a hybrid approach that combines discrete vortex method -finite element method that can simulate the integrated hydrodynamic and structural response of a vertical axis turbine. This hybrid method was initially employed to analyze a typical three-blade vertical axis turbine. The power coefficient was used to evaluate the hydrodynamic performance, and critical deflection was considered to evaluate the structural reliability. A sensitivity analysis was also conducted with various turbine height-to-radius ratios. The results indicate that both the power output and failure probability increase with the turbine height, suggesting a necessity for optimal design. An attempt to optimize a 3-blade vertical axis turbine design with hybrid method yielded a ratio of turbine height to radius (H/R) about 3.0 for reliable maximum power output.

Li, Ye; Karri, Naveen K.; Wang, Qi

2014-04-30T23:59:59.000Z

32

Sandia National Laboratories: vertical-axis wind turbine research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systems controller systems Scaled Wind Farm Technologyvertical-axis wind

33

Medium-solidity Vertical Axis Wind Turbines for use in Urban Environments S. Tullis, A. Fiedler, K. McLaren, S. Ziada  

E-Print Network [OSTI]

Medium-solidity Vertical Axis Wind Turbines for use in Urban Environments S. Tullis, A. Fiedler, K Vertical axis wind turbines are currently experiencing a renewed interest in small- scale applications loadings as the turbine rotates. One technique to reduce vibration is to reduce the turbine rotational

Tullis, Stephen

34

Simulation of winds as seen by a rotating vertical axis wind turbine blade  

SciTech Connect (OSTI)

The objective of this report is to provide turbulent wind analyses relevant to the design and testing of Vertical Axis Wind Turbines (VAWT). A technique was developed for utilizing high-speed turbulence wind data from a line of seven anemometers at a single level to simulate the wind seen by a rotating VAWT blade. Twelve data cases, representing a range of wind speeds and stability classes, were selected from the large volume of data available from the Clayton, New Mexico, Vertical Plane Array (VPA) project. Simulations were run of the rotationally sampled wind speed relative to the earth, as well as the tangential and radial wind speeds, which are relative to the rotating wind turbine blade. Spectral analysis is used to compare and assess wind simulations from the different wind regimes, as well as from alternate wind measurement techniques. The variance in the wind speed at frequencies at or above the blade rotation rate is computed for all cases, and is used to quantitatively compare the VAWT simulations with Horizontal Axis Wind Turbine (HAWT) simulations. Qualitative comparisons are also made with direct wind measurements from a VAWT blade.

George, R.L.

1984-02-01T23:59:59.000Z

35

Sandia National Laboratories: Innovative Offshore Vertical-Axis...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

WindInnovative Offshore Vertical-Axis Wind Turbine Rotors Innovative Offshore Vertical-Axis Wind Turbine Rotors This project seeks to advance large offshore vertical-axis wind...

36

Order-of-magnitude enhancement of wind farm power density via counter-rotating vertical-axis wind turbine arrays  

E-Print Network [OSTI]

Modern wind farms require significant land resources to separate each wind turbine from the adjacent turbine wakes. These aerodynamic constraints limit the amount of power that can be extracted from a given wind farm footprint. We conducted full-scale field tests of vertical-axis wind turbines in counter-rotating configurations under natural wind conditions. Whereas wind farms consisting of propeller-style turbines produce 2 to 3 watts of power per square meter of land area, these field tests indicate that power densities approaching 100 W m^-2 can be achieved by arranging vertical-axis wind turbines in layouts that enable them to extract energy from adjacent wakes. In addition, we calculated that the global wind resource available to 10-m tall turbines based on the present approach is approximately 225 trillion watts (TW), which significantly exceeds the global wind resource available to 80-m tall, propeller-style wind turbines, approximately 75 TW. This improvement is due to the closer spacing that can be a...

Dabiri, John O

2010-01-01T23:59:59.000Z

37

User's manual for the vertical axis wind turbine performance computer code darter  

SciTech Connect (OSTI)

The computer code DARTER (DARrieus, Turbine, Elemental Reynolds number) is an aerodynamic performance/loads prediction scheme based upon the conservation of momentum principle. It is the latest evolution in a sequence which began with a model developed by Templin of NRC, Canada and progressed through the Sandia National Laboratories-developed SIMOSS (SSImple MOmentum, Single Streamtube) and DART (SARrieus Turbine) to DARTER.

Klimas, P. C.; French, R. E.

1980-05-01T23:59:59.000Z

38

Approach to the fatigue analysis of vertical-axis wind-turbine blades  

SciTech Connect (OSTI)

A cursory analysis of the stress history of wind turbine blades indicates that a single stress level at each wind speed does not adequately describe the blade stress history. A statistical description is required. Blade stress data collected from the DOE/ALCOA Low Cost experimental turbines indicate that the Rayleigh probability density function adequately describes the distribution of vibratory stresses at each wind speed. The Rayleigh probability density function allows the distribution of vibratory stresses to be described by the RMS of the stress vs. time signal. With the RMS stress level described for all wind speeds, the complete stress history of the turbine blades is known. Miner's linear cumulative damage rule is used as a basis for summing the fatigue damage over all operating conditions. An analytical expression is derived to predict blade fatigue life.

Veers, P.S.

1981-09-01T23:59:59.000Z

39

Design of PM generator for avertical axis wind turbine.  

E-Print Network [OSTI]

?? The task in this project is to design a generator for a vertical axis wind turbine withpower rated to 20kW at a wind speed… (more)

Rynkiewicz, Mateusz

2012-01-01T23:59:59.000Z

40

Hydrodynamic and Structural Performance of the Transverse Horizontal Axis Water Turbine  

E-Print Network [OSTI]

power (2) · Vertical axis turbines ­ Blue Energy ­ Polo ­ ... 4 other vertical axis devices · Horizontal of Darrieus vertical axis wind turbine (VAWT) through 90 to lie horizontally across a tidal flow · StretchHydrodynamic and Structural Performance of the Transverse Horizontal Axis Water Turbine Prof. Guy

Gorban, Alexander N.

Note: This page contains sample records for the topic "vertical axis turbines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Aerodynamic characteristics of seven symmetrical airfoil sections through 180-degree angle of attack for use in aerodynamic analysis of vertical axis wind turbines  

SciTech Connect (OSTI)

When work began on the Darrieus vertical axis wind turbine (VAWT) program at Sandia National Laboratories, it was recognized that there was a paucity of symmetrical airfoil data needed to describe the aerodynamics of turbine blades. Curved-bladed Darrieus turbines operate at local Reynolds numbers (Re) and angles of attack (..cap alpha..) seldom encountered in aeronautical applications. This report describes (1) a wind tunnel test series conducted at moderate values of Re in which 0 less than or equal to ..cap alpha.. less than or equal to 180/sup 0/ force and moment data were obtained for four symmetrical blade-candidate airfoil sections (NACA-0009, -0012, -0012H, and -0015), and (2) how an airfoil property synthesizer code can be used to extend the measured properties to arbitrary values of Re (10/sup 4/ less than or equal to Re less than or equal to 10/sup 7/) and to certain other section profiles (NACA-0018, -0021, -0025).

Sheldahl, R E; Klimas, P C

1981-03-01T23:59:59.000Z

42

A Comparison of Platform Options for Deep-water Floating Offshore Vertical Axis Wind Turbines: An Initial Study.  

SciTech Connect (OSTI)

This analysis utilizes a 5 - MW VAWT topside design envelope created by Sandia National Laborator ies to compare floating platform options fo r each turbine in the design space. The platform designs are based on two existing designs, the OC3 Hywind spar - buoy and Principal Power's WindFloat semi - submersible. These designs are scaled using Froude - scaling relationships to determine an appropriately sized spar - buoy and semi - submersible design for each topside. Both the physical size of the required platform as well as mooring configurations are considered. Results are compared with a comparable 5 - MW HAWT in order to identify potential differences in the platform and mooring sizing between the VAWT and HAWT . The study shows that there is potential for cost savings due to reduced platform size requirements for the VAWT.

Bull, Diana L; Fowler, Matthew; Goupee, Andrew

2014-08-01T23:59:59.000Z

43

An experimental and numerical study of wind turbine seismic behavior  

E-Print Network [OSTI]

studied were vertical axis wind turbines, which are nottesting of vertical axis wind turbines (VAWT). For example,vertical axis turbines (VAWTs). Gradually, as the industry matured, most design concepts standardized on horizontal axis wind turbines (

Prowell, I.

2011-01-01T23:59:59.000Z

44

E-Print Network 3.0 - axis wind turbines Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

turbines Search Powered by Explorit Topic List Advanced Search Sample search results for: axis wind turbines...

45

A Simplified Morphing Blade for Horizontal Axis Wind Turbines  

E-Print Network [OSTI]

A Simplified Morphing Blade for Horizontal Axis Wind Turbines Weijun WANG , St´ephane CARO, Fouad salinas@hotmail.com The aim of designing wind turbine blades is to improve the power capture ability by adjusting the twist of the blade's root and tip. To evaluate the performance of wind turbine blades

Recanati, Catherine

46

Control system for a vertical axis windmill  

DOE Patents [OSTI]

A vertical axis windmill having a rotating structure is provided with a series of articulated vertical blades whose positions are controlled to maintain a constant RPM for the rotating structure, when wind speed is sufficient. A microprocessor controller is used to process information on wind speed, wind direction and RPM of the rotating structure to develop an electrical signal for establishing blade position. The preferred embodiment of the invention, when connected to a utility grid, is designed to generate 40 kilowatts of power when exposed to a 20 mile per hour wind. The control system for the windmill includes electrical blade actuators that modulate the blades of the rotating structure. Blade modulation controls the blade angle of attack, which in turn controls the RPM of the rotor. In the preferred embodiment, the microprocessor controller provides the operation logic and control functions. A wind speed sensor provides inputs to start or stop the windmill, and a wind direction sensor is used to keep the blade flip region at 90.degree. and 270.degree. to the wind. The control system is designed to maintain constant rotor RPM when wind speed is between 10 and 40 miles per hour.

Brulle, Robert V. (St. Louis County, MO)

1983-10-18T23:59:59.000Z

47

Yaw dynamics of horizontal axis wind turbines  

SciTech Connect (OSTI)

Designers of a horizontal axis wind turbine yaw mechanism are faced with a difficult decision. They know that if they elect to use a yaw- controlled rotor then the system will suffer increased initial cost and increased inherent maintenance and reliability problems. On the other hand, if they elect to allow the rotor to freely yaw they known they will have to account for unknown and random, though bounded, yaw rates. They will have a higher-risk design to trade-off against the potential for cost savings and reliability improvement. The risk of a yaw-free system could be minimized if methods were available for analyzing and understanding yaw behavior. The complexity of yaw behavior has, until recently, discouraged engineers from developing a complete yaw analysis method. The objectives of this work are to (1) provide a fundamental understanding of free-yaw mechanics and the design concepts most effective at eliminating yaw problems, and (2) provide tested design tools and guidelines for use by free-yaw wind systems manufacturers. The emphasis is on developing practical and sufficiently accurate design methods.

Hansen, A.C. (Utah Univ., Salt Lake City, UT (United States))

1992-05-01T23:59:59.000Z

48

Potential order-of-magnitude enhancement of wind farm power density via counter-rotating vertical-axis wind  

E-Print Network [OSTI]

Potential order-of-magnitude enhancement of wind farm power density via counter-rotating vertical an alternative approach to wind farming that has the potential to concurrently reduce the cost, size-axis wind turbine arrays John O. Dabiria) Graduate Aeronautical Laboratories and Bioengineering, California

Dabiri, John O.

49

E-Print Network 3.0 - aerodynamic accessorieswind turbines Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of small scale vertical axis wind turbines Summary: IntroductionIntroduction The use of small scale vertical axis wind turbinesThe use of small scale... vertical axis wind...

50

Dual-axis resonance testing of wind turbine blades  

DOE Patents [OSTI]

An apparatus (100) for fatigue testing test articles (104) including wind turbine blades. The apparatus (100) includes a test stand (110) that rigidly supports an end (106) of the test article (104). An actuator assembly (120) is attached to the test article (104) and is adapted for substantially concurrently imparting first and second forcing functions in first and second directions on the test article (104), with the first and second directions being perpendicular to a longitudinal axis. A controller (130) transmits first and second sets of displacement signals (160, 164) to the actuator assembly (120) at two resonant frequencies of the test system (104). The displacement signals (160, 164) initiate the actuator assembly (120) to impart the forcing loads to concurrently oscillate the test article (104) in the first and second directions. With turbine blades, the blades (104) are resonant tested concurrently for fatigue in the flapwise and edgewise directions.

Hughes, Scott; Musial, Walter; White, Darris

2014-01-07T23:59:59.000Z

51

axis wind turbine: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to note that these views Firestone, Jeremy 65 WIND TURBINE SITING IN AN URBAN ENVIRONMENT: THE HULL, MA 660 KW TURBINE Renewable Energy Websites Summary: 1 WIND TURBINE...

52

Development of a Rig and Testing Procedures for the Experimental Investigation of Horizontal Axis Kinetic Turbines  

E-Print Network [OSTI]

Kinetic Turbines by Catalina Lartiga B.Sc., Catholic University of Chile, 2001 A Thesis Submitted Turbines by Catalina Lartiga B.Sc., Catholic University of Chile, 2001 Supervisory Committee Dr. Curran system to characterize the non-dimensional performance coefficients of hor- izontal axis kinetic turbines

Victoria, University of

53

Control system for a vertical-axis windmill  

DOE Patents [OSTI]

A vertical-axis windmill having a rotating structure is provided with a series of articulated vertical blades whose positions are controlled to maintain a constant RPM for the rotating structure, when wind speed is sufficient. A microprocessor controller is used to process information on wind speed, wind direction and RPM of the rotating structure to develop an electrical signal for establishing blade position. The preferred embodiment of the invention, when connected to a utility grid, is designed to generate 40 kilowatts of power when exposed to a 20 mile per hour wind. The control system for the windmill includes electrical blade actuators that modulate the blades of the rotating structure. Blade modulation controls the blade angle of attack, which in turn controls the RPM of the rotor. In the preferred embodiment, the microprocessor controller provides the operation logic and control functions. A wind speed sensor provides inputs to start or stop the windmill, and a wind direction sensor is used to keep the blade flip region at 90 and 270/sup 0/ to the wind. The control system is designed to maintain constant rotor RPM when wind speed is between 10 and 40 miles per hour.

Brulle, R.V.

1981-09-03T23:59:59.000Z

54

E-Print Network 3.0 - axial turbine cascade Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

High Solidity Vertical Axis Wind Turbine Andrzej J. Fiedler... ABSTRACT A high solidity, small scale, 2.5m diameter by 3m high Vertical Axis Wind Turbine (VAWT Source: Tullis,...

55

DIEL MOVEMENT AND VERTICAL DISTRIBUTION OF JUVENILE ANADROMOUS FISH IN TURBINE INTAKES  

E-Print Network [OSTI]

DIEL MOVEMENT AND VERTICAL DISTRIBUTION OF JUVENILE ANADROMOUS FISH IN TURBINE INTAKES BY CLIFFORD, WASH. 98102 ABSTRACT The behavior of fingerling salmonids was measured in turbine intakes of The Dalles in Kaplan turbines. At The Dalles Dam, diel movement and vertical distribution were sampled at both ends

56

Hydrodynamic analysis of a vertical axis tidal current turbine   

E-Print Network [OSTI]

Tidal currents can be used as a predictable source of sustainable energy, and have the potential to make a useful contribution to the energy needs of the UK and other countries with such a resource. One of the technologies ...

Gretton, Gareth I.

2009-01-01T23:59:59.000Z

57

Spin-stabilized magnetic levitation without vertical axis of rotation  

DOE Patents [OSTI]

The symmetry properties of a magnetic levitation arrangement are exploited to produce spin-stabilized magnetic levitation without aligning the rotational axis of the rotor with the direction of the force of gravity. The rotation of the rotor stabilizes perturbations directed parallel to the rotational axis.

Romero, Louis (Albuquerque, NM); Christenson, Todd (Albuquerque, NM); Aaronson, Gene (Albuquerque, NM)

2009-06-09T23:59:59.000Z

58

Dual-Axis Resonance Testing of Wind Turbine Blades  

Energy Innovation Portal (Marketing Summaries) [EERE]

Wind turbine blades must undergo strength and fatigue testing in order to be rated and marketed appropriately. Presently, wind turbine blades are fatigue-tested in the flapwise direction and in the edgewise direction independently. This testing involves placing the blades through 1 to 10 million or more load or fatigue cycles, which may take 3 to 12 months or more to complete for each tested direction. There is a need for blade testing techniques that are less expensive to use and require...

2014-07-28T23:59:59.000Z

59

Determination of Elastic Twist in Horizontal Axis Wind Turbines (HAWTs)  

SciTech Connect (OSTI)

This report presents the results of a project at the Alternative Energy Institute (AEI) which measured and calculated the elastic twist of three representative composite horizontal-axis blades: Carter 300, Gougeon ESI 54, and UTRC 8 kW.

Stoddard, F.; Nelson, V.; Starcher, K.; Andrews, B.

2006-06-01T23:59:59.000Z

60

MHK Technologies/Vertical Axis Venturi System | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IEOWC <SurgeWECSailsOWC.pngflow TurbineSystem

Note: This page contains sample records for the topic "vertical axis turbines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Sandia National Laboratories: Innovative Offshore Vertical-Axis Wind  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLS Exhibit atVehicleEnergy Infrastructure On November 9,Turbine

62

The experimental and theoretical investigaton of a horizontal-axis wind turbine  

E-Print Network [OSTI]

. Design details of the wind turbine are discussed by the sections shown in the figure . Main Su ort Assembl The 3/4 in. diameter rotor shaft is supported at each end by roller bearings. Each bearing is clamped between two aluminum blocks. A flange...THE EXPERIMENTAL AND THEORETICAL INVESTIGATION OF A HORIZONTAL-AXIS WIND TURBINE A Thesis by ROBERT TERRANCE MILBURN Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER...

Milburn, Robert Terrance

1977-01-01T23:59:59.000Z

63

Structural effects of unsteady aerodynamic forces on horizontal-axis wind turbines  

SciTech Connect (OSTI)

Due to its renewable nature and abundant resources, wind energy has the potential to fulfill a large portion of this nation`s energy needs. The simplest means of utilizing wind energy is through the use of downwind, horizontal-axis wind turbines (HAWT) with fixed-pitch rotors. This configuration regulates the peak power by allowing the rotor blade to aerodynamically stall. The stall point, the point of maximum coefficient of lift, is currently predicted using data obtained from wind tunnel tests. Unfortunately, these tests do not accurately simulate conditions encountered in the field. Flow around the tower and nacelle coupled with inflow turbulence and rotation of the turbine blades create unpredicted aerodynamic forces. Dynamic stall is hypothesized to occur. Such aerodynamic loads are transmitted into the rotor and tower causing structural resonance that drastically reduces the design lifetime of the wind turbine. The current method of alleviating this problem is to structurally reinforce the tower and blades. However, this adds unneeded mass and, therefore, cost to the turbines. A better understanding of the aerodynamic forces and the manner in which they affect the structure would allow for the design of more cost effective and durable wind turbines. Data compiled by the National Renewable Energy Laboratory (NREL) for a downwind HAWT with constant chord, untwisted, fixed-pitch rotors is analyzed. From these data, the actual aerodynamic characteristics of the rotor are being portrayed and the potential effects upon the structure can for the first time be fully analyzed. Based upon their understanding, solutions to the problem of structural resonance are emerging.

Miller, M.S.; Shipley, D.E. [Univ. of Colorado, Boulder, CO (United States). BioServe Space Technologies

1994-08-01T23:59:59.000Z

64

M. Bahrami ENSC 283 (S 11) Wind Turbine Project 1 ENSC 283 Project  

E-Print Network [OSTI]

and the vertical-axis wind turbine (VAWT) in Figure 2-b. The designation simply depends on the axis of rotationM. Bahrami ENSC 283 (S 11) Wind Turbine Project 1 ENSC 283 Project Assigned date: Feb. 23, 2011 family), but also important are those which extract energy form the fluid such as turbines. Wind turbines

Bahrami, Majid

65

E-Print Network 3.0 - axis tidal turbines Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Weather... 36 AUGUST | 2011 EnhancEd TurbinE PErformancE moniToring comPonEnTs of wind TurbinEs are affected... by asymmetric loads, variable wind speeds, and se- vere weather...

66

The determination of stochastic loads on horizontal axis wind turbine blades  

SciTech Connect (OSTI)

The FAST Code which is capable of determining structural loads of a flexible, teetering, horizontal axis wind turbine is described and comparisons of calculated loads with test data are given at two wind speeds for the ESI-80. The FAST Code models a two-bladed HAWT with degrees-of-freedom for blade bending, teeter, drive train flexibility, yaw, and windwise and crosswind tower motion. The code allows blade dimensions, stiffnesses, and weights to differ and the code models tower shadow, wind shear, and turbulence. Additionally, dynamic stall is included as are delta-3 and an underslung rotor. Load comparisons are made with ESI-80 test data in the form of power spectral density, rainflow counting occurrence histograms, and azimuth averaged bin plots. It is concluded that agreement between the FAST Code and test results is good.

Freeman, L.N.; Wilson, R.E. [Oregon State Univ., Corvallis, OR (United States). Dept. of Mechanical Engineering

1998-05-01T23:59:59.000Z

67

Combined Experiment Phase 1. [Horizontal axis wind turbines: wind tunnel testing versus field testing  

SciTech Connect (OSTI)

How does wind tunnel airfoil data differ from the airfoil performance on an operating horizontal axis wind turbine (HAWT) The National Renewable Energy laboratory has been conducting a comprehensive test program focused on answering this question and understanding the basic fluid mechanics of rotating HAWT stall aerodynamics. The basic approach was to instrument a wind rotor, using an airfoil that was well documented by wind tunnel tests, and measure operating pressure distributions on the rotating blade. Based an the integrated values of the pressure data, airfoil performance coefficients were obtained, and comparisons were made between the rotating data and the wind tunnel data. Care was taken to the aerodynamic and geometric differences between the rotating and the wind tunnel models. This is the first of two reports describing the Combined Experiment Program and its results. This Phase I report covers background information such as test setup and instrumentation. It also includes wind tunnel test results and roughness testing.

Butterfield, C.P.; Musial, W.P.; Simms, D.A.

1992-10-01T23:59:59.000Z

68

Development and Verification of a Computational Fluid Dynamics Model of a Horizontal-Axis Tidal Current Turbine  

SciTech Connect (OSTI)

This paper describes the development of a computational fluid dynamics (CFD) methodology to simulate the hydrodynamics of horizontal-axis tidal current turbines. Qualitative measures of the CFD solutions were independent of the grid resolution. Conversely, quantitative comparisons of the results indicated that the use of coarse computational grids results in an under prediction of the hydrodynamic forces on the turbine blade in comparison to the forces predicted using more resolved grids. For the turbine operating conditions considered in this study, the effect of the computational timestep on the CFD solution was found to be minimal, and the results from steady and transient simulations were in good agreement. Additionally, the CFD results were compared to corresponding blade element momentum method calculations and reasonable agreement was shown. Nevertheless, we expect that for other turbine operating conditions, where the flow over the blade is separated, transient simulations will be required.

Lawson, M. J.; Li, Y.; Sale, D. C.

2011-10-01T23:59:59.000Z

69

Structural Design of a Horizontal-Axis Tidal Current Turbine Composite Blade  

SciTech Connect (OSTI)

This paper describes the structural design of a tidal composite blade. The structural design is preceded by two steps: hydrodynamic design and determination of extreme loads. The hydrodynamic design provides the chord and twist distributions along the blade length that result in optimal performance of the tidal turbine over its lifetime. The extreme loads, i.e. the extreme flap and edgewise loads that the blade would likely encounter over its lifetime, are associated with extreme tidal flow conditions and are obtained using a computational fluid dynamics (CFD) software. Given the blade external shape and the extreme loads, we use a laminate-theory-based structural design to determine the optimal layout of composite laminas such that the ultimate-strength and buckling-resistance criteria are satisfied at all points in the blade. The structural design approach allows for arbitrary specification of the chord, twist, and airfoil geometry along the blade and an arbitrary number of shear webs. In addition, certain fabrication criteria are imposed, for example, each composite laminate must be an integral multiple of its constituent ply thickness. In the present effort, the structural design uses only static extreme loads; dynamic-loads-based fatigue design will be addressed in the future. Following the blade design, we compute the distributed structural properties, i.e. flap stiffness, edgewise stiffness, torsion stiffness, mass, moments of inertia, elastic-axis offset, and center-of-mass offset along the blade. Such properties are required by hydro-elastic codes to model the tidal current turbine and to perform modal, stability, loads, and response analyses.

Bir, G. S.; Lawson, M. J.; Li, Y.

2011-10-01T23:59:59.000Z

70

Investigating the Influence of the Added Mass Effect to Marine Hydrokinetic Horizontal-Axis Turbines Using a General Dynamic Wake Wind Turbine Code  

SciTech Connect (OSTI)

This paper describes a recent study to investigate the applicability of a horizontal-axis wind turbine (HAWT) structural dynamics and unsteady aerodynamics analysis program (FAST and AeroDyn respectively) to modeling the forces on marine hydrokinetic (MHK) turbines. This paper summarizes the added mass model that has been added to AeroDyn. The added mass model only includes flow acceleration perpendicular to the rotor disc, and ignores added mass forces caused by blade deflection. A model of the National Renewable Energy Laboratory's (NREL) Unsteady Aerodynamics Experiment (UAE) Phase VI wind turbine was analyzed using FAST and AeroDyn with sea water conditions and the new added mass model. The results of this analysis exhibited a 3.6% change in thrust for a rapid pitch case and a slight change in amplitude and phase of thrust for a case with 30{sup o} of yaw.

Maniaci, D. C.; Li, Y.

2011-10-01T23:59:59.000Z

71

Investigating the Influence of the Added Mass Effect to Marine Hydrokinetic Horizontal-Axis Turbines Using a General Dynamic Wake Wind Turbine Code: Preprint  

SciTech Connect (OSTI)

This paper describes a recent study to investigate the applicability of a horizontal-axis wind turbine (HAWT) structural dynamics and unsteady aerodynamics analysis program (FAST and AeroDyn respectively) to modeling the forces on marine hydrokinetic (MHK) turbines. It summarizes the added mass model that has been added to AeroDyn. The added mass model only includes flow acceleration perpendicular to the rotor disc, and ignores added mass forces caused by blade deflection. A model of the National Renewable Energy Laboratory's (NREL) Unsteady Aerodynamics Experiment (UAE) Phase VI wind turbine was analyzed using FAST and AeroDyn with sea water conditions and the new added mass model. The results of this analysis exhibited a 3.6% change in thrust for a rapid pitch case and a slight change in amplitude and phase of thrust for a case with 30 degrees of yaw.

Maniaci, D. C.; Li, Y.

2012-04-01T23:59:59.000Z

72

Project Title: Residential wind turbine design Project Description: This project aims to  

E-Print Network [OSTI]

that wind is expected to come. Therefore it may be a good idea to consider a vertical-axis wind turbine of the conventional wind turbines use horizontal- axis configuration (see Fig. 1) and is aligned with the directionPROJECT 1: Project Title: Residential wind turbine design Project Description: This project aims

Muradoglu, Metin

73

he defining element of modern wind farms is the pro-peller-like structure known as a horizontal-axis wind  

E-Print Network [OSTI]

-axis wind turbine.Amarvel of engineering, the HAWT typically comprises more than 8000 parts, and its blades by the wind turbine's rotor blades. The second term (with the leading factor of 1 /2 in- cluded turbines (VAWTs), whose airfoil blades rotate about a vertical axis. In schooling fish and wind

Dabiri, John O.

74

Design and construction of vertical axis wind turbines using dual-layer vacuum-forming  

E-Print Network [OSTI]

How does one visualize wind? Is it the way trees bend in a strong gust or the way smoke is carried in a breeze? What if wind could be visualized using design, technology, and light? This thesis documents the design of a ...

Carper, Christopher T

2010-01-01T23:59:59.000Z

75

Computer subroutine for estimating aerodynamic blade loads on Darrieus vertical axis wind turbines. [FORCE code  

SciTech Connect (OSTI)

An important aspect of structural design of the Darrieus rotor is the determination of aerodynamic blade loads. This report describes a load generator which has been used at Sandia for quasi-static and dynamic rotor analyses. The generator is based on the single streamtube aerodynamic flow model and is constructed as a FORTRAN IV subroutine to facilitate its use in finite element structural models. Input and output characteristics of the subroutine are described and a complete listing is attached as an appendix.

Sullivan, W. N.; Leonard, T. M.

1980-11-01T23:59:59.000Z

76

Sandia National Laboratories: Sandia Vertical-Axis Wind-Turbine Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmitted for US Patent ClimateECEnergyComputationalPresented at Science of

77

Turbines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CO2 Power Cycles Advanced Combustion Turbines Advanced Research University Turbine Systems Research SBIR Program Plan Project Portfolio Project Information Publications...

78

Wind turbine spoiler  

DOE Patents [OSTI]

An aerodynamic spoiler system for a vertical axis wind turbine includes spoilers on the blades initially stored near the rotor axis to minimize drag. A solenoid latch adjacent the central support tower releases the spoilers and centrifugal force causes the spoilers to move up the turbine blades away from the rotor axis, thereby producing a braking effect and actual slowing of the associated wind turbine, if desired. The spoiler system can also be used as an infinitely variable power control by regulated movement of the spoilers on the blades over the range between the undeployed and fully deployed positions. This is done by the use of a suitable powered reel and cable located at the rotor tower to move the spoilers.

Sullivan, William N. (Albuquerque, NM)

1985-01-01T23:59:59.000Z

79

Analysis and test results for a two-bladed, passive cycle pitch, horizontal-axis wind turbine in free and controlled yaw  

SciTech Connect (OSTI)

This report surveys the analysis and tests performed at Washington University in St. Louis, Missouri, on a horizontal-axis, two-laded wind turbine with teeter hub. The introduction is a brief account of results obtained during the 5-year period ending December 1985. The wind tunnel model and the test turbine (7.6 m [25 ft.] in diameter) at Washington University`s Tyson Research Center had a 67{degree} delta-three angle of the teeter axis. The introduction explains why this configuration was selected and named the passive cycle pitch (PCP) wind turbine. Through the analysis was not limited to the PCP rotor, all tests, including those done from 1986 to 1994, wee conducted with the same teetered wind rotor. The blades are rather stiff and have only a small elastic coning angle and no precone.

Holenemser, K.H. [Washington Univ., St. Louis, MO (United States)

1995-10-01T23:59:59.000Z

80

Jet spoiler arrangement for wind turbine  

DOE Patents [OSTI]

An air jet spoiler arrangement is provided for a Darrieus-type vertical axis wind-powered turbine. Air is drawn into hollow turbine blades through air inlets at the ends thereof and is ejected in the form of air jets through small holes or openings provided along the lengths of the blades. The air jets create flow separation at the surfaces of the turbine blades, thereby inducing stall conditions and reducing the output power. A feedback control unit senses the power output of the turbine and controls the amount of air drawn into the air inlets accordingly.

Cyrus, Jack D. (Corrales, NM); Kadlec, Emil G. (Albuquerque, NM); Klimas, Paul C. (Albuquerque, NM)

1985-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vertical axis turbines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Jet spoiler arrangement for wind turbine  

DOE Patents [OSTI]

An air jet spoiler arrangement is provided for a Darrieus-type vertical axis wind-powered turbine. Air is drawn into hollow turbine blades through air inlets at the end thereof and is ejected in the form of air jets through small holes or openings provided along the lengths of the blades. The air jets create flow separation at the surfaces of the turbine blades, thereby including stall conditions and reducing the output power. A feedback control unit senses the power output of the turbine and controls the amount of air drawn into the air inlets accordingly.

Cyrus, J.D.; Kadlec, E.G.; Klimas, P.C.

1983-09-15T23:59:59.000Z

82

Aeroelastic stability analysis of a Darrieus wind turbine  

SciTech Connect (OSTI)

An aeroelastic stability analysis has been developed for predicting flutter instabilities on vertical axis wind turbines. The analytical model and mathematical formulation of the problem are described as well as the physical mechanism that creates flutter in Darrieus turbines. Theoretical results are compared with measured experimental data from flutter tests of the Sandia 2 Meter turbine. Based on this comparison, the analysis appears to be an adequate design evaluation tool.

Popelka, D.

1982-02-01T23:59:59.000Z

83

Aerodynamic interference between two Darrieus wind turbines  

SciTech Connect (OSTI)

The effect of aerodynamic interference on the performance of two curved bladed Darrieus-type vertical axis wind turbines has been calculated using a vortex/lifting line aerodynamic model. The turbines have a tower-to-tower separation distance of 1.5 turbine diameters, with the line of turbine centers varying with respect to the ambient wind direction. The effects of freestream turbulence were neglected. For the cases examined, the calculations showed that the downwind turbine power decrement (1) was significant only when the line of turbine centers was coincident with the ambient wind direction, (2) increased with increasing tipspeed ratio, and (3) is due more to induced flow angularities downstream than to speed deficits near the downstream turbine.

Schatzle, P.R.; Klimas, P.C.; Spahr, H.R.

1981-04-01T23:59:59.000Z

84

A comparison of spanwise aerodynamic loads estimated from measured bending moments versus direct pressure measurements on horizontal axis wind turbine blades  

SciTech Connect (OSTI)

Two methods can be used to determine aerodynamic loads on a rotating wind turbine blade. The first is to make direct pressure measurements on the blade surface. This is a difficult process requiring costly pressure instrumentation. The second method uses measured flap bending moments in conjunction with analytical techniques to estimate airloads. This method, called ALEST, was originally developed for use on helicopter rotors and was modified for use on horizontal axis wind turbine blades. Estimating airloads using flap bending moments in much simpler and less costly because measurements can be made with conventional strain gages and equipment. This paper presents results of airload estimates obtained using both methods under a variety of operating conditions. Insights on the limitations and usefulness of the ALEST bending moment technique are also included. 10 refs., 6 figs.

Simms, D A; Butterfield, C P

1991-10-01T23:59:59.000Z

85

Optimization of a Small Passive Wind Turbine Generator with Multiobjective Genetic Algorithms  

E-Print Network [OSTI]

: Multiobjective Optimization, Genetic Algorithms, Wind Energy, Vertical Axis Wind Turbine hal-00763673,version1 achieved by controlling the speed of a Wind Turbine Generator (WTG). In particular, the rotor speed should vary in accordance with the wind speed by maintaining the tip speed ratio to the value that maximizes

Paris-Sud XI, Université de

86

Turbines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatusButlerTransportation6/14/11 Page 1 of 17Turbines Hydrogen

87

Optimization of a Savonius rotor vertical-axis wind turbine for use in water pumping systems in rural Honduras  

E-Print Network [OSTI]

The D-lab Honduras team designed and constructed a wind-powered water pump in rural Honduras during IAP 2007. Currently, the system does not work under its own power and water must be pumped by hand. This thesis seeks to ...

Zingman, Aron (Aron Olesen)

2007-01-01T23:59:59.000Z

88

Sliding vane geometry turbines  

DOE Patents [OSTI]

Various systems and methods are described for a variable geometry turbine. In one example, a turbine nozzle comprises a central axis and a nozzle vane. The nozzle vane includes a stationary vane and a sliding vane. The sliding vane is positioned to slide in a direction substantially tangent to an inner circumference of the turbine nozzle and in contact with the stationary vane.

Sun, Harold Huimin; Zhang, Jizhong; Hu, Liangjun; Hanna, Dave R

2014-12-30T23:59:59.000Z

89

Modeling the Energy Output from an In-Stream Tidal Turbine Farm  

E-Print Network [OSTI]

Abstract—This paper is based on a recent paper presented in the 2007 IEEE SMC conference by the same authors [1], discussing an approach to predicting energy output from an instream tidal turbine farm. An in-stream tidal turbine is a device for harnessing energy from tidal currents in channels, and functions in a manner similar to a wind turbine. A group of such turbines distributed in a site is called an in-stream tidal turbine farm which is similar to a wind farm. Approaches to estimating energy output from wind farms cannot be fully transferred to study tidal farms, however, because of the complexities involved in modeling turbines underwater. In this paper, we intend to develop an approach for predicting energy output of an in-stream tidal turbine farm. The mathematical formulation and basic procedure for predicting power output of a stand-alone turbine 1 is presented, which includes several highly nonlinear terms. In order to facilitate the computation and utilize the formulation for predicting power output from a turbine farm, a simplified relationship between turbine distribution and turbine farm energy output is derived. A case study is then conducted by applying the numerical procedure to predict the energy output of the farms. Various scenarios are implemented according to the environmental conditions in Seymour Narrows, British Columbia, Canada. Additionally, energy cost results are presented as an extension. Index Terms—renewable energy, in-stream turbine, tidal current, tidal power, vertical axis turbine, farm system modeling, in-stream tidal turbine farm 1 A stand-alone turbine refers to a turbine around which there is no other turbine that might potentially affect the performance of this turbine.

Ye Li; Barbara J. Lence; Sander M. Calisal

90

Turbine inner shroud and turbine assembly containing such inner shroud  

DOE Patents [OSTI]

A turbine inner shroud and a turbine assembly. The turbine assembly includes a turbine stator having a longitudinal axis and having an outer shroud block with opposing and longitudinally outward facing first and second sides having open slots. A ceramic inner shroud has longitudinally inward facing hook portions which can longitudinally and radially surround a portion of the sides of the outer shroud block. In one attachment, the hook portions are engageable with, and are positioned within, the open slots.

Bagepalli, Bharat Sampathkumaran (Niskayuna, NY); Corman, Gregory Scot (Ballston Lake, NY); Dean, Anthony John (Scotia, NY); DiMascio, Paul Stephen (Clifton Park, NY); Mirdamadi, Massoud (Niskayuna, NY)

2001-01-01T23:59:59.000Z

91

Multidisciplinary Design Optimization for Glass-Fiber Epoxy-Matrix Composite 5 MW Horizontal-Axis  

E-Print Network [OSTI]

-Axis Wind-Turbine Blades M. Grujicic, G. Arakere, B. Pandurangan, V. Sellappan, A. Vallejo, and M. Ozen optimization, fatigue-life assessment, horizon- tal axis wind turbine blades 1. Introduction The depletion for the development of cost-effective glass-fiber reinforced epoxy-matrix composite 5 MW horizontal-axis wind-turbine

Grujicic, Mica

92

Diffuser Augmented Wind Turbine Analysis Code  

E-Print Network [OSTI]

, it is necessary to develop innovative wind capturing devices that can produce energy in the locations where large conventional horizontal axis wind turbines (HAWTs) are too impractical to install and operate. A diffuser augmented wind turbine (DAWT) is one...

Carroll, Jonathan

2014-05-31T23:59:59.000Z

93

Low-Maintenance Wind Power System  

E-Print Network [OSTI]

Improved Vertical Axis Wind Turbine and Aerodynamic ControlDarrieus Vertical Axis Wind Turbines and Aerodynamic Control

Rasson, Joseph E

2010-01-01T23:59:59.000Z

94

Apparatus and methods for installing, removing and adjusting an inner turbine shell section relative to an outer turbine shell section  

DOE Patents [OSTI]

A turbine includes upper and lower inner shell sections mounting the nozzles and shrouds and which inner shell is supported by pins secured to a surrounding outer shell. To disassemble the turbine for access to the inner shell sections and rotor, an alignment fixture is secured to the lower outer shell section and has pins engaging the inner shell section. To disassemble the turbine, the inner shell weight is transferred to the lower outer shell section via the alignment fixture and cradle pins. Roller assemblies are inserted through access openings vacated by support pins to permit rotation of the lower inner shell section out of and into the lower outer shell section during disassembly and assembly. The alignment fixture includes adjusting rods for adjusting the inner shell axially, vertically, laterally and about a lateral axis. A roller over-cage is provided to rotate the inner shell and a dummy shell to facilitate assembly and disassembly in the field.

Leach, David (Niskayuna, NY); Bergendahl, Peter Allen (Scotia, NY); Waldo, Stuart Forrest (Salem, NC); Smith, Robert Leroy (Milford, OH); Phelps, Robert Kim (Milford, OH)

2001-01-01T23:59:59.000Z

95

Leaf seal for transition duct in turbine system  

DOE Patents [OSTI]

A turbine system is disclosed. In one embodiment, the turbine system includes a transition duct. The transition duct includes an inlet, an outlet, and a passage extending between the inlet and the outlet and defining a longitudinal axis, a radial axis, and a tangential axis. The outlet of the transition duct is offset from the inlet along the longitudinal axis and the tangential axis. The transition duct further includes an interface member for interfacing with a turbine section. The turbine system further includes a leaf seal contacting the interface member to provide a seal between the interface member and the turbine section.

Flanagan, James Scott; LeBegue, Jeffrey Scott; McMahan, Kevin Weston; Dillard, Daniel Jackson; Pentecost, Ronnie Ray

2013-06-11T23:59:59.000Z

96

Flexible metallic seal for transition duct in turbine system  

DOE Patents [OSTI]

A turbine system is disclosed. In one embodiment, the turbine system includes a transition duct. The transition duct includes an inlet, an outlet, and a passage extending between the inlet and the outlet and defining a longitudinal axis, a radial axis, and a tangential axis. The outlet of the transition duct is offset from the inlet along the longitudinal axis and the tangential axis. The transition duct further includes an interface member for interfacing with a turbine section. The turbine system further includes a flexible metallic seal contacting the interface member to provide a seal between the interface member and the turbine section.

Flanagan, James Scott; LeBegue, Jeffrey Scott; McMahan, Kevin Weston; Dillard, Daniel Jackson; Pentecost, Ronnie Ray

2014-04-22T23:59:59.000Z

97

Hermetic turbine generator  

DOE Patents [OSTI]

A Rankine cycle turbine drives an electric generator and a feed pump, all on a single shaft, and all enclosed within a hermetically sealed case. The shaft is vertically oriented with the turbine exhaust directed downward and the shaft is supported on hydrodynamic fluid film bearings using the process fluid as lubricant and coolant. The selection of process fluid, type of turbine, operating speed, system power rating, and cycle state points are uniquely coordinated to achieve high turbine efficiency at the temperature levels imposed by the recovery of waste heat from the more prevalent industrial processes.

Meacher, John S. (Ballston Lake, NY); Ruscitto, David E. (Ballston Spa, NY)

1982-01-01T23:59:59.000Z

98

Wind turbine generator with improved operating subassemblies  

DOE Patents [OSTI]

A wind turbine includes a yaw spring return assembly to return the nacelle from a position to which it has been rotated by yawing forces, thus preventing excessive twisting of the power cables and control cables. It also includes negative coning restrainers to limit the bending of the flexible arms of the rotor towards the tower, and stop means on the rotor shaft to orient the blades in a vertical position during periods when the unit is upwind when the wind commences. A pendulum pitch control mechanism is improved by orienting the pivot axis for the pendulum arm at an angle to the longitudinal axis of its support arm, and excessive creep is of the synthetic resin flexible beam support for the blades is prevented by a restraining cable which limits the extent of pivoting of the pendulum during normal operation but which will permit further pivoting under abnormal conditions to cause the rotor to stall.

Cheney, Jr., Marvin C. (24 Stonepost Rd., Glastonbury, CT 06033)

1985-01-01T23:59:59.000Z

99

Rotationally sampled wind characteristics and correlations with MOD-OA wind turbine response  

SciTech Connect (OSTI)

This report presents results of a comprehensive wind and wind turbine measurement program: the Clayton, New Mexico, vertical plane array/MOD-OA project. In this experiment, the turbulent wind was measured for a large array of fixed anemometers located two blade diameters upwind of a 200-kW horizontal-axis wind turbine (HAWT). Simultaneously, key wind turbine response parameters were also measured. The first of two major objectives of this experiment was to determine the turbulent wind, rotationally sampled to emulate the motion of the wind turbine blade, for the range of different wind speeds and stability classes actually experienced by the wind turbine. The second major objective was to correlate this rotationally sampled wind with the wind turbine blade stress and power, in order to assess the usefulness of the wind measurements for wind turbine loads testing a prediction. Time series of rotationally sampled winds and wind turbine blade bending moments and power were converted to frequency spectra using Fourier transform techniques. These spectra were used as the basis for both qualitative and quantitative comparisons among the various cases. A quantitative comparison between the rotationally sampled wind input and blade bending response was made, using the Fourier spectra to estimate the blade transfer function. These transfer functions were then used to calculate an approximate damping coefficient for the MOD-OA fiberglass blade.

George, R.L.; Connell, J.R.

1984-09-01T23:59:59.000Z

100

Near wake properties of horizontal axis marine current L. Myers and A.S. Bahaj  

E-Print Network [OSTI]

1 Near wake properties of horizontal axis marine current turbines L. Myers and A.S. Bahaj wake region of a tidal current turbine is strongly driven by the combined wake of the device support-scale horizontal axis turbine has been have been measured in a large water channel facility. A downstream map

Quartly, Graham

Note: This page contains sample records for the topic "vertical axis turbines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Ceramic turbine nozzle  

DOE Patents [OSTI]

A turbine nozzle and shroud assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The metallic components having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine nozzle vane assembly. The turbine nozzle vane assembly includes a plurality of segmented vane defining a first vane segment and a second vane segment. Each of the first and second vane segments having a vertical portion. Each of the first vane segments and the second vane segments being positioned in functional relationship one to another within a recess formed within an outer shroud and an inner shroud. The turbine nozzle and shroud assembly provides an economical, reliable and effective ceramic component having a preestablished rate of thermal expansion being less than the preestablished rate of thermal expansion of the other component.

Shaffer, James E. (Maitland, FL); Norton, Paul F. (San Diego, CA)

1996-01-01T23:59:59.000Z

102

Ceramic turbine nozzle  

DOE Patents [OSTI]

A turbine nozzle and shroud assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The metallic components have a preestablished rate of thermal expansion greater than the preestablished rate of thermal expansion of the turbine nozzle vane assembly. The turbine nozzle vane assembly includes a plurality of segmented vane defining a first vane segment and a second vane segment, each of the first and second vane segments having a vertical portion, and each of the first vane segments and the second vane segments being positioned in functional relationship one to another within a recess formed within an outer shroud and an inner shroud. The turbine nozzle and shroud assembly provides an economical, reliable and effective ceramic component having a preestablished rate of thermal expansion being less than the preestablished rate of thermal expansion of the other component. 4 figs.

Shaffer, J.E.; Norton, P.F.

1996-12-17T23:59:59.000Z

103

Doctoral Position Aeroelastic Analysis of Large Wind Turbines  

E-Print Network [OSTI]

Doctoral Position Aeroelastic Analysis of Large Wind Turbines In the research project "Aeroelastic Analysis Horizontal-axis wind turbine and numerical model. of Large Wind Turbines" funded by the Ger- man involving the in-house Finite-Element CFD code XNS to enable the simulation of wind turbines. The ability

104

Turbine nozzle positioning system  

DOE Patents [OSTI]

A nozzle guide vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The nozzle guide vane assembly includes an outer shroud having a mounting leg with an opening defined therein, a tip shoe ring having a mounting member with an opening defined therein, a nozzle support ring having a plurality of holes therein and a pin positioned in the corresponding opening in the outer shroud, opening in the tip shoe ring and the hole in the nozzle support ring. A rolling joint is provided between metallic components of the gas turbine engine and the nozzle guide vane assembly. The nozzle guide vane assembly is positioned radially about a central axis of the gas turbine engine and axially aligned with a combustor of the gas turbine engine.

Norton, Paul F. (San Diego, CA); Shaffer, James E. (Maitland, FL)

1996-01-30T23:59:59.000Z

105

Turbine nozzle positioning system  

DOE Patents [OSTI]

A nozzle guide vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The nozzle guide vane assembly includes an outer shroud having a mounting leg with an opening defined therein, a tip shoe ring having a mounting member with an opening defined therein, a nozzle support ring having a plurality of holes therein and a pin positioned in the corresponding opening in the outer shroud, opening in the tip shoe ring and the hole in the nozzle support ring. A rolling joint is provided between metallic components of the gas turbine engine and the nozzle guide vane assembly. The nozzle guide vane assembly is positioned radially about a central axis of the gas turbine engine and axially aligned with a combustor of the gas turbine engine. 9 figs.

Norton, P.F.; Shaffer, J.E.

1996-01-30T23:59:59.000Z

106

Turbine nozzle attachment system  

DOE Patents [OSTI]

A nozzle guide vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and is attached to conventional metallic components. The nozzle guide vane assembly includes a pair of legs extending radially outwardly from an outer shroud and a pair of mounting legs extending radially inwardly from an inner shroud. Each of the pair of legs and mounting legs have a pair of holes therein. A plurality of members attached to the gas turbine engine have a plurality of bores therein which axially align with corresponding ones of the pair of holes in the legs. A plurality of pins are positioned within the corresponding holes and bores radially positioning the nozzle guide vane assembly about a central axis of the gas turbine engine. 3 figs.

Norton, P.F.; Shaffer, J.E.

1995-10-24T23:59:59.000Z

107

Turbine nozzle attachment system  

DOE Patents [OSTI]

A nozzle guide vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The nozzle guide vane assembly includes a pair of legs extending radially outwardly from an outer shroud and a pair of mounting legs extending radially inwardly from an inner shroud. Each of the pair of legs and mounting legs have a pair of holes therein. A plurality of members attached to the gas turbine engine have a plurality of bores therein which axially align with corresponding ones of the pair of holes in the legs. A plurality of pins are positioned within the corresponding holes and bores radially positioning the nozzle guide vane assembly about a central axis of the gas turbine engine.

Norton, Paul F. (San Diego, CA); Shaffer, James E. (Maitland, FL)

1995-01-01T23:59:59.000Z

108

58:164 Fundamentals of Wind Turbines (ME:4164:0001)  

E-Print Network [OSTI]

58:164 ­ Fundamentals of Wind Turbines (ME:4164:0001) Syllabus P. Barry Butler 111 Jessup Hall The University of Iowa Iowa City, IA January, 2012 #12;2 Spring 2012 58:164 ­ Fundamentals of Wind Turbines mechanics and mechanical systems to wind turbine engineering. Fundamentals of horizontal-axis wind turbines

Kusiak, Andrew

109

Preliminary design and viability consideration of external, shroud-based stators in wind turbine generators  

E-Print Network [OSTI]

Horizontal-axis wind turbine designs often included gearboxes or large direct-drive generators to compensate for the low peripheral speeds of the turbine hub. To take advantage of high blade tip speeds, an alternative ...

Shoemaker-Trejo, Nathaniel (Nathaniel Joseph)

2012-01-01T23:59:59.000Z

110

Comparison of Wind-Turbine Aeroelastic Codes Used for Certification: Preprint  

SciTech Connect (OSTI)

NREL created aeroelastic simulators for horizontal-axis wind turbines accepted by Germanischer Lloyd (GL) WindEnergie GmbH for manufacturers to use for on-shore wind turbine certification.

Buhl, M. L., Jr.; Manjock, A.

2006-01-01T23:59:59.000Z

111

Taming Hurricanes With Arrays of Offshore Wind Turbines  

E-Print Network [OSTI]

Taming Hurricanes With Arrays of Offshore Wind Turbines Mark Z. Jacobson Cristina Archer, Willet #12;Representation of a vertically-resolved wind turbine in model Lines are model layers) or 50 m/s (destruction) speed. Can Walls of Offshore Wind Turbines Dissipate Hurricanes? #12;Katrina

Firestone, Jeremy

112

Enclosed, off-axis solar concentrator  

DOE Patents [OSTI]

A solar concentrator including a housing having receiving wall, a reflecting wall and at least two end walls, the receiving, reflecting and end walls defining a three-dimensional volume having an inlet, wherein a vertical axis of the housing is generally perpendicular to the inlet, a receiver mounted on the receiving wall of the housing, the receiver including at least one photovoltaic cell, wherein a vertical axis of the receiver is disposed at a non-zero angle relative to the vertical axis of the housing, at least one clip disposed on the reflecting wall an optical element received within the three-dimensional volume, the optical element including at least one tab, the tab being engaged by the clip to align the optical element with the receiver, and a window received over the inlet to enclose the housing.

Benitez, Pablo; Grip, Robert E; Minano, Juan C; Narayanan, Authi A; Plesniak, Adam; Schwartz, Joel A

2013-11-26T23:59:59.000Z

113

SERI advanced wind turbine blades  

SciTech Connect (OSTI)

The primary goal of the Solar Energy Research Institute`s (SERI) advanced wind turbine blades is to convert the kinetic energy in the wind into mechanical energy in an inexpensive and efficient manner. To accomplish this goal, advanced wind turbine blades have been developed by SERI that utilize unique airfoil technology. Performance characteristics of the advanced blades were verified through atmospheric testing on fixed-pitch, stall-regulated horizontal-axis wind turbines (HAWTs). Of the various wind turbine configurations, the stall-regulated HAWT dominates the market because of its simplicity and low cost. Results of the atmospheric tests show that the SERI advanced blades produce 10% to 30% more energy than conventional blades. 6 refs.

Tangler, J.; Smith, B.; Jager, D.

1992-02-01T23:59:59.000Z

114

SERI advanced wind turbine blades  

SciTech Connect (OSTI)

The primary goal of the Solar Energy Research Institute's (SERI) advanced wind turbine blades is to convert the kinetic energy in the wind into mechanical energy in an inexpensive and efficient manner. To accomplish this goal, advanced wind turbine blades have been developed by SERI that utilize unique airfoil technology. Performance characteristics of the advanced blades were verified through atmospheric testing on fixed-pitch, stall-regulated horizontal-axis wind turbines (HAWTs). Of the various wind turbine configurations, the stall-regulated HAWT dominates the market because of its simplicity and low cost. Results of the atmospheric tests show that the SERI advanced blades produce 10% to 30% more energy than conventional blades. 6 refs.

Tangler, J.; Smith, B.; Jager, D.

1992-02-01T23:59:59.000Z

115

Building Scale DC Microgrids  

E-Print Network [OSTI]

resources, a 10 kW vertical axis wind turbine, and Fig. 4AC-grid Fig. 3. Vertical axis wind turbine in the AIT DC µ

Marnay, Chris

2013-01-01T23:59:59.000Z

116

Building Scale DC Microgrids  

E-Print Network [OSTI]

resources, a 10 kW vertical axis wind turbine, and Fig. 4the µgrid Fig. 3. Vertical axis wind turbine in the AIT DC µ

Marnay, Chris

2014-01-01T23:59:59.000Z

117

E-Print Network 3.0 - axial-flow hydraulic turbines Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Axial flow turbine are, instead, characterized by axis... Miller G., Corren D., Armstrong ... Source: Claps, Pierluigi - Dipartimento di Idraulica,Trasporti e Infrastrutture...

118

Aerodynamic testing of a rotating wind turbine blade  

SciTech Connect (OSTI)

Aerodynamic, load, flow-visualization, and inflow measurements were taken on a downwind horizontal-axis wind turbine (HAWT). A video camera mounted on the rotor recorded video images of tufts attached to the low-pressure side of the blade. Strain gages, mounted every 10% of the blade's span, provided load and pressure measurements. Pressure taps at 32 chordwise positions recorded pressure distributions. Wind inflow was measured via a vertical-plane array of anemometers located 10 m upwind. The objectives of the test were to address whether airfoil pressure distributions measured on a rotating blade differed from those measured in the wind tunnel, if radial flow near or in the boundary layer of the airfoil affected pressure distributions, if dynamic stall could result in increased dynamic loads, and if the location of the separation boundary measured on the rotating blade agreed with that measured in two-dimensional flow in the wind tunnel. 6 refs., 9 figs., 1 tab.

Butterfield, C.P.; Nelsen, E.N.

1990-01-01T23:59:59.000Z

119

Tornado type wind turbines  

DOE Patents [OSTI]

A tornado type wind turbine has a vertically disposed wind collecting tower with spaced apart inner and outer walls and a central bore. The upper end of the tower is open while the lower end of the structure is in communication with a wind intake chamber. An opening in the wind chamber is positioned over a turbine which is in driving communication with an electrical generator. An opening between the inner and outer walls at the lower end of the tower permits radially flowing air to enter the space between the inner and outer walls while a vertically disposed opening in the wind collecting tower permits tangentially flowing air to enter the central bore. A porous portion of the inner wall permits the radially flowing air to interact with the tangentially flowing air so as to create an intensified vortex flow which exits out of the top opening of the tower so as to create a low pressure core and thus draw air through the opening of the wind intake chamber so as to drive the turbine.

Hsu, Cheng-Ting (Ames, IA)

1984-01-01T23:59:59.000Z

120

Forbidden vertices  

E-Print Network [OSTI]

Abstract. In this work, we introduce and study the forbidden-vertices problem. Given a polytope P and a subset X of its vertices, we study the complexity of linear ...

2014-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "vertical axis turbines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Steerable vertical to horizontal energy transducer for mobile robots  

DOE Patents [OSTI]

The present invention provides a steerable vertical to horizontal energy transducer for mobile robots that less complex and requires less power than two degree of freedom tilt mechanisms. The present invention comprises an end effector that, when mounted with a hopping actuator, translates along axis (typically vertical) actuation into combined vertical and horizontal motion. The end effector, or foot, mounts with an end of the actuator that moves toward the support surface (typically a floor or the earth). The foot is shaped so that the first contact with the support surface is off the axis of the actuator. Off-axis contact with the support surface generates an on-axis force (typically resulting in vertical motion) and a moment orthogonal to the axis. The moment initiates a horizontal tumbling motion, and tilts the actuator so that its axis is oriented with a horizontal component and continued actuation generates both vertical and horizontal force.

Spletzer, Barry L. (Albuquerque, NM); Fischer, Gary J. (Albuquerque, NM); Feddema, John T. (Albuquerque, NM)

2001-01-01T23:59:59.000Z

122

Medial design of blades for hydroelectric turbines and ship propellers M. Rossgatterera  

E-Print Network [OSTI]

Medial design of blades for hydroelectric turbines and ship propellers M. Rossgatterera , B. J Abstract We present a method for constructing blades of hydroelectric turbines and ship propellers based. Keywords: CAD-model, B-spline representation, hydroelectric turbine blade, propeller blade, medial axis

JĂĽttler, Bert

123

Flow Simulations of a Rotating MidSized Rim Driven Wind Turbine  

E-Print Network [OSTI]

Flow Simulations of a Rotating MidSized Rim Driven Wind Turbine Bryan E. Kaiser1 , Andrew B: poroseva@unm.edu Introduction Conventional horizontal axis wind turbines (HAWTs) require harvesting. To overcome this limitation, small to midsized wind turbine designs capable of power

Maccabe, Barney

124

3-D Time-Accurate CFD Simulations of Wind Turbine Rotor Flow Fields  

E-Print Network [OSTI]

problems such as helicopter rotors and propellers. In particular, wind turbine blades can experience large from the tower support on downwind, horizontal axis wind turbines. These blade/inflow/tower wake in large scale wind turbines, because the blade passage frequency is well below the audible range

125

Influence of refraction on wind turbine noise  

E-Print Network [OSTI]

A semi-empirical method is applied to calculate the time-average sound level of wind turbine noise generation and propagation. Both are affected by wind shear refraction. Under upwind conditions the partially ensonified zone separates the fully ensonified zone (close to the turbine) and the shadow zone (far away from the turbine). Refraction is described in terms of the wind speed linear profile fitted to the power law profile. The rotating blades are treated as a two-dimensional circular source in the vertical plane. Inside the partially ensonified zone the effective A-weighted sound power decreases to zero when the receiver moves from the turbine toward the shadow zone. The presented results would be useful in practical applications to give a quick estimate of the effect of refraction on wind turbine noise.

Makarewicz, Rufin

2013-01-01T23:59:59.000Z

126

Wind turbine  

DOE Patents [OSTI]

A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

Cheney, Jr., Marvin C. (Glastonbury, CT)

1982-01-01T23:59:59.000Z

127

Small-scale wind turbines in cities and suburbs S Tullis, K Aly, R Bravo, A Fiedler, S Kooiman, K McLaren S Ziada  

E-Print Network [OSTI]

Small-scale wind turbines in cities and suburbs S Tullis, K Aly, R Bravo, A Fiedler, S Kooiman, K wind turbines in the urban environment: Current Research at McMaster University Nominal performance #12;Horizontal axis small wind turbines Numerous suppliers of turbines for tower/field installation

Tullis, Stephen

128

Behavior patterns of axis deer (Axis axis) in Texas  

E-Print Network [OSTI]

. These agonistic display postures are: (1) dominance display, (2) head-down display, (3) head-up display, and (4) antler threat display. Agonistic displays observed as interactions between females and/or antlerless males are: (1) hard look, (2) head-high sidle..., (3) striking with a forefoot, (4) biting, (5) flailing, and (6) body "press" a form of aggressive mounting. Hard-antlered axis males in all age and antler-size classes actively thrashed several forms of vegetation with their antlers. Sign...

Fuchs, Eugene Robert

1976-01-01T23:59:59.000Z

129

Wooden wind turbine blade manufacturing process  

DOE Patents [OSTI]

A wooden wind turbine blade is formed by laminating wood veneer in a compression mold having the exact curvature needed for one side of the blade, following which the other side of the blade is ground flat along its length but twisted with respect to the blade axis.

Coleman, Clint (Warren, VT)

1986-01-01T23:59:59.000Z

130

Large-eddy simulation of a wind turbine wake in turbulent  

E-Print Network [OSTI]

Large-eddy simulation of a wind turbine wake in turbulent neutral shear flow Shengbai Xie, Cristina-similar velocity profile existing in the wake after a wind turbine? How does the wake influence the vertical? Motivation #12; Large-eddy simulation for turbulent flow field Actuator-line model for wind turbine ui

Firestone, Jeremy

131

Simulation of large-amplitude motion of floating wind turbines using conservation of momentum  

E-Print Network [OSTI]

of a floating wind turbine support structure capable of maintaining a near-vertical tower requires buoyancy far. The compliant floating wind turbine system can be considered as a multi-body system including tower, rotorSimulation of large-amplitude motion of floating wind turbines using conservation of momentum Lei

Sweetman, Bert

132

Load attenuating passively adaptive wind turbine blade  

DOE Patents [OSTI]

A method and apparatus for improving wind turbine performance by alleviating loads and controlling the rotor. The invention employs the use of a passively adaptive blade that senses the wind velocity or rotational speed, and accordingly modifies its aerodynamic configuration. The invention exploits the load mitigation prospects of a blade that twists toward feather as it bends. The invention includes passively adaptive wind turbine rotors or blades with currently preferred power control features. The apparatus is a composite fiber horizontal axis wind-turbine blade, in which a substantial majority of fibers in the blade skin are inclined at angles of between 15 and 30 degrees to the axis of the blade, to produces passive adaptive aeroelastic tailoring (bend-twist coupling) to alleviate loading without unduly jeopardizing performance.

Veers, Paul S. (Albuquerque, NM); Lobitz, Donald W. (Albuquerque, NM)

2003-01-01T23:59:59.000Z

133

Load attenuating passively adaptive wind turbine blade  

DOE Patents [OSTI]

A method and apparatus for improving wind turbine performance by alleviating loads and controlling the rotor. The invention employs the use of a passively adaptive blade that senses the wind velocity or rotational speed, and accordingly modifies its aerodynamic configuration. The invention exploits the load mitigation prospects of a blade that twists toward feather as it bends. The invention includes passively adaptive wind turbine rotors or blades with currently preferred power control features. The apparatus is a composite fiber horizontal axis wind-turbine blade, in which a substantial majority of fibers in the blade skin are inclined at angles of between 15 and 30 degrees to the axis of the blade, to produces passive adaptive aeroelastic tailoring (bend-twist coupling) to alleviate loading without unduly jeopardizing performance.

Veers, Paul S.; Lobitz, Donald W.

2003-01-07T23:59:59.000Z

134

Small Wind Guidebook/What are the Basic Parts of a Small Wind...  

Open Energy Info (EERE)

which is typically converted to grid-compatible AC electricity. Wind Turbine Small wind turbines can be divided into two groups: horizontal axis and vertical axis. The most...

135

Steam Turbine Cogeneration  

E-Print Network [OSTI]

Steam turbines are widely used in most industrial facilities because steam is readily available and steam turbine is easy to operate and maintain. If designed properly, a steam turbine co-generation (producing heat and power simultaneously) system...

Quach, K.; Robb, A. G.

2008-01-01T23:59:59.000Z

136

Single Rotor Turbine  

DOE Patents [OSTI]

A rotor for use in turbine applications has a centrifugal compressor having axially disposed spaced apart fins forming passages and an axial turbine having hollow turbine blades interleaved with the fins and through which fluid from the centrifugal compressor flows.

Platts, David A. (Los Alamos, NM)

2004-10-26T23:59:59.000Z

137

Polar axis solar collector  

SciTech Connect (OSTI)

A polar column solar collector is described for use in association with a building, the system having a concave mirror located on the exterior of the building and defining a focal point and a central axis, a mounting column secured to the mirror coaxial therewith, a polar axis column, a hinge swingably connecting the mounting column to the polar axis column for moving the concave mirror to aim it directly at the sun at least over a predetermined period of the daylight hours, a secondary reflector located at the focal point of the concave mirror to receive the sun's rays reflected from the concave mirror, an opening in the concave mirror to receive a concentrated beam of the sun's rays reflected from the secondary reflector and to direct the beam along the mounting column, a third reflector movably located at the junction of the mounting column and the polar axis column to receive the concentrated beam of the sun's rays from the secondary reflector reflected through the opening, and to redirect it along the polar axis column, and a polar column rotator for rotating at least a portion of the polar column to track the movement of the sun. 7 figs.

Ludlow, G.T.

1994-01-04T23:59:59.000Z

138

Energy 101: Wind Turbines  

SciTech Connect (OSTI)

See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

None

2011-01-01T23:59:59.000Z

139

Energy 101: Wind Turbines  

ScienceCinema (OSTI)

See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

None

2013-05-29T23:59:59.000Z

140

MHK Technologies/Horizontal Axis Logarithmic Spiral Turbine | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IE <AirWEC <EPAMGreenInformation

Note: This page contains sample records for the topic "vertical axis turbines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Sandia National Laboratories: horizontal-axis wind turbine  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1development Sandia,evaluatingfullhigher-performance spar cap Sandia

142

Wind turbine  

SciTech Connect (OSTI)

The improvement in a wind turbine comprises providing a tower with a freely liftable mount and adapting a nacelle which is fitted with a propeller windwheel consisting of a plurality of rotor blades and provided therein with means for conversion of wind energy to be shifted onto said mount attached to the tower. In case of a violent wind storm, the nacelle can be lowered down to the ground to protect the rotor blades from breakage due to the force of the wind. Required maintenance and inspection of the nacelle and replacement of rotor blades can be safely carried out on the ground.

Abe, M.

1982-01-19T23:59:59.000Z

143

36 AUGUST | 2011 EnhancEd TurbinE  

E-Print Network [OSTI]

36 AUGUST | 2011 EnhancEd TurbinE PErformancE moniToring comPonEnTs of wind TurbinEs are affected by asymmetric loads, variable wind speeds, and se- vere weather conditions which cause wind turbines to change their states. A typical wind turbine under- goes various states during its daily operations. The wind turbine

Kusiak, Andrew

144

Turbine assembly containing an inner shroud  

DOE Patents [OSTI]

A turbine assembly having a turbine stator, a ceramic inner shroud, and a first spring. The stator has a longitudinal axis and an outer shroud block with opposing and longitudinally outward facing first and second sides. The first side has a longitudinally outward projecting first ledge and has a first side portion located radially outward of the first ledge. The ceramic inner shroud has a first hook portion longitudinally and radially surrounding the first ledge. The first spring is attached to one of the first side portion and the first hook portion and unattachedly and resiliently contacts the other of the first side portion and the first hook portion.

Bagepalli, Bharat Sampathkumaran (Niskayuna, NY); Corman, Gregory Scot (Ballston Lake, NY); Dean, Anthony John (Scotia, NY); DiMascio, Paul Stephen (Clifton Park, NY); Mirdamadi, Massoud (Niskayuna, NY)

2000-01-01T23:59:59.000Z

145

Dynamic stall on wind turbine blades  

SciTech Connect (OSTI)

Dynamic loads must be predicted accurately in order to estimate the fatigue life of wind turbines operating in turbulent environments. Dynamic stall contributes to increased dynamic loads during normal operation of all types of horizontal-axis wind turbine (HAWTs). This report illustrates how dynamic stall varies throughout the blade span of a 10 m HAWT during yawed and unyawed operating conditions. Lift, drag, and pitching moment coefficients during dynamics stall are discussed. Resulting dynamic loads are presented, and the effects of dynamic stall on yaw loads are demonstrated using a yaw loads dynamic analysis (YAWDYN). 12 refs., 22 figs., 1 tab.

Butterfield, C.P.; Simms, D.; Scott, G. [National Renewable Energy Lab., Golden, CO (United States)] [National Renewable Energy Lab., Golden, CO (United States); Hansen, A.C. [Utah Univ., Salt Lake City, UT (United States)] [Utah Univ., Salt Lake City, UT (United States)

1991-12-01T23:59:59.000Z

146

DEVELOPMENT OF MODIFIED WIND TURBINE: A PAST REVIEW  

E-Print Network [OSTI]

Wind energy represents a viable alternative, as it is a virtually endless resource. Through the next several decades, renewable energy technologies, thanks to their continually improving performance and cost, and growing recognition of their Environmental, economic and social values, will grow increasingly competitive with Traditional energy technologies, so that by the middle of the 21 st century, renewable Energy, in its various forms, should be supplying half of the world’s energy needs. In this paper various types of wind turbine are reviewed to understand and the development and modification of horizontal axis wind turbine and how more power can be generated compared to bare turbine of the same rotor blade diameter.

Rob Res; N R Deshmukh; S J Deshmukh; N R Deshmukh; S J Deshmukh

147

Wind shear for large wind turbine generators at selected tall tower sites  

SciTech Connect (OSTI)

The objective of the study described in this report is to examine the nature of wind shear profiles and their variability over the height of large horizontal-axis wind turbines and to provide information on wind shear relevant to the design and opertion of large wind turbines. Wind turbine fatigue life and power quality are related through the forcing functions on the blade to the shapes of the wind shear profiles and their fluctuations over the disk of rotation.

Elliott, D.L.

1984-04-01T23:59:59.000Z

148

Foam Cleaning of Steam Turbines  

E-Print Network [OSTI]

The efficiency and power output of a steam turbine can be dramatically reduced when deposits form on the turbine blades. Disassembly and mechanical cleaning of the turbine is very time consuming and costly. Deposits can be removed from the turbine...

Foster, C.; Curtis, G.; Horvath, J. W.

149

Resonances of a Forced Mathieu Equation with Reference to Wind Turbine Blades  

E-Print Network [OSTI]

Resonances of a Forced Mathieu Equation with Reference to Wind Turbine Blades Venkatanarayanan Engineering Michigan State University East Lansing, Michigan 48824 Abstract A horizontal axis wind turbine blade in steady rotation endures cyclic transverse loading due to wind shear, tower shadowing

Feeny, Brian

150

Wind Turbines Benefit Crops  

ScienceCinema (OSTI)

Ames Laboratory associate scientist Gene Takle talks about research into the effect of wind turbines on nearby crops. Preliminary results show the turbines may have a positive effect by cooling and drying the crops and assisting with carbon dioxide uptake.

Takle, Gene

2013-03-01T23:59:59.000Z

151

Combined Cycle Combustion Turbines  

E-Print Network [OSTI]

Combined Cycle Combustion Turbines Steven Simmons February 27 2014 1 #12;CCCT Today's Discussion 1 Meeting Pricing of 4 advanced units using information from Gas Turbine World Other cost estimates from E E3 EIA Gas Turbine World California Energy Commission Date 2010 Oct 2012, Dec 2013 Apr 2013 2013 Apr

152

International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, ISROMAC-14 February 27  

E-Print Network [OSTI]

Cedex, FRANCE annie-claude.bayeul@ensam.eu Abstract The vertical axis wind turbine studied in this paper) horizontal-axis wind turbine (HAWTs) and (ii) vertical-axis wind turbine (VAWTs). Figure 1 shows typical: Numerical simulations, performance coefficient, unsteady simulation, VAWT, vertical axis, wind energy, pitch

Paris-Sud XI, Université de

153

Method of making a wooden wind turbine blade  

DOE Patents [OSTI]

A wooden wind turbine blade is formed by laminating wood veneer in a compression mold having the exact curvature needed for one side of the blade, following which the other side of the blade is ground flat along its length but twisted with respect to the blade axis. 8 figs.

Coleman, C.

1984-08-14T23:59:59.000Z

154

Method of making a wooden wind turbine blade  

DOE Patents [OSTI]

A wooden wind turbine blade is formed by laminating wood veneer in a compression mold having the exact curvature needed for one side of the blade, following which the other side of the blade is ground flat along its length but twisted with respect to the blade axis.

Coleman, Clint (Warren, VT)

1984-01-01T23:59:59.000Z

155

Introduction A joint research effort between McMaster UniversityA joint research effort between McMaster University  

E-Print Network [OSTI]

affect the performance of a vertical axis wind turbine.affect the performance of a vertical axis wind to investigate the implications of mounting vertical axisinvestigate the implications of mounting vertical axis wind turbines (VAWT) on buildings in urbanwind turbines (VAWT) on buildings in urban environments

Tullis, Stephen

156

Method and apparatus for wind turbine air gap control  

DOE Patents [OSTI]

Methods and apparatus for assembling a wind turbine generator are provided. The wind turbine generator includes a core and a plurality of stator windings circumferentially spaced about a generator longitudinal axis, a rotor rotatable about the generator longitudinal axis wherein the rotor includes a plurality of magnetic elements coupled to a radially outer periphery of the rotor such that an airgap is defined between the stator windings and the magnetic elements and the plurality of magnetic elements including a radially inner periphery having a first diameter. The wind turbine generator also includes a bearing including a first member in rotatable engagement with a radially inner second member, the first member including a radially outer periphery, a diameter of the radially outer periphery of the first member being substantially equal to the first diameter, the rotor coupled to the stator through the bearing such that a substantially uniform airgap is maintained.

Grant, James Jonathan; Bagepalli, Bharat Sampathkumaran; Jansen, Patrick Lee; DiMascio, Paul Stephen; Gadre, Aniruddha Dattatraya; Qu, Ronghai

2007-02-20T23:59:59.000Z

157

Estimation of the Risks of Collision or Strike to Freshwater Aquatic Organisms Resulting from Operation of Instream Hydrokinetic Turbines  

SciTech Connect (OSTI)

Hydrokinetic energy technologies have been proposed as renewable, environmentally preferable alternatives to fossil fuels for generation of electricity. Hydrokinetic technologies harness the energy of water in motion, either from waves, tides or from river currents. For energy capture from free-flowing rivers, arrays of rotating devices are most commonly proposed. The placement of hydrokinetic devices in large rivers is expected to increase the underwater structural complexity of river landscapes. Moore and Gregory (1988) found that structural complexity increased local fish populations because fish and other aquatic biota are attracted to structural complexity that provides microhabitats with steep flow velocity gradients (Liao 2007). However, hydrokinetic devices have mechanical parts, blades, wings or bars that move through the water column, posing a potential strike or collision risk to fish and other aquatic biota. Furthermore, in a setting with arrays of hydrokinetic turbines the cumulative effects of multiple encounters may increase the risk of strike. Submerged structures associated with a hydrokinetic (HK) project present a collision risk to aquatic organisms and diving birds (Cada et al. 2007). Collision is physical contact between a device or its pressure field and an organism that may result in an injury to that organism (Wilson et al. 2007). Collisions can occur between animals and fixed submerged structures, mooring equipment, horizontal or vertical axis turbine rotors, and structures that, by their individual design or in combination, may form traps. This report defines strike as a special case of collision where a moving part, such as a rotor blade of a HK turbine intercepts the path of an organism of interest, resulting in physical contact with the organism. The severity of a strike incidence may range from minor physical contact with no adverse effects to the organism to severe strike resulting in injury or death of the organism. Harmful effects to animal populations could occur directly (e.g., from strike mortality of individuals) or indirectly (e.g., if the loss of prey species to strike reduces food for predators). Although actively swimming or passively drifting animals may collide with any of the physical structures associated with hydrokinetic devices, turbine rotors are the most likely sources for risk of strike or significant collision (DOE 2009). It is also possible that during a close encounter with a HK device no physical contact will be made between the device and the organism, either because the animal avoids the device by successfully changing its direction of movement, or by successfully evading any moving parts of the device. Oak Ridge National Laboratory (ORNL) has been funded by the US Department of Energy (DOE) Waterpower Program to evaluate strike potential and consequences for Marine and Hydrokinetic (MHK) technologies in rivers and estuaries of the United States. We will use both predictive models and laboratory/field experiments to evaluate the likelihood and consequences of strike at HK projects in rivers. Efforts undertaken at ORNL address three objectives: (1) Assess strike risk for marine and freshwater organisms; (2) Develop experimental procedures to assess the risk and consequences of strike; and (3) Conduct strike studies in experimental flumes and field installations of hydrokinetic devices. During the first year of the study ORNL collected information from the Federal Energy Regulatory Commission (FERC) MHK database about geographical distribution of proposed hydrokinetic projects (what rivers or other types of systems), HK turbine design (horizontal axis, vertical axis, other), description of proposed axial turbine (number of blades, size of blades, rotation rate, mitigation measures), and number of units per project. Where site specific information was available, we compared the location of proposed projects rotors within the channel (e.g., along cutting edge bank, middle of thalweg, near bottom or in midwater) to the general locations of fish in the river (shoreline,

Schweizer, Peter E [ORNL; Cada, Glenn F [ORNL; Bevelhimer, Mark S [ORNL

2010-05-01T23:59:59.000Z

158

An approach to the development and analysis of wind turbine control algorithms  

SciTech Connect (OSTI)

The objective of this project is to develop the capability of symbolically generating an analytical model of a wind turbine for studies of control systems. This report focuses on a theoretical formulation of the symbolic equations of motion (EOMs) modeler for horizontal axis wind turbines. In addition to the power train dynamics, a generic 7-axis rotor assembly is used as the base model from which the EOMs of various turbine configurations can be derived. A systematic approach to generate the EOMs is presented using d`Alembert`s principle and Lagrangian dynamics. A Matlab M file was implemented to generate the EOMs of a two-bladed, free yaw wind turbine. The EOMs will be compared in the future to those of a similar wind turbine modeled with the YawDyn code for verification. This project was sponsored by Sandia National Laboratories as part of the Adaptive Structures and Control Task. This is the final report of Sandia Contract AS-0985.

Wu, K.C.

1998-03-01T23:59:59.000Z

159

Turbine blade tip flow discouragers  

DOE Patents [OSTI]

A turbine assembly comprises a plurality of rotating blade portions in a spaced relation with a stationery shroud. The rotating blade portions comprise a root section, a tip portion and an airfoil. The tip portion has a pressure side wall and a suction side wall. A number of flow discouragers are disposed on the blade tip portion. In one embodiment, the flow discouragers extend circumferentially from the pressure side wall to the suction side wall so as to be aligned generally parallel to the direction of rotation. In an alternative embodiment, the flow discouragers extend circumferentially from the pressure side wall to the suction side wall so as to be aligned at an angle in the range between about 0.degree. to about 60.degree. with respect to a reference axis aligned generally parallel to the direction of rotation. The flow discouragers increase the flow resistance and thus reduce the flow of hot gas flow leakage for a given pressure differential across the blade tip portion so as to improve overall turbine efficiency.

Bunker, Ronald Scott (Niskayuna, NY)

2000-01-01T23:59:59.000Z

160

Improving steam turbine efficiency  

SciTech Connect (OSTI)

This paper describes the condition of a significant number of fossil steam turbines operating in the United States and the maintenance practices used to improve their performance. Through the use of steam path audits conducted by the authors` company and by several utilities, a large data base of information on turbine heat rate, casing efficiency, and maintenance practices is available to help the power generation industry understand how different maintenance practices and steam path damage impact turbine performance. The data base reveals that turbine cycle heat rate is typically 5.23% poorer than design just prior to major outages. The degraded condition of steam turbines presents an opportunity for utilities to improve heat rate and reduce emissions without increasing fuel costs. The paper describes what losses typically contribute to the 5.23% heat rate degradation and how utilities can recover steam turbine performance through maintenance actions aimed at improving steam path efficiency.

Cioffi, D.H.; Mitchell, D.R.; Whitecar, S.C. [Encotech, Inc., Schenectady, NY (United States)

1995-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "vertical axis turbines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Predicting Steam Turbine Performance  

E-Print Network [OSTI]

," PREDICTING STEAM TURBINE PERFORMANCE James T. Harriz, EIT Waterland, Viar & Associates, Inc. Wilmington, Delaware ABSTRACT Tracking the performance of extraction, back pressure and condensing steam turbines is a crucial part... energy) and test data are presented. Techniques for deriving efficiency curves from each source are described. These techniques can be applied directly to any steam turbine reliability study effort. INTRODUCTION As the cost of energy resources...

Harriz, J. T.

162

Direct drive wind turbine  

DOE Patents [OSTI]

A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

Bywaters, Garrett; Danforth, William; Bevington, Christopher; Jesse, Stowell; Costin, Daniel

2006-10-10T23:59:59.000Z

163

Direct drive wind turbine  

DOE Patents [OSTI]

A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

Bywaters, Garrett; Danforth, William; Bevington, Christopher; Stowell, Jesse; Costin, Daniel

2006-07-11T23:59:59.000Z

164

Direct drive wind turbine  

DOE Patents [OSTI]

A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

Bywaters, Garrett Lee; Danforth, William; Bevington, Christopher; Stowell, Jesse; Costin, Daniel

2006-09-19T23:59:59.000Z

165

Direct drive wind turbine  

DOE Patents [OSTI]

A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

Bywaters, Garrett; Danforth, William; Bevington, Christopher; Jesse, Stowell; Costin, Daniel

2007-02-27T23:59:59.000Z

166

Sandia National Laboratories: Study Compares Floating-Platform...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ClimateECEnergyStudy Compares Floating-Platform Options for Offshore Vertical-Axis Wind Turbines Study Compares Floating-Platform Options for Offshore Vertical-Axis Wind Turbines...

167

Economical Condensing Turbines?  

E-Print Network [OSTI]

an engineer decide when to conduct an in depth study of the economics either in the company or outside utilizing professional engineers who are experts in this type of project. Condensing steam turbines may not be economical when the fuel is purchased...Economical Condensing Turbines? by J.E.Dean, P.E. Steam turbines have long been used at utilities and in industry to generate power. There are three basic types of steam turbines: condensing, letdown 1 and extraction/condensing. ? Letdown...

Dean, J. E.

168

Barstow Wind Turbine Project  

Broader source: Energy.gov [DOE]

Presentation covers the Barstow Wind Turbine project for the Federal Utility Partnership Working Group (FUPWG) meeting, held on November 18-19, 2009.

169

Rampressor Turbine Design  

SciTech Connect (OSTI)

The design of a unique gas turbine engine is presented. The first Rampressor Turbine engine rig will be a configuration where the Rampressor rotor is integrated into an existing industrial gas turbine engine. The Rampressor rotor compresses air which is burned in a traditional stationary combustion system in order to increase the enthalpy of the compressed air. The combustion products are then expanded through a conventional gas turbine which provides both compressor and electrical power. This in turn produces shaft torque, which drives a generator to provide electricity. The design and the associated design process of such an engine are discussed in this report.

Ramgen Power Systems

2003-09-30T23:59:59.000Z

170

Optimizing wind turbine control system parameters  

SciTech Connect (OSTI)

The impending expiration of the levelized period in the Interim Standard Offer Number 4 (ISO4) utility contracts for purchasing wind-generated power in California mandates, more than ever, that windplants be operated in a cost-effective manner. Operating plans and approaches are needed that maximize the net revenue from wind parks--after accounting for operation and maintenance costs. This paper describes a design tool that makes it possible to tailor a control system of a wind turbine (WT) to maximize energy production while minimizing the financial consequences of fatigue damage to key structural components. Plans for code enhancements to include expert systems and fuzzy logic are discussed, and typical results are presented in which the code is applied to study the controls of a generic Danish 15-m horizontal axis wind turbine (HAWT).

Schluter, L.L. [Sandia National Labs., Albuquerque, NM (United States); Vachon, W.A. [Vachon (W.A.) and Associates, Inc., Manchester, MA (United States)

1993-08-01T23:59:59.000Z

171

Turbine disc sealing assembly  

DOE Patents [OSTI]

A disc seal assembly for use in a turbine engine. The disc seal assembly includes a plurality of outwardly extending sealing flange members that define a plurality of fluid pockets. The sealing flange members define a labyrinth flow path therebetween to limit leakage between a hot gas path and a disc cavity in the turbine engine.

Diakunchak, Ihor S.

2013-03-05T23:59:59.000Z

172

Gas turbine diagnostic system  

E-Print Network [OSTI]

In the given article the methods of parametric diagnostics of gas turbine based on fuzzy logic is proposed. The diagnostic map of interconnection between some parts of turbine and changes of corresponding parameters has been developed. Also we have created model to define the efficiency of the compressor using fuzzy logic algorithms.

Talgat, Shuvatov

2011-01-01T23:59:59.000Z

173

Single rotor turbine engine  

DOE Patents [OSTI]

There has been invented a turbine engine with a single rotor which cools the engine, functions as a radial compressor, pushes air through the engine to the ignition point, and acts as an axial turbine for powering the compressor. The invention engine is designed to use a simple scheme of conventional passage shapes to provide both a radial and axial flow pattern through the single rotor, thereby allowing the radial intake air flow to cool the turbine blades and turbine exhaust gases in an axial flow to be used for energy transfer. In an alternative embodiment, an electric generator is incorporated in the engine to specifically adapt the invention for power generation. Magnets are embedded in the exhaust face of the single rotor proximate to a ring of stationary magnetic cores with windings to provide for the generation of electricity. In this alternative embodiment, the turbine is a radial inflow turbine rather than an axial turbine as used in the first embodiment. Radial inflow passages of conventional design are interleaved with radial compressor passages to allow the intake air to cool the turbine blades.

Platts, David A. (Los Alamos, NM)

2002-01-01T23:59:59.000Z

174

Ceramic Cerami Turbine Nozzle  

DOE Patents [OSTI]

A turbine nozzle vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The metallic components having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine nozzle vane assembly. The turbine nozzle vane assembly includes an outer shroud and an inner shroud having a plurality of horizontally segmented vanes therebetween being positioned by a connecting member positioning segmented vanes in functional relationship one to another. The turbine nozzle vane assembly provides an economical, reliable and effective ceramic component having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the other component.

Boyd, Gary L. (Alpine, CA)

1997-04-01T23:59:59.000Z

175

DEVELOPMENT OF OPTIMUM DESIGN CONFIGURATION AND  

E-Print Network [OSTI]

DEVELOPMENT OF OPTIMUM DESIGN CONFIGURATION AND PERFORMANCE FOR VERTICAL AXIS WIND TURBINE Prepared DESIGN CONFIGURATION AND PERFORMANCE FOR VERTICAL AXIS WIND TURBINE EISG AWARDEE Mechanical and Aerospace://www.energy.ca.gov/research/index.html. #12;Page 1 Development Of Optimum Design Configuration And Performance For Vertical Axis Wind Turbine

176

International Conference on Experiments/Process/System Modeling/Simulation/Optimization Athens, 6-9 July, 2011  

E-Print Network [OSTI]

-EpsMs0 Athens, 6-9 July, 2011 © IC-EpsMsO NUMERICAL SIMULATION IN VERTICAL WIND AXIS TURBINE WITH PITCH turbine (HAWTs) and vertical-axis wind turbine (VAWTs)The present study concerns a small VAWT technology.simonet@ensam.eu Keywords: numerical simulation, performance coefficient, unsteady simulation, VAWT, vertical axis, wind

Paris-Sud XI, Université de

177

SAND80-0984 Unlimited Release  

E-Print Network [OSTI]

PROCEEDINGS OF THE VERTICAL AXIS WIND TURBINE (VAWT) DESIGN TECHNOLOGY SEMINAR FOR INDUSTRY April 1, 2, and 3 OF CURRENT AND FUTURE VAWT SYSTEMS Current and Future Design Characteristics of Vertical Axis Wind Turbines E. G. Kadlec 17 Meter Vertical Axis Wind Turbine (VAWT) R. D. Grover Design Characteristics of the DOE

178

Efficiencies of Solar Tracker systems with static panel Single- Axis Tracking System and Dual-Axis  

E-Print Network [OSTI]

solar tracking system for single axis as well as for dual axis. In a fixed form their efficiency is low

unknown authors

179

Wind Turbine Blockset General Overview  

E-Print Network [OSTI]

Wind Turbine Blockset in Saber General Overview and Description of the Models Florin Iov, Adrian Turbine Blockset in Saber Abstract. This report presents a new developed Saber Toolbox for wind turbine, optimize and design wind turbines". The report provides a quick overview of the Saber and then explains

180

Cooled snubber structure for turbine blades  

DOE Patents [OSTI]

A turbine blade assembly in a turbine engine. The turbine blade assembly includes a turbine blade and a first snubber structure. The turbine blade includes an internal cooling passage containing cooling air. The first snubber structure extends outwardly from a sidewall of the turbine blade and includes a hollow interior portion that receives cooling air from the internal cooling passage of the turbine blade.

Mayer, Clinton A; Campbell, Christian X; Whalley, Andrew; Marra, John J

2014-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "vertical axis turbines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Wind Turbine Acoustic Noise A white paper  

E-Print Network [OSTI]

Wind Turbine Acoustic Noise A white paper Prepared by the Renewable Energy Research Laboratory...................................................................... 8 Sound from Wind Turbines .............................................................................................. 10 Sources of Wind Turbine Sound

Massachusetts at Amherst, University of

182

OVERLAY COATINGS FOR GAS TURBINE AIRFOILS  

E-Print Network [OSTI]

R. Krutenat, Gas Turbine Materials Conference Proceedings,Conference on Gas Turbine Materials in a Marine Environment,in developing new turbine materials, coatings and processes,

Boone, Donald H.

2013-01-01T23:59:59.000Z

183

Composite turbine bucket assembly  

DOE Patents [OSTI]

A composite turbine blade assembly includes a ceramic blade including an airfoil portion, a shank portion and an attachment portion; and a transition assembly adapted to attach the ceramic blade to a turbine disk or rotor, the transition assembly including first and second transition components clamped together, trapping said ceramic airfoil therebetween. Interior surfaces of the first and second transition portions are formed to mate with the shank portion and the attachment portion of the ceramic blade, and exterior surfaces of said first and second transition components are formed to include an attachment feature enabling the transition assembly to be attached to the turbine rotor or disk.

Liotta, Gary Charles; Garcia-Crespo, Andres

2014-05-20T23:59:59.000Z

184

Gas turbine combustor transition  

DOE Patents [OSTI]

A method is described for converting a steam cooled transition to an air cooled transition in a gas turbine having a compressor in fluid communication with a combustor, a turbine section in fluid communication with the combustor, the transition disposed in a combustor shell and having a cooling circuit connecting a steam outlet and a steam inlet and wherein hot gas flows from the combustor through the transition and to the turbine section, includes forming an air outlet in the transition in fluid communication with the cooling circuit and providing for an air inlet in the transition in fluid communication with the cooling circuit. 7 figs.

Coslow, B.J.; Whidden, G.L.

1999-05-25T23:59:59.000Z

185

Gas turbine combustor transition  

DOE Patents [OSTI]

A method of converting a steam cooled transition to an air cooled transition in a gas turbine having a compressor in fluid communication with a combustor, a turbine section in fluid communication with the combustor, the transition disposed in a combustor shell and having a cooling circuit connecting a steam outlet and a steam inlet and wherein hot gas flows from the combustor through the transition and to the turbine section, includes forming an air outlet in the transition in fluid communication with the cooling circuit and providing for an air inlet in the transition in fluid communication with the cooling circuit.

Coslow, Billy Joe (Winter Park, FL); Whidden, Graydon Lane (Great Blue, CT)

1999-01-01T23:59:59.000Z

186

Turbine blade vibration dampening  

DOE Patents [OSTI]

The present turbine wheel assembly increases component life and turbine engine longevity. The combination of the strap and the opening combined with the preestablished area of the outer surface of the opening and the preestablished area of the outer circumferential surface of the strap and the friction between the strap and the opening increases the life and longevity of the turbine wheel assembly. Furthermore, the mass "M" or combined mass "CM" of the strap or straps and the centrifugal force assist in controlling vibrations and damping characteristics.

Cornelius, Charles C. (San Diego, CA); Pytanowski, Gregory P. (San Diego, CA); Vendituoli, Jonathan S. (San Diego, CA)

1997-07-08T23:59:59.000Z

187

Turbine blade vibration dampening  

DOE Patents [OSTI]

The present turbine wheel assembly increases component life and turbine engine longevity. The combination of the strap and the opening combined with the preestablished area of the outer surface of the opening and the preestablished area of the outer circumferential surface of the strap and the friction between the strap and the opening increases the life and longevity of the turbine wheel assembly. Furthermore, the mass ``M`` or combined mass ``CM`` of the strap or straps and the centrifugal force assist in controlling vibrations and damping characteristics. 5 figs.

Cornelius, C.C.; Pytanowski, G.P.; Vendituoli, J.S.

1997-07-08T23:59:59.000Z

188

Medial Axis Local Planner: Local Planning for Medial Axis Roadmaps  

E-Print Network [OSTI]

is the Probabilistic Roadman Method (PRM), which generates a graph of the free space of an environment referred to as a roadmap. In this work we describe a new approach to making high clearance paths when using PRM The medial axis is useful for this since...

Manavi, Kasra Mehron

2012-07-16T23:59:59.000Z

189

Two-axis angular effector  

DOE Patents [OSTI]

A new class of coplanar two-axis angular effectors. These effectors combine a two-axis rotational joint analogous to a Cardan joint with linear actuators in a manner to produce a wider range of rotational motion about both axes defined by the joint. This new class of effectors also allows design of robotic manipulators having very high strength and efficiency. These effectors are particularly suited for remote operation in unknown surroundings, because of their extraordinary versatility. An immediate application is to the problems which arise in nuclear waste remediation.

Vaughn, Mark R. (Albuquerque, NM); Robinett, III, Rush D. (Tijeras, NM); Phelan, John R. (Albuquerque, NM); Van Zuiden, Don M. (Albuquerque, NM)

1997-01-21T23:59:59.000Z

190

Methods and apparatus for cooling wind turbine generators  

DOE Patents [OSTI]

A wind turbine generator includes a stator having a core and a plurality of stator windings circumferentially spaced about a generator longitudinal axis. A rotor is rotatable about the generator longitudinal axis, and the rotor includes a plurality of magnetic elements coupled to the rotor and cooperating with the stator windings. The magnetic elements are configured to generate a magnetic field and the stator windings are configured to interact with the magnetic field to generate a voltage in the stator windings. A heat pipe assembly thermally engaging one of the stator and the rotor to dissipate heat generated in the stator or rotor.

Salamah, Samir A. (Niskayuna, NY); Gadre, Aniruddha Dattatraya (Rexford, NY); Garg, Jivtesh (Schenectady, NY); Bagepalli, Bharat Sampathkumaran (Niskayuna, NY); Jansen, Patrick Lee (Alplaus, NY); Carl, Jr., Ralph James (Clifton Park, NY)

2008-10-28T23:59:59.000Z

191

Industrial Gas Turbines  

Broader source: Energy.gov [DOE]

A gas turbine is a heat engine that uses high-temperature, high-pressure gas as the working fluid. Part of the heat supplied by the gas is converted directly into mechanical work. High-temperature,...

192

Quiet airfoils for small and large wind turbines  

DOE Patents [OSTI]

Thick airfoil families with desirable aerodynamic performance with minimal airfoil induced noise. The airfoil families are suitable for a variety of wind turbine designs and are particularly well-suited for use with horizontal axis wind turbines (HAWTs) with constant or variable speed using pitch and/or stall control. In exemplary embodiments, a first family of three thick airfoils is provided for use with small wind turbines and second family of three thick airfoils is provided for use with very large machines, e.g., an airfoil defined for each of three blade radial stations or blade portions defined along the length of a blade. Each of the families is designed to provide a high maximum lift coefficient or high lift, to exhibit docile stalls, to be relatively insensitive to roughness, and to achieve a low profile drag.

Tangler, James L. (Boulder, CO); Somers, Dan L. (Port Matilda, PA)

2012-06-12T23:59:59.000Z

193

Application of Damage Detection Techniques Using Wind Turbine Modal Data  

SciTech Connect (OSTI)

As any structure ages, its structural characteristics will also change. The goal of this work was to determine if modal response data fkom a wind turbine could be used in the detection of damage. The input stimuli to the wind turbine were from traditional modal hammer input and natural wind excitation. The structural response data was acquired using accelerometers mounted on the rotor of a parked and undamaged horizontal-axis wind turbine. The bolts at the root of one of the three blades were then loosened to simulate a damaged blade. The structural response data of the rotor was again recorded. The undamaged and damage-simulated datasets were compared using existing darnage detection algorithms. Also, a novel algorithm for combining the results of different damage detection algorithms was utilized in the assessment of the data. This paper summarizes the code development and discusses some preliminary damage detection results.

Gross, E.; Rumsey, M.; Simmermacher, T.; Zadoks, R.I.

1998-12-17T23:59:59.000Z

194

Traction drive automatic transmission for gas turbine engine driveline  

DOE Patents [OSTI]

A transaxle driveline for a wheeled vehicle has a high speed turbine engine and a torque splitting gearset that includes a traction drive unit and a torque converter on a common axis transversely arranged with respect to the longitudinal centerline of the vehicle. The drive wheels of the vehicle are mounted on a shaft parallel to the turbine shaft and carry a final drive gearset for driving the axle shafts. A second embodiment of the final drive gearing produces an overdrive ratio between the output of the first gearset and the axle shafts. A continuously variable range of speed ratios is produced by varying the position of the drive rollers of the traction unit. After starting the vehicle from rest, the transmission is set for operation in the high speed range by engaging a first lockup clutch that joins the torque converter impeller to the turbine for operation as a hydraulic coupling.

Carriere, Donald L. (Livonia, MI)

1984-01-01T23:59:59.000Z

195

Turbine airfoil with an internal cooling system having vortex forming turbulators  

DOE Patents [OSTI]

A turbine airfoil usable in a turbine engine and having at least one cooling system is disclosed. At least a portion of the cooling system may include one or more cooling channels having a plurality of turbulators protruding from an inner surface and positioned generally nonorthogonal and nonparallel to a longitudinal axis of the airfoil cooling channel. The configuration of turbulators may create a higher internal convective cooling potential for the blade cooling passage, thereby generating a high rate of internal convective heat transfer and attendant improvement in overall cooling performance. This translates into a reduction in cooling fluid demand and better turbine performance.

Lee, Ching-Pang

2014-12-30T23:59:59.000Z

196

High-Rise Residential Building Energy Analysis in Shanghai, China  

E-Print Network [OSTI]

Phase Change Material PV Photovoltaic RMSE Root Mean Square Error SHGC Solar Heat Gain Coefficient SWH Solar Water Heating VAWT Vertical Axis Wind Turbine vii VBDD model Variable-Base Degree... to produce electricity, the wind power system is called a wind turbine. Wind turbines have two general types: horizontal axis wind turbines (HAWTs) with its blades rotating on an axis parallel to the ground; vertical axis wind turbines (VAWTs) with its...

Zhou, Hongyun

2014-07-30T23:59:59.000Z

197

Aerodynamic pressure and flow-visualization measurement from a rotating wind turbine blade  

SciTech Connect (OSTI)

Aerodynamic, load, flow-visualization, and inflow measurements have been made on a 10-m, three-bladed, downwind, horizontal-axis wind turbine (HAWT). A video camera mounted on the rotor was used to record nighttime and daytime video images of tufts attached to the low-pressure side of a constant-chord, zero-twist blade. Load measurements were made using strain gages mounted at every 10% of the blade's span. Pressure measurements were made at 80% of the blade's span. Pressure taps were located at 32 chordwise positions, revealing pressure distributions comparable with wind tunnel data. Inflow was measured using a vertical-plane array of eight propvane and five triaxial (U-V-W) prop-type anemometers located 10 m upwind in the predominant wind direction. One objective of this comprehensive research program was to study the effects of blade rotation on aerodynamic behavior below, near, and beyond stall. To this end, flow patterns are presented here that reveal the dynamic and steady behavior of flow conditions on the blade. Pressure distributions are compared to flow patterns and two-dimensional wind tunnel data. Separation boundary locations are shown that change as a function of spanwise location, pitch angle, and wind speed. 6 refs., 23 figs., 1 tab.

Butterfield, C.P.

1988-11-01T23:59:59.000Z

198

Hydraulic multistage turbine of turbodrill  

SciTech Connect (OSTI)

This patent describes a turbodrill provided with a rock destruction tool for drilling wells, a hydraulic turbine for driving the rock destruction tool under the action of a drilling fluid, comprising: identical stages formed by one stator and one rotor; the stator of one stage; a spacing sleeve of the stator; a ring of the stator incorporating: a hub; a blading formed by a multitude of blades equally spaced on the inside of the hub of the stator ring; a rim secured to the blades at the tips away from the hub, and a flow channel for passing the drilling fluid arranged between the hub and the rim, and accommodating the blading; blades of the blading which, at least in a number of the stator rings from the plurality of stages, are made with an angle of curvature of the chamber line being greater than an acute angle formed by the tangent to this line at the exit of the blading and the axis of drilling fluid flow; the rotor of one state arranged coaxially with the stator; a spacing sleeve of the rotor; and a ring of the rotor.

Brudny-Chelyadinov, S.J.; Budyansky, V.S.; Filimonov, V.A.

1987-06-30T23:59:59.000Z

199

Probabilistic fatigue methodology and wind turbine reliability  

SciTech Connect (OSTI)

Wind turbines subjected to highly irregular loadings due to wind, gravity, and gyroscopic effects are especially vulnerable to fatigue damage. The objective of this study is to develop and illustrate methods for the probabilistic analysis and design of fatigue-sensitive wind turbine components. A computer program (CYCLES) that estimates fatigue reliability of structural and mechanical components has been developed. A FORM/SORM analysis is used to compute failure probabilities and importance factors of the random variables. The limit state equation includes uncertainty in environmental loading, gross structural response, and local fatigue properties. Several techniques are shown to better study fatigue loads data. Common one-parameter models, such as the Rayleigh and exponential models are shown to produce dramatically different estimates of load distributions and fatigue damage. Improved fits may be achieved with the two-parameter Weibull model. High b values require better modeling of relatively large stress ranges; this is effectively done by matching at least two moments (Weibull) and better by matching still higher moments. For this purpose, a new, four-moment {open_quotes}generalized Weibull{close_quotes} model is introduced. Load and resistance factor design (LRFD) methodology for design against fatigue is proposed and demonstrated using data from two horizontal-axis wind turbines. To estimate fatigue damage, wind turbine blade loads have been represented by their first three statistical moments across a range of wind conditions. Based on the moments {mu}{sub 1}{hor_ellipsis}{mu}{sub 3}, new {open_quotes}quadratic Weibull{close_quotes} load distribution models are introduced. The fatigue reliability is found to be notably affected by the choice of load distribution model.

Lange, C.H. [Stanford Univ., CA (United States)

1996-05-01T23:59:59.000Z

200

Why Condensing Steam Turbines are More Efficient than Gas Turbines  

E-Print Network [OSTI]

WHY CONDENSING STEAM TURBINES ARE MORE EFFICIENT THAN GAS TURBINES KENNETH E. NELSON Associate Energy Consultant Dow Chemical U.S.A. Plaquemine. Louisiana INTRODUCTION AND ABSTRACT Consider the following questions: 1. Which is bigger... statement. however, is relevant to value. GAS TURBINE CYCLE Figure :> shows the enthalpy analysis for a gas turbine cycle employing a heat recovery unit for steam generation. Air enters the compressor where it's boosted to about 190 psi and mixed...

Nelson, K. E.

Note: This page contains sample records for the topic "vertical axis turbines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Turbine tip clearance loss mechanisms  

E-Print Network [OSTI]

Three-dimensional numerical simulations (RANS and URANS) were used to assess the impact of two specific design features, and of aspects of the actual turbine environment, on turbine blade tip loss. The calculations were ...

Mazur, Steven (Steven Andrew)

2013-01-01T23:59:59.000Z

202

Ceramic stationary gas turbine  

SciTech Connect (OSTI)

The performance of current industrial gas turbines is limited by the temperature and strength capabilities of the metallic structural materials in the engine hot section. Because of their superior high-temperature strength and durability, ceramics can be used as structural materials for hot section components (blades, nozzles, combustor liners) in innovative designs at increased turbine firing temperatures. The benefits include the ability to increase the turbine inlet temperature (TIT) to about 1200{degrees}C ({approx}2200{degrees}F) or more with uncooled ceramics. It has been projected that fully optimized stationary gas turbines would have a {approx}20 percent gain in thermal efficiency and {approx}40 percent gain in output power in simple cycle compared to all metal-engines with air-cooled components. Annual fuel savings in cogeneration in the U.S. would be on the order of 0.2 Quad by 2010. Emissions reductions to under 10 ppmv NO{sub x} are also forecast. This paper describes the progress on a three-phase, 6-year program sponsored by the U.S. Department of Energy, Office of Industrial Technologies, to achieve significant performance improvements and emissions reductions in stationary gas turbines by replacing metallic hot section components with ceramic parts. Progress is being reported for the period September 1, 1994, through September 30, 1995.

Roode, M. van

1995-12-31T23:59:59.000Z

203

Model Predictive Control Wind Turbines  

E-Print Network [OSTI]

Model Predictive Control of Wind Turbines Martin Klauco Kongens Lyngby 2012 IMM-MSc-2012-65 #12;Summary Wind turbines are the biggest part of the green energy industry. Increasing interest control strategies. Control strategy has a significant impact on the wind turbine operation on many levels

204

Optimization of Wind Turbine Operation  

E-Print Network [OSTI]

Optimization of Wind Turbine Operation by Use of Spinner Anemometer TF Pedersen, NN Sørensen, L Title: Optimization of Wind Turbine Operation by Use of Spinner Anemometer Department: Wind Energy prototype wind turbine. Statistics of the yaw error showed an average of about 10°. The average flow

205

Dynamic behavior analysis for a six axis industrial machining robot  

E-Print Network [OSTI]

The six axis robots are widely used in automotive industry for their good repeatability (as defined in the ISO92983) (painting, welding, mastic deposition, handling etc.). In the aerospace industry, robot starts to be used for complex applications such as drilling, riveting, fiber placement, NDT, etc. Given the positioning performance of serial robots, precision applications require usually external measurement device with complexes calibration procedure in order to reach the precision needed. New applications in the machining field of composite material (aerospace, naval, or wind turbine for example) intend to use off line programming of serial robot without the use of calibration or external measurement device. For those applications, the position, orientation and path trajectory precision of the tool center point of the robot are needed to generate the machining operation. This article presents the different conditions that currently limit the development of robots in robotic machining applications. We ana...

Bisu, Claudiu-Florinel; Gérard, Alain; K'Nevez, Jean-Yves

2012-01-01T23:59:59.000Z

206

Gas turbine sealing apparatus  

DOE Patents [OSTI]

A gas turbine includes forward and aft rows of rotatable blades, a row of stationary vanes between the forward and aft rows of rotatable blades, an annular intermediate disc, and a seal housing apparatus. The forward and aft rows of rotatable blades are coupled to respective first and second portions of a disc/rotor assembly. The annular intermediate disc is coupled to the disc/rotor assembly so as to be rotatable with the disc/rotor assembly during operation of the gas turbine. The annular intermediate disc includes a forward side coupled to the first portion of the disc/rotor assembly and an aft side coupled to the second portion of the disc/rotor assembly. The seal housing apparatus is coupled to the annular intermediate disc so as to be rotatable with the annular intermediate disc and the disc/rotor assembly during operation of the gas turbine.

Wiebe, David J; Wessell, Brian J; Ebert, Todd; Beeck, Alexander; Liang, George; Marussich, Walter H

2013-02-19T23:59:59.000Z

207

Refurbishing steam turbines  

SciTech Connect (OSTI)

Power-plant operators are reducing maintenance costs of their aging steam turbines by using wire-arc spray coating and shot peening to prolong the service life of components, and by replacing outmoded bearings and seals with newer designs. Steam-turbine operators are pressed with the challenge of keeping their aging machines functioning in the face of wear problems that are exacerbated by the demand for higher efficiencies. These problems include intense thermal cycling during both start-up and shutdown, water particles in steam and solid particles in the air that pit smooth surfaces, and load changes that cause metal fatigue.

Valenti, M.

1997-12-01T23:59:59.000Z

208

Ceramic gas turbine shroud  

DOE Patents [OSTI]

An example gas turbine engine shroud includes a first annular ceramic wall having an inner side for resisting high temperature turbine engine gasses and an outer side with a plurality of radial slots. A second annular metallic wall is positioned radially outwardly of and enclosing the first annular ceramic wall and has a plurality of tabs in communication with the slot of the first annular ceramic wall. The tabs of the second annular metallic wall and slots of the first annular ceramic wall are in communication such that the first annular ceramic wall and second annular metallic wall are affixed.

Shi, Jun; Green, Kevin E.

2014-07-22T23:59:59.000Z

209

Velocity pump reaction turbine  

DOE Patents [OSTI]

An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

House, Palmer A. (Walnut Creek, CA)

1982-01-01T23:59:59.000Z

210

Velocity pump reaction turbine  

DOE Patents [OSTI]

An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

House, Palmer A. (Walnut Creek, CA)

1984-01-01T23:59:59.000Z

211

Multiple piece turbine airfoil  

DOE Patents [OSTI]

A turbine airfoil, such as a rotor blade or a stator vane, for a gas turbine engine, the airfoil formed as a shell and spar construction with a plurality of dog bone struts each mounted within openings formed within the shell and spar to allow for relative motion between the spar and shell in the airfoil chordwise direction while also forming a seal between adjacent cooling channels. The struts provide the seal as well as prevent bulging of the shell from the spar due to the cooling air pressure.

Kimmel, Keith D (Jupiter, FL); Wilson, Jr., Jack W. (Palm Beach Gardens, FL)

2010-11-02T23:59:59.000Z

212

ADVANCED TURBINE SYSTEMS PROGRAM  

SciTech Connect (OSTI)

Natural gas combustion turbines are rapidly becoming the primary technology of choice for generating electricity. At least half of the new generating capacity added in the US over the next twenty years will be combustion turbine systems. The Department of Energy has cosponsored with Siemens Westinghouse, a program to maintain the technology lead in gas turbine systems. The very ambitious eight year program was designed to demonstrate a highly efficient and commercially acceptable power plant, with the ability to fire a wide range of fuels. The main goal of the Advanced Turbine Systems (ATS) Program was to develop ultra-high efficiency, environmentally superior and cost effective competitive gas turbine systems for base load application in utility, independent power producer and industrial markets. Performance targets were focused on natural gas as a fuel and included: System efficiency that exceeds 60% (lower heating value basis); Less than 10 ppmv NO{sub x} emissions without the use of post combustion controls; Busbar electricity that are less than 10% of state of the art systems; Reliability-Availability-Maintainability (RAM) equivalent to current systems; Water consumption minimized to levels consistent with cost and efficiency goals; and Commercial systems by the year 2000. In a parallel effort, the program was to focus on adapting the ATS engine to coal-derived or biomass fuels. In Phase 1 of the ATS Program, preliminary investigators on different gas turbine cycles demonstrated that net plant LHV based efficiency greater than 60% was achievable. In Phase 2 the more promising cycles were evaluated in greater detail and the closed-loop steam-cooled combined cycle was selected for development because it offered the best solution with least risk for achieving the ATS Program goals for plant efficiency, emissions, cost of electricity and RAM. Phase 2 also involved conceptual ATS engine and plant design and technology developments in aerodynamics, sealing, combustion, cooling, materials, coatings and casting development. The market potential for the ATS gas turbine in the 2000-2014 timeframe was assessed for combined cycle, simple cycle and integrated gasification combined cycle, for three engine sizes. The total ATS market potential was forecasted to exceed 93 GW. Phase 3 and Phase 3 Extension involved further technology development, component testing and W501ATS engine detail design. The technology development efforts consisted of ultra low NO{sub x} combustion, catalytic combustion, sealing, heat transfer, advanced coating systems, advanced alloys, single crystal casting development and determining the effect of steam on turbine alloys. Included in this phase was full-load testing of the W501G engine at the McIntosh No. 5 site in Lakeland, Florida.

Gregory Gaul

2004-04-21T23:59:59.000Z

213

1 Copyright 2010 by ASME Proceedings of ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting and 8th International  

E-Print Network [OSTI]

OF A HIGH SOLIDITY, LOW ROTATIONAL VELOCITY, VERTICAL AXIS WIND TURBINE Kevin W. McLaren McMaster University. The vertical axis wind turbine under invest axis wind turbine. The primary vibration response was resonance excitation of the dominant whirling

Tullis, Stephen

214

IOP PUBLISHING BIOINSPIRATION & BIOMIMETICS Bioinsp. Biomim. 5 (2010) 035005 (6pp) doi:10.1088/1748-3182/5/3/035005  

E-Print Network [OSTI]

.1088/1748-3182/5/3/035005 Fish schooling as a basis for vertical axis wind turbine farm design* Robert W Whittlesey1, Sebastian-diameters laterally [4, 9]. An alternative paradigm for wind energy extraction is found in vertical axis wind turbine at stacks.iop.org/BB/5/035005 Abstract Most wind farms consist of horizontal axis wind turbines (HAWTs) due

Dabiri, John O.

215

Micromachined electrostatic vertical actuator  

DOE Patents [OSTI]

A micromachined vertical actuator utilizing a levitational force, such as in electrostatic comb drives, provides vertical actuation that is relatively linear in actuation for control, and can be readily combined with parallel plate capacitive position sensing for position control. The micromachined electrostatic vertical actuator provides accurate movement in the sub-micron to micron ranges which is desirable in the phase modulation instrument, such as optical phase shifting. For example, compact, inexpensive, and position controllable micromirrors utilizing an electrostatic vertical actuator can replace the large, expensive, and difficult-to-maintain piezoelectric actuators. A thirty pound piezoelectric actuator with corner cube reflectors, as utilized in a phase shifting diffraction interferometer can be replaced with a micromirror and a lens. For any very precise and small amplitudes of motion` micromachined electrostatic actuation may be used because it is the most compact in size, with low power consumption and has more straightforward sensing and control options.

Lee, Abraham P. (Walnut Creek, CA); Sommargren, Gary E. (Santa Cruz, CA); McConaghy, Charles F. (Livermore, CA); Krulevitch, Peter A. (Pleasanton, CA)

1999-10-19T23:59:59.000Z

216

Turbine vane structure  

DOE Patents [OSTI]

A liquid cooled stator blade assembly for a gas turbine engine includes an outer shroud having a pair of liquid inlets and a pair of liquid outlets supplied through a header and wherein means including tubes support the header radially outwardly of the shroud and also couple the header with the pair of liquid inlets and outlets. A pair of turbine vanes extend radially between the shroud and a vane platform to define a gas turbine motive fluid passage therebetween; and each of the vanes is cooled by an internal body casting of super alloy material with a grooved layer of highly heat conductive material that includes spaced apart flat surface trailing edges in alignment with a flat trailing edge of the casting joined to wall segments of the liner which are juxtaposed with respect to the internal casting to form an array of parallel liquid inlet passages on one side of the vane and a second plurality of parallel liquid return passages on the opposite side of the vane; and a superalloy heat and wear resistant imperforate skin covers the outer surface of the composite blade including the internal casting and the heat conductive layer; a separate trailing edge section includes an internal casting and an outer skin butt connected to the end surfaces of the internal casting and the heat conductive layer to form an easily assembled liquid cooled trailing edge section in the turbine vane.

Irwin, John A. (Greenwood, IN)

1980-08-19T23:59:59.000Z

217

Flexible helical-axis stellarator  

DOE Patents [OSTI]

An 1=1 helical winding which spirals about a conventional planar, circular central conductor of a helical-axis stellarator adds a significant degree of flexibility by making it possible to control the rotational transform profile and shear of the magnetic fields confining the plasma in a helical-axis stellarator. The toroidal central conductor links a plurality of toroidal field coils which are separately disposed to follow a helical path around the central conductor in phase with the helical path of the 1=1 winding. This coil configuration produces bean-shaped magnetic flux surfaces which rotate around the central circular conductor in the same manner as the toroidal field generating coils. The additional 1=1 winding provides flexible control of the magnetic field generated by the central conductor to prevent the formation of low-order resonances in the rotational transform profile which can produce break-up of the equilibrium magnetic surfaces. Further, this additional winding can deepen the magnetic well which together with the flexible control provides increased stability.

Harris, Jeffrey H. (Oak Ridge, TN); Hender, Timothy C. (Abingdon, GB2); Carreras, Benjamin A. (Oak Ridge, TN); Cantrell, Jack L. (Oak Ridge, TN); Morris, Robert N. (Oak Ridge, TN)

1988-01-01T23:59:59.000Z

218

Turbine blade tip gap reduction system  

DOE Patents [OSTI]

A turbine blade sealing system for reducing a gap between a tip of a turbine blade and a stationary shroud of a turbine engine. The sealing system includes a plurality of flexible seal strips extending from a pressure side of a turbine blade generally orthogonal to the turbine blade. During operation of the turbine engine, the flexible seal strips flex radially outward extending towards the stationary shroud of the turbine engine, thereby reducing the leakage of air past the turbine blades and increasing the efficiency of the turbine engine.

Diakunchak, Ihor S.

2012-09-11T23:59:59.000Z

219

SMART POWER TURBINE  

SciTech Connect (OSTI)

Gas turbines are the choice technology for high-performance power generation and are employed in both simple and combined cycle configurations around the world. The Smart Power Turbine (SPT) program has developed new technologies that are needed to further extend the performance and economic attractiveness of gas turbines for power generation. Today's power generation gas turbines control firing temperatures indirectly, by measuring the exhaust gas temperature and then mathematically calculating the peak combustor temperatures. But temperatures in the turbine hot gas path vary a great deal, making it difficult to control firing temperatures precisely enough to achieve optimal performance. Similarly, there is no current way to assess deterioration of turbine hot-gas-path components without shutting down the turbine. Consequently, maintenance and component replacements are often scheduled according to conservative design practices based on historical fleet-averaged data. Since fuel heating values vary with the prevalent natural gas fuel, the inability to measure heating value directly, with sufficient accuracy and timeliness, can lead to maintenance and operational decisions that are less than optimal. GE Global Research Center, under this Smart Power Turbine program, has developed a suite of novel sensors that would measure combustor flame temperature, online fuel lower heating value (LHV), and hot-gas-path component life directly. The feasibility of using the ratio of the integrated intensities of portions of the OH emission band to determine the specific average temperature of a premixed methane or natural-gas-fueled combustion flame was demonstrated. The temperature determined is the temperature of the plasma included in the field of view of the sensor. Two sensor types were investigated: the first used a low-resolution fiber optic spectrometer; the second was a SiC dual photodiode chip. Both methods worked. Sensitivity to flame temperature changes was remarkably high, that is a 1-2.5% change in ratio for an 11.1 C (20 F) change in temperature at flame temperatures between 1482.2 C (2700 F) and 1760 C (3200 F). Sensor ratio calibration was performed using flame temperatures determined by calculations using the amount of unburned oxygen in the exhaust and by the fuel/air ratio of the combustible gas mixture. The agreement between the results of these two methods was excellent. The sensor methods characterized are simple and viable. Experiments are underway to validate the GE Flame Temperature Sensor as a practical tool for use with multiburner gas turbine combustors. The lower heating value (LHV) Fuel Quality Sensor consists of a catalytic film deposited on the surface of a microhotplate. This micromachined design has low heat capacity and thermal conductivity, making it ideal for heating catalysts placed on its surface. Several methods of catalyst deposition were investigated, including micropen deposition and other proprietary methods, which permit precise and repeatable placement of the materials. The use of catalysts on the LHV sensor expands the limits of flammability (LoF) of combustion fuels as compared with conventional flames; an unoptimized LoF of 1-32% for natural gas (NG) in air was demonstrated with the microcombustor, whereas conventionally 4 to 16% is observed. The primary goal of this work was to measure the LHV of NG fuels. The secondary goal was to determine the relative quantities of the various components of NG mixes. This determination was made successfully by using an array of different catalysts operating at different temperatures. The combustion parameters for methane were shown to be dependent on whether Pt or Pd catalysts were used. In this project, significant effort was expended on making the LHV platform more robust by the addition of high-temperature stable materials, such as tantalum, and the use of passivation overcoats to protect the resistive heater/sensor materials from degradation in the combustion environment. Modeling and simulation were used to predict improved sensor designs.

Nirm V. Nirmalan

2003-11-01T23:59:59.000Z

220

Airborne Wind Turbine  

SciTech Connect (OSTI)

Broad Funding Opportunity Announcement Project: Makani Power is developing an Airborne Wind Turbine (AWT) that eliminates 90% of the mass of a conventional wind turbine and accesses a stronger, more consistent wind at altitudes of near 1,000 feet. At these altitudes, 85% of the country can offer viable wind resources compared to only 15% accessible with current technology. Additionally, the Makani Power wing can be economically deployed in deep offshore waters, opening up a resource which is 4 times greater than the entire U.S. electrical generation capacity. Makani Power has demonstrated the core technology, including autonomous launch, land, and power generation with an 8 meter wingspan, 20 kW prototype. At commercial scale, Makani Power aims to develop a 600 kW, 28 meter wingspan product capable of delivering energy at an unsubsidized cost competitive with coal, the current benchmark for low-cost power.

None

2010-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "vertical axis turbines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Advanced Hydrogen Turbine Development  

SciTech Connect (OSTI)

Siemens has developed a roadmap to achieve the DOE goals for efficiency, cost reduction, and emissions through innovative approaches and novel technologies which build upon worldwide IGCC operational experience, platform technology, and extensive experience in G-class operating conditions. In Phase 1, the technologies and concepts necessary to achieve the program goals were identified for the gas turbine components and supporting technology areas and testing plans were developed to mitigate identified risks. Multiple studies were conducted to evaluate the impact in plant performance of different gas turbine and plant technologies. 2015 gas turbine technologies showed a significant improvement in IGCC plant efficiency, however, a severe performance penalty was calculated for high carbon capture cases. Thermodynamic calculations showed that the DOE 2010 and 2015 efficiency targets can be met with a two step approach. A risk management process was instituted in Phase 1 to identify risk and develop mitigation plans. For the risks identified, testing and development programs are in place and the risks will be revisited periodically to determine if changes to the plan are necessary. A compressor performance prediction has shown that the design of the compressor for the engine can be achieved with additional stages added to the rear of the compressor. Tip clearance effects were studied as well as a range of flow and pressure ratios to evaluate the impacts to both performance and stability. Considerable data was obtained on the four candidate combustion systems: diffusion, catalytic, premix, and distributed combustion. Based on the results of Phase 1, the premixed combustion system and the distributed combustion system were chosen as having the most potential and will be the focus of Phase 2 of the program. Significant progress was also made in obtaining combustion kinetics data for high hydrogen fuels. The Phase 1 turbine studies indicate initial feasibility of the advanced hydrogen turbine that meets the aggressive targets set forth for the advanced hydrogen turbine, including increased rotor inlet temperature (RIT), lower total cooling and leakage air (TCLA) flow, higher pressure ratio, and higher mass flow through the turbine compared to the baseline. Maintaining efficiency with high mass flow Syngas combustion is achieved using a large high AN2 blade 4, which has been identified as a significant advancement beyond the current state-of-the-art. Preliminary results showed feasibility of a rotor system capable of increased power output and operating conditions above the baseline. In addition, several concepts were developed for casing components to address higher operating conditions. Rare earth modified bond coat for the purpose of reducing oxidation and TBC spallation demonstrated an increase in TBC spallation life of almost 40%. The results from Phase 1 identified two TBC compositions which satisfy the thermal conductivity requirements and have demonstrated phase stability up to temperatures of 1850 C. The potential to join alloys using a bonding process has been demonstrated and initial HVOF spray deposition trials were promising. The qualitative ranking of alloys and coatings in environmental conditions was also performed using isothermal tests where significant variations in alloy degradation were observed as a function of gas composition. Initial basic system configuration schematics and working system descriptions have been produced to define key boundary data and support estimation of costs. Review of existing materials in use for hydrogen transportation show benefits or tradeoffs for materials that could be used in this type of applications. Hydrogen safety will become a larger risk than when using natural gas fuel as the work done to date in other areas has shown direct implications for this type of use. Studies were conducted which showed reduced CO{sub 2} and NOx emissions with increased plant efficiency. An approach to maximize plant output is needed in order to address the DOE turbine goal for 20-30% reduction o

Joesph Fadok

2008-01-01T23:59:59.000Z

222

Gas turbine cooling system  

DOE Patents [OSTI]

A gas turbine engine (10) having a closed-loop cooling circuit (39) for transferring heat from the hot turbine section (16) to the compressed air (24) produced by the compressor section (12). The closed-loop cooling system (39) includes a heat exchanger (40) disposed in the flow path of the compressed air (24) between the outlet of the compressor section (12) and the inlet of the combustor (14). A cooling fluid (50) may be driven by a pump (52) located outside of the engine casing (53) or a pump (54) mounted on the rotor shaft (17). The cooling circuit (39) may include an orifice (60) for causing the cooling fluid (50) to change from a liquid state to a gaseous state, thereby increasing the heat transfer capacity of the cooling circuit (39).

Bancalari, Eduardo E. (Orlando, FL)

2001-01-01T23:59:59.000Z

223

Multiple piece turbine airfoil  

DOE Patents [OSTI]

A turbine airfoil, such as a rotor blade or a stator vane, for a gas turbine engine, the airfoil formed as a shell and spar construction with a plurality of hook shaped struts each mounted within channels extending in a spanwise direction of the spar and the shell to allow for relative motion between the spar and shell in the airfoil chordwise direction while also fanning a seal between adjacent cooling channels. The struts provide the seal as well as prevent bulging of the shell from the spar due to the cooling air pressure. The hook struts have a hooked shaped end and a rounded shaped end in order to insert the struts into the spar.

Kimmel, Keith D (Jupiter, FL)

2010-11-09T23:59:59.000Z

224

Gas turbine sealing apparatus  

DOE Patents [OSTI]

A sealing apparatus in a gas turbine. The sealing apparatus includes a seal housing apparatus coupled to a disc/rotor assembly so as to be rotatable therewith during operation of the gas turbine. The seal housing apparatus comprises a base member, a first leg portion, a second leg portion, and spanning structure. The base member extends generally axially between forward and aft rows of rotatable blades and is positioned adjacent to a row of stationary vanes. The first leg portion extends radially inwardly from the base member and is coupled to the disc/rotor assembly. The second leg portion is axially spaced from the first leg portion, extends radially inwardly from the base member, and is coupled to the disc/rotor assembly. The spanning structure extends between and is rigidly coupled to each of the base member, the first leg portion, and the second leg portion.

Marra, John Joseph; Wessell, Brian J.; Liang, George

2013-03-05T23:59:59.000Z

225

Turbine seal assembly  

DOE Patents [OSTI]

A seal assembly that limits gas leakage from a hot gas path to one or more disc cavities in a turbine engine. The seal assembly includes a seal apparatus that limits gas leakage from the hot gas path to a respective one of the disc cavities. The seal apparatus comprises a plurality of blade members rotatable with a blade structure. The blade members are associated with the blade structure and extend toward adjacent stationary components. Each blade member includes a leading edge and a trailing edge, the leading edge of each blade member being located circumferentially in front of the blade member's corresponding trailing edge in a direction of rotation of the turbine rotor. The blade members are arranged such that a space having a component in a circumferential direction is defined between adjacent circumferentially spaced blade members.

Little, David A.

2013-04-16T23:59:59.000Z

226

Snubber assembly for turbine blades  

DOE Patents [OSTI]

A snubber associated with a rotatable turbine blade in a turbine engine, the turbine blade including a pressure sidewall and a suction sidewall opposed from the pressure wall. The snubber assembly includes a first snubber structure associated with the pressure sidewall of the turbine blade, a second snubber structure associated with the suction sidewall of the turbine blade, and a support structure. The support structure extends through the blade and is rigidly coupled at a first end portion thereof to the first snubber structure and at a second end portion thereof to the second snubber structure. Centrifugal loads exerted by the first and second snubber structures caused by rotation thereof during operation of the engine are at least partially transferred to the support structure, such that centrifugal loads exerted on the pressure and suctions sidewalls of the turbine blade by the first and second snubber structures are reduced.

Marra, John J

2013-09-03T23:59:59.000Z

227

Airfoils for wind turbine  

DOE Patents [OSTI]

Airfoils are disclosed for the blade of a wind turbine wherein each airfoil is characterized by a thickness in a range from 16%-24% and a maximum lift coefficient designed to be largely insensitive to roughness effects. The airfoils include a family of airfoils for a blade 15 to 25 meters in length, a family of airfoils for a blade 1 to 5 meters in length, and a family of airfoils for a blade 5 to 10 meters in length. 10 figs.

Tangler, J.L.; Somers, D.M.

1996-10-08T23:59:59.000Z

228

Airfoils for wind turbine  

DOE Patents [OSTI]

Airfoils for the blade of a wind turbine wherein each airfoil is characterized by a thickness in a range from 16%-24% and a maximum lift coefficient designed to be largely insensitive to roughness effects. The airfoils include a family of airfoils for a blade 15 to 25 meters in length, a family of airfoils for a blade 1 to 5 meters in length, and a family of airfoils for a blade 5 to 10 meters in length.

Tangler, James L. (Boulder, CO); Somers, Dan M. (State College, PA)

1996-01-01T23:59:59.000Z

229

Gas turbine premixing systems  

DOE Patents [OSTI]

Methods and systems are provided for premixing combustion fuel and air within gas turbines. In one embodiment, a combustor includes an upstream mixing panel configured to direct compressed air and combustion fuel through premixing zone to form a fuel-air mixture. The combustor includes a downstream mixing panel configured to mix additional combustion fuel with the fule-air mixture to form a combustion mixture.

Kraemer, Gilbert Otto; Varatharajan, Balachandar; Evulet, Andrei Tristan; Yilmaz, Ertan; Lacy, Benjamin Paul

2013-12-31T23:59:59.000Z

230

Computational Aerodynamics and Aeroacoustics for Wind Turbines  

E-Print Network [OSTI]

Computational Aerodynamics and Aeroacoustics for Wind Turbines #12;#12;Computational Aerodynamics and Aeroacoustics for Wind Turbines Wen Zhong Shen Fluid Mechanics Department of Mechanical Engineering TECHNICAL Shen, Wen Zhong Computational Aerodynamics and Aeroacoustics for Wind Turbines Doctor Thesis Technical

231

Automatic Control of Freeboard and Turbine Operation  

E-Print Network [OSTI]

Automatic Control of Freeboard and Turbine Operation ­ Wave Dragon, Nissum Bredning Project: Sea of Freeboard and Turbine Operation Wave Dragon, Nissum Bredning by Jens Peter Kofoed & Peter Frigaard, Aalborg.........................................................................................................................10 TURBINE PERFORMANCE DATA

232

OVERLAY COATINGS FOR GAS TURBINE AIRFOILS  

E-Print Network [OSTI]

of Supperalloys for Gas Turbine Engines, 11 J. Metals, Q,OVERLAY COATINGS FOR GAS TURBINE AIRFOILS Donald H. Boone1970, p. 545. R. Krutenat, Gas Turbine Materials Conference

Boone, Donald H.

2013-01-01T23:59:59.000Z

233

Anticipatory control of turbine generators  

E-Print Network [OSTI]

of Turbine Generators. (Nay 1971) Freddie Laurel Nessec, B. S. E. E, , Texas Tech University; Directed by: Professor J. S . Denison An investigation is made of the use of predicted loads in controlling turbine generators. A perturbation model of a turbine... generator is presented along with typical parameter values. A study is made of the effects of applying control action before a load change occurs. Two predictive control schemes are investi- gated using a load cycle which incorporates both ramp and step...

Messec, Freddie Laurel

1971-01-01T23:59:59.000Z

234

How to Build a Turbine  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Turbine Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects & Initiatives Expand Projects & Initiatives Finance & Rates...

235

Modelling of offshore wind turbine wakes with the wind farm program FLaP  

E-Print Network [OSTI]

Modelling of offshore wind turbine wakes with the wind farm program FLaP Bernhard Lange(1) , Hans been extended to improve the description of wake development in offshore conditions, especially the low from the Danish offshore wind farm Vindeby. Vertical wake profiles and mean turbulence intensities

Heinemann, Detlev

236

Measured wind turbine loads and their dependence on inflow parameters L. Manuel & L. D. Nelson  

E-Print Network [OSTI]

of the hub-height horizontal wind speed as well as secondary pa- rameters such as Reynolds stresses, vertical to other previous studies, but we do not bin the data sets by wind speed since dependen- cies in one wind turbine loads. Inflow parameters might include, for example, mean wind speed, turbu- lence intensity

Manuel, Lance

237

Helical axis stellarator with noninterlocking planar coils  

DOE Patents [OSTI]

A helical axis stellarator using only noninterlocking planar, non-circular coils, generates magnetic fields having a magnetic well and large rotational transform with resultant large equilibrium beta.

Reiman, Allan (Princeton, NJ); Boozer, Allen H. (Rocky Hill, NJ)

1987-01-01T23:59:59.000Z

238

Dual Axis Radiographic Hydrodynamic Test Facility | National...  

National Nuclear Security Administration (NNSA)

Dual Axis Radiographic Hydrodynamic Test Facility | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

239

Systematic Controller Design Methodology for Variable-Speed Wind Turbines  

SciTech Connect (OSTI)

Variable-speed, horizontal axis wind turbines use blade-pitch control to meet specified objectives for three operational regions. This paper provides a guide for controller design for the constant power production regime. A simple, rigid, non-linear turbine model was used to systematically perform trade-off studies between two performance metrics. Minimization of both the deviation of the rotor speed from the desired speed and the motion of the actuator is desired. The robust nature of the proportional-integral-derivative controller is illustrated, and optimal operating conditions are determined. Because numerous simulation runs may be completed in a short time, the relationship between the two opposing metrics is easily visualized.

Hand, M. M.; Balas, M. J.

2002-02-01T23:59:59.000Z

240

Advanced Manufacturing Initiative Improves Turbine Blade Productivity...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Advanced Manufacturing Initiative Improves Turbine Blade Productivity Advanced Manufacturing Initiative Improves Turbine Blade Productivity May 20, 2011 - 2:56pm Addthis This is an...

Note: This page contains sample records for the topic "vertical axis turbines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

turbine thermal index | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

obtained through this project can directly benefit the U.S. power and utility turbine industry by improving product development that specifically meets DOE advanced turbine program...

242

Addressing Wind Turbine Tribological Challenges with Surface...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Addressing Wind Turbine Tribological Challenges with Surface Engineering Presented by Gary Doll of the University of Akron at the Wind Turbine Tribology Seminar 2014. Addressing...

243

NEXT GENERATION TURBINE PROGRAM  

SciTech Connect (OSTI)

The Next Generation Turbine (NGT) Program's technological development focused on a study of the feasibility of turbine systems greater than 30 MW that offer improvement over the 1999 state-of-the-art systems. This program targeted goals of 50 percent turndown ratios, 15 percent reduction in generation cost/kW hour, improved service life, reduced emissions, 400 starts/year with 10 minutes to full load, and multiple fuel usage. Improvement in reliability, availability, and maintainability (RAM), while reducing operations, maintenance, and capital costs by 15 percent, was pursued. This program builds on the extensive low emissions stationary gas turbine work being carried out by Pratt & Whitney (P&W) for P&W Power Systems (PWPS), which is a company under the auspices of the United Technologies Corporation (UTC). This study was part of the overall Department of Energy (DOE) NGT Program that extends out to the year 2008. A follow-on plan for further full-scale component hardware testing is conceptualized for years 2002 through 2008 to insure a smooth and efficient transition to the marketplace for advanced turbine design and cycle technology. This program teamed the National Energy Technology Laboratory (NETL), P&W, United Technologies Research Center (UTRC), kraftWork Systems Inc., a subcontractor on-site at UTRC, and Multiphase Power and Processing Technologies (MPPT), an off-site subcontractor. Under the auspices of the NGT Program, a series of analyses were performed to identify the NGT engine system's ability to serve multiple uses. The majority were in conjunction with a coal-fired plant, or used coal as the system fuel. Identified also was the ability of the NGT system to serve as the basis of an advanced performance cycle: the humid air turbine (HAT) cycle. The HAT cycle is also used with coal gasification in an integrated cycle HAT (IGHAT). The NGT systems identified were: (1) Feedwater heating retrofit to an existing coal-fired steam plant, which could supply both heat and peaking power (Block 2 engine); (2) Repowering of an older coal-fired plant (Block 2 engine); (3) Gas-fired HAT cycle (Block 1 and 2 engines); (4) Integrated gasification HAT (Block 1 and 2 engines). Also under Phase I of the NGT Program, a conceptual design of the combustion system has been completed. An integrated approach to cycle optimization for improved combustor turndown capability has been employed. The configuration selected has the potential for achieving single digit NO{sub x}/CO emissions between 40 percent and 100 percent load conditions. A technology maturation plan for the combustion system has been proposed. Also, as a result of Phase I, ceramic vane technology will be incorporated into NGT designs and will require less cooling flow than conventional metallic vanes, thereby improving engine efficiency. A common 50 Hz and 60 Hz power turbine was selected due to the cost savings from eliminating a gearbox. A list of ceramic vane technologies has been identified for which the funding comes from DOE, NASA, the U.S. Air Force, and P&W.

William H. Day

2002-05-03T23:59:59.000Z

244

Optimum propeller wind turbines  

SciTech Connect (OSTI)

The Prandtl-Betz-Theodorsen theory of heavily loaded airscrews has been adapted to the design of propeller windmills which are to be optimized for maximum power coefficient. It is shown that the simpler, light-loading, constant-area wake assumption can generate significantly different ''optimum'' performance and geometry, and that it is therefore not appropriate to the design of propeller wind turbines when operating in their normal range of high-tip-speed-to-wind-speed ratio. Design curves for optimum power coefficient are presented and an example of the design of a typical two-blade optimum rotor is given.

Sanderson, R.J.; Archer, R.D.

1983-11-01T23:59:59.000Z

245

Large-Scale Uncertainty and Error Analysis for Time-dependent Fluid/Structure Interactions in Wind Turbine Applications  

SciTech Connect (OSTI)

The following is the final report covering the entire period of this aforementioned grant, June 1, 2011 - May 31, 2013 for the portion of the effort corresponding to Stanford University (SU). SU has partnered with Sandia National Laboratories (PI: Mike S. Eldred) and Purdue University (PI: Dongbin Xiu) to complete this research project and this final report includes those contributions made by the members of the team at Stanford. Dr. Eldred is continuing his contributions to this project under a no-cost extension and his contributions to the overall effort will be detailed at a later time (once his effort has concluded) on a separate project submitted by Sandia National Laboratories. At Stanford, the team is made up of Profs. Alonso, Iaccarino, and Duraisamy, post-doctoral researcher Vinod Lakshminarayan, and graduate student Santiago Padron. At Sandia National Laboratories, the team includes Michael Eldred, Matt Barone, John Jakeman, and Stefan Domino, and at Purdue University, we have Prof. Dongbin Xiu as our main collaborator. The overall objective of this project was to develop a novel, comprehensive methodology for uncertainty quantification by combining stochastic expansions (nonintrusive polynomial chaos and stochastic collocation), the adjoint approach, and fusion with experimental data to account for aleatory and epistemic uncertainties from random variable, random field, and model form sources. The expected outcomes of this activity were detailed in the proposal and are repeated here to set the stage for the results that we have generated during the time period of execution of this project: 1. The rigorous determination of an error budget comprising numerical errors in physical space and statistical errors in stochastic space and its use for optimal allocation of resources; 2. A considerable increase in efficiency when performing uncertainty quantification with a large number of uncertain variables in complex non-linear multi-physics problems; 3. A solution to the long-time integration problem of spectral chaos approaches; 4. A rigorous methodology to account for aleatory and epistemic uncertainties, to emphasize the most important variables via dimension reduction and dimension-adaptive refinement, and to support fusion with experimental data using Bayesian inference; 5. The application of novel methodologies to time-dependent reliability studies in wind turbine applications including a number of efforts relating to the uncertainty quantification in vertical-axis wind turbine applications. In this report, we summarize all accomplishments in the project (during the time period specified) focusing on advances in UQ algorithms and deployment efforts to the wind turbine application area. Detailed publications in each of these areas have also been completed and are available from the respective conference proceedings and journals as detailed in a later section.

Alonso, Juan J. [Stanford University; Iaccarino, Gianluca [Stanford University

2013-08-25T23:59:59.000Z

246

ARM - Measurement - Vertical velocity  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUC : XDCResearch Relatedcontentcharacteristics ARM DatagovMeasurementsVertical

247

VARIABLE SPEED WIND TURBINE  

E-Print Network [OSTI]

Wind energy is currently the fastest-growing renewable source of energy in India; India is a key market for the wind industry, presenting substantial opportunities for both the international and domestic players. In India the research is carried out on wind energy utilization on big ways.There are still many unsolved challenges in expanding wind power, and there are numerous problems of interest to systems and control researchers. In this paper we study the pitch control mechanism of wind turbine. The pitch control system is one of the most widely used control techniques to regulate the output power of a wind turbine generator. The pitch angle is controlled to keep the generator power at rated power by reducing the angle of the blades. By regulating, the angle of stalling, fast torque changes from the wind will be reutilized. It also describes the design of the pitch controller and discusses the response of the pitch-controlled system to wind velocity variations. The pitch control system is found to have a large output power variation and a large settling time.

Chatinderpal Singh

248

Combined Heat and Power Plant Steam Turbine  

E-Print Network [OSTI]

Combined Heat and Power Plant Steam Turbine Steam Turbine Chiller Campus Heat Load Steam (recovered waste heat) Gas Turbine University Substation High Pressure Natural Gas Campus Electric Load Southern Generator Heat Recovery Alternative Uses: 1. Campus heating load 2. Steam turbine chiller to campus cooling

Rose, Michael R.

249

Installing Small Wind Turbines Seminar and Workshop  

E-Print Network [OSTI]

Seminar and Workshop Installing Small Wind Turbines Seminar and Workshop Location: Murdoch January 2011 Details for Registration and Payment: Mr Daniel Jones, National Small Wind Turbine Test: The National Small Wind Turbine Centre at Murdoch University is holding a Small Wind Turbine short training

250

AIAA 20033698 Aircraft Gas Turbine Engine  

E-Print Network [OSTI]

AIAA 2003­3698 Aircraft Gas Turbine Engine Simulations W. C. Reynolds , J. J. Alonso, and M. Fatica, Reston, VA 20191­4344 #12;AIAA 2003­3698 Aircraft Gas Turbine Engine Simulations W. C. Reynolds , J. J of the flowpath through complete aircraft gas turbines including the compressor, combustor, turbine, and secondary

Stanford University

251

Potential of innovative ceramics for turbine  

E-Print Network [OSTI]

Potential of innovative ceramics for turbine applications. A. Jankowiak, R. Valle, M. Parlier ODAS ceramics for turbine applications. Potentiel de céramiques innovantes pour des applications turbines par A. Jankowiak, R. Valle, M. Parlier Résumé traduit : L'amélioration du rendement thermique des turbines à gaz d

252

5th International Meeting Wind Turbine Noise  

E-Print Network [OSTI]

1 5th International Meeting on Wind Turbine Noise Denver 28 ­ 30 August 2013 Wind Turbine Noise Broadband noise generated aerodynamically is the dominant noise source for a modern wind turbine(Brooks et turbines . First, a wall pressure spectral model proposed recently by Rozenberg, Robert and Moreau

Paris-Sud XI, Université de

253

Wind turbine rotor blade with in-plane sweep and devices using same, and methods for making same  

DOE Patents [OSTI]

A wind turbine includes a rotor having a hub and at least one blade having a torsionally rigid root, an inboard section, and an outboard section. The inboard section has a forward sweep relative to an elastic axis of the blade and the outboard section has an aft sweep.

Wetzel, Kyle Kristopher (Lawrence, KS)

2008-03-18T23:59:59.000Z

254

Wind turbine rotor blade with in-plane sweep and devices using the same, and methods for making the same  

DOE Patents [OSTI]

A wind turbine includes a rotor having a hub and at least one blade having a torsionally rigid root, an inboard section, and an outboard section. The inboard section has a forward sweep relative to an elastic axis of the blade and the outboard section has an aft sweep.

Wetzel, Kyle Kristopher

2014-06-24T23:59:59.000Z

255

Steam Path Audits on Industrial Steam Turbines  

E-Print Network [OSTI]

steam Path Audits on Industrial steam Turbines DOUGLAS R. MITCHELL. ENGINEER. ENCOTECH, INC., SCHENECTADY, NEW YORK ABSTRACT The electric utility industry has benefitted from steam path audits on steam turbines for several years. Benefits... not extend the turbine outage. To assure that all of the turbine audit data are available, the audit engineer must be at the turbine site the day the steam path is first exposed. A report of the opening audit findings is generated to describe the as...

Mitchell, D. R.

256

An experimental and numerical study of wind turbine seismic behavior  

E-Print Network [OSTI]

3.2.1 Description of Test Wind Turbine . . . . . .Figure 1.2: Components of a modern wind turbine . . . . . .D.3: D.4: Wind turbine parameters . . . . . . . . . . . .

Prowell, I.

2011-01-01T23:59:59.000Z

257

An experimental and numerical study of wind turbine seismic behavior  

E-Print Network [OSTI]

and Scope Wind energy is growing and turbines are regularlyfor Design of Wind Turbines. Wind Energy Department of Risřloads on wind turbines. ” European Wind Energy Conference

Prowell, I.

2011-01-01T23:59:59.000Z

258

An experimental and numerical study of wind turbine seismic behavior  

E-Print Network [OSTI]

a steel 1-MW wind turbine tower. ” Engineering Structures,testing of a steel wind turbine tower. ” Proceedings of theanalysis of steel wind turbine towers in the canadian

Prowell, I.

2011-01-01T23:59:59.000Z

259

Development of a low swirl injector concept for gas turbines  

E-Print Network [OSTI]

Injector Concept for Gas Turbines Robert K. Cheng * , Scottconcept for ultra- low NO x gas turbines. Low-swirl flamevirtually every industrial gas turbine manufacturer to meet

Cheng, R.K.; Fable, S.A.; Schmidt, D.; Arellano, L.; Smith, K.O.

2000-01-01T23:59:59.000Z

260

Pasqualetti_Answers 111.pdf Student questions: Martin (Mike) Pasqualetti colloquium on "Renewable Energy and  

E-Print Network [OSTI]

: Are vertical axis wind turbines more or less socially accepted than windmill-style? Can these wind farms be located far enough off the coast to not be able to see them? Vertical axis wind turbines were tried turbines that are more visually aesthetic than the current functioning models? The current models are much

Rhoads, James

Note: This page contains sample records for the topic "vertical axis turbines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Automatic 5-axis NC toolpath generation  

E-Print Network [OSTI]

Despite over a decade of research, automatic toolpath generation has remained an elusive goal for 5-axis NC machining. This thesis describes the theoretical and practical issues associated with generating collision free ...

Balasubramaniam, Mahadevan, 1976-

2001-01-01T23:59:59.000Z

262

Turbine blade cooling  

DOE Patents [OSTI]

A turbine rotor blade comprises a shank portion, a tip portion and an airfoil. The airfoil has a pressure side wall and a suction side wall that are interconnected by a plurality of partition sidewalls, defining an internal cooling passageway within the airfoil. The internal cooling passageway includes at least one radial outflow passageway to direct a cooling medium flow from the shank portion towards the tip portion and at least one radial inflow passageway to direct a cooling medium flow from the tip portion towards the shank portion. A number of mixing ribs are disposed on the partition sidewalls within the radial outflow passageways so as to enhance the thermal mixing of the cooling medium flow, thereby producing improved heat transfer over a broad range of the Buoyancy number.

Staub, Fred Wolf (Schenectady, NY); Willett, Fred Thomas (Niskayuna, NY)

2000-01-01T23:59:59.000Z

263

Turbine blade cooling  

DOE Patents [OSTI]

A turbine rotor blade comprises a shank portion, a tip portion and an airfoil. The airfoil has a pressure side wall and a suction side wall that are interconnected by a plurality of partition sidewalls, defining an internal cooling passageway within the airfoil. The internal cooling passageway includes at least one radial outflow passageway to direct a cooling medium flow from the shank portion towards the tip portion and at least one radial inflow passageway to direct a cooling medium flow from the tip portion towards the shank portion. A number of mixing ribs are disposed on the partition sidewalls within the radial outflow passageways so as to enhance the thermal mixing of the cooling medium flow, thereby producing improved heat transfer over a broad range of the Buoyancy number.

Staub, Fred Wolf (Schenectady, NY); Willett, Fred Thomas (Niskayuna, NY)

1999-07-20T23:59:59.000Z

264

Wind turbine rotor aileron  

DOE Patents [OSTI]

A wind turbine has a rotor with at least one blade which has an aileron which is adjusted by an actuator. A hinge has two portions, one for mounting a stationary hinge arm to the blade, the other for coupling to the aileron actuator. Several types of hinges can be used, along with different actuators. The aileron is designed so that it has a constant chord with a number of identical sub-assemblies. The leading edge of the aileron has at least one curved portion so that the aileron does not vent over a certain range of angles, but vents if the position is outside the range. A cyclic actuator can be mounted to the aileron to adjust the position periodically. Generally, the aileron will be adjusted over a range related to the rotational position of the blade. A method for operating the cyclic assembly is also described.

Coleman, Clint (Warren, VT); Kurth, William T. (Warren, VT)

1994-06-14T23:59:59.000Z

265

Turbine blade cooling  

DOE Patents [OSTI]

A turbine rotor blade comprises a shank portion, a tip portion and an airfoil. The airfoil has a pressure side wall and a suction side wall that are interconnected by a plurality of partition sidewalls, defining an internal cooling passageway within the airfoil. The internal cooling passageway includes at least one radial outflow passageway to direct a cooling medium flow from the shank portion towards the tip portion and at least one radial inflow passageway to direct a cooling medium flow from the tip portion towards the shank portion. A number of mixing ribs are disposed on the partition sidewalls within the radial outflow passageways so as to enhance the thermal mixing of the cooling medium flow, thereby producing improved heat transfer over a broad range of the Buoyancy number. 13 figs.

Staub, F.W.; Willett, F.T.

1999-07-20T23:59:59.000Z

266

Sprayed skin turbine component  

DOE Patents [OSTI]

Fabricating a turbine component (50) by casting a core structure (30), forming an array of pits (24) in an outer surface (32) of the core structure, depositing a transient liquid phase (TLP) material (40) on the outer surface of the core structure, the TLP containing a melting-point depressant, depositing a skin (42) on the outer surface of the core structure over the TLP material, and heating the assembly, thus forming both a diffusion bond and a mechanical interlock between the skin and the core structure. The heating diffuses the melting-point depressant away from the interface. Subsurface cooling channels (35) may be formed by forming grooves (34) in the outer surface of the core structure, filling the grooves with a fugitive filler (36), depositing and bonding the skin (42), then removing the fugitive material.

Allen, David B

2013-06-04T23:59:59.000Z

267

Multiple piece turbine blade  

DOE Patents [OSTI]

A turbine rotor blade with a spar and shell construction, the spar including an internal cooling supply channel extending from an inlet end on a root section and ending near the tip end, and a plurality of external cooling channels formed on both side of the spar, where a middle external cooling channel is connected to the internal cooling supply channels through a row of holes located at a middle section of the channels. The spar and the shell are held together by hooks that define serpentine flow passages for the cooling air and include an upper serpentine flow circuit and a lower serpentine flow circuit. the serpentine flow circuits all discharge into a leading edge passage or a trailing edge passage.

Kimmel, Keith D (Jupiter, FL)

2012-05-29T23:59:59.000Z

268

Dual-Axis Resonance Testing of Wind Turbine Blades - Energy Innovation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesDataTranslocationDiurnalCommittee Draftfor $1.14EnergyEMSL

269

Science Arts & Mtiers (SAM) is an open access repository that collects the work of Arts et Mtiers ParisTech  

E-Print Network [OSTI]

-claude.bayeul-laine@ensam.eu Abstract. The present wind turbine is a small one which can be used on roofs or in gardens. This turbine has a vertical axis. Each turbine blade combines a rotating movement around its own axis and around. The benefits of combined rotating blades have been shown. The performance coefficient of this kind of turbine

Paris-Sud XI, Université de

270

High temperature turbine engine structure  

DOE Patents [OSTI]

A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

Carruthers, William D. (Mesa, AZ); Boyd, Gary L. (Tempe, AZ)

1993-01-01T23:59:59.000Z

271

High temperature turbine engine structure  

DOE Patents [OSTI]

A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

Carruthers, William D. (Mesa, AZ); Boyd, Gary L. (Tempe, AZ)

1992-01-01T23:59:59.000Z

272

High temperature turbine engine structure  

DOE Patents [OSTI]

A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

Carruthers, William D. (Mesa, AZ); Boyd, Gary L. (Tempe, AZ)

1994-01-01T23:59:59.000Z

273

Rim seal for turbine wheel  

DOE Patents [OSTI]

A turbine wheel assembly includes a disk having a plurality of blades therearound. A ceramic ring is mounted to the housing of the turbine wheel assembly. A labyrinth rim seal mounted on the disk cooperates with the ceramic ring to seal the hot gases acting on the blades from the disk. The ceramic ring permits a tighter clearance between the labyrinth rim seal and the ceramic ring.

Glezer, Boris (Del Mar, CA); Boyd, Gary L. (Alpine, CA); Norton, Paul F. (San Diego, CA)

1996-01-01T23:59:59.000Z

274

Journal of Turbulence, 2013 Vol. 14, No. 6, 3839, http://dx.doi.org/10.1080/14685248.2013.825725  

E-Print Network [OSTI]

.1080/14685248.2013.825725 ERRATUM Energy exchange in an array of vertical-axis wind turbines [Journal of Turbulence, Vol. 13, No. 38 2012) We analyze the flow field within an array of 18 counter-rotating, vertical-axis wind tur- bines a typical horizontal-axis wind turbine (HAWT). The observed high level of the planform kinetic energy flux

Dabiri, John O.

275

Multivariate analysis and prediction of wind turbine response to varying wind field characteristics based on machine learning  

E-Print Network [OSTI]

are often described by time-dependent statistical parameters such as mean wind speed, turbulence intensity, mean wind direction and vertical mean wind profile, which depends on the surface roughness (e.g. landMultivariate analysis and prediction of wind turbine response to varying wind field characteristics

Stanford University

276

Airfoils for wind turbine  

DOE Patents [OSTI]

Airfoils for the tip and mid-span regions of a wind turbine blade have upper surface and lower surface shapes and contours between a leading edge and a trailing edge that minimize roughness effects of the airfoil and provide maximum lift coefficients that are largely insensitive to roughness effects. The airfoil in one embodiment is shaped and contoured to have a thickness in a range of about fourteen to seventeen percent, a Reynolds number in a range of about 1,500,000 to 2,000,000, and a maximum lift coefficient in a range of about 1.4 to 1.5. In another embodiment, the airfoil is shaped and contoured to have a thickness in a range of about fourteen percent to sixteen percent, a Reynolds number in a range of about 1,500,000 to 3,000,000, and a maximum lift coefficient in a range of about 0.7 to 1.5. Another embodiment of the airfoil is shaped and contoured to have a Reynolds in a range of about 1,500,000 to 4,000,000, and a maximum lift coefficient in a range of about 1.0 to 1.5.

Tangler, James L. (Boulder, CO); Somers, Dan M. (State College, PA)

2000-01-01T23:59:59.000Z

277

A comparison between continuous and discrete modelling of cables with bending stiness  

E-Print Network [OSTI]

was the vertical axis wind turbine blade for which Snyman and Ve- rmeulen [4,5] determined a blade shape free from

van Vuuren, Jan H.

278

Modal Dynamics and Stability of Large Multi-megawatt Deepwater...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and O&M, while maintaining or increasing energy production. A vertical-axis wind turbine (VAWT) rotor configuration offers a potential transformative technology solution...

279

MEASURING IMPACTS TO BIRDS CAUSED BY WIND TURBINES MEASURING IMPACTS TO BIRDS CAUSED BY WIND TURBINES  

E-Print Network [OSTI]

APPENDIX A MEASURING IMPACTS TO BIRDS CAUSED BY WIND TURBINES #12;A-1 APPENDIX A MEASURING IMPACTS TO BIRDS CAUSED BY WIND TURBINES 1.0 INTRODUCTION Differential composition of wind turbines at wind energy used is the number of fatalities per wind turbine per year (Anderson et al. 1999). This metric has

280

WIND TURBINE SITING IN AN URBAN ENVIRONMENT: THE HULL, MA 660 KW TURBINE  

E-Print Network [OSTI]

1 WIND TURBINE SITING IN AN URBAN ENVIRONMENT: THE HULL, MA 660 KW TURBINE J. F. Manwell, J. G. Mc turbine at Windmill Point in Hull, Massachusetts represents a high point in the long history of wind, through the installation of a 40 kW Enertech machine in the 1980's to the installation of the new turbine

Massachusetts at Amherst, University of

Note: This page contains sample records for the topic "vertical axis turbines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Parametric design of floating wind turbines  

E-Print Network [OSTI]

As the price of energy increases and wind turbine technology matures, it is evident that cost effective designs for floating wind turbines are needed. The next frontier for wind power is the ocean, yet development in near ...

Tracy, Christopher (Christopher Henry)

2007-01-01T23:59:59.000Z

282

The Inside of a Wind Turbine  

Broader source: Energy.gov [DOE]

Wind turbines harness the power of the wind and use it to generate electricity. Simply stated, a wind turbine works the opposite of a fan. Instead of using electricity to make wind, like a fan,...

283

Building the Basic PVC Wind Turbine  

Broader source: Energy.gov (indexed) [DOE]

Energy Smart CD- Building PVC Turbine 8 Some Blade Building Tips KidWind model wind turbines are designed for use in science classes, or as a hobby or science fair project....

284

Theory and Performance of Tesla Turbines  

E-Print Network [OSTI]

gas turbines for combined heat and power”. In: Ap- plied10.1115/1.4001356. [3] Combined Heat and Power. Tech. rep.of Tesla Turbines for Combined Heat and Power Applications”.

Romanin, Vincent D.

2012-01-01T23:59:59.000Z

285

Rugged ATS turbines for alternate fuels  

SciTech Connect (OSTI)

A major national effort is directed to developing advanced turbine systems designed for major improvements in efficiency and emissions performance using natural gas fuels. These turbine designs are also to be adaptable for future operation with alternate coal and biomass derived fuels. For several potential alternate fuel applications, available hot gas cleanup technologies will not likely be adequate to protect the turbine flowpath from deposition and corrosion. Past tests have indicated that cooling turbine airfoil surfaces could ruggedized a high temperature turbine flowpath to alleviate deposition and corrosion. Using this specification. ATS turbine that was evaluated. The initial analyses also showed that two-phase cooling offers the most attractive method of those explored to protect a coal-fueled ATS turbine from deposition and corrosion. This paper describes ruggedization approaches, particularly to counter the extreme deposition and corrosion effects of the high inlet temperatures of ATS turbines using alternate fuels.

Wenglarz, R.A.; Nirmalan, N.V.; Daehler, T.G.

1995-02-01T23:59:59.000Z

286

Simulating Collisions for Hydrokinetic Turbines  

SciTech Connect (OSTI)

Evaluations of blade-strike on an axial-flow Marine Hydrokinetic turbine were conducted using a conventional methodology as well as an alternative modeling approach proposed in the present document. The proposed methodology integrates the following components into a Computa- tional Fluid Dynamics (CFD) model: (i) advanced eddy-resolving flow simulations, (ii) ambient turbulence based on field data, (iii) moving turbine blades in highly transient flows, and (iv) Lagrangian particles to mimic the potential fish pathways. The sensitivity of blade-strike prob- ability to the following conditions was also evaluated: (i) to the turbulent environment, (ii) to fish size and (iii) to mean stream flow velocity. The proposed methodology provided fraction of collisions and offered the capability of analyzing the causal relationships between the flow envi- ronment and resulting strikes on rotating blades. Overall, the conventional methodology largely overestimates the probability of strike, and lacks the ability to produce potential fish and aquatic biota trajectories as they interact with the rotating turbine. By using a set of experimental corre- lations of exposure-response of living fish colliding on moving blades, the occurrence, frequency and intensity of the particle collisions was next used to calculate the survival rate of fish crossing the MHK turbine. This step indicated survival rates always greater than 98%. Although the proposed CFD framework is computationally more expensive, it provides the advantage of evaluating multiple mechanisms of stress and injury of hydrokinetic turbine devices on fish.

Richmond, Marshall C.; Romero Gomez, Pedro DJ; Rakowski, Cynthia L.

2013-10-01T23:59:59.000Z

287

Performance of propeller wind turbines  

SciTech Connect (OSTI)

Presented herein is a parametric study of the performance of propeller wind turbines with realistic drag/lift ratios. Calculations were made using the complete Glauert vortex blade element theory in annular streamtube elements with the complete turbine performance being the sum of the elemental results up to a specified tip speed ratio. The objective here is to exhibit a new computational technique which yields performance directly when tangential speed ratio and section aerodynamic characteristics are specified. It was found that for a tip speed ratio of 4, turbines with drag/lift ratios of 0.00 and 0.01 had power coefficients of 0.575 and 0.55, respectively. The off-design performance of the finite drag/lift was far better than that of their zero drag counterparts, except in a + or - 20% region about the design conditions. Tolerance to off-design operation increased with decreasing tip speed ratios so that the annual energy capture for tip speed ratios between 2 and 4 was about 87% of the ideal turbine value. The results are intended to provide a basis for re-evaluation of the power range classes of fixed pitch turbines and design tip speed ratios.

Wortman, A.

1983-11-01T23:59:59.000Z

288

The impact of wind turbines on birds in upstate New York  

SciTech Connect (OSTI)

During spring and fall 1995, ABR, Inc., an environmental research firm, used radar and visual techniques to study bird migration near proposed and existing wind-turbine sites in upstate New York for Niagara Mohawk Power Corporation. The primary goal of the study was to evaluate the possible impacts of wind turbines and meteorological towers on local and migratory birds during the spring and fall migration periods. Here we primarily report on data collected from the existing wind-turbine site at Copenhagen. In addition to visual observations of diurnal movements of birds, two radars were used for observations of migrating birds at night. The surveillance radar provided information on nocturnal migration rates, flight directions, and flight behavior. The vertical radar provided information on flight altitudes.

Cooper, B.A. [ABR, Inc., Forest Grove, OR (United States); Johnson, C.B. [ABR, Inc., Fairbanks, AK (United States)

1995-12-31T23:59:59.000Z

289

Electrical Cost Reduction Via Steam Turbine Cogeneration  

E-Print Network [OSTI]

ELECTRICAL COST REDUCTION VIA STEAM TURBINE COGENERATION LYNN B. DI TULLIO, P.E. Project Engineer Ewing Power Systems, Inc. South Deerfield, Mass. ABSTRACT Steam turbine cogeneration is a well established technology which is widely used... mature technology. Steam turbines and engines have been used by industry to cogen erate power since before there were electric utilities. While the technology for turbines, generators and controls has continued to develop there is very little about...

Ewing, T. S.; Di Tullio, L. B.

290

Speaker: Professor Alexander Turbiner, Instituto de Ciencias ...  

E-Print Network [OSTI]

Oct 27, 2009 ... PURDUE UNIVERSITY. Department of Mathematics Colloquium. Speaker: Professor Alexander Turbiner, Instituto de Ciencias Nucleares, ...

1910-91-01T23:59:59.000Z

291

ADVANCED TURBINE SYSTEMS PROGRAM  

SciTech Connect (OSTI)

The market for power generation equipment is undergoing a tremendous transformation. The traditional electric utility industry is restructuring, promising new opportunities and challenges for all facilities to meet their demands for electric and thermal energy. Now more than ever, facilities have a host of options to choose from, including new distributed generation (DG) technologies that are entering the market as well as existing DG options that are improving in cost and performance. The market is beginning to recognize that some of these users have needs beyond traditional grid-based power. Together, these changes are motivating commercial and industrial facilities to re-evaluate their current mix of energy services. One of the emerging generating options is a new breed of advanced fuel cells. While there are a variety of fuel cell technologies being developed, the solid oxide fuel cells (SOFC) and molten carbonate fuel cells (MCFC) are especially promising, with their electric efficiency expected around 50-60 percent and their ability to generate either hot water or high quality steam. In addition, they both have the attractive characteristics of all fuel cells--relatively small siting footprint, rapid response to changing loads, very low emissions, quiet operation, and an inherently modular design lending itself to capacity expansion at predictable unit cost with reasonably short lead times. The objectives of this project are to:(1) Estimate the market potential for high efficiency fuel cell hybrids in the U.S.;(2) Segment market size by commercial, industrial, and other key markets;(3) Identify and evaluate potential early adopters; and(4) Develop results that will help prioritize and target future R&D investments. The study focuses on high efficiency MCFC- and SOFC-based hybrids and competing systems such as gas turbines, reciprocating engines, fuel cells and traditional grid service. Specific regions in the country have been identified where these technologies and the corresponding early adopters are likely to be located.

Sy Ali

2002-03-01T23:59:59.000Z

292

Radial-radial single rotor turbine  

DOE Patents [OSTI]

A rotor for use in turbine applications has a radial compressor/pump having radially disposed spaced apart fins forming passages and a radial turbine having hollow turbine blades interleaved with the fins and through which fluid from the radial compressor/pump flows. The rotor can, in some applications, be used to produce electrical power.

Platts, David A. (Los Alamos, NM)

2006-05-16T23:59:59.000Z

293

Prototype bucket foundation for wind turbines  

E-Print Network [OSTI]

Prototype bucket foundation for wind turbines -natural frequency estimation Lars Bo Ibsen Morten bucket foundation for wind turbines -natural frequency estimation by Lars Bo Ibsen Morten Liingaard foundation for wind turbines--natural frequency estimation" is divided into four numbered sections

294

Wind Turbines Electrical and Mechanical Engineering  

E-Print Network [OSTI]

Wind Turbines Electrical and Mechanical Engineering Objective · Introduce students to the concept of alternative energy. · Explain the math and scientific principles behind engineering wind turbines. Standards and how it applies to wind energy · About how surface area and shape effects wind turbine efficiency

Provancher, William

295

Wind Turbine Blockset in Matlab/Simulink  

E-Print Network [OSTI]

Wind Turbine Blockset in Matlab/Simulink General Overview and Description of the Models Florin Iov, Anca Daniela Hansen, Poul Sørensen, Frede Blaabjerg Aalborg University March 2004 #12;22 Wind Turbine turbine applications. This toolbox has been developed during the research project "Simulation Platform

296

Computational Analysis of Shrouded Wind Turbine Configurations  

E-Print Network [OSTI]

Computational Analysis of Shrouded Wind Turbine Configurations Aniket C. Aranake Vinod K. Lakshminarayan Karthik Duraisamy Computational analysis of diuser-augmented turbines is performed using high-dimensional simulations of shrouded wind turbines are performed for selected shroud geometries. The results are compared

Alonso, Juan J.

297

Generating Resources Combined Cycle Combustion Turbine  

E-Print Network [OSTI]

11/17/2014 1 Generating Resources Combined Cycle Combustion Turbine Utility Scale Solar PV Steven doing recently around two key supply-side resource technologies 1. Combined Cycle Combustion Turbine #12;11/17/2014 4 Combined Cycle Combustion Turbine Background Primary Components Gas-fired combustion

298

Fast Wind Turbine Design via Geometric Programming  

E-Print Network [OSTI]

Fast Wind Turbine Design via Geometric Programming Warren Hoburg and Pieter Abbeel UC Berkeley turbine aerodynamics have an underlying convex mathematical structure that these new methods can exploit the application of GP to large wind turbine design problems a promising approach. Nomenclature (·)a, (·)t axial

Abbeel, Pieter

299

A Fatigue Approach to Wind Turbine Control  

E-Print Network [OSTI]

A Fatigue Approach to Wind Turbine Control Keld Hammerum Kongens Lyngby 2006 #12;Technical to the turbulent nature of wind, the structural components of a wind turbine are exposed to highly varying loads. Therefore, fatigue damage is a major consideration when designing wind turbines. The control scheme applied

300

Satoshi Hada Department of Gas Turbine Engineering,  

E-Print Network [OSTI]

Satoshi Hada Department of Gas Turbine Engineering, Mitsubishi Heavy Industries, Ltd., Takasago on Vane Endwall Film-Cooling Turbines are designed to operate with high inlet temperatures to improve. The endwall design considers both an upstream slot, representing the combustor--turbine junction

Thole, Karen A.

Note: This page contains sample records for the topic "vertical axis turbines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

BUILDING STRONGBUILDING STRONG Turbine Survival Program  

E-Print Network [OSTI]

BUILDING STRONG®BUILDING STRONG® Turbine Survival Program Northwest Power and Conservation Council of the CRFM's Turbine Survival Program and how it supports the Rehabilitation Process #12;BUILDING STRONG® Turbine Survival Program TSP is an element of the CRFM Program; established to address NMFSs 1995 Biop

302

Sandia Wind Turbine Loads Database  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Sandia Wind Turbine Loads Database is divided into six files, each corresponding to approximately 16 years of simulation. The files are text files with data in columnar format. The 424MB zipped file containing six data files can be downloaded by the public. The files simulate 10-minute maximum loads for the NREL 5MW wind turbine. The details of the loads simulations can be found in the paper: “Decades of Wind Turbine Loads Simulations”, M. Barone, J. Paquette, B. Resor, and L. Manuel, AIAA2012-1288 (3.69MB PDF). Note that the site-average wind speed is 10 m/s (class I-B), not the 8.5 m/s reported in the paper.

303

The value of steam turbine upgrades  

SciTech Connect (OSTI)

Technological advances in mechanical and aerodynamic design of the turbine steam path are resulting in higher reliability and efficiency. A recent study conducted on a 390 MW pulverized coal-fired unit revealed just how much these new technological advancements can improve efficiency and output. The empirical study showed that the turbine upgrade raised high pressure (HP) turbine efficiency by 5%, intermediate pressure (IP) turbine efficiency by 4%, and low pressure (LP) turbine efficiency by 2.5%. In addition, the unit's highest achievable gross generation increased from 360 MW to 371 MW. 3 figs.

Potter, K.; Olear, D.; [General Physics Corp. (United States)

2005-11-01T23:59:59.000Z

304

OPTIMIZATION OF OPERATIONAL CHARACTERISTICS OF SHOTBLASTING TURBINE  

E-Print Network [OSTI]

A parametric study has been performed in order to optimize the operational characteristics of shotblasting turbine used for surface cleaning of metal products in foundries. The study has been focused on four main parameters: shot velocity, shot distribution, shot mass flow and turbine efficiency. Different turbine designs were experimentally studied which enabled the influence factors to be identified and then quantified by means of comparison of original and modified turbine characteristics. The step-by-step optimization was then performed which resulted in redesigned shotblasting turbine with improved operational characteristics. Up to 35 % higher maximum massflow rate of shot particles has been achieved and turbine efficiency has been improved by more than 6 %. Just slight reduction of shot flow velocity was observed (only 2 %), which confirms an important improvement of shotblasting potentials of new turbine.

Aleš Hribernik; Bojan A?ko; Gorazd Bombek

305

Mixer-Ejector Wind Turbine: Breakthrough High Efficiency Shrouded Wind Turbine  

SciTech Connect (OSTI)

Broad Funding Opportunity Announcement Project: FloDesign Wind Turbine’s innovative wind turbine, inspired by the design of jet engines, could deliver 300% more power than existing wind turbines of the same rotor diameter by extracting more energy over a larger area. FloDesign Wind Turbine’s unique shrouded design expands the wind capture area, and the mixing vortex downstream allows more energy to flow through the rotor without stalling the turbine. The unique rotor and shrouded design also provide significant opportunity for mass production and simplified assembly, enabling mid-scale turbines (approximately 100 kW) to produce power at a cost that is comparable to larger-scale conventional turbines.

None

2010-02-22T23:59:59.000Z

306

ADVANCED GAS TURBINE SYSTEMS RESEARCH  

SciTech Connect (OSTI)

The activities of the Advanced Gas Turbine Systems Research (AGTSR) program for this reporting period are described in this quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education), Research and Miscellaneous Related Activity. Items worthy of note are presented in extended bullet format following the appropriate heading.

Unknown

2002-04-01T23:59:59.000Z

307

Methods for measuring turbine efficiency  

SciTech Connect (OSTI)

This article describes the most common methods used for measuring hydro turbine efficiency. These methods are the acoustic flowmeter method, the Gibson (pressure-time) method, pressure drop across a flow restriction, propeller-driven flowmeters, the volumetric method, Winter-Kennedy taps, and the thermodynamic method. A new computerized variation of the Gibson method is also described.

O'Kelly, F.

1992-04-01T23:59:59.000Z

308

High temperature turbine engine structure  

DOE Patents [OSTI]

A high temperature turbine engine includes a rotor portion having axially stacked adjacent ceramic rotor parts. A ceramic/ceramic joint structure transmits torque between the rotor parts while maintaining coaxial alignment and axially spaced mutually parallel relation thereof despite thermal and centrifugal cycling.

Boyd, Gary L. (Tempe, AZ)

1991-01-01T23:59:59.000Z

309

ADVANCED GAS TURBINE SYSTEMS RESEARCH  

SciTech Connect (OSTI)

The activities of the Advanced Gas Turbine Systems Research (AGRSR) program are described in the quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education) and Research. Items worthy of note are presented in extended bullet format following the appropriate heading.

Unknown

2000-01-01T23:59:59.000Z

310

ADVANCED GAS TURBINE SYSTEMS RESEARCH  

SciTech Connect (OSTI)

The activities of the Advanced Gas Turbine Systems Research (AGTSR) program for this reporting period are described in this quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education), Research and Miscellaneous Related Activity. Items worthy of note are presented in extended bullet format following the appropriate heading.

Unknown

2002-02-01T23:59:59.000Z

311

Sandia National Laboratories: Sandia's Brayton-Cycle Turbine Boosts Small  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErikGroundbreaking Work on Criegee IntermediatesVertical-AxisNuclear Reactor

312

High payload six-axis load sensor  

DOE Patents [OSTI]

A repairable high-payload six-axis load sensor includes a table, a base, and at least three shear-pin load transducers removably mounted between the table and the base. Removable mounting permits easy replacement of damaged shear pins. Preferably, the shear-pin load transducers are responsive to shear forces imparted along the two axes perpendicular to an axis of minimum sensitivity characteristic of the transducer. Responsive to an applied shear force, each shear-pin load transducer can produce an electrical signal proportional to the reaction force. The load sensor can further include a structure for receiving the proportional electrical signals and computing the applied load corresponding to the proportional electrical signals. The computed load can be expressed in terms of a three-dimensional XYZ Cartesian coordinate system.

Jansen, John F. (Knoxville, TN); Lind, Randall F. (Knoxville, TN)

2003-01-01T23:59:59.000Z

313

Space variations in axis height of the jet stream core  

E-Print Network [OSTI]

height of the jet axis relative to the height of the jet maximum for slow vs. fast cases. 13 Mean height of the jet axis relative to the height at the trough. 13 Mean height of the jet axis relative to the height at the ridge. 15 Mean height... of the jet axis relative to the height at the jet maximum, when the maximum is near a trough. 15 Mean height of the jet axis relative to the height at the minimum, when the minimum is near a ridge. 17 Mean height of the jet axis relative to the height...

Leutwyler, Cooke Hearon

1965-01-01T23:59:59.000Z

314

Washington University Can the Sound Generated by Modern Wind Turbines  

E-Print Network [OSTI]

Washington University Can the Sound Generated by Modern Wind Turbines Affect the Health of Those turbines haveWind turbines have been getting biggerbeen getting bigger and bigger....and bigger.... Lars Needs Wind turbines are "green" and areWind turbines are "green" and are contributing to our energy

Salt, Alec N.

315

Airfoil for a turbine of a gas turbine engine  

DOE Patents [OSTI]

An airfoil for a turbine of a gas turbine engine is provided. The airfoil comprises a main body comprising a wall structure defining an inner cavity adapted to receive a cooling air. The wall structure includes a first diffusion region and at least one first metering opening extending from the inner cavity to the first diffusion region. The wall structure further comprises at least one cooling circuit comprising a second diffusion region and at least one second metering opening extending from the first diffusion region to the second diffusion region. The at least one cooling circuit may further comprise at least one third metering opening, at least one third diffusion region and a fourth diffusion region.

Liang, George (Palm City, FL)

2010-12-21T23:59:59.000Z

316

Wind turbine trailing-edge aerodynamic brake design  

SciTech Connect (OSTI)

This report describes the design of a centrifugally actuated aerodynamic-overspeed device for a horizontal-axis wind turbine. The device will meet the following criteria; (1) It will be effective for airfoil angles of attack 0{degrees} to 45{degrees}. (2) It will be stowed inside the blade profile prior to deployment. (3) It will be capable of offsetting the positive torque produced by the overall blade. (4) Hinge moments will be minimized to lower actuator loads and cost. (5) It will be evaluated as a potential power modulating active rotor-control system. A literature review of aerodynamic braking devices was conducted. Information from the literature review was used to conceptualize the most effective devices for subsequent testing and design. Wind-tunnel test data for several braking devices are presented in this report. Using the data for the most promising configuration, a preliminary design was developed for a MICON 65/13 wind turbine with Phoenix 7.9-m rotor blades.

Quandt, G.

1996-01-01T23:59:59.000Z

317

Magnus air turbine system  

DOE Patents [OSTI]

A Magnus effect windmill for generating electrical power is disclosed. A large nacelle-hub mounted pivotally (in Azimuth) atop a support tower carries, in the example disclosed, three elongated barrels arranged in a vertical plane and extending symmetrically radially outwardly from the nacelle. The system provides spin energy to the barrels by internal mechanical coupling in the proper sense to cause, in reaction to an incident wind, a rotational torque of a predetermined sense on the hub. The rotating hub carries a set of power take-off rollers which ride on a stationary circular track in the nacelle. Shafts carry the power, given to the rollers by the wind driven hub, to a central collector or accumulator gear assembly whose output is divided to drive the spin mechanism for the Magnus barrels and the main electric generator. A planetary gear assembly is interposed between the collector gears and the spin mechanism functioning as a differential which is also connected to an auxiliary electric motor whereby power to the spin mechanism may selectively be provided by the motor. Generally, the motor provides initial spin to the barrels for start-up after which the motor is braked and the spin mechanism is driven as though by a fixed ratio coupling from the rotor hub. During high wind or other unusual conditions, the auxiliary motor may be unbraked and excess spin power may be used to operate the motor as a generator of additional electrical output. Interposed between the collector gears of the rotating hub and the main electric generator is a novel variable speed drive-fly wheel system which is driven by the variable speed of the wind driven rotor and which, in turn, drives the main electric generator at constant angular speed. Reference is made to the complete specification for disclosure of other novel aspects of the system such as, for example, the aerodynamic and structural aspects of the novel Magnus barrels as well as novel gearing and other power coupling combination apparatus of the invention. A reading of the complete specification is recommended for a full understanding of the principles and features of the disclosed system.

Hanson, Thomas F. (24204 Heritage La., Newhall, CA 91321)

1982-01-01T23:59:59.000Z

318

DISCRETE ELEMENT MODELING OF BLADE–STRIKE FREQUENCY AND SURVIVAL OF FISH PASSING THROUGH HYDROKINETIC TURBINES  

SciTech Connect (OSTI)

Evaluating the consequences from blade-strike of fish on marine hydrokinetic (MHK) turbine blades is essential for incorporating environmental objectives into the integral optimization of machine performance. For instance, experience with conventional hydroelectric turbines has shown that innovative shaping of the blade and other machine components can lead to improved designs that generate more power without increased impacts to fish and other aquatic life. In this work, we used unsteady computational fluid dynamics (CFD) simulations of turbine flow and discrete element modeling (DEM) of particle motion to estimate the frequency and severity of collisions between a horizontal axis MHK tidal energy device and drifting aquatic organisms or debris. Two metrics are determined with the method: the strike frequency and survival rate estimate. To illustrate the procedure step-by-step, an exemplary case of a simple runner model was run and compared against a probabilistic model widely used for strike frequency evaluation. The results for the exemplary case showed a strong correlation between the two approaches. In the application case of the MHK turbine flow, turbulent flow was modeled using detached eddy simulation (DES) in conjunction with a full moving rotor at full scale. The CFD simulated power and thrust were satisfactorily comparable to experimental results conducted in a water tunnel on a reduced scaled (1:8.7) version of the turbine design. A cloud of DEM particles was injected into the domain to simulate fish or debris that were entrained into the turbine flow. The strike frequency was the ratio of the count of colliding particles to the crossing sample size. The fish length and approaching velocity were test conditions in the simulations of the MHK turbine. Comparisons showed that DEM-based frequencies tend to be greater than previous results from Lagrangian particles and probabilistic models, mostly because the DEM scheme accounts for both the geometric aspects of the passage event ---which the probabilistic method does--- as well as the fluid-particle interactions ---which the Lagrangian particle method does. The DEM-based survival rates were comparable to laboratory results for small fish but not for mid-size fish because of the considerably different turbine diameters. The modeling framework can be used for applications that aim at evaluating the biological performance of MHK turbine units during the design phase and to provide information to regulatory agencies needed for the environmental permitting process.

Romero Gomez, Pedro DJ; Richmond, Marshall C.

2014-04-17T23:59:59.000Z

319

Wind turbine generator interaction with conventional diesel generators on Block Island, Rhode Island. Volume II. Data analysis  

SciTech Connect (OSTI)

In order to assess the performance of a MOD-OA horizontal axis wind turbine when connected to an isolated diesel utility, a comprehensive data measurement program was conducted on the Block Island Power Company installation on Block Island, Rhode Island. This report presents the detailed results of that program focusing on three principal areas of (1) fuel displacement (savings), (2) dynamic interaction between the diesel utility and the wind turbine, (3) effects of three modes of wind turbine reactive power control. The approximate two month duration of the data acquisition program conducted in the winter months (February into April 1982) revealed performance during periods of highest wind energy penetration and hence severity of operation. It is concluded that even under such conditions fuel savings were significant resulting in a fuel reduction of 6.7% while the MOD-OA was generating 10.7% of the total electrical energy. Also, electrical disturbance and interactive effects were of an acceptable level.

Wilreker, V.F.; Stiller, P.H.; Scott, G.W.; Kruse, V.J.; Smith, R.F.

1984-02-01T23:59:59.000Z

320

Final Turbine and Test Facility Design Report Alden/NREC Fish Friendly Turbine  

Broader source: Energy.gov [DOE]

The final report provides an overview of the Alden/NREC Fish Friendly turbine design phase, turbine test plan, preliminary test results, costs, schedule, and a hypothetical application at a real world project.

Note: This page contains sample records for the topic "vertical axis turbines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Angel wing seals for blades of a gas turbine and methods for determining angel wing seal profiles  

DOE Patents [OSTI]

A gas turbine has buckets rotatable about an axis, the buckets having angel wing seals. The seals have outer and inner surfaces, at least one of which, and preferably both, extend non-linearly between root radii and the tip of the seal body. The profiles are determined in a manner to minimize the weight of the seal bodies, while maintaining the stresses below predetermined maximum or allowable stresses.

Wang, John Zhiqiang (Greenville, SC)

2003-01-01T23:59:59.000Z

322

Wind Turbine Manufacturing Process Monitoring  

SciTech Connect (OSTI)

To develop a practical inline inspection that could be used in combination with automated composite material placement equipment to economically manufacture high performance and reliable carbon composite wind turbine blade spar caps. The approach technical feasibility and cost benefit will be assessed to provide a solid basis for further development and implementation in the wind turbine industry. The program is focused on the following technology development: (1) Develop in-line monitoring methods, using optical metrology and ultrasound inspection, and perform a demonstration in the lab. This includes development of the approach and performing appropriate demonstration in the lab; (2) Develop methods to predict composite strength reduction due to defects; and (3) Develop process models to predict defects from leading indicators found in the uncured composites.

Waseem Faidi; Chris Nafis; Shatil Sinha; Chandra Yerramalli; Anthony Waas; Suresh Advani; John Gangloff; Pavel Simacek

2012-04-26T23:59:59.000Z

323

Gas turbine vane platform element  

DOE Patents [OSTI]

A gas turbine CMC shroud plate (48A) with a vane-receiving opening (79) that matches a cross-section profile of a turbine vane airfoil (22). The shroud plate (48A) has first and second curved circumferential sides (73A, 74A) that generally follow the curves of respective first and second curved sides (81, 82) of the vane-receiving opening. Walls (75A, 76A, 77A, 78A, 80, 88) extend perpendicularly from the shroud plate forming a cross-bracing structure for the shroud plate. A vane (22) may be attached to the shroud plate by pins (83) or by hoop-tension rings (106) that clamp tabs (103) of the shroud plate against bosses (105) of the vane. A circular array (20) of shroud plates (48A) may be assembled to form a vane shroud ring in which adjacent shroud plates are separated by compressible ceramic seals (93).

Campbell, Christian X. (Oviedo, FL); Schiavo, Anthony L. (Oviedo, FL); Morrison, Jay A. (Oviedo, FL)

2012-08-28T23:59:59.000Z

324

Fuel option for gas turbine  

SciTech Connect (OSTI)

Growth in electricity demand is an average of 10% per year. Energy, emission, and economy are importance of critical concerns for generating systems. Therefore, combined cycle power plant is preferred to Electricity Generating Authority of Thailand (EGAT) new power generating capacity. The various option of available fuel for gas turbine are natural gas, liquid fuel and coal fuel. Particularly with the tremendous price increases in imported and domestic fuel supplies, natural gas is an attractive low cost alternative for power generation. EGAT has researched using heavy fuel instead of natural gas since the year 1991. The problems of various corrosion characteristics have been found. In addition, fuel treatment for gas turbine are needed, and along with it, the environmental consideration are options that provide the limitation of environmental regulation.

Tantayakom, S. [Electricity Generating Authority of Thailand, Nonthaburi (Thailand). Chemical and Analysis Dept.

1995-12-31T23:59:59.000Z

325

On the Fatigue Analysis of Wind Turbines  

SciTech Connect (OSTI)

Modern wind turbines are fatigue critical machines that are typically used to produce electrical power from the wind. Operational experiences with these large rotating machines indicated that their components (primarily blades and blade joints) were failing at unexpectedly high rates, which led the wind turbine community to develop fatigue analysis capabilities for wind turbines. Our ability to analyze the fatigue behavior of wind turbine components has matured to the point that the prediction of service lifetime is becoming an essential part of the design process. In this review paper, I summarize the technology and describe the ''best practices'' for the fatigue analysis of a wind turbine component. The paper focuses on U.S. technology, but cites European references that provide important insights into the fatigue analysis of wind turbines.

Sutherland, Herbert J.

1999-06-01T23:59:59.000Z

326

Cooling scheme for turbine hot parts  

DOE Patents [OSTI]

A closed-loop cooling scheme for cooling stationary combustion turbine components, such as vanes, ring segments and transitions, is provided. The cooling scheme comprises: (1) an annular coolant inlet chamber, situated between the cylinder and blade ring of a turbine, for housing coolant before being distributed to the turbine components; (2) an annular coolant exhaust chamber, situated between the cylinder and the blade ring and proximate the annular coolant inlet chamber, for collecting coolant exhaust from the turbine components; (3) a coolant inlet conduit for supplying the coolant to said coolant inlet chamber; (4) a coolant exhaust conduit for directing coolant from said coolant exhaust chamber; and (5) a piping arrangement for distributing the coolant to and directing coolant exhaust from the turbine components. In preferred embodiments of the invention, the cooling scheme further comprises static seals for sealing the blade ring to the cylinder and flexible joints for attaching the blade ring to the turbine components.

Hultgren, Kent Goran (Winter Park, FL); Owen, Brian Charles (Orlando, FL); Dowman, Steven Wayne (Orlando, FL); Nordlund, Raymond Scott (Orlando, FL); Smith, Ricky Lee (Oviedo, FL)

2000-01-01T23:59:59.000Z

327

Comparing Single and Multiple Turbine Representations in a Wind Farm Simulation: Preprint  

SciTech Connect (OSTI)

This paper compares single turbine representation versus multiple turbine representation in a wind farm simulation.

Muljadi, E.; Parsons, B.

2006-03-01T23:59:59.000Z

328

Axis Technologies Group Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWendeGuo Feng Bio Jump to: navigation,Avanzalia SolarAxioAxis

329

Optomechanical conversion by mechanical turbines  

E-Print Network [OSTI]

Liquid crystal elastomers are rubbers with liquid crystal order. They contract along their nematic director when heated or illuminated. The shape changes are large and occur in a relatively narrow temperature interval, or at low illumination, around the nematic-isotropic transition. We present a conceptual design of a mechanical, turbine-based engine using photo-active liquid crystal elastomers to extract mechanical work from light. Its efficiency is estimated to be 40%.

Milos Knezevic; Mark Warner

2014-11-02T23:59:59.000Z

330

Steam Turbine Materials and Corrosion  

SciTech Connect (OSTI)

Ultra-supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760 °C. In prior years this project examined the steamside oxidation of alloys for use in high- and intermediate-pressure USC turbines. This steamside oxidation research is continuing and progress is presented, with emphasis on chromia evaporation.

Holcomb, G.H.; Hsu, D.H.

2008-07-01T23:59:59.000Z

331

Dynamic analysis of a 5 megawatt offshore floating wind turbine  

E-Print Network [OSTI]

1985. 23. Hau, E. Wind Turbines: Fundamentals, Technologies,for Floating Offshore Wind Turbines. Tech. no. NREL/CP-500-Full-scale Floating Wind Turbine." Statoil, 14 Oct. 2009.

Harriger, Evan Michael

2011-01-01T23:59:59.000Z

332

Impacts of Wind Turbine Proximity on Property Values in Massachusetts  

E-Print Network [OSTI]

of Industrial Wind Turbine Noise on Sleep and Health.Waye, K. P. (2007) Wind Turbine Noise, Annoyance and Self-and Annoyance of Wind Turbine Noise. Acta Acus- tica United

Atkinson-Palombo, Carol

2014-01-01T23:59:59.000Z

333

Sandia National Laboratories: New Wind Turbine Blade Design  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ClimateECEnergyNew Wind Turbine Blade Design New Wind Turbine Blade Design More Energy with Less Weight ATLAS II Data Acquisition System New Wind Turbine Blade Design On May 18,...

334

Dynamic analysis of a 5 megawatt offshore floating wind turbine  

E-Print Network [OSTI]

wind turbine. Rating Control Rotor Radius Rated Wind Speed Towerwind turbine is used in this design, however there are slight modifications of the tower.of the tower. Figure 2.3: NREL 5 MW Reference Wind Turbine [

Harriger, Evan Michael

2011-01-01T23:59:59.000Z

335

A Portable Expert System for Gas Turbine Maintenance  

E-Print Network [OSTI]

Combustion turbines for electric power generation and industrial applications have steadily increased in size, efficiency and prominence. The newest class of gas turbine-generators coming into service will deliver 150 megawatts, with turbine inlet...

Quentin, G. H.

336

Understanding Trends in Wind Turbine Prices Over the Past Decade  

E-Print Network [OSTI]

embodied in wind turbine materials (6.37 GJ/kW) from the3.5-3.7). Wind turbines are material-intensive. Eachmanufacturing these materials into turbine components may

Bolinger, Mark

2012-01-01T23:59:59.000Z

337

An experimental and numerical study of wind turbine seismic behavior  

E-Print Network [OSTI]

Y. (1984). “Response of a wind turbine blade to seismic andM. (2006). “Swept wind turbine blade aeroelastic modelingto fatigue for wind turbine blades than earthquake loads. In

Prowell, I.

2011-01-01T23:59:59.000Z

338

Lightning protection system for a wind turbine  

DOE Patents [OSTI]

In a wind turbine (104, 500, 704) having a plurality of blades (132, 404, 516, 744) and a blade rotor hub (120, 712), a lightning protection system (100, 504, 700) for conducting lightning strikes to any one of the blades and the region surrounding the blade hub along a path around the blade hub and critical components of the wind turbine, such as the generator (112, 716), gearbox (708) and main turbine bearings (176, 724).

Costin, Daniel P. (Chelsea, VT); Petter, Jeffrey K. (Williston, VT)

2008-05-27T23:59:59.000Z

339

Small Wind Research Turbine: Final Report  

SciTech Connect (OSTI)

The Small Wind Research Turbine (SWRT) project was initiated to provide reliable test data for model validation of furling wind turbines and to help understand small wind turbine loads. This report will familiarize the user with the scope of the SWRT test and support the use of these data. In addition to describing all the testing details and results, the report presents an analysis of the test data and compares the SWRT test data to simulation results from the FAST aeroelastic simulation model.

Corbus, D.; Meadors, M.

2005-10-01T23:59:59.000Z

340

NOx reduction in gas turbine combustors  

E-Print Network [OSTI]

NOx REDUCTION IN GAS TURBINE COMBUSTORS A Thesis by Nak Won Sung Submitted to the Graduate College of Texas A&M University in partial fullfillment of the requirement for the degree of MASTER OF SCIENCE August 1976 Major Subject: Mechanical... Engineering NOx REDUCTION IN GAS TURBINE COMBUSTORS A Thesis by Nak Won Sung Approved as to style and content by: (Chairman of Committe (Head of Department) (Member) August 1976 "40308 (Member) 1 1. 1 ABSTRACT NOx Reduction in Gas Turbine...

Sung, Nak Won

1976-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vertical axis turbines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Wind Turbine Generator System Safety and Function Test Report for the Entegrity EW50 Wind Turbine  

SciTech Connect (OSTI)

This report summarizes the results of a safety and function test that NREL conducted on the Entegrity EW50 wind turbine. This test was conducted in accordance with the International Electrotechnical Commissions' (IEC) standard, Wind Turbine Generator System Part 2: Design requirements for small wind turbines, IEC 61400-2 Ed.2.0, 2006-03.

Smith, J.; Huskey, A.; Jager, D.; Hur, J.

2012-11-01T23:59:59.000Z

342

Wind Turbine Generator System Safety and Function Test Report for the Ventera VT10 Wind Turbine  

SciTech Connect (OSTI)

This report summarizes the results of a safety and function test that NREL conducted on the Ventera VT10 wind turbine. This test was conducted in accordance with the International Electrotechnical Commissions' (IEC) standard, Wind Turbine Generator System Part 2: Design requirements for small wind turbines, IEC 61400-2 Ed.2.0, 2006-03.

Smith, J.; Huskey, A.; Jager, D.; Hur, J.

2012-11-01T23:59:59.000Z

343

Water turbine system and method of operation  

DOE Patents [OSTI]

A system for providing electrical power from a current turbine is provided. The system includes a floatation device and a mooring. A water turbine structure is provided having an upper and lower portion wherein the lower portion includes a water fillable chamber. A plurality of cables are used to couple the system where a first cable couples the water turbine to the mooring and a second cable couples the floatation device to the first cable. The system is arranged to allow the turbine structure to be deployed and retrieved for service, repair, maintenance and redeployment.

Costin, Daniel P.

2010-06-15T23:59:59.000Z

344

Steam turbine upgrades: A utility based approach  

SciTech Connect (OSTI)

In the increasingly competitive power generation markets utilities must strive towards lower electricity generation costs, whilst relying on an aging steam turbine fleet. By the year 2000 more than 25% of the global steam turbine capacity will be older than 30 years. The heat rate of such units is generally considerably higher than that of equivalent new plant, and such equipment can be further disadvantaged by increased maintenance costs and forced outage rates. Over the past decade steam turbine conversion, modification, and upgrade packages have become an increasingly important part of the European steam turbine market. Furthermore, many utilities now realize that enhanced cost-effectiveness can often be obtained by moving away from the original equipment manufacturer (OEM), and the upgrading of other manufacturers' plant is now routine within the steam turbine industry. By working closely with customers, GE has developed a comprehensive range of steam turbine upgrade packages, including advanced design steampaths which can increase the performance of existing turbine installations to levels comparable with new plant. Such packages are tailor-made to the requirements of each customer, to ensure that the most cost-effective engineering solution is identified. This paper presents an overview of GE's state-of-the-art steam turbine technology, and continues to describe typical economic models for turbine upgrades.

Wakeley, G.R.

1998-07-01T23:59:59.000Z

345

Turbine bucket natural frequency tuning rib  

DOE Patents [OSTI]

A tuning rib is added preferably in the aft cavity of a cored turbine bucket to alter the bucket's natural frequencies. The tuning rib may be a solid rib or a segmented rib and is particularly suited for altering high order frequency modes such as 2T, 4F and 1-3S. As such, detrimental crossings of natural bucket frequencies and gas turbine stimuli can be avoided to thereby improve the reliability of a gas turbine without impacting other features of the bucket that are important to the performance of the gas turbine.

Wang, John Zhiqiang (Greenville, SC); Norton, Paul Francis (Greenville, SC); Barb, Kevin Joseph (Halfmoon, NY); Jacala, Ariel Caesar-Prepena (Simpsonville, SC)

2002-01-01T23:59:59.000Z

346

Improving Wind Turbine Gearbox Reliability: Preprint  

SciTech Connect (OSTI)

This paper describes a new research and development initiative to improve gearbox reliability in wind turbines begun at the National Renewable Energy Laboratory (NREL) in Golden, Colorado, USA.

Musial, W.; Butterfield, S.; McNiff, B.

2007-06-01T23:59:59.000Z

347

Evaluation of Turbine Blades Using Computed Tomography  

E-Print Network [OSTI]

Turbine blades are high value castings having complex internal geometry. Computed Tomography has been employed on Turbine blades for finding out defects and internal details. The wall thickness, rib thickness and radius of curvature are measured from the CT slices. The discontinuities including blockages of cooling passages in the cast material can be detected. 3D visualization of the turbine blade provides in extracting its internal features including inaccessible areas nondestructively, which is not possible through conventional NDE methods. The salient features for evaluation of turbine blades using Tomography are brought out.

C. Muralidhar; S. N. Lukose; M. P. Subramanian

2006-01-01T23:59:59.000Z

348

Water turbine system and method of operation  

DOE Patents [OSTI]

A system for providing electrical power from a current turbine is provided. The system includes a floatation device and a mooring. A water turbine structure is provided having an upper and lower portion wherein the lower portion includes a water fillable chamber. A plurality of cables are used to couple the system where a first cable couples the water turbine to the mooring and a second cable couples the floatation device to the first cable. The system is arranged to allow the turbine structure to be deployed and retrieved for service, repair, maintenance and redeployment.

Costin, Daniel P. (Montpelier, VT)

2011-05-10T23:59:59.000Z

349

Structural reliability of offshore wind turbines.  

E-Print Network [OSTI]

??Statistical extrapolation is required to predict extreme loads, associated with a target return period, for offshore wind turbines. In statistical extrapolation, “short-term" distributions of the… (more)

Agarwal, Puneet, 1977-

2012-01-01T23:59:59.000Z

350

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.  

E-Print Network [OSTI]

NWTC National Wind Technology Center SWT small wind turbine TKE turbulent kinetic energy VAWT vertical-axis computational fluid dynamics HAWT horizontal-axis wind turbine IEA International Energy Agency IEC International-Environment Wind Turbine Roadmap J. Smith, T. Forsyth, K. Sinclair, and F. Oteri Technical Report NREL/TP-5000

351

Research overview and cognitive approaches  

E-Print Network [OSTI]

Hu (PI), 01/01/2012 to12/31/2014, NSF · Innovative Offshore Vertical-Axis Wind Turbine Rotors Advanced design and control of horizontal-axis wind turbines which include design loads, component design of aerodynamic/aeroelastic loads and response of wind turbine components · SHM and fatigue life prediction

McCalley, James D.

352

High-speed gears for gas turbine drive  

SciTech Connect (OSTI)

Recently, Lufkin Industries, Power Transmission Div., full-load tested a high-speed gear designed to couple a 50 Hz electric power generator to a GE LM6000 gas turbine for a power generation project in Australia. The gear is rated 52.2 MW to match the output of the LM6000 gas turbine believed to be one of the largest gear testing operations for this type and size of gear. Each gear drive manufactured by Lufkin is full-speed tested to verify its performance. Tests performed on high-speed units duplicate field conditions, as closely as possible, in order to verify critical speed analysis results and new bearing designs, if used. Lufkin also tests design techniques used in the development of new products. The finite element analysis performed to predict housing deflection in the thrust bearing area of a new extruder driveline was verified by testing of a prototype unit housing. Recently, housing structure stiffness and natural frequencies were predicted and verified on the test stand for some 50 MW vertically offset gear units. A complete data acquisition system is used to gather data from bearing, inlet and drain temperature monitoring points. The temperature monitoring system will accommodate type T,K,J, and E thermocouples and platinum and nickel RTDs.

Kane, J.

1995-06-01T23:59:59.000Z

353

Systematic approach for PID controller design for pitch-regulated, variable-speed wind turbines  

SciTech Connect (OSTI)

Variable-speed, horizontal axis wind turbines use blade-pitch control to meet specified objectives for three regions of operation. This paper focuses on controller design for the constant power production regime. A simple, rigid, non-linear turbine model was used to systematically perform trade-off studies between two performance metrics. Minimization of both the deviation of the rotor speed from the desired speed and the motion of the actuator is desired. The robust nature of the proportional-integral-derivative (PID) controller is illustrated, and optimal operating conditions are determined. Because numerous simulation runs may be completed in a short time, the relationship of the two opposing metrics is easily visualized. 2 refs., 9 figs.

Hand, M.M. [National Renewable Energy Lab., Golden, CO (United States); Balas, M.J. [Univ. of Colorado, Boulder, CO (United States). Dept. of Aerospace Engineering Sciences

1997-11-01T23:59:59.000Z

354

Hydrogen Storage in Wind Turbine Towers: Cost Analysis and Conceptual...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

in Wind Turbine Towers: Cost Analysis and Conceptual Design Hydrogen Storage in Wind Turbine Towers: Cost Analysis and Conceptual Design Preprint 34851.pdf More Documents &...

355

Droplet Characterization in the Wake of Steam Turbine Cascades.  

E-Print Network [OSTI]

?? In low-pressure steam turbines, water droplet formation on the surfaces of stationary stator blades can lead to erosion on downstream turbine blades and other… (more)

Plondke, Adam Charles

2012-01-01T23:59:59.000Z

356

EA-2004: Seneca Nation of Indians Wind Turbine Project, Cattaraugus...  

Energy Savers [EERE]

EA-2004: Seneca Nation of Indians Wind Turbine Project, Cattaraugus Territory, New York EA-2004: Seneca Nation of Indians Wind Turbine Project, Cattaraugus Territory, New York...

357

Fuel Cell/Gas Turbine System Performance Studies  

Office of Scientific and Technical Information (OSTI)

as topping combustors for both turbines. A recuperated-heat exchanger recovers waste heat from the power turbine exhaust. This recuperated thermal energy partially heats the...

358

GE, Sandia National Lab Improve Wind Turbines | GE Global Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

GE, Sandia National Lab Discover Pathway to Quieter, More Productive Wind Turbines GE, Sandia National Lab Discover Pathway to Quieter, More Productive Wind Turbines Use of...

359

Wind Turbine Interactions with Birds, Bats, and their Habitats...  

Energy Savers [EERE]

Wind Turbine Interactions with Birds, Bats, and their Habitats: A Summary of Research Results and Priority Questions Wind Turbine Interactions with Birds, Bats, and their Habitats:...

360

Use of SCADA Data for Failure Detection in Wind Turbines  

SciTech Connect (OSTI)

This paper discusses the use of existing wind turbine SCADA data for development of fault detection and diagnostic techniques for wind turbines.

Kim, K.; Parthasarathy, G.; Uluyol, O.; Foslien, W.; Sheng, S.; Fleming, P.

2011-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "vertical axis turbines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Massachusetts: New Report States That Hydrokinetic Turbines Have...  

Energy Savers [EERE]

New Report States That Hydrokinetic Turbines Have Minimal Environmental Impacts on Fish Massachusetts: New Report States That Hydrokinetic Turbines Have Minimal Environmental...

362

Argonne Researchers Shine "Light" on Origins of Wind Turbine...  

Broader source: Energy.gov (indexed) [DOE]

Argonne Researchers Shine "Light" on Origins of Wind Turbine Bearing Failures Argonne Researchers Shine "Light" on Origins of Wind Turbine Bearing Failures September 12, 2014 -...

363

Demonstration of a Variable Phase Turbine Power System for Low...  

Broader source: Energy.gov (indexed) [DOE]

Demonstration of a Variable Phase Turbine Power System for Low Temperature Geothermal Resources Demonstration of a Variable Phase Turbine Power System for Low Temperature...

364

SWiFT Turbines Full Dynamic Characterization Opens Doors for...  

Energy Savers [EERE]

of gravity, moment of inertia, natural frequencies, and mode shapes of each main turbine component tested individually and throughout turbine assembly. The unique nature of...

365

SMART Wind Turbine Rotor: Design and Field Test | Department...  

Broader source: Energy.gov (indexed) [DOE]

Design and Field Test SMART Wind Turbine Rotor: Design and Field Test This report documents the design, fabrication, and testing of the SMART Wind Turbine Rotor. This work...

366

Consider Installing High-Pressure Boilers with BackpressureTurbine...  

Broader source: Energy.gov (indexed) [DOE]

High-Pressure Boilers with Backpressure Turbine-Generators Consider Installing High-Pressure Boilers with Backpressure Turbine-Generators This tip sheet outlines the benefits of...

367

Testimonials - Partnerships in R&D - Capstone Turbine Corporation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

R&D - Capstone Turbine Corporation Testimonials - Partnerships in R&D - Capstone Turbine Corporation Addthis Text Version The words Office of Energy Efficiency and Renewable Energy...

368

Combustion Turbine CHP System for Food Processing Industry -...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combustion Turbine CHP System for Food Processing Industry - Presentation by Frito-Lay North America, June 2011 Combustion Turbine CHP System for Food Processing Industry -...

369

New Report States That Hydrokinetic Turbines Have Minimal Environmenta...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Report States That Hydrokinetic Turbines Have Minimal Environmental Impacts on Fish New Report States That Hydrokinetic Turbines Have Minimal Environmental Impacts on Fish August...

370

EA-2004: Seneca Nation of Indians Wind Turbine Project, Cattaraugus...  

Office of Environmental Management (EM)

of Indians Wind Turbine Project, Cattaraugus Territory, Chautauqua County, Irving, New York EA-2004: Seneca Nation of Indians Wind Turbine Project, Cattaraugus Territory,...

371

An experimental and numerical study of wind turbine seismic behavior  

E-Print Network [OSTI]

assumes linear material response of the turbine tower evennon-linear material behavior in conjunction with turbinefor design of a turbine. When non-linear material behavior

Prowell, I.

2011-01-01T23:59:59.000Z

372

Sandia National Laboratories: larger and heavier turbine blades...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

larger and heavier turbine blades experience increased edgewise fatigue loading New Material Tests Show Biaxial Laminate Creep Is Important for Large Wind-Turbine Blades On April...

373

Dynamic analysis of a 5 megawatt offshore floating wind turbine  

E-Print Network [OSTI]

Offshore wind turbines have the potential to generateuncover potential problems that exist with offshore windwind turbines in operation, this technology has the potential

Harriger, Evan Michael

2011-01-01T23:59:59.000Z

374

Advanced Control Design and Testing for Wind Turbines at the...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Control Design and Testing for Wind Turbines at the National Renewable Energy Laboratory: Preprint Advanced Control Design and Testing for Wind Turbines at the National Renewable...

375

An experimental and numerical study of wind turbine seismic behavior  

E-Print Network [OSTI]

of Seismic and Wind Load Combinations 8.5.2 Extremeextrapolation for wind turbine extreme loads. ” Wind Energy,extrapolation for wind turbine extreme loads. ” 46th AIAA

Prowell, I.

2011-01-01T23:59:59.000Z

376

Experimental Study of Free Stream Turbulence Effects on Dynamic Stall of Pitching Airfoil by using Particle Image Velocimetry  

E-Print Network [OSTI]

of attack histogram of a vertical axis wind turbine (VAWT). By using PIV, the instantaneous vortex, a great deal of attention has been paid to investigate the aerodynamic performance of vertical-axis wind turbines (VAWT) [4-6]. VAWT often operates inside an atmospheric turbulent boundary layer. The purpose

Leu, Tzong-Shyng "Jeremy"

377

956 IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. 33, NO. 4, JULY/AUGUST 1997 Design and Performance Evaluation of  

E-Print Network [OSTI]

generation systems used variable-pitch constant- speed wind turbines (horizontal or vertical axis) that were to utility grids. Recently, variable-speed wind turbine (VSWT) systems that process power through power STRATEGY Fig. 1 shows the block diagram of the power circuit and control strategy. The turbine (vertical

Simões, Marcelo Godoy

378

Two-axis tracking solar collector mechanism  

DOE Patents [OSTI]

This invention is a novel solar tracking mechanism incorporating a number of practical features that give it superior environmental resilience and exceptional tracking accuracy. The mechanism comprises a lightweight space-frame assembly supporting an array of point-focus Fresnel lenses in a two-axis tracking structure. The system is enclosed under a glass cover which isolates it from environmental exposure and enhances tracking accuracy by eliminating wind loading. Tracking accuracy is also enhanced by the system's broad-based tracking support. The system's primary intended application would be to focus highly concentrated sunlight into optical fibers for transmission to core building illumination zones, and the system may also have potential for photovoltaic or photothermal solar energy conversion.

Johnson, Kenneth C. (201 W. California Ave., #401, Sunnyvale, CA 94086)

1990-01-01T23:59:59.000Z

379

Two-axis tracking solar collector mechanism  

DOE Patents [OSTI]

This invention is a novel solar tracking mechanism incorporating a number of practical features that give it superior environmental resilience and exceptional tracking accuracy. The mechanism comprises a lightweight space-frame assembly supporting an array of point-focus Fresnel lenses in a two-axis tracking structure. The system is enclosed under a glass cover which isolates it from environmental exposure and enhances tracking accuracy by eliminating wind loading. Tracking accuracy is also enhanced by the system's broad-based tracking support. The system's primary intended application would be to focus highly concentrated sunlight into optical fibers for transmission to core building illumination zones, and the system may also have potential for photovoltaic or photothermal solar energy conversion.

Johnson, Kenneth C. (201 W. California Ave. #705, Sunnyvale, CA 94086)

1992-01-01T23:59:59.000Z

380

Two-axis tracking solar collector mechanism  

DOE Patents [OSTI]

This invention is a novel solar tracking mechanism incorporating a number of practical features that give it superior environmental resilience and exceptional tracking accuracy. The mechanism comprises a lightweight space-frame assembly supporting an array of point-focus Fresnel lenses in a two-axis tracking structure. The system is enclosed under a glass cover which isolates it from environmental exposure and enhances tracking accuracy by eliminating wind loading. Tracking accuracy is also enhanced by the system's broad-based tracking support. The system's primary intended application would be to focus highly concentrated sunlight into optical fibers for transmission to core building illumination zones, and the system may also have potential for photovoltaic or photothermal solar energy conversion. 16 figs.

Johnson, K.C.

1992-12-08T23:59:59.000Z

Note: This page contains sample records for the topic "vertical axis turbines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Offshore Wind Turbines: Some Technical Challenges  

E-Print Network [OSTI]

1 Offshore Wind Turbines: Some Technical Challenges Prof. Guy Houlsby FREng Oxford University House engineers concerned with installation of offshore wind turbines. The author is Professor of Civil of foundations for offshore structures. He also has a strong interest in the development of the fundamental

Houlsby, Guy T.

382

Energy 101: Wind Turbines - 2014 Update  

ScienceCinema (OSTI)

See how wind turbines generate clean electricity from the power of wind. The video highlights the basic principles at work in wind turbines, and illustrates how the various components work to capture and convert wind energy to electricity. This updated version also includes information on the Energy Department's efforts to advance offshore wind power. Offshore wind energy footage courtesy of Vestas.

None

2014-06-05T23:59:59.000Z

383

Method for detecting gas turbine engine flashback  

DOE Patents [OSTI]

A method for monitoring and controlling a gas turbine, comprises predicting frequencies of combustion dynamics in a combustor using operating conditions of a gas turbine, receiving a signal from a sensor that is indicative of combustion dynamics in the combustor, and detecting a flashback if a frequency of the received signal does not correspond to the predicted frequencies.

Singh, Kapil Kumar; Varatharajan, Balachandar; Kraemer, Gilbert Otto; Yilmaz, Ertan; Lacy, Benjamin Paul

2012-09-04T23:59:59.000Z

384

Energy 101: Wind Turbines - 2014 Update  

SciTech Connect (OSTI)

See how wind turbines generate clean electricity from the power of wind. The video highlights the basic principles at work in wind turbines, and illustrates how the various components work to capture and convert wind energy to electricity. This updated version also includes information on the Energy Department's efforts to advance offshore wind power. Offshore wind energy footage courtesy of Vestas.

None

2014-05-06T23:59:59.000Z

385

Optomechanical conversion by mechanical turbines  

E-Print Network [OSTI]

, “Photomobile polymer materials: towards light-driven plastic motors,” Angew. Chem. Int. Ed. 47, 4986 (2008). [2] Y. Geng, P. L. Almeida, S. N. Fernandes, C. Cheng, P. Palffy-Muhoray, and M. H. Godinho, “A cellulose liquid crystal motor: a steam engine... design of a mechanical, turbine-based engine using photo-active liquid crystal elastomers to extract mechanical work from light. Its efficiency is estimated to be 40%. PACS numbers: 61.30.-v, 61.41.+e, 83.80.Va, 88.40.-j I. INTRODUCTION We propose a...

Kneževi?, Miloš; Warner, Mark

2014-10-30T23:59:59.000Z

386

Multiple piece turbine rotor blade  

DOE Patents [OSTI]

A multiple piece turbine rotor blade with a shell having an airfoil shape and secured between a spar and a platform with the spar including a tip end piece. a snap ring fits around the spar and abuts against the spar tip end piece on a top side and abuts against a shell on the bottom side so that the centrifugal loads from the shell is passed through the snap ring and into the spar and not through a tip cap dovetail slot and projection structure.

Jones, Russell B; Fedock, John A

2013-05-21T23:59:59.000Z

387

How to Build a Turbine  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2MLLC HistoryVeterans |VirtualLoveApply forTurbine

388

Blade for a gas turbine  

DOE Patents [OSTI]

A blade is provided for a gas turbine. The blade comprises a main body comprising a cooling fluid entrance channel; a cooling fluid collector in communication with the cooling fluid entrance channel; a plurality of side channels extending through an outer wall of the main body and communicating with the cooling fluid collector and a cooling fluid cavity; a cooling fluid exit channel communicating with the cooling fluid cavity; and a plurality of exit bores extending from the cooling fluid exit channel through the main body outer wall.

Liang, George (Palm City, FL)

2010-10-26T23:59:59.000Z

389

Designing an ultrasupercritical steam turbine  

SciTech Connect (OSTI)

Carbon emissions produced by the combustion of coal may be collected and stored in the future, but a better approach is to reduce the carbon produced through efficient combustion technologies. Increasing the efficiency of new plants using ultrasupercritical (USC) technology will net less carbon released per megawatt-hour using the world's abundant coal reserves while producing electricity at the lowest possible cost. The article shows how increasing the steam turbine operating conditions for a new USC project in the USA and quantify the potential CO{sub 2} reduction this advanced design makes possible. 7 figs., 3 tabs.

Klotz, H.; Davis, K.; Pickering, E. [Alstom (Germany)

2009-07-15T23:59:59.000Z

390

Western Turbine | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative Jump to: navigation,Western Cooling EfficiencyWestern Springs isTurbine

391

Low thermal stress ceramic turbine nozzle  

DOE Patents [OSTI]

A turbine nozzle vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The metallic components having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine nozzle vane assembly. The turbine nozzle vane assembly includes an outer shroud and an inner shroud having a plurality of vanes therebetween. Each of the plurality of vanes have a device for heating and cooling a portion of each of the plurality of vanes. Furthermore, the inner shroud has a plurality of bosses attached thereto. A cylindrical member has a plurality of grooves formed therein and each of the plurality of bosses are positioned in corresponding ones of the plurality of grooves. The turbine nozzle vane assembly provides an economical, reliable and effective ceramic component having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the other component.

Glezer, Boris (Del Mar, CA); Bagheri, Hamid (San Diego, CA); Fierstein, Aaron R. (San Diego, CA)

1996-01-01T23:59:59.000Z

392

Vertically Integrated Circuits at Fermilab  

SciTech Connect (OSTI)

The exploration of the vertically integrated circuits, also commonly known as 3D-IC technology, for applications in radiation detection started at Fermilab in 2006. This paper examines the opportunities that vertical integration offers by looking at various 3D designs that have been completed by Fermilab. The emphasis is on opportunities that are presented by through silicon vias (TSV), wafer and circuit thinning and finally fusion bonding techniques to replace conventional bump bonding. Early work by Fermilab has led to an international consortium for the development of 3D-IC circuits for High Energy Physics. The consortium has submitted over 25 different designs for the Fermilab organized MPW run organized for the first time.

Deptuch, Grzegorz; Demarteau, Marcel; Hoff, James; Lipton, Ronald; Shenai, Alpana; Trimpl, Marcel; Yarema, Raymond; Zimmerman, Tom; /Fermilab

2009-01-01T23:59:59.000Z

393

7, 1275112779, 2007 Vertical distribution  

E-Print Network [OSTI]

. In an urban area there are many buildings, which cause large inhomogeneities in the energy and wind profilesACPD 7, 12751­12779, 2007 Vertical distribution of O3 and VOCs in Mexico City E. Velasco et al of Mexico City E. Velasco1,2 , C. M´arquez3 , E. Bueno3 , R. M. Bernab´e3 , A. S´anchez3 , O. Fentanes 3 , H

Boyer, Edmond

394

Steam turbine materials and corrosion  

SciTech Connect (OSTI)

Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760°C. This research examines the steamside oxidation of alloys for use in USC systems, with emphasis placed on applications in high- and intermediate-pressure turbines. The list of alloys being examined is discussed, including the addition of new alloys to the study. These include alloy 625, selected because of its use as one of the two alloys used for turbine rotors, valves, casings, blading and bolts in the European AD700 full-scale demonstration plant (Scholven Unit F). The other alloy, alloy 617, is already one of the alloys currently being examined by this project. Other new alloys to the study are the three round robin alloys in the UK-US collaboration: alloys 740, TP347HFG, and T92. Progress on the project is presented on cyclic oxidation in 50% air – 50% water vapor, furnace exposures in moist air, and thermogravimetric analysis in argon with oxygen saturated steam. An update on the progress towards obtaining an apparatus for high pressure exposures is given.

Holcomb, G.R.; Ziomek-Moroz, M.

2007-01-01T23:59:59.000Z

395

Gas fired Advanced Turbine System  

SciTech Connect (OSTI)

The primary objective of the first phase of the Advanced Gas Turbine System (ATS) program was the concept definition of an advanced engine system that meets efficiency and emission goals far exceeding those that can be provided with today`s equipment. The thermal efficiency goal for such an advanced industrial engine was set at 50% some 15 percentage points higher than current equipment levels. Exhaust emissions goals for oxides of nitrogen (NO{sub x}), carbon monoxide (CO), and unburned hydrocarbons (UH) were fixed at 8 parts per million by volume (ppmv), 20 ppmv, and 20 ppmv respectively, corrected to 15% oxygen (O{sub 2}) levels. Other goals had to be addressed; these involved reducing the cost of power produced by 10 percent and improving or maintaining the reliability, availability, and maintainability (RAM) at current levels. This advanced gas turbine was to be fueled with natural gas, and it had to embody features that would allow it bum coal or coal derived fuels.

LeCren, R.T.; White, D.J.

1993-01-01T23:59:59.000Z

396

Vertical Integration and Technology: Theory and Evidence  

E-Print Network [OSTI]

We study the determinants of vertical integration. We first derive a number of predictions regarding the relationship between technology intensity and vertical integration from a simple incomplete contracts model. Then, ...

Acemoglu, Daron

397

Proceedings of design, repair, and refurbishment of steam turbines  

SciTech Connect (OSTI)

This book reports on the proceedings of design, repair and refurbishment of steam engines. Topics covered include: Advisor/Expert Systems for Steam Turbines; Moisture Effects on the Operating and Performance of Steam Turbines; Turbine Steam Path Development; Repair and Refurbishment of the Electric Generator Components; and Advanced Steam Turbine Designs.

Warnock, A.S. (Lehigh Univ., PA (United States))

1991-01-01T23:59:59.000Z

398

Advanced Wind Turbine Controls Reduce Loads (Fact Sheet)  

SciTech Connect (OSTI)

NREL's National Wind Technology Center provides the world's only dedicated turbine controls testing platforms.

Not Available

2012-03-01T23:59:59.000Z

399

Wind Turbines and Health A Rapid Review of the Evidence  

E-Print Network [OSTI]

1 Wind Turbines and Health A Rapid Review of the Evidence July 2010 #12;2 Wind Turbines and Health of the evidence from current literature on the issue of wind turbines and potential impacts on human health regarding wind turbines and their potential effect on human health. It is important to note that these views

Firestone, Jeremy

400

Design of heterogeneous turbine blade Xiaoping Qian, Deba Dutta*  

E-Print Network [OSTI]

Design of heterogeneous turbine blade Xiaoping Qian, Deba Dutta* Department of Mechanical in turbine drivers push the material capabilities of turbine blades to the limit. The recent development of heterogeneous objects by layered manufacturing offers new potentials for the turbine blades. In heterogeneous

Qian, Xiaoping

Note: This page contains sample records for the topic "vertical axis turbines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Modelling and Control of an Inverted Pendulum Turbine  

E-Print Network [OSTI]

Modelling and Control of an Inverted Pendulum Turbine Sergi Rotger Griful Kongens Lyngby 2012 IMM. In this project the feasibility of a new kind of wind turbine is studied. This thesis deals with the achievement of getting a proper mathematical model of a new kind of wind turbine, called the inverted pendulum turbine

402

Gas Turbines Increase the Energy Efficiency of Industrial Processes  

E-Print Network [OSTI]

clean fuel gas for the gas turbine is produced by gasification of coal, are presented. Waste heat from the gasifier and the gas turbine exhaust is converted to high pressure steam for steam turbines. Gas turbines may find application in other industrial...

Banchik, I. N.; Bohannan, W. R.; Stork, K.; McGovern, L. J.

1981-01-01T23:59:59.000Z

403

Loads Analysis of Several Offshore Floating Wind Turbine Concepts  

SciTech Connect (OSTI)

This paper presents a comprehensive dynamic-response analysis of six offshore floating wind turbine concepts.

Robertson, A. N.; Jonkman, J. M.

2011-10-01T23:59:59.000Z

404

E-Print Network 3.0 - axis factoring method Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Once this is done, we can call the setup method to properly initialize the axis... On: color values start end moveBy scaleFactor minValue maxValue AbstractAxis AxisAxisDecorator...

405

DARHT: Dual-Axis Radiographic Hydrodynamic Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

built DARHT, the world's most powerful x-ray machine, to analyze mockups of nuclear weapons. At the Los Alamos National Laboratory (LANL), the Dual-Axis Radiographic...

406

NEXT GENERATION GAS TURBINE SYSTEMS STUDY  

SciTech Connect (OSTI)

Under sponsorship of the U.S. Department of Energy's National Energy Technology Laboratory, Siemens Westinghouse Power Corporation has conducted a study of Next Generation Gas Turbine Systems that embraces the goals of the DOE's High Efficiency Engines and Turbines and Vision 21 programs. The Siemens Westinghouse Next Generation Gas Turbine (NGGT) Systems program was a 24-month study looking at the feasibility of a NGGT for the emerging deregulated distributed generation market. Initial efforts focused on a modular gas turbine using an innovative blend of proven technologies from the Siemens Westinghouse W501 series of gas turbines and new enabling technologies to serve a wide variety of applications. The flexibility to serve both 50-Hz and 60-Hz applications, use a wide range of fuels and be configured for peaking, intermediate and base load duty cycles was the ultimate goal. As the study progressed the emphasis shifted from a flexible gas turbine system of a specific size to a broader gas turbine technology focus. This shift in direction allowed for greater placement of technology among both the existing fleet and new engine designs, regardless of size, and will ultimately provide for greater public benefit. This report describes the study efforts and provides the resultant conclusions and recommendations for future technology development in collaboration with the DOE.

Benjamin C. Wiant; Ihor S. Diakunchak; Dennis A. Horazak; Harry T. Morehead

2003-03-01T23:59:59.000Z

407

Computational Tools to Assess Turbine Biological Performance  

SciTech Connect (OSTI)

Public Utility District No. 2 of Grant County (GCPUD) operates the Priest Rapids Dam (PRD), a hydroelectric facility on the Columbia River in Washington State. The dam contains 10 Kaplan-type turbine units that are now more than 50 years old. Plans are underway to refit these aging turbines with new runners. The Columbia River at PRD is a migratory pathway for several species of juvenile and adult salmonids, so passage of fish through the dam is a major consideration when upgrading the turbines. In this paper, a method for turbine biological performance assessment (BioPA) is demonstrated. Using this method, a suite of biological performance indicators is computed based on simulated data from a CFD model of a proposed turbine design. Each performance indicator is a measure of the probability of exposure to a certain dose of an injury mechanism. Using known relationships between the dose of an injury mechanism and frequency of injury (dose–response) from laboratory or field studies, the likelihood of fish injury for a turbine design can be computed from the performance indicator. By comparing the values of the indicators from proposed designs, the engineer can identify the more-promising alternatives. We present an application of the BioPA method for baseline risk assessment calculations for the existing Kaplan turbines at PRD that will be used as the minimum biological performance that a proposed new design must achieve.

Richmond, Marshall C.; Serkowski, John A.; Rakowski, Cynthia L.; Strickler, Brad; Weisbeck, Molly; Dotson, Curtis L.

2014-07-24T23:59:59.000Z

408

1Design limits and solutions for very large wind turbines Design limits and solutions for very large wind turbines  

E-Print Network [OSTI]

#12;#12;1Design limits and solutions for very large wind turbines UpWind Design limits and solutions for very large wind turbines A 20 MW turbine is feasible March 2011 Supported by: #12;March 20112 Photo:Nordex #12;3Design limits and solutions for very large wind turbines Contents 1. UpWind: Summary

Leu, Tzong-Shyng "Jeremy"

409

SumTime-Turbine: A Knowledge-Based System to Communicate Gas Turbine Time-Series Data  

E-Print Network [OSTI]

SumTime-Turbine: A Knowledge-Based System to Communicate Gas Turbine Time-Series Data Jin Yu of Aberdeen Aberdeen, AB24 3UE, UK {jyu, ereiter, jhunter, ssripada}@csd.abdn.ac.uk Abstract: SumTime-Turbine produces textual summaries of archived time- series data from gas turbines. These summaries should help

Reiter, Ehud

410

Advanced Micro Turbine System (AMTS) -C200 Micro Turbine -Ultra-Low Emissions Micro Turbine  

SciTech Connect (OSTI)

In September 2000 Capstone Turbine Corporation commenced work on a US Department of Energy contract to develop and improve advanced microturbines for power generation with high electrical efficiency and reduced pollutants. The Advanced MicroTurbine System (AMTS) program focused on: (1) The development and implementation of technology for a 200 kWe scale high efficiency microturbine system (2) The development and implementation of a 65 kWe microturbine which meets California Air Resources Board (CARB) emissions standards effective in 2007. Both of these objectives were achieved in the course of the AMTS program. At its conclusion prototype C200 Microturbines had been designed, assembled and successfully completed field demonstration. C65 Microturbines operating on natural, digester and landfill gas were also developed and successfully tested to demonstrate compliance with CARB 2007 Fossil Fuel Emissions Standards for NOx, CO and VOC emissions. The C65 Microturbine subsequently received approval from CARB under Executive Order DG-018 and was approved for sale in California. The United Technologies Research Center worked in parallel to successfully execute a RD&D program to demonstrate the viability of a low emissions AMS which integrated a high-performing microturbine with Organic Rankine Cycle systems. These results are documented in AMS Final Report DOE/CH/11060-1 dated March 26, 2007.

Capstone Turbine Corporation

2007-12-31T23:59:59.000Z

411

Wind Turbine Safety and Function Test Report for the Mariah Windspire Wind Turbine  

SciTech Connect (OSTI)

This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers to wind energy expansion by providing independent testing results for small wind turbines (SWT). In total, five turbines were tested at the National Wind Technology Center (NWTC) as a part of this project. Safety and function testing is one of up to five tests performed on the turbines, including power performance, duration, noise, and power-quality tests. NWTC testing results provide manufacturers with reports that may be used to meet part of small wind turbine certification requirements. The test equipment includes a Mariah Windspire wind turbine mounted on a monopole tower. L&E Machine manufactured the turbine in the United States. The inverter was manufactured separately by Technology Driven Products in the United States. The system was installed by the NWTC site operations group with guidance and assistance from Mariah Power.

Huskey, A.; Bowen, A.; Jager, D.

2010-07-01T23:59:59.000Z

412

DOE/SNL-TTU scaled wind farm technology facility : research opportunities for study of turbine-turbine interaction.  

SciTech Connect (OSTI)

The proposed DOE/Sandia Scaled Wind Farm Technology Facility (SWiFT) hosted by Texas Tech University at Reese Technology Center in Lubbock, TX, will provide a facility for experimental study of turbine-turbine interaction and complex wind farm aerodynamics. This document surveys the current status of wind turbine wake and turbine-turbine interaction research, identifying knowledge and data gaps that the proposed test site can potentially fill. A number of turbine layouts is proposed, allowing for up to ten turbines at the site.

Barone, Matthew Franklin; White, Jonathan

2011-09-01T23:59:59.000Z

413

Economic Impacts of Wind Turbine Development in U.S. Counties  

E-Print Network [OSTI]

15 percent)). Cumulative wind turbine capacity installed inper capita income of wind turbine development (measured inour sample, cumulative wind turbine capacity on a per person

J., Brown

2012-01-01T23:59:59.000Z

414

Dynamic response analysis of a 900 kW wind turbine subject to ground excitation  

E-Print Network [OSTI]

powered by wind energy, wind turbines themselves stillWind Energy and Earthquake Activity Wind Turbines areTurbines. Det Norsk Veritas, Copen- hagen and Wind Energy

Caudillo, Adrian Felix

2012-01-01T23:59:59.000Z

415

Dynamic response analysis of a 900 kW wind turbine subject to ground excitation  

E-Print Network [OSTI]

response analysis of wind turbine towers including soil-were attached to the wind turbine tower at 7 locations alongload demands on the wind turbine tower structure. Additional

Caudillo, Adrian Felix

2012-01-01T23:59:59.000Z

416

An acoustic energy framework for predicting combustion- driven acoustic instabilities in premixed gas-turbines  

E-Print Network [OSTI]

of Engineering for Gas Turbines and Power, 2000. Vol. 122:of Engineering for Gas Turbines and Power, 2000. Vol. 122:in Lean Premixed Gas Turbine Combustors," Journal of

Ibrahim, Zuhair M. A.

2007-01-01T23:59:59.000Z

417

Technology Adoption and Regulatory Regimes: Gas Turbines Electricity Generators from 1980 to 2001  

E-Print Network [OSTI]

Scheibel (1997) “Current Gas Turbine Developments and Futurefor Heavy-Duty Gas Turbines,” October 2000. Available onlineNext Evolution of the F Gas Turbine,” April 2001. Available

Ishii, Jun

2004-01-01T23:59:59.000Z

418

Conceptual Design and Instrumentation Study for a 2-D, Linear, Wet Steam Turbine Cascade Facility.  

E-Print Network [OSTI]

??The design of last stage low pressure steam (LP) turbines has become increasingly complicated as turbine manufacturers have pushed for larger and more efficient turbines.… (more)

McFarland, Jacob Andrew

2009-01-01T23:59:59.000Z

419

Combustion modeling in advanced gas turbine systems  

SciTech Connect (OSTI)

Goal of DOE`s Advanced Turbine Systems program is to develop and commercialize ultra-high efficiency, environmentally superior, cost competitive gas turbine systems for base-load applications in utility, independent power producer, and industrial markets. Primary objective of the program here is to develop a comprehensive combustion model for advanced gas turbine combustion systems using natural gas (coal gasification or biomass fuels). The efforts included code evaluation (PCGC-3), coherent anti-Stokes Raman spectroscopy, laser Doppler anemometry, and laser-induced fluorescence.

Smoot, L.D.; Hedman, P.O.; Fletcher, T.H.; Brewster, B.S.; Kramer, S.K. [Brigham Young Univ., Provo, UT (United States). Advanced Combustion Engineering Research Center

1995-12-31T23:59:59.000Z

420

Gas turbine engines with particle traps  

DOE Patents [OSTI]

A gas turbine engine (10) incorporates a particle trap (46) that forms an entrapment region (73) in a plenum (24) which extends from within the combustor (18) to the inlet (32) of a radial-inflow turbine (52, 54). The engine (10) is thereby adapted to entrap particles that originate downstream from the compressor (14) and are otherwise propelled by combustion gas (22) into the turbine (52, 54). Carbonaceous particles that are dislodged from the inner wall (50) of the combustor (18) are incinerated within the entrapment region (73) during operation of the engine (10).

Boyd, Gary L. (Tempe, AZ); Sumner, D. Warren (Phoenix, AZ); Sheoran, Yogendra (Scottsdale, AZ); Judd, Z. Daniel (Phoenix, AZ)

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vertical axis turbines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Gas turbine bucket wall thickness control  

DOE Patents [OSTI]

A core for use in casting a turbine bucket including serpentine cooling passages is divided into two pieces including a leading edge core section and a trailing edge core section. Wall thicknesses at the leading edge and the trailing edge of the turbine bucket can be controlled independent of each other by separately positioning the leading edge core section and the trailing edge core section in the casting die. The controlled leading and trailing edge thicknesses can thus be optimized for efficient cooling, resulting in more efficient turbine operation.

Stathopoulos, Dimitrios (Glenmont, NY); Xu, Liming (Greenville, SC); Lewis, Doyle C. (Greer, SC)

2002-01-01T23:59:59.000Z

422

Generic turbine design study. Final report  

SciTech Connect (OSTI)

The purpose of Task 12, Generic Turbine Design Study was to develop a conceptual design of a combustion turbine system that would perform in a pressurized fluidized bed combustor (PFBC) application. A single inlet/outlet casing design that modifies the W251B12 combustion turbine to provide compressed air to the PFBC and accept clean hot air from the PFBC was developed. Performance calculations show that the net power output expected, at an inlet temperature of 59{degrees}F, is 20,250 kW.

Not Available

1993-06-01T23:59:59.000Z

423

High efficiency turbine blade coatings.  

SciTech Connect (OSTI)

The development of advanced thermal barrier coatings (TBCs) of yttria stabilized zirconia (YSZ) that exhibit lower thermal conductivity through better control of electron beam - physical vapor deposition (EB-PVD) processing is of prime interest to both the aerospace and power industries. This report summarizes the work performed under a two-year Lab-Directed Research and Development (LDRD) project (38664) to produce lower thermal conductivity, graded-layer thermal barrier coatings for turbine blades in an effort to increase the efficiency of high temperature gas turbines. This project was sponsored by the Nuclear Fuel Cycle Investment Area. Therefore, particular importance was given to the processing of the large blades required for industrial gas turbines proposed for use in the Brayton cycle of nuclear plants powered by high temperature gas-cooled reactors (HTGRs). During this modest (~1 full-time equivalent (FTE)) project, the processing technology was developed to create graded TBCs by coupling ion beam-assisted deposition (IBAD) with substrate pivoting in the alumina-YSZ system. The Electron Beam - 1200 kW (EB-1200) PVD system was used to deposit a variety of TBC coatings with micron layered microstructures and reduced thermal conductivity below 1.5 W/m.K. The use of IBAD produced fully stoichiometric coatings at a reduced substrate temperature of 600 oC and a reduced oxygen background pressure of 0.1 Pa. IBAD was also used to successfully demonstrate the transitioning of amorphous PVD-deposited alumina to the -phase alumina required as an oxygen diffusion barrier and for good adhesion to the substrate Ni2Al3 bondcoat. This process replaces the time consuming thermally grown oxide formation required before the YSZ deposition. In addition to the process technology, Direct Simulation Monte Carlo plume modeling and spectroscopic characterization of the PVD plumes were performed. The project consisted of five tasks. These included the production of layered periodic microstructures in the coating, the Direct Simulation Monte Carlo (DSMC) modeling of particle transport in the PVD plume, functional graded layer development, the deposition of all layers to form a complete coating, and materials characterization including thermal testing. Ion beam-assisted deposition, beam sharing through advanced digital rastering, substrate pivoting, hearth calorimetry, infrared imaging, fiber optic-enabled optical emission spectroscopy and careful thermal management were used to achieve all the milestones outlined in the FY02 LDRD proposal.

Youchison, Dennis L.; Gallis, Michail A.

2014-06-01T23:59:59.000Z

424

PowerJet Wind Turbine Project  

SciTech Connect (OSTI)

PROJECT OBJECTIVE The PowerJet wind turbine overcomes problems characteristic of the small wind turbines that are on the market today by providing reliable output at a wide range of wind speeds, durability, silent operation at all wind speeds, and bird-safe operation. Prime Energy�s objective for this project was to design and integrate a generator with an electrical controller and mechanical controls to maximize the generation of electricity by its wind turbine. The scope of this project was to design, construct and test a mechanical back plate to control rotational speed in high winds, and an electronic controller to maximize power output and to assist the base plate in controlling rotational speed in high winds. The test model will continue to operate beyond the time frame of the project, with the ultimate goal of manufacturing and marketing the PowerJet worldwide. Increased Understanding of Electronic & Mechanical Controls Integrated With Electricity Generator The PowerJet back plate begins to open as wind speed exceeds 13.5 mps. The pressure inside the turbine and the turbine rotational speed are held constant. Once the back plate has fully opened at approximately 29 mps, the controller begins pulsing back to the generator to limit the rotational speed of the turbine. At a wind speed in excess of 29 mps, the controller shorts the generator and brings the turbine to a complete stop. As the wind speed subsides, the controller releases the turbine and it resumes producing electricity. Data collection and instrumentation problems prevented identification of the exact speeds at which these events occur. However, the turbine, controller and generator survived winds in excess of 36 mps, confirming that the two over-speed controls accomplished their purpose. Technical Effectiveness & Economic Feasibility Maximum Electrical Output The output of electricity is maximized by the integration of an electronic controller and mechanical over-speed controls designed and tested during the course of this project. The output exceeds that of the PowerJet�s 3-bladed counterparts (see Appendix). Durability All components of the PowerJet turbine assembly�including the electronic and mechanical controls designed, manufactured and field tested during the course of this project�proved to be durable through severe weather conditions, with constant operation and no interruption in energy production. Low Cost Materials for the turbine, generator, tower, charge controllers and ancillary parts are available at reasonable prices. Fabrication of these parts is also readily available worldwide. The cost of assembling and installing the turbine is reduced because it has fewer parts and requires less labor to manufacture and assemble, making it competitively priced compared with turbines of similar output manufactured in the U.S. and Europe. The electronic controller is the unique part to be included in the turbine package. The controllers can be manufactured in reasonably-sized production runs to keep the cost below $250 each. The data logger and 24 sensors are for research only and will be unnecessary for the commercial product. Benefit To Public The PowerJet wind-electric system is designed for distributed wind generation in 3 and 4 class winds. This wind turbine meets DOE�s requirements for a quiet, durable, bird-safe turbine that eventually can be deployed as a grid-connected generator in urban and suburban settings. Results As described more fully below and illustrated in the Appendices, the goals and objectives outlined in 2060 SOPO were fully met. Electronic and mechanical controls were successfully designed, manufactured and integrated with the generator. The turbine, tower, controllers and generators operated without incident throughout the test period, surviving severe winter and summer weather conditions such as extreme temperatures, ice and sustained high winds. The electronic controls were contained in weather-proof electrical boxes and the elec

Bartlett, Raymond J

2008-11-30T23:59:59.000Z

425

Offshore Wind Turbines Estimated Noise from Offshore Wind Turbine, Monhegan Island, Maine Addendum 2  

SciTech Connect (OSTI)

Additional modeling for offshore wind turbines, for proposed floating wind platforms to be deployed by University of Maine/DeepCwind.

Aker, Pamela M.; Jones, Anthony M.; Copping, Andrea E.

2011-03-01T23:59:59.000Z

426

Wind Turbine Generator System Acoustic Noise Test Report for the Gaia Wind 11-kW Wind Turbine  

SciTech Connect (OSTI)

This report details the acoustic noise test conducted on the Gaia-Wind 11-kW wind turbine at the National Wind Technology Center. The test turbine is a two- bladed, downwind wind turbine with a rated power of 11 kW. The test turbine was tested in accordance with the International Electrotechnical Commission standard, IEC 61400-11 Ed 2.1 2006-11 Wind Turbine Generator Systems -- Part 11 Acoustic Noise Measurement Techniques.

Huskey, A.

2011-11-01T23:59:59.000Z

427

Second Stage Turbine Bucket Airfoil.  

DOE Patents [OSTI]

The second-stage buckets have airfoil profiles substantially in accordance with Cartesian coordinate values of X, Y and Z set forth in inches in Table I wherein Z is a perpendicular distance from a plane normal to a radius of the turbine centerline and containing the X and Y values with the Z value commencing at zero in the X, Y plane at the radially innermost aerodynamic section of the airfoil and X and Y are coordinate values defining the airfoil profile at each distance Z. The X, Y and Z values may be scaled as a function of the same constant or number to provide a scaled-up or scaled-down airfoil section for the bucket.

Xu, Liming (Simpsonville, SC); Ahmadi, Majid (Simpsonville, SC); Humanchuk, David John (Simpsonville, SC); Moretto, Nicholas (Clifton Park, NY); Delehanty, Richard Edward (Maineville, OH)

2003-05-06T23:59:59.000Z

428

Static seal for turbine engine  

DOE Patents [OSTI]

A seal structure for a gas turbine engine, the seal structure including first and second components located adjacent to each other and forming a barrier between high and low pressure zones. A seal cavity is defined in the first and second components, the seal cavity extending to either side of an elongated gap extending generally in a first direction between the first and second components. A seal member is positioned within the seal cavity and spans across the elongated gap. The seal member includes first and second side edges extending into each of the components in a second direction transverse to the first direction, and opposing longitudinal edges extending between the side edges generally parallel to the first direction. The side edges include a groove formed therein for effecting a reduction of gas flow around the seal member at the side edges.

Salazar, Santiago; Gisch, Andrew

2014-04-01T23:59:59.000Z

429

Turbine airfoil to shround attachment  

DOE Patents [OSTI]

A turbine airfoil (31) with an end portion (42) that tapers (44) toward the end (43) of the airfoil. A ridge (46) extends around the end portion. It has proximal (66) and distal (67) sides. A shroud platform (50) is bi-cast onto the end portion around the ridge without bonding. Cooling shrinks the platform into compression (62) on the end portion (42) of the airfoil. Gaps between the airfoil and platform are formed using a fugitive material (56) in the bi-casting stage. These gaps are designed in combination with the taper angle (44) to accommodate differential thermal expansion while maintaining a gas seal along the contact surfaces. The taper angle (44) may vary from lesser on the pressure side (36) to greater on the suction side (38) of the airfoil. A collar portion (52) of the platform provides sufficient contact area for connection stability.

Campbell, Christian X; Morrison, Jay A; James, Allister W; Snider, Raymond G; Eshak, Daniel M; Marra, John J; Wessell, Brian J

2014-05-06T23:59:59.000Z

430

Airfoil for a gas turbine  

DOE Patents [OSTI]

An airfoil is provided for a gas turbine comprising an outer structure comprising a first wall, an inner structure comprising a second wall spaced relative to the first wall such that a cooling gap is defined between at least portions of the first and second walls, and seal structure provided within the cooling gap between the first and second walls for separating the cooling gap into first and second cooling fluid impingement gaps. An inner surface of the second wall may define an inner cavity. The inner structure may further comprise a separating member for separating the inner cavity of the inner structure into a cooling fluid supply cavity and a cooling fluid collector cavity. The second wall may comprise at least one first impingement passage, at least one second impingement passage, and at least one bleed passage.

Liang, George (Palm City, FL)

2011-01-18T23:59:59.000Z

431

Cooled turbine vane with endcaps  

DOE Patents [OSTI]

A turbine vane assembly which includes an outer endcap having a plurality of generally straight passages and passage segments therethrough, an inner endcap having a plurality of passages and passage segments therethrough, and a vane assembly having an outer shroud, an airfoil body, and an inner shroud. The outer shroud, airfoil body and inner shroud each have a plurality of generally straight passages and passage segments therethrough as well. The outer endcap is coupled to the outer shroud so that outer endcap passages and said outer shroud passages form a fluid circuit. The inner endcap is coupled to the inner shroud so that the inner end cap passages and the inner shroud passages from a fluid circuit. Passages in the vane casting are in fluid communication with both the outer shroud passages and the inner shroud passages. Passages in the outer endcap may be coupled to a cooling system that supplies a coolant and takes away the heated exhaust.

Cunha, Frank J. (Avon, CT); Schiavo, Jr., Anthony L. (Ovideo, FL); Nordlund, Raymond Scott (Orlando, FL); Malow, Thomas (Oviedo, FL); McKinley, Barry L. (Chuluota, FL)

2002-01-01T23:59:59.000Z

432

NEXT GENERATION TURBINE SYSTEM STUDY  

SciTech Connect (OSTI)

Rolls-Royce has completed a preliminary design and marketing study under a Department of Energy (DOE) cost shared contract (DE-AC26-00NT40852) to analyze the feasibility of developing a clean, high efficiency, and flexible Next Generation Turbine (NGT) system to meet the power generation market needs of the year 2007 and beyond. Rolls-Royce evaluated the full range of its most advanced commercial aerospace and aeroderivative engines alongside the special technologies necessary to achieve the aggressive efficiency, performance, emissions, economic, and flexibility targets desired by the DOE. Heavy emphasis was placed on evaluating the technical risks and the economic viability of various concept and technology options available. This was necessary to ensure the resulting advanced NGT system would provide extensive public benefits and significant customer benefits without introducing unacceptable levels of technical and operational risk that would impair the market acceptance of the resulting product. Two advanced cycle configurations were identified as offering significant advantages over current combined cycle products available in the market. In addition, balance of plant (BOP) technologies, as well as capabilities to improve the reliability, availability, and maintainability (RAM) of industrial gas turbine engines, have been identified. A customer focused survey and economic analysis of a proposed Rolls-Royce NGT product configuration was also accomplished as a part of this research study. The proposed Rolls-Royce NGT solution could offer customers clean, flexible power generation systems with very high efficiencies, similar to combined cycle plants, but at a much lower specific cost, similar to those of simple cycle plants.

Frank Macri

2002-02-28T23:59:59.000Z

433

Event Rates for Off Axis NuMI Experiments  

E-Print Network [OSTI]

Neutrino interaction rates for experiments placed off axis in the NuMI beam are calculated. Primary proton beam energy is 120 GeV and four locations at 810 km from target and 6, 12, 30 and 40 km off axis are considered. This report is part of the Joint FNAL/BNL Future Long Baseline Neutrino Oscillation Experiment Study.

B. Viren

2006-08-25T23:59:59.000Z

434

Active load control techniques for wind turbines.  

SciTech Connect (OSTI)

This report provides an overview on the current state of wind turbine control and introduces a number of active techniques that could be potentially used for control of wind turbine blades. The focus is on research regarding active flow control (AFC) as it applies to wind turbine performance and loads. The techniques and concepts described here are often described as 'smart structures' or 'smart rotor control'. This field is rapidly growing and there are numerous concepts currently being investigated around the world; some concepts already are focused on the wind energy industry and others are intended for use in other fields, but have the potential for wind turbine control. An AFC system can be broken into three categories: controls and sensors, actuators and devices, and the flow phenomena. This report focuses on the research involved with the actuators and devices and the generated flow phenomena caused by each device.

van Dam, C.P. (University of California, Davis, CA); Berg, Dale E.; Johnson, Scott J. (University of California, Davis, CA)

2008-07-01T23:59:59.000Z

435

2014 University Turbine Systems Research Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

University Turbine Systems Research Workshop October 21-24, 2014 Accommodations Union Club Hotel 101 N. Grant Street West Lafayette, IN 47907 The Union Club Hotel will be the...

436

Advanced controls for floating wind turbines  

E-Print Network [OSTI]

Floating Offshore Wind Turbines (FOWT) is a technology that stands to spearhead the rapid growth of the offshore wind energy sector and allow the exploration of vast high quality wind resources over coastal and offshore ...

Casanovas, Carlos (Casanovas Bermejo)

2014-01-01T23:59:59.000Z

437

Flexible dynamics of floating wind turbines  

E-Print Network [OSTI]

This work presents Tower Flex, a structural dynamics model for a coupled analysis of offshore floating wind turbines consisting of a tower, a floating platform and a mooring system. In this multi-body, linear frequency-domain ...

Luypaert, Thomas (Thomas J.)

2012-01-01T23:59:59.000Z

438

How Does a Wind Turbine Work?  

Broader source: Energy.gov [DOE]

Wind turbines operate on a simple principle. The energy in the wind turns two or three propeller-like blades around a rotor. The rotor is connected to the main shaft, which spins a generator to...

439

Diffuser for augmenting a wind turbine  

DOE Patents [OSTI]

A diffuser for augmenting a wind turbine having means for energizing the boundary layer at several locations along the diffuser walls is improved by the addition of a short collar extending radially outward from the outlet of the diffuser.

Foreman, Kenneth M. (North Bellmore, NY); Gilbert, Barry L. (Westbury, NY)

1984-01-01T23:59:59.000Z

440

Loss mechanisms in turbine tip clearance flows  

E-Print Network [OSTI]

Numerical simulations of tip clearance ow have been carried out to dene the loss generation mechanisms associated with tip leakage in unshrouded axial turbines. Mix- ing loss between the leakage, which takes the form of a ...

Huang, Arthur (Arthur C.)

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vertical axis turbines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Nine Universities Begin Critical Turbine Systems Research  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy announced the selection of ten projects at nine universities under the Office of Fossil Energy’s University Turbine Systems Research Program.

442

Compressor & Steam Turbine Efficiency Improvements & Revamping Opportunities  

E-Print Network [OSTI]

in which they operate. This energy growth requires high efficiency improvements for machine design and operation to minimize life cycle cost. This paper will focus on the mechanical drive steam turbines which power the main process equipment in the heart...

Hata, S.; Horiba, J.; Sicker, M.

2011-01-01T23:59:59.000Z

443

Biphase Turbine Tests on Process Fluids  

E-Print Network [OSTI]

The Biphase turbine is a device for effectively producing shaft power from two-phase (liquid and gas) pressure let-downs and for separating the resulting phases. No other device is currently available for simultaneously performing these tasks...

Helgeson, N. L.; Maddox, J. P.

1983-01-01T23:59:59.000Z

444

Probabilistic analysis of turbine blade durability  

E-Print Network [OSTI]

The effect of variability on turbine blade durability was assessed for seven design/operating parameters in three blade designs. The parameters included gas path and cooling convective parameters, metal and coating thermal ...

Kountras, Apostolos, 1970-

2004-01-01T23:59:59.000Z

445

Wind Turbine Drivetrain Condition Monitoring - An Overview  

SciTech Connect (OSTI)

This paper provides an overview of wind turbine drivetrain condition monitoring based on presentations from a condition monitoring workshop organized by the National Renewable Energy Laboratory in 2009 and on additional references.

Sheng, S; Veers, P.

2011-10-01T23:59:59.000Z

446

Consider Steam Turbine Drives for Rotating Equipment  

SciTech Connect (OSTI)

This revised ITP tip sheet on steam turbine drives for rotating equipment provides how-to advice for improving the system using low-cost, proven practices and technologies.

Not Available

2006-01-01T23:59:59.000Z

447

Passively cooled direct drive wind turbine  

DOE Patents [OSTI]

A wind turbine is provided that passively cools an electrical generator. The wind turbine includes a plurality of fins arranged peripherally around a generator house. Each of the fins being oriented at an angle greater than zero degrees to allow parallel flow of air over the fin. The fin is further tapered to allow a constant portion of the fin to extend beyond the air stream boundary layer. Turbulence initiators on the nose cone further enhance heat transfer at the fins.

Costin, Daniel P. (Chelsea, VT)

2008-03-18T23:59:59.000Z

448

Airfoil seal system for gas turbine engine  

DOE Patents [OSTI]

A turbine airfoil seal system of a turbine engine having a seal base with a plurality of seal strips extending therefrom for sealing gaps between rotational airfoils and adjacent stationary components. The seal strips may overlap each other and may be generally aligned with each other. The seal strips may flex during operation to further reduce the gap between the rotational airfoils and adjacent stationary components.

Diakunchak, Ihor S.

2013-06-25T23:59:59.000Z

449

A Wood-Fired Gas Turbine Plant  

E-Print Network [OSTI]

A WOOD-FIRED GAS TURBINE PLANT Sam H. Powell, Tennessee Valley Authority, Chattanooga, Tennessee Joseph T. Hamrick, Aerospace Research Corporation, RBS Electric, Roanoke, VA Abstract This paper covers the research and development of a wood...-fired gas turbine unit that is used for generating electricity. The system uses one large cyclonic combustor and a cyclone cleaning system in series to provide hot gases to drive an Allison T-56 aircraft engine (the industrial version is the 50l-k). A...

Powell, S. H.; Hamrick, J. T.

450

Fish Passage Assessment of an Advanced Hydropower Turbine and Conventional Turbine Using Blade-strike Modeling  

SciTech Connect (OSTI)

In the Columbia and Snake River basins, several species of Pacific salmon were listed under the Endangered Species Act of 1973 due to significant declines of fish population. Dam operators and design engineers are thus faced with the task of making those hydroelectric facilities more ecologically friendly through changes in hydro-turbine design and operation. Public Utility District No. 2 of Grant County, Washington, applied for re-licensing from the U.S. Federal Energy Regulatory Commission to replace the 10 turbines at Wanapum Dam with advanced hydropower turbines that were designed to increase power generation and improve fish passage conditions. We applied both deterministic and stochastic blade-strike models to the newly installed turbine and an existing turbine. Modeled probabilities were compared to the results of a large-scale live fish survival study and a sensor fish study under the same operational parameters. Overall, injury rates predicted by the deterministic model were higher than experimental rates of injury while those predicted by the stochastic model were in close agreement with experiment results. Fish orientation at the time of entry into the plane of the leading edges of the turbine runner blades was an important factor contributing to uncertainty in modeled results. The advanced design turbine had slightly higher modeled injury rates than the existing turbine design; however, there was no statistical evidence that suggested significant differences in blade-strike injuries between the two turbines and the hypothesis that direct fish survival rate through the advanced hydropower turbine is equal or better than that through the conventional turbine could not be rejected.

Deng, Zhiqun; Carlson, Thomas J.; Dauble, Dennis D.; Ploskey, Gene R.

2011-01-04T23:59:59.000Z

451

Design Tools to Assess Hydro-Turbine Biological Performance: Priest Rapids Dam Turbine Replacement Project  

SciTech Connect (OSTI)

Over the past two decades, there have been many studies describing injury mechanisms associated with turbine passage, the response of various fish species to these mechanisms, and the probability of survival through dams. Although developing tools to design turbines that improve passage survival has been difficult and slow, a more robust quantification of the turbine environment has emerged through integrating physical model data, fish survival data, and computational fluid dynamics (CFD) studies. Grant County Public Utility District (GCPUD) operates the Priest Rapids Dam (PRD), a hydroelectric facility on the Columbia River in Washington State. The dam contains 10 Kaplan-type turbine units that are now almost 50 years old. The Utility District plans to refit all of these aging turbines with new turbines. The Columbia River at PRD is a migratory pathway for several species of juvenile and adult salmonids, so passage of fish through the dam is a major consideration when replacing the turbines. In this presentation, a method for turbine biological performance assessment (BioPA) is introduced. Using this method, a suite of biological performance indicators is computed based on simulated data from a CFD model of a proposed turbine design. Each performance indicator is a measure of the probability of exposure to a certain dose of an injury mechanism. Using known relationships between the dose of an injury mechanism and frequency of injury (dose–response) from laboratory or field studies, the likelihood of fish injury for a turbine design can be computed from the performance indicator. By comparing the values of the indicators from proposed designs, the engineer can identify the more-promising alternatives. We will present application of the BioPA method for baseline risk assessment calculations for the existing Kaplan turbines at PRD that will be used as the minimum biological performance that a proposed new design must achieve.

Richmond, Marshall C.; Rakowski, Cynthia L.; Serkowski, John A.; Strickler, Brad; Weisbeck, Molly; Dotson, Curtis L.

2013-06-25T23:59:59.000Z

452

FUEL CELL/MICRO-TURBINE COMBINED CYCLE  

SciTech Connect (OSTI)

A wide variety of conceptual design studies have been conducted that describe ultra-high efficiency fossil power plant cycles. The most promising of these ultra-high efficiency cycles incorporate high temperature fuel cells with a gas turbine. Combining fuel cells with a gas turbine increases overall cycle efficiency while reducing per kilowatt emissions. This study has demonstrated that the unique approach taken to combining a fuel cell and gas turbine has both technical and economic merit. The approach used in this study eliminates most of the gas turbine integration problems associated with hybrid fuel cell turbine systems. By using a micro-turbine, and a non-pressurized fuel cell the total system size (kW) and complexity has been reduced substantially from those presented in other studies, while maintaining over 70% efficiency. The reduced system size can be particularly attractive in the deregulated electrical generation/distribution environment where the market may not demand multi-megawatt central stations systems. The small size also opens up the niche markets to this high efficiency, low emission electrical generation option.

Larry J. Chaney; Mike R. Tharp; Tom W. Wolf; Tim A. Fuller; Joe J. Hartvigson

1999-12-01T23:59:59.000Z

453

Turbine bearings and rotor dynamics workshop: proceedings  

SciTech Connect (OSTI)

An EPRI workshop to address turbine bearing reliability improvement and rotor dynamics was co-hosted by Detroit Edison in Dearborn, Michigan on September 8-10, 1982. The 136 attendees represented a broad spectrum of US utilities, equipment manufacturers, and consultants, as well as representatives from England, Japan, and Switzerland. These proceedings contain the text of the formal presentations as well as summaries of the working group sessions which were devoted to topics of particular interest to the workshop participants. Formal presentations were organized under the following general session titles: utility experience and advancements in turbine bearing and lubrication systems; recent advancements in turbine bearing and lubrication systems; utility experience and advancements in turbine-generator rotor dynamics; and recent advancements in turbine-generator rotor dynamics. In addition to the technical presentations, working group sessions were held on selected topics relevant to turbine bearing reliability improvement and rotor dynamics. These groups provided a forum for engineers to exchange ideas and information in a less formal environment. The discussions provided attendees with an opportunity to discuss key issues in more detail and address subjects not covered in the formal presentations. The subjects of these working groups were: rotor dynamic analysis and problem solving; vibration signature analysis and field balancing; oil contamination monitoring and control; and operation and maintenance practices. Individual papers have been entered individually into EDB and ERA.

Brown, R.G.; Quilliam, J.F. (eds.)

1985-06-01T23:59:59.000Z

454

Annual Report: Turbines (30 September 2012)  

SciTech Connect (OSTI)

The FY12 NETL-RUA Turbine Thermal Management effort supported the Department of Energy (DOE) Hydrogen Turbine Program through conduct of novel, fundamental, basic, and applied research in the areas of aerothermal heat transfer, coatings development, and secondary flow control. This research project utilized the extensive expertise and facilities readily available at NETL and the participating universities. The research approach includes explorative studies based on scaled models and prototype coupon tests conducted under realistic high-temperature, pressurized, turbine operating conditions. This research is expected to render measurable outcomes that will meet DOE advanced turbine development goals of a 3- to 5-point increase in power island efficiency and a 30 percent power increase above the hydrogen-fired combined cycle baseline. In addition, knowledge gained from this project will further advance the aerothermal cooling and TBC technologies in the general turbine community. This project has been structured to address ? Development and design of aerothermal and materials concepts in FY12-13. ? Design and manufacturing of these advanced concepts in FY13. ? Bench-scale/proof-of-concept testing of these concepts in FY13-14 and beyond. The Turbine Thermal Management project consists of four tasks that focus on a critical technology development in the areas of aerothermal and heat transfer, coatings and materials development, design integration and testing, and a secondary flow rotating rig.

Alvin, Mary Anne [NETL] [NETL; Richards, George [NETL] [NETL

2012-09-30T23:59:59.000Z

455

SUBSPACE-BASED DETECTION OF FATIGUE DAMAGE ON JACKET SUPPORT STRUCTURES OF OFFSHORE WIND TURBINES  

E-Print Network [OSTI]

SUBSPACE-BASED DETECTION OF FATIGUE DAMAGE ON JACKET SUPPORT STRUCTURES OF OFFSHORE WIND TURBINES damage in real size structural components of offshore wind turbines. KEYWORDS : Damage detection, Offshore wind turbines, Numerical response simulation. INTRODUCTION Offshore wind turbines are exposed

Paris-Sud XI, Université de

456

Final Turbine and Test Facility Design Report Alden/NREC Fish...  

Broader source: Energy.gov (indexed) [DOE]

Final Turbine and Test Facility Design Report AldenNREC Fish Friendly Turbine Final Turbine and Test Facility Design Report AldenNREC Fish Friendly Turbine The final report...

457

Study of Linear Equivalent Circuits of Electromechanical Systems for Turbine Generator Units.  

E-Print Network [OSTI]

??The thesis utilizes the analogy in dynamic equations between a mechanical and an electrical system to convert the steam-turbine, micro-turbine, wind-turbine and hydro-turbine generator mechanical… (more)

Tsai, Chia-Chun

2012-01-01T23:59:59.000Z

458

Design and analysis of a 5-MW vertical-fluted-tube condenser for geothermal applications  

SciTech Connect (OSTI)

The design and analysis of an industtial-sized vertical-fluted-tube condenser. The condenser is used to condense superheated isobutane vapor discharged from a power turbine in a geothermal test facility operated for the US Department of Energy. The 5-MW condenser has 1150 coolant tubes in a four-pass configuration with a total heat transfer area of 725 m/sup 2/ (7800 ft/sup 2/). The unit is being tested at the Geothermal Components Test Facility in the Imperial Valley of East Mesa, California. The condenser design is based on previous experimental research work done at the Oak Ridge National Laboratory on condensing refrigerants on a wide variety of single vertical tubes. Condensing film coefficients obtained on the high-performance vertical fluted tubes in condensing refrigerants are as much as seven times greater than those obtained with vertical smooth tubes that have the same diameter and length. The overall heat transfer performance expected from the fluted tube condenser is four to five times the heat transfer obtained from the identical units employing smooth tubes. Fluted tube condensers also have other direct applications in the Ocean Thermal Energy Conversion (OTEC) program in condensing ammonia, in the petroleum industry in condensing light hydrocarbons, and in the air conditioning and refrigeration industry in condensing fluorocarbon vapors.

Llewellyn, G.H.

1982-03-01T23:59:59.000Z

459

Response of Migrating Adult Salmonids to Vertical and Horizontal Rectangular  

E-Print Network [OSTI]

;#12;CONTENTS Page Introduction 1 Materials and methods 1 Laboratory ^ Orifices 2 Hydraulics 2 Test procedure 4 channel, however, migrants attracted by the turbine discharge must locate entrance ports above the turbine

460

Closed loop air cooling system for combustion turbines  

DOE Patents [OSTI]

Convective cooling of turbine hot parts using a closed loop system is disclosed. Preferably, the present invention is applied to cooling the hot parts of combustion turbine power plants, and the cooling provided permits an increase in the inlet temperature and the concomitant benefits of increased efficiency and output. In preferred embodiments, methods and apparatus are disclosed wherein air is removed from the combustion turbine compressor and delivered to passages internal to one or more of a combustor and turbine hot parts. The air cools the combustor and turbine hot parts via convection and heat is transferred through the surfaces of the combustor and turbine hot parts.

Huber, David John (North Canton, OH); Briesch, Michael Scot (Orlando, FL)

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vertical axis turbines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Closed loop air cooling system for combustion turbines  

DOE Patents [OSTI]

Convective cooling of turbine hot parts using a closed loop system is disclosed. Preferably, the present invention is applied to cooling the hot parts of combustion turbine power plants, and the cooling provided permits an increase in the inlet temperature and the concomitant benefits of increased efficiency and output. In preferred embodiments, methods and apparatus are disclosed wherein air is removed from the combustion turbine compressor and delivered to passages internal to one or more of a combustor and turbine hot parts. The air cools the combustor and turbine hot parts via convection and heat is transferred through the surfaces of the combustor and turbine hot parts. 1 fig.

Huber, D.J.; Briesch, M.S.

1998-07-21T23:59:59.000Z

462

2009 WIND TURBINE IMPACT STUDY APPRAISAL GROUP ONE 9/9/2009 WIND TURBINE IMPACT STUDY  

E-Print Network [OSTI]

This is a study of the impact that wind turbines have on residential property value. The wind turbines that are the focus of this study are the larger turbines being approximately 389ft tall and producing 1.0+ megawatts each, similar to the one pictured to the right. The study has been broken into three component parts, each looking at the value impact of the wind turbines from a different perspective. The three parts are: (1) a literature study, which reviews and summarizes what has been published on this matter found in the general media; (2) an opinion survey, which was given to area Realtors to learn their opinions on the impact of wind turbines in

Fond Du; Lac Counties Wisconsin

2009-01-01T23:59:59.000Z

463

A test device for premixed gas turbine combustion oscillations  

SciTech Connect (OSTI)

This report discusses design and operation of a single-nozzle test combustor for studying lean, premixed combustion oscillations from gas turbine fuel nozzles. It was used to study oscillations from a prototype fuel nozzle that produced oscillations during testing in a commercial engine. Similar, but not identical, oscillations were recorded in the test device. Basic requirements of the device design were that the flame geometry be maintained and acoustic losses be minimized; this was achieved by using a Helmholtz resonator as the combustor geometry. Surprisingly, the combustor oscillated strongly at several frequencies, without modification of the resonator. Brief survey of operating conditions suggests that it may be helpful to characterize oscillating behavior in terms of reference velocity and inlet air temperature with the rig backpressure playing a smaller role. The preliminary results do not guarantee that the single-nozzle test device will reproduce arbitrary oscillations that occur on a complete engine test. Nozzle/nozzle interactions may complicate the response, and oscillations controlled by acoustic velocities transverse to the nozzle axis may not be reproduced in a test device that relies on a bulk Helmholtz mode. Nevertheless, some oscillations can be reproduced, and the single-nozzle test device allows both active and passive control strategies to be tested relatively inexpensively.

Richards, G.A.; Gemmen, R.S.; Yip, M.J.

1996-03-01T23:59:59.000Z

464

ADVANCED TURBINE SYSTEM FEDERAL ASSISTANCE PROGRAM  

SciTech Connect (OSTI)

Rolls-Royce Corporation has completed a cooperative agreement under Department of Energy (DOE) contract DE-FC21-96MC33066 in support of the Advanced Turbine Systems (ATS) program to stimulate industrial power generation markets. This DOE contract was performed during the period of October 1995 to December 2002. This final technical report, which is a program deliverable, describes all associated results obtained during Phases 3A and 3B of the contract. Rolls-Royce Corporation (formerly Allison Engine Company) initially focused on the design and development of a 10-megawatt (MW) high-efficiency industrial gas turbine engine/package concept (termed the 701-K) to meet the specific goals of the ATS program, which included single digit NOx emissions, increased plant efficiency, fuel flexibility, and reduced cost of power (i.e., $/kW). While a detailed design effort and associated component development were successfully accomplished for the 701-K engine, capable of achieving the stated ATS program goals, in 1999 Rolls-Royce changed its focus to developing advanced component technologies for product insertion that would modernize the current fleet of 501-K and 601-K industrial gas turbines. This effort would also help to establish commercial venues for suppliers and designers and assist in involving future advanced technologies in the field of gas turbine engine development. This strategy change was partly driven by the market requirements that suggested a low demand for a 10-MW aeroderivative industrial gas turbine, a change in corporate strategy for aeroderivative gas turbine engine development initiatives, and a consensus that a better return on investment (ROI) could be achieved under the ATS contract by focusing on product improvements and technology insertion for the existing Rolls-Royce small engine industrial gas turbine fleet.

Frank Macri

2003-10-01T23:59:59.000Z

465

Passive Acoustic Detection of Wind Turbine In-Flow Conditions for Active Control and Optimization  

SciTech Connect (OSTI)

Wind is a significant source of energy; however, the human capability to produce electrical energy still has many hurdles to overcome. One of these is the unpredictability of the winds in the atmospheric boundary layer (ABL). The ABL is highly turbulent in both stable and unstable conditions (based on the vertical temperature profile) and the resulting fluctuations can have a dramatic impact on wind turbine operation. Any method by which these fluctuations could be observed, estimated, or predicted could provide a benefit to the wind energy industry as a whole. Based on the fundamental coupling of velocity fluctuations to pressure fluctuations in the nearly incompressible flow in the ABL, This work hypothesizes that a ground-based array of infrasonic pressure transducers could be employed to estimate the vertical wind profile over a height relevant for wind turbines. To analyze this hypothesis, experiments and field deployments were conducted. Wind tunnel experiments were performed for a thick turbulent boundary layer over a neutral or heated surface. Surface pressure and velocity probe measurements were acquired simultaneously. Two field deployments yielded surface pressure data from a 49 element array. The second deployment at the Reese Technology Center in Lubbock, TX, also included data from a smaller aperture, 96-element array and a 200-meter tall meteorological tower. Analysis of the data successfully demonstrated the ability to estimate the vertical velocity profile using coherence data from the pressure array. Also, dynamical systems analysis methods were successful in identifying and tracking a gust type event. In addition to the passive acoustic profiling method, this program also investigated a rapid response Doppler SODAR system, the optimization of wind turbine blades for enhanced power with reduced aeroacoustic noise production, and the implementation of a wireless health monitoring system for the wind turbine blades. Each of these other objectives was met successfully. The use of phase unwrapping applied to SODAR data was found to yield reasonable results for per-pulse measurements. A health monitoring system design analysis was able to demonstrate the ability to use a very small number of sensors to monitor blade health based on the blade's overall structural modes. Most notable was the development of a multi-objective optimization methodology that successfully yielded an aerodynamic blade design that produces greater power output with reduced aerodynamic loading noise. This optimization method could be significant for future design work.

Murray, Nathan E.

2012-03-12T23:59:59.000Z

466

axis rotating states: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

20 21 22 23 24 25 Next Page Last Page Topic Index 21 Rotation speed and stellar axis inclination from p modes: How CoRoT would see other suns Astrophysics (arXiv) Summary: In the...

467

Center of pressure calculations for a bent-axis vehicle  

SciTech Connect (OSTI)

Bent-axis maneuvering vehicles provide a unique type of control for a variety of supersonic and hypersonic missions. Unfortunately, large hinge moments, incomplete pitching moment predictions, and a misunderstanding of corresponding center of pressure calculations have prevented their application. A procedure is presented for the efficient design of bent-axis vehicles given an adequate understanding of origins of pitching moment effects. In particular,sources of pitching moment contributions will be described including not only normal force, but inviscid axial force and viscous effects as well. Off-centerline center of pressure effects are first reviewed for symmetric hypersonic sphere-cone configurations. Next the effects of the bent-axis geometry are considered where axial force, acting on the deflected tail section, can generate significant pitching moment components. The unique relationship between hinge moments and pitching moments for the bent-axis class of vehicles is discussed. 15 refs.

Rutledge, W.H.; Polansky, G.F.

1992-01-01T23:59:59.000Z

468

EIS-0228: Dual Axis Radiographic Hydrodynamic Test (DARHT) Facility  

Broader source: Energy.gov [DOE]

This EIS evaluates the potential environmental impact of a proposal to construct and operate the Dual Axis Radiographic Hydrodynamic Test (DARHT) facility at Los Alamos National Laboratory (LANL)...

469

adrenal axis hpa: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

off-axis jet model of GRBs, we can reproduce the observed unusual properties of the prompt emission of GRB980425, such as the extremely low isotropic equivalent gamma-ray...

470

axis testis transcriptome: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

off-axis jet model of GRBs, we can reproduce the observed unusual properties of the prompt emission of GRB980425, such as the extremely low isotropic equivalent gamma-ray...

471

National Wind Tecnology Center Provides Dual Axis Resonant Blade Testing  

SciTech Connect (OSTI)

NREL's Structural Testing Laboratory at the National Wind Technology Center (NWTC) provides experimental laboratories, computer facilities for analytical work, space for assembling components and turbines for atmospheric testing as well as office space for industry researchers. Fort Felker, center director at the NWTC, discusses NREL's state-of-the-art structural testing capabilities and shows a flapwise and edgewise blade test in progress.

Felker, Fort

2013-11-13T23:59:59.000Z

472

National Wind Tecnology Center Provides Dual Axis Resonant Blade Testing  

ScienceCinema (OSTI)

NREL's Structural Testing Laboratory at the National Wind Technology Center (NWTC) provides experimental laboratories, computer facilities for analytical work, space for assembling components and turbines for atmospheric testing as well as office space for industry researchers. Fort Felker, center director at the NWTC, discusses NREL's state-of-the-art structural testing capabilities and shows a flapwise and edgewise blade test in progress.

Felker, Fort

2014-06-10T23:59:59.000Z

473

Data Analytics Methods in Wind Turbine Design and Operations  

E-Print Network [OSTI]

This dissertation develops sophisticated data analytic methods to analyze structural loads on, and power generation of, wind turbines. Wind turbines, which convert the kinetic energy in wind into electrical power, are operated within stochastic...

Lee, Giwhyun

2013-05-22T23:59:59.000Z

474

aviation turbine fuels: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Page Topic Index 141 Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine MIT - DSpace Summary: As part of the MIT micro-gas turbine engine...

475

advanced turbine systems: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Goebel; Lo Obrecht 43 Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine MIT - DSpace Summary: As part of the MIT micro-gas turbine engine...

476

advanced gas turbines: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Alan) 2003-01-01 63 Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine MIT - DSpace Summary: As part of the MIT micro-gas turbine engine...

477

aviation gas turbines: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Alan) 2003-01-01 55 Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine MIT - DSpace Summary: As part of the MIT micro-gas turbine engine...

478

advanced gas turbine: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Alan) 2003-01-01 63 Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine MIT - DSpace Summary: As part of the MIT micro-gas turbine engine...

479

aircraft turbine engines: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Alan) 2003-01-01 48 Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine MIT - DSpace Summary: As part of the MIT micro-gas turbine engine...

480

aircraft gas turbines: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Alan) 2003-01-01 62 Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine MIT - DSpace Summary: As part of the MIT micro-gas turbine engine...

Note: This page contains sample records for the topic "vertical axis turbines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

aircraft gas turbine: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Alan) 2003-01-01 62 Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine MIT - DSpace Summary: As part of the MIT micro-gas turbine engine...

482

aircraft turbine engine: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Alan) 2003-01-01 48 Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine MIT - DSpace Summary: As part of the MIT micro-gas turbine engine...

483

aviation gas turbine: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Alan) 2003-01-01 55 Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine MIT - DSpace Summary: As part of the MIT micro-gas turbine engine...

484

axial flow turbines: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carver, Jeffrey C. 176 Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine MIT - DSpace Summary: As part of the MIT micro-gas turbine engine...

485

axial flow turbine: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carver, Jeffrey C. 176 Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine MIT - DSpace Summary: As part of the MIT micro-gas turbine engine...

486

automotive gas turbine: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Alan) 2003-01-01 56 Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine MIT - DSpace Summary: As part of the MIT micro-gas turbine engine...

487

aviation turbine fuel: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Page Topic Index 141 Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine MIT - DSpace Summary: As part of the MIT micro-gas turbine engine...

488

advanced turbine system: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Goebel; Lo Obrecht 43 Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine MIT - DSpace Summary: As part of the MIT micro-gas turbine engine...

489

Characterization of turbine rim seal flow and its sealing effectiveness  

E-Print Network [OSTI]

In a gas turbine engine, ingestion of hot gas from the flowpath into the gaps between the turbine rotor and stator can lead to elevated metal temperatures and a deterioration of component life. To prevent ingestion, bleed ...

Catalfamo, Peter T

2013-01-01T23:59:59.000Z

490

Parametric Study of Gas Turbine Film-Cooling  

E-Print Network [OSTI]

In this study, the film-cooling effectiveness in different regions of gas turbine blades was investigated with various film hole/slot configurations and mainstream flow conditions. The study consisted of three parts: 1) turbine blade span film...

Liu, Kevin

2012-10-19T23:59:59.000Z

491

Seven Universities Selected To Conduct Advanced Turbine Technology Studies  

Broader source: Energy.gov [DOE]

Seven universities have been selected by the U.S. Department of Energy to conduct advanced turbine technology studies under the Office of Fossil Energy's University Turbine Systems Research Program.

492

DOE Seeking Proposals to Advance Distributed Wind Turbine Technology...  

Energy Savers [EERE]

Project (CIP). The CIP aims to help U.S. manufacturers of small and mid-sized wind turbines with rotor swept areas up to 1,000 square meters improve their turbine designs and...

493

Distributed Wind Market Report: Small Turbines Lead to Big Growth...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Growth in Exports August 18, 2014 - 12:13pm Addthis 1 of 11 Three 100 kilowatt (kW) wind turbines in Bisaccia, Italy. Last year, U.S. small wind turbines were exported to more than...

494

Timken Producing Parts for Wind Turbines | Department of Energy  

Energy Savers [EERE]

Timken Producing Parts for Wind Turbines Timken Producing Parts for Wind Turbines June 28, 2010 - 3:38pm Addthis Some of Timkens bearings are so large that a small car could...

495

Multi-hazard Reliability Assessment of Offshore Wind Turbines  

E-Print Network [OSTI]

A probabilistic framework is developed to assess the structural reliability of offshore wind turbines. Probabilistic models are developed to predict the deformation, shear force and bending moment demands on the support structure of wind turbines...

Mardfekri Rastehkenari, Maryam 1981-

2012-12-04T23:59:59.000Z

496

A doubly-fed permanent magnet generator for wind turbines  

E-Print Network [OSTI]

Optimum extraction of energy from a wind turbine requires that turbine speed vary with wind speed. Existing solutions to produce constant-frequency electrical output under windspeed variations are undesirable due to ...

Thomas, Andrew J. (Andrew Joseph), 1981-

2004-01-01T23:59:59.000Z

497

California: Alden Fish Friendly Turbine Allows for Safe Fish...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Alden Fish Friendly Turbine Allows for Safe Fish Passage California: Alden Fish Friendly Turbine Allows for Safe Fish Passage March 6, 2014 - 10:01am Addthis The Electric Power...

498

Wind Turbine Towers Establish New Height Standards and Reduce...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Wind Turbine Towers Establish New Height Standards and Reduce Cost of Wind Energy Wind Turbine Towers Establish New Height Standards and Reduce Cost of Wind Energy Case study that...

499

Water Works! Water Resources Engineering and Turbine Energy  

E-Print Network [OSTI]

Water Works! Water Resources Engineering and Turbine Energy Facilitators: Dr. Jairo Hernandez. This energy can be used to generate electricity (dams and turbines), produce mechanical work (wells), as well

Barrash, Warren

500

Field Examples of Axial Cracked Bearings in Wind Turbine Gearboxes...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Field Examples of Axial Cracked Bearings in Wind Turbine Gearboxes Presented by Paul John Baker of FrontierPro Services at the Wind Turbine Tribology Seminar 2014. 141030 Axial...