Sample records for version user manual

  1. Paper Airplane user's manual : version four

    E-Print Network [OSTI]

    Lajoie, Ronnie M.

    Preface: This document provides the user with a step-by-step guide to using Paper Airplane, Version IV. Although this program can be used to design any system (once given the proper set of design equations), this manual ...

  2. SPNP Users Manual Version 4.0

    E-Print Network [OSTI]

    Chen, Ing-Ray

    This manual1 describes Version 4.0 of SPNP, running under the UNIXsystemon a wide array of platforms VAX, Sun 3 and 4, Convex, Gould, NeXT, CRAY, AIX system RS 6000, OS 2 system PS 2, and VMS system VAX

  3. UQTk version 2.0 user manual.

    SciTech Connect (OSTI)

    Debusschere, Bert J.; Sargsyan, Khachik; Safta, Cosmin

    2013-10-01T23:59:59.000Z

    The UQ Toolkit (UQTk) is a collection of libraries and tools for the quanti cation of uncer- tainty in numerical model predictions. Version 2.0 o ers intrusive and non-intrusive methods for propagating input uncertainties through computational models, tools for sensitivity anal- ysis, methods for sparse surrogate construction, and Bayesian inference tools for inferring parameters from experimental data. This manual discusses the download and installation process for UQTk, provides pointers to the UQ methods used in the toolkit, and describes some of the examples provided with the toolkit.

  4. SPARK Version 1. 1 user manual

    SciTech Connect (OSTI)

    Weissenburger, D.W.

    1988-01-01T23:59:59.000Z

    This manual describes the input required to use Version 1.1 of the SPARK computer code. SPARK 1.1 is a library of FORTRAN main programs and subprograms designed to calculate eddy currents on conducting surfaces where current flow is assumed zero in the direction normal to the surface. Surfaces are modeled with triangular and/or quadrilateral elements. Lorentz forces produced by the interaction of eddy currents with background magnetic fields can be output at element nodes in a form compatible with most structural analysis codes. In addition, magnetic fields due to eddy currents can be determined at points off the surface. Version 1.1 features eddy current streamline plotting with optional hidden-surface-removal graphics and topological enhancements that allow essentially any orientable surface to be modeled. SPARK also has extensive symmetry specification options. In order to make the manual as self-contained as possible, six appendices are included that present summaries of the symmetry options, topological options, coil options and code algorithms, with input and output examples. An edition of SPARK 1.1 is available on the Cray computers at the National Magnetic Fusion Energy Computer Center at Livermore, California. Another more generic edition is operational on the VAX computers at the Princeton Plasma Physics Laboratory and is available on magnetic tape by request. The generic edition requires either the GKS or PLOT10 graphics package and the IMSL or NAG mathematical package. Requests from outside the United States will be subject to applicable federal regulations regarding dissemination of computer programs. 22 refs.

  5. User manual Version 1.3

    E-Print Network [OSTI]

    Napp, Nils

    Updated for new Kilobots version 1.2 13.07.2012 F.Lambercy Colour of OHC led corrected (chapter 4.2.3) 1................................................................................................. 2 1.3 RECYCLING

  6. The Weatherization Assistant User's Manual (Version 8.9)

    SciTech Connect (OSTI)

    Gettings, Michael B [ORNL; Malhotra, Mini [ORNL; Ternes, Mark P [ORNL

    2015-01-01T23:59:59.000Z

    The Weatherization Assistant is a Windows-based energy audit software tool that was developed by Oak Ridge National Laboratory (ORNL) to help states and their local weatherization agencies implement the U.S. Department of Energy (DOE) Weatherization Assistance Program. The Weatherization Assistant is an umbrella program for two individual energy audits or measure selection programs: the National Energy Audit Tool (NEAT) for site-built single-family homes and the Manufactured Home Energy Audit (MHEA) for mobile homes. The Weatherization Assistant User's Manual documents the operation of the user interface for Version 8.9 of the software. This includes how to install and setup the software, navigate through the program, and initiate an energy audit. All of the user interface forms associated with the software and the data fields on these forms are described in detail. The manual is intended to be a training manual for new users of the Weatherization Assistant and as a reference manual for experienced users.

  7. PC/FRAM, Version 3.2 User Manual

    SciTech Connect (OSTI)

    Kelley, T.A.; Sampson, T.E.

    1999-02-23T23:59:59.000Z

    This manual describes the use of version 3.2 of the PC/FRAM plutonium isotopic analysis software developed in the Safeguards Science and Technology Group, NE-5, Nonproliferation and International Security Division Los Alamos National Laboratory. The software analyzes the gamma ray spectrum from plutonium-bearing items and determines the isotopic distribution of the plutonium 241Am content and concentration of other isotopes in the item. The software can also determine the isotopic distribution of uranium isotopes in items containing only uranium. The body of this manual descnies the generic version of the code. Special facility-specific enhancements, if they apply, will be described in the appendices. The information in this manual applies equally well to version 3.3, which has been licensed to ORTEC. The software can analyze data that is stored in a file on disk. It understands several storage formats including Canberra's S1OO format, ORTEC'S `chn' and `SPC' formats, and several ASCII text formats. The software can also control data acquisition using an MCA and then store the results in a file on disk for later analysis or analyze the spectrum directly after the acquisition. The software currently only supports the control of ORTEC MCB'S. Support for Canbema's Genie-2000 Spectroscopy Systems will be added in the future. Support for reading and writing CAM files will also be forthcoming. A versatile parameter fde database structure governs all facets of the data analysis. User editing of the parameter sets allows great flexibility in handling data with different isotopic distributions, interfering isotopes, and different acquisition parameters such as energy calibration, and detector type. This manual is intended for the system supervisor or the local user who is to be the resident expert. Excerpts from this manual may also be appropriate for the system operator who will routinely use the instrument.

  8. User's Manual for RESRAD-OFFSITE Version 2.

    SciTech Connect (OSTI)

    Yu, C.; Gnanapragasam, E.; Biwer, B. M.; Kamboj, S.; Cheng, J. -J.; Klett, T.; LePoire, D.; Zielen, A. J.; Chen, S. Y.; Williams, W. A.; Wallo, A.; Domotor, S.; Mo, T.; Schwartzman, A.; Environmental Science Division; DOE; NRC

    2007-09-05T23:59:59.000Z

    The RESRAD-OFFSITE code is an extension of the RESRAD (onsite) code, which has been widely used for calculating doses and risks from exposure to radioactively contaminated soils. The development of RESRAD-OFFSITE started more than 10 years ago, but new models and methodologies have been developed, tested, and incorporated since then. Some of the new models have been benchmarked against other independently developed (international) models. The databases used have also expanded to include all the radionuclides (more than 830) contained in the International Commission on Radiological Protection (ICRP) 38 database. This manual provides detailed information on the design and application of the RESRAD-OFFSITE code. It describes in detail the new models used in the code, such as the three-dimensional dispersion groundwater flow and radionuclide transport model, the Gaussian plume model for atmospheric dispersion, and the deposition model used to estimate the accumulation of radionuclides in offsite locations and in foods. Potential exposure pathways and exposure scenarios that can be modeled by the RESRAD-OFFSITE code are also discussed. A user's guide is included in Appendix A of this manual. The default parameter values and parameter distributions are presented in Appendix B, along with a discussion on the statistical distributions for probabilistic analysis. A detailed discussion on how to reduce run time, especially when conducting probabilistic (uncertainty) analysis, is presented in Appendix C of this manual.

  9. VERA version 1.3 user manual and documentation

    SciTech Connect (OSTI)

    Quist, Daniel Allen [Los Alamos National Laboratory

    2011-01-06T23:59:59.000Z

    VERA is a visualization tool for analyzing compiled executables. It is built on an OpenGL framework with the wxWidgets package. The current version is only for use with the Windows XP and higher operating system. This manual will detail the steps that are needed to run and analyze a sample of malware. VERA is meant to be used in conjunction with the Ether hypervisor framework. Ether is a set of patches made to the Xen hypervisor that allows for covert analysis of running processes. It makes an ideal environment to monitor and trace running programs. More information is available from the Ether website.

  10. User Manual for MissionLab version 7.0

    E-Print Network [OSTI]

    . Cameron Zhong Chen Yoichiro Endo William C. Halliburton Michael Kaess Zsolt Kira James B. Lee Douglas C Patrick Ulam Alan Wagner This manual was compiled by Yoichiro Endo. #12;iii Copyright 1994 - 2006 Georgia://www.cc.gatech.edu/ai/robot-lab/ July 12, 2006 #12;ii About This Manual Georgia Tech Mobile Robot Laboratory is directed by Ronald C

  11. Water Security Toolkit User Manual Version 1.2.

    SciTech Connect (OSTI)

    Klise, Katherine A.; Siirola, John Daniel; Hart, David; Hart, William E.; Phillips, Cynthia A.; Haxton, Terranna; Murray, Regan; Janke, Robert; Taxon, Thomas; Laird, Carl; Seth, Arpan; Hackebeil, Gabriel; McGee, Shawn; Mann, Angelica

    2014-08-01T23:59:59.000Z

    The Water Security Toolkit (WST) is a suite of open source software tools that can be used by water utilities to create response strategies to reduce the impact of contamination in a water distribution network . WST includes hydraulic and water quality modeling software , optimizati on methodologies , and visualization tools to identify: (1) sensor locations to detect contamination, (2) locations in the network in which the contamination was introduced, (3) hydrants to remove contaminated water from the distribution system, (4) locations in the network to inject decontamination agents to inactivate, remove, or destroy contaminants, (5) locations in the network to take grab sample s to help identify the source of contamination and (6) valves to close in order to isolate contaminate d areas of the network. This user manual describes the different components of WST , along w ith examples and case studies. License Notice The Water Security Toolkit (WST) v.1.2 Copyright c 2012 Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000, there is a non-exclusive license for use of this work by or on behalf of the U.S. government. This software is distributed under the Revised BSD License (see below). In addition, WST leverages a variety of third-party software packages, which have separate licensing policies: Acro Revised BSD License argparse Python Software Foundation License Boost Boost Software License Coopr Revised BSD License Coverage BSD License Distribute Python Software Foundation License / Zope Public License EPANET Public Domain EPANET-ERD Revised BSD License EPANET-MSX GNU Lesser General Public License (LGPL) v.3 gcovr Revised BSD License GRASP AT&T Commercial License for noncommercial use; includes randomsample and sideconstraints executable files LZMA SDK Public Domain nose GNU Lesser General Public License (LGPL) v.2.1 ordereddict MIT License pip MIT License PLY BSD License PyEPANET Revised BSD License Pyro MIT License PyUtilib Revised BSD License PyYAML MIT License runpy2 Python Software Foundation License setuptools Python Software Foundation License / Zope Public License six MIT License TinyXML zlib License unittest2 BSD License Utilib Revised BSD License virtualenv MIT License Vol Common Public License vpykit Revised BSD License Additionally, some precompiled WST binary distributions might bundle other third-party executables files: Coliny Revised BSD License (part of Acro project) Dakota GNU Lesser General Public License (LGPL) v.2.1 PICO Revised BSD License (part of Acro project) i Revised BSD License Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of Sandia National Laboratories nor Sandia Corporation nor the names of its con- tributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS %22AS IS%22 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IM- PLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUD- ING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ii Acknowledgements This work was supported by the U.S. Environmental Protection Agen

  12. Virtual venue management users manual : access grid toolkit documentation, version 2.3.

    SciTech Connect (OSTI)

    Judson, I. R.; Lefvert, S.; Olson, E.; Uram, T. D.; Mathematics and Computer Science

    2007-10-24T23:59:59.000Z

    An Access Grid Venue Server provides access to individual Virtual Venues, virtual spaces where users can collaborate using the Access Grid Venue Client software. This manual describes the Venue Server component of the Access Grid Toolkit, version 2.3. Covered here are the basic operations of starting a venue server, modifying its configuration, and modifying the configuration of the individual venues.

  13. Glycoprotein Enrichment Resin User Manual

    E-Print Network [OSTI]

    Lebendiker, Mario

    Glycoprotein Enrichment Resin User Manual Cat. No. 635647 PT4050-1 (PR912675) Published 14 January Laboratories, Inc. Version No. PR912675 ATakara Bio Company 2 Glycoprotein Enrichment Resin User Manual I.................................................................................................4 IV. Glycoprotein Enrichment

  14. Manufactured Home Energy Audit (MHEA)Users Manual (Version 7)

    SciTech Connect (OSTI)

    Gettings, M.B.

    2003-01-27T23:59:59.000Z

    The Manufactured Home Energy Audit (MHEA) is a software tool that predicts manufactured home energy consumption and recommends weatherization retrofit measures. It was developed to assist local weatherization agencies working with the U.S. Department of Energy (DOE) Weatherization Assistance Program. Whether new or experienced, employed within or outside the Weatherization Assistance Program, all users can benefit from incorporating MHEA into their manufactured home weatherization programs. DOE anticipates that the state weatherization assistance programs that incorporate MHEA into their programs will find significant growth in the energy and cost savings achieved from manufactured home weatherization. The easy-to-use MHEA uses a relatively standard Windows graphical interface for entering simple inputs and provides understandable, usable results. The user enters information about the manufactured home construction, heating equipment, cooling equipment appliances, and weather site. MHEA then calculates annual energy consumption using a simplified building energy analysis technique. Weatherization retrofit measures are evaluated based on the predicted energy savings after installation of the measure, the measure cost, and the measure life. Finally, MHEA recommends retrofit measures that are energy and cost effective for the particular home being evaluated. MHEA evaluates each manufactured home individually and takes into account local weather conditions, retrofit measure costs, and fuel costs. The recommended package of weatherization retrofit measures is tailored to the home being evaluated. More traditional techniques apply the same package of retrofit measures to all manufactured homes, often the same set of measures that are installed into site-built homes. Effective manufactured home weatherization can be achieved only by installing measures developed specifically for manufactured homes. The unique manufactured home construction characteristics require that each of these measures is evaluated separately in order to devise a package of measures that will result in high energy and dollar savings. MHEA stands apart from other building energy analysis tools in many ways. Calculations incorporated into the computer code specifically address manufactured home heating and cooling load trends. The retrofit measures evaluated by MHEA are all applicable to manufactured homes. Help messages describe common manufactured home weatherization practices as well as provide hints on how to install retrofit measures. These and other features help make MHEA easy to use when evaluating energy consumption and the effects of weatherization retrofit measures for manufactured homes. The National Renewable Energy Laboratory originally developed MHEA for the U.S. Department of Energy Weatherization Assistance Program. Conversion to a Windows-based program with additional modifications has been performed by the Oak Ridge National Laboratory. Many energy consumption and economic calculations resemble those found in the Computerized Instrumented Residential Audit written by Lawrence Berkeley National Laboratory and the National Energy Audit written by Oak Ridge National Laboratory. The calculations are similar in structure but have been altered to more accurately represent a manufactured home's unique energy use characteristics. Most importantly, MHEA helps meet the DOE Weatherization Assistance Program goals to increase client comfort and use federal dollars wisely.

  15. User's manual for RESRAD-BUILD version 3.

    SciTech Connect (OSTI)

    Yu, C.; LePoire, D. J.; Cheng, J. J.; Gnanapragasam, E.; Arnish, J.; Biwer, B. M.; Zielen, A. J.; Williams, W. A.; Wallo, A., III; Peterson, H. T., Jr.

    2003-07-31T23:59:59.000Z

    The RESRAD-BUILD computer code is a pathway analysis model designed to evaluate the potential radiological dose incurred by an individual who works or lives in a building contaminated with radioactive material. The transport of radioactive material within the building from one compartment to another is calculated with an indoor air quality model. The air quality model considers the transport of radioactive dust particulates and radon progeny due to air exchange, deposition and resuspension, and radioactive decay and ingrowth. A single run of the RESRAD-BUILD code can model a building with up to three compartments, four source geometries (point, line, area, and volume), 10 distinct source locations, and 10 receptor locations. The volume source can be composed of up to five layers of different materials, with each layer being homogeneous and isotropic. A shielding material can be specified between each source-receptor pair for external gamma dose calculations. The user can select shielding material from eight different material types. Seven exposure pathways are considered in the RESRAD-BUILD code: (1) external exposure directly from the source, (2) external exposure to materials deposited on the floor, (3) external exposure due to air submersion, (4) inhalation of airborne radioactive particulates, (5) inhalation of aerosol indoor radon progeny and tritiated water vapor, (6) inadvertent ingestion of radioactive material directly from the source, and (7) ingestion of materials deposited on the surfaces of the building compartments. Various exposure scenarios may be modeled with the RESRAD-BUILD code. These include, but are not limited to, office worker, renovation worker, decontamination worker, building visitor, and residency scenarios. Both deterministic and probabilistic dose analyses can be performed with RESRAD-BUILD, and the results can be shown in both text and graphic reports.

  16. Radiological Safety Analysis Computer (RSAC) Program Version 7.2 Users’ Manual

    SciTech Connect (OSTI)

    Dr. Bradley J Schrader

    2010-10-01T23:59:59.000Z

    The Radiological Safety Analysis Computer (RSAC) Program Version 7.2 (RSAC-7) is the newest version of the RSAC legacy code. It calculates the consequences of a release of radionuclides to the atmosphere. A user can generate a fission product inventory from either reactor operating history or a nuclear criticality event. RSAC-7 models the effects of high-efficiency particulate air filters or other cleanup systems and calculates the decay and ingrowth during transport through processes, facilities, and the environment. Doses are calculated for inhalation, air immersion, ground surface, ingestion, and cloud gamma pathways. RSAC-7 can be used as a tool to evaluate accident conditions in emergency response scenarios, radiological sabotage events and to evaluate safety basis accident consequences. This users’ manual contains the mathematical models and operating instructions for RSAC-7. Instructions, screens, and examples are provided to guide the user through the functions provided by RSAC-7. This program was designed for users who are familiar with radiological dose assessment methods.

  17. Radiological Safety Analysis Computer (RSAC) Program Version 7.0 Users’ Manual

    SciTech Connect (OSTI)

    Dr. Bradley J Schrader

    2009-03-01T23:59:59.000Z

    The Radiological Safety Analysis Computer (RSAC) Program Version 7.0 (RSAC-7) is the newest version of the RSAC legacy code. It calculates the consequences of a release of radionuclides to the atmosphere. A user can generate a fission product inventory from either reactor operating history or a nuclear criticality event. RSAC-7 models the effects of high-efficiency particulate air filters or other cleanup systems and calculates the decay and ingrowth during transport through processes, facilities, and the environment. Doses are calculated for inhalation, air immersion, ground surface, ingestion, and cloud gamma pathways. RSAC-7 can be used as a tool to evaluate accident conditions in emergency response scenarios, radiological sabotage events and to evaluate safety basis accident consequences. This users’ manual contains the mathematical models and operating instructions for RSAC-7. Instructions, screens, and examples are provided to guide the user through the functions provided by RSAC-7. This program was designed for users who are familiar with radiological dose assessment methods.

  18. Fraction Collector User Manual

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Fraction Collector Frac-950 18-1139-56 User Manual #12;#12;Important user information All users Territories Hong Kong © Copyright Amersham Biosciences AB 2002 - All rights reserved Fraction Collector Frac Fraction Collector Frac-950 User Manual 18-1139-56 Edition AE v Contents 1 Introduction 1.1 General

  19. Hydra-TH User's Manual, Version: LA-CC-11120, Dated: December 1, 2011

    SciTech Connect (OSTI)

    Christon, Mark A. [Los Alamos National Laboratory; Bakosi, Jozsef [Los Alamos National Laboratory; Lowrie, Robert B. [Los Alamos National Laboratory

    2012-07-19T23:59:59.000Z

    Hydra-TH is a hybrid finite-element/finite-volume code built using the Hydra toolkit specifically to attack a broad class of incompressible, viscous fluid dynamics problems prevalent in the thermalhydraulics community. The purpose for this manual is provide sufficient information for an experience analyst to use Hydra-TH in an effective way. The Hydra-TH User's Manual present a brief overview of capabilities and visualization interfaces. The execution and restart models are described before turning to the detailed description of keyword input. Finally, a series of example problems are presented with sufficient data to permit the user to verify the local installation of Hydra-TH, and to permit a convenient starting point for more detailed and complex analyses.

  20. User' Software Manual

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MM-Group Home MMG Advisory Committees 4-ID-D Home Recent Publications Beamline Info Optics Instrumentation Software User Info FAQs 4-ID-D Beamline Software Manual Introduction...

  1. MELCOR computer code manuals: Primer and user`s guides, Version 1.8.3 September 1994. Volume 1

    SciTech Connect (OSTI)

    Summers, R.M.; Cole, R.K. Jr.; Smith, R.C.; Stuart, D.S.; Thompson, S.L. [Sandia National Labs., Albuquerque, NM (United States); Hodge, S.A.; Hyman, C.R.; Sanders, R.L. [Oak Ridge National Lab., TN (United States)

    1995-03-01T23:59:59.000Z

    MELCOR is a fully integrated, engineering-level computer code that models the progression of severe accidents in light water reactor nuclear power plants. MELCOR is being developed at Sandia National Laboratories for the US Nuclear Regulatory Commission as a second-generation plant risk assessment tool and the successor to the Source Term Code Package. A broad spectrum of severe accident phenomena in both boiling and pressurized water reactors is treated in MELCOR in a unified framework. These include: thermal-hydraulic response in the reactor coolant system, reactor cavity, containment, and confinement buildings; core heatup, degradation, and relocation; core-concrete attack; hydrogen production, transport, and combustion; fission product release and transport; and the impact of engineered safety features on thermal-hydraulic and radionuclide behavior. Current uses of MELCOR include estimation of severe accident source terms and their sensitivities and uncertainties in a variety of applications. This publication of the MELCOR computer code manuals corresponds to MELCOR 1.8.3, released to users in August, 1994. Volume 1 contains a primer that describes MELCOR`s phenomenological scope, organization (by package), and documentation. The remainder of Volume 1 contains the MELCOR Users` Guides, which provide the input instructions and guidelines for each package. Volume 2 contains the MELCOR Reference Manuals, which describe the phenomenological models that have been implemented in each package.

  2. OASIS User Manual

    E-Print Network [OSTI]

    Bojtar, L

    2009-01-01T23:59:59.000Z

    The OASIS system has been operational for years now. After a long development the project has reached a state where the number of features it provides exceeds largely what most of its users knows about. The author felt it was time to write a user manual explaining all the functionality of the viewer application. This document is a user manual, concentrating on the functionality of the viewer from the user’s point of view. There are already documents available on the project’s web site about the technical aspects at http://project-oasis.web.cern.ch/project-oasis/presentations.htm . There was an attempt to produce a tutorial on the viewer, but it didn’t get much further than the table of contents, that however is well thought. The structure of this user manual follows the same principle, the basic and most often used features are grouped together. Advanced or less often used features are described in a separate chapter. There is a second organizational principle, features belong to different levels: chann...

  3. SOWFA + Super Controller User's Manual

    SciTech Connect (OSTI)

    Fleming, P.; Gebraad, P.; Churchfield, M.; Lee, S.; Johnson, K.; Michalakes, J.; van Wingerden, J. W.; Moriarty, P.

    2013-08-01T23:59:59.000Z

    SOWFA + Super Controller is a modification of the NREL's SOWFA tool which allows for a user to apply multiturbine or centralized wind plant control algorithms within the high-fidelity SOWFA simulation environment. The tool is currently a branch of the main SOWFA program, but will one day will be merged into a single version. This manual introduces the tool and provides examples such that a user can implement their own super controller and set up and run simulations. The manual only discusses enough about SOWFA itself to allow for the customization of controllers and running of simulations, and details of SOWFA itself are reported elsewhere Churchfield and Lee (2013); Churchfield et al. (2012). SOWFA + Super Controller, and this manual, are in alpha mode.

  4. Accelerator System Model (ASM) user manual with physics and engineering model documentation. ASM version 1.0

    SciTech Connect (OSTI)

    NONE

    1993-07-01T23:59:59.000Z

    The Accelerator System Model (ASM) is a computer program developed to model proton radiofrequency accelerators and to carry out system level trade studies. The ASM FORTRAN subroutines are incorporated into an intuitive graphical user interface which provides for the {open_quotes}construction{close_quotes} of the accelerator in a window on the computer screen. The interface is based on the Shell for Particle Accelerator Related Codes (SPARC) software technology written for the Macintosh operating system in the C programming language. This User Manual describes the operation and use of the ASM application within the SPARC interface. The Appendix provides a detailed description of the physics and engineering models used in ASM. ASM Version 1.0 is joint project of G. H. Gillespie Associates, Inc. and the Accelerator Technology (AT) Division of the Los Alamos National Laboratory. Neither the ASM Version 1.0 software nor this ASM Documentation may be reproduced without the expressed written consent of both the Los Alamos National Laboratory and G. H. Gillespie Associates, Inc.

  5. User's Manual for BEST-Dairy: Benchmarking and Energy/water-Saving Tool (BEST) for the Dairy Processing Industry (Version 1.2)

    SciTech Connect (OSTI)

    Xu, T.; Ke, J.; Sathaye, J.

    2011-04-20T23:59:59.000Z

    This User's Manual summarizes the background information of the Benchmarking and Energy/water-Saving Tool (BEST) for the Dairy Processing Industry (Version 1.2, 2011), including'Read Me' portion of the tool, the sections of Introduction, and Instructions for the BEST-Dairy tool that is developed and distributed by Lawrence Berkeley National Laboratory (LBNL).

  6. The Water Rights Analysis Package Users Manual, Version 2.0

    E-Print Network [OSTI]

    Wurbs, Ralph A.

    the voluminous naturalized streamflow inflow IN records and evaporation EV records are stored in separate hydrology files, named root.FLO and root.EVA. The root.FLO filename for the flow (or inflow) file may also have the old INF version of the extension, root... be read from a BES file (filename root.BES), and ending storages may be written to the BES file. WRAP-SIM file options are specified on the file option FO record described later. The FO record is required if the default set of input files (DAT, FLO, EVA...

  7. PVWatts Version 5 Manual

    SciTech Connect (OSTI)

    Dobos, A. P.

    2014-09-01T23:59:59.000Z

    The NREL PVWatts calculator is a web application developed by the National Renewable Energy Laboratory (NREL) that estimates the electricity production of a grid-connected photovoltaic system based on a few simple inputs. PVWatts combines a number of sub-models to predict overall system performance, and makes includes several built-in parameters that are hidden from the user. This technical reference describes the sub-models, documents assumptions and hidden parameters, and explains the sequence of calculations that yield the final system performance estimate. This reference is applicable to the significantly revised version of PVWatts released by NREL in 2014.

  8. Mail Services User's Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-07-12T23:59:59.000Z

    This Manual provides detailed information on using the Department of Energy (DOE) mail services. Canceled by DOE G 573.1-1.

  9. Protective Action Evaluator for Chemical Emergencies: A user's manual (MS-DOS reg sign Version 1. 0)

    SciTech Connect (OSTI)

    Rogers, G.O.; Sharp, R.D.

    1990-10-01T23:59:59.000Z

    The protective action evaluator for chemical emergencies (PAECE) is a package of computer programs developed to simulate an emergency response to airborne release of chemical agents. This user's manual documents the use of PAECE in the evaluation of chemical agent emergencies in areas potentially affected by the Chemical Stockpile Emergency Planning Program (CSEPP). This research documents the development and use of a method for the evaluation of protective action alternatives in conjunction with potential chemical agent emergencies. The user's manual highlights the development of the PAECE model, the selection of appropriate parameters to represent various scenarios, generate results and interpret them in the analysis of protective action alternatives during the planning and preparedness phases of the CSEPP. The PAECE model is designed to evaluate protective actions in the context of potential accidents, the emergency management systems required to implement protective actions, and the anticipated consequences for human receptors. The implications and uncertainties of the model are discussed to provide potential users with insight into the use, limitations, and uncertainties associated with evaluating the effectiveness of protective action alternatives. While PAECE represents a unique and powerful tool to evaluate protective actions, the user must exercise caution when interpreting the results to avoid misrepresentation. The expected value interpretation of the PAECE results biases the results toward extreme values. Hence, the PAECE results have to be interpreted in the context exposures similar to those represented by the unprotected exposure and the protection capacity that tend to be associated with people completing the implementation of the required actions later than and earlier than average, respectively. 16 refs., 24 figs., 1 tab. (JF)

  10. TMAP7 User Manual

    SciTech Connect (OSTI)

    Glen R. Longhurst

    2008-12-01T23:59:59.000Z

    The TMAP Code was written at the Idaho National Engineering and Environmental Laboratory by Brad Merrill and James Jones in the late 1980s as a tool for safety analysis of systems involving tritium. Since then it was upgraded to TMAP4 and has been used in numerous applications including experiments supporting fusion safety, predictions for advanced systems such as the International Thermonuclear Experimental Reactor (ITER), and estimates involving tritium production technologies. Its further upgrade to TMAP2000 and now to TMAP7 was accomplished in response to several needs. TMAP and TMAP4 had the capacity to deal with only a single trap for diffusing gaseous species in solid structures. TMAP7 includes up to three separate traps and up to 10 diffusing species. The original code had difficulty dealing with heteronuclear molecule formation such as HD and DT under solution-law dependent diffusion boundary conditions. That difficulty has been overcome. TMAP7 automatically generates heteronuclear molecular partial pressures when solubilities and partial pressures of the homonuclear molecular species are provided for law-dependent diffusion boundary conditions. A further sophistication is the addition of non-diffusing surface species. Atoms such as oxygen or nitrogen or formation and decay or combination of hydroxyl radicals on metal surfaces are sometimes important in reactions with diffusing hydrogen isotopes but do not themselves diffuse appreciably in the material. TMAP7 will accommodate up to 30 such surface species, allowing the user to specify relationships between those surface concentrations and partial pressures of gaseous species above the surfaces or to form them dynamically by combining diffusion species or other surface species. Additionally, TMAP7 allows the user to include a surface binding energy and an adsorption barrier energy. The code includes asymmetrical diffusion between the surface sites and regular diffusion sites in the bulk. All of the previously existing features for heat transfer, flows between enclosures, and chemical reactions within the enclosures have been retained, but the allowed problem size and complexity have been increased to take advantage of the greater memory and speed available on modern computers. One additional feature unique to TMAP7 is the addition of radioactive decay for both trapped and mobile species. Whereas earlier versions required a separate FORTRAN compiler to operate, TMAP7 is based on a publiclicense compiler, distributed with the code.

  11. NetMOD version 1.0 user%3CU%2B2019%3Es manual.

    SciTech Connect (OSTI)

    Merchant, Bion John

    2014-01-01T23:59:59.000Z

    NetMOD (Network Monitoring for Optimal Detection) is a Java-based software package for conducting simulation of seismic networks. Specifically, NetMOD simulates the detection capabilities of seismic monitoring networks. Network simulations have long been used to study network resilience to station outages and to determine where additional stations are needed to reduce monitoring thresholds. NetMOD makes use of geophysical models to determine the source characteristics, signal attenuation along the path between the source and station, and the performance and noise properties of the station. These geophysical models are combined to simulate the relative amplitudes of signal and noise that are observed at each of the stations. From these signal-to-noise ratios (SNR), the probability of detection can be computed given a detection threshold. This manual describes how to configure and operate NetMOD to perform seismic detection simulations. In addition, NetMOD is distributed with a simulation dataset for the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) International Monitoring System (IMS) seismic network for the purpose of demonstrating NetMOD's capabilities and providing user training. The tutorial sections of this manual use this dataset when describing how to perform the steps involved when running a simulation.

  12. TALENT user's manual.

    SciTech Connect (OSTI)

    Merchant, Bion John

    2012-01-01T23:59:59.000Z

    The Ground-Based Monitoring R and E Component Evaluation project performs testing on the hardware components that make up Seismic and Infrasound monitoring systems. The majority of the testing is focused on the Digital Waveform Recorder (DWR), Seismic Sensor, and Infrasound Sensor. The software tool used to capture and analyze the data collected from testing is called TALENT: Test and Analysis Evaluation Tool. This document is the manual for using TALENT. Other reports document the testing procedures that are in place (Kromer, 2007) and the algorithms employed in the test analysis (Merchant, 2011).

  13. MD user's manual

    SciTech Connect (OSTI)

    Correll, S.

    1988-04-01T23:59:59.000Z

    MD is the S-1 Mark IIA machine debugger. It is the hardware equivalent of a software symbolic debugger. It consists of a user-level program which executes on a VAX computer running Berkeley UNIX and a device driver which resides within the UNIX kernel. It communicates with the S-1 Mark IIA through a front-end interface attached to the UNIBUS of the VAX. The first section of this report describes MD's user interface and command set. The second section describes the virtual machine interface through which MD and the UNIX device driver communicate.

  14. TMAP7 User Manual

    SciTech Connect (OSTI)

    Glen R. Longhurst

    2006-09-01T23:59:59.000Z

    The TMAP Code was written at the Idaho National Engineering and Environmental Laboratory by Brad Merrill and James Jones in the late 1980s as a tool for safety analysis of systems involving tritium. Since then it has been upgraded to TMAP4 and has been used in numerous applications including experiments supporting fusion safety, predictions for advanced systems such as the International Thermonuclear Experimental Reactor (ITER), and estimates involving tritium production technologies. Its further upgrade to TMAP2000 and now to TMAP7 was accomplished in response to several needs. TMAP and TMAP4 had the capacity to deal with only a single trap for diffusing gaseous species in solid structures. TMAP7 includes up to three separate traps and up to 10 diffusing species. The original code had difficulty dealing with heteronuclear molecule formation such as HD and DT. That has been removed. Under pre-specified boundary enclosure conditions and solution-law dependent diffusion boundary conditions, such as Sieverts' law, TMAP7 automatically generates heteronuclear molecular partial pressures when solubilities and partial pressures of the homonuclear molecular species are provided for law-dependent diffusion boundary conditions. A further sophistication is the addition of non-diffusing surface species. Atoms such as oxygen or nitrogen or formation and decay or combination of hydroxyl radicals on metal surfaces are sometimes important in reactions with diffusing hydrogen isotopes but do not themselves diffuse appreciably in the material. TMAP7 will accommodate up to 30 such surface species, allowing the user to specify relationships between those surface concentrations and partial pressures of gaseous species above the surfaces or to form them dynamically by combining diffusion species or other surface species. Additionally, TMAP7 allows the user to include a surface binding energy and an adsorption barrier energy. The code includes asymmetrical diffusion between the surface sites and regular diffusion sites in the bulk. All of the previously existing features for heat transfer, flows between enclosures, and chemical reactions within the enclosures have been retained, but the allowed problem size and complexity have been increased to take advantage of the greater memory and speed available on modern computers. One feature unique to TMAP7 is the addition of radioactive decay for both trapped and mobile species.

  15. GADRAS-DRF user's manual.

    SciTech Connect (OSTI)

    Theisen, Lisa Anne; Mitchell, Dean James; Thoreson, Gregory G.; Harding, Lee T.; Horne, Steve; Bradley, Jon David; Eldridge, Bryce Duncan; Amai, Wendy A.

    2013-09-01T23:59:59.000Z

    The Gamma Detector Response and Analysis Software-Detector Response Function (GADRAS-DRF) application computes the response of gamma-ray detectors to incoming radiation. This manual provides step-by-step procedures to acquaint new users with the use of the application. The capabilities include characterization of detector response parameters, plotting and viewing measured and computed spectra, and analyzing spectra to identify isotopes or to estimate flux profiles. GADRAS-DRF can compute and provide detector responses quickly and accurately, giving researchers and other users the ability to obtain usable results in a timely manner (a matter of seconds or minutes).

  16. Users Manual for TMY3 Data Sets (Revised)

    SciTech Connect (OSTI)

    Wilcox, S.; Marion, W.

    2008-05-01T23:59:59.000Z

    This users manual describes how to obtain and interpret the data in the Typical Meteorological Year version 3 (TMY3) data sets. These data sets are an update to the TMY2 data released by NREL in 1994.

  17. USER'S MANUAL Revision 1.0c

    E-Print Network [OSTI]

    van Hemmen, J. Leo

    to correct the interference at your own expense. California Best Management Practices RegulationsH8QM3-2 H8QMi-2 USER'S MANUAL Revision 1.0c SUPER Âź #12;Manual Revision 1.0c Release Date: November in the United States of America The information in this User's Manual has been carefully reviewed

  18. HTGR Cost Model Users' Manual

    SciTech Connect (OSTI)

    A.M. Gandrik

    2012-01-01T23:59:59.000Z

    The High Temperature Gas-Cooler Reactor (HTGR) Cost Model was developed at the Idaho National Laboratory for the Next Generation Nuclear Plant Project. The HTGR Cost Model calculates an estimate of the capital costs, annual operating and maintenance costs, and decommissioning costs for a high-temperature gas-cooled reactor. The user can generate these costs for multiple reactor outlet temperatures; with and without power cycles, including either a Brayton or Rankine cycle; for the demonstration plant, first of a kind, or nth of a kind project phases; for a single or four-pack configuration; and for a reactor size of 350 or 600 MWt. This users manual contains the mathematical models and operating instructions for the HTGR Cost Model. Instructions, screenshots, and examples are provided to guide the user through the HTGR Cost Model. This model was design for users who are familiar with the HTGR design and Excel. Modification of the HTGR Cost Model should only be performed by users familiar with Excel and Visual Basic.

  19. Vegetation Change Analysis User's Manual

    SciTech Connect (OSTI)

    D. J. Hansen; W. K. Ostler

    2002-10-01T23:59:59.000Z

    Approximately 70 percent of all U.S. military training lands are located in arid and semi-arid areas. Training activities in such areas frequently adversely affect vegetation, damaging plants and reducing the resilience of vegetation to recover once disturbed. Fugitive dust resulting from a loss of vegetation creates additional problems for human health, increasing accidents due to decreased visibility, and increasing maintenance costs for roads, vehicles, and equipment. Diagnostic techniques are needed to identify thresholds of sustainable military use. A cooperative effort among U.S. Department of Energy, U.S. Department of Defense, and selected university scientists was undertaken to focus on developing new techniques for monitoring and mitigating military impacts in arid lands. This manual focuses on the development of new monitoring techniques that have been implemented at Fort Irwin, California. New mitigation techniques are described in a separate companion manual. This User's Manual is designed to address diagnostic capabilities needed to distinguish between various degrees of sustainable and nonsustainable impacts due to military training and testing and habitat-disturbing activities in desert ecosystems. Techniques described here focus on the use of high-resolution imagery and the application of image-processing techniques developed primarily for medical research. A discussion is provided about the measurement of plant biomass and shrub canopy cover in arid. lands using conventional methods. Both semiquantitative methods and quantitative methods are discussed and reference to current literature is provided. A background about the use of digital imagery to measure vegetation is presented.

  20. USER'S MANUAL Revision 1.1b

    E-Print Network [OSTI]

    Maccabe, Barney

    Best Management Practices Regulations for Perchlorate Materials: This Perchlorate warning applies onlySUPER Âź X7DB3 USER'S MANUAL Revision 1.1b #12;Unless you request and receive written permission in this User's Manual has been carefully reviewed and is believed to be accurate. The vendor assumes

  1. LMD Martian Mesoscale Model User Manual

    E-Print Network [OSTI]

    Spiga, Aymeric

    LMD Martian Mesoscale Model [LMD-MMM] User Manual A. Spiga aymeric.spiga@upmc.fr Laboratoire de;#12;Contents 1 What is the LMD Martian Mesoscale Model? 3 1.1 Dynamical core on mesoscale levels . . . . . . . . . . . . . . . 35 iii #12;iv User Manual for the LMD Martian Mesoscale Model

  2. Home Inventory User Manual About Home Inventory

    E-Print Network [OSTI]

    Wolfgang, Paul

    Home Inventory User Manual About Home Inventory The HomeInventory Project consists of a customized. With two types of roles, Users and Administrators, clients logged into the HomeInventory have access to a variety of commands. HomeInventory stores each user's items safely and privately, without worry

  3. Arras User's Manual John B. Smith

    E-Print Network [OSTI]

    North Carolina at Chapel Hill, University of

    Arras User's Manual TR85-036 1985 John B. Smith The University of North Carolina at Chapel Hill'S MANUAL John B. Smith Department or Computer Science University or North Carolina Chapel Hill, North Carolina 27514 Copyright© 1984 by John B. Smith #12;Starling ARRAS Note for those not using TUCC: The ARRAS

  4. RIS-M-2480 USERS MANUAL

    E-Print Network [OSTI]

    RISĂ?-M-2480 RIKKE USERS MANUAL P. Haastrup, J.V. Olsen, J.R. Taylor, Axel Damborg and N and failure analysis used in the system is described in Automatic Fault Tree and Consequence Analysis (Taylor

  5. Elemental ABAREX -- a user's manual.

    SciTech Connect (OSTI)

    Smith, A.B.

    1999-05-26T23:59:59.000Z

    ELEMENTAL ABAREX is an extended version of the spherical optical-statistical model code ABAREX, designed for the interpretation of neutron interactions with elemental targets consisting of up to ten isotopes. The contributions from each of the isotopes of the element are explicitly dealt with, and combined for comparison with the elemental observables. Calculations and statistical fitting of experimental data are considered. The code is written in FORTRAN-77 and arranged for use on the IBM-compatible personal computer (PC), but it should operate effectively on a number of other systems, particularly VAX/VMS and IBM work stations. Effort is taken to make the code user friendly. With this document a reasonably skilled individual should become fluent with the use of the code in a brief period of time.

  6. MARS CLIMATE DATABASE v5.1 USER MANUAL

    E-Print Network [OSTI]

    Spiga, Aymeric

    MARS CLIMATE DATABASE v5.1 USER MANUAL (ESTEC Contract 11369/95/NL/JG "Mars Climate Database for version 5.1 of the Mars Climate Database (MCD) de- veloped by LMD (Paris), AOPP (Oxford), Dept. Physics and the Centre National d'Etudes Spatiales. This is a database of atmospheric statistics compiled from Global Cli

  7. National Radiobiology Archives Distributed Access user's manual

    SciTech Connect (OSTI)

    Watson, C.; Smith, S. (Pacific Northwest Lab., Richland, WA (United States)); Prather, J. (Linfield Coll., McMinnville, OR (United States))

    1991-11-01T23:59:59.000Z

    This User's Manual describes installation and use of the National Radiobiology Archives (NRA) Distributed Access package. The package consists of a distributed subset of information representative of the NRA databases and database access software which provide an introduction to the scope and style of the NRA Information Systems.

  8. ISIS User Manual for Departmental, School and

    E-Print Network [OSTI]

    Shull, Kenneth R.

    ISIS User Manual for Departmental, School and University Administrator ISIS (pronounced -ss) is Northwestern University's Integrated Safety Information System. ISIS is the on-line web application by which PIs submit applications and registrations for review. ISIS also builds a laboratory's Safety Profile

  9. LESSONS LEARNED AND BEST PRACTICES DATABASE USER MANUAL

    E-Print Network [OSTI]

    LESSONS LEARNED AND BEST PRACTICES DATABASE USER MANUAL OIA-OCA-0002, Rev. 0 Effective Date: June Lessons Learned and Best Practices Database User Manual RECORD OF REVISION Revision Number Date Approved.............................................................. 26 #12;OIA-OCA-0002, Rev. 0 Page 4 of 26 Lessons Learned and Best Practices Database User Manual 1

  10. CREST Cost of Renewable Energy Spreadsheet Tool: A Model for Developing Cost-Based Incentives in the United States; User Manual Version 4, August 2009 - March 2011 (Updated July 2013)

    SciTech Connect (OSTI)

    Gifford, J. S.; Grace, R. C.

    2013-07-01T23:59:59.000Z

    The objective of this document is to help model users understand how to use the CREST model to support renewable energy incentives, FITs, and other renewable energy rate-setting processes. This user manual will walk the reader through the spreadsheet tool, including its layout and conventions, offering context on how and why it was created. This user manual will also provide instructions on how to populate the model with inputs that are appropriate for a specific jurisdiction's policymaking objectives and context. Finally, the user manual will describe the results and outline how these results may inform decisions about long-term renewable energy support programs.

  11. Integrated Fuel-Coolant Interaction (IFCI 6.0) code. User`s manual

    SciTech Connect (OSTI)

    Davis, F.J.; Young, M.F. [Sandia National Labs., Albuquerque, NM (United States)

    1994-04-01T23:59:59.000Z

    The integrated Fuel-Coolant interaction (IFCI) computer code is being developed at Sandia National Laboratories to investigate the fuel-coolant interaction (FCI) problem at large scale using a two-dimensional, four-field hydrodynamic framework and physically based models. IFCI will be capable of treating all major FCI processes in an integrated manner. This document is a product of the effort to generate a stand-alone version of IFCI, IFCI 6.0. The User`s Manual describes in detail the hydrodynamic method and physical models used in IFCI 6.0. Appendix A is an input manual, provided for the creation of working decks.

  12. ANL supplement to the CA-Disspla user's manual

    SciTech Connect (OSTI)

    Thommes, M.M.; Larson, E.M. (ed.)

    1989-03-01T23:59:59.000Z

    The ANL Supplement to the CA-DISSPLA USER'S MANUAL (ANL/TM 467) summarizes installation-dependent options and features of Disspla; this Supplement supersedes Using Cuechart, Tellegraf, and Disspla at ANL (ANL/TM 433). The information in this Supplement applies to version 10.5 of Disspla (which is currently installed in CMS, in MVS batch, and in several Argonne VAX/VMS systems), to Disspla 11.0 on the VAX 8700, and to version 10.0 of Disspla (which is currently installed on the Cray X-MP/14 under UNICOS). Unless this Supplement states otherwise, you should write Disspla programs according to instructions in the CA-Disspla User's Manual. This chapter contains information common to Disspla as installed in CMS, MVS, VAX/VMS, and UNICOS. (Chapter Two contains information specific to using Disspla in each of these computer systems.) 9 tabs.

  13. DAKOTA : a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis. Version 5.0, user's manual.

    SciTech Connect (OSTI)

    Eldred, Michael Scott; Dalbey, Keith R.; Bohnhoff, William J.; Adams, Brian M.; Swiler, Laura Painton; Hough, Patricia Diane (Sandia National Laboratories, Livermore, CA); Gay, David M.; Eddy, John P.; Haskell, Karen H.

    2010-05-01T23:59:59.000Z

    The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible and extensible interface between simulation codes and iterative analysis methods. DAKOTA contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quantification with sampling, reliability, and stochastic finite element methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the DAKOTA toolkit provides a flexible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a user's manual for the DAKOTA software and provides capability overviews and procedures for software execution, as well as a variety of example studies.

  14. HEATING 7. 1 user's manual

    SciTech Connect (OSTI)

    Childs, K.W.

    1991-07-01T23:59:59.000Z

    HEATING is a FORTRAN program designed to solve steady-state and/or transient heat conduction problems in one-, two-, or three- dimensional Cartesian, cylindrical, or spherical coordinates. A model may include multiple materials, and the thermal conductivity, density, and specific heat of each material may be both time- and temperature-dependent. The thermal conductivity may be anisotropic. Materials may undergo change of phase. Thermal properties of materials may be input or may be extracted from a material properties library. Heating generation rates may be dependent on time, temperature, and position, and boundary temperatures may be time- and position-dependent. The boundary conditions, which may be surface-to-boundary or surface-to-surface, may be specified temperatures or any combination of prescribed heat flux, forced convection, natural convection, and radiation. The boundary condition parameters may be time- and/or temperature-dependent. General graybody radiation problems may be modeled with user-defined factors for radiant exchange. The mesh spacing may be variable along each axis. HEATING is variably dimensioned and utilizes free-form input. Three steady-state solution techniques are available: point-successive-overrelaxation iterative method with extrapolation, direct-solution (for one-dimensional or two-dimensional problems), and conjugate gradient. Transient problems may be solved using one of several finite-difference schemes: Crank-Nicolson implicit, Classical Implicit Procedure (CIP), Classical Explicit Procedure (CEP), or Levy explicit method (which for some circumstances allows a time step greater than the CEP stability criterion). The solution of the system of equations arising from the implicit techniques is accomplished by point-successive-overrelaxation iteration and includes procedures to estimate the optimum acceleration parameter.

  15. Heating 7. 2 user's manual

    SciTech Connect (OSTI)

    Childs, K.W.

    1993-02-01T23:59:59.000Z

    HEATING is a general-purpose conduction heat transfer program written in Fortran 77. HEATING can solve steady-state and/or transient heat conduction problems in one-, two-, or three-dimensional Cartesian, cylindrical, or spherical coordinates. A model may include multiple materials, and the thermal conductivity, density, and specific heat of each material may be both time- and temperature-dependent. The thermal conductivity may also be anisotropic. Materials may undergo change of phase. Thermal properties of materials may be input or may be extracted from a material properties library. Heat-generation rates may be dependent on time, temperature, and position, and boundary temperatures may be time- and position-dependent. The boundary conditions, which may be surface-to-environment or surface-to-surface, may be specified temperatures or any combination of prescribed heat flux, forced convection, natural convection, and radiation. The boundary condition parameters may be time- and/or temperature-dependent. General gray-body radiation problems may be modeled with user-defined factors for radiant exchange. The mesh spacing may be variable along each axis. HEATING uses a runtime memory allocation scheme to avoid having to recompile to match memory requirements for each specific problem. HEATING utilizes free-form input. Three steady-state solution techniques are available: point-successive-overrelaxation iterative method with extrapolation, direct-solution, and conjugate gradient. Transient problems may be solved using any one of several finite-difference schemes: Crank-Nicolson implicit, Classical Implicit Procedure (CIP), Classical Explicit Procedure (CEP), or Levy explicit method. The solution of the system of equations arising from the implicit techniques is accomplished by point-successive-overrelaxation iteration and includes procedures to estimate the optimum acceleration parameter.

  16. DiMP Users Manual Yuichi Tazaki

    E-Print Network [OSTI]

    Tazaki, Yuichi

    DiMP Users Manual Yuichi Tazaki #12;#12;3 1 5 2 7 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3 DiMP 9 3.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 30 31 #12;#12;5 1 DiMP C++ DiMP #12;#12;7 2 2.1 DiMP doc lib .lib Base Springhead Base DiMP1 DiMP

  17. CT-FIRE (V1.3 Beta2) User's Manual, LOCI @ UW-Madison CT-FIRE V1.3 Beta2 User's Manual (November 6 2014)

    E-Print Network [OSTI]

    Yavuz, Deniz

    CT-FIRE (V1.3 Beta2) User's Manual, LOCI @ UW-Madison 1 CT-FIRE V1.3 Beta2 User's Manual (November straightness. Using #12;CT-FIRE (V1.3 Beta2) User's Manual, LOCI @ UW-Madison 2 the advanced output control-processing. Major features of the versions Version 1.3 Beta2 (newest): The primary change in CT-FIRE V1.3 Beta2

  18. Zgoubi user`s guide. Version 4

    SciTech Connect (OSTI)

    Meot, F. [Fermi National Accelerator Lab., Batavia, IL (United States). Dept. of Physics; Valero, S. [CEA, Gif-sur-Yvette (France)

    1997-10-15T23:59:59.000Z

    The computer code Zgoubi calculates trajectories of charged particles in magnetic and electric fields. At the origin specially adapted to the definition and adjustment of beam lines and magnetic spectrometers, it has so-evolved that it allows the study of systems including complex sequences of optical elements such as dipoles, quadrupoles, arbitrary multipoles and other magnetic or electric devices, and is able as well to handle periodic structures. Compared to other codes, it presents several peculiarities: (1) a numerical method for integrating the Lorentz equation, based on Taylor series, which optimizes computing time and provides high accuracy and strong symplecticity, (2) spin tracking, using the same numerical method as for the Lorentz equation, (3) calculation of the synchrotron radiation electric field and spectra in arbitrary magnetic fields, from the ray-tracing outcomes, (4) the possibility of using a mesh, which allows ray-tracing from simulated or measured (1-D, 2-D or 3-D) field maps, (5) Monte Carlo procedures: unlimited number of trajectories, in-flight decay, etc. (6) built-in fitting procedure, (7) multiturn tracking in circular accelerators including many features proper to machine parameter calculation and survey, and also the simulation of time-varying power supplies. The initial version of the Code, dedicated to the ray-tracing in magnetic fields, was developed by D. Garreta and J.C. Faivre at CEN-Saclay in the early 1970`s. It was perfected for the purpose of studying the four spectrometers (SPES I, II, III, IV) at the Laboratoire National Saturne (CEA-Saclay, France), and SPEG at Ganil (Caen, France). It is now in use in several national and foreign laboratories. This manual is intended only to describe the details of the most recent version of Zogoubi, which is far from being a {open_quotes}finished product{close_quotes}.

  19. GENII Version 2 Users’ Guide

    SciTech Connect (OSTI)

    Napier, Bruce A.

    2004-03-08T23:59:59.000Z

    The GENII Version 2 computer code was developed for the Environmental Protection Agency (EPA) at Pacific Northwest National Laboratory (PNNL) to incorporate the internal dosimetry models recommended by the International Commission on Radiological Protection (ICRP) and the radiological risk estimating procedures of Federal Guidance Report 13 into updated versions of existing environmental pathway analysis models. The resulting environmental dosimetry computer codes are compiled in the GENII Environmental Dosimetry System. The GENII system was developed to provide a state-of-the-art, technically peer-reviewed, documented set of programs for calculating radiation dose and risk from radionuclides released to the environment. The codes were designed with the flexibility to accommodate input parameters for a wide variety of generic sites. Operation of a new version of the codes, GENII Version 2, is described in this report. Two versions of the GENII Version 2 code system are available, a full-featured version and a version specifically designed for demonstrating compliance with the dose limits specified in 40 CFR 61.93(a), the National Emission Standards for Hazardous Air Pollutants (NESHAPS) for radionuclides. The only differences lie in the limitation of the capabilities of the user to change specific parameters in the NESHAPS version. This report describes the data entry, accomplished via interactive, menu-driven user interfaces. Default exposure and consumption parameters are provided for both the average (population) and maximum individual; however, these may be modified by the user. Source term information may be entered as radionuclide release quantities for transport scenarios, or as basic radionuclide concentrations in environmental media (air, water, soil). For input of basic or derived concentrations, decay of parent radionuclides and ingrowth of radioactive decay products prior to the start of the exposure scenario may be considered. A single code run can accommodate unlimited numbers of radionuclides including the source term and any radionuclides that accumulate from decay of the parent, because the system works sequentially on individual decay chains. The code package also provides interfaces, through the Framework for Risk Analysis in Multimedia Environmental Systems (FRAMES), for external calculations of atmospheric dispersion, geohydrology, biotic transport, and surface water transport.

  20. HOPSPACK 2.0 user manual.

    SciTech Connect (OSTI)

    Plantenga, Todd D.

    2009-09-01T23:59:59.000Z

    HOPSPACK (Hybrid Optimization Parallel Search PACKage) solves derivative-free optimization problems using an open source, C++ software framework. The framework enables parallel operation using MPI or multithreading, and allows multiple solvers to run simultaneously and interact to find solution points. HOPSPACK comes with an asynchronous pattern search solver that handles general optimization problems with linear and nonlinear constraints, and continuous and integer-valued variables. This user manual explains how to install and use HOPSPACK to solve problems, and how to create custom solvers within the framework.

  1. K-edge densitometer (KED). User manual

    SciTech Connect (OSTI)

    Sprinkle, J.K.; Hansen, W.J.

    1993-02-11T23:59:59.000Z

    In 1979, a K-edge densitometer (KED) was installed by the Safeguards Assay group from Los Alamos National Laboratory in the PNC reprocessing plant at Tokai-mura, Japan. It uses an active nondestructive assay technique, KED, to measure the plutonium concentration of the product solution. The measurement uncertainty of an assay depends on the count time chosen, but can be 0.5% or better. The computer hardware and software were upgraded in 1992. This manual describes the operation of the instrument, with an emphasis on the user interface to the software.

  2. HTGR Application Economic Model Users' Manual

    SciTech Connect (OSTI)

    A.M. Gandrik

    2012-01-01T23:59:59.000Z

    The High Temperature Gas-Cooled Reactor (HTGR) Application Economic Model was developed at the Idaho National Laboratory for the Next Generation Nuclear Plant Project. The HTGR Application Economic Model calculates either the required selling price of power and/or heat for a given internal rate of return (IRR) or the IRR for power and/or heat being sold at the market price. The user can generate these economic results for a range of reactor outlet temperatures; with and without power cycles, including either a Brayton or Rankine cycle; for the demonstration plant, first of a kind, or nth of a kind project phases; for up to 16 reactor modules; and for module ratings of 200, 350, or 600 MWt. This users manual contains the mathematical models and operating instructions for the HTGR Application Economic Model. Instructions, screenshots, and examples are provided to guide the user through the HTGR Application Economic Model. This model was designed for users who are familiar with the HTGR design and Excel and engineering economics. Modification of the HTGR Application Economic Model should only be performed by users familiar with the HTGR and its applications, Excel, and Visual Basic.

  3. HANSF 1.3 user's manual

    SciTech Connect (OSTI)

    PLYS, M.G.

    1999-05-21T23:59:59.000Z

    The HANSF analysis tool is an integrated model considering phenomena inside a multi-canister overpack (MCO) spent nuclear fuel container such as fuel oxidation, convective and radiative heat transfer, and the potential for fission product release. It may be used for all phases of spent fuel disposition including cold vacuum drying, transportation, and storage. This manual reflects HANSF version 1.3, a revised version of version 1.2a. HANSF 1.3 was written to add new models for axial nodalization, add new features for ease of usage, and correct errors. HANSF 1.3 is intended for use on personal computers such as IBM-compatible machines with Intel processors running under a DOS-type operating system. HANSF 1.3 is known to compile under Lahey TI and Digital Visual FORTRAN, Version 6.0, but this does not preclude operation in other environments.

  4. Explosives Classifications Tracking System User Manual

    SciTech Connect (OSTI)

    Genoni, R.P.

    1993-10-01T23:59:59.000Z

    The Explosives Classification Tracking System (ECTS) presents information and data for U.S. Department of Energy (DOE) explosives classifications of interest to EM-561, Transportation Management Division, other DOE facilities, and contractors. It is intended to be useful to the scientist, engineer, and transportation professional, who needs to classify or transport explosives. This release of the ECTS reflects upgrading of the software which provides the user with an environment that makes comprehensive retrieval of explosives related information quick and easy. Quarterly updates will be provided to the ECTS throughout its development in FY 1993 and thereafter. The ECTS is a stand alone, single user system that contains unclassified, publicly available information, and administrative information (contractor names, product descriptions, transmittal dates, EX-Numbers, etc.) information from many sources for non-decisional engineering and shipping activities. The data is the most up-to-date and accurate available to the knowledge of the system developer. The system is designed to permit easy revision and updating as new information and data become available. These, additions and corrections are welcomed by the developer. This user manual is intended to help the user install, understand, and operate the system so that the desired information may be readily obtained, reviewed, and reported.

  5. DAKOTA : a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis. Version 5.0, user's reference manual.

    SciTech Connect (OSTI)

    Eldred, Michael Scott; Dalbey, Keith R.; Bohnhoff, William J.; Adams, Brian M.; Swiler, Laura Painton; Hough, Patricia Diane (Sandia National Laboratories, Livermore, CA); Gay, David M.; Eddy, John P.; Haskell, Karen H.

    2010-05-01T23:59:59.000Z

    The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible and extensible interface between simulation codes and iterative analysis methods. DAKOTA contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quantification with sampling, reliability, and stochastic finite element methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the DAKOTA toolkit provides a flexible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a reference manual for the commands specification for the DAKOTA software, providing input overviews, option descriptions, and example specifications.

  6. Dairy Analytics and Nutrient Analysis (DANA) Prototype System User Manual

    SciTech Connect (OSTI)

    Sam Alessi; Dennis Keiser

    2012-10-01T23:59:59.000Z

    This document is a user manual for the Dairy Analytics and Nutrient Analysis (DANA) model. DANA provides an analysis of dairy anaerobic digestion technology and allows users to calculate biogas production, co-product valuation, capital costs, expenses, revenue and financial metrics, for user customizable scenarios, dairy and digester types. The model provides results for three anaerobic digester types; Covered Lagoons, Modified Plug Flow, and Complete Mix, and three main energy production technologies; electricity generation, renewable natural gas generation, and compressed natural gas generation. Additional options include different dairy types, bedding types, backend treatment type as well as numerous production, and economic parameters. DANA’s goal is to extend the National Market Value of Anaerobic Digester Products analysis (informa economics, 2012; Innovation Center, 2011) to include a greater and more flexible set of regional digester scenarios and to provide a modular framework for creation of a tool to support farmer and investor needs. Users can set up scenarios from combinations of existing parameters or add new parameters, run the model and view a variety of reports, charts and tables that are automatically produced and delivered over the web interface. DANA is based in the INL’s analysis architecture entitled Generalized Environment for Modeling Systems (GEMS) , which offers extensive collaboration, analysis, and integration opportunities and greatly speeds the ability construct highly scalable web delivered user-oriented decision tools. DANA’s approach uses server-based data processing and web-based user interfaces, rather a client-based spreadsheet approach. This offers a number of benefits over the client-based approach. Server processing and storage can scale up to handle a very large number of scenarios, so that analysis of county, even field level, across the whole U.S., can be performed. Server based databases allow dairy and digester parameters be held and managed in a single managed data repository, while allows users to customize standard values and perform individual analysis. Server-based calculations can be easily extended, versions and upgrades managed, and any changes are immediately available to all users. This user manual describes how to use and/or modify input database tables, run DANA, view and modify reports.

  7. User Manuals | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global Energy LLCEnergy) Redirect pageonBeowawe Geothermal Field |User

  8. AIRMaster+ User Manual | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 A Strategic Framework for SMRADepartmentAHAM CCEU.S.AIRMaster+User

  9. PETSc Users Manual Revision 3.3

    SciTech Connect (OSTI)

    Balay, S. [Argonne National Lab. (ANL), Argonne, IL (United States). Mathematics and Computer Science Division; Brown, J. [Argonne National Lab. (ANL), Argonne, IL (United States). Mathematics and Computer Science Division; Buschelman, K. [Argonne National Lab. (ANL), Argonne, IL (United States). Mathematics and Computer Science Division; Eijkhout, V. [Argonne National Lab. (ANL), Argonne, IL (United States). Mathematics and Computer Science Division; Gropp, W. [Argonne National Lab. (ANL), Argonne, IL (United States). Mathematics and Computer Science Division; Kaushik, D. [Argonne National Lab. (ANL), Argonne, IL (United States). Mathematics and Computer Science Division; Knepley, M. [Argonne National Lab. (ANL), Argonne, IL (United States). Mathematics and Computer Science Division; McInnes, L. Curfman [Argonne National Lab. (ANL), Argonne, IL (United States). Mathematics and Computer Science Division; Smith, B. [Argonne National Lab. (ANL), Argonne, IL (United States). Mathematics and Computer Science Division; Zhang, H. [Argonne National Lab. (ANL), Argonne, IL (United States). Mathematics and Computer Science Division

    2013-05-11T23:59:59.000Z

    This manual describes the use of PETSc for the numerical solution of partial differential equations and related problems on high-performance computers. The Portable, Extensible Toolkit for Scientific Computation (PETSc) is a suite of data structures and routines that provide the building blocks for the implementation of large-scale application codes on parallel (and serial) computers. PETSc uses the MPI standard for all message-passing communication. PETSc includes an expanding suite of parallel linear, nonlinear equation solvers and time integrators that may be used in application codes written in Fortran, C, C++, Python, and MATLAB (sequential). PETSc provides many of the mechanisms needed within parallel application codes, such as parallel matrix and vector assembly routines. The library is organized hierarchically, enabling users to employ the level of abstraction that is most appropriate for a particular problem. By using techniques of object-oriented programming, PETSc provides enormous flexibility for users. PETSc is a sophisticated set of software tools; as such, for some users it initially has a much steeper learning curve than a simple subroutine library. In particular, for individuals without some computer science background, experience programming in C, C++ or Fortran and experience using a debugger such as gdb or dbx, it may require a significant amount of time to take full advantage of the features that enable efficient software use. However, the power of the PETSc design and the algorithms it incorporates may make the efficient implementation of many application codes simpler than “rolling them” yourself; For many tasks a package such as MATLAB is often the best tool; PETSc is not intended for the classes of problems for which effective MATLAB code can be written. PETSc also has a MATLAB interface, so portions of your code can be written in MATLAB to “try out” the PETSc solvers. The resulting code will not be scalable however because currently MATLAB is inherently not scalable; and PETSc should not be used to attempt to provide a “parallel linear solver” in an otherwise sequential code. Certainly all parts of a previously sequential code need not be parallelized but the matrix generation portion must be parallelized to expect any kind of reasonable performance. Do not expect to generate your matrix sequentially and then “use PETSc” to solve the linear system in parallel. Since PETSc is under continued development, small changes in usage and calling sequences of routines will occur. PETSc is supported; see the web site http://www.mcs.anl.gov/petsc for information on contacting support. A http://www.mcs.anl.gov/petsc/publications may be found a list of publications and web sites that feature work involving PETSc. We welcome any reports of corrections for this document.

  10. PETSc Users Manual Revision 3.5

    SciTech Connect (OSTI)

    Balay, S. [Argonne National Lab. (ANL), Argonne, IL (United States). Mathematics and Computer Science Division; Abhyankar, S. [Argonne National Lab. (ANL), Argonne, IL (United States). Mathematics and Computer Science Division; Adams, M. [Argonne National Lab. (ANL), Argonne, IL (United States). Mathematics and Computer Science Division; Brown, J. [Argonne National Lab. (ANL), Argonne, IL (United States). Mathematics and Computer Science Division; Brune, P. [Argonne National Lab. (ANL), Argonne, IL (United States). Mathematics and Computer Science Division; Buschelman, K. [Argonne National Lab. (ANL), Argonne, IL (United States). Mathematics and Computer Science Division; Eijkhout, V. [Argonne National Lab. (ANL), Argonne, IL (United States). Mathematics and Computer Science Division; Gropp, W. [Argonne National Lab. (ANL), Argonne, IL (United States). Mathematics and Computer Science Division; Kaushik, D. [Argonne National Lab. (ANL), Argonne, IL (United States). Mathematics and Computer Science Division; Knepley, M. [Argonne National Lab. (ANL), Argonne, IL (United States). Mathematics and Computer Science Division; McInnes, L. Curfman [Argonne National Lab. (ANL), Argonne, IL (United States). Mathematics and Computer Science Division; Rupp, K. [Argonne National Lab. (ANL), Argonne, IL (United States). Mathematics and Computer Science Division; Smith, B. [Argonne National Lab. (ANL), Argonne, IL (United States). Mathematics and Computer Science Division; Zhang, H. [Argonne National Lab. (ANL), Argonne, IL (United States). Mathematics and Computer Science Division

    2014-09-08T23:59:59.000Z

    This manual describes the use of PETSc for the numerical solution of partial differential equations and related problems on high-performance computers. The Portable, Extensible Toolkit for Scientific Computation (PETSc) is a suite of data structures and routines that provide the building blocks for the implementation of large-scale application codes on parallel (and serial) computers. PETSc uses the MPI standard for all message-passing communication. PETSc includes an expanding suite of parallel linear, nonlinear equation solvers and time integrators that may be used in application codes written in Fortran, C, C++, Python, and MATLAB (sequential). PETSc provides many of the mechanisms needed within parallel application codes, such as parallel matrix and vector assembly routines. The library is organized hierarchically, enabling users to employ the level of abstraction that is most appropriate for a particular problem. By using techniques of object-oriented programming, PETSc provides enormous flexibility for users. PETSc is a sophisticated set of software tools; as such, for some users it initially has a much steeper learning curve than a simple subroutine library. In particular, for individuals without some computer science background, experience programming in C, C++ or Fortran and experience using a debugger such as gdb or dbx, it may require a significant amount of time to take full advantage of the features that enable efficient software use. However, the power of the PETSc design and the algorithms it incorporates may make the efficient implementation of many application codes simpler than “rolling them” yourself. ;For many tasks a package such as MATLAB is often the best tool; PETSc is not intended for the classes of problems for which effective MATLAB code can be written. PETSc also has a MATLAB interface, so portions of your code can be written in MATLAB to “try out” the PETSc solvers. The resulting code will not be scalable however because currently MATLAB is inherently not scalable; and PETSc should not be used to attempt to provide a “parallel linear solver” in an otherwise sequential code. Certainly all parts of a previously sequential code need not be parallelized but the matrix generation portion must be parallelized to expect any kind of reasonable performance. Do not expect to generate your matrix sequentially and then “use PETSc” to solve the linear system in parallel. Since PETSc is under continued development, small changes in usage and calling sequences of routines will occur. PETSc is supported; see the web site http://www.mcs.anl.gov/petsc for information on contacting support. A http://www.mcs.anl.gov/petsc/publications may be found a list of publications and web sites that feature work involving PETSc. We welcome any reports of corrections for this document.

  11. PETSc Users Manual Revision 3.4

    SciTech Connect (OSTI)

    Balay, S. [Argonne National Lab. (ANL), Argonne, IL (United States). Mathematics and Computer Science Division; Brown, J. [Argonne National Lab. (ANL), Argonne, IL (United States). Mathematics and Computer Science Division; Buschelman, K. [Argonne National Lab. (ANL), Argonne, IL (United States). Mathematics and Computer Science Division; Eijkhout, V. [Argonne National Lab. (ANL), Argonne, IL (United States). Mathematics and Computer Science Division; Gropp, W. [Argonne National Lab. (ANL), Argonne, IL (United States). Mathematics and Computer Science Division; Kaushik, D. [Argonne National Lab. (ANL), Argonne, IL (United States). Mathematics and Computer Science Division; Knepley, M. [Argonne National Lab. (ANL), Argonne, IL (United States). Mathematics and Computer Science Division; McInnes, L. Curfman [Argonne National Lab. (ANL), Argonne, IL (United States). Mathematics and Computer Science Division; Smith, B. [Argonne National Lab. (ANL), Argonne, IL (United States). Mathematics and Computer Science Division; Zhang, H. [Argonne National Lab. (ANL), Argonne, IL (United States). Mathematics and Computer Science Division

    2014-06-29T23:59:59.000Z

    This manual describes the use of PETSc for the numerical solution of partial differential equations and related problems on high-performance computers. The Portable, Extensible Toolkit for Scientific Computation (PETSc) is a suite of data structures and routines that provide the building blocks for the implementation of large-scale application codes on parallel (and serial) computers. PETSc uses the MPI standard for all message-passing communication. PETSc includes an expanding suite of parallel linear, nonlinear equation solvers and time integrators that may be used in application codes written in Fortran, C, C++, Python, and MATLAB (sequential). PETSc provides many of the mechanisms needed within parallel application codes, such as parallel matrix and vector assembly routines. The library is organized hierarchically, enabling users to employ the level of abstraction that is most appropriate for a particular problem. By using techniques of object-oriented programming, PETSc provides enormous flexibility for users. PETSc is a sophisticated set of software tools; as such, for some users it initially has a much steeper learning curve than a simple subroutine library. In particular, for individuals without some computer science background, experience programming in C, C++ or Fortran and experience using a debugger such as gdb or dbx, it may require a significant amount of time to take full advantage of the features that enable efficient software use. However, the power of the PETSc design and the algorithms it incorporates may make the efficient implementation of many application codes simpler than “rolling them” yourself; For many tasks a package such as MATLAB is often the best tool; PETSc is not intended for the classes of problems for which effective MATLAB code can be written. PETSc also has a MATLAB interface, so portions of your code can be written in MATLAB to “try out” the PETSc solvers. The resulting code will not be scalable however because currently MATLAB is inherently not scalable; and PETSc should not be used to attempt to provide a “parallel linear solver” in an otherwise sequential code. Certainly all parts of a previously sequential code need not be parallelized but the matrix generation portion must be parallelized to expect any kind of reasonable performance. Do not expect to generate your matrix sequentially and then “use PETSc” to solve the linear system in parallel. Since PETSc is under continued development, small changes in usage and calling sequences of routines will occur. PETSc is supported; see the web site http://www.mcs.anl.gov/petsc for information on contacting support. A http://www.mcs.anl.gov/petsc/publications may be found a list of publications and web sites that feature work involving PETSc. We welcome any reports of corrections for this document.

  12. Geothermal: Sponsored by OSTI -- User manual for geothermal energy...

    Office of Scientific and Technical Information (OSTI)

    User manual for geothermal energy assisted dairy complex computer programs: PREBLD, MODEL0, MODEL1, MODEL2, FRMAT2, PREPI2, NET2, DAIRY and DAIRY1 Geothermal Technologies Legacy...

  13. National Solar Radiation Database 1991-2010 Update: User's Manual

    SciTech Connect (OSTI)

    Wilcox, S. M.

    2012-08-01T23:59:59.000Z

    This user's manual provides information on the updated 1991-2010 National Solar Radiation Database. Included are data format descriptions, data sources, production processes, and information about data uncertainty.

  14. PV VALUE(tm) User Manual v. 1.0

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PV Value(tm) User Manual v. 1.0 Jamie L. Johnson - Solar Power Electric(tm) Geoffrey T. Klise - Sandia National Laboratories 1312012 SAND2012-0682P Sandia National Laboratories...

  15. Titanium Language Reference Manual Version 2.20

    E-Print Network [OSTI]

    California at Irvine, University of

    Titanium Language Reference Manual Version 2.20 P. N. Hilfinger (editor), Dan Bonachea, Kaushik Berkeley, California 94720 #12;Titanium Language Reference Manual Version 2.20 P. N. Hilfinger (editor, and Katherine Yelick August, 2006 #12;Abstract The Titanium language is a Java dialect for high

  16. COMPUTER PROGRAM CCC USER'S MANUAL VERSION II.

    E-Print Network [OSTI]

    Mangold, D.C.

    2013-01-01T23:59:59.000Z

    one of slope C (compression index) for c virgin loading, andindex (C), u~zo cc Compression index (C), CK Slope of

  17. COMPUTER PROGRAM CCC USER'S MANUAL VERSION II.

    E-Print Network [OSTI]

    Mangold, D.C.

    2013-01-01T23:59:59.000Z

    M.J. , 1978b; of thermal energy storage in aquifers:C. , 1979b; Aquifer thermal energy storage---a numericalAquifer Thermal Energy Storage Field Experiment (1979)

  18. COMPUTER PROGRAM CCC USER'S MANUAL VERSION II.

    E-Print Network [OSTI]

    Mangold, D.C.

    2013-01-01T23:59:59.000Z

    studies of the Cerro Prieto Reservoir: in Proceedings ofthe Second Symposium on the Cerro Prieto Geothermal Field,studies related to the Cerro Prieto Field: Geothermics, v.

  19. User Manual Version 1.1

    E-Print Network [OSTI]

    Napp, Nils

    ................................................................................................................5 1.3 Recycling.....................................................................................................................8 3.1.2 ONą OFF Battery Switch..................................................................................14 3.1.9 Batteries

  20. USER MANUAL VERSION 3.5

    E-Print Network [OSTI]

    Napp, Nils

    . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Recycling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Unpacking . . . . . . . . . . . . . . . . . . . . . 6 3.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . 6 3.1.2 ON-OFF Battery Switch . . . . . . . . . . . . . . . . . . . . . . . . 19 3.5 Battery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.6 Power Supply

  1. COMPUTER PROGRAM CCC USER'S MANUAL VERSION II.

    E-Print Network [OSTI]

    Mangold, D.C.

    2013-01-01T23:59:59.000Z

    from underground combustion of a coal seam (Mangold et al. ,from in situ combustion of a coal seam: Lawrence Berkeley

  2. FRAC-UNIX theory and user's manual

    SciTech Connect (OSTI)

    Clemo, T.M.; Miller, J.D.; Hull, L.C.; Magnuson, S.O.

    1990-05-01T23:59:59.000Z

    The FRAC-UNIX computer code provides a two-dimensional simulation of saturated flow and transport in a fractured porous media. The code incorporates a dual permeability approach in which the rock matrix is modeled as rectangular cells and the fractures are represented as discrete elements on the edges and diagonals of the matrix cells. A single head distribution drives otherwise independent flows in the matrix and in the fractures. Steady-state or transient flow of a single-phase fluid may be simulated. Solute or heat transport is simulated by moving imaginary marker particles in the velocity field established by the flow model, under the additional influence of dispersive and diffusive processes. Sparse-matrix techniques are utilized along with a specially developed user interface. The code is installed a CRAY XMP24 Computer using the UNICOS operating system. The initial version of this code, entitled FRACSL, incorporated the same flow and transport models, but used a commercial software package for the numerics and user interface. This report describes the theoretical basis, approach and implementation incorporated in the code; the mechanics of operating the code; several sample problems; and the integration of code development with physical modeling and field testing. The code is fully functional, for most purposes, as shown by the results of an extensive code verification effort. Work remaining consists of refining and adding capabilities needed for several of the code verification problems; relatively simple modifications to extend its application and improve its ease of use; an improvement in the treatment of fracture junctions and correction of an error in calculating buoyancy and concentration for diagonal fractures on a rectangular grid. 42 refs., 28 figs., 5 tabs.

  3. The Condor Programmer's Manual - Version II

    E-Print Network [OSTI]

    Narasimhan, Sundar

    This is the CONDOR programmer's manual, that describes the hardware and software that form the basis of the real-time computational architecture built originally for the Utah-MIT hand. The architecture has been used ...

  4. Transportation Routing Analysis Geographic Information System (TRAGIS) User's Manual

    SciTech Connect (OSTI)

    Johnson, PE

    2003-09-18T23:59:59.000Z

    The Transportation Routing Analysis Geographic Information System (TRAGIS) model is used to calculate highway, rail, or waterway routes within the United States. TRAGIS is a client-server application with the user interface and map data files residing on the user's personal computer and the routing engine and network data files on a network server. The user's manual provides documentation on installation and the use of the many features of the model.

  5. HEFF---A user`s manual and guide for the HEFF code for thermal-mechanical analysis using the boundary-element method; Version 4.1: Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    St. John, C.M.; Sanjeevan, K. [Agapito (J.F.T.) and Associates, Inc., Grand Junction, CO (United States)

    1991-12-01T23:59:59.000Z

    The HEFF Code combines a simple boundary-element method of stress analysis with the closed form solutions for constant or exponentially decaying heat sources in an infinite elastic body to obtain an approximate method for analysis of underground excavations in a rock mass with heat generation. This manual describes the theoretical basis for the code, the code structure, model preparation, and step taken to assure that the code correctly performs its intended functions. The material contained within the report addresses the Software Quality Assurance Requirements for the Yucca Mountain Site Characterization Project. 13 refs., 26 figs., 14 tabs.

  6. User`s Manual for the SOURCE1 and SOURCE2 Computer Codes: Models for Evaluating Low-Level Radioactive Waste Disposal Facility Source Terms (Version 2.0)

    SciTech Connect (OSTI)

    Icenhour, A.S.; Tharp, M.L.

    1996-08-01T23:59:59.000Z

    The SOURCE1 and SOURCE2 computer codes calculate source terms (i.e. radionuclide release rates) for performance assessments of low-level radioactive waste (LLW) disposal facilities. SOURCE1 is used to simulate radionuclide releases from tumulus-type facilities. SOURCE2 is used to simulate releases from silo-, well-, well-in-silo-, and trench-type disposal facilities. The SOURCE codes (a) simulate the degradation of engineered barriers and (b) provide an estimate of the source term for LLW disposal facilities. This manual summarizes the major changes that have been effected since the codes were originally developed.

  7. CHEETAH 1.0 user`s manual

    SciTech Connect (OSTI)

    Fried, L.E.

    1994-06-24T23:59:59.000Z

    CHEETAH is an effort to bring the TIGER thermochemical code into the 1990s. A wide variety of improvements have been made in Version 1.0, and a host of others will be implemented in the future. In CHEETAH 1.0 I have improved the robustness and ease of use of TIGER. All of TIGER`s solvers have been replaced by new algorithms. I find that CHEETAH solves a wider variety of problems with no user intervention (e.g. no guesses for the C-J state) than TIGER did. CHEETAH has been made simpler to use than TIGER; typical use of the code occurs with the new standard run command. I hope that CHEETAH makes the use of thermochemical codes more attractive to practical explosive formulators. In the future I plan to improve the underlying science in CHEETAH. More accurate equations of state will be used in the gas and the condensed phase. A kinetics capability will be added to the code that will predict reaction zone thickness. CHEETAH is currently a numerical implementation of C-J theory. It will,become an implementation of ZND theory. Further ease of use features will eventually be added; an automatic formulator that adjusts concentrations to match desired properties is planned.

  8. DAKOTA JAGUAR 2.1 user's Manual.

    SciTech Connect (OSTI)

    Adams, Brian M.; Lefantzi, Sophia; Chan, Ethan; Ruthruff, Joseph R.

    2011-06-01T23:59:59.000Z

    JAGUAR (JAva GUi for Applied Research) is a Java software tool providing an advanced text editor and graphical user interface (GUI) to manipulate DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) input specifications. This document focuses on the features necessary for a user to use JAGUAR.

  9. Training Manuals All up to date training manuals can be found at the Student Information Users Group in PAWS.

    E-Print Network [OSTI]

    Saskatchewan, University of

    Training Manuals All up to date training manuals can be found at the Student Information Users on Files (left side) d. Click on Training Manuals e. Click on the Class Maintenance file f. Building New a member.) c. Click on Files (left side) d. Click on Training Manuals e. Click on the Registration file f

  10. QTCM software documentation. Volume 2. User's manual. Final report

    SciTech Connect (OSTI)

    Not Available

    1990-10-01T23:59:59.000Z

    This Volume of the QTCM software manual is a user's manual for those who need to conduct QTCM analyses, but do not require an in-depth knowledge of the software model's structure and development. This manual describes the operating environment necessary to support QTCM and provides step-by-step instructions for operating the model. QTCM consists of three executable segments - the input file formatter, the network analysis segment, and the output file formatter. The input file formatter, INPFMT, allows the user to create or amend a formatted input file via a series of user menus and prompts. NETWORK reads in the input file produced by INPFMT and performs the network analysis function of QTCM, including traffic distribution and calculation of network statistics. The output formatter, OUTFMT, then takes the output from NETWORK and allows the user to selectively display and output statistical traffic data via a series of user menus and prompts. These output data may be written to an ASCII text file if the user desires. The operation of each of these executables is described in the following sections.

  11. Manual: Compendium of CERCLA Response Selection Guidance Documents, Users Manual.

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling CorpNewCF INDUSTRIES,L? .-IGYS,:?' _.JI' ;i.\'

  12. ARES: automated response function code. Users manual. [HPGAM and LSQVM

    SciTech Connect (OSTI)

    Maung, T.; Reynolds, G.M.

    1981-06-01T23:59:59.000Z

    This ARES user's manual provides detailed instructions for a general understanding of the Automated Response Function Code and gives step by step instructions for using the complete code package on a HP-1000 system. This code is designed to calculate response functions of NaI gamma-ray detectors, with cylindrical or rectangular geometries.

  13. DAKOTA JAGUAR 3.0 user's manual.

    SciTech Connect (OSTI)

    Adams, Brian M. [Sandia National Laboratories, Albuquerque, NM; Bauman, Lara E; Chan, Ethan; Lefantzi, Sophia; Ruthruff, Joseph R.

    2013-05-01T23:59:59.000Z

    JAGUAR (JAva GUi for Applied Research) is a Java software tool providing an advanced text editor and graphical user interface (GUI) to manipulate DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) input specifications. This document focuses on the features necessary to use JAGUAR.

  14. AOC-SIM1U Add-on Card User's Manual

    E-Print Network [OSTI]

    van Hemmen, J. Leo

    Management Practices Regulations for Perchlorate Materials: This Perchlorate warning applies only to productsAOC-SIM1U Add-on Card User's Manual Revison 1.1d SIM1U 1 #12;AOC-SIM1U Add-on Card User's Manual ii The information in this User's Manual has been carefully reviewed and is believed to be accurate. The vendor

  15. Renewable Electric Plant Information System user interface manual: Paradox 7 Runtime for Windows

    SciTech Connect (OSTI)

    NONE

    1996-11-01T23:59:59.000Z

    The Renewable Electric Plant Information System (REPiS) is a comprehensive database with detailed information on grid-connected renewable electric plants in the US. The current version, REPiS3 beta, was developed in Paradox for Windows. The user interface (UI) was developed to facilitate easy access to information in the database, without the need to have, or know how to use, Paradox for Windows. The UI is designed to provide quick responses to commonly requested sorts of the database. A quick perusal of this manual will familiarize one with the functions of the UI and will make use of the system easier. There are six parts to this manual: (1) Quick Start: Instructions for Users Familiar with Database Applications; (2) Getting Started: The Installation Process; (3) Choosing the Appropriate Report; (4) Using the User Interface; (5) Troubleshooting; (6) Appendices A and B.

  16. User's manual for GILDA: An infinite lattice diffusion theory calculation

    SciTech Connect (OSTI)

    Le, T.T.

    1991-11-01T23:59:59.000Z

    GILDA is a static two-dimensional diffusion theory code that performs either buckling (B[sup 2]) or k-effective (k[sub eff]) calculations for an infinite hexagonal lattice which is constructed by repeating identical seven-cell zones (one cell is one or seven identical homogenized hexes). GILDA was written by J. W. Stewart in 1973. This user's manual is intended to provide all of the information necessary to set up and execute a GILDA calculation and to interpret the output results. It is assumed that the user is familiar with the computer (VAX/VMS or IBM/MVS) and the JOSHUA system database on which the code is implemented. Users who are not familiar with the JOSHUA database are advised to consult additional references to understand the structure of JOSHUA records and data sets before turning to section 4 of this manual. Sections 2 and 3 of this manual serve as a theory document in which the basic diffusion theory and the numerical approximations behind the code are described. Section 4 describes the functions of the program's subroutines. Section 5 describes the input data and tutors the user how to set up a problem. Section 6 describes the output results and the error messages which may be encountered during execution. Users who only wish to learn how to run the code without understanding the theory can start from section 4 and use sections 2 and 3 as references. Finally, the VAX/VMS and the IBM execution command files together with sample input records are provided in the appendices at the end of this manual.

  17. AHP Version 5.1 user`s manual

    SciTech Connect (OSTI)

    Watkins, J.C.; Ghan, L.S.

    1992-10-01T23:59:59.000Z

    As decisions become more and more complex, decision makers are faced with the challenge of sorting through many variables to arrive at a sound decision. The Analytical Hierarchy Process (AHP) is a tool, that allows a systematic, logical approach to reducing complex issues into manageable pieces. The decision maker can then sort through the variables and determine to what degree a particular variable should influence the final decision. The power of the AHP as a management tool comes from the fact that it reduces complex problems to many simple pairwise decisions. Only two items need be compared against one another - a much simpler task than comparing an item to all the others simultaneously. By arranging the items that influence a decision in the form of a matrix and comparing appropriate pairs in this matrix to each other, each item can be compared with every other item. Matrix algebra can then operate on this matrix and rank each item according to its importance to the final decision.

  18. Manufactured Home Energy Audit user`s manual

    SciTech Connect (OSTI)

    NONE

    1997-09-01T23:59:59.000Z

    The Manufactured Home Energy Audit (MHEA) is a software tool that predicts manufactured home energy consumption and recommends weatherization retrofit measures. It was developed to assist local weatherization agencies working with the US Department of Energy (DOE) Weatherization Assistance Program. Whether new or experienced, employed within or outside the Weatherization Assistance Program, all users can benefit from incorporating MHEA into their manufactured home weatherization programs. DOE anticipates that the state weatherization assistance programs that incorporate MHEA into their programs will find significant growth in the energy and cost savings achieved from manufactured home weatherization. The easy-to-use MHEA displays a colorful, graphical interface for entering simple inputs and provides understandable, usable results. The user enters information about the manufactured home construction, heating equipment, cooling equipment, and weather site. MHEA then calculates annual energy consumption using a simplified building energy analysis technique. MHEA stands apart from other building energy analysis tools in many ways. Calculations incorporated into the computer code specifically address manufactured home heating and cooling load trends. The retrofit measures evaluated by MHEA are all applicable to manufactured homes. Help messages describe common manufactured home weatherization practices as well as provide hints on how to install retrofit measures. These and other features help make MHEA easy to use when evaluating energy consumption and the effects of weatherization retrofit measures for manufactured homes.

  19. C%2B%2B tensor toolbox user manual.

    SciTech Connect (OSTI)

    Plantenga, Todd D.; Kolda, Tamara Gibson

    2012-04-01T23:59:59.000Z

    The C++ Tensor Toolbox is a software package for computing tensor decompositions. It is based on the Matlab Tensor Toolbox, and is particularly optimized for sparse data sets. This user manual briefly overviews tensor decomposition mathematics, software capabilities, and installation of the package. Tensors (also known as multidimensional arrays or N-way arrays) are used in a variety of applications ranging from chemometrics to network analysis. The Tensor Toolbox provides classes for manipulating dense, sparse, and structured tensors in C++. The Toolbox compiles into libraries and is intended for use with custom applications written by users.

  20. GADRAS-DRF 18.5 User's Manual.

    SciTech Connect (OSTI)

    Horne, Steven M.; Thoreson, Gregory G; Theisen, Lisa A.; Mitchell, Dean J.; Harding, Lee; Amai, Wendy A.

    2014-12-01T23:59:59.000Z

    The Gamma Detector Response and Analysis Software - Detector Response Function (GADRAS-DRF) application computes the response of gamma-ray and neutron detectors to incoming radiation. This manual provides step-by-step procedures to acquaint new users with the use of the application. The capabilities include characterization of detector response parameters, plotting and viewing measured and computed spectra, analyzing spectra to identify isotopes, and estimating source energy distributions from measured spectra. GADRAS-DRF can compute and provide detector responses quickly and accurately, giving users the ability to obtain usable results in a timely manner (a matter of seconds or minutes).

  1. Trajectory analysis and optimization system (TAOS) user`s manual

    SciTech Connect (OSTI)

    Salguero, D.E.

    1995-12-01T23:59:59.000Z

    The Trajectory Analysis and Optimization System (TAOS) is software that simulates point--mass trajectories for multiple vehicles. It expands upon the capabilities of the Trajectory Simulation and Analysis program (TAP) developed previously at Sandia National Laboratories. TAOS is designed to be a comprehensive analysis tool capable of analyzing nearly any type of three degree-of-freedom, point-mass trajectory. Trajectories are broken into segments, and within each segment, guidance rules provided by the user control how the trajectory is computed. Parametric optimization provides a powerful method for satisfying mission-planning constraints. Althrough TAOS is not interactive, its input and output files have been designed for ease of use. When compared to TAP, the capability to analyze trajectories for more than one vehicle is the primary enhancement, although numerous other small improvements have been made. This report documents the methods used in TAOS as well as the input and output file formats.

  2. T-HEMP3D user manual

    SciTech Connect (OSTI)

    Turner, D.

    1983-08-01T23:59:59.000Z

    The T-HEMP3D (Transportable HEMP3D) computer program is a derivative of the STEALTH three-dimensional thermodynamics code developed by Science Applications, Inc., under the direction of Ron Hofmann. STEALTH, in turn, is based entirely on the original HEMP3D code written at Lawrence Livermore National Laboratory. The primary advantage STEALTH has over its predecessors is that it was designed using modern structured design techniques, with rigorous programming standards enforced. This yields two benefits. First, the code is easily changeable; this is a necessity for a physics code used for research. The second benefit is that the code is easily transportable between different types of computers. The STEALTH program was transferred to LLNL under a cooperative development agreement. Changes were made primarily in three areas: material specification, coordinate generation, and the addition of sliding surface boundary conditions. The code was renamed T-HEMP3D to avoid confusion with other versions of STEALTH. This document summarizes the input to T-HEMP3D, as used at LLNL. It does not describe the physics simulated by the program, nor the numerical techniques employed. Furthermore, it does not describe the separate job steps of coordinate generation and post-processing, including graphical display of results. (WHK)

  3. User`s manual for SNL-SAND-II code

    SciTech Connect (OSTI)

    Griffin, P.J.; Kelly, J.G. [Sandia National Labs., Albuquerque, NM (United States); VanDenburg, J.W. [Science and Engineering Associates, Inc., Albuquerque, NM (United States)

    1994-04-01T23:59:59.000Z

    Sandia National Laboratories, in the process of characterizing the neutron environments at its reactor facilities, has developed an enhanced version of W. McElroy`s original SAND-II code. The enhanced input, output, and plotting interfaces make the code much easier to use. The basic physics and operation of the code remain unchanged. Important code enhancements include the interfaces to the latest ENDF/B-VI and IRDF-90 dosimetry-quality cross sections and the ability to use silicon displacement-sensitive devices as dosimetry sensors.

  4. The Montana Rivers Information System: Edit/entry program user`s manual

    SciTech Connect (OSTI)

    Not Available

    1992-07-01T23:59:59.000Z

    The Montana Rivers Information System (MRIS) was initiated to assess the state`s fish, wildlife, and recreation value; and natural cultural and geologic features. The MRIS is now a set of data bases containing part of the information in the Natural Heritage Program natural features and threatened and endangered species data bases. The purpose of this User`s Manual is to: (1) describe to the user how to maintain the MRIS database of their choice by updating, changing, deleting, and adding records using the edit/entry programs; and (2) provide to the user all information and instructions necessary to complete data entry into the MRIS databases.

  5. Heating 7.2 user`s manual

    SciTech Connect (OSTI)

    Childs, K.W.

    1993-02-01T23:59:59.000Z

    HEATING is a general-purpose conduction heat transfer program written in Fortran 77. HEATING can solve steady-state and/or transient heat conduction problems in one-, two-, or three-dimensional Cartesian, cylindrical, or spherical coordinates. A model may include multiple materials, and the thermal conductivity, density, and specific heat of each material may be both time- and temperature-dependent. The thermal conductivity may also be anisotropic. Materials may undergo change of phase. Thermal properties of materials may be input or may be extracted from a material properties library. Heat-generation rates may be dependent on time, temperature, and position, and boundary temperatures may be time- and position-dependent. The boundary conditions, which may be surface-to-environment or surface-to-surface, may be specified temperatures or any combination of prescribed heat flux, forced convection, natural convection, and radiation. The boundary condition parameters may be time- and/or temperature-dependent. General gray-body radiation problems may be modeled with user-defined factors for radiant exchange. The mesh spacing may be variable along each axis. HEATING uses a runtime memory allocation scheme to avoid having to recompile to match memory requirements for each specific problem. HEATING utilizes free-form input. Three steady-state solution techniques are available: point-successive-overrelaxation iterative method with extrapolation, direct-solution, and conjugate gradient. Transient problems may be solved using any one of several finite-difference schemes: Crank-Nicolson implicit, Classical Implicit Procedure (CIP), Classical Explicit Procedure (CEP), or Levy explicit method. The solution of the system of equations arising from the implicit techniques is accomplished by point-successive-overrelaxation iteration and includes procedures to estimate the optimum acceleration parameter.

  6. Users manual for CAFE-3D : a computational fluid dynamics fire code.

    SciTech Connect (OSTI)

    Khalil, Imane; Lopez, Carlos; Suo-Anttila, Ahti Jorma (Alion Science and Technology, Albuquerque, NM)

    2005-03-01T23:59:59.000Z

    The Container Analysis Fire Environment (CAFE) computer code has been developed to model all relevant fire physics for predicting the thermal response of massive objects engulfed in large fires. It provides realistic fire thermal boundary conditions for use in design of radioactive material packages and in risk-based transportation studies. The CAFE code can be coupled to commercial finite-element codes such as MSC PATRAN/THERMAL and ANSYS. This coupled system of codes can be used to determine the internal thermal response of finite element models of packages to a range of fire environments. This document is a user manual describing how to use the three-dimensional version of CAFE, as well as a description of CAFE input and output parameters. Since this is a user manual, only a brief theoretical description of the equations and physical models is included.

  7. User`s manual for BINIAC: A computer code to translate APET bins

    SciTech Connect (OSTI)

    Gough, S.T.

    1994-03-01T23:59:59.000Z

    This report serves as the user`s manual for the FORTRAN code BINIAC. BINIAC is a utility code designed to format the output from the Defense Waste Processing Facility (DWPF) Accident Progression Event Tree (APET) methodology. BINIAC inputs the accident progression bins from the APET methodology, converts the frequency from occurrences per hour to occurrences per year, sorts the progression bins, and converts the individual dimension character codes into facility attributes. Without the use of BINIAC, this process would be done manually at great time expense. BINIAC was written under the quality assurance control of IQ34 QAP IV-1, revision 0, section 4.1.4. Configuration control is established through the use of a proprietor and a cognizant users list.

  8. User`s manual for GILDA: An infinite lattice diffusion theory calculation

    SciTech Connect (OSTI)

    Le, T.T.

    1991-11-01T23:59:59.000Z

    GILDA is a static two-dimensional diffusion theory code that performs either buckling (B{sup 2}) or k-effective (k{sub eff}) calculations for an infinite hexagonal lattice which is constructed by repeating identical seven-cell zones (one cell is one or seven identical homogenized hexes). GILDA was written by J. W. Stewart in 1973. This user`s manual is intended to provide all of the information necessary to set up and execute a GILDA calculation and to interpret the output results. It is assumed that the user is familiar with the computer (VAX/VMS or IBM/MVS) and the JOSHUA system database on which the code is implemented. Users who are not familiar with the JOSHUA database are advised to consult additional references to understand the structure of JOSHUA records and data sets before turning to section 4 of this manual. Sections 2 and 3 of this manual serve as a theory document in which the basic diffusion theory and the numerical approximations behind the code are described. Section 4 describes the functions of the program`s subroutines. Section 5 describes the input data and tutors the user how to set up a problem. Section 6 describes the output results and the error messages which may be encountered during execution. Users who only wish to learn how to run the code without understanding the theory can start from section 4 and use sections 2 and 3 as references. Finally, the VAX/VMS and the IBM execution command files together with sample input records are provided in the appendices at the end of this manual.

  9. Solar reliability and materials library. Volume 2. User's manual

    SciTech Connect (OSTI)

    Singh, H.; Wolosewicz, R.M.; Singh, I.

    1980-09-01T23:59:59.000Z

    This user's manual is the second of two volumes documenting the solar reliability and materials program (SRMP) library at Argonne National Laboratory (ANL). The first volume presents an overview of the solar reliability and materials library. This volume describes the data card formats, identification codes, and dictionaries used in recording data and compiling reliability statistics on solar energy systems. The library is structured around the solar heating and cooling system demonstration sites sponsored by the Department of Energy (DOE). Sufficient flexibility has been built into the coding plan to expand the library to include other solar energy systems. As with any reliability library, the structure will change with time and the needs of the solar energy community. As changes in structure occur, updated editions of the user's manual will be issued to incorporate them. Some of the programs that have been developed using the Statistical Analysis System (SAS) processor are presented to indicate the steps to be followed in linking the various SAS procedures into a production algorithm. Because SAS is a versatile system, other programs and outputs can be generated.

  10. Stimulation model for lenticular sands: Volume 2, Users manual

    SciTech Connect (OSTI)

    Rybicki, E.F.; Luiskutty, C.T.; Sutrick, J.S.; Palmer, I.D.; Shah, G.H.; Tomutsa, L.

    1987-07-01T23:59:59.000Z

    This User's Manual contains information for four fracture/proppant models. TUPROP1 contains a Geertsma and de Klerk type fracture model. The section of the program utilizing the proppant fracture geometry data from the pseudo three-dimensional highly elongated fracture model is called TUPROPC. The analogous proppant section of the program that was modified to accept fracture shape data from SA3DFRAC is called TUPROPS. TUPROPS also includes fracture closure. Finally there is the penny fracture and its proppant model, PENNPROP. In the first three chapters, the proppant sections are based on the same theory for determining the proppant distribution but have modifications to support variable height fractures and modifications to accept fracture geometry from three different fracture models. Thus, information about each proppant model in the User's Manual builds on information supplied in the previous chapter. The exception to the development of combined treatment models is the penny fracture and its proppant model. In this case, a completely new proppant model was developed. A description of how to use the combined treatment model for the penny fracture is contained in Chapter 4. 2 refs.

  11. TOUGH2 User's Guide Version 2

    SciTech Connect (OSTI)

    Pruess, K.; Oldenburg, C.M.; Moridis, G.J.

    1999-11-01T23:59:59.000Z

    TOUGH2 is a numerical simulator for nonisothermal flows of multicomponent, multiphase fluids in one, two, and three-dimensional porous and fractured media. The chief applications for which TOUGH2 is designed are in geothermal reservoir engineering, nuclear waste disposal, environmental assessment and remediation, and unsaturated and saturated zone hydrology. TOUGH2 was first released to the public in 1991; the 1991 code was updated in 1994 when a set of preconditioned conjugate gradient solvers was added to allow a more efficient solution of large problems. The current Version 2.0 features several new fluid property modules and offers enhanced process modeling capabilities, such as coupled reservoir-wellbore flow, precipitation and dissolution effects, and multiphase diffusion. Numerous improvements in previously released modules have been made and new user features have been added, such as enhanced linear equation solvers, and writing of graphics files. The T2VOC module for three-phase flows of water, air and a volatile organic chemical (VOC), and the T2DM module for hydrodynamic dispersion in 2-D flow systems have been integrated into the overall structure of the code and are included in the Version 2.0 package. Data inputs are upwardly compatible with the previous version. Coding changes were generally kept to a minimum, and were only made as needed to achieve the additional functionalities desired. TOUGH2 is written in standard FORTRAN77 and can be run on any platform, such as workstations, PCs, Macintosh, mainframe and supercomputers, for which appropriate FORTRAN compilers are available. This report is a self-contained guide to application of TOUGH2 to subsurface flow problems. It gives a technical description of the TOUGH2 code, including a discussion of the physical processes modeled, and the mathematical and numerical methods used. Illustrative sample problems are presented along with detailed instructions for preparing input data.

  12. WASTES: Wastes system transportation and economic simulation: Version 2, Programmer's reference manual

    SciTech Connect (OSTI)

    Buxbaum, M.E.; Shay, M.R.

    1986-11-01T23:59:59.000Z

    The WASTES Version II (WASTES II) Programmer's Reference Manual was written to document code development activities performed under the Monitored Retrievable Storage (MRS) Program at Pacific Northwest Laboratory (PNL). The manual will also serve as a valuable tool for programmers involved in maintenance of and updates to the WASTES II code. The intended audience for this manual are experienced FORTRAN programmers who have only a limited knowledge of nuclear reactor operation, the nuclear fuel cycle, or nuclear waste management practices. It is assumed that the readers of this manual have previously reviewed the WASTES II Users Guide published as PNL Report 5714. The WASTES II code is written in FORTRAN 77 as an extension to the SLAM commercial simulation package. The model is predominately a FORTRAN based model that makes extensive use of the SLAM file maintenance and time management routines. This manual documents the general manner in which the code is constructed and the interactions between SLAM and the WASTES subroutines. The functionality of each of the major WASTES subroutines is illustrated with ''block flow'' diagrams. The basic function of each of these subroutines, the algorithms used in them, and a discussion of items of particular note in the subroutine are reviewed in this manual. The items of note may include an assumption, a coding practice that particularly applies to a subroutine, or sections of the code that are particularly intricate or whose mastery may be difficult. The appendices to the manual provide extensive detail on the use of arrays, subroutines, included common blocks, parameters, variables, and files.

  13. Project Records Information System (PRIS) user`s manual. Revision 2

    SciTech Connect (OSTI)

    Schwarz, R.K. [ed.; Cline, B.E.; Smith, P.S.

    1993-10-01T23:59:59.000Z

    The Project Records Information System (PRIS) is an interactive system developed for the Information Services Division (ISD) of Martin Marietta Energy Systems, Inc., to perform indexing, maintenance, and retrieval of information about Engineering project record documents for which they are responsible. This PRIS User`s Manual provides instruction on the use of this system. Section 2.0 of this manual presents an overview of PRIS, describing the system`s purpose; the data that it handles; functions it performs; hardware, software, and access; and help and error functions. Section 3.0 describes the interactive menu-driven operation of PRIS. Appendixes A, B, and C contain help screens, report descriptions, and the data dictionary, respectively.

  14. New Technologies to Reclaim Arid Lands User's Manual

    SciTech Connect (OSTI)

    W. K. Ostler

    2002-10-01T23:59:59.000Z

    Approximately 70 percent of all U.S. military training lands are located in arid and semi-arid areas. Training activities in such areas frequently adversely affect vegetation, damaging plants and reducing the resilience of vegetation to recover once disturbed. Fugitive dust resulting from a loss of vegetation creates additional problems for human health, increasing accidents due to decreased visibility, and increasing maintenance costs for roads, vehicles, and equipment. Under conventional technologies to mitigate these impacts, it is estimated that up to 35 percent of revegetation projects in arid areas will fail due to unpredictable natural environmental conditions, such as drought, and reclamation techniques that were inadequate to restore vegetative cover in a timely and cost-effective manner. New reclamation and restoration techniques are needed in desert ranges to help mitigate the adverse effects of military training and other activities to arid-land environments. In 1999, a cooperative effort between the U.S. Department of Energy (DOE), the US. Department of Defense (DoD), and selected university scientists was undertaken to focus on mitigating military impacts in arid lands. As arid lands are impacted due to DoD and DOE activities, biological and soil resources are gradually lost and the habitat is altered. A conceptual model of that change in habitat quality is described for varying levels of disturbance in the Mojave Desert. As the habitat quality degrades and more biological and physical resources are lost from training areas, greater costs are required to return the land to sustainable levels. The purpose of this manual is to assist land managers in recognizing thresholds associated with habitat degradation and provide reclamation planning and techniques that can reduce the costs of mitigation for these impacted lands to ensure sustainable use of these lands. The importance of reclamation planning is described in this manual with suggestions about establishing project objectives, scheduling, budgeting, and selecting cost-effective techniques. Reclamation techniques include sections describing: (1) erosion control (physical, chemical, and biological), (2) site preparation, (3) soil amendments, (4) seeding, (5) planting, (6) grazing and weed control, (7) mulching, (8) irrigation, and (9) site protection. Each section states the objectives of the technique, the principles, an in-depth look at the techniques, and any special considerations as it relates to DoD or DOE lands. The need for monitoring and remediation is described to guide users in monitoring reclamation efforts to evaluate their cost-effectiveness. Costs are provided for the proposed techniques for the major deserts of the southwestern U.S. showing the average and range of costs. A set of decision tools are provided in the form of a flow diagram and table to guide users in selecting effective reclamation techniques to achieve mitigation objectives. Recommendations are provided to help summarize key reclamation principles and to assist users in developing a successful program that contributes to sustainable uses of DoD and DOE lands. The users manual is helpful to managers in communicating to installation management the needs and consequences of training decisions and the costs required to achieve successful levels of sustainable use. This users manual focuses on the development of new reclamation techniques that have been implemented at the National Training Center at Fort Irwin, California, and are applicable to most arid land reclamation efforts.

  15. TOPAZ2D heat transfer code users manual and thermal property data base

    SciTech Connect (OSTI)

    Shapiro, A.B.; Edwards, A.L.

    1990-05-01T23:59:59.000Z

    TOPAZ2D is a two dimensional implicit finite element computer code for heat transfer analysis. This user's manual provides information on the structure of a TOPAZ2D input file. Also included is a material thermal property data base. This manual is supplemented with The TOPAZ2D Theoretical Manual and the TOPAZ2D Verification Manual. TOPAZ2D has been implemented on the CRAY, SUN, and VAX computers. TOPAZ2D can be used to solve for the steady state or transient temperature field on two dimensional planar or axisymmetric geometries. Material properties may be temperature dependent and either isotropic or orthotropic. A variety of time and temperature dependent boundary conditions can be specified including temperature, flux, convection, and radiation. Time or temperature dependent internal heat generation can be defined locally be element or globally by material. TOPAZ2D can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in material surrounding the enclosure. Additional features include thermally controlled reactive chemical mixtures, thermal contact resistance across an interface, bulk fluid flow, phase change, and energy balances. Thermal stresses can be calculated using the solid mechanics code NIKE2D which reads the temperature state data calculated by TOPAZ2D. A three dimensional version of the code, TOPAZ3D is available. The material thermal property data base, Chapter 4, included in this manual was originally published in 1969 by Art Edwards for use with his TRUMP finite difference heat transfer code. The format of the data has been altered to be compatible with TOPAZ2D. Bob Bailey is responsible for adding the high explosive thermal property data.

  16. Version 3.0 January 2013 Pennsylvania Act 38/Nutrient Management Program/Technical Manual

    E-Print Network [OSTI]

    Guiltinan, Mark

    Version 3.0 ­ January 2013 Pennsylvania Act 38/Nutrient Management Program/Technical Manual January and transport factors and final Index result for each crop management unit (if applicable) #12;Version 3.0;Version 3.0 ­ January 2013 Pennsylvania Act 38/Nutrient Management Program/Technical Manual January 2013

  17. National Synchrotron Light Source user`s manual: Guide to the VUV and x-ray beamlines. Fifth edition

    SciTech Connect (OSTI)

    Gmuer, N.F. [ed.

    1993-04-01T23:59:59.000Z

    The success of the National Synchrotron Light Source is based, in large part, on the size of the user community and the diversity of the scientific and technical disciplines represented by these users. As evidence of this success, the VUV Ring has just celebrated its 10th anniversary and the X-ray Ring will do the same in 1995. In order to enhance this success, the NSLS User`s Manual: Guide to the VUV and X-Ray Beamlines - Fifth Edition, is being published. This Manual presents to the scientific community-at-large the current and projected architecture, capabilities and research programs of the various VUV and X-ray beamlines. Also detailed is the research and computer equipment a General User can expect to find and use at each beamline when working at the NSLS. The Manual is updated periodically in order to keep pace with the constant changes on these beamlines.

  18. A2 Processor User's Manual for Blue Gene/Q

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2,generationPhysicsA2A2 Processor User's

  19. Turbsim User's Guide: Version 1.50

    SciTech Connect (OSTI)

    Jonkman, B. J.

    2009-09-01T23:59:59.000Z

    This report is a user's guide for the TurbSim code. TurbSim stochastic inflow turbulence code is a wind turbine design code that simulates a full-field flow containing coherent turbulence associated with nocturnal boundary layer flows.

  20. User's manual for the VAX-Gerber link software package. Revision 1. 0

    SciTech Connect (OSTI)

    Isobe, G.W.

    1985-10-01T23:59:59.000Z

    This manual provides a user the information necessary to run the VAX-Gerber link software package. It is expected that the user already knows how to login to the VAX, and is familiar with the Gerber Photo Plotter. It is also highly desirable that the user be familiar with the full screen editor on the VAX, EDT.

  1. ITOUGH2 user`s guide version 2.2

    SciTech Connect (OSTI)

    Finsterle, S.

    1993-08-01T23:59:59.000Z

    ITOUGH2 is a program to estimate hydrogeologic model parameters for the numerical simulator TOUGH2. TOUGH2 was developed by Karsten Pruess at Lawrence Berkeley Laboratory for simulating non-isothermal flows of multicomponent, multiphase fluids in porous and fractured media. ITOUGH2 solves the inverse problem by automatic model calibration based on an indirect approach, in which some function of the difference between observed and model-predicted system response and appropriately weighted prior information about the parameters is minimized using standard optimization techniques. ITOUGH2 also provides a detailed error analysis of the estimated parameter set, and employs some procedures to study error propagation for prediction runs. This report includes a review of the inverse modeling theory, and a detailed description of the program architecture, input language, and the various user features provided by ITOUGH2. A sample problem is given to illustrate code application.

  2. Titanium Language Reference Manual, version 2.19 Paul N. Hilfinger

    E-Print Network [OSTI]

    California at Berkeley, University of

    Titanium Language Reference Manual, version 2.19 Paul N. Hilfinger Dan Oscar Bonachea Kaushik Datta those of the Government, Sun Microsystems, or Microsoft. #12;Titanium Language Reference Manual Version, Geoff Pike, Jimmy Su, and Katherine Yelick November, 2005 #12;Abstract The Titanium language is a Java

  3. Vault Safety and Inventory System users manual, PRIME 2350. Revision 1

    SciTech Connect (OSTI)

    Downey, N.J.

    1994-12-14T23:59:59.000Z

    This revision is issued to request review of the attached document: VSIS User Manual, PRIME 2350, which provides user information for the operation of the VSIS (Vault Safety and Inventory System). It describes operational aspects of Prime 2350 minicomputer and vault data acquisition equipment. It also describes the User`s Main Menu and menu functions, including REPORTS. Also, system procedures for the Prime 2350 minicomputer are covered.

  4. ABAREX -- A neutron spherical optical-statistical-model code -- A user`s manual

    SciTech Connect (OSTI)

    Smith, A.B. [ed.; Lawson, R.D.

    1998-06-01T23:59:59.000Z

    The contemporary version of the neutron spherical optical-statistical-model code ABAREX is summarized with the objective of providing detailed operational guidance for the user. The physical concepts involved are very briefly outlined. The code is described in some detail and a number of explicit examples are given. With this document one should very quickly become fluent with the use of ABAREX. While the code has operated on a number of computing systems, this version is specifically tailored for the VAX/VMS work station and/or the IBM-compatible personal computer.

  5. DISFRAC Version 2.0 Users Guide

    SciTech Connect (OSTI)

    Cochran, Kristine B [ORNL; Erickson, Marjorie A [ORNL; Williams, Paul T [ORNL; Klasky, Hilda B [ORNL; Bass, Bennett Richard [ORNL

    2013-01-01T23:59:59.000Z

    DISFRAC is the implementation of a theoretical, multi-scale model for the prediction of fracture toughness in the ductile-to-brittle transition temperature (DBTT) region of ferritic steels. Empirically-derived models of the DBTT region cannot legitimately be extrapolated beyond the range of existing fracture toughness data. DISFRAC requires only tensile properties and microstructural information as input, and thus allows for a wider range of application than empirical, toughness data dependent models. DISFRAC is also a framework for investigating the roles of various microstructural and macroscopic effects on fracture behavior, including carbide particle sizes, grain sizes, strain rates, and material condition. DISFRAC s novel approach is to assess the interaction effects of macroscopic conditions (geometry, loading conditions) with variable microstructural features on cleavage crack initiation and propagation. The model addresses all stages of the fracture process, from microcrack initiation within a carbide particle, to propagation of that crack through grains and across grain boundaries, finally to catastrophic failure of the material. The DISFRAC procedure repeatedly performs a deterministic analysis of microcrack initiation and propagation within a macroscopic crack plastic zone to calculate a critical fracture toughness value for each microstructural geometry set. The current version of DISFRAC, version 2.0, is a research code for developing and testing models related to cleavage fracture and transition toughness. The various models and computations have evolved significantly over the course of development and are expected to continue to evolve as testing and data collection continue. This document serves as a guide to the usage and theoretical foundations of DISFRAC v2.0. Feedback is welcomed and encouraged.

  6. National Solar Radiation Database 1991-2005 Update: User's Manual

    SciTech Connect (OSTI)

    Wilcox, S.

    2007-04-01T23:59:59.000Z

    This manual describes how to obtain and interpret the data products from the updated 1991-2005 National Solar Radiation Database (NSRDB). This is an update of the original 1961-1990 NSRDB released in 1992.

  7. Solar Advisor Model User Guide for Version 2.0

    SciTech Connect (OSTI)

    Gilman, P.; Blair, N.; Mehos, M.; Christensen, C.; Janzou, S.; Cameron, C.

    2008-08-01T23:59:59.000Z

    The Solar Advisor Model (SAM) provides a consistent framework for analyzing and comparing power system costs and performance across the range of solar technologies and markets, from photovoltaic systems for residential and commercial markets to concentrating solar power and large photovoltaic systems for utility markets. This manual describes Version 2.0 of the software, which can model photovoltaic and concentrating solar power technologies for electric applications for several markets. The current version of the Solar Advisor Model does not model solar heating and lighting technologies.

  8. Sophos Anti-Virus for Windows, version 7 user manual

    E-Print Network [OSTI]

    .................................................................................................................................25 11 Logging as part of your company policy devices that are blocked as part of your company policy on your computer and PUAs from running on your computer clean adware and PUAs from your computer keep a log of its

  9. Generic Optimization Program User Manual Version 3.0.0

    E-Print Network [OSTI]

    Wetter, Michael

    2009-01-01T23:59:59.000Z

    Swiss National Science Foundation (SNF) and is supported by the Assis- tant Secretary for Energy E?ciency and Renewable Energy,

  10. Generic Optimization Program User Manual Version 3.0.0

    SciTech Connect (OSTI)

    Wetter, Michael

    2009-05-11T23:59:59.000Z

    GenOpt is an optimization program for the minimization of a cost function that is evaluated by an external simulation program. It has been developed for optimization problems where the cost function is computationally expensive and its derivatives are not available or may not even exist. GenOpt can be coupled to any simulation program that reads its input from text files and writes its output to text files. The independent variables can be continuous variables (possibly with lower and upper bounds), discrete variables, or both, continuous and discrete variables. Constraints on dependent variables can be implemented using penalty or barrier functions. GenOpt uses parallel computing to evaluate the simulations. GenOpt has a library with local and global multi-dimensional and one-dimensional optimization algorithms, and algorithms for doing parametric runs. An algorithm interface allows adding new minimization algorithms without knowing the details of the program structure. GenOpt is written in Java so that it is platform independent. The platform independence and the general interface make GenOpt applicable to a wide range of optimization problems. GenOpt has not been designed for linear programming problems, quadratic programming problems, and problems where the gradient of the cost function is available. For such problems, as well as for other problems, special tailored software exists that is more efficient.

  11. AHP Version 5. 1 user's manual. [Analytical Hierarchy Process (AHP)

    SciTech Connect (OSTI)

    Watkins, J.C.; Ghan, L.S.

    1992-10-01T23:59:59.000Z

    As decisions become more and more complex, decision makers are faced with the challenge of sorting through many variables to arrive at a sound decision. The Analytical Hierarchy Process (AHP) is a tool, that allows a systematic, logical approach to reducing complex issues into manageable pieces. The decision maker can then sort through the variables and determine to what degree a particular variable should influence the final decision. The power of the AHP as a management tool comes from the fact that it reduces complex problems to many simple pairwise decisions. Only two items need be compared against one another - a much simpler task than comparing an item to all the others simultaneously. By arranging the items that influence a decision in the form of a matrix and comparing appropriate pairs in this matrix to each other, each item can be compared with every other item. Matrix algebra can then operate on this matrix and rank each item according to its importance to the final decision.

  12. C-Prolog User's Manual Version 1.5

    E-Print Network [OSTI]

    Reed, Nancy E.

    a pointer cell 32 bits wide. At the time of writing, it has been tested on VAX2 machines under the UNIX 3 and VAX/VMS operating systems, on the Sun workstation under 4.1/2 UNIX, and has been ported with minor

  13. Berkeley Pascal User's Manual Version 3.1 --April 1986

    E-Print Network [OSTI]

    Haley, Charles B.

    Berkeley Pascal is designed for interactive instructional use and runs on the PDP/11 and VAX/11 computers. There is also a fully compatible compiler for the VAX/11. An execution profiler and Wirth's cross reference since January, 1977. The system was moved to the VAX-11 by Peter Kessler and Kirk Mc

  14. Generic Optimization Program User Manual Version 3.0.0

    E-Print Network [OSTI]

    Wetter, Michael

    2009-01-01T23:59:59.000Z

    Particle Swarm Optimization . . . . . . . . . . . . 5.4.1for Multi-Dimensional Optimization 5.1 Generalized Patternfor One-Dimensional Optimization 6.1 Interval Division

  15. F3DT FD User's Manual Version 0.1

    E-Print Network [OSTI]

    Chen, Po

    with different types of data and the best way to achieve this goal is to including those different types of data not sacrifice resolution for solvability. 1 #12;0.1.3 Why is this software useful? From the practical, they have to drill in increasingly complex geological environment under which tra- ditional methods often

  16. CARP: The Clustering Algorithms' Referee Version 3.3 Manual

    E-Print Network [OSTI]

    Maitra, Ranjan

    . . . . . . . . . . . . . . . . . . 19 4.6.2 Command-Line interface for the Less-Experienced User . . . . . . . . 22 4.6.3 Command-Line . . . . . . . . . . . . . . . . . . 25 4.7.2 Command-Line interface for the Less-Experienced User . . . . . . . . 28 4.7.3 Command-Line . . . . . . . . . . . . . . . . . . 30 4.8.2 Command-Line interface for the Less-Experienced User . . . . . . . . 31 4.8.3 Command-Line

  17. MueLu User's Guid for Trilinos Version 11.12.

    SciTech Connect (OSTI)

    Hu, Jonathan J.; Prokopenko, Andrey [Sandia National Laboratories, Albuquerque, NM; Wiesner, Tobias A.; Siefert, Christopher [Sandia National Laboratories, Albuquerque, NM; Tuminaro, Raymond S.

    2014-10-01T23:59:59.000Z

    This is the official user guide for the M UE L U multigrid library in Trilinos version 11.12. This guide provides an overview of M UE L U , its capabilities, and instructions for new users who want to start using M UE L U with a minimum of effort. Detailed information is given on how to drive M UE L U through its XML interface. Links to more advanced use cases are given. This guide gives information on how to achieve good parallel performance, as well as how to introduce new algorithms. Finally, readers will find a comprehensive listing of available M UE L U options. Any options not documented in this manual should be considered strictly experimental.

  18. Geothermal loan guaranty cash flow model: description and users' manual

    SciTech Connect (OSTI)

    Keimig, M.A.; Rosenberg, J.I.; Entingh, D.J.

    1980-11-01T23:59:59.000Z

    This is the users guide for the Geothermal Loan Guaranty Cash Flow Model (GCFM). GCFM is a Fortran code which designs and costs geothermal fields and electric power plants. It contains a financial analysis module which performs life cycle costing analysis taking into account various types of taxes, costs and financial structures. The financial module includes a discounted cash flow feature which calculates a levelized breakeven price for each run. The user's guide contains descriptions of the data requirements and instructions for using the model.

  19. UBC Social, Ecological Economic Development Studies (SEEDS) Student Report GHG Emissions Data Tracker User Manual

    E-Print Network [OSTI]

    of a project/report." #12;GHG Emissions Data Tracker User Manual #12;Add/Edit vehicles Vehicles type addition will be saved automatically. Add Vehicles: Enter Vehicles name in the bottom most blank space and once you enter the first character it will create a new record in database. Edit Vehicles: Click on the text box that you

  20. TMC304(TEG3) User's Manual KEK, National Laboratory for High Energy Physics

    E-Print Network [OSTI]

    Berns, Hans-Gerd

    TMC304(TEG3) User's Manual Yasuo Arai KEK, National Laboratory for High Energy Physics 1-1 Oho RTMC 6 TMC304(TEG3) Block Diagram 1995.11.13 Y.A CIO0-7* R encoder F encoder 6 PLL Read Pointer Write

  1. Where to Begin 1. Review your HDTV's User's Manual to determine

    E-Print Network [OSTI]

    Fisher, Kathleen

    the Aspect Ratio on Your AT&TU-verseTV Change the Aspect Se ings to Fit Your TV When you purchase a new. Review your HDTV's User's Manual to determine which aspect ratio is recommended for your TV. 1 Press menu screen. 3 Use the arrows to select continue and press OK. 4 If you choose one of the two High Definition

  2. CORCON-MOD3: An integrated computer model for analysis of molten core-concrete interactions. User`s manual

    SciTech Connect (OSTI)

    Bradley, D.R.; Gardner, D.R.; Brockmann, J.E.; Griffith, R.O. [Sandia National Labs., Albuquerque, NM (United States)

    1993-10-01T23:59:59.000Z

    The CORCON-Mod3 computer code was developed to mechanistically model the important core-concrete interaction phenomena, including those phenomena relevant to the assessment of containment failure and radionuclide release. The code can be applied to a wide range of severe accident scenarios and reactor plants. The code represents the current state of the art for simulating core debris interactions with concrete. This document comprises the user`s manual and gives a brief description of the models and the assumptions and limitations in the code. Also discussed are the input parameters and the code output. Two sample problems are also given.

  3. MLPQ/PReSTO Users' Manual Peter Revesz

    E-Print Network [OSTI]

    Revesz, Peter

    18, 2004 The MLPQ/PReSTO system is a constraint database system developed at the University basic relational databases, to constraint databases, GIS databases, and web applications. The Users IRI-9625055, IRI-9632871, and EIA- 0091530. The following students made major contributions

  4. User Manual R/V KA'IMIKAI-O-KANALOA

    E-Print Network [OSTI]

    Wang, Yuqing

    and user, with the Operating Procedures of the R/V KA'IMIKAI-O-KANALOA. We hope that this information). Operation of the R/V KA'IMIKAI-O- KANALOA, including hiring of the crew, ship maintenance, and logistics Scientist are to: 1) establish standard procedures for contacting the scheduled research project, 2

  5. Users manual: CAMPAGS, mass properties analysis program for VAX

    SciTech Connect (OSTI)

    Blazek, D.R.

    1984-03-01T23:59:59.000Z

    CAMPAGS is an interactive program that computes mass properties, including weight, area, center of gravity, moments, and products of inertia. The program runs on a VAX/VMS computer and interactively accepts geometry definitions of items to be analyzed. This report describes user interaction with the program options and gives examples of program use.

  6. Visual Sample Plan Version 1.0 User's Guide

    SciTech Connect (OSTI)

    Davidson, James R.; Hassig, Nancy L.; Wilson, John E.; Gilbert, Richard O.

    2001-04-13T23:59:59.000Z

    This user's guide describes Visual Sample Plan (VSP) Version 1.0 and provides instructions for using the software. VSP selects the appropriate number and location of environmental samples to ensure that the results of statistical tests performed to provide input to environmental decisions have the required confidence and performance. VSP Version 1.0 provides sample-size equations or algorithms needed by specific statistical tests appropriate for specific environmental sampling objectives. The easy-to-use program is highly visual and graphic. VSP runs on personal computers with Microsoft Windows operating systems (95, 98, Millenium Edition, 2000, and Windows NT). Designed primarily for project managers and users without expertise in statistics, VSP is applicable to any two-dimensional geographical population to be sampled (e.g., surface soil, a defined layer of subsurface soil, building surfaces, water bodies, and other similar applications) for studies of environmental quality.

  7. H2A Production Model, Version 2 User Guide

    SciTech Connect (OSTI)

    Steward, D.; Ramsden, T.; Zuboy, J.

    2008-09-01T23:59:59.000Z

    The H2A Production Model analyzes the technical and economic aspects of central and forecourt hydrogen production technologies. Using a standard discounted cash flow rate of return methodology, it determines the minimum hydrogen selling price, including a specified after-tax internal rate of return from the production technology. Users have the option of accepting default technology input values--such as capital costs, operating costs, and capacity factor--from established H2A production technology cases or entering custom values. Users can also modify the model's financial inputs. This new version of the H2A Production Model features enhanced usability and functionality. Input fields are consolidated and simplified. New capabilities include performing sensitivity analyses and scaling analyses to various plant sizes. This User Guide helps users already familiar with the basic tenets of H2A hydrogen production cost analysis get started using the new version of the model. It introduces the basic elements of the model then describes the function and use of each of its worksheets.

  8. GENII: The Hanford Environmental Radiation Dosimetry Software System: Volume 2, Users' manual: Hanford Environmental Dosimetry Upgrade Project

    SciTech Connect (OSTI)

    Napier, B.A.; Peloquin, R.A.; Strenge, D.L.; Ramsdell, J.V.

    1988-11-01T23:59:59.000Z

    The Hanford Environmental Dosimetry Upgrade Project was undertaken to incorporate the internal dosimetry models recommended by the International Commission on Radiological Protection (ICRP) in updated versions of the environmental pathway analysis models used at Hanford. The resulting second generation of Hanford environmental dosimetry computer codes is compiled in the Hanford Environmental Dosimetry System (Generation II, or GENII). The purpose of this coupled system of computer codes is to analyze environmental contamination of, air, water, or soil. This is accomplished by calculating radiation doses to individuals or populations. GENII is described in three volumes of documentation. This second volume is a Users' Manual, providing code structure, users' instructions, required system configurations, and QA-related topics. The first volume describes the theoretical considerations of the system. The third volume is a Code Maintenance Manual for the user who requires knowledge of code detail. It includes logic diagrams, global dictionary, worksheets, example hand calculations, and listings of the code and its associated data libraries. 27 refs., 17 figs., 23 tabs.

  9. KKKKJJJJ----GrippeGrippeGrippeGripperrrr User manual

    E-Print Network [OSTI]

    Napp, Nils

    ...................................................................................... 6 1.4 RECYCLING ...................................................................................................................... 8 2.4 BATTERY is available in two different versions. The K-Junior gripper has an additional Battery (1350mAh) to keep

  10. FEDSOL: program user's manual and economic optimization guide for solar federal building projects. Final report

    SciTech Connect (OSTI)

    Powell, J.W.; Rodgers, R.C., Jr.

    1981-08-01T23:59:59.000Z

    A user's manual for the FEDSOL computer program is provided. The FEDSOL program determines the economically optimal size of a solar energy system for a user-specified building, location, system type, and set of economic conditions it conducts numerous breakeven and sensitivity analyses and it calculates measures of economic performance as required under the Federal Rules. The economic model in the program is linked with the SLR (solar load ratio) design method developed to predict the performance of active systems. The economics portion of the program can, however, be used apart from the SLR method, with performance data provided by the user.

  11. Aggregate Building Simulator (ABS) Methodology Development, Application, and User Manual

    SciTech Connect (OSTI)

    Dirks, James A.; Gorrissen, Willy J.

    2011-11-30T23:59:59.000Z

    As the relationship between the national building stock and various global energy issues becomes a greater concern, it has been deemed necessary to develop a system of predicting the energy consumption of large groups of buildings. Ideally this system is to take advantage of the most advanced energy simulation software available, be able to execute runs quickly, and provide concise and useful results at a level of detail that meets the users needs without inundating them with data. The resulting methodology that was developed allows the user to quickly develop and execute energy simulations of many buildings simultaneously, taking advantage of parallel processing to greatly reduce total simulation times. The result of these simulations can then be rapidly condensed and presented in a useful and intuitive manner.

  12. National Synchrotron Light Source users manual: Guide to the VUV and x-ray beam lines

    SciTech Connect (OSTI)

    Gmuer, N.F.; White-DePace, S.M. (eds.)

    1987-08-01T23:59:59.000Z

    The success of the National Synchrotron Light Source in the years to come will be based, in large part, on the size of the users community and the diversity of the scientific disciplines represented by these users. In order to promote this philosophy, this National Synchrotron Light Source (NSLS) Users Manual: Guide to the VUV and X-Ray Beam Lines, has been published. This manual serves a number of purposes. In an effort to attract new research, it will present to the scientific community-at-large the current and projected architecture and capabilities of the various VUV and x-ray beam lines and storage rings. We anticipate that this publication will be updated periodically in order to keep pace with the constant changes at the NSLS.

  13. Guidelines for the verification and validation of expert system software and conventional software: User`s manual. Volume 7

    SciTech Connect (OSTI)

    Mirsky, S.M.; Hayes, J.E.; Miller, L.A. [Science Applications International Corp., McLean, VA (United States)

    1995-03-01T23:59:59.000Z

    This report provides a step-by-step guide, or user manual, for personnel responsible for the planning and execution of the verification and validation (V&V), and developmental testing, of expert systems, conventional software systems, and various other types of artificial intelligence systems. While the guide was developed primarily for applications in the utility industry, it applies well to all industries. The user manual has three sections. In Section 1 the user assesses the stringency of V&V needed for the system under consideration, identifies the development stage the system is in, and identifies the component(s) of the system to be tested next. These three pieces of information determine which Guideline Package of V&V methods is most appropriate for those conditions. The V&V Guideline Packages are provided in Section 2. Each package consists of an ordered set of V&V techniques to be applied to the system, guides on choosing the review/evaluation team, measurement criteria, and references to a book or report which describes the application of the method. Section 3 presents details of 11 of the most important (or least well-explained in the literature) methods to assist the user in applying these techniques accurately.

  14. User's manual for geophysical well-logging software programs

    SciTech Connect (OSTI)

    Petrie, G.M.; Gibson, D.; Blair, S.C.

    1983-02-01T23:59:59.000Z

    Since 1958 the Ground-Water Surveillance Program for the Hanford Site has made geophysical logging measurements in most of the 800 wells and deep boreholes that have been drilled on the Hanford Site. In 1980 the Pacific Northwest Laboratory (PNL), which conducts the Ground-Water Surveillance Program, began forming a computerized data base for storing and retrieving geophysical well log data and developing software for quantitative analysis of the well log data. This report, designed to serve as a user's guide, documents the data base system that handles the well log data. Two programs, DIGLOG1 and LOGIT, are used to manipulate the data. The program DIGLOG1 translates analog paper strip charts into digital format; the program LOGIT is a general utility program that edits, displays, checks, stores, writes, and deletes sets of well log data. These two programs do not provide sophisticated display and analytical capabilities; rather, they provide programs that give the user easy access to powerful standard analytical software.

  15. Visual Sample Plan Version 7.0 User's Guide

    SciTech Connect (OSTI)

    Matzke, Brett D.; Newburn, Lisa LN; Hathaway, John E.; Bramer, Lisa M.; Wilson, John E.; Dowson, Scott T.; Sego, Landon H.; Pulsipher, Brent A.

    2014-03-01T23:59:59.000Z

    User's guide for VSP 7.0 This user's guide describes Visual Sample Plan (VSP) Version 7.0 and provides instructions for using the software. VSP selects the appropriate number and location of environmental samples to ensure that the results of statistical tests performed to provide input to risk decisions have the required confidence and performance. VSP Version 7.0 provides sample-size equations or algorithms needed by specific statistical tests appropriate for specific environmental sampling objectives. It also provides data quality assessment and statistical analysis functions to support evaluation of the data and determine whether the data support decisions regarding sites suspected of contamination. The easy-to-use program is highly visual and graphic. VSP runs on personal computers with Microsoft Windows operating systems (XP, Vista, Windows 7, and Windows 8). Designed primarily for project managers and users without expertise in statistics, VSP is applicable to two- and three-dimensional populations to be sampled (e.g., rooms and buildings, surface soil, a defined layer of subsurface soil, water bodies, and other similar applications) for studies of environmental quality. VSP is also applicable for designing sampling plans for assessing chem/rad/bio threat and hazard identification within rooms and buildings, and for designing geophysical surveys for unexploded ordnance (UXO) identification.

  16. Fan System Assessment Tool User Manual | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in RepresentativeDepartmentEnergy Factors Affecting

  17. MotorMaster+ User Manual | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement of the NationalPennsylvania |February 2013of

  18. Process Heating Assessment and Survey Tool User Manuals | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+ Report Presentation:in the U.S. by 2030,PNNL-23227ItemsEnergy

  19. EnPI Tool User Manual v4.0

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisoryStandard | Department ofEmily Knouse AboutEmployeesShared PathEnPI

  20. National Solar Radiation Database 1991…2010 Update: User's Manual

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall, Pennsylvania: EnergyEnergy Information ConferenceProject | OpenEfficiency

  1. Pumping System Assessment Tool User Manual | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+ ReportEnergyProviding GridCommercialPublications022Fact

  2. SCDAP/RELAP5/MOD 3.1 code manual: User`s guide and input manual. Volume 3

    SciTech Connect (OSTI)

    Coryell, E.W.; Johnsen, E.C. [eds.; Allison, C.M. [and others

    1995-06-01T23:59:59.000Z

    The SCDAP/RELAP5 code has been developed for best estimate transient simulation of light water reactor coolant systems during a severe accident. The code models the coupled behavior of the reactor coolant system, core, fission product released during a severe accident transient as well as large and small break loss of coolant accidents, operational transients such as anticipated transient without SCRAM, loss of offsite power, loss of feedwater, and loss of flow. A generic modeling approach is used that permits as much of a particular system to be modeled as necessary. Control system and secondary system components are included to permit modeling of plant controls, turbines, condensers, and secondary feedwater conditioning systems. This volume provides guidelines to code users based upon lessons learned during the developmental assessment process. A description of problem control and the installation process is included. Appendix a contains the description of the input requirements.

  3. User's manual for MOCUS-BACKFIRE [i.e. MOCUS-BACFIRE] : a computer program for common cause failure analysis

    E-Print Network [OSTI]

    Heising, Carolyn D.

    1981-01-01T23:59:59.000Z

    This report is the user's manual for MOCUS-BACFIRE, a computer programme for qualitative common cause analysis. The MOCUSBACFIRE package code was developed by coupling the MOCUS code and BACFIRE code. The MOCUS code is a ...

  4. BPACK -- A computer model package for boiler reburning/co-firing performance evaluations. User`s manual, Volume 1

    SciTech Connect (OSTI)

    Wu, K.T.; Li, B.; Payne, R.

    1992-06-01T23:59:59.000Z

    This manual presents and describes a package of computer models uniquely developed for boiler thermal performance and emissions evaluations by the Energy and Environmental Research Corporation. The model package permits boiler heat transfer, fuels combustion, and pollutant emissions predictions related to a number of practical boiler operations such as fuel-switching, fuels co-firing, and reburning NO{sub x} reductions. The models are adaptable to most boiler/combustor designs and can handle burner fuels in solid, liquid, gaseous, and slurried forms. The models are also capable of performing predictions for combustion applications involving gaseous-fuel reburning, and co-firing of solid/gas, liquid/gas, gas/gas, slurry/gas fuels. The model package is conveniently named as BPACK (Boiler Package) and consists of six computer codes, of which three of them are main computational codes and the other three are input codes. The three main codes are: (a) a two-dimensional furnace heat-transfer and combustion code: (b) a detailed chemical-kinetics code; and (c) a boiler convective passage code. This user`s manual presents the computer model package in two volumes. Volume 1 describes in detail a number of topics which are of general users` interest, including the physical and chemical basis of the models, a complete description of the model applicability, options, input/output, and the default inputs. Volume 2 contains a detailed record of the worked examples to assist users in applying the models, and to illustrate the versatility of the codes.

  5. Xyce Parallel Electronic Simulator : users' guide, version 4.1.

    SciTech Connect (OSTI)

    Mei, Ting; Rankin, Eric Lamont; Thornquist, Heidi K.; Santarelli, Keith R.; Fixel, Deborah A.; Coffey, Todd Stirling; Russo, Thomas V.; Schiek, Richard Louis; Keiter, Eric Richard; Pawlowski, Roger Patrick

    2009-02-01T23:59:59.000Z

    This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been designed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas: (1) Capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). Note that this includes support for most popular parallel and serial computers. (2) Improved performance for all numerical kernels (e.g., time integrator, nonlinear and linear solvers) through state-of-the-art algorithms and novel techniques. (3) Device models which are specifically tailored to meet Sandia's needs, including some radiation-aware devices (for Sandia users only). (4) Object-oriented code design and implementation using modern coding practices that ensure that the Xyce Parallel Electronic Simulator will be maintainable and extensible far into the future. Xyce is a parallel code in the most general sense of the phrase - a message passing parallel implementation - which allows it to run efficiently on the widest possible number of computing platforms. These include serial, shared-memory and distributed-memory parallel as well as heterogeneous platforms. Careful attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows. The development of Xyce provides a platform for computational research and development aimed specifically at the needs of the Laboratory. With Xyce, Sandia has an 'in-house' capability with which both new electrical (e.g., device model development) and algorithmic (e.g., faster time-integration methods, parallel solver algorithms) research and development can be performed. As a result, Xyce is a unique electrical simulation capability, designed to meet the unique needs of the laboratory.

  6. Xyce parallel electronic simulator : users' guide. Version 5.1.

    SciTech Connect (OSTI)

    Mei, Ting; Rankin, Eric Lamont; Thornquist, Heidi K.; Santarelli, Keith R.; Fixel, Deborah A.; Coffey, Todd Stirling; Russo, Thomas V.; Schiek, Richard Louis; Keiter, Eric Richard; Pawlowski, Roger Patrick

    2009-11-01T23:59:59.000Z

    This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been designed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas: (1) Capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). Note that this includes support for most popular parallel and serial computers. (2) Improved performance for all numerical kernels (e.g., time integrator, nonlinear and linear solvers) through state-of-the-art algorithms and novel techniques. (3) Device models which are specifically tailored to meet Sandia's needs, including some radiation-aware devices (for Sandia users only). (4) Object-oriented code design and implementation using modern coding practices that ensure that the Xyce Parallel Electronic Simulator will be maintainable and extensible far into the future. Xyce is a parallel code in the most general sense of the phrase - a message passing parallel implementation - which allows it to run efficiently on the widest possible number of computing platforms. These include serial, shared-memory and distributed-memory parallel as well as heterogeneous platforms. Careful attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows. The development of Xyce provides a platform for computational research and development aimed specifically at the needs of the Laboratory. With Xyce, Sandia has an 'in-house' capability with which both new electrical (e.g., device model development) and algorithmic (e.g., faster time-integration methods, parallel solver algorithms) research and development can be performed. As a result, Xyce is a unique electrical simulation capability, designed to meet the unique needs of the laboratory.

  7. Carleton University, TR SCE-09-03 version 3, August 2009 A Systematic Review of Transformation Approaches between User

    E-Print Network [OSTI]

    Carleton University

    Approaches between User Requirements and Analysis Models Tao Yue § Lionel C. Briand Yvan Labiche....................................................................................................................................9 2.2.2 Electronic and manual search

  8. Manual

    Broader source: Energy.gov (indexed) [DOE]

    Evaluations HSS Office of Health, Safety and Security Isotek Isotek Systems, LLC JIC Joint Information Center LED Laboratory Emergency Director LEM Local Emergency Manual LERC...

  9. Xyce Parallel Electronic Simulator Users Guide Version 6.2.

    SciTech Connect (OSTI)

    Keiter, Eric R.; Mei, Ting; Russo, Thomas V.; Schiek, Richard; Sholander, Peter E.; Thornquist, Heidi K.; Verley, Jason; Baur, David Gregory

    2014-09-01T23:59:59.000Z

    This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been de- signed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas: Capability to solve extremely large circuit problems by supporting large-scale parallel com- puting platforms (up to thousands of processors). This includes support for most popular parallel and serial computers. A differential-algebraic-equation (DAE) formulation, which better isolates the device model package from solver algorithms. This allows one to develop new types of analysis without requiring the implementation of analysis-specific device models. Device models that are specifically tailored to meet Sandia's needs, including some radiation- aware devices (for Sandia users only). Object-oriented code design and implementation using modern coding practices. Xyce is a parallel code in the most general sense of the phrase -- a message passing parallel implementation -- which allows it to run efficiently a wide range of computing platforms. These include serial, shared-memory and distributed-memory parallel platforms. Attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows. Trademarks The information herein is subject to change without notice. Copyright c 2002-2014 Sandia Corporation. All rights reserved. Xyce TM Electronic Simulator and Xyce TM are trademarks of Sandia Corporation. Portions of the Xyce TM code are: Copyright c 2002, The Regents of the University of California. Produced at the Lawrence Livermore National Laboratory. Written by Alan Hindmarsh, Allan Taylor, Radu Serban. UCRL-CODE-2002-59 All rights reserved. Orcad, Orcad Capture, PSpice and Probe are registered trademarks of Cadence Design Systems, Inc. Microsoft, Windows and Windows 7 are registered trademarks of Microsoft Corporation. Medici, DaVinci and Taurus are registered trademarks of Synopsys Corporation. Amtec and TecPlot are trademarks of Amtec Engineering, Inc. Xyce 's expression library is based on that inside Spice 3F5 developed by the EECS Department at the University of California. The EKV3 MOSFET model was developed by the EKV Team of the Electronics Laboratory-TUC of the Technical University of Crete. All other trademarks are property of their respective owners. Contacts Bug Reports (Sandia only) http://joseki.sandia.gov/bugzilla http://charleston.sandia.gov/bugzilla World Wide Web http://xyce.sandia.gov http://charleston.sandia.gov/xyce (Sandia only) Email xyce%40sandia.gov (outside Sandia) xyce-sandia%40sandia.gov (Sandia only)

  10. User's Manual for Data for Validating Models for PV Module Performance

    SciTech Connect (OSTI)

    Marion, W.; Anderberg, A.; Deline, C.; Glick, S.; Muller, M.; Perrin, G.; Rodriguez, J.; Rummel, S.; Terwilliger, K.; Silverman, T. J.

    2014-04-01T23:59:59.000Z

    This user's manual describes performance data measured for flat-plate photovoltaic (PV) modules installed in Cocoa, Florida, Eugene, Oregon, and Golden, Colorado. The data include PV module current-voltage curves and associated meteorological data for approximately one-year periods. These publicly available data are intended to facilitate the validation of existing models for predicting the performance of PV modules, and for the development of new and improved models. For comparing different modeling approaches, using these public data will provide transparency and more meaningful comparisons of the relative benefits.

  11. User`s Guide for the NREL Force and Loads Analysis Program. Version 2.2

    SciTech Connect (OSTI)

    Wright, A.D.

    1992-08-01T23:59:59.000Z

    The following report gives the reader an overview of and instructions on the proper use of the National Renewable Energy Laboratory Force and Loads Analysis Program (FLAP, version 2.2). It is intended as a tool for prediction of rotor and blade loads and response for two- or three-bladed rigid hub wind turbines. The effects of turbulence are accounted for. The objectives of the report are to give an overview of the code and also show the methods of data input and correct code execution steps in order to model an example two-bladed rigid hub turbine. A large portion of the discussion (Sections 6.0, 7.0, and 8.0) is devoted to the subject of inputting and running the code for wind turbulence effects. The ability to include turbulent wind effects is perhaps the biggest change in the code since the release of FLAP version 2.01 in 1988. This report is intended to be a user`s guide. It does not contain a theoretical discussion on equations of motion, assumptions, underlying theory, etc. It is intended to be used in conjunction with Wright, Buhl, and Thresher (1988).

  12. RSAC 6.2 with WinRP 2.0 User Manual

    SciTech Connect (OSTI)

    Bradley Schrader

    2005-09-01T23:59:59.000Z

    The Radiological Safety Analysis Computer Program (RSAC-6.2) calculates the consequences of a release of radionuclides to the atmosphere. Using a personal computer, a user can generate a fission product inventory from either reactor operating history or a nuclear criticality accident. RSAC-6.2 models the effects of high-efficiency particulate air filters or other cleanup systems and calculates decay and ingrowth during transport through processes, facilities, and the environment. Doses are calculated for resuspension, inhalation, immersion, ground surface, and ingestion pathways. WinRP 2.0, a windows based overlay to RSAC-6.2, assists users in creating and running RSAC-6.2 input files. This users manual contains the mathematical models and operating instructions for RSAC-6.2 and WinRP 2.0. Instructions, screens, and examples are provided to guide the user through the functions provided by RSAC-6.2 and WinRP 2.0. These programs are designed for users who are familiar with radiological dose assessment methods.

  13. {Sigma}{Pi}-Patrec user`s guide and reference manual

    SciTech Connect (OSTI)

    Heger, A.S.; Bhat, J.K.; Talbott, D.V.; Stack, D.W.

    1994-12-31T23:59:59.000Z

    {Sigma}{Pi}-Patrec is a computer program for the evaluation of exact top-event probability of fault trees. Exact value of top-events are necessary for real applications with large basic events probabilities (i.e.: P {ge} 0.1). {Sigma}{Pi}-Patrec allows the user to evaluate the exact value which would otherwise lead to erroneous, overly conservative results. {Sigma}{Pi}-Patrec requires an IBM compatible PC with an 80386 or newer processor, VGA graphics capability, and a mouse.

  14. Code manual for MACCS2: Volume 1, user`s guide

    SciTech Connect (OSTI)

    Chanin, D.I.; Young, M.L.

    1997-03-01T23:59:59.000Z

    This report describes the use of the MACCS2 code. The document is primarily a user`s guide, though some model description information is included. MACCS2 represents a major enhancement of its predecessor MACCS, the MELCOR Accident Consequence Code System. MACCS, distributed by government code centers since 1990, was developed to evaluate the impacts of severe accidents at nuclear power plants on the surrounding public. The principal phenomena considered are atmospheric transport and deposition under time-variant meteorology, short- and long-term mitigative actions and exposure pathways, deterministic and stochastic health effects, and economic costs. No other U.S. code that is publicly available at present offers all these capabilities. MACCS2 was developed as a general-purpose tool applicable to diverse reactor and nonreactor facilities licensed by the Nuclear Regulatory Commission or operated by the Department of Energy or the Department of Defense. The MACCS2 package includes three primary enhancements: (1) a more flexible emergency-response model, (2) an expanded library of radionuclides, and (3) a semidynamic food-chain model. Other improvements are in the areas of phenomenological modeling and new output options. Initial installation of the code, written in FORTRAN 77, requires a 486 or higher IBM-compatible PC with 8 MB of RAM.

  15. User's guide for ENVSTD24 program, Version 2. 4

    SciTech Connect (OSTI)

    Hanlon, R.L.; Connell, L.M.

    1993-05-01T23:59:59.000Z

    On January 30, 1989, the US Department of Energy (DOE) promulgated an interim rule entitled [open quotes]Energy Conservation Voluntary Performance Standards for New Commercial and Multi-Family High Rise Residential Buildings; Mandatory for New Federal Buildings[close quotes] (10 CFR Part 435, Subpart A). These standards require federal agencies to design all future federal commercial and multifamily high-rise residential buildings in accordance with the standards, or demonstrate that their current requirements already meet or exceed the energy-efficiency requirements of the standards. Although these newly enacted standards do not regulate the design of nonfederal buildings, the DOE recommends that all design professionals use the standards as guidelines for designing energy-conserving buildings. To encourage private sector use, the DOE published the standards in the January 30, 1989, Federal Register in the format typical of commercial standards. The Pacific Northwest Laboratory developed several computer programs for the DOE to make it easier for designers to comply with the standards. One of the programs, ENVSTD24 (Version 2.4), is detailed in this user's guide and is provided on the accompanying diskettes. The program will facilitate the designer's use of the standards dealing specifically with building envelope design. Using this program will greatly simplify the designer's task of performing the calculations needed to determine if a design complies with the standards.

  16. Macro System Model (MSM) User Guide, Version 1.3

    SciTech Connect (OSTI)

    Ruth, M.; Diakov, V.; Sa, T.; Goldsby, M.

    2011-09-01T23:59:59.000Z

    This user guide describes the macro system model (MSM). The MSM has been designed to allow users to analyze the financial, environmental, transitional, geographical, and R&D issues associated with the transition to a hydrogen economy. Basic end users can use the MSM to answer cross-cutting questions that were previously difficult to answer in a consistent and timely manner due to various assumptions and methodologies among different models.

  17. Users guide for ENVSTD program Version 2. 0 and LTGSTD program Version 2. 0

    SciTech Connect (OSTI)

    Crawley, D.B.; Riesen, P.K.; Briggs, R.S.

    1989-02-01T23:59:59.000Z

    On January 30, 1989, the US Department of Energy (DOE) promulgated 10 CFR Part 435, Subpart A, an Interim Rule entitled ''Energy Conservation Voluntary Performance Standards for New Commercial and Multi-Family High Rise Residential Buildings; Mandatory for New Federal Buildings.'' As a consequence, federal agencies must design all future federal commercial and multifamily high rise residential buildings in accordance with the Standards, or show that their current standards already meet or exceed the energy-efficiency requirements of the Standards. Although these newly enacted Standards do not regulate the design of nonfederal buildings, DOE recommends that all design professionals use the Standards as guidelines for designing energy-conserving buildings. To encourage private sector use, the Standards were presented in the January 30, 1989, Federal Register in the format typical of commercial standards rather than a federal regulation. As a further help, DOE supported the development of various microcomputer programs to ease the use of the Standards. Two of these programs/emdash/ENVSTD (Version 2.0) and LTGSTD (Version 2.0)/emdash/are detailed in this users guide and provided on the accompanying diskette. This package, developed by Pacific Northwest Laboratory (PNL), is intended to facilitate the designer's use of the Standards dealing specifically with a building's envelope and lighting system designs. Using these programs will greatly simplify the designer's task of performing the sometimes complex calculations needed to determine a design's compliance with the Standards. 3 refs., 6 figs.

  18. TECHNICAL REPORT A USER GUIDE FOR TRIVAC VERSION4

    E-Print Network [OSTI]

    Meunier, Michel

    ), Atomic Energy of Canada limited (AECL) and the CANDU Owners Group (COG). The code TRIVAC and its users and Engineering Research Council of Canada (NSERC), Hydro­QuŽebec and Atomic Energy of Canada Limited (AECL). #12

  19. Integrated Baseline System (IBS) Version 2.0: User guide

    SciTech Connect (OSTI)

    Bower, J.C. [Bower Software Services, Kennewick, WA (United States); Burford, M.J.; Downing, T.R.; Matsumoto, S.W.; Schrank, E.E.; Williams, J.R.; Winters, C.; Wood, B.M.

    1994-03-01T23:59:59.000Z

    The Integrated Baseline System (IBS) is an emergency management planning and analysis tool being developed under the direction of the Federal Emergency Management Agency. This User Guide explains how to start and use the IBS Program, which is designed to help civilian emergency management personnel to plan for and support their responses to a chemical-releasing event at a military chemical stockpile. The intended audience for this document is all users of the IBS, especially emergency management planners and analysts.

  20. MATADOR (Methods for the Analysis of Transport And Deposition Of Radionuclides) code description and User's Manual

    SciTech Connect (OSTI)

    Avci, H.I.; Raghuram, S.; Baybutt, P.

    1985-04-01T23:59:59.000Z

    A new computer code called MATADOR (Methods for the Analysis of Transport And Deposition Of Radionuclides) has been developed to replace the CORRAL-2 computer code which was written for the Reactor Safety Study (WASH-1400). This report is a User's Manual for MATADOR. MATADOR is intended for use in system risk studies to analyze radionuclide transport and deposition in reactor containments. The principal output of the code is information on the timing and magnitude of radionuclide releases to the environment as a result of severely degraded core accidents. MATADOR considers the transport of radionuclides through the containment and their removal by natural deposition and by engineered safety systems such as sprays. It is capable of analyzing the behavior of radionuclides existing either as vapors or aerosols in the containment. The code requires input data on the source terms into the containment, the geometry of the containment, and thermal-hydraulic conditions in the containment.

  1. Army National Guard (ARNG) Objective Supply Capability Adaptive Redesign (OSCAR) end-user manual

    SciTech Connect (OSTI)

    Pelath, R.P. [National Guard Bureau, Arlington, VA (United States)] [National Guard Bureau, Arlington, VA (United States); Rasch, K.A. [Oak Ridge National Lab., TN (United States)] [Oak Ridge National Lab., TN (United States)

    1997-12-01T23:59:59.000Z

    The Objective Supply Capability Adaptive Redesign (OSCAR) project is designed to identify and develop programs which automate requirements not included in standard army systems. This includes providing automated interfaces between standard army systems at the National Guard Bureau (NGB) level and at the state/territory level. As part of the OSCAR project, custom software has been installed at NGB to streamline management of major end items. This software allows item managers to provide automated disposition on excess equipment to states operating the Standard Army Retail Supply System Objective (SARSS-O). It also accelerates movement of excess assets to improve the readiness of the Army National Guard (ARNG)--while reducing excess on hand. The purpose of the End-User Manual is to provide direction and guidance to the customer for implementing the ARNG Excess Management Program.

  2. FORIG: a computer code for calculating radionuclide generation and depletion in fusion and fission reactors. User's manual

    SciTech Connect (OSTI)

    Blink, J.A.

    1985-03-01T23:59:59.000Z

    In this manual we describe the use of the FORIG computer code to solve isotope-generation and depletion problems in fusion and fission reactors. FORIG runs on a Cray-1 computer and accepts more extensive activation cross sections than ORIGEN2 from which it was adapted. This report is an updated and a combined version of the previous ORIGEN2 and FORIG manuals. 7 refs., 15 figs., 13 tabs.

  3. GASFLOW: A Computational Fluid Dynamics Code for Gases, Aerosols, and Combustion, Volume 2: User's Manual

    SciTech Connect (OSTI)

    B. D. Nichols; C. Müller; G. A. Necker; J. R. Travis; J. W. Spore; K. L. Lam; P. Royl; T. L. Wilson

    1998-10-01T23:59:59.000Z

    Los Alamos National Laboratory (LANL) and Forschungszentrum Karlsruhe (FzK) are developing GASFLOW, a three-dimensional (3D) fluid dynamics field code as a best-estimate tool to characterize local phenomena within a flow field. Examples of 3D phenomena include circulation patterns; flow stratification; hydrogen distribution mixing and stratification; combustion and flame propagation; effects of noncondensable gas distribution on local condensation and evaporation; and aerosol entrainment, transport, and deposition. An analysis with GASFLOW will result in a prediction of the gas composition and discrete particle distribution in space and time throughout the facility and the resulting pressure and temperature loadings on the walls and internal structures with or without combustion. A major application of GASFLOW is for predicting the transport, mixing, and combustion of hydrogen and other gases in nuclear reactor containment and other facilities. It has been applied to situations involving transporting and distributing combustible gas mixtures. It has been used to study gas dynamic behavior in low-speed, buoyancy-driven flows, as well as sonic flows or diffusion dominated flows; and during chemically reacting flows, including deflagrations. The effects of controlling such mixtures by safety systems can be analyzed. The code version described in this manual is designated GASFLOW 2.1, which combines previous versions of the United States Nuclear Regulatory Commission code HMS (for Hydrogen Mixing Studies) and the Department of Energy and FzK versions of GASFLOW. The code was written in standard Fortran 90. This manual comprises three volumes. Volume I describes the governing physical equations and computational model. Volume II describes how to use the code to set up a model geometry, specify gas species and material properties, define initial and boundary conditions, and specify different outputs, especially graphical displays. Sample problems are included. Volume III contains some of the assessments performed by LANL and FzK.

  4. PETSc 2.0 Users Manual: Revision 2.0.16

    SciTech Connect (OSTI)

    Balay, S.; Gropp, W.; McInnes, L.C.; Smith, B.

    1997-02-01T23:59:59.000Z

    This manual describes the use of PETSc 2.0 for the numerical solution of partial differential equations and related problems on high-performance computers. The Portable, Extensible Toolkit for Scientific Computation (PETSc) is a suite of data structures and routines that provide the building blocks for the implementation of large-scale application codes on parallel (and serial) computers. PETSc 2.0 uses the MPI standard for all message-passing communication. PETSc includes an expanding suite of parallel linear and nonlinear equation solvers that may be used in application codes written in Fortran, C, and C++. PETSc provides many of the mechanisms needed thin parallel application codes, such as simple parallel matrix and vector assembly routines that allow the overlap of communication and computation. In addition, PETSc includes growing support for distributed arrays. The library is organized hierarchically, enabling users to employ the level of abstraction that is most appropriate for a particular problem. By using techniques of object-oriented programming, PETSc provides enormous flexibility for users. PETSc is a sophisticated set of software tools; as such, for some users it initially has a much steeper learning curve than a simple subroutine library. In particular, for individuals without some computer science background or experience programming in C, Pascal, or C++, it may require a large amount of time to take full advantage of the features that enable efficient software use. However, the power of the PETSc design and the algorithms it incorporates make the efficient implementation of many application codes much simpler than rolling them yourself. For many simple tasks a package such as Matlab is often the best tool; PETSc is not intended for the classes of problems for which effective Matlab code can be written. Since PETSc is still under development, small changes in usage and calling sequences of PETSc routines will continue to occur.

  5. EMPHASIS/Nevada CABANA user Guide. Version 2.0.

    SciTech Connect (OSTI)

    Turner, C. David; Powell, Jennifer L.; Bohnhoff, William J.

    2011-09-01T23:59:59.000Z

    The CABle ANAlysis (CABANA) portion of the EMPHASIS{trademark} suite is designed specifically for the simulation of cable system-generated electromagnetic pulse (SGEMP). The code can be used to evaluate the response of a specific cable design to threat or to compare and minimize the relative response of difference designs. This document provides user-specific information to facilitate the application of the code to cables of interest. It solves the electrical portion of a cable SGEMP simulation. It takes specific results from the deterministic radiation-transport code CEPTRE as sources and computes the resulting electrical response to an arbitrary cable load. The cable geometry itself is also arbitrary and is limited only by the patience of the user in meshing and by the available computing resources for the solution. The CABANA simulation involves solution of the quasi-static Maxwell equations using finite-element method (FEM) techniques.

  6. Modeling of fluidized-bed combustion of coal: Phase II, final reports. Volume VII. FBC Data-Base-Management System (FBC-DBMS) users manual

    SciTech Connect (OSTI)

    Louis, J.F.; Tung, S.E.

    1980-10-01T23:59:59.000Z

    The primary goal of the Fluidized Bed Combustor Data Base (FBCDB) is to establish a data repository for the express use of designers and research personnel involved in FBC development. FBCDB is implemented on MIT's 370/168 computer, using the Model 204 Data Base Management System (DBMS) developed by Computer Corporation of America. DBMS is a software that provides an efficient way of storing, retrieving, updating and manipulating data using an English-like query language. The primary content of FBCDB is a collection of data points defined by the value of a number of specific FBC variables. A user may interactively access the data base from a computer terminal at any location, retrieve, examine, and manipulate the data as well as produce tables or graphs of the results. More than 20 program segments are currently available in M204 User Language to simplify the user interface for the FBC design or research personnel. However, there are still many complex and advanced retrieving as well as applications programs to be written for this purpose. Although there are currently 71 entries, and about 2000 groups reposited in the system, this size of data is only an intermediate portion of our selection. The usefulness of the system at the present time is, therefore, limited. This version of FBCDB will be released on a limited scale to obtain review and comments. The document is intended as a reference guide to the use of FBCDB. It has been structured to introduce the user to the basics of FBCDB, summarize what the available segments in FBCDB can do, and give detailed information on the operation of FBCDB. This document represents a preliminary draft of a Users Manual. The draft will be updated when the data base system becomes fully implemented. Any suggestions as to how this manual may be improved will be appreciated.

  7. EMPHASIS/Nevada UTDEM user guide. Version 2.0.

    SciTech Connect (OSTI)

    Turner, C. David; Seidel, David Bruce; Pasik, Michael Francis

    2011-09-01T23:59:59.000Z

    The Unstructured Time-Domain ElectroMagnetics (UTDEM) portion of the EMPHASIS suite solves Maxwell's equations using finite-element techniques on unstructured meshes. This document provides user-specific information to facilitate the use of the code for applications of interest. UTDEM is a general-purpose code for solving Maxwell's equations on arbitrary, unstructured tetrahedral meshes. The geometries and the meshes thereof are limited only by the patience of the user in meshing and by the available computing resources for the solution. UTDEM solves Maxwell's equations using finite-element method (FEM) techniques on tetrahedral elements using vector, edge-conforming basis functions. EMPHASIS/Nevada Unstructured Time-Domain ElectroMagnetic Particle-In-Cell (UTDEM PIC) is a superset of the capabilities found in UTDEM. It adds the capability to simulate systems in which the effects of free charge are important and need to be treated in a self-consistent manner. This is done by integrating the equations of motion for macroparticles (a macroparticle is an object that represents a large number of real physical particles, all with the same position and momentum) being accelerated by the electromagnetic forces upon the particle (Lorentz force). The motion of these particles results in a current, which is a source for the fields in Maxwell's equations.

  8. Emphasis/Nevada STDEM : user's guide : version 1.0.

    SciTech Connect (OSTI)

    Seidel, David Bruce; Coats, Rebecca Sue; Pasik, Michael Francis

    2005-04-01T23:59:59.000Z

    STDEM is the structured mesh time-domain electromagnetic and plasma physics component of Emphasis/Nevada. This report provides a guide on using STDEM. Emphasis, the electromagnetic physics analysis system, is a suite of codes for the simulation of electromagnetic and plasma physics phenomena. The time-dependent components of Emphasis have been implemented using the Nevada framework [1]. The notation Emphasis/Nevada is used to highlight this relationship and/or distinguish the time-dependent components of Emphasis. In theory the underlying framework should have little influence on the user's interaction with the application. In practice the framework tends to be more invasive as it provides key services such as input parsing and defines fundamental concepts and terminology. While the framework offers many technological advancements from a software development point of view, from a user's perspective the key benefits of the underlying framework are the common interface for all framework physics modules as well as the ability to perform coupled physics simulations. STDEM is the structured time-domain electromagnetic and plasma physics component of Emphasis/Nevada. STDEM provides for the full-wave solution to Maxwell's equations on multi-block three-dimensional structured grids using finite-difference time-domain (FDTD) algorithms. Additionally STDEM provides for the fully relativistic, self-consistent simulation of charged particles using particle-in-cell (PIC) algorithms.

  9. Passport Scanning: User Notes Version 0.3 A. Entering the Passport Number for the Student

    E-Print Network [OSTI]

    Sussex, University of

    Passport Scanning: User Notes ­ Version 0.3 A. Entering the Passport being these details are being collected at the point of scanning the student Enter passport number here Click Save to commit record #12;B. Scanning

  10. EnPI V4.0 User Manual | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal Register /of Energy 3 BTO Peer ReviewEmployeeEmployeesToolUser

  11. Solid Waste Projection Model: Database (Version 1.4). Technical reference manual

    SciTech Connect (OSTI)

    Blackburn, C.; Cillan, T.

    1993-09-01T23:59:59.000Z

    The Solid Waste Projection Model (SWPM) system is an analytical tool developed by Pacific Northwest Laboratory (PNL) for Westinghouse Hanford Company (WHC). The SWPM system provides a modeling and analysis environment that supports decisions in the process of evaluating various solid waste management alternatives. This document, one of a series describing the SWPM system, contains detailed information regarding the software and data structures utilized in developing the SWPM Version 1.4 Database. This document is intended for use by experienced database specialists and supports database maintenance, utility development, and database enhancement. Those interested in using the SWPM database should refer to the SWPM Database User`s Guide. This document is available from the PNL Task M Project Manager (D. L. Stiles, 509-372-4358), the PNL Task L Project Manager (L. L. Armacost, 509-372-4304), the WHC Restoration Projects Section Manager (509-372-1443), or the WHC Waste Characterization Manager (509-372-1193).

  12. User's manual for the Sandia Waste-Isolation Flow and Transport model (SWIFT).

    SciTech Connect (OSTI)

    Reeves, Mark; Cranwell, Robert M.

    1981-11-01T23:59:59.000Z

    This report describes a three-dimensional finite-difference model (SWIFT) which is used to simulate flow and transport processes in geologic media. The model was developed for use by the Nuclear Regulatory Commission in the analysis of deep geologic nuclear waste-disposal facilities. This document, as indicated by the title, is a user's manual and is intended to facilitate the use of the SWIFT simulator. Mathematical equations, submodels, application notes, and a description of the program itself are given herein. In addition, a complete input data guide is given along with several appendices which are helpful in setting up a data-input deck. Computer code SWIFT (Sandia Waste Isolation, Flow and Transport Model) is a fully transient, three-dimensional model which solves the coupled equations for transport in geologic media. The processes considered are: (1) fluid flow; (2) heat transport; (3) dominant-species miscible displacement; and (4) trace-species miscible displacement. The first three processes are coupled via fluid density and viscosity. Together they provide the velocity field on which the fourth process depends.

  13. Manual for implementing residual radioactive material guidelines using RESRAD, Version 5.0

    SciTech Connect (OSTI)

    Yu, C.; Zielen, A.J.; Cheng, J.J. [and others

    1993-09-01T23:59:59.000Z

    This manual presents information for implementing US Department of Energy (DOE) guidelines for residual radioactive material. It describes the analysis and models used to derive site-specific guidelines for allowable residual concentrations of radionuclides in soil and the design and use of the RESRAD computer code for calculating doses, risks, and guideline values. It also describes procedures for implementing DOE policy for reducing residual radioactivity to levels that are as low as reasonably achievable. Two new pathways, radon inhalation and soil ingestion, have been added to RESRAD. Twenty-seven new radionuclides have also been added, and the cutoff half-life for associated radionuclides has been reduced to six months. Other major improvements to the RESRAD code include the ability to run sensitivity analyses, the addition of graphical output, user-specified dose factors, updated databases, an improved groundwater transport model, optional input of a groundwater concentration and a solubility constant, special models for tritium and carbon-14, calculation of cancer incidence risk, and the use of a mouse with menus.

  14. Xyce Parallel Electronic Simulator - Users' Guide Version 2.1.

    SciTech Connect (OSTI)

    Hutchinson, Scott A; Hoekstra, Robert J.; Russo, Thomas V.; Rankin, Eric; Pawlowski, Roger P.; Fixel, Deborah A; Schiek, Richard; Bogdan, Carolyn W.; Shirley, David N.; Campbell, Phillip M.; Keiter, Eric R.

    2005-06-01T23:59:59.000Z

    This manual describes the use of theXyceParallel Electronic Simulator.Xycehasbeen designed as a SPICE-compatible, high-performance analog circuit simulator, andhas been written to support the simulation needs of the Sandia National Laboratorieselectrical designers. This development has focused on improving capability over thecurrent state-of-the-art in the following areas:%04Capability to solve extremely large circuit problems by supporting large-scale par-allel computing platforms (up to thousands of processors). Note that this includessupport for most popular parallel and serial computers.%04Improved performance for all numerical kernels (e.g., time integrator, nonlinearand linear solvers) through state-of-the-art algorithms and novel techniques.%04Device models which are specifically tailored to meet Sandia's needs, includingmany radiation-aware devices.3 XyceTMUsers' Guide%04Object-oriented code design and implementation using modern coding practicesthat ensure that theXyceParallel Electronic Simulator will be maintainable andextensible far into the future.Xyceis a parallel code in the most general sense of the phrase - a message passingparallel implementation - which allows it to run efficiently on the widest possible numberof computing platforms. These include serial, shared-memory and distributed-memoryparallel as well as heterogeneous platforms. Careful attention has been paid to thespecific nature of circuit-simulation problems to ensure that optimal parallel efficiencyis achieved as the number of processors grows.The development ofXyceprovides a platform for computational research and de-velopment aimed specifically at the needs of the Laboratory. WithXyce, Sandia hasan %22in-house%22 capability with which both new electrical (e.g., device model develop-ment) and algorithmic (e.g., faster time-integration methods, parallel solver algorithms)research and development can be performed. As a result,Xyceis a unique electricalsimulation capability, designed to meet the unique needs of the laboratory.4 XyceTMUsers' GuideAcknowledgementsThe authors would like to acknowledge the entire Sandia National Laboratories HPEMS(High Performance Electrical Modeling and Simulation) team, including Steve Wix, CarolynBogdan, Regina Schells, Ken Marx, Steve Brandon and Bill Ballard, for their support onthis project. We also appreciate very much the work of Jim Emery, Becky Arnold and MikeWilliamson for the help in reviewing this document.Lastly, a very special thanks to Hue Lai for typesetting this document with LATEX.TrademarksThe information herein is subject to change without notice.Copyrightc 2002-2003 Sandia Corporation. All rights reserved.XyceTMElectronic Simulator andXyceTMtrademarks of Sandia Corporation.Orcad, Orcad Capture, PSpice and Probe are registered trademarks of Cadence DesignSystems, Inc.Silicon Graphics, the Silicon Graphics logo and IRIX are registered trademarks of SiliconGraphics, Inc.Microsoft, Windows and Windows 2000 are registered trademark of Microsoft Corporation.Solaris and UltraSPARC are registered trademarks of Sun Microsystems Corporation.Medici, DaVinci and Taurus are registered trademarks of Synopsys Corporation.HP and Alpha are registered trademarks of Hewlett-Packard company.Amtec and TecPlot are trademarks of Amtec Engineering, Inc.Xyce's expression library is based on that inside Spice 3F5 developed by the EECS De-partment at the University of California.All other trademarks are property of their respective owners.ContactsBug Reportshttp://tvrusso.sandia.gov/bugzillaEmailxyce-support%40sandia.govWorld Wide Webhttp://www.cs.sandia.gov/xyce5 XyceTMUsers' GuideThis page is left intentionally blank6

  15. Virtual Cement and Concrete Testing Laboratory Educational Version 2.0 User Guide

    E-Print Network [OSTI]

    Magee, Joseph W.

    1 Virtual Cement and Concrete Testing Laboratory Educational Version 2.0 User Guide Jeffrey W of the Virtual Cement and Concrete Testing Laboratory (VCCTL) software, version 2.0. Using the VCCTL software, cement hydration, computer modeling, concrete testing, microstructure, simulation, virtual laboratory

  16. Transportation Routing Analysis Georgraphic Information System (WebTRAGIS) User's Manual

    SciTech Connect (OSTI)

    Michelhaugh, R.D.

    2000-04-20T23:59:59.000Z

    In the early 1980s, Oak Ridge National Laboratory (ORNL) developed two transportation routing models: HIGHWAY, which predicts truck transportation routes, and INTERLINE, which predicts rail transportation routes. Both of these models have been used by the U.S. Department of Energy (DOE) community for a variety of routing needs over the years. One of the primary uses of the models has been to determine population-density information, which is used as input for risk assessment with the RADTRAN model, which is available on the TRANSNET computer system. During the recent years, advances in the development of geographic information systems (GISs) have resulted in increased demands from the user community for a GIS version of the ORNL routing models. In April 1994, the DOE Transportation Management Division (EM-261) held a Baseline Requirements Assessment Session with transportation routing experts and users of the HIGHWAY and INTERLINE models. As a result of the session, the development of a new GIS routing model, Transportation Routing Analysis GIS (TRAGIS), was initiated. TRAGIS is a user-friendly, GIS-based transportation and analysis computer model. The older HIGHWAY and INTERLINE models are useful to calculate routes, but they cannot display a graphic of the calculated route. Consequently, many users have experienced difficulty determining the proper node for facilities and have been confused by or have misinterpreted the text-based listing from the older routing models. Some of the primary reasons for the development of TRAGIS are (a) to improve the ease of selecting locations for routing, (b) to graphically display the calculated route, and (c) to provide for additional geographic analysis of the route.

  17. Manual

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomyDr.Energy University

  18. Manual

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomyDr.Energy UniversityOversight Inspection of

  19. User s Guide for REFoffSpec Version 1.5.4

    SciTech Connect (OSTI)

    Ward, Richard C [ORNL; Bilheux, Jean-Christophe [ORNL; Lauter, Valeria [ORNL; Ambaye, Haile Arena [ORNL

    2012-09-01T23:59:59.000Z

    This document is a user s guide for the IDL software REFoffSpec version 1.5.4 whose purpose is to aggregate for analysis NeXus data files from the magnetism and liquids reflectometer experiments at the Oak Ridge National Laboratory Spallation Neutron Source. The software is used to scale and align multiple data files that constitute a continuous set for an experimental run. The User s Guide for REFoffSepc explains step by step the process using a specific example run. Output screens are provided to orient the user at each step. The guide documents in detail changes made to the original REFoffSpec code during the period November 2009 and January 2011. At the time of the completion of this version of the code it was accessible from the sns_tools interface as a beta version.

  20. Solid waste projection model: Model version 1. 0 technical reference manual

    SciTech Connect (OSTI)

    Wilkins, M.L.; Crow, V.L.; Buska, D.E. (Pacific Northwest Lab., Richland, WA (USA)); Ouderkirk, S.J. (Boeing Computer Services Co., Richland, WA (USA))

    1990-11-01T23:59:59.000Z

    The Solid Waste Projection Model (SWPM) system is an analytical tool developed by Pacific Northwest Laboratory (PNL) for Westinghouse Hanford Company (WHC). The SWPM system provides a modeling and analysis environment that supports decisions in the process of evaluating various solid waste management alternatives. This document, one of a series describing the SWPM system, contains detailed information regarding the software utilized in developing Version 1.0 of the modeling unit of SWPM. This document is intended for use by experienced software engineers and supports programming, code maintenance, and model enhancement. Those interested in using SWPM should refer to the SWPM Model User's Guide. This document is available from either the PNL project manager (D. L. Stiles, 509-376-4154) or the WHC program monitor (B. C. Anderson, 509-373-2796). 8 figs.

  1. User`s manual for the data analysis system for monitoring the fuel oil spill at the Sandia National Laboratories installation in Livermore, California

    SciTech Connect (OSTI)

    Widing, M.A.; Leser, C.C.

    1995-04-01T23:59:59.000Z

    This report describes the use of the data analysis software developed by Argonne National laboratory (ANL) and installed at the fuel oil spill site at Sandia National Laboratories. This software provides various programs for anlayzing the data from physical and chemical sensors. This manual provides basic information on the design and use of these user interfaces. Analysts use these interfaces to evaluate the site data. Four software programs included in the data analysis software suite provide the following capabilities; physical data analysis, chemical data entry, chemical data analysis, and data management.

  2. User`s manual for the data acquisition system for monitoring the fuel oil spill at the Sandia National Laboratories installation in Livermore, California

    SciTech Connect (OSTI)

    Widing, M.A.; Leser, C.C.

    1995-04-01T23:59:59.000Z

    This report describes the use of the data acquisition software developed by Argonne National Laboratory and installed at the fuel oil spill site at Sandia National Laboratories. This software provides various programs for interacting with the monitoring and logging system that collects electronic data from sensors installed downhole in the study area. This manual provides basic information on the design and use of these user interfaces, which assists the site coordinator in monitoring the status of the data collection process. Four software programs are included in the data acquisition software suite to provide the following capabilities: datalogger interaction, file management, and data security.

  3. MS17AM LEAK CHECKER The MS17AM is a manual valve version of the MS17AB. Since it is a manual unit, some care must be

    E-Print Network [OSTI]

    Massey, Thomas N.

    MS17AM LEAK CHECKER The MS17AM is a manual valve version of the MS17AB. Since it is a manual unit, some care must be exercised in the sequencing of the valves. The most important things to remember are that during normal leak testing: 1. The THROTTLE VALVE is NEVER opened unless the ROUGH VALVE has been

  4. Integrated Baseline System (IBS), Version 1.03. User guide: Chemical Stockpile Emergency Preparedness Program

    SciTech Connect (OSTI)

    Bailey, B.M.; Burford, M.J.; Downing, T.R.; Matsumoto, S.W.; Schrank, E.E.; Williams, J.R.; Winters, C.

    1993-01-01T23:59:59.000Z

    The Integrated Baseline System (IBS), operated by the Federal Emergency Management Agency (FEMA), is a system of computerized tools for emergency planing and analysis. This document is the user guide for the IBS and explains how to operate the IBS system. The fundamental function of the IBS is to provide tools that civilian emergency management personnel can use in developing emergency plans and in supporting emergency management activities to cope with a chemical-releasing event at a military chemical stockpile. Emergency management planners can evaluate concepts and ideas using the IBS system. The results of that experience can then be factored into refining requirements and plans. This document provides information for the general system user, and is the primary reference for the system features of the IBS. It is designed for persons who are familiar with general emergency management concepts, operations, and vocabulary. Although the IBS manual set covers basic and advanced operations, it is not a complete reference document set. Emergency situation modeling software in the IBS is supported by additional technical documents. Some of the other LBS software is commercial software for which more complete documentation is available. The IBS manuals reference such documentation where necessary. IBS is a dynamic system. Its capabilities are in a state of continuing expansion and enhancement.

  5. STOMP Subsurface Transport Over Multiple Phases, Version 4.0, User’s Guide

    SciTech Connect (OSTI)

    White, Mark D.; Oostrom, Martinus

    2006-06-09T23:59:59.000Z

    This guide describes the general use, input file formatting, compilation and execution of the STOMP (Subsurface Transport Over Multiple Phases) simulator, a scientific tool for analyzing single and multiple phase subsurface flow and transport. A description of the simulator’s governing equations, constitutive functions and numerical solution algorithms are provided in a companion theory guide. In writing these guides for the STOMP simulator, the authors have assumed that the reader comprehends concepts and theories associated with multiple-phase hydrology, heat transfer, thermodynamics, radioactive chain decay, and relative permeability-saturation-capillary pressure constitutive relations. The authors further assume that the reader is familiar with the computing environment on which they plan to compile and execute the STOMP simulator. Source codes for the sequential versions of the simulator are available in pure FORTRAN 77 or mixed FORTRAN 77/90 forms. The pure FORTRAN 77 source code form requires a parameters file to define the memory requirements for the array elements. The mixed FORTRAN 77/90 form of the source code uses dynamic memory allocation to define memory requirements, based on a FORTRAN 90 preprocessor STEP, that reads the input files. The simulator utilizes a variable source code configuration, which allows the execution memory and speed to be tailored to the problem specifics, and essentially requires that the source code be assembled and compiled through a software maintenance utility. The memory requirements for executing the simulator are dependent on the complexity of physical system to be modeled and the size and dimensionality of the computational domain. Likewise execution speed depends on the problem complexity, size and dimensionality of the computational domain, and computer performance. Selected operational modes of the STOMP simulator are available for scalable execution on multiple processor (i.e., parallel) computers. These versions of the simulator are written in pure FORTRAN 90 with imbedded directives that are interpreted by a FORTRAN preprocessor. Without the preprocessor, the scalable version of the simulator can be executed sequentially on a single processor computer. The scalable versions of the STOMP modes carry the “-Sc” designator on the operational mode name. For example, STOMP-WCS-Sc is the scalable version of the STOMP-WCS (Water-CO2-Salt) mode. A separate mode containing an evaporation model as a boundary condition on the upper surface of the computation domain has also been included. This mode, STOMP-WAE-B (Water-Air-Energy-Barriers) can be viewed as an extension of the STOMP-WAE (Water-Air-Energy) mode. Details of this particular mode are outlined by Ward et al. (2005)(a). STOMP V4.0 includes the reactive transport module ECKEChem (Equilibrium-Conservation-Kinetic Equation Chemistry) for the STOMP-W (Water) and STOMP-WCS (Water-CO2-Salt) modes. For this particular module, the “-R” designator is included in the operational mode name (e.g., STOMP-W-R, STOMP-WCS-R-Sc). This mode is described in detail by White and McGrail (2005)(b). For all operational modes and processor implementations, the memory requirements for executing the simulator are dependent on the complexity of physical system to be modeled and the size and dimensionality of the computational domain. Likewise execution speed depends on the problem complexity, size and dimensionality of the computational domain, and computer performance. Additional information about the simulator can be found on the STOMP webpage: http://stomp.pnl.gov. The website includes an introductory short course with problems ranging from simple one-dimensional saturated flow to complex multiphase system computations.

  6. Using the DSPCAD Integrative Command-Line Environment: User's Guide for DICE Version 1.0

    E-Print Network [OSTI]

    Bhattacharyya, Shuvra S.

    Using the DSPCAD Integrative Command-Line Environment: User's Guide for DICE Version 1.0 Shuvra S Integrative Command Line Environment) is a package of utilities that facilitates efficient management and languages. DICE is instead a command line solution to utilize all of these existing kinds of tools more

  7. RAMONA-4B a computer code with three-dimensional neutron kinetics for BWR and SBWR system transient - user`s manual

    SciTech Connect (OSTI)

    Rohatgi, U.S.; Cheng, H.S.; Khan, H.J.; Mallen, A.N.; Neymotin, L.Y.

    1998-03-01T23:59:59.000Z

    This document is the User`s Manual for the Boiling Water Reactor (BWR), and Simplified Boiling Water Reactor (SBWR) systems transient code RAMONA-4B. The code uses a three-dimensional neutron-kinetics model coupled with a multichannel, nonequilibrium, drift-flux, phase-flow model of the thermal hydraulics of the reactor vessel. The code is designed to analyze a wide spectrum of BWR core and system transients. Chapter 1 gives an overview of the code`s capabilities and limitations; Chapter 2 describes the code`s structure, lists major subroutines, and discusses the computer requirements. Chapter 3 is on code, auxillary codes, and instructions for running RAMONA-4B on Sun SPARC and IBM Workstations. Chapter 4 contains component descriptions and detailed card-by-card input instructions. Chapter 5 provides samples of the tabulated output for the steady-state and transient calculations and discusses the plotting procedures for the steady-state and transient calculations. Three appendices contain important user and programmer information: lists of plot variables (Appendix A) listings of input deck for sample problem (Appendix B), and a description of the plotting program PAD (Appendix C). 24 refs., 18 figs., 11 tabs.

  8. Characterizing Hydraulic Properties and Ground-Water Chemistry in Fractured-Rock Aquifers: A User's Manual

    E-Print Network [OSTI]

    Characterizing Hydraulic Properties and Ground-Water Chemistry in Fractured-Rock Aquifers: A User source for science about the Earth, its natural and living resources, natural hazards., 2007, Characterizing hydraulic properties and ground-water chemistry in fractured-rock aquifers: A user

  9. WINDOW 6.2/THERM 6.2 Research Version User Manual

    E-Print Network [OSTI]

    Mitchell, Robin

    2008-01-01T23:59:59.000Z

    Shading Layer Library Input ID Name Type The unique IDvalues in this library are dependent on the Type selectedLayer library currently allows the definition of three types

  10. FFSWK User Manual (version 0.1) Ying Zhou (May 2013)

    E-Print Network [OSTI]

    Zhou, Ying

    how to quickly get started with FFSWK. Bold texts are Linux command lines. 1. Compile minos · ifort.in.rayl The command line read eigf them. Normalized eigenfunctions are stored in directory eigfs. The command line read eigf

  11. Neutron coincidence counter for MOX fuel pins in storage trays: users' manual

    SciTech Connect (OSTI)

    Cowder, L.; Menlove, H.

    1982-08-01T23:59:59.000Z

    The neutron coincidence counter for measurement of mixed-oxide fuel pins in storage trays is described. The special detector head has been designed so that the detectors, high-voltage junction boxes, and electronics are interchangeable with those of the high-level neutron coincidence counter system. This manual describes the system components and the operation and maintenance of the counter. The counter was developed at Los Alamos National Laboratory for in-plant inspection applications by the International Atomic Energy Agency.

  12. Solution In-Line Alpha Counter (SILAC) Instruction Manual-Version 4.00

    SciTech Connect (OSTI)

    Steven M. Alferink; Joel E. Farnham; Malcolm M. Fowler; Amy S. Wong

    2002-06-01T23:59:59.000Z

    The Solution In-Line Alpha Counter (SILAC) provides near real-time alpha activity measurements of aqueous solutions in gloveboxes located in the Plutonium Facility (TA-55) at Los Alamos National Laboratory (LANL). The SILAC detector and its interface software were first developed by Joel Farnham at LANL [1]. This instruction manual describes the features of the SILAC interface software and contains the schematic and fabrication instructions for the detector.

  13. INTERLINE 5.0 -- An expanded railroad routing model: Program description, methodology, and revised user`s manual

    SciTech Connect (OSTI)

    Johnson, P.E.; Joy, D.S. [Oak Ridge National Lab., TN (United States); Clarke, D.B.; Jacobi, J.M. [Tennessee Univ., Knoxville, TN (United States). Transportation Center

    1993-03-01T23:59:59.000Z

    A rail routine model, INTERLINE, has been developed at the Oak Ridge National Laboratory to investigate potential routes for transporting radioactive materials. In Version 5.0, the INTERLINE routing algorithms have been enhanced to include the ability to predict alternative routes, barge routes, and population statistics for any route. The INTERLINE railroad network is essentially a computerized rail atlas describing the US railroad system. All rail lines, with the exception of industrial spurs, are included in the network. Inland waterways and deep water routes along with their interchange points with the US railroadsystem are also included. The network contains over 15,000 rail and barge segments (links) and over 13,000 stations, interchange points, ports, and other locations (nodes). The INTERLINE model has been converted to operate on an IBM-compatible personal computer. At least a 286 computer with a hard disk containing approximately 6 MB of free space is recommended. Enhanced program performance will be obtained by using arandom-access memory drive on a 386 or 486 computer.

  14. User's Guide for TOUGH2-MP - A Massively Parallel Version of the TOUGH2 Code

    SciTech Connect (OSTI)

    Earth Sciences Division; Zhang, Keni; Zhang, Keni; Wu, Yu-Shu; Pruess, Karsten

    2008-05-27T23:59:59.000Z

    TOUGH2-MP is a massively parallel (MP) version of the TOUGH2 code, designed for computationally efficient parallel simulation of isothermal and nonisothermal flows of multicomponent, multiphase fluids in one, two, and three-dimensional porous and fractured media. In recent years, computational requirements have become increasingly intensive in large or highly nonlinear problems for applications in areas such as radioactive waste disposal, CO2 geological sequestration, environmental assessment and remediation, reservoir engineering, and groundwater hydrology. The primary objective of developing the parallel-simulation capability is to significantly improve the computational performance of the TOUGH2 family of codes. The particular goal for the parallel simulator is to achieve orders-of-magnitude improvement in computational time for models with ever-increasing complexity. TOUGH2-MP is designed to perform parallel simulation on multi-CPU computational platforms. An earlier version of TOUGH2-MP (V1.0) was based on the TOUGH2 Version 1.4 with EOS3, EOS9, and T2R3D modules, a software previously qualified for applications in the Yucca Mountain project, and was designed for execution on CRAY T3E and IBM SP supercomputers. The current version of TOUGH2-MP (V2.0) includes all fluid property modules of the standard version TOUGH2 V2.0. It provides computationally efficient capabilities using supercomputers, Linux clusters, or multi-core PCs, and also offers many user-friendly features. The parallel simulator inherits all process capabilities from V2.0 together with additional capabilities for handling fractured media from V1.4. This report provides a quick starting guide on how to set up and run the TOUGH2-MP program for users with a basic knowledge of running the (standard) version TOUGH2 code, The report also gives a brief technical description of the code, including a discussion of parallel methodology, code structure, as well as mathematical and numerical methods used. To familiarize users with the parallel code, illustrative sample problems are presented.

  15. MOLIS: Minority On-Line Information Service: User`s guide. Version 3.0/Release 3.0

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    This document is a user`s guide to MOLIS, an information system for minority groups. Topics include: access to the system, system features, and guidelines for using the system.

  16. Modular Simulation of Absorption Systems User's Guide (Windows Version 5.0)

    SciTech Connect (OSTI)

    Grossman, G

    2000-09-25T23:59:59.000Z

    ABSIM (an acronym for ABsorption SIMulation) is a user-oriented computer code designed for the simulation of absorption systems at steady state, in both flexible and modular form. ABSIM makes it possible to investigate various cycle configurations with different working fluids, to calculate their operating parameters, to predict their performance and to compare them with each other on a uniform basis. A graphical user interface enables the user to draw the cycle diagram on the computer screen, enter data interactively, run the program and view the results either in the form of a table or superimposed on the cycle diagram. Special utilities enable the user to plot the results and produce a pressure-temperature-concentration (P-T-X) diagram of the cycle. Most absorption systems consist of a number of standard components or units (e.g., absorber, condenser) that may be combined in different forms to produce various cycles. Recognizing this, ABSIM has been structured around unit subroutines, each of which contains the governing equations for the particular unit. These subroutines are activated by a main program that interprets the input for the cycle, calls the units, and links them to each other in an order corresponding to the user's specification to form the complete system. Each unit subroutine, when activated, addresses a property database for the thermodynamic properties of the working fluids. The equations generated by the code are listed and solved simultaneously by a mathematical solver routine. The code requires relatively simple inputs, consisting of the minimum information needed to define an absorption system properly. After drawing the cycle in terms of the units recognizable by the code and showing their interconnections, the user must specify the size of each exchange unit in terms of its heat and mass transfer characteristics, the working fluid(s) at each state point; and the given operating conditions, such as temperatures, flowrates, and the like, fixed at specific state points. Based on this information, the program calculates the temperature, flowrate, concentration, pressure, and the vapor fraction at each state point in the system and the heat duty at each unit, from which the coefficient of performance may be determined. ABSIM has been used successfully to simulate a variety of single-, double- and triple-stage absorption chillers, heat pumps and heat transformers using the working fluids LiBr-H{sub 2}O, H{sub 2}ONH{sub 3}, LiBr/H{sub 2}O-NH{sub 3}, LiBr/ZnBr{sub 2}-CH{sub 3}OH and more. Some of these results will be described briefly in Sect. 8. Eleven absorption fluids are presently available in the code's property database, and 12 units are available to compose practically every absorption cycle of interest. The code in its present form may be used not only to evaluate new cycles and working fluids, but also to investigate a system's behavior in off-design conditions, to analyze experimental data, and to perform preliminary design optimization. This user manual is organized into eight sections and two appendices. The remainder of this section describes the background for the ABSIM code and presents its special features in comparison with other simulation codes. Section 2 contains information on installation of the code and on basic operations for the first-time user. Section 3 describes the structure of the code, including the input, the output, and the main program. Section 4 describes the unit subroutines containing the governing equations for the 12 unit modules of the code. Section 5 reviews the property database that contains the thermodynamic properties of the working fluids. Section 6 describes the solver package and the method of solution for the equations generated by the code. Section 7 instructs the user on how to use the graphical interface. Some results of the simulation are described in Sect. 8. Appendix A is an input manual describing in detail each item in the input, its significance, and its format. Appendix B contains cycle diagrams and input and output files for several sample cy

  17. Medical Management Treatment Manual

    E-Print Network [OSTI]

    Bezrukov, Sergey M.

    Medical Management Treatment Manual: A Clinical Guide for Researchers and Clinicians) This manual is an adaptation of: Medical Management Treatment Manual: A Clinical Research Guide for Medically, Maryland #12;Message to the Users of this Medical Management (MM) Manual from the Editors Background

  18. Xyce parallel electronic simulator users' guide, Version 6.0.1.

    SciTech Connect (OSTI)

    Keiter, Eric Richard; Mei, Ting; Russo, Thomas V.; Schiek, Richard Louis; Thornquist, Heidi K.; Verley, Jason C.; Fixel, Deborah A.; Coffey, Todd Stirling; Pawlowski, Roger Patrick; Warrender, Christina E.; Baur, David Gregory. [Raytheon, Albuquerque, NM

    2014-01-01T23:59:59.000Z

    This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been designed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas: Capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). This includes support for most popular parallel and serial computers. A differential-algebraic-equation (DAE) formulation, which better isolates the device model package from solver algorithms. This allows one to develop new types of analysis without requiring the implementation of analysis-specific device models. Device models that are specifically tailored to meet Sandia's needs, including some radiationaware devices (for Sandia users only). Object-oriented code design and implementation using modern coding practices. Xyce is a parallel code in the most general sense of the phrase - a message passing parallel implementation - which allows it to run efficiently a wide range of computing platforms. These include serial, shared-memory and distributed-memory parallel platforms. Attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows.

  19. User's manual for SMACS: a family of codes for probabilistic structural analysis

    SciTech Connect (OSTI)

    Bumpus, S; Shukla, S N; O'Connell, W J; Gerhard, M A

    1982-03-01T23:59:59.000Z

    SMACS is a code which links the seismic input, soil-structure interaction and structural response calculations to obtain response vectors, which in turn are used as input for risk analysis. Inherently, there are uncertainties involved in various links of the seismic methodology chain. SMACS incorporates the uncertainty in the seismic input by using a suite of possible earthquakes. Uncertainties in the soil-structure interaction (SSI) are incorporated by using a range of values of soil shear modulus and soil material damping at a given site. Similarly a range of probable values of modal frequency and damping of the structure are used to account for uncertainties in structural modelling. The following pre-processor codes are available, as a package, to create necessary input files for the SMACS program: SIMQ (for generating seimic input); GLAY and CLAF (for soil-structure interaction analysis); and SAP4 (for modal analysis of the structures). The post-processor codes available are: PRESTO (to plot probability distributions for the response vectors or basic events); and CHANGO (to plot comparisons of basic events from different analyses). The code, SMACS, and the nature of the problem it solves are discussed. The way that SMACS is executed is explained. Manuals are provided that explain how to create the necessary input files for different subprograms of the SMACS family. An example problem illustrating an SSI analysis for a containment structure is presented.

  20. Operators Manual and Technical Reference for the Z-Beamlet Phase Modulation Failsafe System: Version 1.

    SciTech Connect (OSTI)

    Armstrong, Darrell J.

    2014-09-01T23:59:59.000Z

    The need for pulse energies exceeding 4 kJ and pulse lengths [?] 2 ns in Sandia's Z-Beamlet laser (ZBL) requires that the single-frequency spectrum of its fiber-laser master oscillator be converted to a phase modulated spectrum with a modulation in dex [?] 5. Because accidental injection of single-frequency light into ZBL could result i n damage to optical materials from transverse stimulated Brillouin scattering, the presence of phase modulated (PM) light must be monitored by a reliable failsafe system that can stop a las er shot within of a few 10's of ns following a failure of the PM system. This requirement is met by combining optical heterodyne detection with high-speed electronics to indicate the pres ence or absence of phase modulated light. The transition time for the failsafe signal resultin g from a sudden failure using this technique is approximately 35 ns. This is sufficiently short to safely stop a single-frequency laser pulse from leaving ZBL's regenerative amplifier with a n approximately 35 ns margin of safety. This manual and technical reference contains detai led instructions for daily use of the PM failsafe system and provides enough additional informat ion for its maintenance and repair.

  1. Carbon Calculator for Land Use Change from Biofuels Production (CCLUB). Users' manual and technical documentation.

    SciTech Connect (OSTI)

    Mueller, S; Dunn, JB; Wang, M (Energy Systems); (Univ. of Illinois at Chicago)

    2012-06-07T23:59:59.000Z

    The Carbon Calculator for Land Use Change from Biofuels Production (CCLUB) calculates carbon emissions from land use change (LUC) for four different ethanol production pathways including corn grain ethanol and cellulosic ethanol from corn stover, miscanthus, and switchgrass. This document discusses the version of CCLUB released May 31, 2012 which includes corn, as did the previous CCLUB version, and three cellulosic feedstocks: corn stover, miscanthus, and switchgrass. CCLUB calculations are based upon two data sets: land change areas and above- and below-ground carbon content. Table 1 identifies where these data are stored and used within the CCLUB model, which is built in MS Excel. Land change area data is from Purdue University's Global Trade Analysis Project (GTAP) model, a computable general equilibrium (CGE) economic model. Section 2 describes the GTAP data CCLUB uses and how these data were modified to reflect shrubland transitions. Feedstock- and spatially-explicit below-ground carbon content data for the United States were generated with a surrogate model for CENTURY's soil organic carbon sub-model (Kwon and Hudson 2010) as described in Section 3. CENTURY is a soil organic matter model developed by Parton et al. (1987). The previous CCLUB version used more coarse domestic carbon emission factors. Above-ground non-soil carbon content data for forest ecosystems was sourced from the USDA/NCIAS Carbon Online Estimator (COLE) as explained in Section 4. We discuss emission factors used for calculation of international greenhouse gas (GHG) emissions in Section 5. Temporal issues associated with modeling LUC emissions are the topic of Section 6. Finally, in Section 7 we provide a step-by-step guide to using CCLUB and obtaining results.

  2. Microsoft Word - ORNL-NTRC-006_P E Johnson_TRAGIS Users Manual.doc

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch

  3. Form EIA-3 Users Manual Quarterly Coal Consumption and Quality Report, Manufacturing and

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name: Email:Uranium Marketing Annual SurveyForm

  4. DOE/RL-92-36, Hanford Site Hoisting and Rigging Manual APPENDIX B, Users Guide

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration wouldDECOMPOSITION OF CALCIUMCOSTDOENuclear1382 THEDOE0-35 RevisionAPPENDIX

  5. Fe CASL-U-2014-0014-002 VERA Common Input User Manual Scott Palmtag

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist. Category UC-lFederalFYRANDOMFailure ModesflowFe Atomic Data

  6. National Solar Radiation Database 1991--2005 Update: Users Manual

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasoleTremor(Question)8/14/2007NCPVEnergyOpenlaboratory of the

  7. Appendices and Risk Assessment Spreadsheet Version No. Fermi National Accelerator Laboratory Engineering Manual

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWPAlumni Alumni

  8. MORT User's Manual for use with the Management Oversight and Risk Tree analytical logic diagram. [Contains a list of System Safety Development Center publications

    SciTech Connect (OSTI)

    Knox, N.W.; Eicher, R.W.

    1992-02-01T23:59:59.000Z

    This report contains the User's Manual for MORT (Management Oversight and Risk Tree), a logic diagram in the form of a work sheet'' that illustrates a long series of interrelated questions. MORT is a comprehensive analytical procedure that provides a disciplined method for determining the causes and contributing factors of major accidents. Alternatively, it serves as a tool to evaluate the quality of an existing system. While similar in many respects to fault tree analysis, MORT is more generalized and presents over 1,500 specific elements of an ideal universal'' management program for optimizing environment, safety and health, and other programs. This User's Manual is intended to be used with the MORT diagram dated February 1992.

  9. Solid Waste Projection Model: Database (Version 1.3). Technical reference manual

    SciTech Connect (OSTI)

    Blackburn, C.L.

    1991-11-01T23:59:59.000Z

    The Solid Waste Projection Model (SWPM) system is an analytical tool developed by Pacific Northwest Laboratory (PNL) for Westinghouse Hanford Company (WHC). The SWPM system provides a modeling and analysis environment that supports decisions in the process of evaluating various solid waste management alternatives. This document, one of a series describing the SWPM system, contains detailed information regarding the software and data structures utilized in developing the SWPM Version 1.3 Database. This document is intended for use by experienced database specialists and supports database maintenance, utility development, and database enhancement.

  10. GEEF: a geothermal engineering and economic feasibility model. Description and user's manual

    SciTech Connect (OSTI)

    Not Available

    1982-09-01T23:59:59.000Z

    The model is designed to enable decision makers to compare the economics of geothermal projects with the economics of alternative energy systems at an early stage in the decision process. The geothermal engineering and economic feasibility computer model (GEEF) is written in FORTRAN IV language and can be run on a mainframe or a mini-computer system. An abbreviated version of the model is being developed for usage in conjunction with a programmable desk calculator. The GEEF model has two main segments, namely (i) the engineering design/cost segment and (ii) the economic analysis segment. In the engineering segment, the model determines the numbers of production and injection wells, heat exchanger design, operating parameters for the system, requirement of supplementary system (to augment the working fluid temperature if the resource temperature is not sufficiently high), and the fluid flow rates. The model can handle single stage systems as well as two stage cascaded systems in which the second stage may involve a space heating application after a process heat application in the first stage.

  11. INTERLINE 5. 0 -- An expanded railroad routing model: Program description, methodology, and revised user's manual

    SciTech Connect (OSTI)

    Johnson, P.E.; Joy, D.S. (Oak Ridge National Lab., TN (United States)); Clarke, D.B.; Jacobi, J.M. (Tennessee Univ., Knoxville, TN (United States). Transportation Center)

    1993-03-01T23:59:59.000Z

    A rail routine model, INTERLINE, has been developed at the Oak Ridge National Laboratory to investigate potential routes for transporting radioactive materials. In Version 5.0, the INTERLINE routing algorithms have been enhanced to include the ability to predict alternative routes, barge routes, and population statistics for any route. The INTERLINE railroad network is essentially a computerized rail atlas describing the US railroad system. All rail lines, with the exception of industrial spurs, are included in the network. Inland waterways and deep water routes along with their interchange points with the US railroadsystem are also included. The network contains over 15,000 rail and barge segments (links) and over 13,000 stations, interchange points, ports, and other locations (nodes). The INTERLINE model has been converted to operate on an IBM-compatible personal computer. At least a 286 computer with a hard disk containing approximately 6 MB of free space is recommended. Enhanced program performance will be obtained by using arandom-access memory drive on a 386 or 486 computer.

  12. User's guide for THERMIT-2 : a version of THERMIT for both core-wide and subchannel analysis of light water reactors

    E-Print Network [OSTI]

    Kelly, J. E.

    1981-01-01T23:59:59.000Z

    This report provides the THERMIT-2 user with programming and input information. THERMIT-2 is the most recent version of THERMIT. This new version contains all of the features and options of the original version of THERMIT ...

  13. SAPHIRE technical reference manual: IRRAS/SARA Version 4.0

    SciTech Connect (OSTI)

    Russell, K.D.; Atwood, C.L.; Sattison, M.B. [EG and G Idaho, Inc., Idaho Falls, ID (United States); Rasmuson, D.M. [Nuclear Regulatory Commission, Washington, DC (United States)

    1993-01-01T23:59:59.000Z

    This report provides information on the principles used in the construction and operation of Version 4.0 of the Integrated Reliability and Risk Analysis System (IRRAS) and the System Analysis and Risk Assessment (SARA) system. It summarizes the fundamental mathematical concepts of sets and logic, fault trees, and probability. The report then describes the algorithms that these programs use to construct a fault tree and to obtain the minimal cut sets. It gives the formulas used to obtain the probability of the top event from the minimal cut sets, and the formulas for probabilities that are appropriate under various assumptions concerning repairability and mission time. It defines the measures of basic event importance that these programs can calculate. The report gives an overview of uncertainty analysis using simple Monte Carlo sampling or Latin Hypercube sampling, and states the algorithms used by these programs to generate random basic event probabilities from various distributions. Further references are given, and a detailed example of the reduction and quantification of a simple fault tree is provided in an appendix.

  14. TWOZONE USERS MANUAL

    E-Print Network [OSTI]

    Gadgil, Ashok J.

    2010-01-01T23:59:59.000Z

    ACDGHR ACDGHR IBASE IBUF CCM CODE COOLIT AIRINF CCC CCLATreflected radiation, S(23) = BG & CCM. S (23) = GROUNDradiation, S(24) = ION * CCM. S (24) = SOLAR FACTOR IAI *

  15. TWOZONE USERS MANUAL

    E-Print Network [OSTI]

    Gadgil, Ashok J.

    2008-01-01T23:59:59.000Z

    ACDGHR ACDGHR IBASE IBUF CCM CODE COOLIT AIRINF CCC CCLATreflected radiation, S(23) = BG & CCM. S (23) = GROUNDradiation, S(24) = ION * CCM. S (24) = SOLAR FACTOR IAI *

  16. ZAP User's Manual

    E-Print Network [OSTI]

    Bisognano, J.J.

    2010-01-01T23:59:59.000Z

    School, General Accelerator Physics, Vol. II, Gif-sur-in Advanced Accelerator Physics, Proc. CERN Accelerator2405 (1981). R. Ruth, in Accelerator Physics Issues for a

  17. ZAP User's Manual

    E-Print Network [OSTI]

    Bisognano, J.J.

    2010-01-01T23:59:59.000Z

    AC03-76SF00098. Now at CEBAF, 12070 Jefferson Ave. , NewportLaboratory J oseph J. Bisognano CEBAF IL DESCRIPTION In this

  18. JAZELLE users manual

    SciTech Connect (OSTI)

    Johnson, A.S.

    1990-04-01T23:59:59.000Z

    JAZELLE is a data management package, designed to provide facilities for data structure manipulation considerably more powerful than those provided by standard FORTRAN 77. Since JAZELLE is built on top of FORTRAN it cannot hope to provide the level of integration between program design and data structure typical of more modern languages, but by the use of data structure definitions (called TEMPLATES in JAZELLE jargon) and the power of MORTRAN macros, JAZELLE attempts to make the use and manipulation of data structures within programs as unobtrusive as possible.

  19. ZAP User's Manual

    E-Print Network [OSTI]

    Bisognano, J.J.

    2010-01-01T23:59:59.000Z

    1 he code has been written for a VAX computer and should runto modification on any model VAX using the VMS operatingto run the code on non-VAX hardware should be minimal. [One

  20. RADIATION ALERT User Manual

    E-Print Network [OSTI]

    Haller, Gary L.

    the Inspector in good condition, handle it with care, and observe the following precautions: · Do fields. · If you expect to not use the Inspector for longer than one month, remove the battery to avoid damage from battery corrosion. · Change the battery promptly when the battery indicator appears

  1. EMBOS User Manual

    SciTech Connect (OSTI)

    Metcalf, J. R.

    2011-10-01T23:59:59.000Z

    The Electronic Medical Business Operations System (EMBOS) is a state-of-the-art, web-based electronic medical records (EMR) system. It captures all patient data and the medical workflow, giving the medical provider a knowledge-based tool to support the health assessment process. EMBOS is a comprehensive system providing the following features: (1) Easy-to-use interface that reflects provider and support staff real-world workflows; (2) On-line patient questionnaires that enable pre-appointment updating of medical histories; (3) Patient scheduling and auto-scheduling of recurring exams with automated preappointment notifications and single-click patient registration; (4) Automated interfaces to lab devices and digital imaging systems; (5) Easy navigation to patient electronic health record summaries with drill-down functionality; (6) Support of psychological evaluation with results imported from standard psychological tools; (7) Real-time entry of clinical notes in easy-to-use exam forms; and (8) Roll-based function and data access, ensuring maximum security of patient health information.

  2. CUPS Software Users Manual

    E-Print Network [OSTI]

    Easy Software Products

    Use the -d option with the lp command to print to a specific printer: lp -d printer ... The standard options are described in Chapter 3, "Standard Printing Options".

  3. ZAP user's manual

    SciTech Connect (OSTI)

    Zisman, M.S.; Chattopadhyay, S.; Bisognano, J.J.

    1986-12-01T23:59:59.000Z

    The use and content of Phase I of the accelerator physics code ZAP, which calculates the performance of a storage ring in terms of the effects of beam intensity dependent phenomena and the limitations they impose. A brief overview is provided of the code and the types of calculations that can be performed with it. The types of calculations available include: single bunch thresholds, single bunch longitudinal parameters and energy scaling tables, longitudinal coupled-bunch instabilities, transverse coupled-bunch instabilities, gas scattering lifetime, free electron laser formulae, intrabeam scattering, Touschek scattering, and ion trapping formulae. Examples of the required inputs and resultant outputs for each of the options are given. The theoretical foundations behind ZAP are summarized, providing the relevant formulations, physical models, and particularly the equations used in the code in evaluating the various effects that are computed. (LEW)

  4. TWOZONE USERS MANUAL

    E-Print Network [OSTI]

    Gadgil, Ashok J.

    2010-01-01T23:59:59.000Z

    9. Sizing chart for air conditioner. z ~::~~OOOOOOOOOOOOOOOOoperation of either an air conditioner and/or an evaporativecooler, improved air-conditioner algorithm, ability to read

  5. TWOZONE USERS MANUAL

    E-Print Network [OSTI]

    Gadgil, Ashok J.

    2008-01-01T23:59:59.000Z

    9. Sizing chart for air conditioner. z ~::~~OOOOOOOOOOOOOOOOoperation of either an air conditioner and/or an evaporativecooler, improved air-conditioner algorithm, ability to read

  6. TWOZONE USERS MANUAL

    E-Print Network [OSTI]

    Gadgil, Ashok J.

    2008-01-01T23:59:59.000Z

    OF) effective lumped heat capacity of house, (Btu/OF). Wein the neighborhood of 3000 Btu/OF for a typical house ofC (effective) is 3200 BTU/o F. (Typically A moderately

  7. TWOZONE USERS MANUAL

    E-Print Network [OSTI]

    Gadgil, Ashok J.

    2010-01-01T23:59:59.000Z

    OF) effective lumped heat capacity of house, (Btu/OF). Wein the neighborhood of 3000 Btu/OF for a typical house ofC (effective) is 3200 BTU/o F. (Typically A moderately

  8. A User's Guide to UCLID version 1.0 Sanjit A. Seshia Shuvendu K. Lahiri Randal E. Bryant

    E-Print Network [OSTI]

    A User's Guide to UCLID version 1.0 Sanjit A. Seshia Shuvendu K. Lahiri Randal E. Bryant Sanjit.Seshia@cs.cmu.edu shuvendu@ece.cmu.edu Randy.Bryant@cs.cmu.edu School of Computer Science Department of Electrical & Computer

  9. THERM 5 / WINDOW 5 NFRC simulation manual

    SciTech Connect (OSTI)

    Mitchell, Robin; Kohler, Christian; Arasteh, Dariush; Carmody, John; Huizenga, Charlie; Curcija, Dragan

    2003-06-01T23:59:59.000Z

    This document, the ''THERM 5/WINDOW 5 NFRC Simulation Manual', discusses how to use the THERM and WINDOW programs to model products for NFRC certified simulations and assumes that the user is already familiar with those programs. In order to learn how to use these programs, it is necessary to become familiar with the material in both the ''THERM User's Manual'' and the ''WINDOW User's Manual''. In general, this manual references the User's Manuals rather than repeating the information. If there is a conflict between either of the User Manual and this ''THERM 5/''WINDOW 5 NFRC Simulation Manual'', the ''THERM 5/WINDOW 5 NFRC Simulation Manual'' takes precedence. In addition, if this manual is in conflict with any NFRC standards, the standards take precedence. For example, if samples in this manual do not follow the current taping and testing NFRC standards, the standards not the samples in this manual, take precedence.

  10. TurbSim User's Guide: Revised February 2007 for Version 1.21

    SciTech Connect (OSTI)

    Jonkman, B. J.; Buhl, M. L., Jr.

    2007-04-01T23:59:59.000Z

    This report provides a user's guide for the TurbSim code developed to provide a numerical simulation of a full-field flow that contains coherent turbulence structures.

  11. EMSL Operations Manual

    SciTech Connect (OSTI)

    Foster, Nancy S.

    2009-03-25T23:59:59.000Z

    This manual is a general resource tool to assist EMSL users and Laboratory staff within EMSL locate official policy, practice and subject matter experts. It is not intended to replace or amend any formal Battelle policy or practice. Users of this manual should rely only on Battelle’s Standard Based Management System (SBMS) for official policy. No contractual commitment or right of any kind is created by this manual. Battelle management reserves the right to alter, change, or delete any information contained within this manual without prior notice.

  12. EMSL Operations Manual

    SciTech Connect (OSTI)

    Foster, Nancy S.

    2009-06-18T23:59:59.000Z

    This manual is a general resource tool to assist EMSL users and Laboratory staff within EMSL locate official policy, practice and subject matter experts. It is not intended to replace or amend any formal Battelle policy or practice. Users of this manual should rely only on Battelle’s Standard Based Management System (SBMS) for official policy. No contractual commitment or right of any kind is created by this manual. Battelle management reserves the right to alter, change, or delete any information contained within this manual without prior notice.

  13. HANSF 1.3 Users Manual FAI/98-40-R2 Hanford Spent Nuclear Fuel (SNF) Safety Analysis Model [SEC 1 and 2

    SciTech Connect (OSTI)

    DUNCAN, D.R.

    1999-10-07T23:59:59.000Z

    The HANSF analysis tool is an integrated model considering phenomena inside a multi-canister overpack (MCO) spent nuclear fuel container such as fuel oxidation, convective and radiative heat transfer, and the potential for fission product release. This manual reflects the HANSF version 1.3.2, a revised version of 1.3.1. HANSF 1.3.2 was written to correct minor errors and to allow modeling of condensate flow on the MCO inner surface. HANSF 1.3.2 is intended for use on personal computers such as IBM-compatible machines with Intel processors running under Lahey TI or digital Visual FORTRAN, Version 6.0, but this does not preclude operation in other environments.

  14. China Energy Databook -- User Guide and Documentation, Version 7.0

    E-Print Network [OSTI]

    Fridley, Ed., David

    2008-01-01T23:59:59.000Z

    2001. Zhongguo Qiche Gongye Nianjian (China Automotive Guideto the China Energy Databook, Distribution Version IndustryEditorial Board of the China Automotive Industry Yearbook.

  15. HOW-TO / USER GUIDEfor Android Devices App Version 3.1.2.1

    E-Print Network [OSTI]

    Napier, Terrence

    app. Select "Accept" for App Permissions. Select Search then type & select Emergensee Launch GETTING STARTED Select "Sign In" or "Create Account" options. Accept "Terms of Use" and "User License · First Name · Last Name · Email Address · Mobile Phone Number · Create an Account Password · Re-Enter

  16. EMPHASIS(TM)/Nevada UTDEM User Guide Version 2.1.1.

    SciTech Connect (OSTI)

    Turner, C. David; Pasik, Michael F.; Pointon, Timothy D.; Pointon, Timothy D.; Cartwright, Keith

    2014-08-01T23:59:59.000Z

    The Unstructured Time - Domain ElectroMagnetics (UTDEM) portion of the EMPHASIS suite solves Maxwell's equations using finite - element techniques on unstructured meshes. This document provides user - specific information to facilitate the use of the code for ap plications of interest. Acknowledgement The authors would like to thank all of those individuals who have helped to bring EMPHASIS/Nevada to the point it is today, including Bill Bohnhoff, Rich Drake, and all of the NEVADA code team.

  17. Nuclear Detection Figure Of Merit (NDFOM) Version 1.2 User's Guide

    SciTech Connect (OSTI)

    Stroud, Phillip D [Los Alamos National Laboratory; Dufresne, Thomas A. [Los Alamos National Laboratory

    2012-08-27T23:59:59.000Z

    NDFOM is a detector database and detector evaluation system, accessible as a web service. It runs on the same server as the Patriot service, but uses port 8081. In this user's guide, we will use the example case that the patriot service is running on http://patriot.lanl.gov. Then the NDFOM service would be accessible at the URL http://patriot.lanl.gov:8081/ndfom. In addition to local server installations, common server locations are 1) a patriot server running on a virtual machine (use the virtual machine URL with :8081/ndfom), and 2) a patriot server running on a local machine (use http://localhost:8081/ndfom or http://127.0.0.1:8081/ndfom). The home screen provides panels to select detectors, a scenario, and a figure-of-merit. It also has an 'analyze' button, which will evaluate the selected figure-of-merit for the selected detectors, for the scenario selected by the user. The detector effectiveness evaluations are presented through the browser in a ranked list of detectors. The user does not need to log in to perform analysis with pre-supplied detectors, scenarios, and FOMs. The homepage view is shown in Figure 1. The first panel displays a list of the detectors in the current detector database. The user can select one, some, or all detectors to evaluate. On the right of each listed detector, there is a star icon. Clicking that icon will open a panel that displays the details about that detector, such as detector material, dimensions, thresholds, etc. The center panel displays the pre-supplied scenarios that are in the database. A scenario specifies the source of interest, the spectrum of the radiation, the background radiation spectrum, the distance or distance of closest approach, the allowable false positive rate, and the dwell time or speed. Scenario details can be obtained by clicking the star to the right of a scenario. A scenario can be selected by clicking it.

  18. Battery Technology Life Verification Test Manual Revision 1

    SciTech Connect (OSTI)

    Jon P. Christophersen

    2012-12-01T23:59:59.000Z

    The purpose of this Technology Life Verification Test (TLVT) Manual is to help guide developers in their effort to successfully commercialize advanced energy storage devices such as battery and ultracapacitor technologies. The experimental design and data analysis discussed herein are focused on automotive applications based on the United States Advanced Battery Consortium (USABC) electric vehicle, hybrid electric vehicle, and plug-in hybrid electric vehicle (EV, HEV, and PHEV, respectively) performance targets. However, the methodology can be equally applied to other applications as well. This manual supersedes the February 2005 version of the TLVT Manual (Reference 1). It includes criteria for statistically-based life test matrix designs as well as requirements for test data analysis and reporting. Calendar life modeling and estimation techniques, including a user’s guide to the corresponding software tool is now provided in the Battery Life Estimator (BLE) Manual (Reference 2).

  19. EMPHASIS(TM)/Nevada CABANA User Guide Version 2.1.1.

    SciTech Connect (OSTI)

    Turner, C. David; Bohnhoff, William J.; Powell, Jennifer L.

    2014-08-01T23:59:59.000Z

    The CABle ANAlysis (CABANA) portion of the EMPHASIS(TM) suite is designed specifically for the simulation of cable SGEMP. The code can be used to evaluate the response of a specific cable design to threat or to compare and minimize the relative response of difference d esigns. This document provides user - specific information to facilitate the application of the code to cables of interest. Acknowledgement The authors would like to thank all of those individuals who have helped to bring CABANA to the point it is today, including Gary Scrivner and Wesley Fan for many useful theory and design discussions.

  20. CalTOX (registered trademark), A multimedia total exposure model spreadsheet user's guide. Version 4.0(Beta)

    SciTech Connect (OSTI)

    McKone, T.E.; Enoch, K.G.

    2002-08-01T23:59:59.000Z

    CalTOX has been developed as a set of spreadsheet models and spreadsheet data sets to assist in assessing human exposures from continuous releases to multiple environmental media, i.e. air, soil, and water. It has also been used for waste classification and for setting soil clean-up levels at uncontrolled hazardous wastes sites. The modeling components of CalTOX include a multimedia transport and transformation model, multi-pathway exposure scenario models, and add-ins to quantify and evaluate uncertainty and variability. All parameter values used as inputs to CalTOX are distributions, described in terms of mean values and a coefficient of variation, rather than as point estimates or plausible upper values such as most other models employ. This probabilistic approach allows both sensitivity and uncertainty analyses to be directly incorporated into the model operation. This manual provides CalTOX users with a brief overview of the CalTOX spreadsheet model and provides instructions for using the spreadsheet to make deterministic and probabilistic calculations of source-dose-risk relationships.

  1. Xyce parallel electronic simulator users%3CU%2B2019%3E guide, version 6.0.

    SciTech Connect (OSTI)

    Keiter, Eric Richard; Mei, Ting; Russo, Thomas V.; Schiek, Richard Louis; Thornquist, Heidi K.; Verley, Jason C.; Fixel, Deborah A.; Coffey, Todd Stirling; Pawlowski, Roger Patrick; Warrender, Christina E.; Baur, David G. [Raytheon, Albuquerque, NM

    2013-08-01T23:59:59.000Z

    This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been designed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas: Capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). This includes support for most popular parallel and serial computers. A differential-algebraic-equation (DAE) formulation, which better isolates the device model package from solver algorithms. This allows one to develop new types of analysis without requiring the implementation of analysis-specific device models. Device models that are specifically tailored to meet Sandia's needs, including some radiationaware devices (for Sandia users only). Object-oriented code design and implementation using modern coding practices. Xyce is a parallel code in the most general sense of the phrase - a message passing parallel implementation - which allows it to run efficiently a wide range of computing platforms. These include serial, shared-memory and distributed-memory parallel platforms. Attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows.

  2. Budget Execution Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-09-30T23:59:59.000Z

    The manual provides the user with a single source for references, definitions, and detailed procedures for distributing and controlling Department funds.Canceled by DOE M 135.1-1A. Does not cancel other directives.

  3. EIA model documentation: World oil refining logistics demand model,``WORLD`` reference manual. Version 1.1

    SciTech Connect (OSTI)

    Not Available

    1994-04-11T23:59:59.000Z

    This manual is intended primarily for use as a reference by analysts applying the WORLD model to regional studies. It also provides overview information on WORLD features of potential interest to managers and analysts. Broadly, the manual covers WORLD model features in progressively increasing detail. Section 2 provides an overview of the WORLD model, how it has evolved, what its design goals are, what it produces, and where it can be taken with further enhancements. Section 3 reviews model management covering data sources, managing over-optimization, calibration and seasonality, check-points for case construction and common errors. Section 4 describes in detail the WORLD system, including: data and program systems in overview; details of mainframe and PC program control and files;model generation, size management, debugging and error analysis; use with different optimizers; and reporting and results analysis. Section 5 provides a detailed description of every WORLD model data table, covering model controls, case and technology data. Section 6 goes into the details of WORLD matrix structure. It provides an overview, describes how regional definitions are controlled and defines the naming conventions for-all model rows, columns, right-hand sides, and bounds. It also includes a discussion of the formulation of product blending and specifications in WORLD. Several Appendices supplement the main sections.

  4. National synchrotron light source user's manual: Guide to the VUV and x-ray beamlines: Third edition

    SciTech Connect (OSTI)

    Gmuer, N.F.; Thomlinson, W.; White-DePace, S.

    1989-01-01T23:59:59.000Z

    This report contains information on the following topics: A Word on the Writing of Beamline Descriptions; Beamline Equipment Utilization for General Users; the Vacuum Ultraviolet (VUV) Storage Ring and Beamlines; VUV Beamline Descriptions--An Explanation; VUV Beamline Descriptions; X-Ray Storage Ring and Beamlines; X-Ray Beamline Descriptions--An Explanation; and X-Ray Beamline Descriptions.

  5. Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrinceton PlasmaAfternoon4.CCSM4large.jpgbriefing about next

  6. China Energy Databook -- User Guide and Documentation, Version 7.0

    SciTech Connect (OSTI)

    Fridley, Ed., David; Aden, Ed., Nathaniel; Lu, Ed., Hongyou; Zheng, Ed., Nina

    2008-10-01T23:59:59.000Z

    Since 2001, China's energy consumption has grown more quickly than expected by Chinese or international observers. This edition of the China Energy Databook traces the growth of the energy system through 2006. As with version six, the Databook covers a wide range of energy-related information, including resources and reserves, production, consumption, investment, equipment, prices, trade, environment, economy, and demographic data. These data provide an extensive quantitative foundation for understanding China's growing energy system. In addition to providing updated data through 2006, version seven includes revised energy and GDP data back to the 1990s. In the 2005 China Energy Statistical Yearbook, China's National Bureau of Statistics (NBS) published revised energy production, consumption, and usage data covering the years 1998 to 2003. Most of these revisions related to coal production and consumption, though natural gas data were also adjusted. In order to accommodate underestimated service sector growth, the NBS also released revised GDP data in 2005. Beyond the inclusion of historical revisions in the seventh edition, no attempt has been made to rectify known or suspected issues in the official data. The purpose of this volume is to provide a common basis for understanding China's energy system. In order to broaden understanding of China's energy system, the Databook includes information from industry yearbooks, periodicals, and government websites in addition to data published by NBS. Rather than discarding discontinued data series, information that is no longer possible to update has been placed in C section tables and figures in each chapter. As with previous versions, the data are presented in digital database and tabular formats. The compilation of updated data is the result of tireless work by Lu Hongyou and Nina Zheng.

  7. Corrective Actin Tracking System CATS User's Guide for Direct Web Access, Version 4.0

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'sEnergyTexas1.SpaceFluorControlsEnergy Copy of FINAL5 AUDIT

  8. Salinas : theory manual.

    SciTech Connect (OSTI)

    Walsh, Timothy Francis; Reese, Garth M.; Bhardwaj, Manoj Kumar

    2004-08-01T23:59:59.000Z

    This manual describes the theory behind many of the constructs in Salinas. For a more detailed description of how to use Salinas , we refer the reader to Salinas, User's Notes. Many of the constructs in Salinas are pulled directly from published material. Where possible, these materials are referenced herein. However, certain functions in Salinas are specific to our implementation. We try to be far more complete in those areas. The theory manual was developed from several sources including general notes, a programer-notes manual, the user's notes and of course the material in the open literature.

  9. version

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: EnergyWyandanch,Eaga SolarZoloHomeimprovesecurity

  10. User manual for INVICE 0.1-beta : a computer code for inverse analysis of isentropic compression experiments.

    SciTech Connect (OSTI)

    Davis, Jean-Paul

    2005-03-01T23:59:59.000Z

    INVICE (INVerse analysis of Isentropic Compression Experiments) is a FORTRAN computer code that implements the inverse finite-difference method to analyze velocity data from isentropic compression experiments. This report gives a brief description of the methods used and the options available in the first beta version of the code, as well as instructions for using the code.

  11. Assessments A Training Manual

    E-Print Network [OSTI]

    Modern Industrial Assessments A Training Manual Version 2.0 Sponsored by: Produced by: Dr. Michael. Modern Industrial Assessments: A Training Manual, grew from the desires of the United States Department conservation and waste minimization / pollution prevention training courses and information agencies sponsored

  12. TH{_}PULSE: Program for Calculating Infiltration of Episodic Liquid Fingers in Superheated Rock Fractures - Theory, User's Manual and Sample Applications

    SciTech Connect (OSTI)

    Birkholzer, Jens T.

    2002-07-10T23:59:59.000Z

    This report describes the code TH{_}PULSE developed at the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab). The code handles gravity-driven flow of episodic infiltration events entering above-boiling rock-temperature regions. Such temperature conditions are expected, for example, after emplacement of heat-generating nuclear waste in underground repositories. Complex fluid-flow and heat-transfer phenomena occur, as the infiltrating water is subject to vigorous boiling from the hot rock. A new efficient semi-analytical method is presented herein that simulates such phenomena. It is assumed that flow forms in localized preferential flow paths (referred to as ''fingers''). The first section of this report gives the conceptual and mathematical background for the solution scheme. The second section is a user's manual for TH{_}PULSE, providing all information required to run the code, including a detailed description of the input and output files. In the third section, the new solution scheme is applied to several test cases. Sample simulations are performed for conditions representative of the potential nuclear waste repository at Yucca Mountain, Nevada. A brief summary is given in Section 4.

  13. User's manual for DELSOL2: a computer code for calculating the optical performance and optimal system design for solar-thermal central-receiver plants

    SciTech Connect (OSTI)

    Dellin, T.A.; Fish, M.J.; Yang, C.L.

    1981-08-01T23:59:59.000Z

    DELSOL2 is a revised and substantially extended version of the DELSOL computer program for calculating collector field performance and layout, and optimal system design for solar thermal central receiver plants. The code consists of a detailed model of the optical performance, a simpler model of the non-optical performance, an algorithm for field layout, and a searching algorithm to find the best system design. The latter two features are coupled to a cost model of central receiver components and an economic model for calculating energy costs. The code can handle flat, focused and/or canted heliostats, and external cylindrical, multi-aperture cavity, and flat plate receivers. The program optimizes the tower height, receiver size, field layout, heliostat spacings, and tower position at user specified power levels subject to flux limits on the receiver and land constraints for field layout. The advantages of speed and accuracy characteristic of Version I are maintained in DELSOL2.

  14. Revised users manual, Pulverized Coal Gasification or Combustion: 2-dimensional (87-PCGC-2): Final report, Volume 2. [87-PCGC-2

    SciTech Connect (OSTI)

    Smith, P.J.; Smoot, L.D.; Brewster, B.S.

    1987-12-01T23:59:59.000Z

    A two-dimensional, steady-state model for describing a variety of reactive and non-reactive flows, including pulverized coal combustion and gasification, is presented. Recent code revisions and additions are described. The model, referred to as 87-PCGC-2, is applicable to cylindrical axi-symmetric systems. Turbulence is accounted for in both the fluid mechanics equations and the combustion scheme. Radiation from gases, walls, and particles is taken into account using either a flux method or discrete ordinates method. The particle phase is modeled in a Lagrangian framework, such that mean paths of particle groups are followed. Several multi-step coal devolatilization schemes are included along with a heterogeneous reaction scheme that allows for both diffusion and chemical reaction. Major gas-phase reactions are modeled assuming local instantaneous equilibrium, and thus the reaction rates are limited by the turbulent rate mixing. A NO/sub x/ finite rate chemistry submodel is included which integrates chemical kinetics and the statistics of the turbulence. The gas phase is described by elliptic partial differential equations that are solved by an iterative line-by-line technique. Under-relaxation is used to achieve numerical stability. The generalized nature of the model allows for calculation of isothermal fluid mechanicsgaseous combustion, droplet combustion, particulate combustion and various mixtures of the above, including combustion of coal-water and coal-oil slurries. Both combustion and gasification environments are permissible. User information and theory are presented, along with sample problems. 106 refs.

  15. SMACS: a system of computer programs for probabilistic seismic analysis of structures and subsystems. Volume I. User's manual

    SciTech Connect (OSTI)

    Maslenikov, O.R.; Johnson, J.J.; Tiong, L.W.; Mraz, M.J.; Bumpus, S.; Gerhard, M.A.

    1985-03-01T23:59:59.000Z

    The SMACS (Seismic Methodology Analysis Chain with Statistics) system of computer programs, one of the major computational tools of the Seismic Safety Margins Research Program (SSMRP), links the seismic input with the calculation of soil-structure interaction, major structure response, and subsystem response. The seismic input is defined by ensembles of acceleration time histories in three orthogonal directions. Soil-structure interaction and detailed structural response are then determined simultaneously, using the substructure approach to SSI as implemented in the CLASSI family of computer programs. The modus operandi of SMACS is to perform repeated deterministic analyses, each analysis simulating an earthquake occurrence. Parameter values for each simulation are sampled from assumed probability distributions according to a Latin hypercube experimental design. The user may specify values of the coefficients of variation (COV) for the distributions of the input variables. At the heart of the SMACS system is the computer program SMAX, which performs the repeated SSI response calculations for major structure and subsystem response. This report describes SMAX and the pre- and post-processor codes, used in conjunction with it, that comprise the SMACS system. (ACR)

  16. DAKOTA, a multilevel parellel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis:version 4.0 uers's manual.

    SciTech Connect (OSTI)

    Griffin, Joshua D. (Sandai National Labs, Livermore, CA); Eldred, Michael Scott; Martinez-Canales, Monica L. (Sandai National Labs, Livermore, CA); Watson, Jean-Paul; Kolda, Tamara Gibson (Sandai National Labs, Livermore, CA); Giunta, Anthony Andrew; Adams, Brian M.; Swiler, Laura Painton; Williams, Pamela J. (Sandai National Labs, Livermore, CA); Hough, Patricia Diane (Sandai National Labs, Livermore, CA); Gay, David M.; Dunlavy, Daniel M.; Eddy, John P.; Hart, William Eugene; Brown, Shannon L.

    2006-10-01T23:59:59.000Z

    The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible and extensible interface between simulation codes and iterative analysis methods. DAKOTA contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quantification with sampling, reliability, and stochastic finite element methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the DAKOTA toolkit provides a flexible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a user's manual for the DAKOTA software and provides capability overviews and procedures for software execution, as well as a variety of example studies.

  17. User's guide to DIANE Version 2. 1: A microcomputer software package for modeling battery performance in electric vehicle applications

    SciTech Connect (OSTI)

    Marr, W.W.; Walsh, W.J. (Argonne National Lab., IL (USA). Energy Systems Div.); Symons, P.C. (Electrochemical Engineering Consultants, Inc., Morgan Hill, CA (USA))

    1990-06-01T23:59:59.000Z

    DIANE is an interactive microcomputer software package for the analysis of battery performance in electric vehicle (EV) applications. The principal objective of this software package is to enable the prediction of EV performance on the basis of laboratory test data for batteries. The model provides a second-by-second simulation of battery voltage and current for any specified velocity/time or power/time profile. The capability of the battery is modeled by an algorithm that relates the battery voltage to the withdrawn current, taking into account the effect of battery depth-of-discharge (DOD). Because of the lack of test data and other constraints, the current version of DIANE deals only with vehicles using fresh'' batteries with or without regenerative braking. Deterioration of battery capability due to aging can presently be simulated with user-input parameters accounting for an increase of effective internal resistance and/or a decrease of cell no-load voltage. DIANE 2.1 is written in FORTRAN language for use on IBM-compatible microcomputers. 7 refs.

  18. Transform Version 3.4 May, 1999 Edition

    E-Print Network [OSTI]

    Cohen, David

    Transform Version 3.4 May, 1999 Edition Copyright ©1990-1999 Fortner Software LLC and its Licensors. All Rights Reserved. Transform User's Guide and Reference Manual #12;Research Systems, Inc Software and its logo are trademarks of Fortner Software LLC Transform, Noesys, Plot,T3D and the HDF

  19. USER MANUAL IMPORTANT SAFETY PRECAUTIONS

    E-Print Network [OSTI]

    Skorobogatiy, Maksim

    or local power company. For products intended to operate from battery power, or other sources, refer service personnel.. 16.Ventilation - Slots and openings in the cabinet are provided for ventilation or rack unless proper ventilation is the manufacturers instructions have been adhered to. 17.Attachments

  20. TNG-GENOA User's Manual

    SciTech Connect (OSTI)

    Guimaraes, F.B.; Fu, C.Y.

    2000-10-01T23:59:59.000Z

    The aim of this work is to describe the basic aspects of the codes TNG and GENOA. These codes have been developed and used at ORNL in the last decades for the analysis and evaluation of neutron induced nuclear data. In the energy region of the unresolved resonances range and high energies range. These evaluations have been performed in support of various projects and were included in the ENDF/B library. The implementation of these codes into the code SAMMY has been performed as part of a program of the creation of a general Nuclear Data evaluation tool for the analysis of reactions in a broad energy range, from few eV up to about 150 MeV.

  1. User Manual Frick Chemistry Laboratory

    E-Print Network [OSTI]

    Torquato, Salvatore

    the atrium connects the laboratory wing with the administrative offices. This provides a light-filled space to make the new Frick Chemistry Laboratory (and the surrounding natural sciences neighborhood) one technologies that reduce energy demand and con- serve water. The design and construction teams have implemented

  2. User Manual Photon Transport Simulator

    E-Print Network [OSTI]

    Chapman, Glenn H.

    ................................................................................................................16 Text Output File (.mco

  3. Khepera III Stargazer User manual

    E-Print Network [OSTI]

    Napp, Nils

    . Tharin LRF/battery card ON update Trademark Acknowledgements: IBM PC : International Business Machines................................................................................................. 2 1.3 RECYCLING

  4. KHIIIKHIIIKHIIIKHIII----LRFLRFLRFLRF User manual

    E-Print Network [OSTI]

    Napp, Nils

    ............................................................................................... 2 1.3. RECYCLING.............................................................. 6 2.5. BATTERY

  5. User Manual and Development Kit

    E-Print Network [OSTI]

    Berns, Hans-Gerd

    of Conformity (According to ISO/IEC Guide 22 and EN 45014) Manufacturer's Name & Address: Lantronix 15353 Emissions: EN55022: 1998 (IEC/CSPIR22: 1993) Radiated RF emissions, 30MHz-1000MHz Conducted RF Emissions ­ Telecom Lines ­ 150KHz ­ 30MHz FCC Part 15, Subpart B, Class B IEC 1000-3-2/A14: 2000 IEC 1000-3-3: 1994

  6. User's Manual James A. Morgan

    E-Print Network [OSTI]

    is a graphics software package available (at least) on Sun Workstations, VAX/VMS systems, Linux machines, Cray. Sun is a registered trademark and Sun Workstation a trademark of Sun Microsystems Inc. VAX and VMS

  7. MCNP-DSP users manual

    SciTech Connect (OSTI)

    Valentine, T.E.

    1997-01-01T23:59:59.000Z

    The Monte Carlo code MCNP-DSP was developed from the Los Alamos MCNP4a code to calculate the time and frequency response statistics obtained from the {sup 252}Cf-source-driven frequency analysis measurements. This code can be used to validate calculational methods and cross section data sets from subcritical experiments. This code provides a more general model for interpretation and planning of experiments for nuclear criticality safety, nuclear safeguards, and nuclear weapons identification and replaces the use of point kinetics models for interpreting the measurements. The use of MCNP-DSP extends the usefulness of this measurement method to systems with much lower neutron multiplication factors.

  8. User Manual Monitor UPC-900

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    hazardous conditions. WARNING! Avoid exposure to hazardous laser radiation. Caution notices Caution! The Caution sign highlights instructions or conditions that must be followed to avoid damage to the product ...............................................................................................3 2.3 Installing the optical unit

  9. INSTRUCTION MANUAL USER SYSTEM GUIDE

    E-Print Network [OSTI]

    Rubloff, Gary W.

    damage or minor injury. Emphasizes essential informationNOTE CAUTION WARNING #12;Unit Warning Labels 2 Label Warning Label #12;3 LASER RADIATION Do not stare into beam. 0.5mW max Cw 632.8nm CIASS2 Laser: sampling signal generation and optical axis adjustment. When the FTIR cover is on, the sampling signal

  10. POET with C++ Reference Manual

    E-Print Network [OSTI]

    Buhr, Peter Allan

    POET with #22;C++ Reference Manual University of Waterloo David Taylor and Peter A. Buhr c #3; 1996 July 23, 2006 #3; Permission is granted to make copies for personal or educational use #12; 2 POET Reference Manual Contents 1 Introduction 3 2 Before Starting POET 3 3 Accessing POET 3 4 User Interface 3 5

  11. Salinas : theory manual.

    SciTech Connect (OSTI)

    Walsh, Timothy Francis; Reese, Garth M.; Bhardwaj, Manoj Kumar

    2011-11-01T23:59:59.000Z

    Salinas provides a massively parallel implementation of structural dynamics finite element analysis, required for high fidelity, validated models used in modal, vibration, static and shock analysis of structural systems. This manual describes the theory behind many of the constructs in Salinas. For a more detailed description of how to use Salinas, we refer the reader to Salinas, User's Notes. Many of the constructs in Salinas are pulled directly from published material. Where possible, these materials are referenced herein. However, certain functions in Salinas are specific to our implementation. We try to be far more complete in those areas. The theory manual was developed from several sources including general notes, a programmer notes manual, the user's notes and of course the material in the open literature.

  12. USER’S GUIDE of TOUGH2-EGS: A Coupled Geomechanical and Reactive Geochemical Simulator for Fluid and Heat Flow in Enhanced Geothermal Systems Version 1.0

    SciTech Connect (OSTI)

    Fakcharoenphol, Perapon [Colorado School of Mines; Xiong, Yi [Colorado School of Mines; Hu, Litang; Winterfeld, Philip H. [Colorado School of Mines; Xu, Tianfu [Lawrence Berkeley National Laboratory; Wu, Yu-Shu [Colorado School of Mines

    2013-05-01T23:59:59.000Z

    TOUGH2-EGS is a numerical simulation program coupling geomechanics and chemical reactions for fluid and heat flows in porous media and fractured reservoirs of enhanced geothermal systems. The simulator includes the fully-coupled geomechanical (THM) module, the fully-coupled geochemical (THC) module, and the sequentially coupled reactive geochemistry (THMC) module. The fully-coupled flow-geomechanics model is developed from the linear elastic theory for the thermo-poro-elastic system and is formulated with the mean normal stress as well as pore pressure and temperature. The chemical reaction is sequentially coupled after solution of flow equations, which provides the flow velocity and phase saturation for the solute transport calculation at each time step. In addition, reservoir rock properties, such as porosity and permeability, are subjected to change due to rock deformation and chemical reactions. The relationships between rock properties and geomechanical and chemical effects from poro-elasticity theories and empirical correlations are incorporated into the simulator. This report provides the user with detailed information on both mathematical models and instructions for using TOUGH2-EGS for THM, THC or THMC simulations. The mathematical models include the fluid and heat flow equations, geomechanical equation, reactive geochemistry equations, and discretization methods. Although TOUGH2-EGS has the capability for simulating fluid and heat flows coupled with both geomechanical and chemical effects, it is up to the users to select the specific coupling process, such as THM, THC, or THMC in a simulation. There are several example problems illustrating the applications of this program. These example problems are described in details and their input data are presented. The results demonstrate that this program can be used for field-scale geothermal reservoir simulation with fluid and heat flow, geomechanical effect, and chemical reaction in porous and fractured media.

  13. A user`s guide to LUGSAN 1.1: A computer program to calculate and archive lug and sway brace loads for aircraft-carried stores

    SciTech Connect (OSTI)

    Dunn, W.N. [Sandia National Labs., Albuquerque, NM (United States). Experimental Structural Dynamics Dept.

    1994-07-01T23:59:59.000Z

    LUGSAN (LUG and Sway brace ANalysis) is a analysis and database computer program designed to calculate store lug and sway brace loads from aircraft captive carriage. LUGSAN combines the rigid body dynamics code, SWAY85 and the maneuver calculation code, MILGEN, with an INGRES database to function both as an analysis and archival system. This report describes the operation of the LUGSAN application program, including function description, layout examples, and sample sessions. This report is intended to be a user`s manual for version 1.1 of LUGSAN operating on the VAX/VMS system. The report is not intended to be a programmer or developer`s manual.

  14. Cielo Computational Environment Usage Model With Mappings to ACE Requirements for the General Availability User Environment Capabilities Release Version 1.1

    SciTech Connect (OSTI)

    Vigil,Benny Manuel [Los Alamos National Laboratory; Ballance, Robert [SNL; Haskell, Karen [SNL

    2012-08-09T23:59:59.000Z

    Cielo is a massively parallel supercomputer funded by the DOE/NNSA Advanced Simulation and Computing (ASC) program, and operated by the Alliance for Computing at Extreme Scale (ACES), a partnership between Los Alamos National Laboratory (LANL) and Sandia National Laboratories (SNL). The primary Cielo compute platform is physically located at Los Alamos National Laboratory. This Cielo Computational Environment Usage Model documents the capabilities and the environment to be provided for the Q1 FY12 Level 2 Cielo Capability Computing (CCC) Platform Production Readiness Milestone. This document describes specific capabilities, tools, and procedures to support both local and remote users. The model is focused on the needs of the ASC user working in the secure computing environments at Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory, or Sandia National Laboratories, but also addresses the needs of users working in the unclassified environment. The Cielo Computational Environment Usage Model maps the provided capabilities to the tri-Lab ASC Computing Environment (ACE) Version 8.0 requirements. The ACE requirements reflect the high performance computing requirements for the Production Readiness Milestone user environment capabilities of the ASC community. A description of ACE requirements met, and those requirements that are not met, are included in each section of this document. The Cielo Computing Environment, along with the ACE mappings, has been issued and reviewed throughout the tri-Lab community.

  15. Nuclear material operations manual

    SciTech Connect (OSTI)

    Tyler, R.P.

    1981-02-01T23:59:59.000Z

    This manual provides a concise and comprehensive documentation of the operating procedures currently practiced at Sandia National Laboratories with regard to the management, control, and accountability of nuclear materials. The manual is divided into chapters which are devoted to the separate functions performed in nuclear material operations-management, control, accountability, and safeguards, and the final two chapters comprise a document which is also issued separately to provide a summary of the information and operating procedures relevant to custodians and users of radioactive and nuclear materials. The manual also contains samples of the forms utilized in carrying out nuclear material activities. To enhance the clarity of presentation, operating procedures are presented in the form of playscripts in which the responsible organizations and necessary actions are clearly delineated in a chronological fashion from the initiation of a transaction to its completion.

  16. CATDAT : A Program for Parametric and Nonparametric Categorical Data Analysis : User's Manual Version 1.0, 1998-1999 Progress Report.

    SciTech Connect (OSTI)

    Peterson, James T.

    1999-12-01T23:59:59.000Z

    Natural resource professionals are increasingly required to develop rigorous statistical models that relate environmental data to categorical responses data. Recent advances in the statistical and computing sciences have led to the development of sophisticated methods for parametric and nonparametric analysis of data with categorical responses. The statistical software package CATDAT was designed to make some of these relatively new and powerful techniques available to scientists. The CATDAT statistical package includes 4 analytical techniques: generalized logit modeling; binary classification tree; extended K-nearest neighbor classification; and modular neural network.

  17. Laser Safety Manual Scope and Applicability

    E-Print Network [OSTI]

    Rhoads, James

    Laser Safety Manual Scope and Applicability This manual applies to all personnel working at or visiting ASU who procure or utilize Class III and Class IV lasers and laser systems. Procurement and user of Class I and Class II laser equipment, such as laser pointers and compact disk players, do not normally

  18. DAKOTA, a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis:version 4.0 reference manual

    SciTech Connect (OSTI)

    Griffin, Joshua D. (Sandai National Labs, Livermore, CA); Eldred, Michael Scott; Martinez-Canales, Monica L. (Sandai National Labs, Livermore, CA); Watson, Jean-Paul; Kolda, Tamara Gibson (Sandai National Labs, Livermore, CA); Adams, Brian M.; Swiler, Laura Painton; Williams, Pamela J. (Sandai National Labs, Livermore, CA); Hough, Patricia Diane (Sandai National Labs, Livermore, CA); Gay, David M.; Dunlavy, Daniel M.; Eddy, John P.; Hart, William Eugene; Guinta, Anthony A.; Brown, Shannon L.

    2006-10-01T23:59:59.000Z

    The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible and extensible interface between simulation codes and iterative analysis methods. DAKOTA contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quantification with sampling, reliability, and stochastic finite element methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the DAKOTA toolkit provides a flexible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a reference manual for the commands specification for the DAKOTA software, providing input overviews, option descriptions, and example specifications.

  19. BREATH Version 1.1, Coupled flow and energy transport in porous media: Simulator description and user guide

    SciTech Connect (OSTI)

    Stothoff, S.A.

    1995-07-01T23:59:59.000Z

    This document describes the BREATH computer code, including the mathematical and numerical formulation for the simulator, usage description, and sample input files with corresponding output files. The BREATH computer code is designed to simulate one-dimensional flow of a liquid phase and dispersive transport of the corresponding vapor species, coupled with energy transfer, in a heterogeneous porous medium. The BREATH simulator has been developed for use in auxiliary analyses which are a part of the Nuclear Regulatory Commission Iterative Performance Assessment program. The simulator was developed in response to the observation from Total System Performance Assessments by both the Nuclear Regulatory Commission and the US Department of Energy that total-system performance at the Yucca Mountain site in Nevada is highly sensitive to the infiltration rate. Accordingly, this first version of the code is primarily intended to simulate processes important to infiltration and evaporation in climatic and hydrologic near-surface environments representative of the Yucca Mountain site. The simulation model assumes that there is an immobile solid phase, a mobile liquid phase, and an optional infinitely mobile gas phase. The liquid may have an associated vapor species, assumed to be in equilibrium with the liquid phase. The vapor phase may only move via diffusion within the gas phase. Energy may be transported in the form of enthalpy, thermal conduction, and latent heat. The temperature range is assumed to be between 0 and 100{degree}C. Available boundary conditions include six liquid-phase conditions, four vapor-species conditions, and three energy conditions, all of which may be applied independently to either end of the domain. Meteorological conditions may also be input, thereby providing additional control over boundary fluxes. Boundary conditions may be updated as often as desired.

  20. Helping Users Avoid Bugs in GUI Applications Amir Michail

    E-Print Network [OSTI]

    Xie, Tao

    . The idea of avoiding bugs is not new: it is already done manually by users. Anyone who has encountered, the manual approach to bug avoidance does not make it easy for users to learn from other users. For exam- pleHelping Users Avoid Bugs in GUI Applications Amir Michail School of Computer Science

  1. PNNL Hoisting and Rigging Manual

    SciTech Connect (OSTI)

    Haynie, Todd O.; Fullmer, Michael W.

    2008-12-29T23:59:59.000Z

    This manual describes the safe and cost effective operation, inspection, maintenance, and repair requirements for cranes, hoists, fork trucks, slings, rigging hardware, and hoisting equipment. It is intended to be a user's guide to requirements, codes, laws, regulations, standards, and practices that apply to Pacific Northwest National Laboratory (PNNL) and its subcontractors.

  2. USER’S GUIDE of TOUGH2-EGS-MP: A Massively Parallel Simulator with Coupled Geomechanics for Fluid and Heat Flow in Enhanced Geothermal Systems VERSION 1.0

    SciTech Connect (OSTI)

    Xiong, Yi [Colorado School of Mines; Fakcharoenphol, Perapon [Colorado School of Mines; Wang, Shihao [Colorado School of Mines; Winterfeld, Philip H. [Colorado School of Mines; Zhang, Keni [Lawrence Berkeley National Laboratory; Wu, Yu-Shu [Colorado School of Mines

    2013-12-01T23:59:59.000Z

    TOUGH2-EGS-MP is a parallel numerical simulation program coupling geomechanics with fluid and heat flow in fractured and porous media, and is applicable for simulation of enhanced geothermal systems (EGS). TOUGH2-EGS-MP is based on the TOUGH2-MP code, the massively parallel version of TOUGH2. In TOUGH2-EGS-MP, the fully-coupled flow-geomechanics model is developed from linear elastic theory for thermo-poro-elastic systems and is formulated in terms of mean normal stress as well as pore pressure and temperature. Reservoir rock properties such as porosity and permeability depend on rock deformation, and the relationships between these two, obtained from poro-elasticity theories and empirical correlations, are incorporated into the simulation. This report provides the user with detailed information on the TOUGH2-EGS-MP mathematical model and instructions for using it for Thermal-Hydrological-Mechanical (THM) simulations. The mathematical model includes the fluid and heat flow equations, geomechanical equation, and discretization of those equations. In addition, the parallel aspects of the code, such as domain partitioning and communication between processors, are also included. Although TOUGH2-EGS-MP has the capability for simulating fluid and heat flows coupled with geomechanical effects, it is up to the user to select the specific coupling process, such as THM or only TH, in a simulation. There are several example problems illustrating applications of this program. These example problems are described in detail and their input data are presented. Their results demonstrate that this program can be used for field-scale geothermal reservoir simulation in porous and fractured media with fluid and heat flow coupled with geomechanical effects.

  3. DAKOTA : a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis. Version 5.0, developers manual.

    SciTech Connect (OSTI)

    Eldred, Michael Scott; Dalbey, Keith R.; Bohnhoff, William J.; Adams, Brian M.; Swiler, Laura Painton; Hough, Patricia Diane (Sandia National Laboratories, Livermore, CA); Gay, David M.; Eddy, John P.; Haskell, Karen H.

    2010-05-01T23:59:59.000Z

    The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible and extensible interface between simulation codes and iterative analysis methods. DAKOTA contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quantification with sampling, reliability, and stochastic finite element methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the DAKOTA toolkit provides a flexible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a developers manual for the DAKOTA software and describes the DAKOTA class hierarchies and their interrelationships. It derives directly from annotation of the actual source code and provides detailed class documentation, including all member functions and attributes.

  4. Dakota, a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis:version 4.0 developers manual.

    SciTech Connect (OSTI)

    Griffin, Joshua D. (Sandia National lababoratory, Livermore, CA); Eldred, Michael Scott; Martinez-Canales, Monica L. (Sandia National lababoratory, Livermore, CA); Watson, Jean-Paul; Kolda, Tamara Gibson (Sandia National lababoratory, Livermore, CA); Giunta, Anthony Andrew; Adams, Brian M.; Swiler, Laura Painton; Williams, Pamela J. (Sandia National lababoratory, Livermore, CA); Hough, Patricia Diane (Sandia National lababoratory, Livermore, CA); Gay, David M.; Dunlavy, Daniel M.; Eddy, John P.; Hart, William Eugene; Brown, Shannon L.

    2006-10-01T23:59:59.000Z

    The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible and extensible interface between simulation codes and iterative analysis methods. DAKOTA contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quantification with sampling, reliability, and stochastic finite element methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the DAKOTA toolkit provides a flexible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a developers manual for the DAKOTA software and describes the DAKOTA class hierarchies and their interrelationships. It derives directly from annotation of the actual source code and provides detailed class documentation, including all member functions and attributes.

  5. User Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulence mayUndergraduateAboutUser Services Print The UserUser

  6. Biosafety Manual

    SciTech Connect (OSTI)

    King, Bruce W.

    2010-05-18T23:59:59.000Z

    Work with or potential exposure to biological materials in the course of performing research or other work activities at Lawrence Berkeley National Laboratory (LBNL) must be conducted in a safe, ethical, environmentally sound, and compliant manner. Work must be conducted in accordance with established biosafety standards, the principles and functions of Integrated Safety Management (ISM), this Biosafety Manual, Chapter 26 (Biosafety) of the Health and Safety Manual (PUB-3000), and applicable standards and LBNL policies. The purpose of the Biosafety Program is to protect workers, the public, agriculture, and the environment from exposure to biological agents or materials that may cause disease or other detrimental effects in humans, animals, or plants. This manual provides workers; line management; Environment, Health, and Safety (EH&S) Division staff; Institutional Biosafety Committee (IBC) members; and others with a comprehensive overview of biosafety principles, requirements from biosafety standards, and measures needed to control biological risks in work activities and facilities at LBNL.

  7. RADTRAN 6 technical manual.

    SciTech Connect (OSTI)

    Weiner, Ruth F.; Neuhauser, Karen Sieglinde; Heames, Terence John; O'Donnell, Brandon M.; Dennis, Matthew L.

    2014-01-01T23:59:59.000Z

    This Technical Manual contains descriptions of the calculation models and mathematical and numerical methods used in the RADTRAN 6 computer code for transportation risk and consequence assessment. The RADTRAN 6 code combines user-supplied input data with values from an internal library of physical and radiological data to calculate the expected radiological consequences and risks associated with the transportation of radioactive material. Radiological consequences and risks are estimated with numerical models of exposure pathways, receptor populations, package behavior in accidents, and accident severity and probability.

  8. Compendium of Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Response Selection Guidance Documents Users Manual. I-1700-1701-1.01.

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling Corp -KWatertowni5W 95.5x-L* d! CT.J>?j 1.29

  9. User manual for AQUASTOR: a computer model for cost analysis of aquifer thermal-energy storage oupled with district-heating or cooling systems. Volume II. Appendices

    SciTech Connect (OSTI)

    Huber, H.D.; Brown, D.R.; Reilly, R.W.

    1982-04-01T23:59:59.000Z

    A computer model called AQUASTOR was developed for calculating the cost of district heating (cooling) using thermal energy supplied by an aquifer thermal energy storage (ATES) system. the AQUASTOR Model can simulate ATES district heating systems using stored hot water or ATES district cooling systems using stored chilled water. AQUASTOR simulates the complete ATES district heating (cooling) system, which consists of two prinicpal parts: the ATES supply system and the district heating (cooling) distribution system. The supply system submodel calculates the life-cycle cost of thermal energy supplied to the distribution system by simulating the technical design and cash flows for the exploration, development, and operation of the ATES supply system. The distribution system submodel calculates the life-cycle cost of heat (chill) delivered by the distribution system to the end-users by simulating the technical design and cash flows for the construction and operation of the distribution system. The model combines the technical characteristics of the supply system and the technical characteristics of the distribution system with financial and tax conditions for the entities operating the two systems into one techno-economic model. This provides the flexibility to individually or collectively evaluate the impact of different economic and technical parameters, assumptions, and uncertainties on the cost of providing district heating (cooling) with an ATES system. This volume contains all the appendices, including supply and distribution system cost equations and models, descriptions of predefined residential districts, key equations for the cooling degree-hour methodology, a listing of the sample case output, and appendix H, which contains the indices for supply input parameters, distribution input parameters, and AQUASTOR subroutines.

  10. GADRAS isotope ID users manual for analysis of gamma-ray measurements and API for Linux and Android .

    SciTech Connect (OSTI)

    Mitchell, Dean J; Harding, Lee T.

    2014-05-01T23:59:59.000Z

    Isotope identification algorithms that are contained in the Gamma Detector Response and Analysis Software (GADRAS) can be used for real-time stationary measurement and search applications on platforms operating under Linux or Android operating sys-tems. Since the background radiation can vary considerably due to variations in natu-rally-occurring radioactive materials (NORM), spectral algorithms can be substantial-ly more sensitive to threat materials than search algorithms based strictly on count rate. Specific isotopes or interest can be designated for the search algorithm, which permits suppression of alarms for non-threatening sources, such as such as medical radionuclides. The same isotope identification algorithms that are used for search ap-plications can also be used to process static measurements. The isotope identification algorithms follow the same protocols as those used by the Windows version of GADRAS, so files that are created under the Windows interface can be copied direct-ly to processors on fielded sensors. The analysis algorithms contain provisions for gain adjustment and energy lineariza-tion, which enables direct processing of spectra as they are recorded by multichannel analyzers. Gain compensation is performed by utilizing photopeaks in background spectra. Incorporation of this energy calibration tasks into the analysis algorithm also eliminates one of the more difficult challenges associated with development of radia-tion detection equipment.

  11. MELCOR computer code manuals

    SciTech Connect (OSTI)

    Summers, R.M.; Cole, R.K. Jr.; Smith, R.C.; Stuart, D.S.; Thompson, S.L. [Sandia National Labs., Albuquerque, NM (United States); Hodge, S.A.; Hyman, C.R.; Sanders, R.L. [Oak Ridge National Lab., TN (United States)

    1995-03-01T23:59:59.000Z

    MELCOR is a fully integrated, engineering-level computer code that models the progression of severe accidents in light water reactor nuclear power plants. MELCOR is being developed at Sandia National Laboratories for the U.S. Nuclear Regulatory Commission as a second-generation plant risk assessment tool and the successor to the Source Term Code Package. A broad spectrum of severe accident phenomena in both boiling and pressurized water reactors is treated in MELCOR in a unified framework. These include: thermal-hydraulic response in the reactor coolant system, reactor cavity, containment, and confinement buildings; core heatup, degradation, and relocation; core-concrete attack; hydrogen production, transport, and combustion; fission product release and transport; and the impact of engineered safety features on thermal-hydraulic and radionuclide behavior. Current uses of MELCOR include estimation of severe accident source terms and their sensitivities and uncertainties in a variety of applications. This publication of the MELCOR computer code manuals corresponds to MELCOR 1.8.3, released to users in August, 1994. Volume 1 contains a primer that describes MELCOR`s phenomenological scope, organization (by package), and documentation. The remainder of Volume 1 contains the MELCOR Users Guides, which provide the input instructions and guidelines for each package. Volume 2 contains the MELCOR Reference Manuals, which describe the phenomenological models that have been implemented in each package.

  12. Helping Users Avoid Bugs in GUI Applications Amir Michail

    E-Print Network [OSTI]

    New South Wales, University of

    by users. Anyone who has encountered a bug will likely try to avoid it in the future. But such a manual ap, the manual approach to bug avoidance requires the user to figure out the circumstances under which a bugHelping Users Avoid Bugs in GUI Applications Amir Michail University of New South Wales Sydney, NSW

  13. Augmented manual fabrication methods for 2D tool positioning and 3D sculpting

    E-Print Network [OSTI]

    Rivers, Alec (Alec Rothmyer)

    2013-01-01T23:59:59.000Z

    Augmented manual fabrication involves using digital technology to assist a user engaged in a manual fabrication task. Methods in this space aim to combine the abilities of a human operator, such as motion planning and ...

  14. User Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrinceton PlasmaAfternoon4.CCSM4large.jpg BER:Services PrintUserUser

  15. User Environment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulence mayUndergraduateAbout UsUser Agreements UserEntry Pass

  16. User Guide

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulence mayUndergraduateAbout UsUser2/20/13User Guide Print 1.

  17. User Policy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulence mayUndergraduateAbout UsUser2/20/13User Guide Print

  18. User Policy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulence mayUndergraduateAbout UsUser2/20/13User Guide

  19. User Policy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulence mayUndergraduateAbout UsUser2/20/13User GuidePolicy

  20. User Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulence mayUndergraduateAboutUser Services Print The User

  1. User Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulence mayUndergraduateAboutUser Services PrintServicesUser

  2. DEPARTMENT OF ENERGY MANUAL

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | Department ofCommunications3DepartmentENERGY MANUAL

  3. User Program | Prospective Users US

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulence mayUndergraduateAbout UsUser2/20/13User

  4. TWOZONE USERS MANUAL. 2d ed

    E-Print Network [OSTI]

    Gadgil, A.J.

    2008-01-01T23:59:59.000Z

    radiation, S(24) = IDN * CCM. S(24) = SOLAR FACTOR 'A' *in the calculation IBUF CCM CODE COOLIT AIRINF CCC CCLATsurface, S(22) = BS * CCM. = diffuse ground reflected

  5. User Manual Document Updated: 10 November 2009

    E-Print Network [OSTI]

    Zelnik-Manor, Lihi - Zelnik-Manor, Lihi

    Chapter 11 SysAid Manager Dashboard 208 Chapter 12 IT Benchmarks 210 Chapter 13 SysAid ITIL Package 211

  6. Leica TCS SP5 User Manual

    E-Print Network [OSTI]

    Adams, Mark

    .........................................................................14 2.2.5 Waste Heat/Required Cooling Performance.......................................................................................23 4.6 Maximum Current Load of the Multiple Socket Outlet at the Supply Unit .........24 5. Safety ...................................................................................................25 #12;4 5.1 Disconnecting the Power Supply

  7. USER'S MANUAL For Grape6-BLX64

    E-Print Network [OSTI]

    Kissler-Patig, Markus

    the power cable As shown in figure 1, the LED lamp from top to bottom indicate the power of 3.3v, 2.5v, 1.2v, READY and calculation speed. So, when you power on your computer the three voltage LED lamp will light up at once and the READY LED will light up after about one second. Please confirm the status

  8. Users manual for the Acromag calibration system

    SciTech Connect (OSTI)

    Fordham, C.R.

    1994-11-01T23:59:59.000Z

    This document describes how to use the Acromag calibration system software. It includes the requirements and procedures for operating the ACS.

  9. DSI3D - RCS user manual

    SciTech Connect (OSTI)

    Madsen, N.; Steich, D.; Cook, G. [and others

    1995-08-23T23:59:59.000Z

    The DSI3D-RCS code is designed to numerically evaluate radar cross sections on complex objects by solving Maxwell`s curl equations in the time-domain and in three space dimensions. The code has been designed to run on the new parallel processing computers as well as on conventional serial computers. The DSI3D-RCS code is unique for the following reasons: Allows the use of unstructured non-orthogonal grids, allows a variety of cell or element types, reduces to be the Finite Difference Time Domain (FDTD) method when orthogonal grids are used, preserves charge or divergence locally (and globally), is conditionally stable, is selectively non-dissipative, and is accurate for non-orthogonal grids. This method is derived using a Discrete Surface Integration (DSI) technique. As formulated, the DSI technique can be used with essentially arbitrary unstructured grids composed of convex polyhedral cells. This implementation of the DSI algorithm allows the use of unstructured grids that are composed of combinations of non-orthogonal the use of unstructured grids that are composed of combinations of non-orthogonal hexahedrons, tetrahedrons, triangular prisms and pyramids. This algorithm reduces to the conventional FDTD method when applied on a structured orthogonal hexahedral grid.

  10. 241-A evaporator flowsheet users manual

    SciTech Connect (OSTI)

    Larrick, A.P.

    1994-12-22T23:59:59.000Z

    This supporting document presents a description of the 242-A Evaporator flowsheet. Material balances are calculated for feed, slurry, and effluent streams based on input data for the feed stream.

  11. User manual for SparseCoLO

    E-Print Network [OSTI]

    2009-02-12T23:59:59.000Z

    to load the data A, b, c, K, J for the conic-form LOP formulation of the norm ..... It should be noted that the x (or y) involves only partial elements of an (approx-.

  12. Water Rights Analysis Package (WRAP) Users Manual

    E-Print Network [OSTI]

    Wurbs, Ralph A.

    of the WRAP-SIM input records and is the only absolutely required WRAP-SIM input file. However, typically the voluminous naturalized streamflow inflow IN records and evaporation EV records are stored in separate hydrology files, named root.FLO and root.EVA..., EVA, DIS) and output files (OUT and MSS) are not used. WRAP-HYD is used to develop hydrology input data files for WRAP-SIM. WRAP-HYD file options are specified on a FO record. WRAP-SIM simulation results are normally examined in the form...

  13. DEPOT database: Reference manual and user's guide

    SciTech Connect (OSTI)

    Clancey, P.; Logg, C.

    1991-03-01T23:59:59.000Z

    DEPOT has been developed to provide tracking for the Stanford Linear Collider (SLC) control system equipment. For each piece of equipment entered into the database, complete location, service, maintenance, modification, certification, and radiation exposure histories can be maintained. To facilitate data entry accuracy, efficiency, and consistency, barcoding technology has been used extensively. DEPOT has been an important tool in improving the reliability of the microsystems controlling SLC. This document describes the components of the DEPOT database, the elements in the database records, and the use of the supporting programs for entering data, searching the database, and producing reports from the information.

  14. User manual Revision 1.1

    E-Print Network [OSTI]

    Napp, Nils

    ................................................................................................ 2 1.3 RECYCLING.................................................................................................10 3.3.3 Power LED .....................................................................................................10 3.3.4 Charge LED

  15. LSC Users Manual David W. Ignat

    E-Print Network [OSTI]

    conditions. The code includes provisions for modeling the control system, external heating, and fusion . . . . . . . . . . . . . . . . . . . . . . . 44 2 #12; Chapter 1 Introduction The Lower hybrid Simulation Code (LSC) is a computational model of lower hybrid current drive in the presence of an electric field.[1] Details of geom­ etry, plasma

  16. LSC Users Manual David W. Ignat

    E-Print Network [OSTI]

    conditions. The code includes provisions for modeling the control system, external heating, and fusion . . . . . . . . . . . . . . . . . . . . . . . 44 2 #12;Chapter 1 Introduction The Lower hybrid Simulation Code (LSC) is a computational model of lower hybrid current drive in the presence of an electric #12;eld.[1] Details of geom- etry, plasma pro

  17. Prairie Technologies User's Manual 1. Preface

    E-Print Network [OSTI]

    Yavuz, Deniz

    . If water gets into a system component, discontinue use of the system, turn off power, and contact Prairie Technologies. Warning Labels Used on the Ultima Multiphoton Microscopy System Warning label on beam cover and light box Warning label on interlocked components Warning label for defeated interlocks (on interlock

  18. TWOZONE USERS MANUAL. 2d ed

    E-Print Network [OSTI]

    Gadgil, A.J.

    2008-01-01T23:59:59.000Z

    cooler, improved air conditioner algorithm, ability to readcooling the house with air-conditioner, evaporative-cooler= starting month of air-conditioner (AC) operation. = ending

  19. Multiphysics Integrated Coupling Environment (MICE) User Manual

    SciTech Connect (OSTI)

    Varija Agarwal; Donna Post Guillen

    2013-08-01T23:59:59.000Z

    The complex, multi-part nature of waste glass melters used in nuclear waste vitrification poses significant modeling challenges. The focus of this project has been to couple a 1D MATLAB model of the cold cap region within a melter with a 3D STAR-CCM+ model of the melter itself. The Multiphysics Integrated Coupling Environment (MICE) has been developed to create a cohesive simulation of a waste glass melter that accurately represents the cold cap. The one-dimensional mathematical model of the cold cap uses material properties, axial heat, and mass fluxes to obtain a temperature profile for the cold cap, the region where feed-to-glass conversion occurs. The results from Matlab are used to update simulation data in the three-dimensional STAR-CCM+ model so that the cold cap is appropriately incorporated into the 3D simulation. The two processes are linked through ModelCenter integration software using time steps that are specified for each process. Data is to be exchanged circularly between the two models, as the inputs and outputs of each model depend on the other.

  20. TWOZONE USERS MANUAL. 2d ed

    E-Print Network [OSTI]

    Gadgil, A.J.

    2008-01-01T23:59:59.000Z

    Op) effective lumped heat capacity of house, (Btu/Op). Wein the neighborhood of 3000 Btu/Op for a typical house ofeconomic parameters (such as: Btu's saved per discounted

  1. QVALUE: The Manual Version 1.0

    E-Print Network [OSTI]

    Storey, John D.

    of the free statistical software program R. Please go to http Statistical Society, Series B, 64: 479-498. #12;2 Storey JD and Tibshirani R. (2003) Statistical significance conservative consistency of false discovery rates: A unified approach. Journal of the Royal Statistical Society

  2. Syllabus Information Depiction System (SIDS) user's guide

    SciTech Connect (OSTI)

    Waterman, D.K.; Skinner, N.L.

    1987-10-01T23:59:59.000Z

    The Syllabus Information Depiction System (SIDS) is an automated tool designed to track the aircrew training syllabi of the Marine Corps. This report is the User's Manual for this data base system, providing users with instructions to help them use the system more efficiently. This document contains printed screen layouts that will guide the user step-by-step through the written instructions.

  3. A user`s manual for the computer code HORSMIC

    SciTech Connect (OSTI)

    Russo, A.J.

    1994-01-01T23:59:59.000Z

    The code HORSMIC was written to solve the problem of calculating the shape of hydrocarbon (gas or liquid) storage caverns formed by solution mining in bedded salt formations. In the past many storage cavems have been formed by vertically drilling into salt dome formations and solution mining large-aspect-ratio, vertically-axisymmetric caverns. This approach is generally not satisfactory for shallow salt beds because it would result in geomechanically-unstable, pancake-shaped caverns. In order to produce a high aspect ratio cavern in the horizontal direction a more complicated strategy must be employed. This report describes one such strategy, and documents the use of the computer model HORSMIC which can be used to estimate the shape of the cavern produced by a prescribed leaching schedule. Multiple trials can then be used to investigate the effects of various pipe hole configurations in order to optimize over the cavern shape.

  4. National Energy AudiT (NEAT) user`s manual

    SciTech Connect (OSTI)

    Krigger, J.K.; Adams, N. [Saturn Resource Management, Helena, MT (United States); Gettings, M. [Oak Ridge National Lab., TN (United States). Energy Div.

    1997-10-01T23:59:59.000Z

    Welcome to the US Department of Energy`s (DOE`s) energy auditing tool called ``NEAT``. NEAT, an acronym for National Energy AudiT, is a program for personal computers that was designed for use by local agencies in the Weatherization Assistance Program. It is an approved alternative audit that meets all auditing requirements set forth by the program as well as those anticipated from new regulations pertaining to waiver of the 40% materials requirements. NEAT is easy to use. It applies engineering and economic calculations to evaluate energy conservation measures for single-family, detached houses or small multifamily buildings. You can use it to rank measured for each individual house, or to establish a priority list of conservation measures for nearly identical housing types. NEAT was written for the Weatherization Assistance Program by Oak Ridge National Laboratory. Many buildings energy consumption algorithms are taken from Lawrence Berkeley Laboratory`s to the computerized Instrumented Residential Audit (CIRA), published in 1982 for the Department of energy. Equipment retrofit conservation measures are based on published reports on various heating retrofits. Heating and cooling system replacement conservation measures are based on the energy ratings of new heating and cooling equipment. The Weatherization Program anticipates that this computer-based energy audit will offer substantial performance improvements to many states who choose to incorporate it into their programs. When conservation measures are evaluated locally according to climate, fuel cost, measure cost, and existing house conditions, the Program will be closer to its goal of assuring the maximum return for every federal dollar spent.

  5. Version 1.00 programmer`s tools used in constructing the INEL RML/analytical radiochemistry sample tracking database and its user interface

    SciTech Connect (OSTI)

    Femec, D.A.

    1995-09-01T23:59:59.000Z

    This report describes two code-generating tools used to speed design and implementation of relational databases and user interfaces: CREATE-SCHEMA and BUILD-SCREEN. CREATE-SCHEMA produces the SQL commands that actually create and define the database. BUILD-SCREEN takes templates for data entry screens and generates the screen management system routine calls to display the desired screen. Both tools also generate the related FORTRAN declaration statements and precompiled SQL calls. Included with this report is the source code for a number of FORTRAN routines and functions used by the user interface. This code is broadly applicable to a number of different databases.

  6. MANUAL FOR WEB-BASED TXDOT RIGID PAVEMENT Sureel Saraf

    E-Print Network [OSTI]

    Texas at Austin, University of

    0-5445-P2 MANUAL FOR WEB-BASED TXDOT RIGID PAVEMENT DATABASE Authors: Sureel Saraf Moon Won TxDOT Project 0-5445: Project Level Performance Database for Rigid Pavements in Texas SEPTEMBER 2007, REV. JULY-Based Information System for Rigid Pavements User's Manual Texas Department of Transportation July 9, 2009 #12

  7. Axiomatic design of a manually powered wheelchair lift mechanism

    E-Print Network [OSTI]

    DiGenova, Kevin (Kevin J.)

    2007-01-01T23:59:59.000Z

    The objective of this research is to create an inexpensive mechanism which gives wheelchair users the ability to adjust the vertical height of their chair while seated. There are currently 1.5 million manual wheelchair ...

  8. US Department of Energy radiological control manual. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1994-04-01T23:59:59.000Z

    This manual establishes practices for the conduct of Department of Energy radiological control activities. The Manual states DOE`s positions and views on the best courses of action currently available in the area of radiological controls. Accordingly, the provisions in the Manual should be viewed by contractors as an acceptable technique, method or solution for fulfilling their duties and responsibilities. This Manual shall be used by DOE in evaluating the performance of its contractors. This Manual is not a substitute for Regulations; it is intended to be consistent with all relevant statutory and regulatory requirements and shall be revised whenever necessary to ensure such consistency. Some of the Manual provisions, however, challenge the user to go well beyond minimum requirements. Following the course of action delineated in the Manual will result in achieving and surpassing related statutory or regulatory requirements.

  9. COSY INFINITY reference manual

    SciTech Connect (OSTI)

    Berz, M.

    1990-07-01T23:59:59.000Z

    This is a reference manual for the arbitrary order particle optics and beam dynamics code COSY INFINITY. It is current as of June 28, 1990. COSY INFINITY is a code to study and design particle optical systems, including beamlines, spectrometers, and particle accelerators. At its core it is using differential algebraic (DA) methods, which allow a very systematic and simple calculation of high order effects. At the same time, it allows the computation of dependences on system parameters, which is often interesting in its own right and can also be used for fitting. COSY INFINITY has a full structured object oriented language environment. This provides a simple interface for the casual user. At the same time, it offers the demanding user a very flexible and powerful tool for the study and design of systems, and more generally, the utilization of DA methods. The power and generality of the environment is perhaps best demonstrated by the fact that the physics routines of COSY INFINITY are written in its own input language and are very compact. The approach also considerably facilitates the implementation of new features because they are incorporated with the same commands that are used for design and study. 26 refs.

  10. Business Practice Manual for Definitions & Acronyms

    E-Print Network [OSTI]

    Tesfatsion, Leigh

    Janaury 21, 2011 #12;CAISO Business Practice Manual BPM for Definitions & Acronyms Version 76 Last Revised: March 31, 2009 BPM Owner: Mike Dozier BPM Owner's Title: Senior Counsel Revision History Version Date Description 2 2009-12-18 Incorporating payment acceleration language submitted in BPM PRR 122

  11. Handbook for operating a spectra-physicsTM quanta-ray pro-series Nd-YAG laser and MOPO-SL (master oscillator power oscillator) utilizing WinSpecTM

    E-Print Network [OSTI]

    Chen, Samuel Weisheng

    2003-01-01T23:59:59.000Z

    5, 2001 Roper Scientific. PTG Programmable Timing Generator; Operation Manual, User Manual, Version 1, Revision

  12. Audit Manual | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergyDepartmentWind Siting Articles aboutDepartment ofManual Audit

  13. Industrial Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The Energy Materials Center at CornellOf SmartIndustrial Users The

  14. User Policy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrinceton PlasmaAfternoon4. UraniumUsedFacilities OfficeUser Policy

  15. User Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrinceton PlasmaAfternoon4.CCSM4large.jpg BER:Services Print TheUser

  16. User Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrinceton PlasmaAfternoon4.CCSM4large.jpg BER:Services PrintUser

  17. NIF Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSee theOil & GasPSTarget NIF Users

  18. Prospective Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press Releases ArchiveServices »Projects ExcitonHome User

  19. User Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulence mayUndergraduateAboutUser Services Print The

  20. User Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulence mayUndergraduateAboutUser Services Print TheAuthor

  1. User Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulence mayUndergraduateAboutUser Services Print

  2. User Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulence mayUndergraduateAboutUser Services PrintServices Print

  3. User Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulence mayUndergraduateAboutUser Services PrintServices

  4. User Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science,SpeedingWu,IntelligenceYou are ABOUT US ITER | WHY FUSION? |User

  5. Implementation Manual

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)Hydrogen StorageITERITERBuildingNanoscaleImpacts At the

  6. IMPLEMENTATION MANUAL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogen andHypernuclei in Hall linkTreatmentI

  7. Implementation Manual

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogenIT |HotImpact of GeneratorImpactThe Energy2:

  8. Nuclear Explosive Safety Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-04-14T23:59:59.000Z

    This Manual provides supplemental details to support the requirements of DOE O 452.2D, Nuclear Explosive Safety.

  9. Directives System Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1998-01-30T23:59:59.000Z

    This Manual provides detailed requirements to supplement DOE O 251.1A, Directives System, dated 1-30-98.

  10. Customer Data Entry User's Guide

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Customer Data Entry User's Guide, Version 2 Updated: September 18, 2014 The Customer Data Entry (CDE) Application provides BPA transmission customers with capability to view and...

  11. FEDIX: The on-line database retrieval service of government information for colleges, universities, and other organizations. User`s guide: Version 4.0/Release 2.0

    SciTech Connect (OSTI)

    Not Available

    1992-05-01T23:59:59.000Z

    FEDIX is an on-line information service that links the higher education community and the federal government to facilitate research, education, and services. The system provides accurate and timely federal agency information to colleges, universities, and other research organizations. There are no registration fees and no access charges for using FEDIX. Agencies participating in the FEDIX system include: Department of Energy (DOE), Federal Aviation Administration (FAA), National Aeronautics and Space Administration (NASA), Office of Naval Research (ONR), Air Force Office of Scientific Research (AFOSR), National Science Foundation (NSF), National Security Agency (NSA), Department of Commerce (DOC), Department of Education (DOEd), Department of Housing and Urban Development (HUD), and Agency for International Development (AID). Additional government agencies are expected to join FEDIX in the near future. This guide is intended to help users access and utilize the FEDIX system. Because the system is frequently updated, however, some menus and tables used as examples in this text may not exactly match those displayed on the live system.

  12. Users' Executive Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulence mayUndergraduateAboutUser Services UserUsersUsers'

  13. STR82: combined string and user-interface library for VAX/VMS, RSX-11M, and RT-11

    SciTech Connect (OSTI)

    Garbarini, J.P. Jr.

    1982-08-10T23:59:59.000Z

    A combined string and user interface library was written to aid programmers in writing portable code. The library has been implemented under Digital Equipment Corporation (DEC) VAX/VMS, RSX-11M, and RT-11 operations systems for use with FORTRAN programs. This is a reference manual for STR82 which is a library containing string routines and user interface routines. Versions of the library exist for use with VAX-FORTRAN programs running under VAX/VMS and for use with either FORTRAN IV-PLUS or FORTRAN IV programs using PDP-11's running RSX-11M or RT-11. The manual is for programmers using the library on one or more of these systems. Included are the logical functions of the routines and their calling sequences.

  14. file: idl-simple-manual.txt = introduction to IDL basics last: Jun 14 2014

    E-Print Network [OSTI]

    Rutten, Rob

    . There are parallel txt, pdf, and html versions of this manual at http://www.staff.science.uu.nl/~rutte101/Manuals-year astronomy students at Utrecht University doing the "Stellar Spectra" exercises at http://www.staff.science.uu.nl/~rutte sequence analysis ("data cubes") at http://www.staff.science.uu.nl/~rutte101/Manuals.html In 2011 I added

  15. Course Library Manual Leon Osinski, TU/e Library

    E-Print Network [OSTI]

    Franssen, Michael

    Course Library Manual Leon Osinski, TU/e Library Version 2, January 2008 #12;2 Table of contents .........................................................................................................................3 1. Adding a Library Folder to a course instance......................................................................3 2. The Library Folder

  16. Y AND RELIABILITY: LOGO MANUAL COLOR SCHEME

    E-Print Network [OSTI]

    Bordenstein, Seth

    AND RELIABILITY: LOGO MANUAL COLOR SCHEME TYPOGRAPHY RECOMMENDED DISPLAY SPACE PMS 131C PMS COOL GRAY 11C VERSION HORIZONTAL 1J COLOR SCHEME R=203 G=163 B=57 C=21 M=34 Y=93 K=2 20,0 @Me Nas $10M in equipment Machine shop equipped conference facility All-purpose machine shop Skilled engineering staff

  17. October 2014 Implementation Manual

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    activities described in this Manual Primary Residential Heating System A heating system that serves 50% or more of the conditioned living area of a residence PTCS(tm)...

  18. Radiological Control Manual

    SciTech Connect (OSTI)

    Not Available

    1993-04-01T23:59:59.000Z

    This manual has been prepared by Lawrence Berkeley Laboratory to provide guidance for site-specific additions, supplements, and clarifications to the DOE Radiological Control Manual. The guidance provided in this manual is based on the requirements given in Title 10 Code of Federal Regulations Part 835, Radiation Protection for Occupational Workers, DOE Order 5480.11, Radiation Protection for Occupational Workers, and the DOE Radiological Control Manual. The topics covered are (1) excellence in radiological control, (2) radiological standards, (3) conduct of radiological work, (4) radioactive materials, (5) radiological health support operations, (6) training and qualification, and (7) radiological records.

  19. Directives System Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-10-16T23:59:59.000Z

    This Manual provides detailed requirements to supplement DOE O 251.1, which establishes requirements for the development, coordination, and sunset review of DOE directives.

  20. ISSUES MANAGEMENT PROGRAM MANUAL

    E-Print Network [OSTI]

    Gravois, Melanie

    2007-01-01T23:59:59.000Z

    LBNL/PUB-5519 (1), Rev. 032 ISSUES MANAGEMENT PROGRAM MANUAL LBNL/PUB-5519 (1), Rev.Berkeley National Laboratory LBNL/PUB-5519 (1), Rev. 0

  1. EMS Programs Manual

    Broader source: Energy.gov [DOE]

    The Environmental Management System Programs Manual (LMS/POL/S04388-3.0) is obsolete and has been removed from the LM website.

  2. DOE Explosives Safety Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-03-29T23:59:59.000Z

    This Manual describes DOE's explosives safety requirements applicable to operations involving the development, testing, handling, and processing of explosives or assemblies containing explosives.

  3. Technical Manual for the SAM Biomass Power Generation Model

    SciTech Connect (OSTI)

    Jorgenson, J.; Gilman, P.; Dobos, A.

    2011-09-01T23:59:59.000Z

    This technical manual provides context for the implementation of the biomass electric power generation performance model in the National Renewable Energy Laboratory's (NREL's) System Advisor Model (SAM). Additionally, the report details the engineering and scientific principles behind the underlying calculations in the model. The framework established in this manual is designed to give users a complete understanding of behind-the-scenes calculations and the results generated.

  4. Department of Energy Budget Execution Funds Distribution and Control Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-01-09T23:59:59.000Z

    As a service to all Department of Energy (DOE) elements, including the National Nuclear Security Administration (NNSA), this Manual provides the user with a single source for references, definitions, and procedural requirements for distributing and controlling Department of Energy (DOE) funds. Accordingly, the Manual provides detailed requirements to supplement DOE O 135.1A, Budget Execution—Funds Distribution and Control, dated 1-9-06. Paragraph 5, of DOE O 135.1A defines organizational responsibilities pertinent to this Manual. Cancels DOE M 135.1-1.

  5. Process Manual Biological & Agricultural

    E-Print Network [OSTI]

    Boas, Harold P.

    · · · · ·t t ·t ·t t t ·t . ~ t · · Process· Manual Biological & Agricultural Engineering MANUAL FOR THE BIOLOGICAL AND AGRICULTURAL ENGINEERING DEPARTMENT TexasA&MUniversity Article I. NAME The name ofthis organization shall be the Biological and Agricultural Engineering Department (abbreviated

  6. Federal Employee Training Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-10-11T23:59:59.000Z

    This Manual provides detailed requirements to supplement DOE O 360.1B, FEDERAL EMPLOYEE TRAINING. The information in this Manual is intended to assist in improving Federal workforce performance under Department of Energy (DOE) managed Federal employee training. Cancels DOE M 360.1A-1. Canceled by DOE O 360.1C.

  7. Federal Employee Training Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-09-21T23:59:59.000Z

    This Manual provides detailed requirements to supplement DOE O 360.1A, Federal Employee Training, dated 9-21-99. The information in this Manual is intended to assist in improving Federal workforce performance under Department of Energy (DOE) managed Federal employee training. Canceled by DOE M 360.1-1B.

  8. Rensselaer Academic Advising Manual

    E-Print Network [OSTI]

    Bystroff, Chris

    information specific to Rensselaer with reprints of articles relevant to academic advising. Please noteRensselaer Academic Advising Manual For copies, corrections, or suggestions, contact: The Advising & Learning Assistance Center Sage Lab 2106 (518) 276-6269 #12;Rensselaer Academic Advising Manual #12

  9. Rensselaer Academic Advising Manual

    E-Print Network [OSTI]

    Bystroff, Chris

    with reprints of articles relevant to academic advising. Please note that Additional materials mayRensselaer Academic Advising Manual For copies, corrections, or suggestions, contact: The Advising & Learning Assistance Center Sage Lab 2106 (518) 276-6269 #12;Rensselaer Academic Advising Manual 6

  10. Personnel Security Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1998-05-22T23:59:59.000Z

    This Manual provides detailed requirements and procedures to supplement DOE O 472.1B, Personnel Security Activities, which establishes the overall objectives, requirements, and responsibilities for implementation and operation of the Personnel Security Program and the Personnel Security Assurance Program in the Department of Energy (DOE). This Manual addresses only the Personnel Security Program.

  11. Nuclear Computerized Library for Assessing Reactor Reliability (NUCLARR): Data manual. Part 2: Human error probability (HEP) data; Volume 5, Revision 4

    SciTech Connect (OSTI)

    Reece, W.J.; Gilbert, B.G.; Richards, R.E. [EG and G Idaho, Inc., Idaho Falls, ID (United States)

    1994-09-01T23:59:59.000Z

    This data manual contains a hard copy of the information in the Nuclear Computerized Library for Assessing Reactor Reliability (NUCLARR) Version 3.5 database, which is sponsored by the US Nuclear Regulatory Commission. NUCLARR was designed as a tool for risk analysis. Many of the nuclear reactors in the US and several outside the US are represented in the NUCLARR database. NUCLARR includes both human error probability estimates for workers at the plants and hardware failure data for nuclear reactor equipment. Aggregations of these data yield valuable reliability estimates for probabilistic risk assessments and human reliability analyses. The data manual is organized to permit manual searches of the information if the computerized version is not available. Originally, the manual was published in three parts. In this revision the introductory material located in the original Part 1 has been incorporated into the text of Parts 2 and 3. The user can now find introductory material either in the original Part 1, or in Parts 2 and 3 as revised. Part 2 contains the human error probability data, and Part 3, the hardware component reliability data.

  12. Automatic TLI recognition system, user`s guide

    SciTech Connect (OSTI)

    Lassahn, G.D.

    1997-02-01T23:59:59.000Z

    This report describes how to use an automatic target recognition system (version 14). In separate volumes are a general description of the ATR system, Automatic TLI Recognition System, General Description, and a programmer`s manual, Automatic TLI Recognition System, Programmer`s Guide.

  13. Users from Industry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulence mayUndergraduateAboutUser Services UserUsers from

  14. Users' Executive Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulence mayUndergraduateAboutUser Services UserUsers

  15. User Program | Prospective Users Non-US

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulence mayUndergraduateAbout UsUser2/20/13User GuidePolicyNon

  16. FutureGrid User Support Gregory Pike, Andrew Younge,

    E-Print Network [OSTI]

    FutureGrid User Support Gregory Pike, Andrew Younge, Gregor von Laszewski, Fugang Wang, Javier Diaz, Archit Kulshrestha, Geoffrey Fox Indiana University #12;Tiered Support Model Knowledge Base Manuals Documentation Knowledge Base, Manuals, Tutorials, Ticket System, Inca, GNOC status Tier 1: Support through

  17. file: idl-cube-manual.txt = data cube tools last: Sep 30 2013

    E-Print Network [OSTI]

    Rutten, Rob

    versions of this manual at http://www.staff.science.uu.nl/~rutte101/Manuals.html The html and pdf versions", also at http://www.staff.science.uu.nl/~rutte101/Manuals.html It uses the same style, supplying IDL entries for cut-and-paste onto the IDL command line. It was initially written for DOT students: http://www.staff.science.uu.nl/~rutte

  18. Version 3.6 USERS GUIDE

    E-Print Network [OSTI]

    Saffman, Mark

    .4.5 - Optional Extras 19 1.5 - SAFETY PRECAUTIONS 20 1.5.1 - Statement regarding equipment operation 20 1 - ACQUIRING DATA 50 5.1 - INITIAL ACQUISITION 50 5.2 - DATA TYPE SELECTION 52 5.3 - ACQUISITION TYPES 56 5 & TIMINGS 59 5.4.1 - Single 60 5.4.2 - Video 60 5.4.3 - Accumulate 60 5.4.4 - Kinetic Series 61 5

  19. ATDIDT User's Guide (version 2.x)

    E-Print Network [OSTI]

    Wehenkel, Louis

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 5.4 Non linear regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 5 linear regression approximation . . . . . . . . . . . . . . . . . 13 5.3.2 tree booster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 5.3.3 test linear regression approximation . . . . . . . . . . . . . . . . . . 13 5.3.4 hinges

  20. Departmental Handbook Version for General Departmental Users

    E-Print Network [OSTI]

    Stone, J. V.

    Gillespie Representative of Clinical Psychology Unit Mrs Marion Simkins Secretary to Committee and Trade

  1. Fire Protection Program Manual

    SciTech Connect (OSTI)

    Sharry, J A

    2012-05-18T23:59:59.000Z

    This manual documents the Lawrence Livermore National Laboratory (LLNL) Fire Protection Program. Department of Energy (DOE) Orders 420.1B, Facility Safety, requires LLNL to have a comprehensive and effective fire protection program that protects LLNL personnel and property, the public and the environment. The manual provides LLNL and its facilities with general information and guidance for meeting DOE 420.1B requirements. The recommended readers for this manual are: fire protection officers, fire protection engineers, fire fighters, facility managers, directorage assurance managers, facility coordinators, and ES and H team members.

  2. GENII (Generation II): The Hanford Environmental Radiation Dosimetry Software System: Volume 3, Code maintenance manual: Hanford Environmental Dosimetry Upgrade Project

    SciTech Connect (OSTI)

    Napier, B.A.; Peloquin, R.A.; Strenge, D.L.; Ramsdell, J.V.

    1988-09-01T23:59:59.000Z

    The Hanford Environmental Dosimetry Upgrade Project was undertaken to incorporate the internal dosimetry models recommended by the International Commission on Radiological Protection (ICRP) in updated versions of the environmental pathway analysis models used at Hanford. The resulting second generation of Hanford environmental dosimetry computer codes is compiled in the Hanford Environmental Dosimetry System (Generation II, or GENII). This coupled system of computer codes is intended for analysis of environmental contamination resulting from acute or chronic releases to, or initial contamination of, air, water, or soil, on through the calculation of radiation doses to individuals or populations. GENII is described in three volumes of documentation. This volume is a Code Maintenance Manual for the serious user, including code logic diagrams, global dictionary, worksheets to assist with hand calculations, and listings of the code and its associated data libraries. The first volume describes the theoretical considerations of the system. The second volume is a Users' Manual, providing code structure, users' instructions, required system configurations, and QA-related topics. 7 figs., 5 tabs.

  3. An exploratory investigation of the translation of Pacific Northwest Laboratory's print manuals system to an on-line manuals system

    SciTech Connect (OSTI)

    Heubach, J.G.; Hunt, S.T.; Pond, L.R.

    1992-06-01T23:59:59.000Z

    Information management technology has proliferated in the past decade in response to the information explosion. As documentation accumulates, the need to access information residing in manuals, handbooks and regulations conveniently, accurately, and quickly has increased. However, studies show that only fractions of the available information is read (Martin, 1978). Consequently, one of the biggest challenges in linking information and electronic management of information is to use the power of communication technology to meet the information needs of the audience. Pacific Northwest Laboratories' (PNL) investigation of translating its print manual system to an on-line system fits this challenge precisely. PNL's manuals contain a tremendous amount of information for which manual holders are responsible. To perform their tasks in compliance with policy and procedure guidelines, users need to access information accurately, conveniently, and quickly. In order to select and use information management tools wisely, answers must be sought to a few basic questions. Communication experts cite four key questions: What do users want What do users need What characteristics of an on-line information system affect its usefulness Who are the users whose wants and needs are to be met Once these questions are answered, attention can be focused on finding the best match between user requirements and technology characteristics and weighing the costs and benefits of proposed options.

  4. Vectum user`s guide

    SciTech Connect (OSTI)

    McClurg, F.R.

    1992-04-01T23:59:59.000Z

    This user`s guide is the documentation for vectum: the easy to use, flexible, multi-purpose, 2D velocity vector plotting package based on the NCAR Graphics libraries.

  5. Nuclear Material Packaging Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-03-07T23:59:59.000Z

    The manual provides detailed packaging requirements for protecting workers from exposure to nuclear materials stored outside of an approved engineered contamination barrier. No cancellation. Certified 11-18-10.

  6. Aerosol Sampler Operations Manual

    E-Print Network [OSTI]

    Fischer, Emily V.

    -1123 Laboratory FAX (916) 752-4107 Standard Operating Procedures Technical Information Document TI 201A #12;TI 201.................................................................................................................................................. 3 1.0 Weekly Maintenance ProceduresIMPROVE Aerosol Sampler Operations Manual February 10, 1997 Air Quality Group Crocker Nuclear

  7. Environmental audit manual

    SciTech Connect (OSTI)

    Not Available

    1990-01-01T23:59:59.000Z

    The primary purpose of this manual is to provide a guide upon which an environmental regulatory compliance audit, assessment, or appraisal of a DOE facility can be conducted, and to ensure that all aspects of a particular regulatory area are adequately and consistently covered. In addition, this audit manual provides lines of inquiry to assess a facility's adherence to environmental best management practices (BMPs). The protocols are in a format such that the results and observations of an audit can be documented and recorded. The ultimate objectives of the use of this manual are to document a facility's compliance with environmental laws and regulations, identify areas of potential noncompliance, and plan for corrective action. Although this manual has been developed by a DOE Headquarters entity, it has been designed for use at all levels within DOE.

  8. Geochemical engineering reference manual

    SciTech Connect (OSTI)

    Owen, L.B.; Michels, D.E.

    1984-01-01T23:59:59.000Z

    The following topics are included in this manual: physical and chemical properties of geothermal brine and steam, scale and solids control, processing spent brine for reinjection, control of noncondensable gas emissions, and goethermal mineral recovery. (MHR)

  9. Media Sanitization Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-12-23T23:59:59.000Z

    The Manual establishes minimum technical and management requirements for the sanitization of electronic media, hardware, and devices and a risk-based approach to sanitization. Does not cancel other directives.

  10. Battery Test Manual For Plug-In Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Jeffrey R. Belt

    2010-09-01T23:59:59.000Z

    This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Program. It is based on technical targets established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, a revision including some modifications and clarifications of these procedures is expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices.

  11. Battery Test Manual For Plug-In Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Jeffrey R. Belt

    2010-12-01T23:59:59.000Z

    This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Program. It is based on technical targets established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, a revision including some modifications and clarifications of these procedures is expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices.

  12. Visual Sample Plan Version 3.0

    E-Print Network [OSTI]

    PNNL-14970 Visual Sample Plan Version 3.0 User's Guide N. L. Hassig R. O. Gilbert J. E. Wilson B. A-14970 Visual Sample Plan Version 3.0 User's Guide N. L. Hassig R. O. Gilbert J. E. Wilson B. A Sample Plan (VSP) Version 3.0 and provides instructions for using the software. VSP selects

  13. PVREG - A photovoltaic voltage regulation investigation tool: Program reference manual

    SciTech Connect (OSTI)

    Garrett, D.L.; Sims, T.R.; Jones, R.A.; Jeter, S.M.

    1989-06-01T23:59:59.000Z

    This manual provides information for installing and maintaining the computer program PVREG, a program developed to study the impact of distributed photovoltaic systems on the voltage regulation of distribution systems. The manual describes installation on the Apollo workstation or the IBM PC-AT (or compatible), but the instructions and code description should be general enough to assist installation on other computers, also. The manual assumes that the user is well acquainted with the computer on which the program is to operate and with the operating system of that computer. The manual describes the program structure and models in detail and provides step-by-step installation instructions for both the Apollo and AT-compatible computers. 9 figs., 11 tabs.

  14. Procedures manual for the Evaluated Nuclear Structure Data File

    SciTech Connect (OSTI)

    Bhat, M.R. (ed.)

    1987-10-01T23:59:59.000Z

    This manual is a collection of various notes, memoranda and instructions on procedures for the evaluation of data in the Evaluated Nuclear Structure Data File (ENSDF). They were distributed at different times over the past few years to the evaluators of nuclear structure data and some of them were not readily avaialble. Hence, they have been collected in this manual for ease of reference by the evaluators of the international Nuclear Structure and Decay Data (NSDD) network contribute mass-chains to the ENSDF. Some new articles were written specifically for this manual and others are reivsions of earlier versions.

  15. Superfund Docket Operations Manual for rule-making activities. Directive

    SciTech Connect (OSTI)

    Not Available

    1990-07-01T23:59:59.000Z

    The directive discusses the purpose of the SDIC Operations Manual for Rulemaking Activities which is to serve as a procedural guide for SDIC staff when a rulemaking docket is prepared. These procedures are evaluated on a regular basis, and are revised as needed to keep the SDIC operationally efficient and responsive to its users.

  16. Reporting Manual Prepared by

    E-Print Network [OSTI]

    Shahriar, Selim

    /fix incidents, or short term projects. Users can enter information into IT Service information allows users to easily follow each other's progress, search for specific keyword searches to multi-level metrics with color charts. Practically any data

  17. Hanford Waste Vitrification Plant technical manual

    SciTech Connect (OSTI)

    Larson, D.E. [ed.; Watrous, R.A.; Kruger, O.L. [and others

    1996-03-01T23:59:59.000Z

    A key element of the Hanford waste management strategy is the construction of a new facility, the Hanford Waste Vitrification Plant (HWVP), to vitrify existing and future liquid high-level waste produced by defense activities at the Hanford Site. The HWVP mission is to vitrify pretreated waste in borosilicate glass, cast the glass into stainless steel canisters, and store the canisters at the Hanford Site until they are shipped to a federal geological repository. The HWVP Technical Manual (Manual) documents the technical bases of the current HWVP process and provides a physical description of the related equipment and the plant. The immediate purpose of the document is to provide the technical bases for preparation of project baseline documents that will be used to direct the Title 1 and Title 2 design by the A/E, Fluor. The content of the Manual is organized in the following manner. Chapter 1.0 contains the background and context within which the HWVP was designed. Chapter 2.0 describes the site, plant, equipment and supporting services and provides the context for application of the process information in the Manual. Chapter 3.0 provides plant feed and product requirements, which are primary process bases for plant operation. Chapter 4.0 summarizes the technology for each plant process. Chapter 5.0 describes the engineering principles for designing major types of HWVP equipment. Chapter 6.0 describes the general safety aspects of the plant and process to assist in safe and prudent facility operation. Chapter 7.0 includes a description of the waste form qualification program and data. Chapter 8.0 indicates the current status of quality assurance requirements for the Manual. The Appendices provide data that are too extensive to be placed in the main text, such as extensive tables and sets of figures. The Manual is a revision of the 1987 version.

  18. Hanford Environmental Information System (HEIS) Operator`s Manual. Volume 1

    SciTech Connect (OSTI)

    Schreck, R.I.

    1991-10-01T23:59:59.000Z

    The Hanford Environmental Information System (HEIS) is a consolidated set of automated resources that effectively manage the data gathered during environmental monitoring and restoration of the Hanford Site. The HEIS includes an integrated database that provides consistent and current data to all users and promotes sharing of data by the entire user community. This manual describes the facilities available to the operational user who is responsible for data entry, processing, scheduling, reporting, and quality assurance. A companion manual, the HEIS User`s Manual, describes the facilities available-to the scientist, engineer, or manager who uses the system for environmental monitoring, assessment, and restoration planning; and to the regulator who is responsible for reviewing Hanford Site operations against regulatory requirements and guidelines.

  19. Ocean Atmosphere Sea Ice Soil User's Guide

    E-Print Network [OSTI]

    OASIS 2.0 Ocean Atmosphere Sea Ice Soil User's Guide and Reference Manual November 1995 Laurent for the straightforward use of OASIS 2.0. As far as we know, it is the best way to use it! The aim of OASIS is to provide been particularly emphasized in the OASIS design. The use of OASIS does not change the way the models

  20. EML procedures manual

    SciTech Connect (OSTI)

    Volchok, H.L.; de Planque, G. (eds.)

    1982-01-01T23:59:59.000Z

    This manual contains the procedures that are used currently by the Environmental Measurements Laboratory of the US Department of Energy. In addition a number of analytical methods from other laboratories have been included. These were tested for reliability at the Battelle, Pacific Northwest Laboratory under contract with the Division of Biomedical and Environmental Research of the AEC. These methods are clearly distinguished. The manual is prepared in loose leaf form to facilitate revision of the procedures and inclusion of additional procedures or data sheets. Anyone receiving the manual through EML should receive this additional material automatically. The contents are as follows: (1) general; (2) sampling; (3) field measurements; (4) general analytical chemistry; (5) chemical procedures; (6) data section; (7) specifications.

  1. User Accounts and Emails

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrinceton PlasmaAfternoon4. UraniumUsed FuelFAQ » UsefulUserUser

  2. Users' Executive Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrinceton PlasmaAfternoon4.CCSM4large.jpgbriefing aboutUsers'Users'

  3. ALS Users' Association Charter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76) (See theDoctoral Fellowship inALSALSALSALS UserUsers'

  4. Users' Executive Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >Internship Program TheSite MapScience AcceleratorSurvey UserUsers'

  5. User Data Forum Presentations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulence mayUndergraduateAbout UsUser Agreements User

  6. User Financial Account Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulence mayUndergraduateAbout UsUser2/20/13 User Financial

  7. Users' Executive Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulence mayUndergraduateAboutUser ServicesUsers' Executive

  8. CNMS User Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess Stories Siteandscience, and8Critical4 CNMS User4 CNMS User

  9. CNMS User Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess Stories Siteandscience, and8Critical4 CNMS User4 CNMS User5

  10. CNMS User Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess Stories Siteandscience, and8Critical4 CNMS User4 CNMS User513

  11. Radioactive Waste Management Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09T23:59:59.000Z

    This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. The purpose of the Manual is to catalog those procedural requirements and existing practices that ensure that all DOE elements and contractors continue to manage DOE's radioactive waste in a manner that is protective of worker and public health and safety, and the environment. Does not cancel other directives.

  12. Cyber Security Process Requirements Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-08-12T23:59:59.000Z

    The Manual establishes the minimum implementation standards for cyber security management processes throughout the Department. No cancellation.

  13. GRAFLAB 2.3 for UNIX - A MATLAB database, plotting, and analysis tool: User`s guide

    SciTech Connect (OSTI)

    Dunn, W.N.

    1998-03-01T23:59:59.000Z

    This report is a user`s manual for GRAFLAB, which is a new database, analysis, and plotting package that has been written entirely in the MATLAB programming language. GRAFLAB is currently used for data reduction, analysis, and archival. GRAFLAB was written to replace GRAFAID, which is a FORTRAN database, analysis, and plotting package that runs on VAX/VMS.

  14. Information Security Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-10-12T23:59:59.000Z

    The Manual establishes security requirements for the protection and control of matter required to be classified or controlled by statutes, regulations, or U.S. Department of Energy (DOE) directives. Original dated dated 1-16-09. Canceled by DOE O 471.6--except for Section D.

  15. Information Security Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-01-16T23:59:59.000Z

    This Manual establishes security requirements for the protection and control of matter required to be classified or controlled by statutes, regulations, or U.S. Department of Energy directives. Cancels DOE M 470.4-4 Chg 1. DOE M 470.4-4A Chg 1 issued 10-12-10.

  16. Nuclear Explosive Safety Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-04-14T23:59:59.000Z

    This Department of Energy (DOE) Manual provides supplemental details on selected topics to support the requirements of DOE O 452.2D, Nuclear Explosive Safety, dated 4/14/09. Cancels DOE M 452.2-1. Admin Chg 1, dated 7-10-13, cancels DOE M 452.2-1A.

  17. Bioengineering Internship Manual

    E-Print Network [OSTI]

    Collins, Gary S.

    Bioengineering Internship Manual Washington State University Bioengineering Internship Program-335-4332 #12;General Description: An internship is a self-initiated, supervised work experience in related fields. The purpose of an internship is to enhance a student's professional preparation through

  18. CONCRETE PAVEMENT Reference Manual

    E-Print Network [OSTI]

    CONCRETE PAVEMENT Reference Manual Prepared for Federal Highway Administration Office of Pavement by National Concrete Pavement Technology Center at Iowa State University 2711 South Loop Drive, Suite 4700 No. 3. Recipient's Catalog No. 4. Title and Subtitle 5. Report Date February 2008 Concrete Pavement

  19. Federal Technical Capability Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-06-05T23:59:59.000Z

    The Federal Technical Capability Manual provides the process for the recruitment, deployment, development, and retention of Federal personnel with the demonstrated technical capability to safely accomplish the Departments missions and responsibilities at defense nuclear facilities. Canceled by DOE M 426.1-1A. Does not cancel other directives.

  20. DOE Explosives Safety Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-01-09T23:59:59.000Z

    The Manual describes the Departments explosive safety requirements applicable to operations involving the development, testing, handling, and processing of explosives or assemblies containing explosives. Cancels DOE M 440.1-1. Canceled by DOE O 440.1B Chg 1.

  1. ACADEMIC PROGRAM PROCEDURE MANUAL

    E-Print Network [OSTI]

    Fay, Noah

    1 ACADEMIC PROGRAM REVIEW PROCEDURE MANUAL 2014-2015 Office of the Senior Vice President Tucson, AZ 85721 #12;2 ACADEMIC PROGRAM REVIEW MANAGEMENT TEAM Web Site for Academic Program Review http Educational Policy Studies & Practice Spanish and Portuguese Electrical & Computer Engineering Teaching

  2. The Gambit Scheme manual.

    E-Print Network [OSTI]

    2008-01-22T23:59:59.000Z

    Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and .... are best placed in the initialization file, which is a file containing Scheme code. ...... ("hello"). 15.2 Exception objects related to memory management ...... ming practice to use a name with the same case as in C.

  3. SERVICE MANUAL AUTORANGING

    E-Print Network [OSTI]

    Kleinfeld, David

    SERVICE MANUAL AUTORANGING DC POWER SUPPLY AGILENT MODELS 6010A, 6011A, 6012B and 6015A Agilent pay for return of products to Customer. Warranty services outside the country of initial purchase, the Customer shall be entitled to a refund of the purchase price upon return of the product to Agilent

  4. HASL procedures manual

    SciTech Connect (OSTI)

    Not Available

    1980-08-01T23:59:59.000Z

    Addition and corrections to the following sections of the HASL Procedures Manual are provided: Table of Contents; Bibliography; Fallout Collection Methods; Wet/Dry Fallout Collection; Fluoride in Soil and Sediment; Strontium-90; Natural Series; Alpha Emitters; and Gamma Emitters. (LK)

  5. National Security System Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2007-03-08T23:59:59.000Z

    The manual provides baseline requirements and controls for the graded protection of the confidentiality, integrity, and availability of classified information and information systems used or operated by the Department of Energy (DOE), contractors, and any other organization on behalf of DOE, including the National Nuclear Security Administration. Cancels DOE M 471.2-2. Canceled by DOE O 205.1B.

  6. Media Sanitization Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-12-23T23:59:59.000Z

    The Manual establishes minimum technical and management requirements for the sanitization of electronic media, hardware, and devices and a risk-based approach to sanitization. Admin Chg 1 dated 9-1-09. Canceled by DOE O 205.1B.

  7. Media Sanitization Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-12-23T23:59:59.000Z

    The Manual establishes minimum technical and management requirements for the sanitization of electronic media, hardware, and devices and a risk-based approach to sanitization. Admin Chg 1 dated 9-1-09; Admin Chg 2 dated 12-22-09. Canceled by DOE O 205.1B

  8. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    SciTech Connect (OSTI)

    Rathbone, Bruce A.

    2005-02-25T23:59:59.000Z

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at Hanford. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with 10 CFR 835, DOELAP, DOE-RL, ORP, PNSO, and Hanford contractor requirements. The dosimetry system is operated by PNNL’s Hanford External Dosimetry Program which provides dosimetry services to all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. Rev. 0 marks the first revision to be released through PNNL’s Electronic Records & Information Capture Architecture (ERICA) database.

  9. Reverse Top-k Queries [DRAFT VERSION

    E-Print Network [OSTI]

    Reverse Top-k Queries [DRAFT VERSION] Akrivi Vlachou # , Christos Doulkeridis # , Yannis Kotidis become essential for many applications that return to the user only the top-k objects based on the individual user's preferences. Top-k queries have been mainly studied from the perspective of the user

  10. User Agreements | Partnerships | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    user facilities to the User Office of the specific facility. Users must include an acknowledgement on all publications that include work performed at ORNL. Users should refer to...

  11. Radioactive Waste Management Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09T23:59:59.000Z

    This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. Change 1 dated 6/19/01 removes the requirement that Headquarters is to be notified and the Office of Environment, Safety and Health consulted for exemptions for use of non-DOE treatment facilities. Certified 1-9-07.

  12. Personnel Security Program Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-07-12T23:59:59.000Z

    This Manual provides detailed requirements and procedures to supplement DOE O 472.1B, Personnel Security Activities, which establishes the overall objectives, requirements, and responsibilities for implementation and operation of the Personnel Security Program and the Personnel Security Assurance Program in the Department of Energy (DOE), including the National Nuclear Security Administration (NNSA). Extended until 7-7-06 by DOE N 251.64, dated 7-7-05 Cancels: DOE M 472.1-1A.

  13. Revision of DOE Manual 460.2-1

    Broader source: Energy.gov (indexed) [DOE]

    Practices Manual DOE Writing Team March 2006 TECWG 2 Proposed Revision Timeline Proposed Revision Timeline Complete new draft of Manual 206 Draft Manual provided to Manual Review...

  14. Radiological control manual. Revision 1

    SciTech Connect (OSTI)

    Kloepping, R.

    1996-05-01T23:59:59.000Z

    This Lawrence Berkeley National Laboratory Radiological Control Manual (LBNL RCM) has been prepared to provide guidance for site-specific additions, supplements and interpretation of the DOE Radiological Control Manual. The guidance provided in this manual is one methodology to implement the requirements given in Title 10 Code of Federal Regulations Part 835 (10 CFR 835) and the DOE Radiological Control Manual. Information given in this manual is also intended to provide demonstration of compliance to specific requirements in 10 CFR 835. The LBNL RCM (Publication 3113) and LBNL Health and Safety Manual Publication-3000 form the technical basis for the LBNL RPP and will be revised as necessary to ensure that current requirements from Rules and Orders are represented. The LBNL RCM will form the standard for excellence in the implementation of the LBNL RPP.

  15. RDS operations manualField implementation

    E-Print Network [OSTI]

    Mullins, Dyche

    for trainings and TA. #12;RDS operations manual IBBS Toolbox 227 Women's Health Monitoring Survey fieldRDS operations manualField implementation #12;RDS operations manual 226 IBBS Toolbox RDS operations manual The RDS operations manual is designed to guide project staff during the implementation of RDS

  16. A Brief User's Manual of The Scanning Tunneling Microscope

    E-Print Network [OSTI]

    Wang, Gwo-Ching

    ) vacuum chamber, (b) Al slab, (c) pneumatically elevated legs, (d) roughing valve, (e) ion pump, (f) gate it inside the vacuum chamber (h in Fig. 2.1). (May need somebody else to secure the position of the STM. Figure 2.3 (a) The roughing valve on the vacuum chamber, (b) the torque and (c) the O-ring. Turbo Pump

  17. KKKK----JuniorJuniorJuniorJunior User manual

    E-Print Network [OSTI]

    Napp, Nils

    ................................................................................................. 7 1.4 RECYCLING......................................................................................... 14 3.2.9 Battery

  18. KKKKJJJJ----LincamLincamLincamLincam User manual

    E-Print Network [OSTI]

    Napp, Nils

    with K-Junior, turn it off. It will save the battery life 1.3 Recycling Think about the end of life................................................................................................. 5 1.3 RECYCLING

  19. Lausanne, 12 March 1999K-Team USER MANUAL

    E-Print Network [OSTI]

    Langseth, Helge

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Recycling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Unpacking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 ON - OFF battery switch . . . . . . . . . . . . . . . . . . . . . 4 Jumpers, reset button . . . . . . . . . . . . 10 Batteries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Cables

  20. KKKK----JuniorJuniorJuniorJuniorvvvv2222 User manual

    E-Print Network [OSTI]

    Napp, Nils

    ................................................................................................. 7 1.4 RECYCLING......................................................................................... 16 3.2.9 Battery

  1. KHIIIKHIIIKHIIIKHIII----GripperGripperGripperGripper User manual

    E-Print Network [OSTI]

    Napp, Nils

    ............................................................................................... 2 1.3. RECYCLING.................................................................................................................... 6 2.5. BATTERY

  2. MOOS-IvP Autonomy Tools Users Manual

    E-Print Network [OSTI]

    Benjamin, Michael R.

    2008-11-11T23:59:59.000Z

    This document describes seven common MOOS-IvP autonomy tools. The uHelmScope application provides a run-time scoping window into the state of an active IvP Helm executing its mission. The pMarineViewer application is a ...

  3. Spent fuel management fee methodology and computer code user's manual.

    SciTech Connect (OSTI)

    Engel, R.L.; White, M.K.

    1982-01-01T23:59:59.000Z

    The methodology and computer model described here were developed to analyze the cash flows for the federal government taking title to and managing spent nuclear fuel. The methodology has been used by the US Department of Energy (DOE) to estimate the spent fuel disposal fee that will provide full cost recovery. Although the methodology was designed to analyze interim storage followed by spent fuel disposal, it could be used to calculate a fee for reprocessing spent fuel and disposing of the waste. The methodology consists of two phases. The first phase estimates government expenditures for spent fuel management. The second phase determines the fees that will result in revenues such that the government attains full cost recovery assuming various revenue collection philosophies. These two phases are discussed in detail in subsequent sections of this report. Each of the two phases constitute a computer module, called SPADE (SPent fuel Analysis and Disposal Economics) and FEAN (FEe ANalysis), respectively.

  4. HYDRA, A finite element computational fluid dynamics code: User manual

    SciTech Connect (OSTI)

    Christon, M.A.

    1995-06-01T23:59:59.000Z

    HYDRA is a finite element code which has been developed specifically to attack the class of transient, incompressible, viscous, computational fluid dynamics problems which are predominant in the world which surrounds us. The goal for HYDRA has been to achieve high performance across a spectrum of supercomputer architectures without sacrificing any of the aspects of the finite element method which make it so flexible and permit application to a broad class of problems. As supercomputer algorithms evolve, the continuing development of HYDRA will strive to achieve optimal mappings of the most advanced flow solution algorithms onto supercomputer architectures. HYDRA has drawn upon the many years of finite element expertise constituted by DYNA3D and NIKE3D Certain key architectural ideas from both DYNA3D and NIKE3D have been adopted and further improved to fit the advanced dynamic memory management and data structures implemented in HYDRA. The philosophy for HYDRA is to focus on mapping flow algorithms to computer architectures to try and achieve a high level of performance, rather than just performing a port.

  5. MOOS-IvP Autonomy Tools Users Manual

    E-Print Network [OSTI]

    Benjamin, Michael R.

    2010-08-23T23:59:59.000Z

    This document describes fifteen MOOS-IvP autonomy tools. uHelmScope provides a run-time scoping window into the state of an active IvP Helm executing its mission. pMarineViewer is a geo-based GUI tool for rendering marine ...

  6. A Compilation Manager for SML/NJ User Manual

    E-Print Network [OSTI]

    Baumgartner, Gerald

    automatic dependency analysis and a form of separate compilation known as cutoff recompilation [ATW94

  7. Environmental Health & Safety Assistant (EHSA) Web User Manual

    E-Print Network [OSTI]

    . · You must open a waste container for each type of waste your isotope will be producing; DRY SOLID types, such as: · Dry, solid lab waste; · Aqueous liquid waste; · Scintillation vials; · in this Software Inventory/Disposal Adding a Waste Container Inventory Management Isotope Inventory/Usage Sheets

  8. Sim Track User's Manual (v 1.0)

    SciTech Connect (OSTI)

    Luo, Y.

    2010-01-27T23:59:59.000Z

    SimTrack is a simple c++ library designed for the numeric particle tracking in the high energy accelerators. It adopts the 4th order symplectic integrator for the optical transport in the magnetic elements. The 4-D and 6-D weak-strong beam-beam treatments are integrated in it for the beam-beam studies. SimTrack is written with c++ class and standard template library. It provides versatile functions to manage elements and lines. It supports a large range of types of elements. New type of element can be easily created in the library. SimTrack calculates Twiss, coupling and fits tunes, chromaticities and corrects closed orbits. AC dipole and AC multipole are available in this library. SimTrack allows change of element parameters during tracking.

  9. Water Rights Analysis Package (WRAP) Modeling System Users Manual

    E-Print Network [OSTI]

    Wurbs, Ralph A.

    ................................................................................ 117 Alternative Formats for TABLES Time Series Output ........................................................ 119 2NAT, 2REG, 2UNA, 2CLO, 2CLC, 2RFR, 2URR, 2STO, 2EVA, 2DEP, iv 2TAR, 2SHT, 2DIV, 2RFL, 2ASF, 2ROR, 2IFT, 2IFS, 2HPE, 2EPD... file containing all input data, except the voluminous hydrology related data contained in the following files root2.FLO inflow IN records with naturalized stream flows (optional filename root.INF) root2.EVA evaporation EV records with net evaporation...

  10. Water Rights Analysis Package (WRAP) Modeling System Users Manual

    E-Print Network [OSTI]

    Wurbs, R

    2012-10-01T23:59:59.000Z

    ...................................................... 140 Time Series Records (2NAT, 2REG, 2UNA, 2CLO, 2CLC, 2RFR, 2URR, 2CPI, 2STO, 2EVA, 2DEP, 2TAR, 2SHT, 2DIV, 2IFT, 2IFS, 2EPD, 2EVR, 2WSE) .......... 141 IDEN Record ? Identifiers for Control points, Reservoirs, Water Rights, or Groups... of all files associated with a particular simulation. The filename extension differentiates the different types of data contained in the files. ? Assigning a different root (root2 in Table 1.2) for the hydrology files (FLO, EVA, HYD, DIS, FAD) may...

  11. Beedie School of Business Career Network Student User Manual

    E-Print Network [OSTI]

    to be successful in their job search; and store job search documents such as resumes, cover letters, etc the `Policy Affirmation' box by which you are agreeing to abide by the terms and conditions of the Code the following page: Enter your 9-digit SFU student identification number as the username (not your SFU computing

  12. User Manual (ver.1.1) Dependable Software lab.

    E-Print Network [OSTI]

    file 4 Save ­ Save file 4 Save As ­ Save file as another name 4 Save Without Graphical Info ­ Save file without graphical information 4 Save as Image ­ Save file as image 4 Print ­ Print 4 Exit ­ Exit program of the loaded file Details of the loaded file Diagram of the loaded file #12;17 Save file 1. Select File > Save

  13. Water Rights Analysis Package (WRAP) Model Description and User's Manual

    E-Print Network [OSTI]

    Wurbs, Ralph A.; Dunn, David D.

    by the Texas Water Resources Institute, U.S. Geological Survey, Brazos River Authority, Texas Advanced Technology Program, Texas Water Development Board, and Texas Natural Resource Conservation Commission. W. Brian Walls, David D. Dunn, Anil R. Yerramreddy...

  14. Power Module User's Manual 3/2/05 Commercial Confidential

    E-Print Network [OSTI]

    Wood, Stephen L.

    by forced ventilation systems kW Kilowatt kPa(g) Kilo-Pascals gauge pressure LPH Litres per hour MTBF Mean

  15. NI 6034E/6035E/6036E User Manual

    E-Print Network [OSTI]

    Gellman, Andrew J.

    785 0085, China (Shanghai) 021 6555 7838, China (ShenZhen) 0755 3904939, Denmark 45 76 26 00, Finland will pay the shipping costs of returning to the owner parts which are covered by warranty. National

  16. Cyber Security Process Requirements Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-08-12T23:59:59.000Z

    The Manual establishes the minimum implementation standards for cyber security management processes throughout the Department. No cancellation. Admin Chg 1 dated 9-1-09.

  17. User account | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulence mayUndergraduateAboutUser Services User StatisticsUser

  18. User account | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulence mayUndergraduateAboutUser Services User StatisticsUser

  19. Hanford Hoisting and Rigging Manual - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) Harmonic EngineHIVDecember 2013SeptemberAboutManual

  20. Caltrans Transportation Permits Manual | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL GasPermits Manual Jump to: navigation, search OpenEI Reference

  1. DOE Manual - Advisory Committee Management Program

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732 DOE F 243.2 Records Scheduling RequestEnergywith 17MANUAL

  2. The POWHEG-hvq manual version 1.0

    E-Print Network [OSTI]

    Stefano Frixione; Paolo Nason; Giovanni Ridolfi

    2007-07-20T23:59:59.000Z

    This note documents the use of the POWHEG-hvq package, a generator for heavy flavour hadroproduction at next-to-leading order in QCD, that can be easily interfaced to shower Monte Carlo programs, in such a way that NLO and shower accuracy are both maintained.

  3. An exploratory investigation of the translation of Pacific Northwest Laboratory`s print manuals system to an on-line manuals system

    SciTech Connect (OSTI)

    Heubach, J.G.; Hunt, S.T.; Pond, L.R.

    1992-06-01T23:59:59.000Z

    Information management technology has proliferated in the past decade in response to the information explosion. As documentation accumulates, the need to access information residing in manuals, handbooks and regulations conveniently, accurately, and quickly has increased. However, studies show that only fractions of the available information is read (Martin, 1978). Consequently, one of the biggest challenges in linking information and electronic management of information is to use the power of communication technology to meet the information needs of the audience. Pacific Northwest Laboratories` (PNL) investigation of translating its print manual system to an on-line system fits this challenge precisely. PNL`s manuals contain a tremendous amount of information for which manual holders are responsible. To perform their tasks in compliance with policy and procedure guidelines, users need to access information accurately, conveniently, and quickly. In order to select and use information management tools wisely, answers must be sought to a few basic questions. Communication experts cite four key questions: What do users want? What do users need? What characteristics of an on-line information system affect its usefulness? Who are the users whose wants and needs are to be met? Once these questions are answered, attention can be focused on finding the best match between user requirements and technology characteristics and weighing the costs and benefits of proposed options.

  4. Radioactive Waste Management Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09T23:59:59.000Z

    This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. Change 1 dated 6/19/01 removes the requirement that Headquarters is to be notified and the Office of Environment, Safety and Health consulted for exemptions for use of non-DOE treatment facilities. Certified 1-9-07. Admin Chg 2, dated 6-8-11, cancels DOE M 435.1-1 Chg 1.

  5. Safety and Health Policy and Procedure Manual Biological Safety Manual

    E-Print Network [OSTI]

    Saidak, Filip

    Biological Safety Association (ABSA) best practices as well as all federal, state, and local regulations. IISafety and Health Policy and Procedure Manual Biological Safety Manual Section 280 INDEX I. Policy space suitable for work being conducted · Under the Office of Research Compliance, establish and manage

  6. Academic Apprentice Personnel Manual 1 Academic Apprentice

    E-Print Network [OSTI]

    Jalali. Bahram

    Academic Apprentice Personnel Manual 1 Academic Apprentice Personnel Manual For Departments Updated December 2013 #12;2 Academic Apprentice Personnel Manual Contents Glossary of Terms and Acronyms .............3 What are Academic Apprentice Personnel

  7. Automated manual transmission controller

    DOE Patents [OSTI]

    Lawrie, Robert E. (Whitmore Lake, MI); Reed, Jr., Richard G. (Royal Oak, MI); Bernier, David R. (Rochester Hills, MI)

    1999-12-28T23:59:59.000Z

    A powertrain system for a hybrid vehicle. The hybrid vehicle includes a heat engine, such as a diesel engine, and an electric machine, which operates as both an electric motor and an alternator, to power the vehicle. The hybrid vehicle also includes a manual-style transmission configured to operate as an automatic transmission from the perspective of the driver. The engine and the electric machine drive an input shaft which in turn drives an output shaft of the transmission. In addition to driving the transmission, the electric machine regulates the speed of the input shaft in order to synchronize the input shaft during either an upshift or downshift of the transmission by either decreasing or increasing the speed of the input shaft. When decreasing the speed of the input shaft, the electric motor functions as an alternator to produce electrical energy which may be stored by a storage device. Operation of the transmission is controlled by a transmission controller which receives input signals and generates output signals to control shift and clutch motors to effect smooth launch, upshift shifts, and downshifts of the transmission, so that the transmission functions substantially as an automatic transmission from the perspective of the driver, while internally substantially functioning as a manual transmission.

  8. Vienna Database Library Version 1.0

    E-Print Network [OSTI]

    Neumaier, Arnold

    Vienna Database Library Version 1.0 Reference Manual Hermann Schichl University of Vienna.2.14 #12;CONTENTS 1 Contents 1 Introduction 1 2 Vienna Database Library Module Index 3 3 Vienna Database Library Hierarchical Index 3 4 Vienna Database Library Compound Index 5 5 Vienna Database Library File

  9. ENERGY MANAGEMENT OPERATIONAL PROCEDURE MANUAL

    E-Print Network [OSTI]

    Harman, Neal.A.

    ENERGY MANAGEMENT OPERATIONAL PROCEDURE MANUAL Swansea University Estates Services Singleton Park Swansea SA2 8PP Tel 01792 295819 Fax 01792 295820 #12;Swansea University Energy Management Operational ......................................................................................11 #12;Swansea University Energy Management Operational Procedural Manual Estates Services April 2008

  10. User Meeting Awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Meeting Awards web banner ALS User Meeting Awards See the 2013 User Meeting Awards Winners Home Agenda Awards Exhibitors Lodging Posters Registration Transportation Workshops...

  11. JLF User Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The Energy Materials Center atdiffusivities inJLF Forms JLFJLF User

  12. JLF User Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The Energy Materials Center atdiffusivities inJLF Forms JLFJLF User JLF

  13. User Facility Science Highlights

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe LifeUser Agreements

  14. Joint Facilities User Forum

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron beamJoin HERO Mariners vs.Joint Environmental User

  15. User Accounts and Emails

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrinceton PlasmaAfternoon4. UraniumUsed FuelFAQ » UsefulUser

  16. User Liaison Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrinceton PlasmaAfternoon4. UraniumUsedFacilities Office Space User

  17. User Liaison Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrinceton PlasmaAfternoon4. UraniumUsedFacilities Office Space User

  18. User Liaison Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrinceton PlasmaAfternoon4. UraniumUsedFacilities Office Space User

  19. User Meeting Awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrinceton PlasmaAfternoon4. UraniumUsedFacilities Office SpaceUser

  20. Users' Executive Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrinceton PlasmaAfternoon4.CCSM4large.jpgbriefing aboutUsers'