National Library of Energy BETA

Sample records for versatile modular sources

  1. A compact, versatile low-energy electron beam ion source

    SciTech Connect (OSTI)

    Zschornack, G., E-mail: g.zschornack@hzdr.de [Department of Physics, Dresden University of Technology, 01062 Dresden, Germany and Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, 01328 Dresden (Germany); König, J.; Schmidt, M.; Thorn, A. [DREEBIT GmbH, 01109 Dresden (Germany)] [DREEBIT GmbH, 01109 Dresden (Germany)

    2014-02-15

    A new compact Electron Beam Ion Source, the Dresden EBIT-LE, is introduced as an ion source working at low electron beam energies. The EBIT-LE operates at an electron energy ranging from 100 eV to some keV and can easily be modified to an EBIT also working at higher electron beam energies of up to 15 keV. We show that, depending on the electron beam energy, electron beam currents from a few mA in the low-energy regime up to about 40 mA in the high-energy regime are possible. Technical solutions as well as first experimental results of the EBIT-LE are presented. In ion extraction experiments, a stable production of low and intermediate charged ions at electron beam energies below 2 keV is demonstrated. Furthermore, X-ray spectroscopy measurements confirm the possibility of using the machine as a source of X-rays from ions excited at low electron energies.

  2. Note: Hollow cathode lamp with integral, high optical efficiency isolation valve: A modular vacuum ultraviolet source

    SciTech Connect (OSTI)

    Sloan Roberts, F.; Anderson, Scott L. [Department of Chemistry, University of Utah, 315 S. 1400 E., Salt Lake City, Utah 84112 (United States)] [Department of Chemistry, University of Utah, 315 S. 1400 E., Salt Lake City, Utah 84112 (United States)

    2013-12-15

    The design and operating conditions of a hollow cathode discharge lamp for the generation of vacuum ultraviolet radiation, suitable for ultrahigh vacuum (UHV) application, are described in detail. The design is easily constructed, and modular, allowing it to be adapted to different experimental requirements. A thin isolation valve is built into one of the differential pumping stages, isolating the discharge section from the UHV section, both for vacuum safety and to allow lamp maintenance without venting the UHV chamber. The lamp has been used both for ultraviolet photoelectron spectroscopy of surfaces and as a “soft” photoionization source for gas-phase mass spectrometry.

  3. A versatile design for resonant guided-wave parametric down-conversion sources for quantum repeaters

    E-Print Network [OSTI]

    Benjamin Brecht; Kai-Hong Luo; Harald Herrmann; Christine Silberhorn

    2015-10-16

    Quantum repeaters - fundamental building blocks for long-distance quantum communication - are based on the interaction between photons and quantum memories. The photons must fulfil stringent requirements on central frequency, spectral bandwidth and purity in order for this interaction to be efficient. We present a design scheme for monolithically integrated resonant photon-pair sources based on parametric down-conversion in nonlinear waveguides, which facilitate the generation of such photons. We investigate the impact of different design parameters on the performance of our source. The generated photon spectral bandwidths can be varied between several tens of MHz up to around $1\\,$GHz, facilitating an efficient coupling to different memories. The central frequency of the generated photons can be coarsely tuned by adjusting the pump frequency, poling period and sample temperature and we identify stability requirements on the pump laser and sample temperature that can be readily fulfilled with off-the-shelve components. We find that our source is capable of generating high-purity photons over a wide range of photon bandwidths. Finally, the PDC emission can be frequency fine-tuned over several GHz by simultaneously adjusting the sample temperature and pump frequency. We conclude our study with demonstrating the adaptability of our source to different quantum memories.

  4. Development of a radio frequency ion source with multi-helicon plasma injectors for neutral beam injection system of Versatile Experiment Spherical Torus

    SciTech Connect (OSTI)

    Choe, Kyumin; Jung, Bongki; Chung, Kyoung-Jae; Hwang, Y. S.; Center for Advance Research in Fusion Reactor Engineering, Seoul National University, Seoul 151-744

    2014-02-15

    Despite of high plasma density, helicon plasma has not yet been applied to a large area ion source such as a driver for neutral beam injection (NBI) system due to intrinsically poor plasma uniformity in the discharge region. In this study, a radio-frequency (RF) ion source with multi-helicon plasma injectors for high plasma density with good uniformity has been designed and constructed for the NBI system of Versatile Experiment Spherical Torus at Seoul National University. The ion source consists of a rectangular plasma expansion chamber (120 × 120 × 120 mm{sup 3}), four helicon plasma injectors with annular permanent magnets and RF power system. Main feature of the source is downstream plasma confinement in the cusp magnetic field configuration which is generated by arranging polarities of permanent magnets in the helicon plasma injectors. In this paper, detailed design of the multi-helicon plasma injector and plasma characteristics of the ion source are presented.

  5. Modular optical detector system

    DOE Patents [OSTI]

    Horn, Brent A. (Livermore, CA); Renzi, Ronald F. (Tracy, CA)

    2006-02-14

    A modular optical detector system. The detector system is designed to detect the presence of molecules or molecular species by inducing fluorescence with exciting radiation and detecting the emitted fluorescence. Because the system is capable of accurately detecting and measuring picomolar concentrations it is ideally suited for use with microchemical analysis systems generally and capillary chromatographic systems in particular. By employing a modular design, the detector system provides both the ability to replace various elements of the detector system without requiring extensive realignment or recalibration of the components as well as minimal user interaction with the system. In addition, the modular concept provides for the use and addition of a wide variety of components, including optical elements (lenses and filters), light sources, and detection means, to fit particular needs.

  6. SRS Small Modular Reactors

    ScienceCinema (OSTI)

    None

    2014-05-21

    The small modular reactor program at the Savannah River Site and the Savannah River National Laboratory.

  7. Modular radiochemistry synthesis system

    DOE Patents [OSTI]

    Satyamurthy, Nagichettiar; Barrio, Jorge R.; Amarasekera, Bernard; Van Dam, R. Michael; Olma, Sebastian; Williams, Dirk; Eddings, Mark; Shen, Clifton Kwang-Fu

    2015-12-15

    A modular chemical production system includes multiple modules for performing a chemical reaction, particularly of radiochemical compounds, from a remote location. One embodiment comprises a reaction vessel including a moveable heat source with the position thereof relative to the reaction vessel being controllable from a remote position. Alternatively the heat source may be fixed in location and the reaction vial is moveable into and out of the heat source. The reaction vessel has one or more sealing plugs, the positioning of which in relationship to the reaction vessel is controllable from a remote position. Also the one or more reaction vessel sealing plugs can include one or more conduits there through for delivery of reactants, gases at atmospheric or an elevated pressure, inert gases, drawing a vacuum and removal of reaction end products to and from the reaction vial, the reaction vial with sealing plug in position being operable at elevated pressures. The modular chemical production system is assembled from modules which can each include operating condition sensors and controllers configured for monitoring and controlling the individual modules and the assembled system from a remote position. Other modules include, but are not limited to a Reagent Storage and Delivery Module, a Cartridge Purification Module, a Microwave Reaction Module, an External QC/Analysis/Purification Interface Module, an Aliquotting Module, an F-18 Drying Module, a Concentration Module, a Radiation Counting Module, and a Capillary Reactor Module.

  8. Modular robot

    DOE Patents [OSTI]

    Ferrante, T.A.

    1997-11-11

    A modular robot may comprise a main body having a structure defined by a plurality of stackable modules. The stackable modules may comprise a manifold, a valve module, and a control module. The manifold may comprise a top surface and a bottom surface having a plurality of fluid passages contained therein, at least one of the plurality of fluid passages terminating in a valve port located on the bottom surface of the manifold. The valve module is removably connected to the manifold and selectively fluidically connects the plurality of fluid passages contained in the manifold to a supply of pressurized fluid and to a vent. The control module is removably connected to the valve module and actuates the valve module to selectively control a flow of pressurized fluid through different ones of the plurality of fluid passages in the manifold. The manifold, valve module, and control module are mounted together in a sandwich-like manner and comprise a main body. A plurality of leg assemblies are removably connected to the main body and are removably fluidically connected to the fluid passages in the manifold so that each of the leg assemblies can be selectively actuated by the flow of pressurized fluid in different ones of the plurality of fluid passages in the manifold. 12 figs.

  9. Modular robot

    DOE Patents [OSTI]

    Ferrante, Todd A. (Idaho Falls, ID)

    1997-01-01

    A modular robot may comprise a main body having a structure defined by a plurality of stackable modules. The stackable modules may comprise a manifold, a valve module, and a control module. The manifold may comprise a top surface and a bottom surface having a plurality of fluid passages contained therein, at least one of the plurality of fluid passages terminating in a valve port located on the bottom surface of the manifold. The valve module is removably connected to the manifold and selectively fluidically connects the plurality of fluid passages contained in the manifold to a supply of pressurized fluid and to a vent. The control module is removably connected to the valve module and actuates the valve module to selectively control a flow of pressurized fluid through different ones of the plurality of fluid passages in the manifold. The manifold, valve module, and control module are mounted together in a sandwich-like manner and comprise a main body. A plurality of leg assemblies are removably connected to the main body and are removably fluidically connected to the fluid passages in the manifold so that each of the leg assemblies can be selectively actuated by the flow of pressurized fluid in different ones of the plurality of fluid passages in the manifold.

  10. Portable modular detection system

    DOE Patents [OSTI]

    Brennan, James S. (Rodeo, CA); Singh, Anup (Danville, CA); Throckmorton, Daniel J. (Tracy, CA); Stamps, James F. (Livermore, CA)

    2009-10-13

    Disclosed herein are portable and modular detection devices and systems for detecting electromagnetic radiation, such as fluorescence, from an analyte which comprises at least one optical element removably attached to at least one alignment rail. Also disclosed are modular detection devices and systems having an integrated lock-in amplifier and spatial filter and assay methods using the portable and modular detection devices.

  11. Breakthrough Makes LED Lights More Versatile Author: Andrea Thompson

    E-Print Network [OSTI]

    Rogers, John A.

    Breakthrough Makes LED Lights More Versatile Author: Andrea Thompson Source: http these limitations by combining the best of two worlds of LEDs to make ultrathin, ultrasmall and flexible light-sized inorganic LEDs after a request from Ford Motor Co. to create a third brake light for cars that would

  12. A Versatile and Powerful Simulator for Design, Advanced Control and Expert Systems 

    E-Print Network [OSTI]

    Schindler, H. E.; Leaver, E. W.; Shewchuk, C. F.

    1988-01-01

    , Ontario Canada ABSnACT The usefulness of models of plant utility systems largely depends on the capabilities of the process system simulator which uses them. SACDA has been engaged in a multi-year development of a versatile and powerful steady state... generalized simultaneous modular process simulation package for calculating the steady-state heat and mass balance for industrial processes. The system has been designed for the modelling of the operation of water-based processes such as those found...

  13. Modularity Approach Modular Pebble Bed Reactor (MPBR)

    E-Print Network [OSTI]

    NED MPBR 1150 MW Combined Heat and Power Station Turbine Hall Boundary Admin Training Control Bldg. · No Reprocessing · High Burnup >90,000 Mwd/MT · Direct Disposal of HLW · Process Heat Applications - Hydrogen · On--line Refueling #12;4/23/03 MIT NED MPBR Reference Plant Modular Pebble Bed Reactor Thermal Power

  14. Modular tokamak magnetic system

    DOE Patents [OSTI]

    Yang, Tien-Fang (Wayland, MA)

    1988-01-01

    A modular tokamak system comprised of a plurality of interlocking moldules. Each module is comprised of a vacuum vessel section, a toroidal field coil, moldular saddle coils which generate a poloidal magnetic field and ohmic heating coils.

  15. A Versatile Family of Galactic Wind Models

    E-Print Network [OSTI]

    Bustard, Chad; D'Onghia, Elena

    2015-01-01

    We present a versatile family of model galactic outflows including non-uniform mass and energy source distributions, a gravitational potential from an extended mass source, and radiative losses. The model easily produces steady-state wind solutions for a range of mass-loading factors, energy-loading factors, galaxy mass and galaxy radius. We find that, with radiative losses included, highly mass-loaded winds must be driven at high central temperatures, whereas low mass-loaded winds can be driven at low temperatures just above the peak of the cooling curve, meaning radiative losses can drastically affect the wind solution even for low mass-loading factors. By including radiative losses, we are able to show that subsonic flows can be ignored as a possible mechanism for expelling mass and energy from a galaxy compared to the more efficient transonic solutions. Specifically, the transonic solutions with low mass-loading and high energy-loading are the most efficient. Our model also produces low-temperature, high-...

  16. Symmetric modular torsatron

    DOE Patents [OSTI]

    Rome, J.A.; Harris, J.H.

    1984-01-01

    A fusion reactor device is provided in which the magnetic fields for plasma confinement in a toroidal configuration is produced by a plurality of symmetrical modular coils arranged to form a symmetric modular torsatron referred to as a symmotron. Each of the identical modular coils is helically deformed and comprise one field period of the torsatron. Helical segments of each coil are connected by means of toroidally directed windbacks which may also provide part of the vertical field required for positioning the plasma. The stray fields of the windback segments may be compensated by toroidal coils. A variety of magnetic confinement flux surface configurations may be produced by proper modulation of the winding pitch of the helical segments of the coils, as in a conventional torsatron, winding the helix on a noncircular cross section and varying the poloidal and radial location of the windbacks and the compensating toroidal ring coils.

  17. Modular Coil Sys Requirements

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    Modular Coil Sys Requirements BSPEC140101 Conductor Specification CSPEC1420301 Winding Form Specification CSPEC1410313 Mod Coil Asm Specification CSPEC1420501 Coil TypeAB Winding Pack SE142A019R0 Coil Asm SE141058R3 Pol Break Shim Asm SE141078R2A EM/Struct Analysis of Coil and Shell CALC1400100 Mod

  18. Small Modular Reactors: Institutional Assessment

    SciTech Connect (OSTI)

    Joseph Perkowski, Ph.D.

    2012-06-01

    ? Objectives include, among others, a description of the basic development status of “small modular reactors” (SMRs) focused primarily on domestic activity; investigation of the domestic market appeal of modular reactors from the viewpoints of both key energy sector customers and also key stakeholders in the financial community; and consideration of how to proceed further with a pro-active "core group" of stakeholders substantially interested in modular nuclear deployment in order to provide the basis to expedite design/construction activity and regulatory approval. ? Information gathering was via available resources, both published and personal communications with key individual stakeholders; published information is limited to that already in public domain (no confidentiality); viewpoints from interviews are incorporated within. Discussions at both government-hosted and private-hosted SMR meetings are reflected herein. INL itself maintains a neutral view on all issues described. Note: as per prior discussion between INL and CAP, individual and highly knowledgeable senior-level stakeholders provided the bulk of insights herein, and the results of those interviews are the main source of the observations of this report. ? Attachment A is the list of individual stakeholders consulted to date, including some who provided significant earlier assessments of SMR institutional feasibility. ? Attachments B, C, and D are included to provide substantial context on the international status of SMR development; they are not intended to be comprehensive and are individualized due to the separate nature of the source materials. Attachment E is a summary of the DOE requirements for winning teams regarding the current SMR solicitation. Attachment F deserves separate consideration due to the relative maturity of the SMART SMR program underway in Korea. Attachment G provides illustrative SMR design features and is intended for background. Attachment H is included for overview purposes and is a sampling of advanced SMR concepts, which will be considered as part of the current DOE SMR program but whose estimated deployment time is beyond CAP’s current investment time horizon. Attachment I is the public DOE statement describing the present approach of their SMR Program.

  19. Versatile secondary beam for the meson area

    SciTech Connect (OSTI)

    Kirk, T.

    1982-03-01

    A new secondary beam design is outlined for the Meson M6 Beamline that combines versatility with economy. The beamline described will transport charged particles of either sign to 800 GeV/c and bring the beam to a focus in one of three potential experimental areas. The plan makes maximal use of existing civil construction.

  20. High Efficiency Modular Chemical Processes (HEMCP)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - ADVANCED MANUFACTURING OFFICE High Efficiency Modular Chemical Processes (HEMCP) Modular Process Intensification Framework for R&D Targets Advanced Manufacturing Office...

  1. Modular Quantum Cosmology

    E-Print Network [OSTI]

    Orfeu Bertolami; Ricardo Schiappa

    1999-04-30

    We study solutions of the Wheeler-DeWitt equation corresponding to an S-modular invariant N=1 supergravity model and a closed homogeneous and isotropic Friedmann-Robertson-Walker spacetime. The issues of inflation and of the cosmological constant problem are addressed with the help of the relevant wave functions. We find that topological type inflation is consistent from the quantum mechanical point of view and that a solution for the cosmological constant problem along the lines of the strong CP problem naturally arises.

  2. Emergent spacetime from modular motives

    E-Print Network [OSTI]

    Rolf Schimmrigk

    2008-12-23

    The program of constructing spacetime geometry from string theoretic modular forms is extended to Calabi-Yau varieties of dimensions two, three, and four, as well as higher rank motives. Modular forms on the worldsheet can be constructed from the geometry of spacetime by computing the L-functions associated to omega motives of Calabi-Yau varieties, generated by their holomorphic $n-$forms via Galois representations. The modular forms that emerge from the omega motive and other motives of the intermediate cohomology are related to characters of the underlying rational conformal field theory. The converse problem of constructing space from string theory proceeds in the class of diagonal theories by determining the motives associated to modular forms in the category of motives with complex multiplication. The emerging picture indicates that the L-function can be interpreted as a map from the geometric category of motives to the category of conformal field theories on the worldsheet.

  3. Exploration of the Versatility of Ring Opening Metathesis Polymerizati...

    Office of Scientific and Technical Information (OSTI)

    Versatility of Ring Opening Metathesis Polymerization: an Approach for Gaining Access to Low Density Polymeric Aerogels Citation Details In-Document Search Title: Exploration of...

  4. Multidimensional bioseparation with modular microfluidics | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Multidimensional bioseparation with modular microfluidics Citation Details In-Document Search Title: Multidimensional bioseparation with modular microfluidics You are accessing...

  5. A MODULAR ACTUATOR ARCHITECTURE FOR ROBOTIC APPLICATIONS

    SciTech Connect (OSTI)

    None

    2001-07-01

    The United States Department of Energy (DOE) Complexes perform numerous hazardous material handling operations within the confines of a glovebox. The DOE is continuing to seek more efficient and safer means of handling these materials inside gloveboxes rather than the conventional, labor-intensive method through lead lined gloves. The use of glovebox automation technology will also be critical to the DOE in its efforts to comply with its mandated ALARA principles in handling the hazardous materials associated with the cleanup process. Operations associated with materials processing in a glovebox are similar to many industrial tasks, but the unique glovebox environment and Plutonium material properties create a unique set of challenges for conventional automation machinery. Such properties include: Low to moderate levels of ionizing radiation, high abrasiveness, corrosiveness, pyrophoric tendencies, rapid dispersal and permeation of environment, diffuses quickly, and possible incompatible material interaction. The glovebox presents the following challenges: existing gloveboxes may not be readily altered or even modified at all, complex mechanical operations for maintenance and repair are difficult or impossible through gloves, failed equipment may not be removed easily or at all. If a broken piece of equipment cannot be bagged-out through a glove port (approximately 216 mm (8 1/2 inch) diameter) it must remain in place. Broken equipment obstructs further operations. If it renders the entire glovebox unusable, a significant volume of waste is generated and an expensive system must be disposed of and replaced. A moderate sized glovebox alone costs between $250,000 and $500,000 and an equipment malfunction, which penetrates the glovebox and exposes the room to Plutonium or other toxic materials, is catastrophic. In addition to the human exposure issues, cleanup can easily run into the millions of dollars. A solution to the issues described above is ARM Automation Inc.'s (ARM) modular robotic manipulator technology developed for DOE EM operations, which addresses many of the issues discussed in the previous section. This manipulator system has the capability of custom configurations, which accommodate common glovebox tasks such as materials repackaging. The modular nature and quick connects of this system simplify installations into ''hot'' boxes and any potential modifications or repair therein. In the field of automation and robotics, a very common element is one used to generate motion for precise positioning of loads. One example of such an automation component would be an individual joint within an industrial robotic manipulator. This component consists of a tightly integrated package containing an electric motor, gear train, output support bearings, position sensors, brake, servo-amplifier and communications controller. Within the context of this paper, this key building block is referred to as an actuator module. With regard to the needs of the EM, [8] and [9] have shown that while each focus area has unique requirements for robotic automation at a system or manipulator level, their requirements at the actuator level are very similar. Thereby, a modular approach to automation which utilizes a small set of versatile actuator modules can be used to construct a broad range of robotic systems and automation cells suited to EM applications. By providing a pre-engineered, pre-integrated motion system to different robotics users within the DOE, new automation systems can be more quickly created without extensive expertise in motion control or the expense of building custom equipment.

  6. Modular multivariable control improves hydrocracking

    SciTech Connect (OSTI)

    Chia, T.L.; Lefkowitz, I. [ControlSoft, Inc., Cleveland, OH (United States); Tamas, P.D. [Marathon Oil Co., Robinson, IL (United States)

    1996-10-01

    Modular multivariable control (MMC), a system of interconnected, single process variable controllers, can be a user-friendly, reliable and cost-effective alternative to centralized, large-scale multivariable control packages. MMC properties and features derive directly from the properties of the coordinated controller which, in turn, is based on internal model control technology. MMC was applied to a hydrocracking unit involving two process variables and three controller outputs. The paper describes modular multivariable control, MMC properties, tuning considerations, application at the DCS level, constraints handling, and process application and results.

  7. Modularity in Distributed Feature Composition Pamela Zave

    E-Print Network [OSTI]

    Greenberg, Albert

    , there is an abundance of experi- ence to draw upon. DFC was designed to support modular development of features; Section is an adaptation of the pipes-and-filters architectural style to telecommunication applications. This kind is an overview of pipes-and-filters modularity as realized in DFC. The benefit of feature modularity comes

  8. VERSATILE VACUUM PACKAGING FOR EXPERIMENTAL STUDY OF RESONANT MEMS

    E-Print Network [OSTI]

    Tang, William C

    VERSATILE VACUUM PACKAGING FOR EXPERIMENTAL STUDY OF RESONANT MEMS Adam R. Schofield, Alexander A a versatile sub-mTorr vacuum packaging approach ideally suited for R&D of high performance dynamic MEMS techniques and experimentally characterized to determine the sealed vacuum level. The combination of high

  9. A Versatile Integrated Circuit for the Acquisition of Biopotentials

    E-Print Network [OSTI]

    Harrison, Reid R.

    A Versatile Integrated Circuit for the Acquisition of Biopotentials Reid R. Harrison1,2 1. These biopotentials span a wide range of amplitudes and frequencies. We have developed a versatile front equipment is used, the most practical methods for long-term biopotential recording observe cells from

  10. Spectral Modular Exponentiation Gokay Saldamli

    E-Print Network [OSTI]

    California at Davis, University of

    and exponentiation based on a new reduction oper- ation are proposed (Section 2). These methods work com- pletely to meet the asymptotic crossover of Sch¨onhage-Strassen, assuming the reduction has a constant cost describe a new method to perform the modular expo- nentiation operation, i.e., the computation of c = me

  11. Hybrid energy systems (HESs) using small modular reactors (SMRs)

    SciTech Connect (OSTI)

    S. Bragg-Sitton

    2014-10-01

    Large-scale nuclear reactors are traditionally operated for a singular purpose: steady-state production of dispatchable baseload electricity that is distributed broadly on the electric grid. While this implementation is key to a sustainable, reliable energy grid, small modular reactors (SMRs) offer new opportunities for increased use of clean nuclear energy for both electric and thermal ap plications in more locations – while still accommodating the desire to support renewable production sources.

  12. Modular Stellarator Fusion Reactor concept

    SciTech Connect (OSTI)

    Miller, R.L.; Krakowski, R.A.

    1981-08-01

    A preliminary conceptual study is made of the Modular Stellarator Reactor (MSR). A steady-state ignited, DT-fueled, magnetic fusion reactor is proposed for use as a central electric-power station. The MSR concept combines the physics of the classic stellarator confinement topology with an innovative, modular-coil design. Parametric tradeoff calculations are described, leading to the selection of an interim design point for a 4-GWt plant based on Alcator transport scaling and an average beta value of 0.04 in an l = 2 system with a plasma aspect ratio of 11. The physics basis of the design point is described together with supporting magnetics, coil-force, and stress computations. The approach and results presented herein will be modified in the course of ongoing work to form a firmer basis for a detailed conceptual design of the MSR.

  13. Mock Modular Mathieu Moonshine Modules

    E-Print Network [OSTI]

    Miranda C. N. Cheng; Xi Dong; John F. R. Duncan; Sarah Harrison; Shamit Kachru; Timm Wrase

    2015-08-10

    We construct super vertex operator algebras which lead to modules for moonshine relations connecting the four smaller sporadic simple Mathieu groups with distinguished mock modular forms. Starting with an orbifold of a free fermion theory, any subgroup of Co_0 that fixes a 3-dimensional subspace of its unique non-trivial 24-dimensional representation commutes with a certain N=4 superconformal algebra. Similarly, any subgroup of Co_0 that fixes a 2-dimensional subspace of the 24-dimensional representation commutes with a certain N=2 superconformal algebra. Through the decomposition of the corresponding twined partition functions into characters of the N=4 (resp. N=2) superconformal algebra, we arrive at mock modular forms which coincide with the graded characters of an infinite-dimensional Z-graded module for the corresponding group. The Mathieu groups are singled out amongst various other possibilities by the moonshine property: requiring the corresponding weak Jacobi forms to have certain asymptotic behaviour near cusps. Our constructions constitute the first examples of explicitly realized modules underlying moonshine phenomena relating mock modular forms to sporadic simple groups. Modules for other groups, including the sporadic groups of McLaughlin and Higman--Sims, are also discussed.

  14. Energy Department Announces Small Modular Reactor Technology...

    Energy Savers [EERE]

    today three public-private partnerships to develop deployment plans for small modular nuclear reactor (SMR) technologies at SRS facilities, near Aiken, South Carolina. As part...

  15. Multidimensional bioseparation with modular microfluidics Chirica...

    Office of Scientific and Technical Information (OSTI)

    Multidimensional bioseparation with modular microfluidics Chirica, Gabriela S.; Renzi, Ronald F. A multidimensional chemical separation and analysis system is described including a...

  16. Rank-finiteness for modular categories

    E-Print Network [OSTI]

    Paul Bruillard; Siu-Hung Ng; Eric C. Rowell; Zhenghan Wang

    2015-05-27

    We prove a rank-finiteness conjecture for modular categories: up to equivalence, there are only finitely many modular categories of any fixed rank. Our technical advance is a generalization of the Cauchy theorem in group theory to the context of spherical fusion categories. For a modular category $\\mathcal{C}$ with $N=ord(T)$, the order of the modular $T$-matrix, the Cauchy theorem says that the set of primes dividing the global quantum dimension $D^2$ in the Dedekind domain $\\mathbb{Z}[e^{\\frac{2\\pi i}{N}}]$ is identical to that of $N$.

  17. Project Profile: Modular and Scalable Baseload Molten Salt Plant...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modular and Scalable Baseload Molten Salt Plant Conceptual Design and Feasibility Project Profile: Modular and Scalable Baseload Molten Salt Plant Conceptual Design and Feasibility...

  18. A hybrid network architecture for modular data centers

    E-Print Network [OSTI]

    Radhakrishnan, Sivasankar

    2010-01-01

    Part-time Optics in Data Centers. In ACM SIGCOMM ’10. [WLLStructure for Modular Data Center Interconnection. In ACMArchitecture for Modular Data Centers A thesis submitted in

  19. An inverse of the modular invariant

    E-Print Network [OSTI]

    Semjon Adlaj

    2011-10-14

    During the last few years of his life, Ramanujan had adamantly tried to invert the modular invariant. Subsequent efforts failed until May 30, 2011 when an explicit closed formula for an inverse was presented at the CCRAS (Moscow, Russia). This very formula, along with some special values of the modular invariant, is given in this paper.

  20. Modularity of Termination Using Dependency Pairs ?

    E-Print Network [OSTI]

    Ábrahám, Erika

    Modularity of Termination Using Dependency Pairs ? Thomas Arts 1 and J¨urgen Giesl 2 1 Computer@informatik.tu­darmstadt.de Abstract. The framework of dependency pairs allows automated ter­ mination and innermost termination proofs of this framework in order to prove termination in a modular way. Our mod­ ularity results significantly increase

  1. On the Generator of Massive Modular Groups

    E-Print Network [OSTI]

    Timor Saffary

    2006-01-19

    The purpose of this paper is to shed more light on the transition from the known massless modular action to the wanted massive one in the case of forward light cones and double cones. The infinitesimal generator of the massive modular automorphism group is investigated, in particular, some assumptions on its structure are verified explicitly for two concrete examples.

  2. Efficient Software Implementations of Modular Exponentiation

    E-Print Network [OSTI]

    International Association for Cryptologic Research (IACR)

    1 Efficient Software Implementations of Modular Exponentiation Shay Gueron 1, 2 1 Department on the workloads of SSL/TLS servers, and therefore their software implementations on general purpose processors attacks. Together, these lead to an efficient software implementation of 512-bit modular exponentiation

  3. Note: Versatile sample stick for neutron scattering experiments in high electric fields

    SciTech Connect (OSTI)

    Bartkowiak, M., E-mail: marek.bartkowiak@psi.ch [Laboratory for Developments and Methods, Paul Scherrer Institut, CH-5232 Villigen (Switzerland); White, J. S. [Laboratory for Neutron Scattering, Paul Scherrer Institut, CH-5232 Villigen (Switzerland) [Laboratory for Neutron Scattering, Paul Scherrer Institut, CH-5232 Villigen (Switzerland); Laboratory for Quantum Magnetism, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Rønnow, H. M.; Prša, K. [Laboratory for Quantum Magnetism, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland)] [Laboratory for Quantum Magnetism, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland)

    2014-02-15

    We present a versatile high voltage sample stick that fits into all cryomagnets and standard cryostats at the Swiss Spallation Neutron Source, Paul Scherrer Institut, and which provides a low effort route to neutron scattering experiments that combine electric field with low temperature and magnetic field. The stick allows for voltages up to 5 kV and can be easily adapted for different scattering geometries. We discuss the design consideration and thermal behavior of the stick, and give one example to showcase the abilities of the device.

  4. MODULAR MANIPULATOR FOR ROBOTICS APPLICATIONS

    SciTech Connect (OSTI)

    Joseph W. Geisinger, Ph.D.

    2001-07-31

    ARM Automation, Inc. is developing a framework of modular actuators that can address the DOE's wide range of robotics needs. The objective of this effort is to demonstrate the effectiveness of this technology by constructing a manipulator from these actuators within a glovebox for Automated Plutonium Processing (APP). At the end of the project, the system of actuators was used to construct several different manipulator configurations, which accommodate common glovebox tasks such as repackaging. The modular nature and quickconnects of this system simplify installation into ''hot'' boxes and any potential modifications or repair therein. This work focused on the development of self-contained robotic actuator modules including the embedded electronic controls for the purpose of building a manipulator system. Both of the actuators developed under this project contain the control electronics, sensors, motor, gear train, wiring, system communications and mechanical interfaces of a complete robotics servo device. Test actuators and accompanying DISC{trademark}s underwent validation testing at The University of Texas at Austin and ARM Automation, Inc. following final design and fabrication. The system also included custom links, an umbilical cord, an open architecture PC-based system controller, and operational software that permitted integration into a completely functional robotic manipulator system. The open architecture on which this system is based avoids proprietary interfaces and communication protocols which only serve to limit the capabilities and flexibility of automation equipment. The system was integrated and tested in the contractor's facility for intended performance and operations. The manipulator was tested using the full-scale equipment and process mock-ups. The project produced a practical and operational system including a quantitative evaluation of its performance and cost.

  5. Magnetron sputtering source

    DOE Patents [OSTI]

    Makowiecki, Daniel M. (Livermore, WA); McKernan, Mark A. (Livermore, CA); Grabner, R. Fred (Brentwood, CA); Ramsey, Philip B. (Livermore, CA)

    1994-01-01

    A magnetron sputtering source for sputtering coating substrates includes a high thermal conductivity electrically insulating ceramic and magnetically attached sputter target which can eliminate vacuum sealing and direct fluid cooling of the cathode assembly. The magnetron sputtering source design results in greater compactness, improved operating characteristics, greater versatility, and low fabrication cost. The design easily retrofits most sputtering apparatuses and provides for safe, easy, and cost effective target replacement, installation, and removal.

  6. Magnetron sputtering source

    DOE Patents [OSTI]

    Makowiecki, D.M.; McKernan, M.A.; Grabner, R.F.; Ramsey, P.B.

    1994-08-02

    A magnetron sputtering source for sputtering coating substrates includes a high thermal conductivity electrically insulating ceramic and magnetically attached sputter target which can eliminate vacuum sealing and direct fluid cooling of the cathode assembly. The magnetron sputtering source design results in greater compactness, improved operating characteristics, greater versatility, and low fabrication cost. The design easily retrofits most sputtering apparatuses and provides for safe, easy, and cost effective target replacement, installation, and removal. 12 figs.

  7. 3.0 Modular Program Pathway 3.1 Pathway Overview

    E-Print Network [OSTI]

    JT-60 SU ARIES-RS Scale (?) Ignitor-like Compact Tok., .(+AT) LHD, W7-AS, W7-X Base Fusion ScienceDraft 7/17/98 21 3.0 Modular Program Pathway 3.1 Pathway Overview The major issues in fusion R gain that have characteristics similar to those expected in a fusion energy source, (2) the achievement

  8. XAUV : modular high maneuverability autonomous underwater vehicle

    E-Print Network [OSTI]

    Walker, Daniel G. (Daniel George)

    2009-01-01

    The design and construction of a modular test bed autonomous underwater vehicle (AUV) is analyzed. Although a relatively common stacked-hull design is used, the state of the art is advanced through an aggressive power ...

  9. Versatile module for experiments with focussing neutron guides

    SciTech Connect (OSTI)

    Adams, T.; Pfleiderer, C.; Böni, P. [Physik-Department, Technische Universität München, D-85748 Garching (Germany); Brandl, G.; Chacon, A.; Wagner, J. N.; Rahn, M.; Mühlbauer, S.; Georgii, R. [Physik-Department, Technische Universität München, D-85748 Garching (Germany); Heinz Maier-Leibnitz Zentrum, FRM II, Technische Universität München, D-85748 Garching (Germany)

    2014-09-22

    We report the development of a versatile module that permits fast and reliable use of focussing neutron guides under varying scattering angles. A simple procedure for setting up the module and neutron guides is illustrated by typical intensity patterns to highlight operational aspects as well as typical parasitic artefacts. Combining a high-precision alignment table with separate housings for the neutron guides on kinematic mounts, the change-over between neutron guides with different focussing characteristics requires no readjustments of the experimental setup. Exploiting substantial gain factors, we demonstrate the performance of this versatile neutron scattering module in a study of the effects of uniaxial stress on the domain populations in the transverse spin density wave phase of single crystal Cr.

  10. Versatile and Renewable: Malonic Acid, It's in Everything | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report1538-1950Department of EnergyEnergy Versatile and

  11. A New Architecture for Man: The Modular, Prefabricated Buildings of Ernest J. Kump, Jr.

    E-Print Network [OSTI]

    Stiles, Elaine

    2013-01-01

    Hilp on a modular plan, a prefabricated house design forPark houses were a system of nested prefabricated modular

  12. A TAXONOMY OF MODULAR GRIME IN DESIGN PATTERNS Travis Steven Schanz

    E-Print Network [OSTI]

    Dyer, Bill

    A TAXONOMY OF MODULAR GRIME IN DESIGN PATTERNS by Travis Steven Schanz A thesis submitted .......................................................................................21 3. MODULAR GRIME TAXONOMY .........................

  13. MODULAR MAGIC SUDOKU JOHN LORCH AND ELLEN WELD

    E-Print Network [OSTI]

    Lorch, John D.

    MODULAR MAGIC SUDOKU JOHN LORCH AND ELLEN WELD Abstract. A modular magic sudoku solution. 05B15. 1 #12;2 JOHN LORCH AND ELLEN WELD sudoku solution in (1) and the solution x2 given in Section

  14. Development and Optimization of Modular Hybrid Plasma Reactor...

    Office of Scientific and Technical Information (OSTI)

    Optimization of Modular Hybrid Plasma Reactor N A 36 MATERIALS SCIENCE INL developed a bench-scale, modular hybrid plasma system for gas-phase nanomaterials synthesis. The system...

  15. Advanced Small Modular Reactor Economics Status Report

    SciTech Connect (OSTI)

    Harrison, Thomas J.

    2014-10-01

    This report describes the data collection work performed for an advanced small modular reactor (AdvSMR) economics analysis activity at the Oak Ridge National Laboratory. The methodology development and analytical results are described in separate, stand-alone documents as listed in the references. The economics analysis effort for the AdvSMR program combines the technical and fuel cycle aspects of advanced (non-light water reactor [LWR]) reactors with the market and production aspects of SMRs. This requires the collection, analysis, and synthesis of multiple unrelated and potentially high-uncertainty data sets from a wide range of data sources. Further, the nature of both economic and nuclear technology analysis requires at least a minor attempt at prediction and prognostication, and the far-term horizon for deployment of advanced nuclear systems introduces more uncertainty. Energy market uncertainty, especially the electricity market, is the result of the integration of commodity prices, demand fluctuation, and generation competition, as easily seen in deregulated markets. Depending on current or projected values for any of these factors, the economic attractiveness of any power plant construction project can change yearly or quarterly. For long-lead construction projects such as nuclear power plants, this uncertainty generates an implied and inherent risk for potential nuclear power plant owners and operators. The uncertainty in nuclear reactor and fuel cycle costs is in some respects better understood and quantified than the energy market uncertainty. The LWR-based fuel cycle has a long commercial history to use as its basis for cost estimation, and the current activities in LWR construction provide a reliable baseline for estimates for similar efforts. However, for advanced systems, the estimates and their associated uncertainties are based on forward-looking assumptions for performance after the system has been built and has achieved commercial operation. Advanced fuel materials and fabrication costs have large uncertainties based on complexities of operation, such as contact-handled fuel fabrication versus remote handling, or commodity availability. Thus, this analytical work makes a good faith effort to quantify uncertainties and provide qualifiers, caveats, and explanations for the sources of these uncertainties. The overall result is that this work assembles the necessary information and establishes the foundation for future analyses using more precise data as nuclear technology advances.

  16. ItohItohFukuyama (modularized

    E-Print Network [OSTI]

    Budny, Robert

    , JSOLVER. Fortran. LLNL (CORSICA) TEQ -- calculates free­boundary equilibria via either direct full documentation and clean­up so that outside person could follow source code and debug problems

  17. Aalborg Universitet Modular Power Architectures for Microgrid Clusters

    E-Print Network [OSTI]

    Vasquez, Juan Carlos

    Aalborg Universitet Modular Power Architectures for Microgrid Clusters Lin, Hengwei; Liu, Chengxi., Vasquez, J. C., & Dragicevic, T. (2014). Modular Power Architectures for Microgrid Clusters from vbn.aau.dk on: juli 04, 2015 #12;Modular Power Architectures for Microgrid Clusters ­ Invited

  18. A Modular Control System for Remote Subsea Eric Stephen Smith

    E-Print Network [OSTI]

    Wood, Stephen L.

    A Modular Control System for Remote Subsea Equipment by Eric Stephen Smith Bachelor of Science the undersigned committee hereby approve the attached thesis A Modular Control System for Remote Subsea Equipment and Environmental Systems #12;iv Abstract Title: A Modular Control System for Remote Subsea Equipment Author: Eric

  19. Parallel optics technology assessment for the versatile link project

    SciTech Connect (OSTI)

    Chramowicz, J.; Kwan, S.; Rivera, R.; Prosser, A.; /Fermilab

    2011-01-01

    This poster describes the assessment of commercially available and prototype parallel optics modules for possible use as back end components for the Versatile Link common project. The assessment covers SNAP12 transmitter and receiver modules as well as optical engine technologies in dense packaging options. Tests were performed using vendor evaluation boards (SNAP12) as well as custom evaluation boards (optical engines). The measurements obtained were used to compare the performance of these components with single channel SFP+ components operating at a transmission wavelength of 850 nm over multimode fibers.

  20. Modular stellarator reactor conceptual design study

    SciTech Connect (OSTI)

    Miller, R.L.; Krakowski, R.A.; Bathke, C.G.

    1983-01-01

    A conceptual design study of the Modular Stellarator Reactor is summarized. The physics basis of the approach is elucidated with emphasis on magnetics performance optimization. Key engineering features of the fusion power core are described. Comparisons with an analogous continuous-helical-coil (torsatron) system are made as the basis of a technical and economic assessment.

  1. 1 INTRODUCTION The modular finitedifference groundwater flow

    E-Print Network [OSTI]

    Russell, Thomas F.

    1 INTRODUCTION The modular finite­difference ground­water flow model (MODFLOW) developed by the U­dimensional ground­water systems (McDonald & Harbaugh, 1988, Harbaugh & McDonald, 1996). MOC3D is a solute is optimal for advection­ dominated systems, which are typical of many field problems involving ground­water

  2. Improved Modular Termination Proofs Using Dependency Pairs

    E-Print Network [OSTI]

    Middeldorp, Aart

    Improved Modular Termination Proofs Using Dependency Pairs Ren´e Thiemann, J¨urgen Giesl, Peter) termination proofs of term rewrite systems (TRSs). For any TRS, it generates inequality constraints that have to be satisfied by well-founded orders. However, proving innermost termination is considerably easier than

  3. Improved Modular Termination Proofs Using Dependency Pairs

    E-Print Network [OSTI]

    Ábrahám, Erika

    Improved Modular Termination Proofs Using Dependency Pairs Renâ??e Thiemann, JË?urgen Giesl, Peter) termination proofs of term rewrite systems (TRSs). For any TRS, it generates inequality constraints that have to be satisfied by well­founded orders. However, proving innermost termination is considerably easier than

  4. Advanced Small Modular Reactor Economics Model Development

    SciTech Connect (OSTI)

    Harrison, Thomas J.

    2014-10-01

    The US Department of Energy Office of Nuclear Energy’s Advanced Small Modular Reactor (SMR) research and development activities focus on four key areas: Developing assessment methods for evaluating advanced SMR technologies and characteristics; and Developing and testing of materials, fuels and fabrication techniques; and Resolving key regulatory issues identified by US Nuclear Regulatory Commission and industry; and Developing advanced instrumentation and controls and human-machine interfaces. This report focuses on development of assessment methods to evaluate advanced SMR technologies and characteristics. Specifically, this report describes the expansion and application of the economic modeling effort at Oak Ridge National Laboratory. Analysis of the current modeling methods shows that one of the primary concerns for the modeling effort is the handling of uncertainty in cost estimates. Monte Carlo–based methods are commonly used to handle uncertainty, especially when implemented by a stand-alone script within a program such as Python or MATLAB. However, a script-based model requires each potential user to have access to a compiler and an executable capable of handling the script. Making the model accessible to multiple independent analysts is best accomplished by implementing the model in a common computing tool such as Microsoft Excel. Excel is readily available and accessible to most system analysts, but it is not designed for straightforward implementation of a Monte Carlo–based method. Using a Monte Carlo algorithm requires in-spreadsheet scripting and statistical analyses or the use of add-ons such as Crystal Ball. An alternative method uses propagation of error calculations in the existing Excel-based system to estimate system cost uncertainty. This method has the advantage of using Microsoft Excel as is, but it requires the use of simplifying assumptions. These assumptions do not necessarily bring into question the analytical results. In fact, the analysis shows that the propagation of error method introduces essentially negligible error, especially when compared to the uncertainty associated with some of the estimates themselves. The results of these uncertainty analyses generally quantify and identify the sources of uncertainty in the overall cost estimation. The obvious generalization—that capital cost uncertainty is the main driver—can be shown to be an accurate generalization for the current state of reactor cost analysis. However, the detailed analysis on a component-by-component basis helps to demonstrate which components would benefit most from research and development to decrease the uncertainty, as well as which components would benefit from research and development to decrease the absolute cost.

  5. New Modularization Framework for the FAST Wind Turbine CAE Tool: Preprint

    SciTech Connect (OSTI)

    Jonkman, J.

    2013-01-01

    NREL has recently put considerable effort into improving the overall modularity of its FAST wind turbine aero-hydro-servo-elastic tool to (1) improve the ability to read, implement, and maintain source code; (2) increase module sharing and shared code development across the wind community; (3) improve numerical performance and robustness; and (4) greatly enhance flexibility and expandability to enable further developments of functionality without the need to recode established modules. The new FAST modularization framework supports module-independent inputs, outputs, states, and parameters; states in continuous-time, discrete-time, and in constraint form; loose and tight coupling; independent time and spatial discretizations; time marching, operating-point determination, and linearization; data encapsulation; dynamic allocation; and save/retrieve capability. This paper explains the features of the new FAST modularization framework, as well as the concepts and mathematical background needed to understand and apply it correctly. It is envisioned that the new modularization framework will transform FAST into a powerful, robust, and flexible wind turbine modeling tool with a large number of developers and a range of modeling fidelities across the aerodynamic, hydrodynamic, servo-dynamic, and structural-dynamic components.

  6. Modular multiplication operator and quantized baker's maps

    SciTech Connect (OSTI)

    Lakshminarayan, Arul [Max-Planck-Institut fuer Physik komplexer Systeme, Noethnitzer Strasse 38, D-01187 Dresden (Germany)

    2007-10-15

    The modular multiplication operator, a central subroutine in Shor's factoring algorithm, is shown to be a coherent superposition of two quantum baker's maps when the multiplier is 2. The classical limit of the maps being completely chaotic, it is shown that there exist perturbations that push the modular multiplication operator into regimes of generic quantum chaos with spectral fluctuations that are those of random matrices. For the initial state of relevance to Shor's algorithm we study fidelity decay due to phase and bit-flip errors in a single qubit and show exponential decay with shoulders at multiples or half-multiples of the order. A simple model is used to gain some understanding of this behavior.

  7. Modular stellarator reactor: a fusion power plant

    SciTech Connect (OSTI)

    Miller, R.L.; Bathke, C.G.; Krakowski, R.A.; Heck, F.M.; Green, L.; Karbowski, J.S.; Murphy, J.H.; Tupper, R.B.; DeLuca, R.A.; Moazed, A.

    1983-07-01

    A comparative analysis of the modular stellarator and the torsatron concepts is made based upon a steady-state ignited, DT-fueled, reactor embodiment of each concept for use as a central electric-power station. Parametric tradeoff calculations lead to the selection of four design points for an approx. 4-GWt plant based upon Alcator transport scaling in l = 2 systems of moderate aspect ratio. The four design points represent high-aspect ratio. The four design points represent high-(0.08) and low-(0.04) beta versions of the modular stellarator and torsatron concepts. The physics basis of each design point is described together with supporting engineering and economic analyses. The primary intent of this study is the elucidation of key physics and engineering tradeoffs, constraints, and uncertainties with respect to the ultimate power reactor embodiment.

  8. Copper vapor laser modular packaging assembly

    DOE Patents [OSTI]

    Alger, Terry W. (Tracy, CA); Ault, Earl R. (Dublin, CA); Moses, Edward I. (Castro Valley, CA)

    1992-01-01

    A modularized packaging arrangement for one or more copper vapor lasers and associated equipment is disclosed herein. This arrangement includes a single housing which contains the laser or lasers and all their associated equipment except power, water and neon, and means for bringing power, water, and neon which are necessary to the operation of the lasers into the container for use by the laser or lasers and their associated equipment.

  9. Copper vapor laser modular packaging assembly

    DOE Patents [OSTI]

    Alger, T.W.; Ault, E.R.; Moses, E.I.

    1992-12-01

    A modularized packaging arrangement for one or more copper vapor lasers and associated equipment is disclosed herein. This arrangement includes a single housing which contains the laser or lasers and all their associated equipment except power, water and neon, and means for bringing power, water, and neon which are necessary to the operation of the lasers into the container for use by the laser or lasers and their associated equipment. 2 figs.

  10. Modular architecture for robotics and teleoperation

    DOE Patents [OSTI]

    Anderson, Robert J. (11908 Ibex Ave., N.E., Albuquerque, NM 87111)

    1996-12-03

    Systems and methods for modularization and discretization of real-time robot, telerobot and teleoperation systems using passive, network based control laws. Modules consist of network one-ports and two-ports. Wave variables and position information are passed between modules. The behavior of each module is decomposed into uncoupled linear-time-invariant, and coupled, nonlinear memoryless elements and then are separately discretized.

  11. A versatile clearing agent for multi-modal brain imaging

    E-Print Network [OSTI]

    Costantini, Irene; Di Giovanna, Antonino Paolo; Mascaro, Anna Letizia Allegra; Silvestri, Ludovico; Müllenbroich, Marie Caroline; Onofri, Leonardo; Conti, Valerio; Vanzi, Francesco; Sacconi, Leonardo; Guerrini, Renzo; Markram, Henry; Iannello, Giulio; Pavone, Francesco Saverio

    2015-01-01

    Extensive mapping of neuronal connections in the central nervous system requires high-throughput um-scale imaging of large volumes. In recent years, different approaches have been developed to overcome the limitations due to tissue light scattering. These methods are generally developed to improve the performance of a specific imaging modality, thus limiting comprehensive neuroanatomical exploration by multimodal optical techniques. Here, we introduce a versatile brain clearing agent (2,2'-thiodiethanol; TDE) suitable for various applications and imaging techniques. TDE is cost-efficient, water-soluble and low-viscous and, more importantly, it preserves fluorescence, is compatible with immunostaining and does not cause deformations at sub-cellular level. We demonstrate the effectiveness of this method in different applications: in fixed samples by imaging a whole mouse hippocampus with serial two-photon tomography; in combination with CLARITY by reconstructing an entire mouse brain with light sheet microscopy...

  12. Metagenome of a Versatile Chemolithoautotroph from Expanding Oceanic Dead Zones

    SciTech Connect (OSTI)

    Walsh, David A.; Zaikova, Elena; Howes, Charles L.; Song, Young; Wright, Jody; Tringe, Susannah G.; Tortell, Philippe D.; Hallam, Steven J.

    2009-07-15

    Oxygen minimum zones (OMZs), also known as oceanic"dead zones", are widespread oceanographic features currently expanding due to global warming and coastal eutrophication. Although inhospitable to metazoan life, OMZs support a thriving but cryptic microbiota whose combined metabolic activity is intimately connected to nutrient and trace gas cycling within the global ocean. Here we report time-resolved metagenomic analyses of a ubiquitous and abundant but uncultivated OMZ microbe (SUP05) closely related to chemoautotrophic gill symbionts of deep-sea clams and mussels. The SUP05 metagenome harbors a versatile repertoire of genes mediating autotrophic carbon assimilation, sulfur-oxidation and nitrate respiration responsive to a wide range of water column redox states. Thus, SUP05 plays integral roles in shaping nutrient and energy flow within oxygen-deficient oceanic waters via carbon sequestration, sulfide detoxification and biological nitrogen loss with important implications for marine productivity and atmospheric greenhouse control.

  13. Modular Dynamical Semigroups for Quantum Dissipative Systems

    E-Print Network [OSTI]

    David Taj; Hans Christian Öttinger

    2015-03-10

    We introduce a class of Markovian quantum master equations, able to describe the dissipative dynamics of a quantum system weakly coupled to one or several heat baths. The dissipative structure is driven by an entropic operator, the so called modular Hamiltonian, which makes it nonlinear. The generated Modular Dynamical Semigroup (MDS) is not, in general, a Quantum Dynamical Semigroup (QDS), whose dynamics is of the popular Lindblad type. The MDS has a robust thermodynamic structure, which guarantees for the positivity of the time evolved state, the correct steady state properties, the positivity of the entropy production, a positive Onsager matrix and Onsager symmetry relations (arising from Green-Kubo formulas). We show that the celebrated Davies generator, obtained through the Born and the secular approximations, generates a MDS. By unravelling the modular structure of the former, we provide a different and genuinely nonlinear MDS, not of QDS type, which is free from the severe spectral restrictions of the Davies generator, while still being supported by a weak coupling limit argument. With respect to the latter, the present work is a substantial extension of \\cite{Ottinger2011_GEO,Ottinger2010_TLS_DHO}

  14. Small Modular Reactors (468th Brookhaven Lecture)

    SciTech Connect (OSTI)

    Bari, Robert

    2011-04-20

    With good reason, much more media attention has focused on nuclear power plants than solar farms, wind farms, or hydroelectric plants during the past month and a half. But as nations around the world demand more energy to power everything from cell phone batteries to drinking water pumps to foundries, nuclear plants are the only non-greenhouse-gas producing option that can be built to operate almost anywhere, and can continue to generate power during droughts, after the sun sets, and when winds die down. To supply this demand for power, designers around the world are competing to develop more affordable nuclear reactors of the future: small modular reactors. Brookhaven Lab is working with DOE to ensure that these reactors are designed to be safe for workers, members of surrounding communities, and the environment and to ensure that the radioactive materials and technology will only be used for peaceful purposes, not weapons. In his talk, Bari will discuss the advantages and challenges of small modular reactors and what drives both international and domestic interest in them. He will also explain how Brookhaven Lab and DOE are working to address the challenges and provide a framework for small modular reactors to be commercialized.

  15. Modular hybrid plasma reactor and related systems and methods...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Patent Search Success Stories News Events Find More Like This Return to Search Modular hybrid plasma reactor and related systems and methods United States Patent Patent Number:...

  16. Modular hybrid plasma reactor and related systems and methods...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (27) Visual Patent Search Success Stories News Events Return to Search Modular hybrid plasma reactor and related systems and methods United States Patent Application ***...

  17. New Modularization Framework Transforms FAST Wind Turbine Modeling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    behavior of complex multisegmented mooring systems-a critical component of both wave energy conversion and floating offshore wind systems. The new FAST modularization...

  18. Modular Low Cost High Energy Exhaust Heat Thermoelectric Generator...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Cost High Energy Exhaust Heat Thermoelectric Generator with Closed-Loop Exhaust By-Pass System Modular Low Cost High Energy Exhaust Heat Thermoelectric Generator with...

  19. Micro-Modular Biopower System for Cooling, Heating and Power

    SciTech Connect (OSTI)

    2006-08-01

    This Congressionally-mandated project seeks to test a micro-modular biopower system for use on the Mount Wachusett Community College (MWCC) campus.

  20. OLED area illumination source

    DOE Patents [OSTI]

    Foust, Donald Franklin (Scotia, NY); Duggal, Anil Raj (Niskayuna, NY); Shiang, Joseph John (Niskayuna, NY); Nealon, William Francis (Gloversville, NY); Bortscheller, Jacob Charles (Clifton Park, NY)

    2008-03-25

    The present invention relates to an area illumination light source comprising a plurality of individual OLED panels. The individual OLED panels are configured in a physically modular fashion. Each OLED panel comprising a plurality of OLED devices. Each OLED panel comprises a first electrode and a second electrode such that the power being supplied to each individual OLED panel may be varied independently. A power supply unit capable of delivering varying levels of voltage simultaneously to the first and second electrodes of each of the individual OLED panels is also provided. The area illumination light source also comprises a mount within which the OLED panels are arrayed.

  1. Modular Operational Test Plans for Inferences on Software Reliability Based on a Markov Model

    E-Print Network [OSTI]

    Mazumdar, Mainak

    Modular Operational Test Plans for Inferences on Software Reliability Based on a Markov Model. Keywords: Software reliability; Modular Operational Tests; Sample Size Determination; Mathematical Programming #12;Modular Operational Test Plans for Inferences on Software Reliability Based on a Markov Model

  2. Modular High Current Test Facility at LLNL

    SciTech Connect (OSTI)

    Tully, L K; Goerz, D A; Speer, R D; Ferriera, T J

    2008-05-20

    This paper describes the 1 MA, 225 kJ test facility in operation at Lawrence Livermore National Laboratory (LLNL). The capacitor bank is constructed from three parallel 1.5 mF modules. The modules are capable of switching simultaneously or sequentially via solid dielectric puncture switches. The bank nominally operates up to 10 kV and reaches peak current with all three cabled modules in approximately 30 {micro}s. Parallel output plates from the bank allow for cable or busbar interfacing to the load. This versatile bank is currently in use for code validation experiments, railgun related activities, switch testing, and diagnostic development.

  3. Baseline Concept Description of a Small Modular High Temperature Reactor

    SciTech Connect (OSTI)

    Hans Gougar

    2014-05-01

    The objective of this report is to provide a description of generic small modular high temperature reactors (herein denoted as an smHTR), summarize their distinguishing attributes, and lay out the research and development (R&D) required for commercialization. The generic concepts rely heavily on the modular high temperature gas-cooled reactor designs developed in the 1980s which were never built but for which pre-licensing or certification activities were conducted. The concept matured more recently under the Next Generation Nuclear Plant (NGNP) project, specifically in the areas of fuel and material qualification, methods development, and licensing. As all vendor-specific designs proposed under NGNP were all both ‘small’ or medium-sized and ‘modular’ by International Atomic Energy Agency (IAEA) and Department of Energy (DOE) standards, the technical attributes, challenges, and R&D needs identified, addressed, and documented under NGNP are valid and appropriate in the context of Small Modular Reactor (SMR) applications. Although the term High Temperature Reactor (HTR) is commonly used to denote graphite-moderated, thermal spectrum reactors with coolant temperatures in excess of 650oC at the core outlet, in this report the historical term High Temperature Gas-Cooled Reactor (HTGR) will be used to distinguish the gas-cooled technology described herein from its liquid salt-cooled cousin. Moreover, in this report it is to be understood that the outlet temperature of the helium in an HTGR has an upper limit of 950 degrees C which corresponds to the temperature to which certain alloys are currently being qualified under DOE’s ARC program. Although similar to the HTGR in just about every respect, the Very High Temperature Reactor (VHTR) may have an outlet temperature in excess of 950 degrees C and is therefore farther from commercialization because of the challenges posed to materials exposed to these temperatures. The VHTR is the focus of R&D under the Generation IV program and its specific R&D needs will be included in this report when appropriate for comparison. The distinguishing features of the HTGR are the refractory (TRISO) coated particle fuel, the low-power density, graphite-moderated core, and the high outlet temperature of the inert helium coolant. The low power density and fuel form effectively eliminate the possibility of core melt, even upon a complete loss of coolant pressure and flow. The graphite, which constitutes the bulk of the core volume and mass, provides a large thermal buffer that absorbs fission heat such that thermal transients occur over a timespan of hours or even days. As chemically-inert helium is already a gas, there is no coolant temperature or void feedback on the neutronics and no phase change or corrosion product that could degrade heat transfer. Furthermore, the particle coatings and interstitial graphite retain fission products such that the source terms at the plant boundary remain well below actionable levels under all anticipated nominal and off-normal operating conditions. These attributes enable the reactor to supply process heat to a collocated industrial plant with negligible risk of contamination and minimal dynamic coupling of the facilities (Figure 1). The exceptional retentive properties of coated particle fuel in a graphite matrix were first demonstrated in the DRAGON reactor, a European research facility that began operation in 1964.

  4. Baseline Concept Description of a Small Modular High Temperature Reactor

    SciTech Connect (OSTI)

    Gougar, Hans D.

    2014-10-01

    The objective of this report is to provide a description of generic small modular high temperature reactors (herein denoted as an smHTR), summarize their distinguishing attributes, and lay out the research and development (R&D) required for commercialization. The generic concepts rely heavily on the modular high temperature gas-cooled reactor designs developed in the 1980s which were never built but for which pre-licensing or certification activities were conducted. The concept matured more recently under the Next Generation Nuclear Plant (NGNP) project, specifically in the areas of fuel and material qualification, methods development, and licensing. As all vendor-specific designs proposed under NGNP were all both ‘small’ or medium-sized and ‘modular’ by International Atomic Energy Agency (IAEA) and Department of Energy (DOE) standards, the technical attributes, challenges, and R&D needs identified, addressed, and documented under NGNP are valid and appropriate in the context of Small Modular Reactor (SMR) applications. Although the term High Temperature Reactor (HTR) is commonly used to denote graphite-moderated, thermal spectrum reactors with coolant temperatures in excess of 650oC at the core outlet, in this report the historical term High Temperature Gas-Cooled Reactor (HTGR) will be used to distinguish the gas-cooled technology described herein from its liquid salt-cooled cousin. Moreover, in this report it is to be understood that the outlet temperature of the helium in an HTGR has an upper limit of 950 degrees C which corresponds to the temperature to which certain alloys are currently being qualified under DOE’s ARC program. Although similar to the HTGR in just about every respect, the Very High Temperature Reactor (VHTR) may have an outlet temperature in excess of 950 degrees C and is therefore farther from commercialization because of the challenges posed to materials exposed to these temperatures. The VHTR is the focus of R&D under the Generation IV program and its specific R&D needs will be included in this report when appropriate for comparison. The distinguishing features of the HTGR are the refractory (TRISO) coated particle fuel, the low-power density, graphite-moderated core, and the high outlet temperature of the inert helium coolant. The low power density and fuel form effectively eliminate the possibility of core melt, even upon a complete loss of coolant pressure and flow. The graphite, which constitutes the bulk of the core volume and mass, provides a large thermal buffer that absorbs fission heat such that thermal transients occur over a timespan of hours or even days. As chemically-inert helium is already a gas, there is no coolant temperature or void feedback on the neutronics and no phase change or corrosion product that could degrade heat transfer. Furthermore, the particle coatings and interstitial graphite retain fission products such that the source terms at the plant boundary remain well below actionable levels under all anticipated nominal and off-normal operating conditions. These attributes enable the reactor to supply process heat to a collocated industrial plant with negligible risk of contamination and minimal dynamic coupling of the facilities (Figure 1). The exceptional retentive properties of coated particle fuel in a graphite matrix were first demonstrated in the DRAGON reactor, a European research facility that began operation in 1964.

  5. Energy Department Announces New Investment in U.S. Small Modular...

    Energy Savers [EERE]

    New Investment in U.S. Small Modular Reactor Design and Commercialization Energy Department Announces New Investment in U.S. Small Modular Reactor Design and Commercialization...

  6. Performance Evaluation for Modular, Scalable Liquid-Rack Cooling Systems in Data Centers

    E-Print Network [OSTI]

    Xu, TengFang

    2009-01-01

    while modular system cooling kW/ton value exhibited aback into the modular cooling system and passed through thethe ventilation and cooling systems being less than optimal.

  7. Performance Evaluation for a Modular, Scalable Passive Cooling System in Data Centers

    E-Print Network [OSTI]

    Xu, TengFang

    2009-01-01

    by the passive modular cooling system; and P hydraulic isthe ventilation and cooling systems being less than optimal.modular and scalable cooling systems aim at significantly

  8. Performance Evaluation for Modular, Scalable Overhead Cooling Systems In Data Centers

    E-Print Network [OSTI]

    Xu, TengFang T.

    2009-01-01

    overhead cooling system Cooling system. The cooling systemTHE CHARACTERISTICS OF MODULAR, SCALABLE COOLING SYSTEMS ANDmodular, scalable cooling systems and servers 3.1 Modular,

  9. Nucleic acid amplification using modular branched primers

    DOE Patents [OSTI]

    Ulanovsky, Levy (Westmont, IL)

    2001-01-01

    Methods and compositions expand the options for making primers for use in amplifying nucleic acid segments. The invention eliminates the step of custom synthesis of primers for Polymerase Chain Reactions (PCR). Instead of being custom-synthesized, a primer is replaced by a combination of several oligonucleotide modules selected from a pre-synthesized library. A modular combination of just a few oligonucleotides essentially mimics the performance of a conventional, custom-made primer by matching the sequence of the priming site in the template. Each oligonucleotide module has a segment that matches one of the stretches within the priming site.

  10. Modular power converter having fluid cooled support

    DOE Patents [OSTI]

    Beihoff, Bruce C.; Radosevich, Lawrence D.; Meyer, Andreas A.; Gollhardt, Neil; Kannenberg, Daniel G.

    2005-09-06

    A support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support, in conjunction with other packaging features may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  11. Modular power converter having fluid cooled support

    DOE Patents [OSTI]

    Beihoff, Bruce C.; Radosevich, Lawrence D.; Meyer, Andreas A.; Gollhardt, Neil; Kannenberg, Daniel G.

    2005-12-06

    A support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support, in conjunction with other packaging features may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  12. Modular strategies for PET imaging agents

    SciTech Connect (OSTI)

    Hooker, , J.M.

    2010-03-01

    In recent years, modular and simplified chemical and biological strategies have been developed for the synthesis and implementation of positron emission tomography (PET) radiotracers. New developments in bioconjugation and synthetic methodologies, in combination with advances in macromolecular delivery systems and gene-expression imaging, reflect a need to reduce radiosynthesis burden in order to accelerate imaging agent development. These new approaches, which are often mindful of existing infrastructure and available resources, are anticipated to provide a more approachable entry point for researchers interested in using PET to translate in vitro research to in vivo imaging.

  13. Small modular reactors (SMRs) such as the

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque|Sensitive Species3performed Steven D. PainSmall modular reactors

  14. The versatile link, a common project for super-LHC

    SciTech Connect (OSTI)

    Amaral, Luis; Dris, Stefanos; Gerardin, Alexandre; Huffman, Todd; Issever, Cigdem; Pacheco, Alberto Jimenez; Jones, Mark; Kwan, Simon; Lee, Shih-Chang; Lian, Zhijun; Liu, Tiankuan; /CERN /Oxford U. /Fermilab /Taipei, Computing Ctr. /Southern Methodist U.

    2009-07-01

    Radiation tolerant, high speed optoelectronic data transmission links are fundamental building blocks in today's large scale High Energy Physics (HEP) detectors, as exemplified by the four experiments currently under commissioning at the Large Hadron Collider (LHC), see for example. New experiments or upgrades will impose even more stringent demands on these systems from the point of view of performance and radiation tolerance. This can already be seen from the developments underway for the Super Large Hadron Collider (SLHC) project, a proposed upgrade to the LHC aiming at increasing the luminosity of the machine by factor of 10 to 10{sup 35} cm{sup -2}s{sup -1}, and thus providing a better chance to see rare processes and improving statistically marginal measurements. In the past, specific data transmission links have been independently developed by each LHC experiment for data acquisition (DAQ), detector control as well as trigger and timing distribution (TTC). This was justified by the different types of applications being targeted as well as by technological limitations preventing one single solution from fitting all requirements. However with today's maturity of optoelectronic and CMOS technologies it is possible to envisage the development of a general purpose optical link which can cover most transmission applications: a Versatile Link. Such an approach has the clear advantage of concentrating the development effort on one single project targeting an optical link whose final functionality will only result from the topology and configuration settings adopted.

  15. Compilation as Metacomputation: Binding Time Separation in Modular Compilers

    E-Print Network [OSTI]

    Kamin, Sam

    Compilation as Metacomputation: Binding Time Separation in Modular Compilers (Extended Abstract­ ings. Metacomputation­style specification lends itself to semantics­directed compilation, which we demonstrate by creating a modular compiler for a higher­order, imperative, Algol­like language. Keywords

  16. Montgomery Modular Multiplication on ARM-NEON Revisited

    E-Print Network [OSTI]

    International Association for Cryptologic Research (IACR)

    Montgomery Modular Multiplication on ARM-NEON Revisited Hwajeong Seo1 , Zhe Liu2 , Johann Großsch-based cryptosystems. The increased prevalence of SIMD-type instructions in commodity processors (e.g. Intel SSE, ARM modular multiplication on ARM-NEON platforms. Detailed benchmarking results obtained on an ARM Cortex-A9

  17. An Integrated, Modular Framework for Computer Vision and Cognitive Robotics

    E-Print Network [OSTI]

    Förster, Alexander

    on perception has been an active component of developing artificial vision (or computer vision) systemsAn Integrated, Modular Framework for Computer Vision and Cognitive Robotics Research (icVision) J an easy-to-use, modular framework for performing computer vision related tasks in support of cognitive

  18. Modularity for Java and How OSGi Can Help

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Modularity for Java and How OSGi Can Help DECOR October 28th , 2004 Richard S. Hall #12;Software environment #12;Focus of my research Popularized by Java because of its simple dynamic code loading mechanisms of modularity mechanism The Java world has many frameworks and systems reinventing this wheel e.g., component

  19. Modular Quantum Memories Using Passive Linear Optics and Coherent Feedback

    E-Print Network [OSTI]

    Modular Quantum Memories Using Passive Linear Optics and Coherent Feedback Hendra I. Nurdin photon pulsed optical field has a conceptually simple modular realization using only passive linear optics and coherent feedback. We exploit the idea that two decaying optical cavities can be coupled

  20. VMCrypt -Modular Software Architecture for Scalable Secure Computation

    E-Print Network [OSTI]

    International Association for Cryptologic Research (IACR)

    VMCrypt - Modular Software Architecture for Scalable Secure Computation Lior Malka Jonathan Katz on efficiency and automation aspects of secure computation, in this paper we focus on software modularity software also introduces a new technique for parallel evaluation of garbled circuits. The software

  1. Toward Infusing Modular and Reflective Design Learning throughout the Curriculum

    E-Print Network [OSTI]

    Georgas, John

    Toward Infusing Modular and Reflective Design Learning throughout the Curriculum John C. Georgas intervention that cen- ters on the widespread infusion of design learning throughout the curriculum using: An emphasis on broadly infusing design learning through the curriculum using modular design challenges

  2. Modular Termination of Basic Narrowing and Equational Unification

    E-Print Network [OSTI]

    Escobar, Santiago

    constraint solving [4, 5], partial evaluation [6], and model checking [17], among others. TerminationModular Termination of Basic Narrowing and Equational Unification Mar´ia Alpuente Santiago Escobar steps to a set of unblocked (or basic) positions. In this work, we study the modularity of termination

  3. Metastring Theory and Modular Space-time

    E-Print Network [OSTI]

    Laurent Freidel; Robert G. Leigh; Djordje Minic

    2015-02-27

    String theory is canonically accompanied with a space-time interpretation which determines S-matrix-like observables, and connects to the standard physics at low energies in the guise of local effective field theory. Recently, we have introduced a reformulation of string theory which does not rely on an {\\it a priori} space-time interpretation or a pre-assumption of locality. This \\hlt{metastring theory} is formulated in such a way that stringy symmetries (such as T-duality) are realized linearly. In this paper, we study metastring theory on a flat background and develop a variety of technical and interpretational ideas. These include a formulation of the moduli space of Lorentzian worldsheets, a careful study of the symplectic structure and consequently consistent closed and open boundary conditions, and the string spectrum and operator algebra. What emerges from these studies is a new quantum notion of space-time that we refer to as a quantum Lagrangian or equivalently a \\hlt{modular space-time}. This concept embodies the standard tenets of quantum theory and implements in a precise way a notion of {relative locality}. The usual string backgrounds (non-compact space-time along with some toroidally compactified spatial directions) are obtained from modular space-time by a limiting procedure that can be thought of as a correspondence limit.

  4. Integrating Multiple Geographic Information Systems to Create a Versatile Land Evaluation Site Assessment Model

    E-Print Network [OSTI]

    Morrison, Grady

    2008-11-19

    GIS in Urban Planning Integrating Multiple Geographic Information Systems to Create a Versatile Land Suitability Analysis Model Grady Morrison Undergraduate Department of Geography University of Kansas gmorrisn@ku.edu Impervious Surface...

  5. Role of Nuclear Grade Graphite in Oxidation in Modular HTGRs

    SciTech Connect (OSTI)

    Willaim Windes; G. Strydom; J. Kane; R. Smith

    2014-11-01

    The passively safe High Temperature Gas-cooled Reactor (HTGR) design is one of the primary concepts considered for Generation IV and Small Modular Reactor (SMR) programs. The helium cooled, nuclear grade graphite moderated core achieves extremely high operating temperatures allowing either industrial process heat or electricity generation at high efficiencies. In addition to their neutron moderating properties, nuclear grade graphite core components provide excellent high temperature stability, thermal conductivity, and chemical compatibility with the high temperature nuclear fuel form. Graphite has been continuously used in nuclear reactors since the 1940’s and has performed remarkably well over a wide range of core environments and operating conditions. Graphite moderated, gas-cooled reactor designs have been safely used for research and power production purposes in multiple countries since the inception of nuclear energy development. However, graphite is a carbonaceous material, and this has generated a persistent concern that the graphite components could actually burn during either normal or accident conditions [ , ]. The common assumption is that graphite, since it is ostensibly similar to charcoal and coal, will burn in a similar manner. While charcoal and coal may have the appearance of graphite, the internal microstructure and impurities within these carbonaceous materials are very different. Volatile species and trapped moisture provide a source of oxygen within coal and charcoal allowing them to burn. The fabrication process used to produce nuclear grade graphite eliminates these oxidation enhancing impurities, creating a dense, highly ordered form of carbon possessing high thermal diffusivity and strongly (covalently) bonded atoms.

  6. Two low-cost, modular sub-? test cryostats

    SciTech Connect (OSTI)

    Fuerst, J. D.; Kaluzny, J. A. [Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    2014-01-29

    Two general-purpose liquid helium (LHe) test cryostats have been developed in support of a major upgrade to the Advanced Photon Source (APS) at Argonne National Laboratory (ANL). The cryostats are capable of sustained operation below 1.8 K and currently support tests of prototype superconducting rf (srf) cavities for the APS Upgrade’s Short Pulse X-ray (SPX) initiative. To save cost, two existing test vessels were reconditioned: one “bucket dewar” supporting bare cavity tests and one shielded vacuum vessel with an integral LHe reservoir for jacketed/dressed cavity tests. A new feedbox containing a heat exchanger and associated valves was also designed and fabricated to support either cryostat. The resulting modular design permits tests on a wide variety of srf cavities in various states of completion, minimizing cost and maximizing use of the hardware. Together with a dedicated vacuum pump, control system, and helium supply via storage dewar or cryoplant, these cryostats are vital to the srf cavity development effort within the APS Upgrade.

  7. Generic small modular reactor plant design.

    SciTech Connect (OSTI)

    Lewis, Tom Goslee,; Cipiti, Benjamin B.; Jordan, Sabina Erteza; Baum, Gregory A.

    2012-12-01

    This report gives an overview of expected design characteristics, concepts, and procedures for small modular reactors. The purpose of this report is to provide those who are interested in reducing the cost and improving the safety of advanced nuclear power plants with a generic design that possesses enough detail in a non-sensitive manner to give merit to their conclusions. The report is focused on light water reactor technology, but does add details on what could be different in a more advanced design (see Appendix). Numerous reactor and facility concepts were used for inspiration (documented in the bibliography). The final design described here is conceptual and does not reflect any proposed concept or sub-systems, thus any details given here are only relevant within this report. This report does not include any design or engineering calculations.

  8. Modular, security enclosure and method of assembly

    DOE Patents [OSTI]

    Linker, Kevin L. (Albuquerque, NM); Moyer, John W. (Albuquerque, NM)

    1995-01-01

    A transportable, reusable rapidly assembled and disassembled, resizable modular, security enclosure utilizes a stepped panel construction. Each panel has an inner portion and an outer portion which form joints. A plurality of channels can be affixed to selected joints of the panels. Panels can be affixed to a base member and then affixed to one another by the use of elongated pins extending through the channel joints. Alternatively, the base member can be omitted and the panels themselves can be used as the floor of the enclosure. The pins will extend generally parallel to the joint in which they are located. These elongated pins are readily inserted into and removable from the channels in a predetermined sequence to allow assembly and disassembly of the enclosure. A door constructed from panels is used to close the opening to the enclosure.

  9. Dynamics on modular networks with heterogeneous correlations

    SciTech Connect (OSTI)

    Melnik, Sergey [MACSI, Department of Mathematics and Statistics, University of Limerick (Ireland) [MACSI, Department of Mathematics and Statistics, University of Limerick (Ireland); Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, Oxford OX2 6GG (United Kingdom); CABDyN Complexity Centre, University of Oxford, Oxford OX1 1HP (United Kingdom); Porter, Mason A. [Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, Oxford OX2 6GG (United Kingdom) [Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, Oxford OX2 6GG (United Kingdom); CABDyN Complexity Centre, University of Oxford, Oxford OX1 1HP (United Kingdom); Mucha, Peter J. [Department of Mathematics, Carolina Center for Interdisciplinary Applied Mathematics, University of North Carolina, Chapel Hill, North Carolina 27599-3250 (United States) [Department of Mathematics, Carolina Center for Interdisciplinary Applied Mathematics, University of North Carolina, Chapel Hill, North Carolina 27599-3250 (United States); Institute for Advanced Materials, Nanoscience and Technology, University of North Carolina, Chapel Hill, North Carolina 27599-3216 (United States); Gleeson, James P. [MACSI, Department of Mathematics and Statistics, University of Limerick (Ireland)] [MACSI, Department of Mathematics and Statistics, University of Limerick (Ireland)

    2014-06-15

    We develop a new ensemble of modular random graphs in which degree-degree correlations can be different in each module, and the inter-module connections are defined by the joint degree-degree distribution of nodes for each pair of modules. We present an analytical approach that allows one to analyze several types of binary dynamics operating on such networks, and we illustrate our approach using bond percolation, site percolation, and the Watts threshold model. The new network ensemble generalizes existing models (e.g., the well-known configuration model and Lancichinetti-Fortunato-Radicchi networks) by allowing a heterogeneous distribution of degree-degree correlations across modules, which is important for the consideration of nonidentical interacting networks.

  10. Modular, multi-level groundwater sampler

    DOE Patents [OSTI]

    Nichols, Ralph L. (812 Plantation Point Dr., N. Augusta, SC 29841); Widdowson, Mark A. (4204 Havana Ct., Columbia, SC 29206); Mullinex, Harry (10 Cardross La., Columbia, SC 29209); Orne, William H. (12 Martha Ct., Sumter, SC 29150); Looney, Brian B. (1135 Ridgemont Dr., Aiken, SC 29803)

    1994-01-01

    Apparatus for taking a multiple of samples of groundwater or pressure measurements from a well simultaneously. The apparatus comprises a series of chambers arranged in an axial array, each of which is dimensioned to fit into a perforated well casing and leave a small gap between the well casing and the exterior of the chamber. Seals at each end of the container define the limits to the axial portion of the well to be sampled. A submersible pump in each chamber pumps the groundwater that passes through the well casing perforations into the gap from the gap to the surface for analysis. The power lines and hoses for the chambers farther down the array pass through each chamber above them in the array. The seals are solid, water-proof, non-reactive, resilient disks supported to engage the inside surface of the well casing. Because of the modular design, the apparatus provides flexibility for use in a variety of well configurations.

  11. Horizontal modular dry irradiated fuel storage system

    DOE Patents [OSTI]

    Fischer, Larry E. (Los Gatos, CA); McInnes, Ian D. (San Jose, CA); Massey, John V. (San Jose, CA)

    1988-01-01

    A horizontal, modular, dry, irradiated fuel storage system (10) includes a thin-walled canister (12) for containing irradiated fuel assemblies (20), which canister (12) can be positioned in a transfer cask (14) and transported in a horizontal manner from a fuel storage pool (18), to an intermediate-term storage facility. The storage system (10) includes a plurality of dry storage modules (26) which accept the canister (12) from the transfer cask (14) and provide for appropriate shielding about the canister (12). Each module (26) also provides for air cooling of the canister (12) to remove the decay heat of the irradiated fuel assemblies (20). The modules (26) can be interlocked so that each module (26) gains additional shielding from the next adjacent module (26). Hydraulic rams (30) are provided for inserting and removing the canisters (12) from the modules (26).

  12. Focal plane array with modular pixel array components for scalability

    DOE Patents [OSTI]

    Kay, Randolph R; Campbell, David V; Shinde, Subhash L; Rienstra, Jeffrey L; Serkland, Darwin K; Holmes, Michael L

    2014-12-09

    A modular, scalable focal plane array is provided as an array of integrated circuit dice, wherein each die includes a given amount of modular pixel array circuitry. The array of dice effectively multiplies the amount of modular pixel array circuitry to produce a larger pixel array without increasing die size. Desired pixel pitch across the enlarged pixel array is preserved by forming die stacks with each pixel array circuitry die stacked on a separate die that contains the corresponding signal processing circuitry. Techniques for die stack interconnections and die stack placement are implemented to ensure that the desired pixel pitch is preserved across the enlarged pixel array.

  13. Human Reliability Analysis for Small Modular Reactors

    SciTech Connect (OSTI)

    Ronald L. Boring; David I. Gertman

    2012-06-01

    Because no human reliability analysis (HRA) method was specifically developed for small modular reactors (SMRs), the application of any current HRA method to SMRs represents tradeoffs. A first- generation HRA method like THERP provides clearly defined activity types, but these activity types do not map to the human-system interface or concept of operations confronting SMR operators. A second- generation HRA method like ATHEANA is flexible enough to be used for SMR applications, but there is currently insufficient guidance for the analyst, requiring considerably more first-of-a-kind analyses and extensive SMR expertise in order to complete a quality HRA. Although no current HRA method is optimized to SMRs, it is possible to use existing HRA methods to identify errors, incorporate them as human failure events in the probabilistic risk assessment (PRA), and quantify them. In this paper, we provided preliminary guidance to assist the human reliability analyst and reviewer in understanding how to apply current HRA methods to the domain of SMRs. While it is possible to perform a satisfactory HRA using existing HRA methods, ultimately it is desirable to formally incorporate SMR considerations into the methods. This may require the development of new HRA methods. More practicably, existing methods need to be adapted to incorporate SMRs. Such adaptations may take the form of guidance on the complex mapping between conventional light water reactors and small modular reactors. While many behaviors and activities are shared between current plants and SMRs, the methods must adapt if they are to perform a valid and accurate analysis of plant personnel performance in SMRs.

  14. Site Suitability and Hazard Assessment Guide for Small Modular Reactors

    SciTech Connect (OSTI)

    Wayne Moe

    2013-10-01

    Commercial nuclear reactor projects in the U.S. have traditionally employed large light water reactors (LWR) to generate regional supplies of electricity. Although large LWRs have consistently dominated commercial nuclear markets both domestically and abroad, the concept of small modular reactors (SMRs) capable of producing between 30 MW(t) and 900 MW(t) to generating steam for electricity is not new. Nor is the idea of locating small nuclear reactors in close proximity to and in physical connection with industrial processes to provide a long-term source of thermal energy. Growing problems associated continued use of fossil fuels and enhancements in efficiency and safety because of recent advancements in reactor technology suggest that the likelihood of near-term SMR technology(s) deployment at multiple locations within the United States is growing. Many different types of SMR technology are viable for siting in the domestic commercial energy market. However, the potential application of a particular proprietary SMR design will vary according to the target heat end-use application and the site upon which it is proposed to be located. Reactor heat applications most commonly referenced in connection with the SMR market include electric power production, district heating, desalinization, and the supply of thermal energy to various processes that require high temperature over long time periods, or a combination thereof. Indeed, the modular construction, reliability and long operational life purported to be associated with some SMR concepts now being discussed may offer flexibility and benefits no other technology can offer. Effective siting is one of the many early challenges that face a proposed SMR installation project. Site-specific factors dealing with support to facility construction and operation, risks to the plant and the surrounding area, and the consequences subsequent to those risks must be fully identified, analyzed, and possibly mitigated before a license will be granted to construct and operate a nuclear facility. Examples of significant site-related concerns include area geotechnical and geological hazard properties, local climatology and meteorology, water resource availability, the vulnerability of surrounding populations and the environmental to adverse effects in the unlikely event of radionuclide release, the socioeconomic impacts of SMR plant installation and the effects it has on aesthetics, proximity to energy use customers, the topography and area infrastructure that affect plant constructability and security, and concerns related to the transport, installation, operation and decommissioning of major plant components.

  15. Modularity in design of the MIT Pebble Bed Reactor

    E-Print Network [OSTI]

    Berte, Marc Vincent, 1977-

    2004-01-01

    The future of new nuclear power plant construction will depend in large part on the ability of designers to reduce capital, operations, and maintenance costs. One of the methods proposed, is to enhance the modularity of ...

  16. Master thesis Modular mechanical engineering design tool (30hp) Background

    E-Print Network [OSTI]

    Zhao, Yuxiao

    Master thesis ­ Modular mechanical engineering design tool (30hp. Thesis description In this thesis, the students have the opportunity to develop-time. The thesis will be run in parallel with a customer order on a customized version

  17. Modular ‘Click-in-Emulsion’ Bone-Targeted Nanogels

    E-Print Network [OSTI]

    Heller, Daniel A.

    A new class of nanogel demonstrates modular biodistribution and affinity for bone. Nanogels, ~70 nm in diameter and synthesized via an astoichiometric click-chemistry in-emulsion method, controllably display residual, free ...

  18. Modularity and Commonality Research: Past Developments and Future Opportunities

    E-Print Network [OSTI]

    Fixson, Sebastian K.

    2007-04-20

    Research on modularity and commonality has grown substantially over the past 15 years. Searching 36 journals over more than the past 35 years, I identify over 160 references in the engineering and management literature ...

  19. Constant-Optimized Quantum Circuits for Modular Multiplication and Exponentiation

    E-Print Network [OSTI]

    Igor L. Markov; Mehdi Saeedi

    2015-04-02

    Reversible circuits for modular multiplication $Cx$%$M$ with $xmodular exponentiation in Shor's quantum number-factoring algorithm. However, existing generic constructions focus on asymptotic gate count and circuit depth rather than actual values, producing fairly large circuits not optimized for specific $C$ and $M$ values. In this work, we develop such optimizations in a bottom-up fashion, starting with most convenient $C$ values. When zero-initialized ancilla registers are available, we reduce the search for compact circuits to a shortest-path problem. Some of our modular-multiplication circuits are asymptotically smaller than previous constructions, but worst-case bounds and average sizes remain $\\Theta(n^2)$. In the context of modular exponentiation, we offer several constant-factor improvements, as well as an improvement by a constant additive term that is significant for few-qubit circuits arising in ongoing laboratory experiments with Shor's algorithm.

  20. Computational Analysis of Fluid Flow in Pebble Bed Modular Reactor 

    E-Print Network [OSTI]

    Gandhir, Akshay

    2012-10-19

    High Temperature Gas-cooled Reactor (HTGR) is a Generation IV reactor under consideration by Department of Energy and in the nuclear industry. There are two categories of HTGRs, namely, Pebble Bed Modular Reactor (PBMR) and Prismatic reactor. Pebble...

  1. Modularity, individuality, and evo-devo in butterfly wings

    E-Print Network [OSTI]

    Beldade, Patrícia

    Modularity, individuality, and evo-devo in butterfly wings Patri´cia Beldade*, Kees Koops, and Paul selection, and thus, for adaptive evolution (14­16). One related issue to which evo-devo can contribute

  2. Task-dependent evolution of modularity in neural networks1

    E-Print Network [OSTI]

    Toussaint, Marc

    the vertebrate brain is highly modular both in an anatomical and in a functional sense. It is important to stress to the fact that brains are structured, with cells, columns, layers, and regions which divide up the labour

  3. The Complete Multipartite Genome Sequence of Cupriavidus necator JMP134, a Versatile Pollutant Degrader

    SciTech Connect (OSTI)

    Lykidis, Athanasios; Perez-Pantoja, Danilo; Ledger, Thomas; Mavromatis, Kostantinos; Anderson, Iain J.; Ivanova, Natalia N.; Hooper, Sean D.; Lapidus, Alla; Lucas, Susan; Gonzalez, Bernardo; Kyrpides, Nikos C.

    2010-02-01

    Cupriavidus necator JMP134 (formerly Ralstonia eutropha JMP134) is a Gram-negative {beta}-proteobacterium able to degrade a variety of chloroaromatic compounds and chemically-related pollutants. It was originally isolated based on its ability to use 2,4 dichlorophenoxyacetic acid (2,4-D) as a sole carbon and energy source [1]. In addition to 2,4-D, this strain can also grow on a variety of aromatic substrates, such as 4-chloro-2-methylphenoxyacetate (MCPA), 3-chlorobenzoic acid (3-CB) [2], 2,4,6-trichlorophenol [3], and 4-fluorobenzoate [4]. The genes necessary for 2,4-D utilization have been identified. They are located in two clusters on plasmid pPJ4: tfd{sub I} and tfd{sub II} [5,6,7,8]. The sequence and analysis of plasmid pJP4 was reported and a congruent model for bacterial adaptation to chloroaromatic pollutants was proposed [9]. According to this model, catabolic gene clusters assemble in a modular manner into broad-host-range plasmid backbones by means of repeated chromosomal capture events. Cupriavidus and related Burkholderia genomes are typically multipartite, composed of two large replicons (chromosomes) accompanied by classical plasmids. Previous work with Burkholderia xenovorans LB400 revealed a differential gene distribution with core functions preferentially encoded by the larger chromosome and secondary functions by the smaller [10]. It has been proposed that the secondary chromosomes in many bacteria originated from ancestral plasmids which, in turn, had been the recipient of genes transferred earlier from ancestral primary chromosomes [11]. The existence of multiple Cupriavidus and Burkholderia genomes provides the opportunity for comparative studies that will lead to a better understanding of the evolutionary mechanisms for the formation of multipartite genomes and the relation with biodegradation abilities.

  4. Modular HTGR Safety Basis and Approach

    SciTech Connect (OSTI)

    Thomas Hicks

    2011-08-01

    The Next Generation Nuclear Plant (NGNP) will be a licensed commercial high temperature gas-cooled reactor (HTGR) capable of producing electricity and/or high temperature process heat for industrial markets supporting a range of end-user applications. The NGNP Project has adopted the 10 CFR 52 Combined License (COL) process, as recommended in the NGNP Licensing Strategy - A Report to Congress, dated August 2008, as the foundation for the NGNP licensing strategy [DOE/NRC 2008]. Nuclear Regulatory Commission (NRC) licensing of the NGNP plant utilizing this process will demonstrate the efficacy for licensing future HTGRs for commercial industrial applications. This information paper is one in a series of submittals that address key generic issues of the priority licensing topics as part of the process for establishing HTGR regulatory requirements. This information paper provides a summary level introduction to HTGR history, public safety objectives, inherent and passive safety features, radionuclide release barriers, functional safety approach, and risk-informed safety approach. The information in this paper is intended to further the understanding of the modular HTGR safety approach with the NRC staff and public stakeholders. The NGNP project does not expect to receive comments on this information paper because other white papers are addressing key generic issues of the priority licensing topics in greater detail.

  5. Human Reliability Considerations for Small Modular Reactors

    SciTech Connect (OSTI)

    OHara J. M.; Higgins, H.; DAgostino, A.; Erasmia, L.

    2012-01-27

    Small modular reactors (SMRs) are a promising approach to meeting future energy needs. Although the electrical output of an individual SMR is relatively small compared to that of typical commercial nuclear plants, they can be grouped to produce as much energy as a utility demands. Furthermore, SMRs can be used for other purposes, such as producing hydrogen and generating process heat. The design characteristics of many SMRs differ from those of current conventional plants and may require a distinct concept of operations. The U.S. Nuclear Regulatory Commission (NRC) conducted research to examine the human factors engineering and the operational aspects of SMRs. The research identified thirty potential human-performance issues that should be considered in the NRC's reviews of SMR designs and in future research activities. The purpose of this report is to illustrate how the issues can support SMR probabilistic risk analyses and their review by identifying potential human failure events for a subset of the issues. As part of addressing the human contribution to plant risk, human reliability analysis practitioners identify and quantify the human failure events that can negatively impact normal or emergency plant operations. The results illustrated here can be generalized to identify additional human failure events for the issues discussed and can be applied to those issues not discussed in this report.

  6. Modular, multi-level groundwater sampler

    DOE Patents [OSTI]

    Nichols, R.L.; Widdowson, M.A.; Mullinex, H.; Orne, W.H.; Looney, B.B.

    1994-03-15

    An apparatus is described for taking a multiple of samples of groundwater or pressure measurements from a well simultaneously. The apparatus comprises a series of chambers arranged in an axial array, each of which is dimensioned to fit into a perforated well casing and leave a small gap between the well casing and the exterior of the chamber. Seals at each end of the container define the limits to the axial portion of the well to be sampled. A submersible pump in each chamber pumps the groundwater that passes through the well casing perforations into the gap from the gap to the surface for analysis. The power lines and hoses for the chambers farther down the array pass through each chamber above them in the array. The seals are solid, water-proof, non-reactive, resilient disks supported to engage the inside surface of the well casing. Because of the modular design, the apparatus provides flexibility for use in a variety of well configurations. 3 figures.

  7. Proliferation resistance of small modular reactors fuels

    SciTech Connect (OSTI)

    Polidoro, F.; Parozzi, F.; Fassnacht, F.; Kuett, M.; Englert, M.

    2013-07-01

    In this paper the proliferation resistance of different types of Small Modular Reactors (SMRs) has been examined and classified with criteria available in the literature. In the first part of the study, the level of proliferation attractiveness of traditional low-enriched UO{sub 2} and MOX fuels to be used in SMRs based on pressurized water technology has been analyzed. On the basis of numerical simulations both cores show significant proliferation risks. Although the MOX core is less proliferation prone in comparison to the UO{sub 2} core, it still can be highly attractive for diversion or undeclared production of nuclear material. In the second part of the paper, calculations to assess the proliferation attractiveness of fuel in typical small sodium cooled fast reactor show that proliferation risks from spent fuel cannot be neglected. The core contains a highly attractive plutonium composition during the whole life cycle. Despite some aspects of the design like the sealed core that enables easy detection of unauthorized withdrawal of fissile material and enhances proliferation resistance, in case of open Non-Proliferation Treaty break-out, weapon-grade plutonium in sufficient quantities could be extracted from the reactor core.

  8. Demonstration of a Small Modular BioPower System Using Poultry Litter

    SciTech Connect (OSTI)

    John P. Reardon; Art Lilley; Jim Wimberly; Kingsbury Browne; Kelly Beard; Jack Avens

    2002-05-22

    The purpose of this project was to assess poultry grower residue, or litter (manure plus absorbent biomass), as a fuel source for Community Power Corporation's small modular biopower system (SMB). A second objective was to assess the poultry industry to identify potential ''on-site'' applications of the SMB system using poultry litter residue as a fuel source, and to adapt CPC's existing SMB to generate electricity and heat from the poultry litter biomass fuel. Bench-scale testing and pilot testing were used to gain design information for the SMB retrofit. System design approach for the Phase II application of the SMB was the goal of Phase I testing. Cost estimates for an onsite poultry litter SMB were prepared. Finally, a market estimate was prepared for implementation of the on-farm SMB using poultry litter.

  9. Modular Power Converters for PV Applications

    SciTech Connect (OSTI)

    Ozpineci, Burak; Tolbert, Leon M

    2012-05-01

    This report describes technical opportunities to serve as parts of a technological roadmap for Shoals Technologies Group in power electronics for PV applications. There are many different power converter circuits that can be used for solar inverter applications. The present applications do not take advantage of the potential for using common modules. We envision that the development of a power electronics module could enable higher reliability by being durable and flexible. Modules would have fault current limiting features and detection circuits such that they can limit the current through the module from external faults and can identify and isolate internal faults such that the remaining modules can continue to operate with only minimal disturbance to the utility or customer. Development of a reliable, efficient, low-cost, power electronics module will be a key enabling technology for harnessing more power from solar panels and enable plug and play operation. Power electronics for computer power supplies, communication equipment, and transportation have all targeted reliability and modularity as key requirements and have begun concerted efforts to replace monolithic components with collections of common smart modules. This is happening on several levels including (1) device level with intelligent control, (2) functional module level, and (3) system module. This same effort is needed in power electronics for solar applications. Development of modular units will result in standard power electronic converters that will have a lower installed and operating cost for the overall system. These units will lead to increased adaptability and flexibility of solar inverters. Incorporating autonomous fault current limiting and reconfiguration capabilities into the modules and having redundant modules will lead to a durable converter that can withstand the rigors of solar power generation for more than 30 years. Our vision for the technology roadmap is that there is no need for detailed design of new power converters for each new application or installation. One set of modules and controllers can be pre-developed and the only design question would be how many modules need to be in series or parallel for the specific power requirement. Then, a designer can put the modules together and add the intelligent reconfigurable controller. The controller determines how many modules are connected, but it might also ask for user input for the specific application during setup. The modules include protection against faults and can reset it, if necessary. In case of a power device failure, the controller reconfigures itself to continue limited operation until repair which might be as simple as taking the faulty module out and inserting a new module. The result is cost savings in design, maintenance, repair, and a grid that is more reliable and available. This concept would be a perfect fit for the recently announced funding opportunity announcement (DE-FOA-0000653) on Plug and Play Photovoltaics.

  10. GreenDM: A Versatile Tiering Hybrid Drive for the Trade-Off Evaluation of Performance, Energy, and

    E-Print Network [OSTI]

    Zadok, Erez

    GreenDM: A Versatile Tiering Hybrid Drive for the Trade-Off Evaluation of Performance, Energy by the Graduate School Charles Taber Interim Dean of the Graduate School i #12;Abstract of the Dissertation GreenDM: A Versatile Tiering Hybrid Drive for the Trade-Off Evaluation of Performance, Energy, and Endurance by Zhichao

  11. A Versatile Scheme for the Validation, Testing and Debugging of High Speed Serial Interfaces

    E-Print Network [OSTI]

    Zilic, Zeljko

    A Versatile Scheme for the Validation, Testing and Debugging of High Speed Serial Interfaces, the post-silicon validation, debugging and testing of HSSIs are becoming critical. This paper presents and an FPGA-based Bit Error Rate Tester (BERT), we can validate and test HSSIs without the need of high

  12. Biosensors and Bioelectronics 21 (2006) 21462154 Versatile bioelectronic interfaces based on

    E-Print Network [OSTI]

    2006-01-01

    Biosensors and Bioelectronics 21 (2006) 2146­2154 Versatile bioelectronic interfaces based applications such as biosensors and biocatalytic reactors. A major challenge in creation of such bioelectronic of the resulting bioelectronic interface. © 2005 Elsevier B.V. All rights reserved. Keywords: Biosensor; Boronic

  13. On the Trade-Offs among Performance, Energy, and Endurance in a Versatile Hybrid Drive

    E-Print Network [OSTI]

    Zadok, Erez

    On the Trade-Offs among Performance, Energy, and Endurance in a Versatile Hybrid Drive ZHICHAO LI ZADOK, Stony Brook University There are trade-offs among performance, energy, and device endurance, efficient energy consumption, or im- proving endurance--leaving quantitative study on the trade-offs being

  14. Functionalized Graphene Sheets as a Versatile Replacement for Platinum in Dye-Sensitized Solar Cells

    E-Print Network [OSTI]

    Aksay, Ilhan A.

    ) this residue must not disperse in the electrolyte. KEYWORDS: graphene, dye-sensitized solar cell, cobalt redoxFunctionalized Graphene Sheets as a Versatile Replacement for Platinum in Dye-Sensitized Solar) electrodes were tested for catalytic performance in dye-sensitized solar cells (DSSCs). By using ethyl

  15. SALTO A Versatile Multi-Level Annotation Tool Aljoscha Burchadt, Katrin Erk, Anette Frank

    E-Print Network [OSTI]

    Padó, Sebastian

    SALTO ­ A Versatile Multi-Level Annotation Tool Aljoscha Burchadt, Katrin Erk, Anette Frank Saarbr¨ucken, Germany {albu, erk, frank, kowalski, pado}@coli.uni-sb.de Abstract In this paper, we (Mengel and Lez- ius, 2000) as well as its own output format, SALSA/TIGER XML (Erk and Pado, 2004). TIGER

  16. Versatile Core-Sheath Biofibers using Coaxial Electrospinning Daewoo Han1

    E-Print Network [OSTI]

    Cincinnati, University of

    Versatile Core-Sheath Biofibers using Coaxial Electrospinning Daewoo Han1 , Steven T. Boyce2 have investigated coaxial electrospinning to produce core-sheath fibers for tissue engineering. We have electrospinning technique. The core-sheath scaffold exhibits better mechanical properties compared to gelatin

  17. Improved E-jet Printing Provides Higher Resolution And More Versatility

    E-Print Network [OSTI]

    Rogers, John A.

    Improved E-jet Printing Provides Higher Resolution And More Versatility Science Daily have established new benchmarks for precision control and resolution in jet-printing processes. "We have invented methods for an electrohydrodynamic jet (e-jet) printing process that can produce patterns

  18. What exactly is Product Modularity? The answer depends on who you ask

    E-Print Network [OSTI]

    Fixson, Sebastian K.

    2007-04-20

    'Product modularity' has recently experienced a significant increase in interest in the academic literature. While the concept of product modularity is used across a wide range of academic research areas, substantial ...

  19. Maximum a Posteriori Models for Cortical Modeling: Feature Detectors, Topography and Modularity

    E-Print Network [OSTI]

    Weber, Cornelius

    Maximum a Posteriori Models for Cortical Modeling: Feature Detectors, Topography and Modularity Modeling: Feature Detectors, Topography and Modularity PhD Thesis by Cornelius Weber, Berlin, July 31, 2000

  20. Concepts and technology development for the autonomous assembly and reconfiguration of modular space systems

    E-Print Network [OSTI]

    Rodgers, Lennon Patrick

    2006-01-01

    This thesis will present concepts of modular space systems, including definitions and specific examples of how modularity has been incorporated into past and present space missions. In addition, it will present two ...

  1. Resilience of Networks Formed of Interdependent Modular Networks

    E-Print Network [OSTI]

    Shekhtman, Louis; Havlin, Shlomo

    2015-01-01

    Many infrastructure networks have a modular structure and are also interdependent. While significant research has explored the resilience of interdependent networks, there has been no analysis of the effects of modularity. Here we develop a theoretical framework for attacks on interdependent modular networks and support our results by simulations. We focus on the case where each network has the same number of communities and the dependency links are restricted to be between pairs of communities of different networks. This is very realistic for infrastructure across cities. Each city has its own infrastructures and different infrastructures are dependent within the city. However, each infrastructure is connected within and between cities. For example, a power grid will connect many cities as will a communication network, yet a power station and communication tower that are interdependent will likely be in the same city. It has been shown that single networks are very susceptible to the failure of the interconn...

  2. Modular high speed counter employing edge-triggered code

    DOE Patents [OSTI]

    Vanstraelen, G.F.

    1993-06-29

    A high speed modular counter (100) utilizing a novel counting method in which the first bit changes with the frequency of the driving clock, and changes in the higher order bits are initiated one clock pulse after a 0'' to 1'' transition of the next lower order bit. This allows all carries to be known one clock period in advance of a bit change. The present counter is modular and utilizes two types of standard counter cells. A first counter cell determines the zero bit. The second counter cell determines any other higher order bit. Additional second counter cells are added to the counter to accommodate any count length without affecting speed.

  3. Modular high speed counter employing edge-triggered code

    DOE Patents [OSTI]

    Vanstraelen, Guy F. (DeSoto, TX)

    1993-06-29

    A high speed modular counter (100) utilizing a novel counting method in which the first bit changes with the frequency of the driving clock, and changes in the higher order bits are initiated one clock pulse after a "0" to "1" transition of the next lower order bit. This allows all carries to be known one clock period in advance of a bit change. The present counter is modular and utilizes two types of standard counter cells. A first counter cell determines the zero bit. The second counter cell determines any other higher order bit. Additional second counter cells are added to the counter to accommodate any count length without affecting speed.

  4. The evolution of modularity in genome architecture John W. Pepper 1

    E-Print Network [OSTI]

    Nehaniv, Chrystopher

    The evolution of modularity in genome architecture John W. Pepper 1 1 Santa Fe Institute, Santa Fe phenomenon is modularity in genome architecture, in which genes with epistatic effects are co­ localized of genome modularity were investigated using a computational model, in which a population of individuals

  5. METHODOLOGY Open Access Modular assembly of designer PUF proteins for

    E-Print Network [OSTI]

    Zhao, Huimin

    METHODOLOGY Open Access Modular assembly of designer PUF proteins for specific post of the PUF domain assembly method for RBP engineering, we fused the PUF domain to a post and applied biology and medicine. Keywords: Protein engineering, RNA-binding protein, Post

  6. Contemporary Mathematics From Quantum Groups to Unitary Modular Tensor

    E-Print Network [OSTI]

    Rowell, Eric C.

    . In this article, we take quantum group to mean the "classical" q-deformation of the universal enveloping algebra replaced by the more general framework of modular tensor categories (MTCs) by Turaev [T1] (building], advanced by Turaev and Wenzl in [TW2] and somewhat simplified by Blanchet and Beliakova in [BB]. However

  7. Adaptive Aggregation of Modular Control H. Chris Tseng

    E-Print Network [OSTI]

    Lin, Tsau Young

    Engineering and Computer Science University of California Berkeley, California 94720 C. W. Chi Department of Electrical and Computer Engineering University of California Davis, California 95616 Modular methodology into modules. Some of the available approaches are listed below. Decentralized Approach: If a system is made up

  8. ASSESSMENT OF SMALL AND MODULAR REACTOR NUCLEAR FUEL COST 

    E-Print Network [OSTI]

    Pannier, Christopher 1992-

    2012-05-03

    INCAS INtegrated model for the Competitiveness Analysis of Small modular reactors LWR Light Water Reactor NEI Nuclear Energy Institute PWR Pressurized Water Reactor PHWR Pressurized Heavy Water Reactor SEMER Système d’Évaluation et de Modélisation... ...................................................... 27 8 LWR Fuel Cost ..................................................................................................... 28 9 SMR Fuel Cost ..................................................................................................... 29...

  9. A modular microfluidic architecture for integrated biochemical analysis

    E-Print Network [OSTI]

    Barron, Annelise E.

    A modular microfluidic architecture for integrated biochemical analysis Kashan A. Shaikh*, Kee Suk for review November 15, 2004) Microfluidic laboratory-on-a-chip (LOC) systems based on a mod- ular (lead) at a sensitivity of 500 nM in microfluidic breadboard

  10. Series Input Modular Architecture for Driving Multiple LEDs

    E-Print Network [OSTI]

    regulation is provided using a prototype of the proposed system with four series buck- boost converter cells, zane}@colorado.edu Abstract ­ This paper introduces a modular power converter architecture based on series input connected converter cells with independent outputs that each drive a small series string

  11. Modular Pebble Bed Reactor High Temperature Gas Reactor

    E-Print Network [OSTI]

    For 1150 MW Combined Heat and Power Station Oil Refinery Hydrogen Production Desalinization Plant VHTR · Modularity Design · Intermediate Heat Exchanger Design · Core Power Distribution Monitoring · Pebble Flow Burnup >90,000 Mwd/MT · Direct Disposal of HLW · Process Heat Applications - Hydrogen, water #12;Turbine

  12. Evolution of Neural Networks for Helicopter Control: Why Modularity Matters

    E-Print Network [OSTI]

    Togelius, Julian

    Evolution of Neural Networks for Helicopter Control: Why Modularity Matters Renzo De Nardi, Julian helicopter flocking. A methodology is proposed in which neural network based controllers are evolved in a simulation using a dynamic model qualitatively similar to the physical helicopter. Several network

  13. Modularization of the DADAISM Ada Database System Architecture

    E-Print Network [OSTI]

    Keller, Arthur M.

    implemen­ tation paradigm is necessary to handle the evolution of database systems over the next fewPage 1 Modularization of the DADAISM Ada Database System Architecture Arthur M. Keller Gio Wiederhold Stanford University Draft of May 21, 1991 Abstract. We describe a new database management system

  14. Modularization of the DADAISM Ada Database System Architecture

    E-Print Network [OSTI]

    Keller, Arthur M.

    implemen- tation paradigm is necessary to handle the evolution of database systems over the next fewPage 1 Modularization of the DADAISM Ada Database System Architecture Arthur M. Keller Gio Wiederhold Stanford University Draft of May 21, 1991 Abstract. We describe a new database management system

  15. ON COMPLETE CONGRUENCE LATTICES OF COMPLETE MODULAR LATTICES

    E-Print Network [OSTI]

    Freese, Ralph S.

    ON COMPLETE CONGRUENCE LATTICES OF COMPLETE MODULAR LATTICES R. Freese, G. Gr¨atzer, and E. T of Sciences January 8, 1991 Abstract. The lattice of all complete congruence relations of a complete lattice is itself a complete lattice. In 1988, the second author announced the converse: every complete lattice L

  16. MODULAR PEBBLE BED REACTOR PROJECT UNIVERSITY RESEARCH CONSORTIUM

    E-Print Network [OSTI]

    includes the development of a fission gas release model, particle temperature distributions, internal conceptual design for a gas-cooled, modular, pebble bed reactor. Key technology areas associated particle pressure, migration of fission products, and chemical attack of fuel particle layers. · A balance

  17. Modular container assembled from fiber reinforced thermoplastic sandwich panels

    DOE Patents [OSTI]

    Donnelly, Mathew William (Edgewood, NM); Kasoff, William Andrew (Albuquerque, NM); Mcculloch, Patrick Carl (Irvine, CA); Williams, Frederick Truman (Albuquerque, NM)

    2007-12-25

    An improved, load bearing, modular design container structure assembled from thermoformed FRTP sandwich panels in which is utilized the unique core-skin edge configuration of the present invention in consideration of improved load bearing performance, improved useful load volume, reduced manufacturing costs, structural weight savings, impact and damage tolerance and repair and replace issues.

  18. Modular Arithmetic Implementation with the Residue Number System (RNS)

    E-Print Network [OSTI]

    Sousa, Leonel

    Modular Arithmetic Implementation with the Residue Number System (RNS) Samuel Antão and Leonel are the addition/subtraction, multiplication and reduction as well as the conversion of Residue Number System (RNS discussed in the following. 1 RNS Forward/Reverse Conversions Forward conversion corresponds

  19. Computer Science at Kent On Modular Termination Proofs

    E-Print Network [OSTI]

    Kent, University of

    Computer Science at Kent On Modular Termination Proofs Jonathan C. Martin and Andy King Technical by the Computing Laboratory, University of Kent, Canterbury, Kent CT2 7NF, UK. Abstract Reasoning about termination is a key issue in logic program development. One classic technique for proving termination is to construct

  20. A modular description for collimator EGS simulation tasks

    E-Print Network [OSTI]

    Lanconelli, Nico

    A modular description for collimator EGS simulation tasks geometry in Alessandro Bevilacqua, Dante, Alessandro Riccardi Abstract-EGS is a very common Monte Carlo code, used in the simulation of Nuclear configuration and camera design in Single Photon Emission studies. Using the EGS code, users must define

  1. Modular Models of Intelligence -Review, Limitations and Prospects

    E-Print Network [OSTI]

    Mali, Amol D.

    for Robotics I.I.T. Kanpur, India 208016 (amit@iitk.ac.in) Amol Dattatraya Mali Department of Elec. Engg-414-229-2769 (mali@miller.cs.uwm.edu) Abstract AI applications are increasingly moving to modular agents, i.e. sys

  2. Path to Market for Compact Modular Fusion Power Cores

    E-Print Network [OSTI]

    Precedents? Small number of private fusion companies starting up, filing patents and finding editions Lead author Grounded in DOE program #12;12/13/11 5 Path to market 'next step' Springer Energy Brief: 'Path to Market for Compact Modular Fusion Power' Soliciting wider input from energy, business

  3. a Modular, Multi-Engine Simulator for Heterogeneous Swarm Robotics

    E-Print Network [OSTI]

    Libre de Bruxelles, Université

    ARGoS: a Modular, Multi-Engine Simulator for Heterogeneous Swarm Robotics Carlo Pinciroli, Vito, Gianni Di Caro, Frederick Ducatelle, Timothy Stirling§, ´Alvaro Guti´errez, Luca Maria Gambardella. A unique feature of ARGoS is the possibility to use multiple physics engines of different types

  4. A Fast Algorithm for Modular Reduction C. K. Koc

    E-Print Network [OSTI]

    produced by a carry save adder. Given the (n + k)-bit X and the n-bit M, the modular reduction algorithm to obtain efficient VLSI implementations of exponentiation cryptosystems. Key Words: Carry save adder, sign, the sign of a number may not be readily available. In particular, when the carry save addition technique

  5. Phoenix++: Modular MapReduce for Shared-Memory Systems

    E-Print Network [OSTI]

    Kozyrakis, Christos

    Phoenix++: Modular MapReduce for Shared-Memory Systems Justin Talbot, Richard M. Yoo, and Christos This paper describes our rewrite of Phoenix, a MapReduce framework for shared-memory CMPs and SMPs. Despite successfully demonstrating the applicability of a MapReduce- style pipeline to shared-memory machines, Phoenix

  6. Modular cathode assemblies and methods of using the same for electrochemical reduction

    DOE Patents [OSTI]

    Wiedmeyer, Stanley G; Barnes, Laurel A; Williamson, Mark A; Willit, James L

    2014-12-02

    Modular cathode assemblies are useable in electrolytic reduction systems and include a basket through which fluid electrolyte may pass and exchange charge with a material to be reduced in the basket. The basket can be divided into upper and lower sections to provide entry for the material. Example embodiment cathode assemblies may have any shape to permit modular placement at any position in reduction systems. Modular cathode assemblies include a cathode plate in the basket, to which unique and opposite electrical power may be supplied. Example embodiment modular cathode assemblies may have standardized electrical connectors. Modular cathode assemblies may be supported by a top plate of an electrolytic reduction system. Electrolytic oxide reduction systems are operated by positioning modular cathode and anode assemblies at desired positions, placing a material in the basket, and charging the modular assemblies to reduce the metal oxide.

  7. Infrared source test

    SciTech Connect (OSTI)

    Ott, L.

    1994-11-15

    The purpose of the Infrared Source Test (IRST) is to demonstrate the ability to track a ground target with an infrared sensor from an airplane. The system is being developed within the Advance Technology Program`s Theater Missile Defense/Unmanned Aerial Vehicle (UAV) section. The IRST payload consists of an Amber Radiance 1 infrared camera system, a computer, a gimbaled mirror, and a hard disk. The processor is a custom R3000 CPU board made by Risq Modular Systems, Inc. for LLNL. The board has ethernet, SCSI, parallel I/O, and serial ports, a DMA channel, a video (frame buffer) interface, and eight MBytes of main memory. The real-time operating system VxWorks has been ported to the processor. The application code is written in C on a host SUN 4 UNIX workstation. The IRST is the result of a combined effort by physicists, electrical and mechanical engineers, and computer scientists.

  8. Advanced Small Modular Reactor (SMR) Probabilistic Risk Assessment (PRA) Technical Exchange Meeting

    SciTech Connect (OSTI)

    Curtis Smith

    2013-09-01

    During FY13, the INL developed an advanced SMR PRA framework which has been described in the report Small Modular Reactor (SMR) Probabilistic Risk Assessment (PRA) Detailed Technical Framework Specification, INL/EXT-13-28974 (April 2013). In this framework, the various areas are considered: Probabilistic models to provide information specific to advanced SMRs Representation of specific SMR design issues such as having co-located modules and passive safety features Use of modern open-source and readily available analysis methods Internal and external events resulting in impacts to safety All-hazards considerations Methods to support the identification of design vulnerabilities Mechanistic and probabilistic data needs to support modeling and tools In order to describe this framework more fully and obtain feedback on the proposed approaches, the INL hosted a technical exchange meeting during August 2013. This report describes the outcomes of that meeting.

  9. A versatile PMT test bench and its application in the DAMPE-PSD

    E-Print Network [OSTI]

    Zhou, Yong; Yu, Yuhong; Zhang, Yongjie; Fang, Fang; Chen, Junling; Hu, Bitao

    2015-01-01

    A versatile test bench system, dedicated for massive PMT characterization, is developed at the Institute of Modern Physics, Chinese Academy of Sciences. It can perform many test contents with large capacity and high level of automation, and the migration from one testing configuration to another is lightweight and time-saving. This system has been used in the construction of the Plastic Scintillator Detector of DArk Matter Particle Explorer already, and a total of 570 Hamamatsu R4443 tubes have been tested successfully.

  10. Two versatile cofactors, flavin adenine dinucleotide and non-heme iron, involved in DNA repair and natural product halogenation

    E-Print Network [OSTI]

    Wong, Cintyu

    2009-01-01

    Cofactors assist enzymes with a variety of complex chemistries. Two versatile cofactors, flavin adenine dinucleotide (FAD) and non-heme iron, together with molecular oxygen as an oxidizing agent, perform a wide array of ...

  11. Modular cryogenic interconnects for multi-qubit devices

    SciTech Connect (OSTI)

    Colless, J. I.; Reilly, D. J.

    2014-11-15

    We have developed a modular interconnect platform for the control and readout of multiple solid-state qubits at cryogenic temperatures. The setup provides 74 filtered dc-bias connections, 32 control and readout connections with ?3 dB frequency above 5 GHz, and 4 microwave feed lines that allow low loss (less than 3 dB) transmission 10 GHz. The incorporation of a radio-frequency interposer enables the platform to be separated into two printed circuit boards, decoupling the simple board that is bonded to the qubit chip from the multilayer board that incorporates expensive connectors and components. This modular approach lifts the burden of duplicating complex interconnect circuits for every prototype device. We report the performance of this platform at milli-Kelvin temperatures, including signal transmission and crosstalk measurements.

  12. Modular hybrid plasma reactor and related systems and methods

    DOE Patents [OSTI]

    Kong, Peter C.; Grandy, Jon D.; Detering, Brent A.

    2010-06-22

    A device, method and system for generating a plasma is disclosed wherein an electrical arc is established and the movement of the electrical arc is selectively controlled. In one example, modular units are coupled to one another to collectively define a chamber. Each modular unit may include an electrode and a cathode spaced apart and configured to generate an arc therebetween. A device, such as a magnetic or electromagnetic device, may be used to selectively control the movement of the arc about a longitudinal axis of the chamber. The arcs of individual modules may be individually controlled so as to exhibit similar or dissimilar motions about the longitudinal axis of the chamber. In another embodiment, an inlet structure may be used to selectively define the flow path of matter introduced into the chamber such that it travels in a substantially circular or helical path within the chamber.

  13. NGNP Project Regulatory Gap Analysis for Modular HTGRs

    SciTech Connect (OSTI)

    Wayne Moe

    2011-09-01

    The Next Generation Nuclear Plant (NGNP) Project Regulatory Gap Analysis (RGA) for High Temperature Gas-Cooled Reactors (HTGR) was conducted to evaluate existing regulatory requirements and guidance against the design characteristics specific to a generic modular HTGR. This final report presents results and identifies regulatory gaps concerning current Nuclear Regulatory Commission (NRC) licensing requirements that apply to the modular HTGR design concept. This report contains appendices that highlight important HTGR licensing issues that were found during the RGA study. The information contained in this report will be used to further efforts in reconciling HTGR-related gaps in the NRC licensing structure, which has to date largely focused on light water reactor technology.

  14. Modular low-aspect-ratio high-beta torsatron

    DOE Patents [OSTI]

    Sheffield, G.V.

    1982-04-01

    A fusion-reactor device is described which the toroidal magnetic field and at least a portion of the poloidal magnetic field are provided by a single set of modular coils. The coils are arranged on the surface of a low-aspect-ratio toroid in planed having the cylindrical coordinate relationship phi = phi/sub i/ + kz, where k is a constant equal to each coil's pitch and phi/sub i/ is the toroidal angle at which the i'th coil intersects the z = o plane. The toroid defined by the modular coils preferably has a race track minor cross section. When vertical field coils and, preferably, a toroidal plasma current are provided for magnetic-field-surface closure within the toroid, a vacuum magnetic field of racetrack-shaped minor cross section with improved stability and beta valves is obtained.

  15. Health Monitoring to Support Advanced Small Modular Reactors

    SciTech Connect (OSTI)

    Coble, Jamie B.; Meyer, Ryan M.; Ramuhalli, Pradeep

    2013-08-01

    Advanced small modular reactors (aSMRs) are based on advanced reactor concepts, some of which were promoted by the Generation IV International Forum, and are being considered for diverse missions including desalination of water, production of hydrogen, etc. While the existing fleet of commercial nuclear reactors provides baseload electricity, it is conceivable that aSMRs could be implemented for both baseload and load following applications. The effect of diverse operating missions and unit modularity on plant operations and maintenance (O&M) is not fully understood and limiting these costs will be essential to successful deployment of aSMRs. Integrated health monitoring concepts are proposed to support the safe and affordable operation of aSMRs over their lifetime by enabling management of significant in-vessel and in-containment active and passive components.

  16. Effect of Inter-Modular Connection on Fast Sparse Synchronization in Clustered Small-World Neural Networks

    E-Print Network [OSTI]

    Kim, Sang-Yoon

    2015-01-01

    We consider a clustered network with small-world sub-networks of inhibitory fast spiking interneurons, and investigate the effect of inter-modular connection on emergence of fast sparsely synchronized rhythms by varying both the inter-modular coupling strength $J_{inter}$ and the average number of inter-modular links per interneuron $M_{syn}^{(inter)}$. In contrast to the case of non-clustered networks, two kinds of sparsely synchronized states such as modular and global synchronization are found. For the case of modular sparse synchronization, the population behavior reveals the modular structure, because the intra-modular dynamics of sub-networks make some mismatching. On the other hand, in the case of global sparse synchronization, the population behavior is globally identical, independently of the cluster structure, because the intra-modular dynamics of sub-networks make perfect matching. We introduce a realistic cross-correlation modularity measure, representing the matching-degree between the instantane...

  17. Advanced Control and Protection system Design Methods for Modular HTGRs

    SciTech Connect (OSTI)

    Ball, Sydney J; Wilson Jr, Thomas L; Wood, Richard Thomas

    2012-06-01

    The project supported the Nuclear Regulatory Commission (NRC) in identifying and evaluating the regulatory implications concerning the control and protection systems proposed for use in the Department of Energy's (DOE) Next-Generation Nuclear Plant (NGNP). The NGNP, using modular high-temperature gas-cooled reactor (HTGR) technology, is to provide commercial industries with electricity and high-temperature process heat for industrial processes such as hydrogen production. Process heat temperatures range from 700 to 950 C, and for the upper range of these operation temperatures, the modular HTGR is sometimes referred to as the Very High Temperature Reactor or VHTR. Initial NGNP designs are for operation in the lower temperature range. The defining safety characteristic of the modular HTGR is that its primary defense against serious accidents is to be achieved through its inherent properties of the fuel and core. Because of its strong negative temperature coefficient of reactivity and the capability of the fuel to withstand high temperatures, fast-acting active safety systems or prompt operator actions should not be required to prevent significant fuel failure and fission product release. The plant is designed such that its inherent features should provide adequate protection despite operational errors or equipment failure. Figure 1 shows an example modular HTGR layout (prismatic core version), where its inlet coolant enters the reactor vessel at the bottom, traversing up the sides to the top plenum, down-flow through an annular core, and exiting from the lower plenum (hot duct). This research provided NRC staff with (a) insights and knowledge about the control and protection systems for the NGNP and VHTR, (b) information on the technologies/approaches under consideration for use in the reactor and process heat applications, (c) guidelines for the design of highly integrated control rooms, (d) consideration for modeling of control and protection system designs for VHTR, and (e) input for developing the bases for possible new regulatory guidance to assist in the review of an NGNP license application. This NRC project also evaluated reactor and process heat application plant simulation models employed in the protection and control system designs for various plant operational modes and accidents, including providing information about the models themselves, and the appropriateness of the application of the models for control and protection system studies. A companion project for the NRC focused on the potential for new instrumentation that would be unique to modular HTGRs, as compared to light-water reactors (LWRs), due to both the higher temperature ranges and the inherent safety features.

  18. A New Architecture for Man: The Modular, Prefabricated Buildings of Ernest J. Kump, Jr.

    E-Print Network [OSTI]

    Stiles, Elaine

    2013-01-01

    on a modular plan, a prefabricated house design for theirPark houses were a system of nested prefabricated modularknown prefabricated design was the 1945 “Prebuilt House” in

  19. Performance Evaluation for Modular, Scalable Cooling Systems with Hot Aisle Containment in Data Centers

    E-Print Network [OSTI]

    Adams, Barbara J

    2009-01-01

    on the characteristics of cooling systems and servers Theraised, CRAH cooling system and the modular, scalableINFORMATION ON THE CHARACTERISTICS OF COOLING SYSTEMS AND

  20. IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. 12, NO. 3, JUNE 2007 317 A Modular and High-Precision Motion Control

    E-Print Network [OSTI]

    Hollerbach, John M.

    IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. 12, NO. 3, JUNE 2007 317 A Modular and High- tegrated mechatronics, mechatronics system, modular controller, modular joint, motion control system, robot

  1. Identification of Selected Areas to Support Federal Clean Energy Goals Using Small Modular Reactors

    SciTech Connect (OSTI)

    Belles, R. J. [ORNL; Mays, G. T. [ORNL; Omitaomu, O. A. [ORNL; Poore, W. P. [ORNL

    2013-12-30

    Beginning in late 2008, Oak Ridge National Laboratory (ORNL) responded to ongoing internal and external studies addressing key questions related to our national electrical energy supply. This effort has led to the development and refinement of Oak Ridge Siting Analysis for power Generation Expansion (OR-SAGE), a tool to support power plant siting evaluations. The objective in developing OR-SAGE was to use industry-accepted approaches and/or develop appropriate criteria for screening sites and employ an array of geographic information systems (GIS) data sources at ORNL to identify candidate areas for a power generation technology application. The basic premise requires the development of exclusionary, avoidance, and suitability criteria for evaluating sites for a given siting application, such as siting small modular reactors (SMRs). For specific applications of the tool, it is necessary to develop site selection and evaluation criteria (SSEC) that encompass a number of key benchmarks that essentially form the site environmental characterization for that application. These SSEC might include population density, seismic activity, proximity to water sources, proximity to hazardous facilities, avoidance of protected lands and floodplains, susceptibility to landslide hazards, and others.

  2. ADVANCED SEISMIC BASE ISOLATION METHODS FOR MODULAR REACTORS

    SciTech Connect (OSTI)

    E. Blanford; E. Keldrauk; M. Laufer; M. Mieler; J. Wei; B. Stojadinovic; P.F. Peterson

    2010-09-20

    Advanced technologies for structural design and construction have the potential for major impact not only on nuclear power plant construction time and cost, but also on the design process and on the safety, security and reliability of next generation of nuclear power plants. In future Generation IV (Gen IV) reactors, structural and seismic design should be much more closely integrated with the design of nuclear and industrial safety systems, physical security systems, and international safeguards systems. Overall reliability will be increased, through the use of replaceable and modular equipment, and through design to facilitate on-line monitoring, in-service inspection, maintenance, replacement, and decommissioning. Economics will also receive high design priority, through integrated engineering efforts to optimize building arrangements to minimize building heights and footprints. Finally, the licensing approach will be transformed by becoming increasingly performance based and technology neutral, using best-estimate simulation methods with uncertainty and margin quantification. In this context, two structural engineering technologies, seismic base isolation and modular steel-plate/concrete composite structural walls, are investigated. These technologies have major potential to (1) enable standardized reactor designs to be deployed across a wider range of sites, (2) reduce the impact of uncertainties related to site-specific seismic conditions, and (3) alleviate reactor equipment qualification requirements. For Gen IV reactors the potential for deliberate crashes of large aircraft must also be considered in design. This report concludes that base-isolated structures should be decoupled from the reactor external event exclusion system. As an example, a scoping analysis is performed for a rectangular, decoupled external event shell designed as a grillage. This report also reviews modular construction technology, particularly steel-plate/concrete construction using factory prefabricated structural modules, for application to external event shell and base isolated structures.

  3. NUHOMS modular spent-fuel storage system: Performance testing

    SciTech Connect (OSTI)

    Strope, L.A.; McKinnon, M.A. ); Dyksterhouse, D.J.; McLean, J.C. )

    1990-09-01

    This report documents the results of a heat transfer and shielding performance evaluation of the NUTECH HOrizontal MOdular Storage (NUHOMS{reg sign}) System utilized by the Carolina Power and Light Co. (CP L) in an Independent Spent Fuel Storage Installation (ISFSI) licensed by the US Nuclear Regulatory Commission (NRC). The ISFSI is located at CP L's H. B. Robinson Nuclear Plant (HBR) near Hartsville, South Carolina. The demonstration included testing of three modules, first with electric heaters and then with spent fuel. The results indicated that the system was conservatively designed, with all heat transfer and shielding design criteria easily met. 5 refs., 45 figs., 9 tabs.

  4. A Multi-Modular Neutronically Coupled Power Generation System 

    E-Print Network [OSTI]

    Patel, Vishal

    2012-07-16

    EOL End of life HT-IMMTR High Temperature Integrated Multi-Modular Thermal Reactor HTGR High Temperature Gas Cooled Reactor LWR Light water reactor LOCA Loss of coolant accident LOFA Loss of ow accident MOL Middle of life MWth Megawatts Thermal... upwards of 45%. In comparison, LWR water rankine cycles have e ciencies of about 33%, meaning the ScCO2 brayton cycle could be much more economical than an LWR rankine cycle. 1.4 Design Objectives The system is intended for use either autonomously...

  5. On Enhancing Risk Monitors for Advanced Small Modular Reactors

    SciTech Connect (OSTI)

    Coble, Jamie B.; Coles, Garill A.; Meyer, Ryan M.; Ramuhalli, Pradeep

    2013-08-01

    Advanced small modular reactors (AdvSMRs) can contribute to safe, sustainable, and carbon-neutral energy production. However, the economics of AdvSMRs suffer from the loss of economy-of-scale for both construction and operation. The controllable day-to-day costs of AdvSMRs are expected to be dominated by operations and maintenance (O&M) costs. These expenses could potentially be managed through optimized scheduling of O&M activities for components, reactor modules, power blocks, and the full plant. Accurate, real-time risk assessment with integrated health monitoring of key active components can support scheduling of both online and offline inspection and maintenance activities.

  6. Modular microfluidic system for biological sample preparation (Patent) |

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(JournalspectroscopyReport)Fermentative ActivitySciTech Connect Modular microfluidic

  7. Design and implementation of a relative state estimator for docking and formation control of modular autonomous spacecraft

    E-Print Network [OSTI]

    Hoff, Nicholas R

    2007-01-01

    Modularity is a promising design concept for space systems. In a modular satellite, the individual subsystems would be broken down into physically distinct modules, which would then dynamically recombine into an aggregate ...

  8. A Data-Centric Approach for Modular Assurance Gabriela F. Ciocarlie, Heidi Schubert and Rose Wahlin

    E-Print Network [OSTI]

    Stehr, Mark-Oliver

    A Data-Centric Approach for Modular Assurance Gabriela F. Ciocarlie, Heidi Schubert and Rose Wahlin this problem, by moving from a component-interaction model to a data-centric model. A data-centric system. This paper outlines a data-centric approach for modular assurance, and a specific instantiation of it, based

  9. FOURIER COEFFICIENTS OF MODULAR FORMS ON G2 WEE TECK GAN, BENEDICT GROSS AND GORDAN SAVIN

    E-Print Network [OSTI]

    Gan, Wee Teck

    FOURIER COEFFICIENTS OF MODULAR FORMS ON G2 WEE TECK GAN, BENEDICT GROSS AND GORDAN SAVIN Abstract. We develop a theory of Fourier coefficients for modular forms on the split ex- ceptional group G2 on the group SL2(Z) is the wealth of information carried by the Fourier coefficients an(f), for n 0

  10. Minimal inductive systems of modular representations for naturally embedded algebraic and finite groups of type A

    E-Print Network [OSTI]

    Minimal inductive systems of modular representations for naturally embedded algebraic and finite The article is devoted to the classification of the minimal and minimal non- trivial inductive systems of modular representations for naturally embedded algebraic and finite groups of type A and related locally

  11. Minimal inductive systems of modular representations for naturally embedded algebraic and finite groups of type A

    E-Print Network [OSTI]

    Baranov, Alexander

    Minimal inductive systems of modular representations for naturally embedded algebraic to the classification of the minimal and minimal * *non- trivial inductive systems of modular representations for naturally embedded algebraic and finite groups of type A and related locally finite groups. I* *t

  12. Minimal inductive systems of modular representations for naturally embedded algebraic and nite groups of type A

    E-Print Network [OSTI]

    Baranov, Alexander

    Minimal inductive systems of modular representations for naturally embedded algebraic and #12;nite The article is devoted to the classi#12;cation of the minimal and minimal non- trivial inductive systems of modular representations for naturally embedded algebraic and #12;nite groups of type A and related locally

  13. Design, Analysis and Optimization of the Power Conversion System for the Modular Pebble Bed Reactor System

    E-Print Network [OSTI]

    Design, Analysis and Optimization of the Power Conversion System for the Modular Pebble Bed Reactor August 31, 2003 Certified by Ronald G. Ballinger Professor of Nuclear Engineering and Materials Science;2 #12;Design, Analysis, and Optimization of the Power Conversion System for the Modular Pebble Bed

  14. Integral Modular Categories and Integrality of Quantum Invariants at Roots of Unity of

    E-Print Network [OSTI]

    Masbaum, Gregor

    Integral Modular Categories and Integrality of Quantum Invariants at Roots of Unity of Prime Order G. Masbaum H. Wenzl May 29, 1998 \\Lambda Abstract It is shown how to deduce integrality properties of quantum 3­manifold invari­ ants from the existence of integral subcategories of modular categories

  15. Generating Isolated Outputs in a Multilevel Modular Capacitor Clamped DC-DC Converter

    E-Print Network [OSTI]

    Tolbert, Leon M.

    -dc converters based on inductive energy transfer method (IETM) such as buck, boost, and buck-boost converter967 Generating Isolated Outputs in a Multilevel Modular Capacitor Clamped DC-DC Converter (MMCCC clamped dc-dc converter. The multilevel modular capacitor clamped converter (MMCCC) has several key

  16. AGENT-BASED SIMULATION OF PRODUCT INNOVATION: MODULARITY, COMPLEXITY AND DIVERSITY

    E-Print Network [OSTI]

    Tesfatsion, Leigh

    1 AGENT-BASED SIMULATION OF PRODUCT INNOVATION: MODULARITY, COMPLEXITY AND DIVERSITY S.H. CHEN The importance of modularity in product innovation is analyzed in this paper. Through simulations with an agent an agent-based model to simulate the evolution of product innovation by growing it from bottom up

  17. 766 IEEE TRANSACTIONS ON COMPUTERS, VOL. 47, NO. 7, JULY 1998 An RNS Montgomery Modular

    E-Print Network [OSTI]

    Kornerup, Peter

    766 IEEE TRANSACTIONS ON COMPUTERS, VOL. 47, NO. 7, JULY 1998 An RNS Montgomery Modular--We present a new RNS modular multiplication for very large operands. The algorithm is based on Montgomery of the RNS system reasonably large and implementing the system on a ring of fairly simple processors

  18. Improving Modular Inversion in RNS using the Plus-Minus Method

    E-Print Network [OSTI]

    International Association for Cryptologic Research (IACR)

    Improving Modular Inversion in RNS using the Plus-Minus Method Karim Bigou2,1 and Arnaud Tisserand3. The paper describes a new RNS modular inversion algorithm based on the extended Euclidean algorithm and the plus-minus trick. In our algorithm, comparisons over large RNS values are replaced by cheap

  19. AN RNS-BASED ARCHITECTURE TARGETING HARDWARE ACCELERATORS FOR MODULAR ARITHMETIC

    E-Print Network [OSTI]

    Sousa, Leonel

    AN RNS-BASED ARCHITECTURE TARGETING HARDWARE ACCELERATORS FOR MODULAR ARITHMETIC Samuel Antão- rithms relying on modular arithmetic fully supported by the Residue Number System (RNS). The systematic to date. Index Terms-- Residue Number System (RNS), Modu- lar Arithmetic, Cryptography, Embedded Systems

  20. An RNS Montgomery Modular Multiplication Algorithm JeanClaude Bajard and LaurentStephane Didier

    E-Print Network [OSTI]

    Kornerup, Peter

    An RNS Montgomery Modular Multiplication Algorithm Jean­Claude Bajard and Laurent­Stâ??ephane Didier. and Computer Science University of Odense, Denmark Abstract We present a new RNS modular multiplication, and is performed using a Residue Number System. By choosing the moduli of the RNS system reasonably large

  1. A FLEXIBLE, MODULAR APPROACH TO INTEGRATED SPACE EXPLORATION CAMPAIGN LOGISTICS MODELING, SIMULATION, AND ANALYSIS

    E-Print Network [OSTI]

    de Weck, Olivier L.

    A FLEXIBLE, MODULAR APPROACH TO INTEGRATED SPACE EXPLORATION CAMPAIGN LOGISTICS MODELING Students #12;2 A FLEXIBLE, MODULAR APPROACH TO INTEGRATED SPACE EXPLORATION CAMPAIGN LOGISTICS MODELING in Aeronautics and Astronautics #12;3 Abstract A space logistics modeling framework to support space exploration

  2. ASHRAE Transactions: Symposia 1107 The interest in both modular simulation and alternative

    E-Print Network [OSTI]

    a limited Modular HVAC Simulation and the Future Integration of Alternative Cooling Systems in a NewASHRAE Transactions: Symposia 1107 ABSTRACT The interest in both modular simulation and alternative. At the same time, the U.S. Department of Energy has released its new building energy simulation program

  3. Design and Evaluation of a Modular Resonant Switched Capacitors Equalizer for PV Panels

    E-Print Network [OSTI]

    Design and Evaluation of a Modular Resonant Switched Capacitors Equalizer for PV Panels Shmuel (Sam of shaded panels in a serially connected PV array. The proposed solution is based on a modular approach module was designed for 185W PV panels and was found to boost the maximum available power by about 50

  4. Prognostics Health Management for Advanced Small Modular Reactor Passive Components

    SciTech Connect (OSTI)

    Meyer, Ryan M.; Ramuhalli, Pradeep; Coble, Jamie B.; Mitchell, Mark R.; Wootan, David W.; Hirt, Evelyn H.; Berglin, Eric J.; Bond, Leonard J.; Henager, Charles H.

    2013-10-18

    In the United States, sustainable nuclear power to promote energy security is a key national energy priority. Advanced small modular reactors (AdvSMR), which are based on modularization of advanced reactor concepts using non-light-water reactor (LWR) coolants such as liquid metal, helium, or liquid salt may provide a longer-term alternative to more conventional LWR-based concepts. The economics of AdvSMRs will be impacted by the reduced economy-of-scale savings when compared to traditional LWRs and the controllable day-to-day costs of AdvSMRs are expected to be dominated by operations and maintenance costs. Therefore, achieving the full benefits of AdvSMR deployment requires a new paradigm for plant design and management. In this context, prognostic health management of passive components in AdvSMRs can play a key role in enabling the economic deployment of AdvSMRs. In this paper, the background of AdvSMRs is discussed from which requirements for PHM systems are derived. The particle filter technique is proposed as a prognostics framework for AdvSMR passive components and the suitability of the particle filter technique is illustrated by using it to forecast thermal creep degradation using a physics-of-failure model and based on a combination of types of measurements conceived for passive AdvSMR components.

  5. Modular Electric Vehicle Program (MEVP). Final technical report

    SciTech Connect (OSTI)

    1994-03-01

    The Modular Electric Vehicle Program (MEVP) was an EV propulsion system development program in which the technical effort was contracted by DOE to Ford Motor Company. The General Electric Company was a major subcontractor to Ford for the development of the electric subsystem. Sundstrand Power Systems was also a subcontractor to Ford, providing a modified gas turbine engine APU for emissions and performance testing as well as a preliminary design and producibility study for a Gas Turbine-APU for potential use in hybrid/electric vehicles. The four-year research and development effort was cost-shared between Ford, General Electric, Sundstrand Power Systems and DOE. The contract was awarded in response to Ford`s unsolicited proposal. The program objective was to bring electric vehicle propulsion system technology closer to commercialization by developing subsystem components which can be produced from a common design and accommodate a wide range of vehicles; i.e., modularize the components. This concept would enable industry to introduce electric vehicles into the marketplace sooner than would be accomplished via traditional designs in that the economies of mass production could be realized across a spectrum of product offerings. This would eliminate the need to dedicate the design and capital investment to a limited volume product offering which would increase consumer cost and/or lengthen the time required to realize a return on the investment.

  6. Modular functors, cohomological field theories and topological recursion

    E-Print Network [OSTI]

    Andersen, Jørgen Ellegaard; Orantin, Nicolas

    2015-01-01

    Given a topological modular functor $\\mathcal{V}$ in the sense of Walker \\cite{Walker}, we construct vector bundles over $\\overline{\\mathcal{M}}_{g,n}$, whose Chern classes define semi-simple cohomological field theories. This construction depends on a determination of the logarithm of the eigenvalues of the Dehn twist and central element actions. We show that the intersection of the Chern class with the $\\psi$-classes in $\\overline{\\mathcal{M}}_{g,n}$ is computed by the topological recursion of \\cite{EOFg}, for a local spectral curve that we describe. In particular, we show how the Verlinde formula for the dimensions $D_{\\vec{\\lambda}}(\\mathbf{\\Sigma}_{g,n}) = \\dim \\mathcal{V}_{\\vec{\\lambda}}(\\mathbf{\\Sigma}_{g,n})$ is retrieved from the topological recursion. We analyze the consequences of our result on two examples: modular functors associated to a finite group $G$ (for which $D_{\\vec{\\lambda}}(\\mathbf{\\Sigma}_{g,n})$ enumerates certain $G$-principle bundles over a genus $g$ surface with $n$ boundary condi...

  7. An inorganic capping strategy for the seeded growth of versatile bimetallic nanostructures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pei, Yuchen; Maligal-Ganesh, Raghu V.; Xiao, Chaoxian; Goh, Tian -Wei; Brashler, Kyle; Gustafson, Jeffrey A.; Huang, Wenyu

    2015-09-11

    Metal nanostructures have attracted great attention in various fields due to their tunable properties through precisely tailored sizes, compositions and structures. Using mesoporous silica (mSiO2) as the inorganic capping agent and encapsulated Pt nanoparticles as the seeds, we developed a robust seeded growth method to prepare uniform bimetallic nanoparticles encapsulated in mesoporous silica shells (PtM@mSiO2, M = Pd, Rh, Ni and Cu). Unexpectedly, we found that the inorganic silica shell is able to accommodate an eight-fold volume increase in the metallic core by reducing its thickness. The bimetallic nanoparticles encapsulated in mesoporous silica shells showed enhanced catalytic properties and thermalmore »stabilities compared with those prepared with organic capping agents. As a result, this inorganic capping strategy could find a broad application in the synthesis of versatile bimetallic nanostructures with exceptional structural control and enhanced catalytic properties.« less

  8. MetAMOS: a modular and open source metagenomic assembly and analysis pipeline

    E-Print Network [OSTI]

    2013-01-01

    assembly and analysis pipeline. Genome Biology 2013 14:R2.assembly and analysis pipeline Todd J Treangen 1,2† , Sergeyassembly and analysis pipeline. MetAMOS represents an

  9. MetAMOS: a modular and open source metagenomic assembly and analysis pipeline

    E-Print Network [OSTI]

    2013-01-01

    Namiki et al. 2011 [24]; Sommer et al. 2008 [40]; Margulies39. Schatz MC, Phillippy AM, Sommer DD, Delcher AL, Puiu D,2013, 14:213-224. 40. Sommer DD, Delcher AL, Salzberg SL,

  10. Small Modular Reactors and U.S. Clean Energy Sources for Electricity |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo.Hydrogen4 »DigitalanDepartment of EnergySmall Fuel

  11. A versatile microelectromechanical system for nanomechanical testing B. Pant, B. L. Allen, T. Zhu, K. Gall, and O. N. Pierrona

    E-Print Network [OSTI]

    Zhu, Ting

    online 4 February 2011 This letter presents a microelectromechanical system MEMS material testing setup. © 2011 American Institute of Physics. doi:10.1063/1.3553195 Microelectromechanical systems MEMS wereA versatile microelectromechanical system for nanomechanical testing B. Pant, B. L. Allen, T. Zhu

  12. lame synthesis is one of the most versatile and promising technologies for large-scale production of nanoscale

    E-Print Network [OSTI]

    Beaucage, Gregory

    andenvironmental24 concern. Inorganic, nanostructured materials can be produced by doping a flame with inorganicLETTERS F lame synthesis is one of the most versatile and promising technologies for large-scale production of nanoscale materials1­3 . Pyrolysis has recently been shown to be a useful route

  13. A versatile thermoelectric temperature controller with 10 mK reproducibility and 100 mK absolute accuracy

    E-Print Network [OSTI]

    Libbrecht, Kenneth G.

    A versatile thermoelectric temperature controller with 10 mK reproducibility and 100 mK absolute December 2009 We describe a general-purpose thermoelectric temperature controller with 1 mK stability, 10 m elements and thermoelectric modules to heat or cool in the 40 to 40 °C range. A schematic of our controller

  14. The New Modular Control System for Power Converters at CERN

    E-Print Network [OSTI]

    Di Cosmo, Matteo

    2015-01-01

    The CERN accelerator complex consists of several generations of particle accelerators, with around 5000 power converters supplying regulated current and voltage to normal and superconducting magnet circuits. Today around 12 generations of converter control platforms can be found in the accelerator complex, ranging in age and technology. The diversity of these platforms has a significant impact on operability, maintenance and support of power converters. Over the past few years a new generation of modular controls called RegFGC3 has been developed by CERN’s power conversion group, with a goal to provide a standardised control platform, supporting a wide variety of converter topologies. The aim of this project is to reduce maintenance costs by decreasing the variety and diversity of control systems whilst simultaneously improving the operability and reliability of power converters and their controls. This paper describes the state of the on-going design and realization of the RegFGC3 platform, focusing on fun...

  15. Modular development and integration of a corrosion control system

    SciTech Connect (OSTI)

    Elder, M.S.; D'Alves, B.M. (Saudi Aramco (SA))

    1992-04-01

    This paper describes the consolidation and expansion of Saudi Aramco's computer systems used for capture and analysis of petroleum-facilities-related corrosion. Specifically, modular development techniques coupled with a prototyping methodology are highlighted as key contributors to the success of the project. A mainframe resident Corrosion Control System (CCS) was developed through joint efforts between the Northern Area Producing Operations Engineering (NAPOE) and Petroleum Engineering Applications Services (PEAS) departments. CCS takes full advantage of Saudi Aramco's extensive computing network to manage data on corrosion coupons, water quality, bacteria, chemical use, and cathodic protection. Selection of a centralized computer system over a distributed computing environment has yielded many benefits. The data management, user interface, and results presentation components are consistent. Remote users can take advantage of the installed computing infrastructure, workstations, and peripherals. The installed base of high-speed printers, color plotters, and slide equipment can be used easily for hard copy.

  16. Modular Energy Storage System for Hydrogen Fuel Cell Vehicles

    SciTech Connect (OSTI)

    Janice Thomas

    2010-05-31

    The objective of the project is to develop technologies, specifically power electronics, energy storage electronics and controls that provide efficient and effective energy management between electrically powered devices in alternative energy vehicles â?? plug-in electric vehicles, hybrid vehicles, range extended vehicles, and hydrogen-based fuel cell vehicles. The in-depth research into the complex interactions between the lower and higher voltage systems from data obtained via modeling, bench testing and instrumented vehicle data will allow an optimum system to be developed from a performance, cost, weight and size perspective. The subsystems are designed for modularity so that they may be used with different propulsion and energy delivery systems. This approach will allow expansion into new alternative energy vehicle markets.

  17. Development of a system model for advanced small modular reactors.

    SciTech Connect (OSTI)

    Lewis, Tom Goslee,; Holschuh, Thomas Vernon,

    2014-01-01

    This report describes a system model that can be used to analyze three advance small modular reactor (SMR) designs through their lifetime. Neutronics of these reactor designs were evaluated using Monte Carlo N-Particle eXtended (MCNPX/6). The system models were developed in Matlab and Simulink. A major thrust of this research was the initial scoping analysis of Sandia's concept of a long-life fast reactor (LLFR). The inherent characteristic of this conceptual design is to minimize the change in reactivity over the lifetime of the reactor. This allows the reactor to operate substantially longer at full power than traditional light water reactors (LWRs) or other SMR designs (e.g. high temperature gas reactor (HTGR)). The system model has subroutines for lifetime reactor feedback and operation calculations, thermal hydraulic effects, load demand changes and a simplified SCO2 Brayton cycle for power conversion.

  18. Modular properties of full 5D SYM partition function

    E-Print Network [OSTI]

    Jian Qiu; Luigi Tizzano; Jacob Winding; Maxim Zabzine

    2015-12-17

    We study properties of the full partition function for the $U(1)$ 5D $\\mathcal{N}=2^*$ gauge theory with adjoint hypermultiplet of mass $M$. This theory is ultimately related to abelian 6D (2,0) theory. We construct the full non-perturbative partition function on toric Sasaki-Einstein manifolds by gluing flat copies of the Nekrasov partition function and we express the full partition function in terms of the generalized double elliptic gamma function $G_2^C$ associated with a certain moment map cone $C$. The answer exhibits a curious $SL(4,\\mathbb{Z})$ modular property. Finally, we propose a set of rules to construct the partition function that resembles the calculation of 5D supersymmetric partition function with the insertion of defects of various co-dimensions.

  19. Modular properties of full 5D SYM partition function

    E-Print Network [OSTI]

    Jian Qiu; Luigi Tizzano; Jacob Winding; Maxim Zabzine

    2015-11-19

    We study properties of the full partition function for the $U(1)$ 5D $\\mathcal{N}=2^*$ gauge theory with adjoint hypermultiplet of mass $M$. This theory is ultimately related to abelian 6D (2,0) theory. We construct the full non-perturbative partition function on toric Sasaki-Einstein manifolds by gluing flat copies of the Nekrasov partition function and we express the full partition function in terms of the generalized double elliptic gamma function $G_2^C$ associated with a certain moment map cone $C$. The answer exhibits a curious $SL(4,\\mathbb{Z})$ modular property. Finally, we propose a set of rules to construct the partition function that resembles the calculation of 5D supersymmetric partition function with the insertion of defects of various co-dimensions.

  20. Scoping Analysis of Source Term and Functional Containment Attenuation Factors

    SciTech Connect (OSTI)

    Pete Lowry

    2012-10-01

    In order to meet future regulatory requirements, the Next Generation Nuclear Plant (NGNP) Project must fully establish and validate the mechanistic modular high temperature gas-cooled reactor (HTGR) source term. This is not possible at this stage in the project, as significant uncertainties in the final design remain unresolved. In the interim, however, there is a need to establish an approximate characterization of the source term. The NGNP team developed a simplified parametric model to establish mechanistic source term estimates for a set of proposed HTGR configurations.

  1. Evaluation of the Gas Turbine Modular Helium Reactor

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    Recent advances in gas-turbine and heat exchanger technology have enhanced the potential for a Modular Helium Reactor (MHR) incorporating a direct gas turbine (Brayton) cycle for power conversion. The resulting Gas Turbine Modular Helium Reactor (GT-MHR) power plant combines the high temperature capabilities of the MHR with the efficiency and reliability of modern gas turbines. While the passive safety features of the steam cycle MHR (SC-MHR) are retained, generation efficiencies are projected to be in the range of 48% and steam power conversion systems, with their attendant complexities, are eliminated. Power costs are projected to be reduced by about 20%, relative to the SC-MHR or coal. This report documents the second, and final, phase of a two-part evaluation that concluded with a unanimous recommendation that the direct cycle (DC) variant of the GT-MHR be established as the commercial objective of the US Gas-Cooled Reactor Program. This recommendation has been endorsed by industrial and utility participants and accepted by the US Department of Energy (DOE). The Phase II effort, documented herein, concluded that the DC GT-MHR offers substantial technical and economic advantages over both the IDC and SC systems. Both the DC and IDC were found to offer safety advantages, relative to the SC, due to elimination of the potential for water ingress during power operations. This is the dominant consequence event for the SC. The IDC was judged to require somewhat less development than the direct cycle, while the SC, which has the greatest technology base, incurs the least development cost and risk. While the technical and licensing requirements for the DC were more demanding, they were judged to be incremental and feasible. Moreover, the DC offers significant performance and cost improvements over the other two concepts. Overall, the latter were found to justify the additional development needs.

  2. Development of the Mathematics of Learning Curve Models for Evaluating Small Modular Reactor Economics

    SciTech Connect (OSTI)

    Harrison, T. J. [ORNL

    2014-02-01

    The cost of nuclear power is a straightforward yet complicated topic. It is straightforward in that the cost of nuclear power is a function of the cost to build the nuclear power plant, the cost to operate and maintain it, and the cost to provide fuel for it. It is complicated in that some of those costs are not necessarily known, introducing uncertainty into the analysis. For large light water reactor (LWR)-based nuclear power plants, the uncertainty is mainly contained within the cost of construction. The typical costs of operations and maintenance (O&M), as well as fuel, are well known based on the current fleet of LWRs. However, the last currently operating reactor to come online was Watts Bar 1 in May 1996; thus, the expected construction costs for gigawatt (GW)-class reactors in the United States are based on information nearly two decades old. Extrapolating construction, O&M, and fuel costs from GW-class LWRs to LWR-based small modular reactors (SMRs) introduces even more complication. The per-installed-kilowatt construction costs for SMRs are likely to be higher than those for the GW-class reactors based on the property of the economy of scale. Generally speaking, the economy of scale is the tendency for overall costs to increase slower than the overall production capacity. For power plants, this means that doubling the power production capacity would be expected to cost less than twice as much. Applying this property in the opposite direction, halving the power production capacity would be expected to cost more than half as much. This can potentially make the SMRs less competitive in the electricity market against the GW-class reactors, as well as against other power sources such as natural gas and subsidized renewables. One factor that can potentially aid the SMRs in achieving economic competitiveness is an economy of numbers, as opposed to the economy of scale, associated with learning curves. The basic concept of the learning curve is that the more a new process is repeated, the more efficient the process can be made. Assuming that efficiency directly relates to cost means that the more a new process is repeated successfully and efficiently, the less costly the process can be made. This factor ties directly into the factory fabrication and modularization aspect of the SMR paradigm—manufacturing serial, standardized, identical components for use in nuclear power plants can allow the SMR industry to use the learning curves to predict and optimize deployment costs.

  3. DOCUMENTATION, DEPLOYMENT AND EXTENSION OF A VERSATILE AND RAPIDLY RECONFIGURABLE UAV GNC RESEARCH PLATFORM

    E-Print Network [OSTI]

    Toepke, Samuel Lee

    2012-01-01

    Available UAV Reseach Platforms . . . . . . . . . . . . . .Free and Open Source Software UAV Systems . . . . . . . . .Cruz Low-cost UAV GNC System . . . . . . . . . . . . . . . .

  4. Design of electronics for a high-resolution, multi-material, and modular 3D printer

    E-Print Network [OSTI]

    Kwan, Joyce G

    2013-01-01

    Electronics for a high-resolution, multi-material, and modular 3D printer were designed and implemented. The driver for a piezoelectric inkjet print head can fire its nozzles with one of three droplet sizes ranging from 6 ...

  5. Modularity of the MIT Pebble Bed Reactor for use by the commercial power industry

    E-Print Network [OSTI]

    Hanlon-Hyssong, Jaime E

    2008-01-01

    The Modular Pebble Bed Reactor is a small high temperature helium cooled reactor that is being considered for both electric power and hydrogen production. Pebble bed reactors are being developed in South Africa, China and ...

  6. Flexible casting of modular self-aligning microfluidic assembly blocks Sean M. Langelier,a

    E-Print Network [OSTI]

    Walter, Nils G.

    Flexible casting of modular self-aligning microfluidic assembly blocks Sean M. Langelier,a Eric and extraction of MABs using flexible casting trays, (2) use of pre-coated substrates for simultaneous assembly

  7. Power management as a system-level inhibitor of modularity in the mobile computer industry

    E-Print Network [OSTI]

    Weinstein, Samuel K. (Samuel Keith), 1974-

    2004-01-01

    Since the mid-90s, the computer industry has been very modular with respect to both product architecture and industry structure. The growing market size of mobile computers means that the challenges facing this segment are ...

  8. Design and fabrication of a modular multi-material 3D printer

    E-Print Network [OSTI]

    Lan, Justin (Justin T.)

    2013-01-01

    This thesis presents 3DP-0, a modular, multi-material 3D printer. Currently, 3D printers available on the market are typically expensive and difficult to develop. In addition, the simultaneous use of multiple materials in ...

  9. Design, analysis and optimization of the power conversion system for the Modular Pebble Bed Reactor System

    E-Print Network [OSTI]

    Wang, Chunyun, 1968-

    2003-01-01

    The Modular Pebble Bed Reactor system (MPBR) requires a gas turbine cycle (Brayton cycle) as the power conversion system for it to achieve economic competitiveness as a GenIV nuclear system. The availability of controllable ...

  10. Design, Control and Motion Planning for a Novel Modular Extendable Robotic Manipulator 

    E-Print Network [OSTI]

    Yi, Hak 1979-

    2012-12-05

    This dissertation discusses an implementation of a design, control and motion planning for a novel extendable modular redundant robotic manipulator in space constraints, which robots may encounter for completing required tasks in small...

  11. A Comparative Study of Modular Axial Flux Podded Generators for Marine Current Turbines

    E-Print Network [OSTI]

    Brest, Université de

    A Comparative Study of Modular Axial Flux Podded Generators for Marine Current Turbines Sofiane turbines (MCTs). Due to the submarine environment, maintenance operations are very hard, very costly current turbine, axial flux permanent magnet generator, design, optimization. Nomenclature MCT = Marine

  12. Offshore work: Oil, modularity, and the how of capitalism in Equatorial Guinea

    E-Print Network [OSTI]

    APPEL, HANNAH

    2012-01-01

    In Nigeria people steal oil. We don’t have that. It’s clean.Appel, Hannah 2011 Futures: Oil and the Making of ModularityWalls and White Elephants: Oil Extraction, Responsibility,

  13. Investigating the educational effectiveness of a science museum exhibit on small modular fusion reactors

    E-Print Network [OSTI]

    Batie, Margo Alexandra

    2014-01-01

    Most people are unaware of the tremendous potential fusion reactors and smaller, more modular reactors possess. To inform them, a science exhibit was.constructed to investigate whether or not it would more effectively teach ...

  14. Optimal self assembly of modular manipulators with active and passive modules

    E-Print Network [OSTI]

    Yun, Seung-kook

    2009-01-01

    In this thesis, we describe algorithms to build self-assembling robot systems composed of active modular robots and passive bars. The robotic module is the Shady3D robot and the passive component is a rigid bar with embedded ...

  15. Modular Lorentz force actuators for efficient biomimetic propulsion of Autonomous Underwater Vehicles

    E-Print Network [OSTI]

    Church, Joseph Christopher

    2014-01-01

    In this thesis, we developed a highly scalable design for modular Lorentz force actuators for use in segmented flexible-hull undersea vehicles such as the RoboTuna being developed at Franklin W, Olin College of Engineering. ...

  16. Hypergeometric functions over finite fields and relations to modular forms and elliptic curves 

    E-Print Network [OSTI]

    Fuselier, Jenny G.

    2009-05-15

    The theory of hypergeometric functions over finite fields was developed in the mid- 1980s by Greene. Since that time, connections between these functions and elliptic curves and modular forms have been investigated by ...

  17. Design and analysis of a concrete modular housing system constructed with 3D panels

    E-Print Network [OSTI]

    Sarcia, Sam Rhea, 1982-

    2004-01-01

    An innovative modular house system design utilizing an alternative concrete residential building system called 3D panels is presented along with an overview of 3D panels as well as relevant methods and markets. The proposed ...

  18. 1,2-HOIQO--A highly versatile 1,2-HOPO analog

    SciTech Connect (OSTI)

    Seitz, Michael; Pluth, Michael D.; Raymond, Kenneth N.

    2006-08-07

    A cyclic, bidentate hydroxamic acid binding unit based on an isoquinoline scaffold has been utilized for the synthesis of a hexadentate tripodal ligand based on the TREN backbone. This prototype for a new class of multidentate chelators forms mononuclear iron(III) complexes and one-dimensional coordination polymers with lanthanide(III) cations. The latter has been determined by single crystal X-ray analysis of the cerium species. The solid state structure in the monoclinic space group P2{sub 1}/c (C{sub 36}H{sub 34}CeN{sub 7}O{sub 11}, a = 12.341(2){angstrom}, b = 26.649(4){angstrom}, c = 10.621(2){angstrom}, {alpha} = {gamma} = 90{sup o}, {beta} = 96.753(3){sup o}, V = 3468.6(9) {angstrom}{sup 3}, Z = 4) exhibits a trigonal-dodecahedral environment around the cerium cation. The proof of concept for the versatility of the new scaffold has been shown by the modification of the crucial precursor 3-carboxyiso-coumarin through electrophilic aromatic substitutions to yield the corresponding chlorosulfonated and nitrated analogs.

  19. A versatile femtosecond stimulated Raman spectroscopy setup with tunable pulses in the visible to near infrared

    SciTech Connect (OSTI)

    Zhu, Liangdong [Department of Physics, Oregon State University, Corvallis, Oregon 97331 (United States); Liu, Weimin [Department of Chemistry, Oregon State University, Corvallis, Oregon 97331 (United States); Fang, Chong, E-mail: Chong.Fang@oregonstate.edu [Department of Physics, Oregon State University, Corvallis, Oregon 97331 (United States); Department of Chemistry, Oregon State University, Corvallis, Oregon 97331 (United States)

    2014-07-28

    We demonstrate a versatile and efficient setup to perform femtosecond stimulated Raman spectroscopy (FSRS). Technical innovations are implemented to achieve the wavelength tunability for both the picosecond narrowband Raman pump pulse and femtosecond broadband Raman probe pulse. Using a simplified one-grating scheme in a home-built second harmonic bandwidth compressor followed by a two-stage noncollinear optical parametric amplifier, we tune the Raman pump pulse from ca. 480 to 750?nm. To generate the suitable Raman probe pulse in tandem, we rely on our recently demonstrated broadband up-converted multicolor array technique that readily provides tunable broadband laser sidebands across the visible to near-infrared range. This unique setup has unparalleled flexibility for conducting FSRS. We measure the ground-state Raman spectra of a cyclohexane standard using tunable pump-probe pairs at various wavelengths across the visible region. The best spectral resolution is ?12?cm{sup ?1}. By tuning the pump wavelength closer to the electronic absorption band of a photoacid pyranine in water, we observe the pre-resonantly enhanced Raman signal. The stimulated Raman gain of the 1627?cm{sup ?1} mode is increased by over 15 times.

  20. ADE Double Scaled Little String Theories, Mock Modular Forms and Umbral Moonshine

    E-Print Network [OSTI]

    Jeffrey A. Harvey; Sameer Murthy; Caner Nazaroglu

    2014-10-22

    We consider double scaled little string theory on $K3$. These theories are labelled by a positive integer $k \\ge 2$ and an $ADE$ root lattice with Coxeter number $k$. We count BPS fundamental string states in the holographic dual of this theory using the superconformal field theory $K3 \\times \\left( \\frac{SL(2,\\mathbb{R})_k}{U(1)} \\times \\frac{SU(2)_k}{U(1)} \\right) \\big/ \\mathbb{Z}_k$. We show that the BPS fundamental string states that are counted by the second helicity supertrace of this theory give rise to weight two mixed mock modular forms. We compute the helicity supertraces using two separate techniques: a path integral analysis that leads to a modular invariant but non-holomorphic answer, and a Hamiltonian analysis of the contribution from discrete states which leads to a holomorphic but not modular invariant answer. From a mathematical point of view the Hamiltonian analysis leads to a mixed mock modular form while the path integral gives the completion of this mixed mock modular form. We also compare these weight two mixed mock modular forms to those that appear in instances of Umbral Moonshine labelled by Niemeier root lattices $X$ that are powers of $ADE$ root lattices and find that they are equal up to a constant factor that we determine. In the course of the analysis we encounter an interesting generalization of Appell-Lerch sums and generalizations of the Riemann relations of Jacobi theta functions that they obey.

  1. Advanced Small Modular Reactor (SMR) Probabilistic Risk Assessment (PRA) Demonstration

    SciTech Connect (OSTI)

    Curtis Smith; Steven Prescott; Tony Koonce

    2014-04-01

    A key area of the Advanced Small Modular Reactor (SMR) Probabilistic Risk Assessment (PRA) strategy is the development of methodologies and tools that will be used to predict the safety, security, safeguards, performance, and deployment viability of SMRs. The goal of the SMR PRA activity will be to develop quantitative methods and tools and the associated analysis framework for assessing a variety of risks. Development and implementation of SMR-focused safety assessment methods may require new analytic methods or adaptation of traditional methods to the advanced design and operational features of SMRs. We will need to move beyond the current limitations such as static, logic-based models in order to provide more integrated, scenario-based models based upon predictive modeling which are tied to causal factors. The development of SMR-specific safety models for margin determination will provide a safety case that describes potential accidents, design options (including postulated controls), and supports licensing activities by providing a technical basis for the safety envelope. This report documents the progress that was made to implement the PRA framework, specifically by way of demonstration of an advanced 3D approach to representing, quantifying and understanding flooding risks to a nuclear power plant.

  2. Johnson Noise Thermometry for Advanced Small Modular Reactors

    SciTech Connect (OSTI)

    Britton, C.L.,Jr.; Roberts, M.; Bull, N.D.; Holcomb, D.E.; Wood, R.T.

    2012-09-15

    Temperature is a key process variable at any nuclear power plant (NPP). The harsh reactor environment causes all sensor properties to drift over time. At the higher temperatures of advanced NPPs the drift occurs more rapidly. The allowable reactor operating temperature must be reduced by the amount of the potential measurement error to assure adequate margin to material damage. Johnson noise is a fundamental expression of temperature and as such is immune to drift in a sensor’s physical condition. In and near the core, only Johnson noise thermometry (JNT) and radiation pyrometry offer the possibility for long-term, high-accuracy temperature measurement due to their fundamental natures. Small Modular Reactors (SMRs) place a higher value on long-term stability in their temperature measurements in that they produce less power per reactor core and thus cannot afford as much instrument recalibration labor as their larger brethren. The purpose of the current ORNL-led project, conducted under the Instrumentation, Controls, and Human-Machine Interface (ICHMI) research pathway of the U.S. Department of Energy (DOE) Advanced SMR Research and Development (R&D) program, is to develop and demonstrate a drift free Johnson noise-based thermometer suitable for deployment near core in advanced SMR plants.

  3. Johnson Noise Thermometry for Advanced Small Modular Reactors

    SciTech Connect (OSTI)

    Britton Jr, Charles L; Roberts, Michael; Bull, Nora D; Holcomb, David Eugene; Wood, Richard Thomas

    2012-10-01

    Temperature is a key process variable at any nuclear power plant (NPP). The harsh reactor environment causes all sensor properties to drift over time. At the higher temperatures of advanced NPPs the drift occurs more rapidly. The allowable reactor operating temperature must be reduced by the amount of the potential measurement error to assure adequate margin to material damage. Johnson noise is a fundamental expression of temperature and as such is immune to drift in a sensor s physical condition. In and near core, only Johnson noise thermometry (JNT) and radiation pyrometry offer the possibility for long-term, high-accuracy temperature measurement due to their fundamental natures. Small, Modular Reactors (SMRs) place a higher value on long-term stability in their temperature measurements in that they produce less power per reactor core and thus cannot afford as much instrument recalibration labor as their larger brethren. The purpose of this project is to develop and demonstrate a drift free Johnson noise-based thermometer suitable for deployment near core in advanced SMR plants.

  4. The VirtualwindoW: A Reconfigurable, Modular, Stereo Vision System

    SciTech Connect (OSTI)

    Kinoshita, Robert Arthur; Anderson, Matthew Oley; Mckay, Mark D; Willis, Walter David

    1999-04-01

    An important need while using unmanned vehicles is the ability for the remote operator or observer to easily and accurately perceive the operating environment. A classic problem in providing a complete representation of the remote work area is sensory overload or excessive complexity in the human-machine interface. In addition, remote operations often benefit from depth perception capability while viewing or manipulating objects. Thus, there is an on going effort within the remote and teleoperated robotic field to develop better human-machine interfaces. The Department of Energy's Idaho National Engineering and Environmental Laboratory (INEEL) has been researching methods to simplify the human-machine interface using atypical operator techniques. Initial telepresence research conducted at the INEEL developed and implemented a concept called the VirtualwindoW. This system minimized the complexity of remote stereo viewing controls and provided the operator the "feel" of viewing the environment, including depth perception, in a natural setting. The VirtualwindoW has shown that the human-machine interface can be simplified while increasing operator performance. This paper deals with the continuing research and development of the VirtualwindoW to provide a reconfigurable, modular system that easily utilizes commercially available off the shelf components. This adaptability is well suited to several aspects of unmanned vehicle applications, most notably environmental perception and vehicle control.

  5. The versatile E. coli adaptive response protein AlkB mitigates toxicity and mutagenicity of etheno-, ethano-, and methyl-modified bases in vivo

    E-Print Network [OSTI]

    Frick, Lauren Elizabeth

    2007-01-01

    The Escherichia coli AlkB protein is an exceptionally versatile DNA repair enzyme. Its expression is induced upon exposure to alkylating agents as part of the Ada-mediated adaptive response. This member of the ac-ketoglu ...

  6. Ion source

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA); Ehlers, Kenneth W. (Alamo, CA)

    1984-01-01

    A magnetic filter for an ion source reduces the production of undesired ion species and improves the ion beam quality. High-energy ionizing electrons are confined by the magnetic filter to an ion source region, where the high-energy electrons ionize gas molecules. One embodiment of the magnetic filter uses permanent magnets oriented to establish a magnetic field transverse to the direction of travel of ions from the ion source region to the ion extraction region. In another embodiment, low energy 16 eV electrons are injected into the ion source to dissociate gas molecules and undesired ion species into desired ion species.

  7. Conceptual designs for modular OTEC SKSS. Final report

    SciTech Connect (OSTI)

    None

    1980-02-29

    This volume presents the results of the first phase of the Station Keeping Subsystem (SKSS) design study for 40 MW/sub e/ capacity Modular Experiment OTEC Platforms. The objectives of the study were: (1) establishment of basic design requirements; (2) verification of technical feasibility of SKSS designs; (3) identification of merits and demerits; (4) estimates of sizes for major components; (5) estimates of life cycle costs; (6) deployment scenarios and time/cost/risk assessments; (7) maintenance/repair and replacement scenarios; (8) identifications of interface with other OTEC subsystems; (9) recommendations for and major problems in preliminary design; and (10) applicability of concepts to commercial plant SKSS designs. A brief site suitability study was performed with the objective of determining the best possible location at the Punta Tuna (Puerto Rico) site from the standpoint of anchoring. This involved studying the vicinity of the initial location in relation to the prevailing bottom slopes and distances from shore. All subsequent studies were performed for the final selected site. The two baseline OTEC platforms were the APL BARGE and the G and C SPAR. The results of the study are presented in detail. The overall objective of developing two conceptual designs for each of the two baseline OTEC platforms has been accomplished. Specifically: (1) a methodology was developed for conceptual designs and followed to the extent possible. At this stage, a full reliability/performance/optimization analysis based on a probabilistic approach was not used due to the numerous SKSS candidates to be evaluated. A deterministic approach was used. (2) For both of the two baseline platforms, the APL BARGE and the G and C SPAR, all possible SKSS candidate concepts were considered and matrices of SKSS concepts were developed.

  8. Nuclear Safeguards Considerations For The Pebble Bed Modular Reactor (PBMR)

    SciTech Connect (OSTI)

    Phillip Casey Durst; David Beddingfield; Brian Boyer; Robert Bean; Michael Collins; Michael Ehinger; David Hanks; David L. Moses; Lee Refalo

    2009-10-01

    High temperature reactors (HTRs) have been considered since the 1940s, and have been constructed and demonstrated in the United Kingdom (Dragon), United States (Peach Bottom and Fort Saint Vrain), Japan (HTTR), Germany (AVR and THTR-300), and have been the subject of conceptual studies in Russia (VGM). The attraction to these reactors is that they can use a variety of reactor fuels, including abundant thorium, which upon reprocessing of the spent fuel can produce fissile U-233. Hence, they could extend the stocks of available uranium, provided the fuel is reprocessed. Another attractive attribute is that HTRs typically operate at a much higher temperature than conventional light water reactors (LWRs), because of the use of pyrolytic carbon and silicon carbide coated (TRISO) fuel particles embedded in ceramic graphite. Rather than simply discharge most of the unused heat from the working fluid in the power plant to the environment, engineers have been designing reactors for 40 years to recover this heat and make it available for district heating or chemical conversion plants. Demonstrating high-temperature nuclear energy conversion was the purpose behind Fort Saint Vrain in the United States, THTR-300 in Germany, HTTR in Japan, and HTR-10 and HTR-PM, being built in China. This resulted in nuclear reactors at least 30% or more thermodynamically efficient than conventional LWRs, especially if the waste heat can be effectively utilized in chemical processing plants. A modern variant of high temperature reactors is the Pebble Bed Modular Reactor (PBMR). Originally developed in the United States and Germany, it is now being redesigned and marketed by the Republic of South Africa and China. The team examined historical high temperature and high temperature gas reactors (HTR and HTGR) and reviewed safeguards considerations for this reactor. The following is a preliminary report on this topic prepared under the ASA-100 Advanced Safeguards Project in support of the NNSA Next Generation Safeguards Initiative (NGSI).

  9. An Overview of the Safety Case for Small Modular Reactors

    SciTech Connect (OSTI)

    Ingersoll, Daniel T [ORNL] [ORNL

    2011-01-01

    Several small modular reactor (SMR) designs emerged in the late 1970s and early 1980s in response to lessons learned from the many technical and operational challenges of the large Generation II light-water reactors. After the accident at the Three Mile Island plant in 1979, an ensuing reactor redesign effort spawned the term inherently safe designs, which later evolved into passively safe terminology. Several new designs were engineered to be deliberately small in order to fully exploit the benefits of passive safety. Today, new SMR designs are emerging with a similar philosophy of offering highly robust and resilient designs with increased safety margins. Additionally, because these contemporary designs are being developed subsequent to the September 11, 2001, terrorist attack, they incorporate a number of intrinsic design features to further strengthen their safety and security. Several SMR designs are being developed in the United States spanning the full spectrum of reactor technologies, including water-, gas-, and liquid-metal-cooled ones. Despite a number of design differences, most of these designs share a common set of design principles to enhance plant safety and robustness, such as eliminating plant design vulnerabilities where possible, reducing accident probabilities, and mitigating accident consequences. An important consequence of the added resilience provided by these design approaches is that the individual reactor units and the entire plant should be able to survive a broader range of extreme conditions. This will enable them to not only ensure the safety of the general public but also help protect the investment of the owner and continued availability of the power-generating asset. Examples of typical SMR design features and their implications for improved plant safety are given for specific SMR designs being developed in the United States.

  10. Safety approaches for high power modular laser operation

    SciTech Connect (OSTI)

    Handren, R.T.

    1993-03-01

    Approximately 20 years ago, a program was initiated at the Lawrence Livermore National Laboratory (LLNL) to study the feasibility of using lasers to separate isotopes of uranium and other materials. Of particular interest has been the development of a uranium enrichment method for the production of commercial nuclear power reactor fuel to replace current more expensive methods. The Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) Program has progressed to the point where a plant-scale facility to demonstrate commercial feasibility has been built and is being tested. The U-AVLIS Program uses copper vapor lasers which pump frequency selective dye lasers to photoionize uranium vapor produced by an electron beam. The selectively ionized isotopes are electrostatically collected. The copper lasers are arranged in oscillator/amplifier chains. The current configuration consists of 12 chains, each with a nominal output of 800 W for a system output in excess of 9 kW. The system requirements are for continuous operation (24 h a day, 7 days a week) and high availability. To meet these requirements, the lasers are designed in a modular form allowing for rapid change-out of the lasers requiring maintenance. Since beginning operation in early 1985, the copper lasers have accumulated over 2 million unit hours at a >90% availability. The dye laser system provides approximately 2.5 kW average power in the visible wavelength range. This large-scale laser system has many safety considerations, including high-power laser beams, high voltage, and large quantities ({approximately}3000 gal) of ethanol dye solutions. The Laboratory`s safety policy requires that safety controls be designed into any process, equipment, or apparatus in the form of engineering controls. Administrative controls further reduce the risk to an acceptable level. Selected examples of engineering and administrative controls currently being used in the U-AVLIS Program are described.

  11. Modular Structures on Trace Class Operators and Applications to Landau Levels

    E-Print Network [OSTI]

    S. T. Ali; F. Bagarello; G. Honnouvo

    2009-06-22

    The energy levels, generally known as the Landau levels, which characterize the motion of an electron in a constant magnetic field, are those of the one-dimensional harmonic oscillator, with each level being infinitely degenerate. We show in this paper how the associated von Neumann algebra of observables display a modular structure in the sense of the Tomita-Takesaki theory, with the algebra and its commutant referring to the two orientations of the magnetic field. A KMS state can be built which in fact is the Gibbs state for an ensemble of harmonic oscillators. Mathematically, the modular structure is shown to arise as the natural modular structure associated to the Hilbert space of all Hilbert-Schmidt operators.

  12. Modular anode assemblies and methods of using the same for electrochemical reduction

    DOE Patents [OSTI]

    Wiedmeyer, Stanley G; Barnes, Laurel A; Williamson, Mark A; Willit, James L

    2015-02-17

    Modular anode assemblies are used in electrolytic oxide reduction systems for scalable reduced metal production via electrolysis. Assemblies include a channel frame connected to several anode rods extending into an electrolyte. An electrical system powers the rods while being insulated from the channel frame. A cooling system removes heat from anode rods and the electrical system. An anode guard attaches to the channel frame to prevent accidental electrocution or damage during handling or repositioning. Each anode rod may be divided into upper and lower sections to permit easy repair and swapping out of lower sections. The modular assemblies may have standardized components to permit placement at multiple points within a reducing system. Example methods may operate an electrolytic oxide reduction system by positioning the modular anode assemblies in the reduction system and applying electrical power to the plurality of anode assemblies.

  13. Technical Needs for Enhancing Risk Monitors with Equipment Condition Assessment for Advanced Small Modular Reactors

    SciTech Connect (OSTI)

    Coble, Jamie B.; Coles, Garill A.; Ramuhalli, Pradeep; Meyer, Ryan M.; Berglin, Eric J.; Wootan, David W.; Mitchell, Mark R.

    2013-04-04

    Advanced small modular reactors (aSMRs) can provide the United States with a safe, sustainable, and carbon-neutral energy source. The controllable day-to-day costs of aSMRs are expected to be dominated by operation and maintenance costs. Health and condition assessment coupled with online risk monitors can potentially enhance affordability of aSMRs through optimized operational planning and maintenance scheduling. Currently deployed risk monitors are an extension of probabilistic risk assessment (PRA). For complex engineered systems like nuclear power plants, PRA systematically combines event likelihoods and the probability of failure (POF) of key components, so that when combined with the magnitude of possible adverse consequences to determine risk. Traditional PRA uses population-based POF information to estimate the average plant risk over time. Currently, most nuclear power plants have a PRA that reflects the as-operated, as-modified plant; this model is updated periodically, typically once a year. Risk monitors expand on living PRA by incorporating changes in the day-by-day plant operation and configuration (e.g., changes in equipment availability, operating regime, environmental conditions). However, population-based POF (or population- and time-based POF) is still used to populate fault trees. Health monitoring techniques can be used to establish condition indicators and monitoring capabilities that indicate the component-specific POF at a desired point in time (or over a desired period), which can then be incorporated in the risk monitor to provide a more accurate estimate of the plant risk in different configurations. This is particularly important for active systems, structures, and components (SSCs) proposed for use in aSMR designs. These SSCs may differ significantly from those used in the operating fleet of light-water reactors (or even in LWR-based SMR designs). Additionally, the operating characteristics of aSMRs can present significantly different requirements, including the need to operate in different coolant environments, higher operating temperatures, and longer operating cycles between planned refueling and maintenance outages. These features, along with the relative lack of operating experience for some of the proposed advanced designs, may limit the ability to estimate event probability and component POF with a high degree of certainty. Incorporating real-time estimates of component POF may compensate for a relative lack of established knowledge about the long-term component behavior and improve operational and maintenance planning and optimization. The particular eccentricities of advanced reactors and small modular reactors provide unique challenges and needs for advanced instrumentation, control, and human-machine interface (ICHMI) techniques such as enhanced risk monitors (ERM) in aSMRs. Several features of aSMR designs increase the need for accurate characterization of the real-time risk during operation and maintenance activities. A number of technical gaps in realizing ERM exist, and these gaps are largely independent of the specific reactor technology. As a result, the development of a framework for ERM would enable greater situational awareness regardless of the specific class of reactor technology. A set of research tasks are identified in a preliminary research plan to enable the development, testing, and demonstration of such a framework. Although some aspects of aSMRs, such as specific operational characteristics, will vary and are not now completely defined, the proposed framework is expected to be relevant regardless of such uncertainty. The development of an ERM framework will provide one of the key technical developments necessary to ensure the economic viability of aSMRs.

  14. Versatile wide angle diffraction setup for simultaneous wide and small angle x-ray scattering measurements with synchrotron radiation

    SciTech Connect (OSTI)

    Rueda, D.R.; Garcia-Gutierrez, M.C.; Nogales, A.; Capitan, M.J.; Ezquerra, T.A.; Labrador, A.; Fraga, E.; Beltran, D.; Juanhuix, J.; Herranz, J.F.; Bordas, J. [Instituto de Estructura de la Materia, CSIC, Serrano 119, 28006 Madrid (Spain); LLS, BM16-ESRF, 6 rue Jules Horowitz, BP220, 38043 Grenoble (France)

    2006-03-15

    Here we present a novel, simple, and versatile experimental setup aimed to perform wide angle x-ray scattering (WAXS) measurements alone or in simultaneous combination with small angle x-ray scattering measurements. The design of the WAXS goniometer allows one to obtain high resolution diffraction patterns in a broad angular range. The setup can incorporate a hot stage in order to evaluate temperature resolved experiments. The performance of the equipment has been verified in the BM16 beam line of the European Synchrotron Radiation Facility with different well known samples such as alumina, isotropic film of high density polyethylene (HDPE), and oriented HPDE fiber.

  15. An RNS Montgomery Modular Multiplication JeanClaude Bajard, LaurentSt'ephane Didier, and Peter Kornerup, Member, IEEE

    E-Print Network [OSTI]

    Kornerup, Peter

    An RNS Montgomery Modular Multiplication Algorithm Jean­Claude Bajard, Laurent­St'ephane Didier, and Peter Kornerup, Member, IEEE Abstract We present a new RNS modular multiplication for very large a Residue Number System. By choosing the moduli of the RNS system reasonably large, and implementing

  16. Modular multimorphic kinematic arm structure and pitch and yaw joint for same

    DOE Patents [OSTI]

    Martin, H. Lee (Knoxville, TN); Williams, Daniel M. (Oliver Springs, TN); Holt, W. Eugene (Knoxville, TN)

    1989-01-01

    A multimorphic kinematic manipulator arm is provided with seven degrees of freedom and modular kinematic redundancy through identical pitch/yaw, shoulder, elbow and wrist joints and a wrist roll device at the wrist joint, which further provides to the manipulator arm an obstacle avoidance capability. The modular pitch/yaw joints are traction drive devices which provide backlash free operation with smooth torque transmission and enhanced rigidity. A dual input drive arrangement is provided for each joint resulting in a reduction of the load required to be assumed by each drive and providing selective pitch and yaw motions by control of the relative rotational directions of the input drive.

  17. Journal of NUCLEAR SCIENCE and TECHNOLOGY, Vol. 39, No. 11, p. 11691181 (November 2002) Conceptual Design of a Modular Island Core Fast Breeder Reactor "RAPID-M"

    E-Print Network [OSTI]

    Laughlin, Robert B.

    and accepted September 10, 2002) A metal fueled modular island core sodium cooled fast breeder reactor concept Design of a Modular Island Core Fast Breeder Reactor "RAPID-M" Mitsuru KAMBE Central Research Institute type reactors, performance, sodium cooled reactor, modular island core, inherent safety, in- tegrated

  18. Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 1: Cost Estimates of Small Modular Systems

    SciTech Connect (OSTI)

    Nexant Inc.

    2006-05-01

    This deliverable is the Final Report for Task 1, Cost Estimates of Small Modular Systems, as part of NREL Award ACO-5-44027, ''Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup and Oxygen Separation Equipment''. Subtask 1.1 looked into processes and technologies that have been commercially built at both large and small scales, with three technologies, Fluidized Catalytic Cracking (FCC) of refinery gas oil, Steam Methane Reforming (SMR) of Natural Gas, and Natural Gas Liquids (NGL) Expanders, chosen for further investigation. These technologies were chosen due to their applicability relative to other technologies being considered by NREL for future commercial applications, such as indirect gasification and fluidized bed tar cracking. Research in this subject is driven by an interest in the impact that scaling has on the cost and major process unit designs for commercial technologies. Conclusions from the evaluations performed could be applied to other technologies being considered for modular or skid-mounted applications.

  19. FISHERY MARKET DEVELOPMENT SERIES NO. 1 he versatile State of Florida cou ld appropriately

    E-Print Network [OSTI]

    . Place fi h on a well -greased broiler pan and brush wit h fat. Broil about 3 inches from source of heat. In this publication Home Economists of the U nited States Departm ent of the Interior's Burea u of Commercial

  20. STRIPS Planning with Modular Behavior Selection Networks for Smart Home Agents

    E-Print Network [OSTI]

    Cho, Sung-Bae

    at home such as cameras, temperature sensors and light sensors, and generate agent behaviors appropriateSTRIPS Planning with Modular Behavior Selection Networks for Smart Home Agents Kyon-Mo Yang Dept Science Yonsei University Seoul, Korea sbcho@yonsei.ac.kr Abstract--A smart home has highly advanced

  1. Experimental Study of Active Vibration Suppression Structure Using Modular Control Patch*

    E-Print Network [OSTI]

    Experimental Study of Active Vibration Suppression Structure Using Modular Control Patch* Gangbing results of vibration suppressicln of a flexible structure using a miniaturized digital controller, called for the United States Air Force for future space vibration control. In this research, the MCP is used

  2. SASSI Methodology-Based Sensitivity Studies for Deeply Embedded Structures, Such As Small Modular Reactors (SMRs)

    Broader source: Energy.gov [DOE]

    SASSI Methodology-Based Sensitivity Studies for Deeply Embedded Structures, Such As Small Modular Reactors (SMRs) Dr. Dan M. Ghiocel Ghiocel Predictive Technologies Inc. http://www.ghiocel-tech.com 2014 DOE Natural Phenomena Hazards Meeting Germantown, MD, October 21-22, 2014

  3. Stimuli-Responsive Smart Gels Realized via Modular Protein Design Tijana Z. Grove,

    E-Print Network [OSTI]

    Regan, Lynne

    Stimuli-Responsive Smart Gels Realized via Modular Protein Design Tijana Z. Grove, Chinedum O 26, 2010; E-mail: lynne.regan@yale.edu Abstract: Smart gels have a variety of applications, including that permits the creation of protein-based smart gels with encoded morphology, functionality

  4. Modular software architecture for flexible reservation mechanisms on heterogeneous Michal Sojka,a

    E-Print Network [OSTI]

    Lipari, Giuseppe

    counting, monitoring of parking lots, etc.). In industrial con- trol, image recognition applicationsModular software architecture for flexible reservation mechanisms on heterogeneous resources Michal. However, it is not easy to design basic infrastructure services that allow for an easy access

  5. MT3DMS, A Modular Three-Dimensional Multispecies Transport Model User Guide to the

    E-Print Network [OSTI]

    Zheng, Chunmiao

    .M. Cozzarelli, M.H. Lahvis, and B.A. Bekins. 1998. Ground water contamination by crude oil near Bemidji (LNAPL) contaminant through the unsaturated zone and the formation of an oil lens on the water tableMT3DMS, A Modular Three-Dimensional Multispecies Transport Model ­ User Guide to the Hydrocarbon

  6. Carnival: a modular framework for automated facial animation Michael Berger, Gregor Hofer, Hiroshi Shimodaira

    E-Print Network [OSTI]

    Edinburgh, University of

    any facial model created in standard animation packages. Solution Software framework called "CarnivalCarnival: a modular framework for automated facial animation Michael Berger, Gregor Hofer, Hiroshi.a.berger@sms.ed.ac.uk Problem Facial animation is difficult to do convincingly, particularly when synchronizing with speech

  7. Conceptual Design of a 100 MWe Modular Molten Salt Power Tower Plant

    SciTech Connect (OSTI)

    James E. Pacheco; Carter Moursund, Dale Rogers, David Wasyluk

    2011-09-20

    A conceptual design of a 100 MWe modular molten salt solar power tower plant has been developed which can provide capacity factors in the range of 35 to 75%. Compared to single tower plants, the modular design provides a higher degree of flexibility in achieving the desired customer's capacity factor and is obtained simply by adjusting the number of standard modules. Each module consists of a standard size heliostat field and receiver system, hence reengineering and associated unacceptable performance uncertainties due to scaling are eliminated. The modular approach with multiple towers also improves plant availability. Heliostat field components, receivers and towers are shop assembled allowing for high quality and minimal field assembly. A centralized thermal-storage system stores hot salt from the receivers, allowing nearly continuous power production, independent of solar energy collection, and improved parity with the grid. A molten salt steam generator converts the stored thermal energy into steam, which powers a steam turbine generator to produce electricity. This paper describes the conceptual design of the plant, the advantages of modularity, expected performance, pathways to cost reductions, and environmental impact.

  8. MIT Modular Pebble Bed Reactor (MPBR) A Summary of Research Activities and Accomplishments

    E-Print Network [OSTI]

    Lanza · Martin Bazant (Math) #12;#12;#12;#12;Our Vision for 1150 MW Combined Heat and Power Station Air Ingress · Balance of Plant Design · Modularity Design · Intermediate Heat Exchanger Design · Core Power Distribution Monitoring · Pebble Flow Experiments · Non-Proliferation · Safeguards · Waste

  9. Large-Scale Patent Classification with Min-Max Modular Support Vector Machines

    E-Print Network [OSTI]

    Lu, Bao-Liang

    Large-Scale Patent Classification with Min-Max Modular Support Vector Machines Xiao-Lei Chu, Chao Ma, Jing Li, Bao-Liang Lu Senior Member, IEEE, Masao Utiyama, and Hitoshi Isahara Abstract-- Patent-world patent classification typically exceeds one million, and this number increases every year. An effective

  10. Systematic control of protein interaction using a modular ERK -helix linker

    E-Print Network [OSTI]

    Spudich, James A.

    Systematic control of protein interaction using a modular ERK -helix linker Sivaraj, genetically encoded linker, namely, an ERK [genetically encoded polypeptide motif based on alternating between calmodulin and its binding pep- tides, combined with FRET to determine the effect of the ERK

  11. Focal Brain Lesions to Critical Locations Cause Widespread Disruption of the Modular Organization of the Brain

    E-Print Network [OSTI]

    Focal Brain Lesions to Critical Locations Cause Widespread Disruption of the Modular Organization of the Brain Caterina Gratton*, Emi M. Nomura*, Fernando Pérez, and Mark DEsposito Abstract Although it is generally assumed that brain damage pre- dominantly affects only the function of the damaged region, here we

  12. On the modular structure of the genus-one Type II superstring low energy expansion

    E-Print Network [OSTI]

    Eric D'Hoker; Michael B. Green; Pierre Vanhove

    2015-06-03

    The analytic contribution to the low energy expansion of Type II string amplitudes at genus-one is a power series in space-time derivatives with coefficients that are determined by integrals of modular functions over the complex structure modulus of the world-sheet torus. These modular functions are associated with world-sheet vacuum Feynman diagrams and given by multiple sums over the discrete momenta on the torus. In this paper we exhibit exact differential and algebraic relations for a certain infinite class of such modular functions by showing that they satisfy Laplace eigenvalue equations with inhomogeneous terms that are polynomial in non-holomorphic Eisenstein series. Furthermore, we argue that the set of modular functions that contribute to the coefficients of interactions up to order D**10 R*4 are linear sums of functions in this class and quadratic polynomials in Eisenstein series and odd Riemann zeta values. Integration over the complex structure results in coefficients of the low energy expansion that are rational numbers multiplying monomials in odd Riemann zeta values.

  13. To appear in the Journal of Symbolic Computation Modular Termination Proofs for Rewriting

    E-Print Network [OSTI]

    Ábrahám, Erika

    To appear in the Journal of Symbolic Computation Modular Termination Proofs for Rewriting Using Recently, Arts and Giesl developed the dependency pair approach which allows automated termination and innermost termination proofs for many term rewriting systems for which such proofs were not possible before

  14. Modular Termination of Basic Narrowing Maria Alpuente, Santiago Escobar, and Jose Iborra

    E-Print Network [OSTI]

    Alpuente, María

    Modular Termination of Basic Narrowing Mar´ia Alpuente, Santiago Escobar, and Jos´e Iborra theories. Another application is analyzing ter- mination of narrowing by checking the termination of basic narrowing, as done in pioneering work by Hullot. In this work, we study the modu- larity of termination

  15. Optimal Topological Design of Infinite Modular Structures Moshe B. Fuchs and Michael Ryvkin

    E-Print Network [OSTI]

    Fuchs, Moshe

    Optimal Topological Design of Infinite Modular Structures Moshe B. Fuchs and Michael Ryvkin Tel Aviv University 1. Abstract This paper deals with the optimum topological design of periodic structures are in wide use but have not received much attention in structural analysis, let alone structural design

  16. The Structure and Value of Modularity in Software Design Kevin Sullivan, Yuanfang Cai, Ben Hallen

    E-Print Network [OSTI]

    Huang, Wei

    The Structure and Value of Modularity in Software Design Kevin Sullivan, Yuanfang Cai, Ben Hallen design. The theory uses design structure matrices to model designs and real options techniques to value in its terms--Parnas's KWIC--and evaluate the results. We contribute an extension to design structure

  17. The Structure and Value of Modularity in Software Design Kevin J. Sullivan

    E-Print Network [OSTI]

    Weimer, Westley

    The Structure and Value of Modularity in Software Design Kevin J. Sullivan University of Virginia uses design structure matrices to model designs and real options techniques to value them. To test an extension to design structure matrices, and we show that the options results are consistent with Parnas

  18. A Modular QoS-enabled Load Management Framework for Component-Based Middleware

    E-Print Network [OSTI]

    Murphy, John

    A Modular QoS-enabled Load Management Framework for Component-Based Middleware Octavian Ciuhandu,murphyj}@eeng.dcu.ie ABSTRACT We present a new QoS-enabled load management framework for component oriented middleware application. Keywords Load, distribution, QoS, platform, middleware, optimization, adaptation, management

  19. A modular process for integrating thick polysilicon MEMS devices with sub-micron CMOS

    E-Print Network [OSTI]

    Afshari, Ehsan

    A modular process for integrating thick polysilicon MEMS devices with sub-micron CMOS John-1774 ABSTRACT A new MEMS process module, called Mod MEMS, has been developed to monolithically integrate thick (5-10um), multilayer polysilicon MEMS structures with sub-micron CMOS. This process is particularly

  20. Automatic clustering of multispectral imagery by maximization of the graph modularity

    E-Print Network [OSTI]

    Harkin, Anthony

    Automatic clustering of multispectral imagery by maximization of the graph modularity ABSTRACT Automatic clustering of spectral image data is a common problem with a diverse set of desired and potential visually useful than previous methods. Additionally, this method outperforms many typical automatic

  1. Designing Modular Hardware Accelerators in C With ROCCC 2.0

    E-Print Network [OSTI]

    Najjar, Walid A.

    Designing Modular Hardware Accelerators in C With ROCCC 2.0 Jason Villarreal, Adrian Park Jacquard, Riverside {najjar, rhalstea}@cs.ucr.edu Abstract--While FPGA-based hardware accelerators have re- peatedly acceptance by application code developers. These platforms are typically programmed in a low level hardware

  2. Modular Full-System Verification of Hardware Muralidaran Vijayaraghavan and Joonwon Choi

    E-Print Network [OSTI]

    Modular Full-System Verification of Hardware Muralidaran Vijayaraghavan and Joonwon Choi 1 of full-system verification for hardware designs. What does a full-system verification for a hardware of how to give a hardware specification and its implementation, and what the respective semantics are

  3. An Algorithm for Pruning Redundant Modules in Min-Max Modular Network

    E-Print Network [OSTI]

    Lu, Bao-Liang

    of the trained M3 network associated with training data to find out the redundant modules by means of `back, all trained network modules can be integreted into a M3 network automatically according to two moduleAn Algorithm for Pruning Redundant Modules in Min-Max Modular Network Hui-Cheng Lian and Bao

  4. Early View (EV): 1-EV Historical climate-change influences modularity and nestedness of

    E-Print Network [OSTI]

    Chittka, Lars

    , and then test these against empirical data. We propose that historical climate-change may have left imprintsEarly View (EV): 1-EV Historical climate-change influences modularity and nestedness of pollination. Wang, and C. Rahbek, Center for Macroecology, Evolution and Climate, Univ. of Copenhagen

  5. A Modular Action Description Language for Protocol Composition Nirmit Desai and Munindar P. Singh

    E-Print Network [OSTI]

    A Modular Action Description Language for Protocol Composition Nirmit Desai and Munindar P. Singh Department of Computer Science North Carolina State University Raleigh, NC 27695-8206, USA {nvdesai, singh). Chopra and Singh (2006) show how to express protocols in C+. MAD-P enhances Chopra and Singh's approach

  6. Consequences of Modular Controller Development for Automotive Powertrains: A Case Study

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    Consequences of Modular Controller Development for Automotive Powertrains: A Case Study A. G structure for automotive power- trains has certain bene ts. These include improved pro- ductivity through- dently. Due to the fact that the automotive powertrain system contains many highly interactive sub

  7. Active Vibration Control of a Modular Robot Combining a Back-Propagation Neural Network with

    E-Print Network [OSTI]

    Li, Yangmin

    by joints, vibration can easily be induced in this special type of mechanical structure. Based on the modalActive Vibration Control of a Modular Robot Combining a Back-Propagation Neural Network-propagation neural network suboptimal controller is developed to control the vibration of a nine

  8. Active vibration suppression of a exible structure using smart material and a modular control patch

    E-Print Network [OSTI]

    Active vibration suppression of a ¯exible structure using smart material and a modular control patch G Song1 *, S P Schmidt2 and B N Agrawal2 1 Department of Mechanical Engineering, The University of vibration suppression of a ¯exible structure using smart materials and a miniaturized digital controller

  9. Evaluations of certain theta functions in Ramanujan theory of alternative modular bases

    E-Print Network [OSTI]

    N. D. Bagis

    2015-11-11

    We give evaluations of certain Borwein's theta functions which appear in Ramanujan theory of alternative elliptic modular bases. Most of this theory where developed by B.C. Berndt, S. Bhargava and F.G. Garvan. We also study the most general class of these theta functions and give evaluation conjectures.

  10. Evolution of modular intraflagellar transport from a coatomer-like progenitor

    E-Print Network [OSTI]

    Sali, Andrej

    Evolution of modular intraflagellar transport from a coatomer-like progenitor Teunis J. P. van Dama of Pharmaceutical Chemistry, and e California Institute for Quantitative Biosciences, University of California, San Francisco, CA 94158 Edited by Russell F. Doolittle, University of California at San Diego, La Jolla, CA

  11. To appear in the ACM SIGGRAPH conference proceedings Modular Bases for Fluid Dynamics

    E-Print Network [OSTI]

    Treuille, Adrien

    : mov- ing vehicles will splash through puddles as buildings leave turbu- lent eddies in the wind buildings drawn from a comparatively small set. New creatures and vehicles can be assembled from component techniques. Our modular approach allows the user to rearrange building tiles at runtime. Abstract We present

  12. A FLEXIBLE, MODULAR APPROACH TO INTEGRATED SPACE EXPLORATION CAMPAIGN LOGISTICS MODELING, SIMULATION, AND ANALYSIS

    E-Print Network [OSTI]

    de Weck, Olivier L.

    A FLEXIBLE, MODULAR APPROACH TO INTEGRATED SPACE EXPLORATION CAMPAIGN LOGISTICS MODELING Students #12;#12;3 Abstract A space logistics modeling framework to support space exploration to remote environments is the target of research within the MIT Space Logistics Project. This thesis presents a revised

  13. Road Map for a Modular Magnetic Fusion Program Dale M. Meade

    E-Print Network [OSTI]

    are now being done at the energy production scale. This paper describes a modular approach that addresses that limit the maximum plasma pressure, microinstabilities that limit the plasma energy confinement and fast for fusion, and until high-gain plasmas can be produced in the laboratory, the world fusion community

  14. Road Map for a Modular Magnetic Fusion Program Dale M. Meade

    E-Print Network [OSTI]

    are now being done at the energy production scale. This paper describes a modular approach that addresses that limit the maximum plasma pressure, microinstabilities that limit the plasma energy confinement and fast for fusion, and until high­gain plasmas can be produced in the laboratory, the world fusion community

  15. Modular Topology Control and Energy Model for Wireless Ad Hoc Sensor Networks

    E-Print Network [OSTI]

    Jay Yang, Shanchieh

    Modular Topology Control and Energy Model for Wireless Ad Hoc Sensor Networks Niranjan in a harsh terrain typically are battery operated and, therefore, require energy efficient network protocols. In order to ease the analysis of the energy usage of proposed network protocols, this paper proposes

  16. Rapid Modular Synthesis and Processing of Thiol-Ene Functionalized Styrene-Butadiene Block Copolymers

    E-Print Network [OSTI]

    Rubloff, Gary W.

    Rapid Modular Synthesis and Processing of Thiol-Ene Functionalized Styrene-Butadiene Block,2-butadiene) (PS/PB) and PS/PB/PS were modified by photochemical thiol-ene chemistry to pro- cess selected. Commodity polymers such as those containing poly(butadiene) or poly(isoprene) are ideal candidates

  17. A Modular Transconductance Reduction Technique for Very Low-Frequency Gm-C Filters

    E-Print Network [OSTI]

    Serdijn, Wouter A.

    A Modular Transconductance Reduction Technique for Very Low-Frequency Gm-C Filters Chutham Sawigun to the ordinary differential pair transconductor. A 2nd -order Gm-C low-pass as an application of the proposed and implantable medical devices, sub-threshold Gm-C filters have been widely used for filtering low frequency

  18. Modular Dual Coolant Pb-17Li Blanket Design For ARIES-CS Compact Stellarator Power Plant

    E-Print Network [OSTI]

    Raffray, A. René

    of the study. The preferred blanket concept is a dual coolant blanket with a He- cooled ferritic steel firstModular Dual Coolant Pb-17Li Blanket Design For ARIES-CS Compact Stellarator Power Plant X.R. Wanga from the engineering effort during the second phase of ARIES-CS study on the conceptual design

  19. Perceiving visually presented objects: recognition, awareness, and modularity

    E-Print Network [OSTI]

    Kanwisher, Nancy

    these representations, multiple sources of information are used, such as color, luminance, texture, relative size@phoenix.princeton.edu tDepartment of Brain and Cognitive Sciences, El O-243, Massachusetts Institute of Technology of the object's identity (e.g. a banana) or membership in one or more stored categories. Fourth

  20. Deep-Burn Modular Helium Reactor Fuel Development Plan

    SciTech Connect (OSTI)

    McEachern, D

    2002-12-02

    This document contains the workscope, schedule and cost for the technology development tasks needed to satisfy the fuel and fission product transport Design Data Needs (DDNs) for the Gas Turbine-Modular Helium Reactor (GT-MHR), operating in its role of transmuting transuranic (TRU) nuclides in spent fuel discharged from commercial light-water reactors (LWRs). In its application for transmutation, the GT-MHR is referred to as the Deep-Burn MHR (DB-MHR). This Fuel Development Plan (FDP) describes part of the overall program being undertaken by the U.S. Department of Energy (DOE), utilities, and industry to evaluate the use of the GT-MHR to transmute transuranic nuclides from spent nuclear fuel. The Fuel Development Plan (FDP) includes the work on fuel necessary to support the design and licensing of the DB-MHR. The FDP is organized into ten sections. Section 1 provides a summary of the most important features of the plan, including cost and schedule information. Section 2 describes the DB-MHR concept, the features of its fuel and the plan to develop coated particle fuel for transmutation. Section 3 describes the knowledge base for fabrication of coated particles, the experience with irradiation performance of coated particle fuels, the database for fission product transport in HTGR cores, and describes test data and calculations for the performance of coated particle fuel while in a repository. Section 4 presents the fuel performance requirements in terms of as-manufactured quality and performance of the fuel coatings under irradiation and accident conditions. These requirements are provisional because the design of the DB-MHR is in an early stage. However, the requirements are presented in this preliminary form to guide the initial work on the fuel development. Section 4 also presents limits on the irradiation conditions to which the coated particle fuel can be subjected for the core design. These limits are based on past irradiation experience. Section 5 describes the Design Data Needs to: (1) fabricate the coated particle fuel, (2) predict its performance in the reactor core, (3) predict the radionuclide release rates from the reactor core, and (4) predict the performance of spent fuel in a geological repository. The heart of this fuel development plan is Section 6, which describes the development activities proposed to satisfy the DDNs presented in Section 5. The development scope is divided into Fuel Process Development, Fuel Materials Development, Fission Product Transport, and Spent Fuel Disposal. Section 7 describes the facilities to be used. Generally, this program will utilize existing facilities. While some facilities will need to be modified, there is no requirement for major new facilities. Section 8 states the Quality Assurance requirements that will be applied to the development activities. Section 9 presents detailed costs organized by WBS and spread over time. Section 10 presents a list of the types of deliverables that will be prepared in each of the WBS elements. Four Appendices contain supplementary information on: (a) design data needs, (b) the interface with the separations plant, (c) the detailed development schedule, and (d) the detailed cost estimate.

  1. Modular high voltage power supply for chemical analysis

    DOE Patents [OSTI]

    Stamps, James F. (Livermore, CA); Yee, Daniel D. (Dublin, CA)

    2007-01-09

    A high voltage power supply for use in a system such as a microfluidics system, uses a DC--DC converter in parallel with a voltage-controlled resistor. A feedback circuit provides a control signal for the DC--DC converter and voltage-controlled resistor so as to regulate the output voltage of the high voltage power supply, as well as, to sink or source current from the high voltage supply.

  2. Modular high voltage power supply for chemical analysis

    DOE Patents [OSTI]

    Stamps, James F. (Livermore, CA); Yee, Daniel D. (Dublin, CA)

    2008-07-15

    A high voltage power supply for use in a system such as a microfluidics system, uses a DC-DC converter in parallel with a voltage-controlled resistor. A feedback circuit provides a control signal for the DC-DC converter and voltage-controlled resistor so as to regulate the output voltage of the high voltage power supply, as well as, to sink or source current from the high voltage supply.

  3. Modular high voltage power supply for chemical analysis

    DOE Patents [OSTI]

    Stamps, James F. (Livermore, CA); Yee, Daniel D. (Dublin, CA)

    2010-05-04

    A high voltage power supply for use in a system such as a microfluidics system, uses a DC-DC converter in parallel with a voltage-controlled resistor. A feedback circuit provides a control signal for the DC-DC converter and voltage-controlled resistor so as to regulate the output voltage of the high voltage power supply, as well as, to sink or source current from the high voltage supply.

  4. Genetically Modified Bacteria for Fuel Production: Development of Rhodobacteria as a Versatile Platform for Fuels Production

    SciTech Connect (OSTI)

    None

    2010-07-01

    Electrofuels Project: Penn State is genetically engineering bacteria called Rhodobacter to use electricity or electrically generated hydrogen to convert carbon dioxide into liquid fuels. Penn State is taking genes from oil-producing algae called Botryococcus braunii and putting them into Rhodobacter to produce hydrocarbon molecules, which closely resemble gasoline. Penn State is developing engineered tanks to support microbial fuel production and determining the most economical way to feed the electricity or hydrogen to the bacteria, including using renewable sources of power like solar energy.

  5. Performance Evaluation for a Modular, Scalable Passive Cooling System in Data Centers

    SciTech Connect (OSTI)

    Xu, TengFang

    2009-05-01

    Scientific and enterprise data centers, IT equipment product development, and research data center laboratories typically require continuous cooling to control inlet air temperatures within recommended operating levels for the IT equipment. The consolidation and higher density aggregation of slim computing, storage and networking hardware has resulted in higher power density than what the raised-floor system design, coupled with commonly used computer rack air conditioning (CRAC) units, was originally conceived to handle. Many existing data centers and newly constructed data centers adopt CRAC units, which inherently handle heat transfer within data centers via air as the heat transfer media. This results in energy performance of the ventilation and cooling systems being less than optimal. Understanding the current trends toward higher power density in IT computing, more and more IT equipment manufacturers are designing their equipment to operate in 'conventional' data center environments, while considering provisions of alternative cooling solutions to either their equipment or supplemental cooling in rack or row systems. In the meanwhile, the trend toward higher power density resulting from current and future generations of servers has created significant opportunities for precision cooling to engineer and manufacture packaged modular and scalable systems. The modular and scalable cooling systems aim at significantly improving efficiency while addressing the thermal challenges, improving reliability, and allowing for future needs and growth. Such pre-engineered and manufactured systems may be a significant improvement over current design; however, without an energy efficiency focus, their applications could also lead to even lower energy efficiencies in the overall data center infrastructure. The overall goal of the project supported by California Energy Commission was to characterize four commercially available, modular cooling systems installed in a data center. Such modular cooling systems are all scalable localized units, and will be evaluated in terms of their operating energy efficiency in a real data center, respectively, as compared to the energy efficiency of traditional legacy data center cooling systems. The technical objective of this project was to evaluate the energy performance of one of the four commercially available modular cooling systems installed in a data center in Sun Microsystems, Inc. This report is the result of a test plan that was developed with the industrial participants input, including specific design and operating characteristics of the selected passive, modular localized cooling solution provided by vendor 4. The technical evaluation included monitoring and measurement of selected parameters, and establishing and calculating energy efficiency metrics for the selected cooling product, which is a passive, modular, scalable liquid cooling system in this study. The scope is to quantify energy performance of the modular cooling unit corresponding to various server loads and inlet air temperatures, under various chilled-water supply temperatures. The information generated from this testing when combined with documented energy efficiency of the host data center's central chilled water cooling plant can be used to estimate potential energy savings from implementing modular cooling compared to conventional cooling in data centers.

  6. Performance Evaluation for Modular, Scalable Liquid-Rack Cooling Systems in Data Centers

    SciTech Connect (OSTI)

    Xu, TengFang

    2009-05-01

    Scientific and enterprise data centers, IT equipment product development, and research data center laboratories typically require continuous cooling to control inlet air temperatures within recommended operating levels for the IT equipment. The consolidation and higher density aggregation of slim computing, storage and networking hardware has resulted in higher power density than what the raised-floor system design, coupled with commonly used computer rack air conditioning (CRAC) units, was originally conceived to handle. Many existing data centers and newly constructed data centers adopt CRAC units, which inherently handle heat transfer within data centers via air as the heat transfer media. This results in energy performance of the ventilation and cooling systems being less than optimal. Understanding the current trends toward higher power density in IT computing, more and more IT equipment manufacturers are designing their equipment to operate in 'conventional' data center environments, while considering provisions of alternative cooling solutions to either their equipment or supplemental cooling in rack or row systems. In the meanwhile, the trend toward higher power density resulting from current and future generations of servers has created significant opportunities for precision cooling suppliers to engineer and manufacture packaged modular and scalable systems. The modular and scalable cooling systems aim at significantly improving efficiency while addressing the thermal challenges, improving reliability, and allowing for future needs and growth. Such pre-engineered and manufactured systems may be a significant improvement over current design; however, without an energy efficiency focus, their applications could also lead to even lower energy efficiencies in the overall data center infrastructure. The overall goal of the project supported by California Energy Commission was to characterize four commercially available, modular cooling systems installed in a data center. Such modular cooling systems are all scalable localized units, and will be evaluated in terms of their operating energy efficiency in a real data center, respectively, as compared to the energy efficiency of traditional legacy data center cooling systems. The technical objective of this project was to evaluate the energy performance of one of the four commercially available modular cooling systems installed in a data center in Sun Microsystems, Inc. This report is the result of a test plan that was developed with the industrial participants input, including specific design and operating characteristics of the selected modular localized cooling solution provided by vendor 3. The technical evaluation included monitoring and measurement of selected parameters, and establishing and calculating energy efficiency metrics for the selected cooling product, which is a modular, scalable liquid-rack cooling system in this study. The scope is to quantify energy performance of the modular cooling unit in operation as it corresponds to a combination of varied server loads and inlet air temperatures, under various chilled-water supply temperatures. The information generated from this testing when combined with documented energy efficiency of the host data center's central chilled water cooling plant can be used to estimate potential energy savings from implementing modular cooling compared to conventional cooling in data centers.

  7. Performance Evaluation for Modular, Scalable Cooling Systems with Hot Aisle Containment in Data Centers

    SciTech Connect (OSTI)

    Adams, Barbara J

    2009-05-01

    Scientific and enterprise data centers, IT equipment product development, and research data center laboratories typically require continuous cooling to control inlet air temperatures within recommended operating levels for the IT equipment. The consolidation and higher density aggregation of slim computing, storage and networking hardware has resulted in higher power density than what the raised-floor system design, coupled with commonly used computer rack air conditioning (CRAC) units, was originally conceived to handle. Many existing data centers and newly constructed data centers adopt CRAC units, which inherently handle heat transfer within data centers via air as the heat transfer media. This results in energy performance of the ventilation and cooling systems being less than optimal. Understanding the current trends toward higher power density in IT computing, more and more IT equipment manufacturers are designing their equipment to operate in 'conventional' data center environments, while considering provisions of alternative cooling solutions to either their equipment or supplemental cooling in rack or row systems. Naturally, the trend toward higher power density resulting from current and future generations of servers has, in the meanwhile, created significant opportunities for precision cooling suppliers to engineer and manufacture packaged modular and scalable systems. The modular and scalable cooling systems aim at significantly improving efficiency while addressing the thermal challenges, improving reliability, and allowing for future needs and growth. Such pre-engineered and manufactured systems may be a significant improvement over current design; however, without an energy efficiency focus, their applications could also lead to even lower energy efficiencies in the overall data center infrastructure. The overall goal of the project supported by California Energy Commission was to characterize four commercially available, modular cooling systems installed in a data center. Such modular cooling systems are all scalable localized units, and will be evaluated in terms of their operating energy efficiency in a real data center, respectively, as compared to the energy efficiency of traditional legacy data center cooling systems. The technical objective of this project was to evaluate the energy performance of one of the four commercially available modular cooling systems installed in a data center in Sun Microsystems, Inc. This report is the result of a test plan that was developed with the industrial participants input, including specific design and operating characteristics of the selected modular localized cooling solution provided by vendor 2. The technical evaluation included monitoring and measurement of selected parameters, and establishing and calculating energy efficiency metrics for the selected cooling product, which is a modular, scalable pair of chilled water cooling modules that were tested in a hot/cold aisle environment with hot aisle containment. The scope of this report is to quantify energy performance of the modular cooling unit in operation as it corresponds to a combination of varied server loads and inlet air temperatures. The information generated from this testing when combined with a concurrent research study to document the energy efficiency of the host data center's central chilled water cooling plant can be used to estimate potential energy savings from implementing modular cooling compared to conventional cooling in data centers.

  8. Performance Evaluation for Modular, Scalable Overhead Cooling Systems In Data Centers

    SciTech Connect (OSTI)

    Xu, TengFang T.

    2009-05-01

    Scientific and enterprise data centers, IT equipment product development, and research data center laboratories typically require continuous cooling to control inlet air temperatures within recommended operating levels for the IT equipment. The consolidation and higher density aggregation of slim computing, storage and networking hardware has resulted in higher power density than what the raised-floor system design, coupled with commonly used computer rack air conditioning (CRAC) units, was originally conceived to handle. Many existing data centers and newly constructed data centers adopt CRAC units, which inherently handle heat transfer within data centers via air as the heat transfer media. This results in energy performance of the ventilation and cooling systems being less than optimal. Understanding the current trends toward higher power density in IT computing, more and more IT equipment manufacturers are designing their equipment to operate in 'conventional' data center environments, while considering provisions of alternative cooling solutions to either their equipment or supplemental cooling in rack or row systems. Naturally, the trend toward higher power density resulting from current and future generations of servers has, in the meanwhile, created significant opportunities for precision cooling suppliers to engineer and manufacture packaged modular and scalable systems. The modular and scalable cooling systems aim at significantly improving efficiency while addressing the thermal challenges, improving reliability, and allowing for future needs and growth. Such pre-engineered and manufactured systems may be a significant improvement over current design; however, without an energy efficiency focus, their applications could also lead to even lower energy efficiencies in the overall data center infrastructure. The overall goal of the project supported by California Energy Commission was to characterize four commercially available, modular cooling systems installed in a data center. Such modular cooling systems are all scalable localized units, and will be evaluated in terms of their operating energy efficiency in a real data center, respectively, as compared to the energy efficiency of traditional legacy data center cooling systems. The technical objective of this project was to evaluate the energy performance of one of the four commercially available modular cooling systems installed in a data center in Sun Microsystems, Inc. This report is the result of a test plan that was developed with the industrial participants' input, including specific design and operating characteristics of the selected modular localized cooling solution provided by vendor 1. The technical evaluation included monitoring and measurement of selected parameters, and establishing and calculating energy efficiency metrics for the selected cooling product, which is a modular, scalable overhead cooling system. The system was tested in a hot/cold aisle environment without separation, or containment or the hot or cold aisles. The scope of this report is to quantify energy performance of the modular cooling unit in operation as it corresponds to a combination of varied server loads and inlet air temperatures. The information generated from this testing when combined with a concurrent research study to document the energy efficiency of the host data center's central chilled water cooling plant can be used to estimate potential energy savings from implementing modular cooling compared to conventional cooling in data centers.

  9. Data from the Versatile Array of Neutron Detectors at Low Energy (VANDLE) will impact modeling of processes occurring in neutron-rich

    E-Print Network [OSTI]

    Data from the Versatile Array of Neutron Detectors at Low Energy (VANDLE) will impact modeling of processes occurring in neutron-rich environments ·The energies of beta-delayed neutrons emitted from 25 strong feeding to high-lying states that emit high energy neutrons while others have broad distributions

  10. Skin electronics is one of the most promising applications of stretchable electronics. The versatility of skin electronics can only be guaranteed when it has conformal contact with human

    E-Print Network [OSTI]

    Skin electronics is one of the most promising applications of stretchable electronics. The versatility of skin electronics can only be guaranteed when it has conformal contact with human skin. While analysis for the conformability of skin electronics, including modeling, meshing method and step setup etc

  11. A versatile three-contact electrical biasing transmission electron microscope specimen holder for electron holography and electron tomography of working devices

    E-Print Network [OSTI]

    Dunin-Borkowski, Rafal E.

    A versatile three-contact electrical biasing transmission electron microscope specimen holder to characterize nanoscale materials and devices under operating conditions in the transmission electron microscope in the transmission electron microscope (TEM) at a spatial resolution that can approach the nanometer scale

  12. The design of a reduced diameter Pebble Bed Modular Reactor for reactor pressure vessel transport by railcar

    E-Print Network [OSTI]

    Everson, Matthew S

    2009-01-01

    Many desirable locations for Pebble Bed Modular Reactors are currently out of consideration as construction sites for current designs due to limitations on the mode of transportation for large RPVs. In particular, the ...

  13. Dependency models as a basis for analyzing software product platform modularity : a case study in strategic software design rationalization

    E-Print Network [OSTI]

    LaMantia, Matthew J. (Matthew John)

    2006-01-01

    It is broadly accepted among software managers and architects that maintaining the integrity of software designs is important for the long-term health and viability of software product platforms. The use of modular, ...

  14. Feasibility, benefits and challenges of modular construction in high rise development in the United States : a developer's perspective

    E-Print Network [OSTI]

    Velamati, Sri

    2012-01-01

    Modular construction has long been utilized in the construction of residential and many other commercial product types as a means for potentially quicker construction delivery times. Over the past 5 years this construction ...

  15. Conceptual modular description of the high-level waste management system for system studies model development

    SciTech Connect (OSTI)

    McKee, R.W.; Young, J.R.; Konzek, G.J.

    1992-08-01

    This document presents modular descriptions of possible alternative components of the federal high-level radioactive waste management system and the procedures for combining these modules to obtain descriptions for alternative configurations of that system. The 20 separate system component modules presented here can be combined to obtain a description of any of the 17 alternative system configurations (i.e., scenarios) that were evaluated in the MRS Systems Studies program (DOE 1989a). First-approximation descriptions of other yet-undefined system configurations could also be developed for system study purposes from this database. The descriptions include, in a modular format, both functional descriptions of the processes in the waste management system, plus physical descriptions of the equipment and facilities necessary for performance of those functions.

  16. Modular Approach for Continuous Cell-Level Balancing to Improve Performance of Large Battery Packs: Preprint

    SciTech Connect (OSTI)

    Muneed ur Rehman, M.; Evzelman, M.; Hathaway, K.; Zane, R.; Plett, G. L.; Smith, K.; Wood, E.; Maksimovic, D.

    2014-10-01

    Energy storage systems require battery cell balancing circuits to avoid divergence of cell state of charge (SOC). A modular approach based on distributed continuous cell-level control is presented that extends the balancing function to higher level pack performance objectives such as improving power capability and increasing pack lifetime. This is achieved by adding DC-DC converters in parallel with cells and using state estimation and control to autonomously bias individual cell SOC and SOC range, forcing healthier cells to be cycled deeper than weaker cells. The result is a pack with improved degradation characteristics and extended lifetime. The modular architecture and control concepts are developed and hardware results are demonstrated for a 91.2-Wh battery pack consisting of four series Li-ion battery cells and four dual active bridge (DAB) bypass DC-DC converters.

  17. Demonstration of a Small Modular Biopower System Using Poultry Litter-Final Report

    SciTech Connect (OSTI)

    John Reardon; Art Lilley

    2004-06-15

    On-farm conversion of poultry litter into energy is a unique market connected opportunity for commercialization of small modular bioenergy systems. The United States Department of Energy recognized the need in the poultry industry for alternative litter management as an opportunity for bioenergy. The DOE created a relevant topic in the December 2000 release of the small business innovative research (SBIR) grant solicitation. Community Power Corporation responded to this solicitation by proposing the development of a small modular gasification and gas cleanup system to produce separate value streams of clean producer gas and mineral rich solids. This phase II report describes our progress in the development of an on-farm litter to energy system.

  18. Progress Towards Prognostic Health Management of Passive Components in Advanced Small Modular Reactors

    SciTech Connect (OSTI)

    Meyer, Ryan M.; Ramuhalli, Pradeep; Hirt, Evelyn H.; Pardini, Allan F.; Suter, Jonathan D.; Prowant, Matthew S.

    2014-08-01

    Sustainable nuclear power to promote energy security and to reduce greenhouse gas emissions are two key national energy priorities. The development of deployable small modular reactors (SMRs) is expected to support these objectives by developing technologies that improve the reliability, sustain safety, and improve affordability of new reactors. Advanced SMRs (AdvSMRs) refer to a specific class of SMRs and are based on modularization of advanced reactor concepts. Prognostic health management (PHM) systems can benefit both the safety and economics of deploying AdvSMRs and can play an essential role in managing the inspection and maintenance of passive components in AdvSMR systems. This paper describes progress on development of a prototypic PHM system for AdvSMR passive components, with thermal creep chosen as the target degradation mechanism.

  19. A versatile source to produce high-intensity, pulsed supersonic radical beams for crossed-beam experiments: The cyanogen radical CN,,X2

    E-Print Network [OSTI]

    Kaiser, Ralf I.

    terrestrial and extraterrestrial environments. Initiated by the solar photolyses of hydrogen cyanide HCN are obtained by monitoring the decay kinetics of the CN radical, these investigations could not provide reac

  20. "Matrix/Modular" - An Approach to Analyzing Cogeneration Opportunities in Industry 

    E-Print Network [OSTI]

    Canty, W. R.

    1979-01-01

    /MODULAR" AN APPROACH TO ANALYZING COGENERATION OPPORTUNITIES IN INDUSTRY W. R. Canty Shell Oil Company Houston, Texas The petrochemical industry has long recognized that electrical and mechanical energy can be generated as a by-product of its process steam... units. In addition, economic incentives for the construction of cogeneration plants have been enacted in an effort to promote energy conservation. These government actions have led to renewed interest in the use of cogeneration plants which combine...

  1. Population Sensitivity Evaluation of Two Proposed Hampton Roads Area Sites for a Possible Small Modular Reactor

    SciTech Connect (OSTI)

    Belles, R. J.; Omitaomu, O. A.

    2014-08-01

    The overall objective of this research project is to use the OR-SAGE tool to support the US Department of Energy (DOE) Office of Nuclear Energy (NE) in evaluating future electrical generation deployment options for small modular reactors (SMRs) in areas with significant energy demand from the federal sector. Deployment of SMRs in zones with high federal energy use can provide a means of meeting federal clean energy goals.

  2. Direct Integration for Mirror Curves of Genus Two and an Almost Meromorphic Siegel Modular Form

    E-Print Network [OSTI]

    Albrecht Klemm; Maximilian Poretschkin; Thorsten Schimannek; Martin Westerholt-Raum

    2015-06-16

    This work considers aspects of almost holomorphic and meromorphic Siegel modular forms from the perspective of physics and mathematics. The first part is concerned with (refined) topological string theory and the direct integration of the holomorphic anomaly equations. Here, a central object to compute higher genus amplitudes, which serve as the generating functions of various enumerative invariants, is provided by the so-called propagator. We derive a universal expression for the propagator for geometries that have mirror curves of genus two which is given by the derivative of the logarithm of Igusa's cusp form of weight 10. In addition, we illustrate our findings by solving the refined topological string on the resolutions of the three toric orbifolds of order three, five and six. In the second part, we give explicit expressions for lowering and raising operators on Siegel modular forms, and define almost holomorphic Siegel modular forms based on them. Extending the theory of Fourier-Jacobi expansions to almost holomorphic Siegel modular forms and building up on recent work by Pitale, Saha, and Schmidt, we can show that there is no analogue of the almost holomorphic elliptic second Eisenstein series. In the case of genus 2, we provide an almost meromorphic substitute for it. This, in particular, leads us to a generalization of Ramanujan's differential equation for the second Eisenstein series. The two parts are intertwined by the observation that the meromorphic analogue of the almost holomorphic second Eisenstein series coincides with the physical propagator. In addition, the generalized Ramanujan identities match precisely the physical consistency conditions that need to be imposed on the propagator.

  3. Split green fluorescent protein as a modular binding partner for protein crystallization

    SciTech Connect (OSTI)

    Nguyen, Hau B. [Los Alamos National Laboratory, MS M888, Los Alamos, NM 87545 (United States); Hung, Li-Wei [Los Alamos National Laboratory, MS D454, Los Alamos, NM 87545 (United States); Yeates, Todd O. [University of California, PO Box 951569, Los Angeles, CA 90095 (United States); Terwilliger, Thomas C., E-mail: terwilliger@lanl.gov; Waldo, Geoffrey S., E-mail: terwilliger@lanl.gov [Los Alamos National Laboratory, MS M888, Los Alamos, NM 87545 (United States)

    2013-12-01

    A strategy using a new split green fluorescent protein (GFP) as a modular binding partner to form stable protein complexes with a target protein is presented. The modular split GFP may open the way to rapidly creating crystallization variants. A modular strategy for protein crystallization using split green fluorescent protein (GFP) as a crystallization partner is demonstrated. Insertion of a hairpin containing GFP ?-strands 10 and 11 into a surface loop of a target protein provides two chain crossings between the target and the reconstituted GFP compared with the single connection afforded by terminal GFP fusions. This strategy was tested by inserting this hairpin into a loop of another fluorescent protein, sfCherry. The crystal structure of the sfCherry-GFP(10–11) hairpin in complex with GFP(1–9) was determined at a resolution of 2.6 Å. Analysis of the complex shows that the reconstituted GFP is attached to the target protein (sfCherry) in a structurally ordered way. This work opens the way to rapidly creating crystallization variants by reconstituting a target protein bearing the GFP(10–11) hairpin with a variety of GFP(1–9) mutants engineered for favorable crystallization.

  4. Weak Values and Modular Variables From a Quantum Phase Space Perspective

    E-Print Network [OSTI]

    Augusto C. Lobo; Yakir Aharonov; Jeff Tollaksen; Elizabeth M. Berrigan; Clyffe A. Ribeiro

    2014-09-09

    We address two major conceptual developments introduced by Aharonov and collaborators through a \\textit{quantum phase space} approach: the concept of \\textit{modular variables} devised to explain the phenomena of quantum dynamical non-locality and the \\textit{two-state formalism} for Quantum Mechanics which is a retrocausal time-symmetric interpretation of quantum physics which led to the discovery of \\textit{weak values.} We propose that a quantum phase space structure underlies these profound physical insights in a unifying manner. For this, we briefly review the Weyl-Wigner and the coherent state formalisms as well as the inherent symplectic structures of quantum projective spaces in order to gain a deeper understanding of the weak value concept. We also review Schwinger's finite quantum kinematics so that we may apply this discrete formalism to understand Aharonov's modular variable concept in a different manner that has been proposed before in the literature. We discuss why we believe that this\\ is indeed the correct kinematic framework for the modular variable concept and how this may shine some light on the physical distinction between quantum dynamical non-locality and the kinematic non-locality, generally associated with entangled quantum systems.

  5. Non-Perturbative Corrections and Modularity in N=1 Type IIB Compactifications

    E-Print Network [OSTI]

    Thomas W. Grimm

    2007-06-04

    Non-perturbative corrections and modular properties of four-dimensional type IIB Calabi-Yau orientifolds are discussed. It is shown that certain non-perturbative alpha' corrections survive in the large volume limit of the orientifold and periodically correct the Kahler potential. These corrections depend on the NS-NS two form and have to be completed by D-instanton contributions to transform covariantely under symmetries of the type IIB orientifold background. It is shown that generically also the D-instanton superpotential depends on the two-form moduli as well as on the complex dilaton. These contributions can arise through theta-functions with the dilaton as modular parameter. An orientifold of the Enriques Calabi-Yau allows to illustrate these general considerations. It is shown that this compactification leads to a controlled four-dimensional N=1 effective theory due to the absence of various quantum corrections. Making contact to the underlying topological string theory the D-instanton superpotential is proposed to be related to a specific modular form counting D3, D1, D(-1) degeneracies on the Enriques Calabi-Yau.

  6. Studies on the closed-loop digital control of multi-modular reactors

    SciTech Connect (OSTI)

    Bernard, J.A. (Massachusetts Inst. of Tech., Cambridge, MA (United States). Nuclear Reactor Lab.); Henry, A.F.; Lanning, D.D.; Meyer, J.E. (Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Nuclear Engineering)

    1992-11-01

    This report describes the theoretical development and the evaluation via both experiment and simulation of digital methods for the closed-loop control of power, temperature, and steam generator level in multi-modular reactors. The major conclusion of the research reported here is that the technology is currently available to automate many aspects of the operation of multi-modular plants. This will in turn minimize the number of required personnel and thus contain both operating and personnel costs, allow each module to be operated at a different power level thereby staggering the times at which refuelings would be needed, and maintain the competitiveness of US industry relative to foreign vendors who are developing and applying advanced control concepts. The technology described in this report is appropriate to the proposed multi-modular reactor designs and to present-generation pressurized water reactors. Its extension to boiling water reactors is possible provided that the commitment is made to create a real-time model of a BWR. The work reported here was performed by the Massachusetts Institute of Technology (MIT) under contract to the Oak Ridge National Laboratory (ORNL) and to the United States Department of Energy (Division of Industry and University Programs, Contract No. DE-FG07-90ER12930.)

  7. Studies on the closed-loop digital control of multi-modular reactors. Final report

    SciTech Connect (OSTI)

    Bernard, J.A. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Nuclear Reactor Lab.; Henry, A.F.; Lanning, D.D.; Meyer, J.E. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Nuclear Engineering

    1992-11-01

    This report describes the theoretical development and the evaluation via both experiment and simulation of digital methods for the closed-loop control of power, temperature, and steam generator level in multi-modular reactors. The major conclusion of the research reported here is that the technology is currently available to automate many aspects of the operation of multi-modular plants. This will in turn minimize the number of required personnel and thus contain both operating and personnel costs, allow each module to be operated at a different power level thereby staggering the times at which refuelings would be needed, and maintain the competitiveness of US industry relative to foreign vendors who are developing and applying advanced control concepts. The technology described in this report is appropriate to the proposed multi-modular reactor designs and to present-generation pressurized water reactors. Its extension to boiling water reactors is possible provided that the commitment is made to create a real-time model of a BWR. The work reported here was performed by the Massachusetts Institute of Technology (MIT) under contract to the Oak Ridge National Laboratory (ORNL) and to the United States Department of Energy (Division of Industry and University Programs, Contract No. DE-FG07-90ER12930.)

  8. Overcoming phonon-induced dephasing for indistinguishable photon sources

    E-Print Network [OSTI]

    Tom Close; Erik M. Gauger; Brendon W. Lovett

    2012-06-25

    Reliable single photon sources constitute the basis of schemes for quantum communication and measurement based quantum computing. Solid state single photon sources based on quantum dots are convenient and versatile but the electronic transitions that generate the photons are subject to interactions with lattice vibrations. Using a microscopic model of electron-phonon interactions and a quantum master equation, we here examine phonon-induced decoherence and assess its impact on the rate of production, and indistinguishability, of single photons emitted from an optically driven quantum dot system. We find that, above a certain threshold of desired indistinguishability, it is possible to mitigate the deleterious effects of phonons by exploiting a three-level Raman process for photon production.

  9. Radiation source

    DOE Patents [OSTI]

    Thode, Lester E. (Los Alamos, NM)

    1981-01-01

    A device and method for relativistic electron beam heating of a high-density plasma in a small localized region. A relativistic electron beam generator or accelerator produces a high-voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low-density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high-density target plasma which typically comprises DT, DD, or similar thermonuclear gas at a density of 10.sup.17 to 10.sup.20 electrons per cubic centimeter. The target gas is ionized prior to application of the relativistic electron beam by means of a laser or other preionization source to form a plasma. Utilizing a relativistic electron beam with an individual particle energy exceeding 3 MeV, classical scattering by relativistic electrons passing through isolation foils is negligible. As a result, relativistic streaming instabilities are initiated within the high-density target plasma causing the relativistic electron beam to efficiently deposit its energy into a small localized region of the high-density plasma target.

  10. Contaminant Sources are Known

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sources are Known Historical contaminant sources from liquid discharges and solid waste management units are known. August 1, 2013 Contaminant source map LANL contaminant...

  11. Vehicle Technologies Office Merit Review 2014: Modular Process Equipment for Low Cost Manufacturing of High Capacity Prismatic Li-Ion Cell Alloy Anodes

    Broader source: Energy.gov [DOE]

    Presentation given by Applied Materials at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about modular process equipment...

  12. Versatile plug flow catalytic cell for in situ transmission/fluorescence x-ray absorption fine structure measurements

    SciTech Connect (OSTI)

    Centomo, P.; Zecca, M. [Dipartimento di Scienze Chimiche, via Marzolo 1, Universita degli Studi di Padova, 35131 Padova (Italy); Meneghini, C. [Dipartimento di Scienze, via della Vasca Navale 84, Universita di Roma TRE, 00146 Roma (Italy)

    2013-05-15

    A novel flow-through catalytic cell has been developed for in situ x-ray absorption spectroscopy (XAS) experiments on heterogeneous catalysts under working conditions and in the presence of a liquid and a gas phase. The apparatus allows to carry out XAS measurements in both the transmission and fluorescence modes, at moderate temperature (from RT to 50-80 Degree-Sign C) and low-medium gas pressure (up to 7-8 bars). The materials employed are compatible with several chemicals such as those involved in the direct synthesis of hydrogen peroxide (O{sub 2}, H{sub 2}, H{sub 2}O{sub 2}, methanol). The versatile design of the cell allows to fit it to different experimental setups in synchrotron radiation beamlines. It was used successfully for the first time to test nanostructured Pd catalysts during the direct synthesis of hydrogen peroxide (H{sub 2}O{sub 2}) in methanol solution from dihydrogen and dioxygen.

  13. SCALE: A modular code system for performing standardized computer analyses for licensing evaluation: Functional modules F1-F8

    SciTech Connect (OSTI)

    1997-03-01

    This Manual represents Revision 5 of the user documentation for the modular code system referred to as SCALE. The history of the SCALE code system dates back to 1969 when the current Computational Physics and Engineering Division at Oak Ridge National Laboratory (ORNL) began providing the transportation package certification staff at the U.S. Atomic Energy Commission with computational support in the use of the new KENO code for performing criticality safety assessments with the statistical Monte Carlo method. From 1969 to 1976 the certification staff relied on the ORNL staff to assist them in the correct use of codes and data for criticality, shielding, and heat transfer analyses of transportation packages. However, the certification staff learned that, with only occasional use of the codes, it was difficult to become proficient in performing the calculations often needed for an independent safety review. Thus, shortly after the move of the certification staff to the U.S. Nuclear Regulatory Commission (NRC), the NRC staff proposed the development of an easy-to-use analysis system that provided the technical capabilities of the individual modules with which they were familiar. With this proposal, the concept of the Standardized Computer Analyses for Licensing Evaluation (SCALE) code system was born. This volume consists of the section of the manual dealing with eight of the functional modules in the code. Those are: BONAMI - resonance self-shielding by the Bondarenko method; NITAWL-II - SCALE system module for performing resonance shielding and working library production; XSDRNPM - a one-dimensional discrete-ordinates code for transport analysis; XSDOSE - a module for calculating fluxes and dose rates at points outside a shield; KENO IV/S - an improved monte carlo criticality program; COUPLE; ORIGEN-S - SCALE system module to calculate fuel depletion, actinide transmutation, fission product buildup and decay, and associated radiation source terms; ICE.

  14. Side-by-Side Thermal Tests of Modular Offices: A Validation Study of the STEM Method

    SciTech Connect (OSTI)

    Judkoff, R.; Balcomb, J.D.; Hancock, C.E.; Barker, G.; Subbarao, K.

    2001-01-11

    Two modular office units were tested at the National Renewable Energy Laboratory (NREL) to establish each unit's thermal performance. The two units were nearly identical in appearance, but one was built with structural insulating panels (SIP), and the other was built using standard frame construction. The primary objective of these tests was to compare the thermal performance of buildings using SIP and standard frame construction. Both units were tested under carefully controlled steady-state conditions in the NREL large-scale environmental enclosure. They were then moved outdoors where Short-Term Energy Monitoring (STEM) tests were performed, and long-term heating and cooling energy use was measured. A secondary objective was to evaluate the accuracy of the NREL STEM method by comparing the results of outdoor STEM tests to steady-state indoor test results. STEM is a method developed by NREL to determine key thermal parameters of a building in-situ, based on a 3-day test sequence. The indoor test facility also provided the opportunity to investigate the phenomenon of infiltration heat recovery in a real building, under carefully controlled conditions, to evaluate the stability of the concentration decay method of tracer gas-based infiltration monitoring, and to compare the blower-door method with the tracer-gas technique in determining infiltration.This project was a cooperative effort with the Structural Insulated Panel Association, the Modular Building Institute, All-American Modular (AAM, the manufacturer of the units), and GE Capitol (the owner of the units). Richard Harmon, the president of AAM, requested NREL's assistance in exploring the feasibility of converting his manufacturing process to SIP construction. His engineering staff needed to assess which comfort and energy benefits might be associated with this new technology. AAM manufactured the two units, and NREL tested the modules for 8 months.

  15. Modular axial-flux permanent-magnet motor for ship propulsion drives

    SciTech Connect (OSTI)

    Caricchi, F.; Crescimbini, F.; Honorati, O.

    1999-09-01

    Original features such as compactness and lightness make slotless axial-flux permanent-magnet machines (AFPMs) eligible for application in large power motor drives devoted to the direct drive of ship propellers. This paper discusses characteristics of AFPMs designed for application in marine propulsion, and machine performances such as efficiency, weight and torque density are evaluated for a comparison with those of conventional synchronous machines. A newly-conceived modular arrangement of the machine stator winding is proposed and experimental results taken from a small-size machine prototype are finally shown.

  16. Electrical machines and assemblies including a yokeless stator with modular lamination stacks

    DOE Patents [OSTI]

    Qu, Ronghai; Jansen, Patrick Lee; Bagepalli, Bharat Sampathkumar; Carl, Jr., Ralph James; Gadre, Aniruddha Dattatraya; Lopez, Fulton Jose

    2010-04-06

    An electrical machine includes a rotor with an inner rotor portion and an outer rotor portion, and a double-sided yokeless stator. The yokeless stator includes modular lamination stacks and is configured for radial magnetic flux flow. The double-sided yokeless stator is concentrically disposed between the inner rotor portion and the outer rotor portion of the electrical machine. Examples of particularly useful embodiments for the electrical machine include wind turbine generators, ship propulsion motors, switch reluctance machines and double-sided synchronous machines.

  17. Advanced Nuclear Technology: Advanced Light Water Reactors Utility Requirements Document Small Modular Reactors Inclusion Summary

    SciTech Connect (OSTI)

    Loflin, Leonard; McRimmon, Beth

    2014-12-18

    This report summarizes a project by EPRI to include requirements for small modular light water reactors (smLWR) into the EPRI Utility Requirements Document (URD) for Advanced Light Water Reactors. The project was jointly funded by EPRI and the U.S. Department of Energy (DOE). The report covers the scope and content of the URD, the process used to revise the URD to include smLWR requirements, a summary of the major changes to the URD to include smLWR, and how to use the URD as revised to achieve value on new plant projects.

  18. U.S. Department of Energy Instrumentation and Controls Technology Research for Advanced Small Modular Reactors

    SciTech Connect (OSTI)

    Wood, Richard Thomas

    2012-01-01

    Instrumentation, controls, and human-machine interfaces (ICHMI) are essential enabling technologies that strongly influence nuclear power plant performance and operational costs. The U.S. Department of Energy (DOE) has recognized that ICHMI research, development, and demonstration (RD&D) is needed to resolve the technical challenges that may compromise the effective and efficient utilization of modern ICHMI technology and consequently inhibit realization of the benefits offered by expanded utilization of nuclear power. Consequently, key DOE programs have substantial ICHMI RD&D elements to their respective research portfolio. This article describes current ICHMI research to support the development of advanced small modular reactors.

  19. Centralized and Modular Architectures for Photovoltaic Panels with Improved Efficiency: Preprint

    SciTech Connect (OSTI)

    Dhakal, B.; Mancilla-David, F.; Muljadi, E.

    2012-07-01

    The most common type of photovoltaic installation in residential applications is the centralized architecture, but the performance of a centralized architecture is adversely affected when it is subject to partial shading effects due to clouds or surrounding obstacles, such as trees. An alternative modular approach can be implemented using several power converters with partial throughput power processing capability. This paper presents a detailed study of these two architectures for the same throughput power level and compares the overall efficiencies using a set of rapidly changing real solar irradiance data collected by the Solar Radiation Research Laboratory at the National Renewable Energy Laboratory.

  20. Energy Conservation Through the Use of Modular Refractory Fiber Linings - An Unexpected Divided 

    E-Print Network [OSTI]

    Kleeman, L. A.; Mewhinney, T. R.; Proctor, S. J.

    1979-01-01

    centers. 'When all modules are in place in parquet fashion, the plastic straps are cut and each module expands against the others, providing a lining in 15% to 25% compression. As shrinkage occurs at elevated temperatures, the Z-BLOK* Modular Systems... compensates. Installation of modules in a parquet pattern ensures that each joint has one side expanding to fill the small gap resulting from shrinkage. At temperatures above 2200 0 F, refractory fibers shrink and devitrify. This set may be of some concern...

  1. Simple and Versatile Route to the Synthesis of Anisotropic Bimetallic Core-Shell and Monometallic Hollow Nanostructures: Ag (AgCl)-Pt Core-Shell Nanocubes and Pt Nanoboxes

    E-Print Network [OSTI]

    Tan, Yen Nee

    We report herewith a simple and versatile route for the preparation of anisotropic Ag(AgCl)-Pt core-shell nanocubes and Pt nanoboxes. The core-shell nanocubes were first synthesized through the simultaneous reduction method ...

  2. Evaluation of the feasibility and viability of modular pumped storage hydro (m-PSH) in the United States

    SciTech Connect (OSTI)

    Witt, Adam M.; Hadjerioua, Boualem; Martinez, Rocio; Bishop, Norm

    2015-09-01

    The viability of modular pumped storage hydro (m-PSH) is examined in detail through the conceptual design, cost scoping, and economic analysis of three case studies. Modular PSH refers to both the compactness of the project design and the proposed nature of product fabrication and performance. A modular project is assumed to consist of pre-fabricated standardized components and equipment, tested and assembled into modules before arrival on site. This technology strategy could enable m-PSH projects to deploy with less substantial civil construction and equipment component costs. The concept of m-PSH is technically feasible using currently available conventional pumping and turbine equipment, and may offer a path to reducing the project development cycle from inception to commissioning.

  3. FESAC White Paper Path to Market for Compact Systems July 2012 The Path to Market for Compact Modular Fusion Power Cores1

    E-Print Network [OSTI]

    Modular Fusion Power Cores1 S. Woodruff, R. L. Miller To take any new energy technology to market, we have: Market, Path, and Compact Fusion Systems. US Electricity Market "Electricity demand (including retail. Mattor, D. L. Stoulil, R. Miller, T. Marston. Woodruff Path to market for compact modular fusion power

  4. Versatile High-Fidelity Photovoltaic Module Emulation Woojoo Lee, Younghyun Kim, Yanzhi Wang, Naehyuck Chang, Massoud Pedram,

    E-Print Network [OSTI]

    Pedram, Massoud

    }@elpl.snu.ac.kr, shhan@konkuk.ac.kr ABSTRACT Photovoltaic (PV) cells are promising endurable renewable power sources As a promising and endurable renewable energy source, pho- tovoltaic (PV) cells have been evolving rapidly as semiconductor technology progresses. The quality of the power output is com- parable to that of batteries

  5. Modular High Temperature Gas-Cooled Reactor Safety Basis and Approach

    SciTech Connect (OSTI)

    David Petti; Jim Kinsey; Dave Alberstein

    2014-01-01

    Various international efforts are underway to assess the safety of advanced nuclear reactor designs. For example, the International Atomic Energy Agency has recently held its first Consultancy Meeting on a new cooperative research program on high temperature gas-cooled reactor (HTGR) safety. Furthermore, the Generation IV International Forum Reactor Safety Working Group has recently developed a methodology, called the Integrated Safety Assessment Methodology, for use in Generation IV advanced reactor technology development, design, and design review. A risk and safety assessment white paper is under development with respect to the Very High Temperature Reactor to pilot the Integrated Safety Assessment Methodology and to demonstrate its validity and feasibility. To support such efforts, this information paper on the modular HTGR safety basis and approach has been prepared. The paper provides a summary level introduction to HTGR history, public safety objectives, inherent and passive safety features, radionuclide release barriers, functional safety approach, and risk-informed safety approach. The information in this paper is intended to further the understanding of the modular HTGR safety approach. The paper gives those involved in the assessment of advanced reactor designs an opportunity to assess an advanced design that has already received extensive review by regulatory authorities and to judge the utility of recently proposed new methods for advanced reactor safety assessment such as the Integrated Safety Assessment Methodology.

  6. Solid oxide fuel cell generator with removable modular fuel cell stack configurations

    DOE Patents [OSTI]

    Gillett, J.E.; Dederer, J.T.; Zafred, P.R.; Collie, J.C.

    1998-04-21

    A high temperature solid oxide fuel cell generator produces electrical power from oxidation of hydrocarbon fuel gases such as natural gas, or conditioned fuel gases, such as carbon monoxide or hydrogen, with oxidant gases, such as air or oxygen. This electrochemical reaction occurs in a plurality of electrically connected solid oxide fuel cells bundled and arrayed in a unitary modular fuel cell stack disposed in a compartment in the generator container. The use of a unitary modular fuel cell stack in a generator is similar in concept to that of a removable battery. The fuel cell stack is provided in a pre-assembled self-supporting configuration where the fuel cells are mounted to a common structural base having surrounding side walls defining a chamber. Associated generator equipment may also be mounted to the fuel cell stack configuration to be integral therewith, such as a fuel and oxidant supply and distribution systems, fuel reformation systems, fuel cell support systems, combustion, exhaust and spent fuel recirculation systems, and the like. The pre-assembled self-supporting fuel cell stack arrangement allows for easier assembly, installation, maintenance, better structural support and longer life of the fuel cells contained in the fuel cell stack. 8 figs.

  7. ELABORATION OF NOT LARGE MOBILE MODULAR INSTALLATION ''AQUA - EXPRESS'' (300 L/H) FOR LRW CLEANING

    SciTech Connect (OSTI)

    Karlin, Yurii; Dmitriev, Sergey; Iljin, Vadim; Ojovan, Mihail; Burcl, Rudolf

    2003-02-27

    Mobile modular installation ''Aqua-Express'' is a liquid low level and intermediate level radioactive waste (LL&ILRW) treatment facility, intended for not large research centers and other organizations, which activity causes the formation of a few quantity (up to 500 m3/year) of low and intermediate level radioactive waste water. Mobile modular installation ''Aqua-Express'' has the following features: (1) filtration, sorption and ultrafiltration units are used for LL&ILRW purification; (2) installation ''Aqua-Express'' consists of a cascade of three autonomous aqueous liquid waste-purifying installations; (3) installation ''Aqua-Express'' is a mobile installation; the installation can be transported by car, train, ship, or plane, as well as placed in a standard transport (sea or railway) container; (4) installation ''Aqua-Express'' does not includes any technological equipment for conditioning the secondary radioactive waste. Productivity of the installation ''Aqua-Express'' by purified water depends on composition of the initial liquid waste and makes up to 300 l/h. In present report is described the design of installation ''Aqua-Express'', theory of LRW purification in the installation ''Aqua-Express'' and some results of its use at cleaning real radioactive waters at State unitary enterprise - MosNPO ''Radon''.

  8. Definition of Systematic, Approximately Separable and Modular Internal Coordinates (SASMIC) for macromolecular simulation

    E-Print Network [OSTI]

    Pablo Echenique; J. L. Alonso

    2006-12-04

    A set of rules is defined to systematically number the groups and the atoms of organic molecules and, particularly, of polypeptides in a modular manner. Supported by this numeration, a set of internal coordinates is defined. These coordinates (termed Systematic, Approximately Separable and Modular Internal Coordinates, SASMIC) are straightforwardly written in Z-matrix form and may be directly implemented in typical Quantum Chemistry packages. A number of Perl scripts that automatically generate the Z-matrix files for polypeptides are provided as supplementary material. The main difference with other Z-matrix-like coordinates normally used in the literature is that normal dihedral angles (``principal dihedrals'' in this work) are only used to fix the orientation of whole groups and a somewhat non-standard type of dihedrals, termed ``phase dihedrals'', are used to describe the covalent structure inside the groups. This physical approach allows to approximately separate soft and hard movements of the molecule using only topological information and to directly implement constraints. As an application, we use the coordinates defined and ab initio quantum mechanical calculations to assess the commonly assumed approximation of the free energy, obtained from ``integrating out'' the side chain degree of freedom chi, by the Potential Energy Surface (PES) in the protected dipeptide HCO-L-Ala-NH2. We also present a sub-box of the Hessian matrix in two different sets of coordinates to illustrate the approximate separation of soft and hard movements when the coordinates defined in this work are used.

  9. Update on Small Modular Reactors Dynamics System Modeling Tool -- Molten Salt Cooled Architecture

    SciTech Connect (OSTI)

    Hale, Richard Edward; Cetiner, Sacit M.; Fugate, David L.; Qualls, A L.; Borum, Robert C.; Chaleff, Ethan S.; Rogerson, Doug W.; Batteh, John J.; Tiller, Michael M.

    2014-08-01

    The Small Modular Reactor (SMR) Dynamic System Modeling Tool project is in the third year of development. The project is designed to support collaborative modeling and study of various advanced SMR (non-light water cooled) concepts, including the use of multiple coupled reactors at a single site. The objective of the project is to provide a common simulation environment and baseline modeling resources to facilitate rapid development of dynamic advanced reactor SMR models, ensure consistency among research products within the Instrumentation, Controls, and Human-Machine Interface (ICHMI) technical area, and leverage cross-cutting capabilities while minimizing duplication of effort. The combined simulation environment and suite of models are identified as the Modular Dynamic SIMulation (MoDSIM) tool. The critical elements of this effort include (1) defining a standardized, common simulation environment that can be applied throughout the program, (2) developing a library of baseline component modules that can be assembled into full plant models using existing geometry and thermal-hydraulic data, (3) defining modeling conventions for interconnecting component models, and (4) establishing user interfaces and support tools to facilitate simulation development (i.e., configuration and parameterization), execution, and results display and capture.

  10. Solid oxide fuel cell generator with removable modular fuel cell stack configurations

    DOE Patents [OSTI]

    Gillett, James E. (Greensburg, PA); Dederer, Jeffrey T. (Valencia, PA); Zafred, Paolo R. (Pittsburgh, PA); Collie, Jeffrey C. (Pittsburgh, PA)

    1998-01-01

    A high temperature solid oxide fuel cell generator produces electrical power from oxidation of hydrocarbon fuel gases such as natural gas, or conditioned fuel gases, such as carbon monoxide or hydrogen, with oxidant gases, such as air or oxygen. This electrochemical reaction occurs in a plurality of electrically connected solid oxide fuel cells bundled and arrayed in a unitary modular fuel cell stack disposed in a compartment in the generator container. The use of a unitary modular fuel cell stack in a generator is similar in concept to that of a removable battery. The fuel cell stack is provided in a pre-assembled self-supporting configuration where the fuel cells are mounted to a common structural base having surrounding side walls defining a chamber. Associated generator equipment may also be mounted to the fuel cell stack configuration to be integral therewith, such as a fuel and oxidant supply and distribution systems, fuel reformation systems, fuel cell support systems, combustion, exhaust and spent fuel recirculation systems, and the like. The pre-assembled self-supporting fuel cell stack arrangement allows for easier assembly, installation, maintenance, better structural support and longer life of the fuel cells contained in the fuel cell stack.

  11. The X-ray Pump–Probe instrument at the Linac Coherent Light Source

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chollet, Matthieu; Alonso-Mori, Roberto; Cammarata, Marco; Damiani, Daniel; Defever, Jim; Delor, James T.; Feng, Yiping; Glownia, James M.; Langton, J. Brian; Nelson, Silke; et al

    2015-04-21

    The X-ray Pump–Probe instrument achieves femtosecond time-resolution with hard X-ray methods using a free-electron laser source. It covers a photon energy range of 4–24 keV. A femtosecond optical laser system is available across a broad spectrum of wavelengths for generating transient states of matter. The instrument is designed to emphasize versatility and the scientific goals encompass ultrafast physical, chemical and biological processes involved in the transformation of matter and transfer of energy at the atomic scale.

  12. Modular Hybrid Plasma Reactor for Low Cost Bulk Production of Nanomaterials

    SciTech Connect (OSTI)

    Peter C. Kong

    2011-12-01

    INL developed a bench scale modular hybrid plasma system for gas phase nanomaterials synthesis. The system was being optimized for WO3 nanoparticles production and scale model projection to a 300 kW pilot system. During the course of technology development many modifications had been done to the system to resolve technical issues that had surfaced and also to improve the performance. All project tasks had been completed except 2 optimization subtasks. These 2 subtasks, a 4-hour and an 8-hour continuous powder production runs at 1 lb/hr powder feeding rate, were unable to complete due to technical issues developed with the reactor system. The 4-hour run had been attempted twice and both times the run was terminated prematurely. The modular electrode for the plasma system was significantly redesigned to address the technical issues. Fabrication of the redesigned modular electrodes and additional components had been completed at the end of the project life. However, not enough resource was available to perform tests to evaluate the performance of the new modifications. More development work would be needed to resolve these problems prior to scaling. The technology demonstrated a surprising capability of synthesizing a single phase of meta-stable delta-Al2O3 from pure alpha-phase large Al2O3 powder. The formation of delta-Al2O3 was surprising because this phase is meta-stable and only formed between 973-1073 K, and delta-Al2O3 is very difficult to synthesize as a single phase. Besides the specific temperature window to form this phase, this meta-stable phase may have been stabilized by nanoparticle size formed in a high temperature plasma process. This technology may possess the capability to produce unusual meta-stable nanophase materials that would be otherwise difficult to produce by conventional methods. A 300 kW INL modular hybrid plasma pilot scale model reactor had been projected using the experimental data from PPG Industries 300 kW hot wall plasma reactor. The projected size of the INL 300 kW pilot model reactor would be about 15% that of the PPG 300 kW hot wall plasma reactor. Including the safety net factor the projected INL pilot reactor size would be 25-30% of the PPG 300 kW hot wall plasma pilot reactor. Due to the modularity of the INL plasma reactor and the energy cascading effect from the upstream plasma to the downstream plasma the energy utilization is more efficient in material processing. It is envisioning that the material through put range for the INL pilot reactor would be comparable to the PPG 300 kW pilot reactor but the energy consumption would be lower. The INL hybrid plasma technology is rather close to being optimized for scaling to a pilot system. More near term development work is still needed to complete the process optimization before pilot scaling.

  13. Lithium ion sources

    E-Print Network [OSTI]

    Roy, Prabir K.

    2014-01-01

    HIFAN 1866 Lithium ion sources by Prabir K. Roy, Wayne G.No. DE-AC02-05CH11231. Lithium ion sources Prabir K. Roya source of ?100 mA lithium ion current for the Neutralized

  14. Comparison of open-source linear programming solvers.

    SciTech Connect (OSTI)

    Gearhart, Jared Lee; Adair, Kristin Lynn; Durfee, Justin D.; Jones, Katherine A.; Martin, Nathaniel; Detry, Richard Joseph

    2013-10-01

    When developing linear programming models, issues such as budget limitations, customer requirements, or licensing may preclude the use of commercial linear programming solvers. In such cases, one option is to use an open-source linear programming solver. A survey of linear programming tools was conducted to identify potential open-source solvers. From this survey, four open-source solvers were tested using a collection of linear programming test problems and the results were compared to IBM ILOG CPLEX Optimizer (CPLEX) [1], an industry standard. The solvers considered were: COIN-OR Linear Programming (CLP) [2], [3], GNU Linear Programming Kit (GLPK) [4], lp_solve [5] and Modular In-core Nonlinear Optimization System (MINOS) [6]. As no open-source solver outperforms CPLEX, this study demonstrates the power of commercial linear programming software. CLP was found to be the top performing open-source solver considered in terms of capability and speed. GLPK also performed well but cannot match the speed of CLP or CPLEX. lp_solve and MINOS were considerably slower and encountered issues when solving several test problems.

  15. The use of ultraviolet Thomson scattering as a versatile diagnostic for detailed measurements of a collisional laser produced plasma

    SciTech Connect (OSTI)

    Tracy, M.D.

    1993-01-08

    Collective Thomson scattering from ion-acoustic waves at 266nm is used to obtain spatially resolved, two-dimensional electron density, sound speed, and radial drift profiles of a collisional laser plasma. An ultraviolet diagnostic wavelength minimizes the complicating effects of inverse bremsstrahlung and refractive turning in the coronal region of interest, where the electron densities approach n{sub c}/10. Laser plasmas of this type are important because they model some of the aspects of the plasmas found in high-gain laser-fusion pellets irradiated by long pulse widths where the laser light is absorbed mostly in the corona. The experimental results and LASNEX simulations agree within a percent standard deviation of 40% for the electron density and 50% for the sound speed and radial drift velocity. Thus it is shown that the hydrodynamics equations with classical coefficients and the numerical approximations in LASNEX are valid models of laser-heated, highly collisional plasmas. The versatility of Thomson scattering is expanded upon by extending existing theory with a Fokker-Planck based model to include plasmas that are characterized by (0 {le} k{sub ia}{lambda}{sub ii} {le} {infinity}) and ZT{sub e}/T{sub i}, where k{sub ia} is the ion- acoustic wave number, {lambda}{sub ii} is the ion-ion mean free path, Z is the ionization state of the plasma, and T{sub e}, T{sub i} are the electron and ion temperatures in electron volts respectively. The model is valid for plasmas in which the electrons are approximately collisionless, (k{sub ia}{lambda}{sub ei}, k{sub ia}{lambda}{sub ee} {ge} 1), and quasineutrality holds, ({alpha} {much_gt}1), where {alpha} = 1/k{lambda}{sub DE} and {lambda}{sub DE} is the electron Debye length. This newly developed model predicts the lineshape of the ion-acoustic Thomson spectra and when fit to experimental data provides a direct measurement of the relative thermal flow velocity between the electrons and ions.

  16. Electrolytes for power sources

    DOE Patents [OSTI]

    Doddapaneni, N.; Ingersoll, D.

    1995-01-03

    Electrolytes are disclosed for power sources, particularly alkaline and acidic power sources, comprising benzene polysulfonic acids and benzene polyphosphonic acids or salts of such acids. 7 figures.

  17. Electrolytes for power sources

    DOE Patents [OSTI]

    Doddapaneni, Narayan (Albuquerque, NM); Ingersoll, David (Albuquerque, NM)

    1995-01-01

    Electrolytes for power sources, particularly alkaline and acidic power sources, comprising benzene polysulfonic acids and benzene polyphosphonic acids or salts of such acids.

  18. A new, very massive modular Liquid Argon Imaging Chamber to detect low energy off-axis neutrinos from the CNGS beam. (Project MODULAr)

    E-Print Network [OSTI]

    Baibussinov, B; Battistoni, G; Benetti, P; Borio, A; Calligarich, E; Cambiaghi, M; Cavanna, F; Centro, Sandro; Cocco, A G; Dolfini, R; Berzolari, A Gigli; Farnese, C; Fava, A; Ferrari, A; Fiorillo, G; Gibin, D; Guglielmi, A M; Mannocchi, G; Mauri, F; Menegolli, A; Meng, G; Montanari, C; Palamara, O; Periale, L; Piazzoli, A; Picchi, P; Pietropaolo, F; Rappoldi, A; Raselli, G L; Rubbia, Carlo; Sala, P; Satta, G; Varanini, F; Ventura, Sandro; Vignoli, C

    2007-01-01

    The paper is considering an opportunity for the CERN/GranSasso (CNGS) neutrino complex, concurrent time-wise with T2K and NOvA, to search for theta_13 oscillations and CP violation. Compared with large water Cherenkov (T2K) and fine grained scintillators (NOvA), the LAr-TPC offers a higher detection efficiency and a lower backgrounds, since virtually all channels may be unambiguously recognized. The present proposal, called MODULAr, describes a 20 kt fiducial volume LAr-TPC, following very closely the technology developed for the ICARUS-T60o, and is focused on the following activities, for which we seek an extended international collaboration: (1) the neutrino beam from the CERN 400 GeV proton beam and an optimised horn focussing, eventually with an increased intensity in the framework of the LHC accelerator improvement program; (2) A new experimental area LNGS-B, of at least 50000 m3 at 10 km off-axis from the main Laboratory, eventually upgradable to larger sizes. A location is under consideration at about ...

  19. Re-design and Evaluation of a Modular fNIRS-Probe for Employment in Neuroimaging Applications

    E-Print Network [OSTI]

    Daraio, Chiara

    Re-design and Evaluation of a Modular fNIRS-Probe for Employment in Neuroimaging Applications Zürich, January 2013 Project Type MSc/BSc-Thesis Goal We recently built miniaturized sensor modules featuring silicon photo-multipliers (SiPM) for very low light detection in functional near-infrared

  20. INTEGRATION OF THE MODULAR DUAL COOLANT PB-17LI BLANKET CONCEPT IN THE ARIES-CS POWER PLANT

    E-Print Network [OSTI]

    Raffray, A. René

    INTEGRATION OF THE MODULAR DUAL COOLANT PB-17LI BLANKET CONCEPT IN THE ARIES-CS POWER PLANT X been selected as the reference design for the ARIES-CS compact stellarator power plant study. The major concept in the ARIES-CS power plant study. This concept is characterized by the following features: 1

  1. IEEE Computer Society International Conference on Computer Languages 1998, Loyola Univ., Chicago, May 1998 Modular Compilers Based on Monad Transformers

    E-Print Network [OSTI]

    Kamin, Sam

    , May 1998 Modular Compilers Based on Monad Transformers William L. Harrison Samuel N. Kamin Department. It has proven dif­ ficult to extend the method to compilation. We demon­ strate that by introducing as for an interpreter. A number of language con­ structs and features are compiled: expressions, CBV and CBN evaluation

  2. IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. 4, NO. 2, JUNE 1999 119 Synthesis of Modular Mechatronic Products

    E-Print Network [OSTI]

    Kusiak, Andrew

    IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. 4, NO. 2, JUNE 1999 119 Synthesis of Modular Mechatronic Products: A Testability Perspective Chun-Che Huang, Member, IEEE, and Andrew Kusiak, Member, IEEE.g., testability of electronic systems, is frequently stated as a design goal. However, most of mechatronic

  3. Effects of Levels of Automation for Advanced Small Modular Reactors: Impacts on Performance, Workload, and Situation Awareness

    SciTech Connect (OSTI)

    Johanna Oxstrand; Katya Le Blanc

    2014-07-01

    The Human-Automation Collaboration (HAC) research effort is a part of the Department of Energy (DOE) sponsored Advanced Small Modular Reactor (AdvSMR) program conducted at Idaho National Laboratory (INL). The DOE AdvSMR program focuses on plant design and management, reduction of capital costs as well as plant operations and maintenance costs (O&M), and factory production costs benefits.

  4. Design of a Modularized "Smart" Faade System Objective: Comprehensively research faade-adapted systems and devices for

    E-Print Network [OSTI]

    Wolberg, George

    -adapted systems and devices for maintaining building comfort and energy-efficiency, and design and build of these systems means they are a step backward when it comes to energy- efficient building envelopes. In recentDesign of a Modularized "Smart" Façade System Objective: Comprehensively research façade

  5. Designing Urban Green Roofs for Modularity and Recyclability Objective: Develop alternative designs for green roofs responsive to the special

    E-Print Network [OSTI]

    Wolberg, George

    a significant payoff in reduced heat loss and higher energy efficiency. However, current green roof proposals, energy supply systems, and monitoring systems. From an architectural perspective, develop schematic greenDesigning Urban Green Roofs for Modularity and Recyclability Objective: Develop alternative designs

  6. Modular approach for modelling a multi-energy district boiler Julien Eynard, Stphane Grieu1 and Monique Polit

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Modular approach for modelling a multi-energy district boiler Julien Eynard, Stéphane Grieu1 with the modelling of a district boiler (city of La Rochelle, west coast of France), as part of the OptiEnR research project. This "multi- energy" boiler supplies domestic hot water and heats residential and public

  7. IEEE TRANSACTIONS ON ENERGY CONVERSION, VOL. 27, NO. 2, JUNE 2012 489 Modeling of a Complementary and Modular Linear

    E-Print Network [OSTI]

    Mi, Chunting "Chris"

    IEEE TRANSACTIONS ON ENERGY CONVERSION, VOL. 27, NO. 2, JUNE 2012 489 Modeling of a Complementary and Modular Linear Flux-Switching Permanent Magnet Motor for Urban Rail Transit Applications Ruiwu Cao-switching permanent magnet (MLFSPM) motor is investi- gated, in which both the magnets and armature windings

  8. 646 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 13, NO. 5, OCTOBER 1997 Design of Assembly Systems for Modular Products

    E-Print Network [OSTI]

    Kusiak, Andrew

    systems. Given a family of modular products, designing low cost assembly systems is an important problem to the challenge of agile manufacturing, companies are striving to provide a large variety of products at a low problem of the assembly system is formulated and solved by a tabu search based algorithm. Index Terms

  9. Subcontract Report: Modular Combined Heat & Power System for Utica College: Design Specification

    SciTech Connect (OSTI)

    Rouse, Greg

    2007-09-01

    Utica College, located in Utica New York, intends to install an on-site power/cogeneration facility. The energy facility is to be factory pre-assembled, or pre- assembled in modules, to the fullest extent possible, and ready to install and interconnect at the College with minimal time and engineering needs. External connections will be limited to fuel supply, electrical output, potable makeup water as required and cooling and heat recovery systems. The proposed facility will consist of 4 self-contained, modular Cummins 330kW engine generators with heat recovery systems and the only external connections will be fuel supply, electrical outputs and cooling and heat recovery systems. This project was eventually cancelled due to changing DOE budget priorities, but the project engineers produced this system design specification in hopes that it may be useful in future endeavors.

  10. Modular bioreactor for the remediation of liquid streams and methods for using the same

    DOE Patents [OSTI]

    Noah, K.S.; Sayer, R.L.; Thompson, D.N.

    1998-06-30

    The present invention is directed to a bioreactor system for the remediation of contaminated liquid streams. The bioreactor system is composed of at least one and often a series of sub-units referred to as bioreactor modules. The modular nature of the system allows bioreactor systems be subdivided into smaller units and transported to waste sites where they are combined to form bioreactor systems of any size. The bioreactor modules further comprises reactor fill materials in the bioreactor module that remove the contaminants from the contaminated stream. To ensure that the stream thoroughly contacts the reactor fill materials, each bioreactor module comprises means for directing the flow of the stream in a vertical direction and means for directing the flow of the stream in a horizontal direction. In a preferred embodiment, the reactor fill comprises a sulfate reducing bacteria which is particularly useful for precipitating metals from acid mine streams. 6 figs.

  11. A Framework to Expand and Advance Probabilistic Risk Assessment to Support Small Modular Reactors

    SciTech Connect (OSTI)

    Curtis Smith; David Schwieder; Robert Nourgaliev; Cherie Phelan; Diego Mandelli; Kellie Kvarfordt; Robert Youngblood

    2012-09-01

    During the early development of nuclear power plants, researchers and engineers focused on many aspects of plant operation, two of which were getting the newly-found technology to work and minimizing the likelihood of perceived accidents through redundancy and diversity. As time, and our experience, has progressed, the realization of plant operational risk/reliability has entered into the design, operation, and regulation of these plants. But, to date, we have only dabbled at the surface of risk and reliability technologies. For the next generation of small modular reactors (SMRs), it is imperative that these technologies evolve into an accepted, encompassing, validated, and integral part of the plant in order to reduce costs and to demonstrate safe operation. Further, while it is presumed that safety margins are substantial for proposed SMR designs, the depiction and demonstration of these margins needs to be better understood in order to optimize the licensing process.

  12. Compact steady-state and high-flux Falcon ion source for tests of plasma-facing materials

    SciTech Connect (OSTI)

    Girka, O.; Bizyukov, I.; Sereda, K.; Bizyukov, A. [School of Physics and Technologies, V.N. Karazin Kharkiv National University, Kharkiv, 61022 (Ukraine); Gutkin, M. [Micron Surface Technologies, 5033 Dantes View Dr., Calabasas, California 91301 (United States); Sleptsov, V. [Moscow State Aviation Technological University, Moscow 121552 (Russian Federation)

    2012-08-15

    This paper describes the design and operation of the Falcon ion source. It is based on conventional design of anode layer thrusters. This ion source is a versatile, compact, affordable, and highly functional in the research field of the fusion materials. The reversed magnetic field configuration of the source allows precise focusing of the ion beam into small spot of Almost-Equal-To 3 mm and also provides the limited capabilities for impurity mass-separation. As the result, the source generates steady-state ion beam, which irradiates surface with high heat (0.3 - 21 MW m{sup -2}) and particle fluxes (4 Multiplication-Sign 10{sup 21}- 3 Multiplication-Sign 10{sup 23} m{sup -2}s{sup -1}), which approaches the upper limit for the flux range expected in ITER.

  13. Build Rocky Flats Environmental Technology site production prototype modular treatment system for stand alone core capability for residue unpack, sort, assay, repack

    SciTech Connect (OSTI)

    Hildner, R.A.; Zygmunt, S.J.

    1997-01-01

    This document describes a portable and modular suit of equipment that upfront and near-term accomplishes a sorting process that documents and removes Rocky Flats Environmental Technology Site (RFETS) residue and waste from site inventory.

  14. Three-Phase Modular Cascaded H-Bridge Multilevel Inverter with Individual MPPT for Grid-Connected Photovoltaic Systems

    SciTech Connect (OSTI)

    Xiao, Bailu [ORNL; Hang, Lijun [ORNL; Riley, Cameron [University of Tennessee, Knoxville (UTK); Tolbert, Leon M [ORNL; Ozpineci, Burak [ORNL

    2013-01-01

    A three-phase modular cascaded H-bridge multilevel inverter for a grid-connected photovoltaic (PV) system is presented in this paper. To maximize the solar energy extraction of each PV string, an individual maximum power point tracking (MPPT) control scheme is applied, which allows the independent control of each dc-link voltage. PV mismatches may introduce unbalanced power supplied to the three-phase system. To solve this issue, a control scheme with modulation compensation is proposed. The three-phase modular cascaded multilevel inverter prototype has been built. Each H-bridge is connected to a 185 W solar panel. Simulation and experimental results are presented to validate the proposed ideas.

  15. DC source assemblies

    DOE Patents [OSTI]

    Campbell, Jeremy B; Newson, Steve

    2013-02-26

    Embodiments of DC source assemblies of power inverter systems of the type suitable for deployment in a vehicle having an electrically grounded chassis are provided. An embodiment of a DC source assembly comprises a housing, a DC source disposed within the housing, a first terminal, and a second terminal. The DC source also comprises a first capacitor having a first electrode electrically coupled to the housing, and a second electrode electrically coupled to the first terminal. The DC source assembly further comprises a second capacitor having a first electrode electrically coupled to the housing, and a second electrode electrically coupled to the second terminal.

  16. Incorporating Equipment Condition Assessment in Risk Monitors for Advanced Small Modular Reactors

    SciTech Connect (OSTI)

    Coble, Jamie B.; Coles, Garill A.; Meyer, Ryan M.; Ramuhalli, Pradeep

    2013-10-01

    Advanced small modular reactors (aSMRs) can complement the current fleet of large light-water reactors in the USA for baseload and peak demand power production and process heat applications (e.g., water desalination, shale oil extraction, hydrogen production). The day-to-day costs of aSMRs are expected to be dominated by operations and maintenance (O&M); however, the effect of diverse operating missions and unit modularity on O&M is not fully understood. These costs could potentially be reduced by optimized scheduling, with risk-informed scheduling of maintenance, repair, and replacement of equipment. Currently, most nuclear power plants have a “living” probabilistic risk assessment (PRA), which reflects the as-operated, as-modified plant and combine event probabilities with population-based probability of failure (POF) for key components. “Risk monitors” extend the PRA by incorporating the actual and dynamic plant configuration (equipment availability, operating regime, environmental conditions, etc.) into risk assessment. In fact, PRAs are more integrated into plant management in today’s nuclear power plants than at any other time in the history of nuclear power. However, population-based POF curves are still used to populate fault trees; this approach neglects the time-varying condition of equipment that is relied on during standard and non-standard configurations. Equipment condition monitoring techniques can be used to estimate the component POF. Incorporating this unit-specific estimate of POF in the risk monitor can provide a more accurate estimate of risk in different operating and maintenance configurations. This enhanced risk assessment will be especially important for aSMRs that have advanced component designs, which don’t have an available operating history to draw from, and often use passive design features, which present challenges to PRA. This paper presents the requirements and technical gaps for developing a framework to integrate unit-specific estimates of POF into risk monitors, resulting in enhanced risk monitors that support optimized operation and maintenance of aSMRs.

  17. Assessing health impacts in complex eco-epidemiological settings in the humid tropics: Modular baseline health surveys

    SciTech Connect (OSTI)

    Winkler, Mirko S.; Divall, Mark J.; Krieger, Gary R.; Schmidlin, Sandro; Magassouba, Mohamed L.; Knoblauch, Astrid M.; Singer, Burton H.; Utzinger, Juerg

    2012-02-15

    The quantitative assessment of health impacts has been identified as a crucial feature for realising the full potential of health impact assessment (HIA). In settings where demographic and health data are notoriously scarce, but there is a broad range of ascertainable ecological, environmental, epidemiological and socioeconomic information, a diverse toolkit of data collection strategies becomes relevant for the mainly small-area impacts of interest. We present a modular, cross-sectional baseline health survey study design, which has been developed for HIA of industrial development projects in the humid tropics. The modular nature of our toolkit allows our methodology to be readily adapted to the prevailing eco-epidemiological characteristics of a given project setting. Central to our design is a broad set of key performance indicators, covering a multiplicity of health outcomes and determinants at different levels and scales. We present experience and key findings from our modular baseline health survey methodology employed in 14 selected sentinel sites within an iron ore mining project in the Republic of Guinea. We argue that our methodology is a generic example of rapid evidence assembly in difficult-to-reach localities, where improvement of the predictive validity of the assessment and establishment of a benchmark for longitudinal monitoring of project impacts and mitigation efforts is needed.

  18. Development of alternate methods of determining integrated SMR source terms

    SciTech Connect (OSTI)

    Barry, Kenneth

    2014-06-10

    The Nuclear Energy Institute (NEI) Small Modular Reactor (SMR) Licensing Task Force (TF) has been evaluating licensing issues unique and important to iPWRs, ranking these issues, and developing NEI position papers for submittal to the U.S. Nuclear Regulatory Commission (NRC) during the past three years. Papers have been developed and submitted to the NRC in a range of areas including: Price-Anderson Act, NRC annual fees, security, modularity, and staffing. In December, 2012, NEI completed a draft position paper on SMR source terms and participated in an NRC public meeting presenting a summary of this paper, which was subsequently submitted to the NRC. One important conclusion of the source term paper was the evaluation and selection of high importance areas where additional research would have a significant impact on source terms. The highest ranked research area was iPWR containment aerosol natural deposition. The NRC accepts the use of existing aerosol deposition correlations in Regulatory Guide 1.183, but these were developed for large light water reactor (LWR) containments. Application of these correlations to an iPWR design has resulted in greater than a ten-fold reduction of containment airborne aerosol inventory as compared to large LWRs. Development and experimental justification of containment aerosol natural deposition correlations specifically for the unique iPWR containments is expected to result in a large reduction of design basis and beyond-design-basis accident source terms with concomitantly smaller dose to workers and the public. Therefore, NRC acceptance of iPWR containment aerosol natural deposition correlations will directly support the industry’s goal of reducing the Emergency Planning Zone (EPZ) for SMRs. Based on the results in this work, it is clear that thermophoresis is relatively unimportant for iPWRs. Gravitational settling is well understood, and may be the dominant process for a dry environment. Diffusiophoresis and enhanced settling by particle growth are the dominant processes for determining DFs for expected conditions in an iPWR containment. These processes are dependent on the areato-volume (A/V) ratio, which should benefit iPWR designs because these reactors have higher A/Vs compared to existing LWRs.

  19. NRC Reviewer Aid for Evaluating the Human Factors Engineering Aspects of Small Modular Reactors

    SciTech Connect (OSTI)

    OHara J. M.; Higgins, J.C.

    2012-01-13

    Small modular reactors (SMRs) are a promising approach to meeting future energy needs. Although the electrical output of an individual SMR is relatively small compared to that of typical commercial nuclear plants, they can be grouped to produce as much energy as a utility demands. Furthermore, SMRs can be used for other purposes, such as producing hydrogen and generating process heat. The design characteristics of many SMRs differ from those of current conventional plants and may require a distinct concept of operations (ConOps). The U.S. Nuclear Regulatory Commission (NRC) conducted research to examine the human factors engineering (HFE) and the operational aspects of SMRs. The research identified thirty potential human-performance issues that should be considered in the NRC's reviews of SMR designs and in future research activities. The purpose of this report is to support NRC HFE reviewers of SMR applications by identifying some of the questions that can be asked of applicants whose designs have characteristics identified in the issues. The questions for each issue were identified and organized based on the review elements and guidance contained in Chapter 18 of the Standard Review Plan (NUREG-0800), and the Human Factors Engineering Program Review Model (NUREG-0711).

  20. Multi-unit Operations in Non-Nuclear Systems: Lessons Learned for Small Modular Reactors

    SciTech Connect (OSTI)

    OHara J. M.; Higgins, J.; DAgostino, A.

    2012-01-17

    The nuclear-power community has reached the stage of proposing advanced reactor designs to support power generation for decades to come. Small modular reactors (SMRs) are one approach to meet these energy needs. While the power output of individual reactor modules is relatively small, they can be grouped to produce reactor sites with different outputs. Also, they can be designed to generate hydrogen, or to process heat. Many characteristics of SMRs are quite different from those of current plants and may be operated quite differently. One difference is that multiple units may be operated by a single crew (or a single operator) from one control room. The U.S. Nuclear Regulatory Commission (NRC) is examining the human factors engineering (HFE) aspects of SMRs to support licensing reviews. While we reviewed information on SMR designs to obtain information, the designs are not completed and all of the design and operational information is not yet available. Nor is there information on multi-unit operations as envisioned for SMRs available in operating experience. Thus, to gain a better understanding of multi-unit operations we sought the lesson learned from non-nuclear systems that have experience in multi-unit operations, specifically refineries, unmanned aerial vehicles and tele-intensive care units. In this paper we report the lessons learned from these systems and the implications for SMRs.

  1. MODULAR CAUSTIC SIDE SOLVENT EXTRACTION UNIT GAMMA MONITORS SYSTEM FINAL REPORT

    SciTech Connect (OSTI)

    Casella, V

    2007-06-25

    The Department of Energy (DOE) selected Caustic-Side Solvent Extraction (CSSX) as the preferred technology for the removal of radioactive cesium from High-Level Waste (HLW) at the Savannah River Site (SRS). Before the full-scale Salt Waste Processing Facility (SWPF) becomes operational, the liquid Waste Organization (LWO) plans to process a portion of dissolved saltcake waste through a Modular CSSX Unit (MCU). This work was derived from Technical Task Request SP-TTR-2004-00013, ''Gamma Monitor for MCU.'' The deliverables for this task are the hardware and software for the gamma monitors and a report summarizing the testing and acceptance of this equipment for use in the MCU. Revision of this report is a deliverable in Technical Task Report SP-TTR-2006-00010, ''NaI Shield Box Testing.'' Gamma-ray monitors were developed to: {lg_bullet} Measure the Cs-137 concentration in the decontaminated salt solution before entering the DSS (Decontaminated Salt Solution) Hold Tank, {lg_bullet} Measure the Cs-137 concentration in the strip effluent before entering the Strip Effluent Hold Tank, {lg_bullet} Verify proper operation of the solvent extraction system by verifying material balance within the process (The DSS Hold Tank Cs-137 concentration will be very low and the Cs-137 concentration in the Strip Effluent Hold Tank will be approximately fifteen times higher than the Cs-137 concentration in the Feed Tank.)

  2. Pebble bed modular reactor safeguards: developing new approaches and implementing safeguards by design

    SciTech Connect (OSTI)

    Beyer, Brian David [Los Alamos National Laboratory; Beddingfield, David H [Los Alamos National Laboratory; Durst, Philip [INL; Bean, Robert [INL

    2010-01-01

    The design of the Pebble Bed Modular Reactor (PBMR) does not fit or seem appropriate to the IAEA safeguards approach under the categories of light water reactor (LWR), on-load refueled reactor (OLR, i.e. CANDU), or Other (prismatic HTGR) because the fuel is in a bulk form, rather than discrete items. Because the nuclear fuel is a collection of nuclear material inserted in tennis-ball sized spheres containing structural and moderating material and a PBMR core will contain a bulk load on the order of 500,000 spheres, it could be classified as a 'Bulk-Fuel Reactor.' Hence, the IAEA should develop unique safeguards criteria. In a multi-lab DOE study, it was found that an optimized blend of: (i) developing techniques to verify the plutonium content in spent fuel pebbles, (ii) improving burn-up computer codes for PBMR spent fuel to provide better understanding of the core and spent fuel makeup, and (iii) utilizing bulk verification techniques for PBMR spent fuel storage bins should be combined with the historic IAEA and South African approaches of containment and surveillance to verify and maintain continuity of knowledge of PBMR fuel. For all of these techniques to work the design of the reactor will need to accommodate safeguards and material accountancy measures to a far greater extent than has thus far been the case. The implementation of Safeguards-by-Design as the PBMR design progresses provides an approach to meets these safeguards and accountancy needs.

  3. Circularly Polarized Luminescence in Enantiopure Europium and Terbium Complexes with Modular, All-Oxygen Donor Ligands

    SciTech Connect (OSTI)

    Seitz, Michael; Do, King; Ingram, Andrew; Moore, Evan; Muller, Gilles; Raymond, Kenneth

    2009-06-04

    The modular syntheses of three new octadentate, enantiopure ligands are reported, one with the bidentate chelating unit 2-hydroxyisophthalamide (IAM) and two with bidentate 1-hydroxy-2-pyridinone (1,2-HOPO) units. A new design principle is introduced for the chiral, non-racemic hexamines which constitute the central backbones for the presented class of ligands. The terbium(III) complex of the IAM ligand, as well as the europium(III) complexes of the 1,2-HOPO ligands, are synthesized and characterized by various techniques (NMR, UV, CD, luminescence spectroscopy). All species exhibit excellent stability and moderate to high luminescence efficiency (quantum yields {phi}{sub Eu} = 0.05-0.08 and {phi}{sub Tb} = 0.30-0.57) in aqueous solution at physiological pH. Special focus is put onto the properties of the complexes in regard to circularly polarized luminescence (CPL). The maximum luminescence dissymmetry factors (glum) in aqueous solution are high with |glum|max = 0.08-0.40. Together with the very favorable general properties (good stability, high quantum yields, long lifetimes), the presented lanthanide complexes can be considered as good candidates for analytical probes based on CPL in biologically relevant environments.

  4. A Multiphase, Modular, Bidirectional, Triple-Voltage DC-DC Converter Power Systems

    SciTech Connect (OSTI)

    Su, Gui-Jia [ORNL; Tang, Lixin [ORNL

    2008-01-01

    Electrical power systems in future hybrid and fuel cell vehicles may employ three voltage [14 V, 42 V, and high voltage (HV)] nets. These will be necessary to accommodate existing 14-V loads as well as efficiently handle new heavy loads at the 42-V net and a traction drive on the HV bus. A low-cost DC-DC converter was proposed for connecting the three voltage nets. It minimizes the number of switches and their associated gate driver components by using two half-bridges and a high-frequency transformer. Another salient feature is that the half bridge on the 42-V bus is also utilized to provide the 14-V bus by operating at duty ratios around an atypical value of 1/3. Moreover, it makes use of the parasitic capacitance of the switches and the transformer leakage inductance for soft switching. The use of half bridges makes the topology well suited for interleaved multiphase modular configurations as a means to increase the power level because the capacitor legs can be shared. This paper presents simulation and experimental results on an interleaved two-phase arrangement rated at 4.5 kW. Also discussed are the benefits of operating with an atypical duty ratio on the transformer and a preferred multiphase configuration to minimize capacitor ripple currents.

  5. SCALE: A modular code system for performing standardized computer analyses for licensing evaluation

    SciTech Connect (OSTI)

    1997-03-01

    This Manual represents Revision 5 of the user documentation for the modular code system referred to as SCALE. The history of the SCALE code system dates back to 1969 when the current Computational Physics and Engineering Division at Oak Ridge National Laboratory (ORNL) began providing the transportation package certification staff at the U.S. Atomic Energy Commission with computational support in the use of the new KENO code for performing criticality safety assessments with the statistical Monte Carlo method. From 1969 to 1976 the certification staff relied on the ORNL staff to assist them in the correct use of codes and data for criticality, shielding, and heat transfer analyses of transportation packages. However, the certification staff learned that, with only occasional use of the codes, it was difficult to become proficient in performing the calculations often needed for an independent safety review. Thus, shortly after the move of the certification staff to the U.S. Nuclear Regulatory Commission (NRC), the NRC staff proposed the development of an easy-to-use analysis system that provided the technical capabilities of the individual modules with which they were familiar. With this proposal, the concept of the Standardized Computer Analyses for Licensing Evaluation (SCALE) code system was born. This manual covers an array of modules written for the SCALE package, consisting of drivers, system libraries, cross section and materials properties libraries, input/output routines, storage modules, and help files.

  6. Microwave ion source

    DOE Patents [OSTI]

    Leung, Ka-Ngo; Reijonen, Jani; Thomae, Rainer W.

    2005-07-26

    A compact microwave ion source has a permanent magnet dipole field, a microwave launcher, and an extractor parallel to the source axis. The dipole field is in the form of a ring. The microwaves are launched from the middle of the dipole ring using a coaxial waveguide. Electrons are heated using ECR in the magnetic field. The ions are extracted from the side of the source from the middle of the dipole perpendicular to the source axis. The plasma density can be increased by boosting the microwave ion source by the addition of an RF antenna. Higher charge states can be achieved by increasing the microwave frequency. A xenon source with a magnetic pinch can be used to produce intense EUV radiation.

  7. Uninterruptible Power Supplies Designed to meet or exceed the safety standards established by UL, CSA, CE and VDE. The Alpha CFR UPS is one of the safest, most reliable and versatile Uninterruptible Power Systems

    E-Print Network [OSTI]

    Berns, Hans-Gerd

    Uninterruptible Power Supplies Designed to meet or exceed the safety standards established by ULKVA available. Uninterruptible Power Supply > The CFR's microprocessor design provides efficiency, CSA, CE and VDE. The Alpha CFR UPS is one of the safest, most reliable and versatile Uninterruptible

  8. Dynamic radioactive particle source

    DOE Patents [OSTI]

    Moore, Murray E.; Gauss, Adam Benjamin; Justus, Alan Lawrence

    2012-06-26

    A method and apparatus for providing a timed, synchronized dynamic alpha or beta particle source for testing the response of continuous air monitors (CAMs) for airborne alpha or beta emitters is provided. The method includes providing a radioactive source; placing the radioactive source inside the detection volume of a CAM; and introducing an alpha or beta-emitting isotope while the CAM is in a normal functioning mode.

  9. Improved ion source

    DOE Patents [OSTI]

    Leung, K.N.; Ehlers, K.W.

    1982-05-04

    A magnetic filter for an ion source reduces the production of undesired ion species and improves the ion beam quality. High-energy ionizing electrons are confined by the magnetic filter to an ion source region, where the high-energy electrons ionize gas molecules. One embodiment of the magnetic filter uses permanent magnets oriented to establish a magnetic field transverse to the direction of travel of ions from the ion source region to the ion extraction region. In another embodiment, low energy 16 eV electrons are injected into the ion source to dissociate gas molecules and undesired ion species into desired ion species,

  10. Development of series H{sup ?} multicusp ion source at China Institute of Atomic Energy

    SciTech Connect (OSTI)

    TianJue, Zhang; XianLu, Jia, E-mail: jiaxl@ciae.ac.cn; ZhenGuo, Li; Yinlong, Lu; JiuChang, Qin; Xia, Zheng; Hongjuan, Yao; JunQing, Zhong; GaoFeng, Pan; Tao, Ge; Fengping, Guan [China Institute of Atomic Energy, Beijing (China)] [China Institute of Atomic Energy, Beijing (China)

    2014-02-15

    The development of H{sup ?} multicusp ion sources has been carried out at China Institute of Atomic Energy (CIAE) for more than ten years. The first H{sup ?} ion source with 5.2 mA was made in 2002. After improving the configured magnetic field, a H{sup ?} ion source of 10 mA was made in 2004, and the beam intensity of 15 mA was obtained in 2008 after further improvements of the filter field. The beam intensity of 18 mA was achieved in 2010 following the in-depth study and optimization on some essential operation conditions. Now a series of H{sup ?} cusp sources with different sizes and beam intensity ranging from 3 mA to 18 mA have been successfully developed at CIAE. All the ion sources can fast finish the test on the test stand now, since all the connections are modularized and can fit all kinds of H{sup ?} mulitcusp source of CIAE. The development status of the various H{sup ?} multicusp ion sources at CIAE are presented in the paper.

  11. Radiation Source Replacement Workshop

    SciTech Connect (OSTI)

    Griffin, Jeffrey W.; Moran, Traci L.; Bond, Leonard J.

    2010-12-01

    This report summarizes a Radiation Source Replacement Workshop in Houston Texas on October 27-28, 2010, which provided a forum for industry and researchers to exchange information and to discuss the issues relating to replacement of AmBe, and potentially other isotope sources used in well logging.

  12. Lithium ion sources

    E-Print Network [OSTI]

    Roy, Prabir K.

    2014-01-01

    HIFAN 1866 Lithium ion sources by Prabir K. Roy, Wayne G.No. DE-AC02-05CH11231. Lithium ion sources Prabir K. RoyUSA Abstract A 10.9 cm diameter lithium alumino-silicate ion

  13. Tsunami Sources Icosahedron Globe

    E-Print Network [OSTI]

    Tsunami Sources Icosahedron Globe August 2012 Edition NOAA National Geophysical Data Center World to reduce to 8.5" x 11". This globe of Earth shows the locations of historical tsunami sources, extracted from NGDC'sGlobal Historical Tsunami Database (ngdc.noaa.gov/hazard). A tsunamiisaseriesof traveling

  14. Piezotube borehole seismic source

    DOE Patents [OSTI]

    Daley, Tom M; Solbau, Ray D; Majer, Ernest L

    2014-05-06

    A piezoelectric borehole source capable of permanent or semipermanent insertion into a well for uninterrupted well operations is described. The source itself comprises a series of piezoelectric rings mounted to an insulative mandrel internally sized to fit over a section of well tubing, the rings encased in a protective housing and electrically connected to a power source. Providing an AC voltage to the rings will cause expansion and contraction sufficient to create a sonic pulse. The piezoelectric borehole source fits into a standard well, and allows for uninterrupted pass-through of production tubing, and other tubing and electrical cables. Testing using the source may be done at any time, even concurrent with well operations, during standard production.

  15. Westinghouse Small Modular Reactor balance of plant and supporting systems design

    SciTech Connect (OSTI)

    Memmott, M. J.; Stansbury, C.; Taylor, C.

    2012-07-01

    The Westinghouse Small Modular Reactor (SMR) is an 800 MWt (>225 MWe) integral pressurized water reactor (iPWR), in which all of the components typically associated with the nuclear steam supply system (NSSS) of a nuclear power plant are incorporated within a single reactor pressure vessel. This paper is the second in a series of four papers which describe the design and functionality of the Westinghouse SMR. It focuses, in particular, upon the supporting systems and the balance of plant (BOP) designs of the Westinghouse SMR. Several Westinghouse SMR systems are classified as safety, and are critical to the safe operation of the Westinghouse SMR. These include the protection and monitoring system (PMS), the passive core cooling system (PXS), and the spent fuel cooling system (SFS) including pools, valves, and piping. The Westinghouse SMR safety related systems include the instrumentation and controls (I and C) as well as redundant and physically separated safety trains with batteries, electrical systems, and switch gears. Several other incorporated systems are non-safety related, but provide functions for plant operations including defense-in-depth functions. These include the chemical volume control system (CVS), heating, ventilation and cooling (HVAC) systems, component cooling water system (CCS), normal residual heat removal system (RNS) and service water system (SWS). The integrated performance of the safety-related and non-safety related systems ensures the safe and efficient operation of the Westinghouse SMR through various conditions and transients. The turbine island consists of the turbine, electric generator, feedwater and steam systems, moisture separation systems, and the condensers. The BOP is designed to minimize assembly time, shipping challenges, and on-site testing requirements for all structures, systems, and components. (authors)

  16. Depletion Analysis of Modular High Temperature Gas-cooled Reactor Loaded with LEU/Thorium Fuel

    SciTech Connect (OSTI)

    Sonat Sen; Gilles Youinou

    2013-02-01

    Thorium based fuel has been considered as an option to uranium-based fuel, based on considerations of resource utilization (Thorium is more widely available when compared to Uranium). The fertile isotope of Thorium (Th-232) can be converted to fissile isotope U-233 by neutron capture during the operation of a suitable nuclear reactor such as High Temperature Gas-cooled Reactor (HTGR). However, the fertile Thorium needs a fissile supporter to start and maintain the conversion process such as U-235 or Pu-239. This report presents the results of a study that analyzed the thorium utilization in a prismatic HTGR, namely Modular High Temperature Gas-Cooled Reactor (MHTGR) that was designed by General Atomics (GA). The collected for the modeling of this design come from Chapter 4 of MHTGR Preliminary Safety Information Document that GA sent to Department of Energy (DOE) on 1995. Both full core and unit cell models were used to perform this analysis using SCALE 6.1 and Serpent 1.1.18. Because of the long mean free paths (and migration lengths) of neutrons in HTRs, using a unit cell to represent a whole core can be non-trivial. The sizes of these cells were set to match the spectral index between unit cell and full core domains. It was found that for the purposes of this study an adjusted unit cell model is adequate. Discharge isotopics and one-group cross-sections were delivered to the transmutation analysis team. This report provides documentation for these calculations

  17. Design of an Alternative Coolant Inlet Flow Configuaration for the Modular Helium Reactor

    SciTech Connect (OSTI)

    SM Mohsin Reza; E. A. Harvego; Matt Richards; Arkal Shenoy; Kenneth Lee Peddicord

    2006-06-01

    The coolant outlet temperature for the Modular Helium Reactor (MHR) was increased to improve the overall efficiency of nuclear hydrogen production using either thermochemical or high temperature electrolysis (HTE) processes. The inlet temperature was also increased to keep about the same _T across the reactor core. Thermal hydraulic analyses of the current MHR design were performed with these updated temperatures to determine the impact of these highter temperatures on pressure drops, coolant flow rates and temperature profiles within the vessel and core regions. Due to these increased operating temperatures, the overall efficiency of hydrogen production processes increases but the steady state reactor vessel temperature is found to be well above the ASME code limits for current vessel materials. Using the RELAP5-3D/ATHENA computer code, an alternative configuration for the MHR coolant inlet flow path was evaluated in an attempt to reduce the reactor vessel temperatures. The coolant inlet flow was shifted from channel boxes located in the annular region between the reactor core barrel and the inner wall of the reactor vessel to a flow path through the outer permanent reflector. Considering the available thickness of graphite in the permanent outer reflector, the total flow area, the number of coolant holes and the coolant-hole diameter were varied to optimize the pressure drop, the coolant inlet velocity and the percentage of graphite removed from the core. The resulting thermal hydraulic analyses of the optimized design showed that peak vessel and fuel temperatures were within acceptable limits for both steady-state and transient operating conditions.

  18. A Single Tower Configuration of the Modular Gamma Box Counter System - 13392

    SciTech Connect (OSTI)

    Morris, K.; Nakazawa, D.; Francalangia, J.; Gonzalez, H.

    2013-07-01

    Canberra's Standard Gamma Box Counter System is designed to perform accurate quantitative assays of gamma emitting nuclides for a wide range of large containers including B-25 crates and ISO shipping containers. Using a modular building-block approach, the system offers tremendous flexibility for a variety of measurement situations with wide ranges of sample activities and throughput requirements, as well as the opportunity to modify the configuration for other applications at a later date. The typical configuration consists of two opposing towers each equipped with two high purity germanium detectors, and an automated container trolley. This paper presents a modified configuration, consisting of a single tower placed inside a measurement trailer with three detector assemblies, allowing for additional vertical segmentation as well as a viewing a container outside the trailer through the trailer wall. An automatic liquid nitrogen fill system is supplied for each of the detectors. The use of a forklift to move the container for horizontal segmentation is accommodated by creating an additional operational and calibration set-up in the NDA 2000 software to allow for the operator to rotate the container and assay the opposite side, achieving the same sensitivity as a comparable two-tower system. This Segmented Gamma Box Counter System retains the core technologies and design features of the standard configuration. The detector assemblies are shielded to minimize interference from environmental and plant background, and are collimated to provide segmentation of the container. The assembly positions can also be modified in height and distance from the container. The ISOCS calibration software provides for a flexible approach to providing the calibrations for a variety of measurement geometries. The NDA 2000 software provides seamless operation with the current configuration, handling the data acquisition and analysis. In this paper, an overview of this system is discussed, along with the measured performance results, calibration methodology and verification, and minimum detectable activity levels. (authors)

  19. MODULAR AND FULL SIZE SIMPLIFIED BOILING WATER REACTOR DESIGN WITH FULLY PASSIVE SAFETY SYSTEMS

    SciTech Connect (OSTI)

    M. Ishii; S. T. Revankar; T. Downar; Y. Xu, H. J. Yoon; D. Tinkler; U. S. Rohatgi

    2003-06-16

    OAK B204 The overall goal of this three-year research project was to develop a new scientific design of a compact modular 200 MWe and a full size 1200 MWe simplified boiling water reactors (SBWR). Specific objectives of this research were: (1) to perform scientific designs of the core neutronics and core thermal-hydraulics for a small capacity and full size simplified boiling water reactor, (2) to develop a passive safety system design, (3) improve and validate safety analysis code, (4) demonstrate experimentally and analytically all design functions of the safety systems for the design basis accidents (DBA) and (5) to develop the final scientific design of both SBWR systems, 200 MWe (SBWR-200) and 1200 MWe (SBWR-1200). The SBWR combines the advantages of design simplicity and completely passive safety systems. These advantages fit well within the objectives of NERI and the Department of Energy's focus on the development of Generation III and IV nuclear power. The 3-year research program was structured around seven tasks. Task 1 was to perform the preliminary thermal-hydraulic design. Task 2 was to perform the core neutronic design analysis. Task 3 was to perform a detailed scaling study and obtain corresponding PUMA conditions from an integral test. Task 4 was to perform integral tests and code evaluation for the DBA. Task 5 was to perform a safety analysis for the DBA. Task 6 was to perform a BWR stability analysis. Task 7 was to perform a final scientific design of the compact modular SBWR-200 and the full size SBWR-1200. A no cost extension for the third year was requested and the request was granted and all the project tasks were completed by April 2003. The design activities in tasks 1, 2, and 3 were completed as planned. The existing thermal-hydraulic information, core physics, and fuel lattice information was collected on the existing design of the simplified boiling water reactor. The thermal-hydraulic design were developed. Based on a detailed integral system scaling analysis, design parameters were obtained and designs of the compact modular 200 MWe SBWR and the full size 1200 MWe SBWR were developed. These reactors are provided with passive safety systems. A new passive vacuum breaker check valve was designed to replace the mechanical vacuum beaker check valve. The new vacuum breaker check valve was based on a hydrostatic head, and was fail safe. The performance of this new valve was evaluated both by the thermal-hydraulic code RELAP5 and by the experiments in a scaled SBWR facility, PUMA. In the core neutronic design a core depletion model was implemented to PARCS code. A lattice design for the SBWR fuel assemblies was performed. Design improvements were made to the neutronics/thermal-hydraulics models of SBWR-200 and SBWR-1200, and design analyses of these reactors were performed. The design base accident analysis and evaluation of all the passive safety systems were completed as scheduled in tasks 4 and 5. Initial conditions for the small break loss of coolant accidents (LOCA) and large break LOCA using REALP5 code were obtained. Small and large break LOCA tests were performed and the data was analyzed. An anticipated transient with scram was simulated using the RELAP5 code for SBWR-200. The transient considered was an accidental closure of the main steam isolation valve (MSIV), which was considered to be the most significant transient. The evaluation of the RELAP5 code against experimental data for SBWR-1200 was completed. In task 6, the instability analysis for the three SBWR designs (SBWR-1200, SBWR-600 and SBWR-200) were simulated for start-up transients and the results were similar. Neither the geysering instability, nor the loop type instability was predicted by RAMONA-4B in the startup simulation following the recommended procedure by GE. The density wave oscillation was not observed at all because the power level used in the simulation was not high enough. A study was made of the potential instabilities by imposing an unrealistically high power ramp in a short time period, as suggested by GE. RAMON

  20. Microfabricated diffusion source

    DOE Patents [OSTI]

    Oborny, Michael C. (Albuquerque, NM); Frye-Mason, Gregory C. (Cedar Crest, NM); Manginell, Ronald P. (Albuquerque, NM)

    2008-07-15

    A microfabricated diffusion source to provide for a controlled diffusion rate of a vapor comprises a porous reservoir formed in a substrate that can be filled with a liquid, a headspace cavity for evaporation of the vapor therein, a diffusion channel to provide a controlled diffusion of the vapor, and an outlet to release the vapor into a gas stream. The microfabricated diffusion source can provide a calibration standard for a microanalytical system. The microanalytical system with an integral diffusion source can be fabricated with microelectromechanical systems technologies.

  1. BeamDyn: A High-Fidelity Wind Turbine Blade Solver in the FAST Modular Framework: Preprint

    SciTech Connect (OSTI)

    Wang, Q.; Sprague, M.; Jonkman, J.; Johnson, N.

    2015-01-01

    BeamDyn, a Legendre-spectral-finite-element implementation of geometrically exact beam theory (GEBT), was developed to meet the design challenges associated with highly flexible composite wind turbine blades. In this paper, the governing equations of GEBT are reformulated into a nonlinear state-space form to support its coupling within the modular framework of the FAST wind turbine computer-aided engineering (CAE) tool. Different time integration schemes (implicit and explicit) were implemented and examined for wind turbine analysis. Numerical examples are presented to demonstrate the capability of this new beam solver. An example analysis of a realistic wind turbine blade, the CX-100, is also presented as validation.

  2. Galactic Superluminal Sources

    E-Print Network [OSTI]

    B. A. Harmon

    1998-12-21

    A new class of X-ray sources was clearly established with the discovery of highly relativistic radio jets from the galactic sources GRS 1915+105 and GRO J1655-40. Both of these objects have given us a broader view of black holes and the formation of jets, yet they also show the complexity of the accretion environment near relativistic objects. The fast apparent motion of the jets, their luminosity and variability, their high energy spectrum, and approximate scaling to the behavior of active galactic nuclei, certainly warrant the description "microquasar". I present a review of the observational data on these sources, and discuss where we stand on a physical picture of GRS 1915+105 and GRO J1655-40 as taken from multi-wavelength studies. I also point out other galactic sources which share some of the properties of the microquasars, and what to look for as a high energy "signature" in future observations.

  3. Open source hardware

    E-Print Network [OSTI]

    Acosta, Roberto, S.M. Massachusetts Institute of Technology

    2009-01-01

    Open source software development models have created some of the most innovative tools and companies in the industry today modifying the way value is created and businesses developed. The purpose of this thesis is to analyze ...

  4. National Synchrotron Light Source

    ScienceCinema (OSTI)

    None

    2010-01-08

    A tour of Brookhaven's National Synchrotron Light Source (NSLS). The NSLS is one of the world's most widely used scientific research facilities, hosting more than 2,500 guest researchers each year. The NSLS provides intense beams of infrared, ultraviole

  5. Light Source Effects

    E-Print Network [OSTI]

    Forbus, K.

    1977-05-01

    The perception of surface luster in achromatic single view images seems to depend on the existence of regions with source-like properties. These regions are due to the interaction of specular component of the surface's ...

  6. A surface ionization source 

    E-Print Network [OSTI]

    Buzatu, Daniel J.

    1995-01-01

    The main part of the work described herein is the development and testing of a surface ionization source for use on a collinear fast beam laser spectroscopy apparatus. A description of the previously existing fast beam apparatus is given...

  7. Field emission electron source

    DOE Patents [OSTI]

    Zettl, Alexander Karlwalter (Kensington, CA); Cohen, Marvin Lou (Berkeley, CA)

    2000-01-01

    A novel field emitter material, field emission electron source, and commercially feasible fabrication method is described. The inventive field emission electron source produces reliable electron currents of up to 400 mA/cm.sup.2 at 200 volts. The emitter is robust and the current it produces is not sensitive to variability of vacuum or the distance between the emitter tip and the cathode. The novel emitter has a sharp turn-on near 100 volts.

  8. National Synchrotron Light Source

    ScienceCinema (OSTI)

    BNL

    2009-09-01

    A tour of Brookhaven's National Synchrotron Light Source (NSLS), hosted by Associate Laboratory Director for Light Sources, Stephen Dierker. The NSLS is one of the world's most widely used scientific research facilities, hosting more than 2,500 guest researchers each year. The NSLS provides intense beams of infrared, ultraviolet, and x-ray light for basic and applied research in physics, chemistry, medicine, geophysics, environmental, and materials sciences.

  9. A modular design architecture for application to community-scale photovoltaic-powered reverse osmosis systems

    E-Print Network [OSTI]

    Bilton, Amy M. (Amy Marlou)

    2013-01-01

    Access to safe, clean drinking water is a major challenge for many communities. These communities are often near seawater and/or brackish groundwater sources, making desalination a possible solution. Unfortunately, ...

  10. Aalborg Universitet Modular Multi-level converter based HVDC System for Grid Connection of Offshore

    E-Print Network [OSTI]

    Chaudhary, Sanjay

    energy is an important renewable and green source of energy. The total installed worldwide capacity is to install large offshore wind power plants (WPP) because they offer higher energy yield due to a superior

  11. A versatile elevated-pressure reactor combined with an ultrahigh vacuum surface setup for efficient testing of model and powder catalysts under clean gas-phase conditions

    SciTech Connect (OSTI)

    Morfin, Franck; Piccolo, Laurent [Institut de recherches sur la catalyse et l'environnement de Lyon (IRCELYON), UMR 5256 CNRS and Université Lyon 1, 2 avenue Albert Einstein, F-69626 Villeurbanne (France)] [Institut de recherches sur la catalyse et l'environnement de Lyon (IRCELYON), UMR 5256 CNRS and Université Lyon 1, 2 avenue Albert Einstein, F-69626 Villeurbanne (France)

    2013-09-15

    A small-volume reaction cell for catalytic or photocatalytic testing of solid materials at pressures up to 1000 Torr has been coupled to a surface-science setup used for standard sample preparation and characterization under ultrahigh vacuum (UHV). The reactor and sample holder designs allow easy sample transfer from/to the UHV chamber, and investigation of both planar and small amounts of powder catalysts under the same conditions. The sample is heated with an infrared laser beam and its temperature is measured with a compact pyrometer. Combined in a regulation loop, this system ensures fast and accurate temperature control as well as clean heating. The reaction products are automatically sampled and analyzed by mass spectrometry and/or gas chromatography (GC). Unlike previous systems, our GC apparatus does not use a recirculation loop and allows working in clean conditions at pressures as low as 1 Torr while detecting partial pressures smaller than 10{sup ?4} Torr. The efficiency and versatility of the reactor are demonstrated in the study of two catalytic systems: butadiene hydrogenation on Pd(100) and CO oxidation over an AuRh/TiO{sub 2} powder catalyst.

  12. NEXT GENERATION SOLVENT MATERIALS COMPATIBILITY WITH POLYMER COMPONENTS WITHIN MODULAR CAUSTIC-SIDE SOLVENT EXTRACTION UNIT

    SciTech Connect (OSTI)

    Fondeur, F.; Peters, T.; Fink, S.

    2011-09-29

    The Office of Waste Processing, within the Office of Technology Innovation and Development, is funding the development of an enhanced solvent for deployment at the Savannah River Site for removal of cesium from High Level Waste. The technical effort is collaboration between Oak Ridge National Laboratory (ORNL), Savannah River National Laboratory (SRNL), and Argonne National Laboratory. The first deployment target for the technology is within the Modular Caustic-Side Solvent Extraction Unit (MCU). Deployment of a new chemical within an existing facility requires verification that the chemical components are compatible with the installed equipment. In the instance of a new organic solvent, the primary focus is on compatibility of the solvent with organic polymers used in the facility. This report provides the data from exposing these polymers to the Next Generation Solvent (NGS). The test was conducted over six months. An assessment of the dimensional stability of polymers present in MCU (i.e., PEEK, Grafoil{reg_sign}, Tefzel{reg_sign} and Isolast{reg_sign}) in the modified NGS (where the concentration of the guanidine suppressor and MaxCalix was varied systematically) showed that guanidine (LIX{reg_sign}79) selectively affected Tefzel{reg_sign} (by an increase in size and lowering its density). The copolymer structure of Tefzel{reg_sign} and possibly its porosity allows for the easier diffusion of guanidine. Tefzel{reg_sign} is used as the seat material in some of the valves at MCU. Long term exposure to guanidine, may make the valves hard to operate over time due to the seat material (Tefzel{reg_sign}) increasing in size. However, since the physical changes of Tefzel{reg_sign} in the improved solvent are comparable to the changes in the CSSX baseline solvent, no design changes are needed with respect to the Tefzel{reg_sign} seating material. PEEK, Grafoil{reg_sign} and Isolast{reg_sign} were not affected by guanidine and MaxCalix within six months of exposure. The initial rapid weight gain observed in every polymer is assigned to the finite and limited uptake of Isopar{reg_sign} L/Modifier by the polymers probably due to the polymers porosity and rough surfaces. Spectroscopic data on the organic liquid and the polymer surfaces showed no preferential adsorption of any component in the NGS to the polymers and no leachate was observed in the NGS from any of the polymers studied.

  13. Examination of Organic Carryover from 2-cm Contactors to Support the Modular CSSX Unit

    SciTech Connect (OSTI)

    Nash, Charles A.; Norato, Michael A.; Walker; D. Douglas; Pierce, Robert A.; Eubanks, Ronnye A.; Clark, James D.; Smith, Wilson M. Jr.; Crump, Stephen L.; Nelson, D. Zane; Fink, Samuel D.; Peters, Thomas B.; May, Cecil G.; Herman, David T.; Bolton, Henry L.

    2005-04-29

    A bank of four 2-cm centrifugal contactors was operated in countercurrent fashion to help address questions about organic carryover for the Modular Caustic Side Solvent Extraction (CSSX) Unit (MCU). The contactors, having weirs sized for strip operation, were used to examine carryover for both strip effluent (SE) and decontaminated salt solution (DSS). Since only one bank of contactors was available in the short time frame of this work, the organic phase and only one aqueous phase were present in the flow loops at a time. Personnel maintained flowsheet-typical organic phase to aqueous phase (O:A) flow ratios when varying flow rates. Solvent from two different batches were tested with strip solution. In addition, potential mitigations of pH adjustment and coalescing media were examined. The experiment found that organic carryover after decanting averaged 220 ppm by mass with a range of 74 to 417 ppm of Isopar{reg_sign} L for strip effluent (SE)/organic solvent contacts. These values are based on measured modifier. Values were bounded by a value of 95 ppm based upon Isopar{reg_sign} L values as reported. The higher modifier-based numbers are considered more reliable at this time. Carryover of Isopar{reg_sign} L in DSS simulant averaged 77 ppm by mass with a range of 70 to 88 ppm of Isopar{reg_sign} L based on modifier content. The carryover was bounded by a value of 19 ppm based upon Isopar{reg_sign} L values as reported. More work is needed to resolve the discrepancy between modifier and Isopar{reg_sign} L values. The work did not detect organic droplets greater than 18 microns in SE. Strip output contained droplets down to 0.5 micron in size. Droplets in DSS were almost monodisperse by comparison, having a size range 4.7 +/- 1.6 micron in one test and 5.2 +/- 0.8 micron in the second demonstration. Optical microscopy provided qualitative results confirming the integrity of droplet size measurements in this work. Acidic or basic adjustments of aqueous strip solution from pH 3 to 1 and from pH 3 to 11 were not effective in clarifying the aqueous dispersions of organic droplets. Use of a 0.7-micron rated glass fiber filter of 3/4 mm thickness under gravity flow provided significant reduction in organic content and increased clarity. A 2 inch element stack of ''Teflon{reg_sign} Fiber Interceptor-Pak{trademark}'' media from ACS Separations, Inc. was not effective in clarifying DSS simulant.

  14. INITIATORS AND TRIGGERING CONDITIONS FOR ADAPTIVE AUTOMATION IN ADVANCED SMALL MODULAR REACTORS

    SciTech Connect (OSTI)

    Katya L Le Blanc; Johanna h Oxstrand

    2014-04-01

    It is anticipated that Advanced Small Modular Reactors (AdvSMRs) will employ high degrees of automation. High levels of automation can enhance system performance, but often at the cost of reduced human performance. Automation can lead to human out-of the loop issues, unbalanced workload, complacency, and other problems if it is not designed properly. Researchers have proposed adaptive automation (defined as dynamic or flexible allocation of functions) as a way to get the benefits of higher levels of automation without the human performance costs. Adaptive automation has the potential to balance operator workload and enhance operator situation awareness by allocating functions to the operators in a way that is sensitive to overall workload and capabilities at the time of operation. However, there still a number of questions regarding how to effectively design adaptive automation to achieve that potential. One of those questions is related to how to initiate (or trigger) a shift in automation in order to provide maximal sensitivity to operator needs without introducing undesirable consequences (such as unpredictable mode changes). Several triggering mechanisms for shifts in adaptive automation have been proposed including: operator initiated, critical events, performance-based, physiological measurement, model-based, and hybrid methods. As part of a larger project to develop design guidance for human-automation collaboration in AdvSMRs, researchers at Idaho National Laboratory have investigated the effectiveness and applicability of each of these triggering mechanisms in the context of AdvSMR. Researchers reviewed the empirical literature on adaptive automation and assessed each triggering mechanism based on the human-system performance consequences of employing that mechanism. Researchers also assessed the practicality and feasibility of using the mechanism in the context of an AdvSMR control room. Results indicate that there are tradeoffs associated with each mechanism, but that some are more applicable to the AdvSMR domain. The two mechanisms that consistently improve performance in laboratory studies are operator initiated adaptive automation based on hierarchical task delegation and the Electroencephalogram(EEG) –based measure of engagement. Current EEG methods are intrusive and require intensive analysis; therefore it is not recommended for an AdvSMR control rooms at this time. Researchers also discuss limitations in the existing empirical literature and make recommendations for further research.

  15. Life extension program for the modular caustic side solvent extraction unit at Savannah River Site

    SciTech Connect (OSTI)

    Samadi-Dezfouli, Azadeh

    2012-11-14

    Caustic Side Solvent Extraction (CSSX) is currently used at the U.S. Department of Energy (DOE) Savannah River Site (SRS) for removal of cesium from the high-level salt-wastes stored in underground tanks. At SRS, the CSSX process is deployed in the Modular CSSX Unit (MCU). The CSSX technology utilizes a multi-component organic solvent and annular centrifugal contactors to extract cesium from alkaline salt waste. Coalescers and decanters process the Decontaminated Salt Solution (DSS) and Strip Effluent (SE) streams to allow recovery and reuse of the organic solvent and to limit the quantity of solvent transferred to the downstream facilities. MCU is operated in series with the Actinide Removal Process (ARP) which removes strontium and actinides from salt waste utilizing monosodium titanate. ARP and MCU were developed and implemented as interim salt processing until future processing technology, the CSSX-based Salt Waste Processing Facility (SWPF), is operational. SWPF is slated to come on-line in October 2014. The three year design life of the ARP/MCU process, however, was reached in April 2011. Nevertheless, most of the individual process components are capable of operating longer. An evaluation determined ARP/MCU can operate until 2015 before major equipment failure is expected. The three year design life of the ARP/MCU Life Extension (ARP/MCU LE) program will bridge the gap between current ARP/MCU operations and the start of SWPF operation. The ARP/MCU LE program introduces no new technologies. As a portion of this program, a Next Generation Solvent (NGS) and corresponding flowsheet are being developed to provide a major performance enhancement at MCU. This paper discusses all the modifications performed in the facility to support the ARP/MCU Life Extension. It will also discuss the next generation chemistry, including NGS and new stripping chemistry, which will increase cesium removal efficiency in MCU. Possible implementation of the NGS chemistry in MCU accomplishes two objectives. MCU serves as a demonstration facility for improved flowsheet deployment at SWPF; operating with NGS and boric acid validates improved cesium removal performance and increased throughput as well as confirms Defense Waste Processing Facility (DWPF) ability to vitrify waste streams containing boron. NGS implementation at MCU also aids the ARP/MCU LE operation, mitigating the impacts of delays and sustaining operations until other technology is able to come on-line.

  16. Integrating Safety, Operations, Security, and Safeguards (ISOSS) into the design of small modular reactors : a handbook.

    SciTech Connect (OSTI)

    Middleton, Bobby D.; Mendez, Carmen Margarita [Sociotecnia Solutions] [Sociotecnia Solutions

    2013-10-01

    The existing regulatory environment for nuclear reactors impacts both the facility design and the cost of operations once the facility is built. Delaying the consideration of regulatory requirements until late in the facility design - or worse, until after construction has begun - can result in costly retrofitting as well as increased operational costs to fulfill safety, security, safeguards, and emergency readiness requirements. Considering the scale and scope, as well as the latest design trends in the next generation of nuclear facilities, there is an opportunity to evaluate the regulatory requirements and optimize the design process for Small Modular Reactors (SMRs), as compared to current Light Water Reactors (LWRs). To this end, Sandia has embarked on an initiative to evaluate the interactions of regulations and operations as an approach to optimizing the design of SMR facilities, supporting operational efficiencies, as well as regulatory requirements. The early stages of this initiative consider two focus areas. The first focus area, reported by LaChance, et al. (2007), identifies the regulatory requirements established for the current fleet of LWR facilities regarding Safety, Security, Operations, Safeguards, and Emergency Planning, and evaluates the technical bases for these requirements. The second focus area, developed in this report, documents the foundations for an innovative approach that supports a design framework for SMR facilities that incorporates the regulatory environment, as well as the continued operation of the facility, into the early design stages, eliminating the need for costly retrofitting and additional operating personnel to fulfill regulatory requirements. The work considers a technique known as Integrated Safety, Operations, Security and Safeguards (ISOSS) (Darby, et al., 2007). In coordination with the best practices of industrial operations, the goal of this effort is to develop a design framework that outlines how ISOSS requirements can be incorporated into the pre-conceptual through early facility design stages, seeking a cost-effective design that meets both operational efficiencies and the regulatory environment. The larger scope of the project, i.e., in future stages, includes the identification of potentially conflicting requirements identified by the ISOSS framework, including an analysis of how regulatory requirements may be changed to account for the intrinsic features of SMRs.

  17. MODULAR CAUSTIC SIDE SOLVENT EXTRACTION UNIT (MCU) GAMMA MONITORS SYSTEM FINAL REPORT

    SciTech Connect (OSTI)

    Casella, V

    2005-12-15

    The Department of Energy (DOE) selected Caustic-Side Solvent Extraction (CSSX) as the preferred technology for the removal of radioactive cesium from High-Level Waste (HLW) at the Savannah River Site (SRS). Before the full-scale Salt Waste Processing Facility (SWPF) becomes operational, the Closure Business Unit (CBU) plans to process a portion of dissolved saltcake waste through a Modular CSSX Unit (MCU). This work was derived from Technical Task Request SP-TTR-2004-00013, ''Gamma Monitor for MCU''. The deliverables for this task are the hardware and software for the gamma monitors and a report summarizing the testing and acceptance of this equipment for use in the MCU. Gamma-ray monitors are required to: (1) Measure the Cs-137 concentration in the decontaminated salt solution before entering the DSS (Decontaminated Salt Solution) Hold Tank, (2) Measure the Cs-137 concentration in the strip effluent before entering the Strip Effluent Hold Tank, (3) Verify proper operation of the solvent extraction system by verifying material balance within the process (The DSS Hold Tank Cs-137 concentration will be very low and the Cs-137 concentration in the Strip Effluent Hold Tank will be fifteen times higher than the Cs-137 concentration in the Feed Tank.) Sodium iodide monitors are used to measure the Cs-137 concentration in the piping before the DSS Hold tank, while GM monitors are used for Cs-137 measurements before the Strip Effluent Hold Tank. Tungsten shields were designed using Monte Carlo calculations and fabricated to reduce the process background radiation at the detector positions. These monitors were calibrated with NIST traceable standards that were specially made to be the same as the piping being monitored. Since this gamma ray monitoring system is unique, specially designed software was written and acceptance tested by Savannah River National Laboratory personnel. The software is a LabView-based application that serves as a unified interface for controlling the monitor hardware and communicating with the host Distributed Control System (DCS). In order to provide user friendly software for the process personnel, the software was broken down into just a few software modules. These software modules are the Application Window, Detector Selection, Detector Configuration Settings, Background Counting, and Routine Data Acquisition. Instructions for using the software have been included in a user's manual that is appended to this report. The work presented in this report meets all of the requirements set forth in the project task plan to design and implement gamma ray monitors for the MCU. Additional setup and testing of the system will be required when it implemented in the process.

  18. Small Modular Reactor: First of a Kind (FOAK) and Nth of a Kind (NOAK) Economic Analysis

    SciTech Connect (OSTI)

    Lauren M. Boldon; Piyush Sabharwall

    2014-08-01

    Small modular reactors (SMRs) refer to any reactor design in which the electricity generated is less than 300 MWe. Often medium sized reactors with power less than 700 MWe are also grouped into this category. Internationally, the development of a variety of designs for SMRs is booming with many designs approaching maturity and even in or nearing the licensing stage. It is for this reason that a generalized yet comprehensive economic model for first of a kind (FOAK) through nth of a kind (NOAK) SMRs based upon rated power, plant configuration, and the fiscal environment was developed. In the model, a particular project’s feasibility is assessed with regards to market conditions and by commonly utilized capital budgeting techniques, such as the net present value (NPV), internal rate of return (IRR), Payback, and more importantly, the levelized cost of energy (LCOE) for comparison to other energy production technologies. Finally, a sensitivity analysis was performed to determine the effects of changing debt, equity, interest rate, and conditions on the LCOE. The economic model is primarily applied to the near future water cooled SMR designs in the United States. Other gas cooled and liquid metal cooled SMR designs have been briefly outlined in terms of how the economic model would change. FOAK and NOAK SMR costs were determined for a site containing seven 180 MWe water cooled SMRs and compared to a site containing one 1260 MWe reactor. With an equal share of debt and equity and a 10% cost of debt and equity, the LCOE was determined to be $79 $84/MWh and $80/MWh for the SMR and large reactor sites, respectively. With a cost of equity of 15%, the SMR LCOE increased substantially to $103 $109/MWh. Finally, an increase in the equity share to 70% at the 15% cost of equity resulted in an even higher LCOE, demonstrating the large variation in results due to financial and market factors. The NPV and IRR both decreased with increasing LCOE. Unless the price of electricity increases along with the LCOE, the projects may become unprofitable. This is the case at the LCOE of $103 $109/MW, in which the NPV became negative. The IRR increased with increasing electricity price. Three cases, electric only base, storage—compressed air energy storage or pumped hydro, and hydrogen production, were performed incorporating SMRs into a nuclear wind natural gas hybrid energy system for the New York West Central region. The operational costs for three cases were calculated as $27/MWh, $25/MWh, and $28/MWh, respectively. A 3% increase in profits was demonstrated for the storage case over the electric only base case.

  19. Modular Coil Design for the Ultra-low Aspect Ratio Quasi-axially Symmetric Stellarator MHH2

    SciTech Connect (OSTI)

    Ku LP, the ARIES-CS Team

    2005-09-27

    A family of two field-period quasi-axisymmetric stellarators generally known as MHH2 with aspect ratios of only {approx}2.5 was found. These configurations have low field ripples and excellent confinement of {alpha} particles. This discovery raises the hope that a compact stellarator reactor may eventually be designed with the property of tokamak transport and stellarator stability. In this paper we demonstrate that smooth modular coils may be designed for this family of configurations that not only yield plasmas with good physics properties but also possess engineering properties desirable for compact power producing reactors. We show designs featuring 16 modular coils with ratios of major radius to minimum coil-plasma separation {approx}5.5, major radius to minimum coil-coil separation {approx}10 and the maximum field in coil bodies to the field on axis {approx}2 for 0.2 m{sup 2} conductors. These coils is expected to allow plasmas operated at 5% {beta} with {alpha} energy loss < 10% for a reactor of major radius <9 m at 5 T.

  20. An expanded X-ray beam facility (BEaTriX) to test the modular elements of the ATHENA optics

    E-Print Network [OSTI]

    Spiga, D; Bonnini, E; Buffagni, E; Ferrari, C; Pareschi, G; Tagliaferri, G

    2015-01-01

    Future large X-ray observatories like ATHENA will be equipped with very large optics, obtained by assembling modular optical elements, named X-ray Optical Units (XOU) based on the technology of either Silicon Pore Optics or Slumped Glass Optics. In both cases, the final quality of the modular optic (a 5 arcsec HEW requirement for ATHENA) is determined by the accuracy alignment of the XOUs within the assembly, but also by the angular resolution of the individual XOU. This is affected by the mirror shape accuracy, its surface roughness, and the mutual alignment of the mirrors within the XOU itself. Because of the large number of XOUs to be produced, quality tests need to be routinely done to select the most performing stacked blocks, to be integrated into the final optic. In addition to the usual metrology based on profile and roughness measurements, a direct measurement with a broad, parallel, collimated and uniform X- ray beam would be the most reliable test, without the need of a focal spot reconstruction as...

  1. Ultraviolet stimulated electron source for use with low energy plasma instrument calibration

    E-Print Network [OSTI]

    Henderson, Kevin; Funsten, Herb; MacDonald, Elizabeth

    2011-01-01

    We report the development of a versatile, compact, low to medium energy electron source. A collimated, monoenergetic beam of electrons, up to 50 mm in diameter, is produced with energies ranging from 0.03 to 30 keV. A uniform electron beam profile is generated by illuminating a metal cathode plate with a near ultraviolet (UV) light emitting diode (LED). A parallel electric field accelerates the electrons away from the cathode plate towards a grounded grid. The beam intensity can be controlled from 10 - 10^9 electrons cm-2 s-1 and the angular divergence of the beam is less than 1 degree FWHM for energies greater than 1 keV.

  2. Ultraviolet stimulated electron source for use with low energy plasma instrument calibration

    SciTech Connect (OSTI)

    Henderson, Kevin; Harper, Ron; Funsten, Herb; MacDonald, Elizabeth [Space Science and Applications, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2012-07-15

    We have developed and demonstrated a versatile, compact electron source that can produce a mono-energetic electron beam up to 50 mm in diameter from 0.1 to 30 keV with an energy spread of <10 eV. By illuminating a metal cathode plate with a single near ultraviolet light emitting diode, a spatially uniform electron beam with 15% variation over 1 cm{sup 2} can be generated. A uniform electric field in front of the cathode surface accelerates the electrons into a beam with an angular divergence of <1 Degree-Sign at 1 keV. The beam intensity can be controlled from 10 to 10{sup 9} electrons cm{sup -2} s{sup -1}.

  3. Pulsed ion beam source

    DOE Patents [OSTI]

    Greenly, J.B.

    1997-08-12

    An improved pulsed ion beam source is disclosed having a new biasing circuit for the fast magnetic field. This circuit provides for an initial negative bias for the field created by the fast coils in the ion beam source which pre-ionize the gas in the source, ionize the gas and deliver the gas to the proper position in the accelerating gap between the anode and cathode assemblies in the ion beam source. The initial negative bias improves the interaction between the location of the nulls in the composite magnetic field in the ion beam source and the position of the gas for pre-ionization and ionization into the plasma as well as final positioning of the plasma in the accelerating gap. Improvements to the construction of the flux excluders in the anode assembly are also accomplished by fabricating them as layered structures with a high melting point, low conductivity material on the outsides with a high conductivity material in the center. 12 figs.

  4. 7-GeV Advanced Photon Source Conceptual Design Report

    SciTech Connect (OSTI)

    Not Available

    1987-04-01

    During the past decade, synchrotron radiation emitted by circulating electron beams has come into wide use as a powerful, versatile source of x-rays for probing the structure of matter and for studying various physical processes. Several synchrotron radiation facilities with different designs and characteristics are now in regular operation throughout the world, with recent additions in this country being the 0.8-GeV and 2.5-GeV rings of NSLS at Brookhaven National Laboratory. However, none of the operating facilities has been designed to use a low-emittance, high-energy stored beam, together with modern undulator devices, to produce a large number of hard x-ray beams of extremely high brilliance. This document is a proposal to the Department of Energy to construct and operate high-energy synchrotron radiation facility at Argonne National Laboratory. We have now chosen to set the design energy of this facility at 7.0 GeV, with the capability to operate at up to 7.5 GeV.

  5. Dual source heat pump

    DOE Patents [OSTI]

    Ecker, Amir L. (Dallas, TX); Pietsch, Joseph A. (Dallas, TX)

    1982-01-01

    What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid provides energy for defrosting the second heat exchanger when operating in the air source mode and also provides a alternate source of heat.

  6. COMBUSTION SOURCES OF NITROGEN COMPOUNDS

    E-Print Network [OSTI]

    Brown, Nancy J.

    2011-01-01

    Rasmussen, R.A. (1976). Combustion as a source of nitrousx control for stationary combustion sources. Prog. Energy,CA, March 3-4, 1977 COMBUSTION SOURCES OF NITROGEN COMPOUNDS

  7. Selective ion source

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA)

    1996-01-01

    A ion source is described wherein selected ions maybe extracted to the exclusion of unwanted ion species of higher ionization potential. Also described is a method of producing selected ions from a compound, such as P.sup.+ from PH.sub.3. The invention comprises a plasma chamber, an electron source, a means for introducing a gas to be ionized by electrons from the electron source, means for limiting electron energy from the electron source to a value between the ionization energy of the selected ion species and the greater ionization energy of an unwanted ion specie, and means for extracting the target ion specie from the plasma chamber. In one embodiment, the electrons are generated in a plasma cathode chamber immediately adjacent to the plasma chamber. A small extractor draws the electrons from the plasma cathode chamber into the relatively positive plasma chamber. The energy of the electrons extracted in this manner is easily controlled. The invention is particularly useful for doping silicon with P.sup.+, AS.sup.+, and B.sup.+ without the problematic presence of hydrogen, helium, water, or carbon oxide ions. Doped silicon is important for manufacture of semiconductors and semiconductor devices.

  8. Selective ion source

    DOE Patents [OSTI]

    Leung, K.N.

    1996-05-14

    A ion source is described wherein selected ions maybe extracted to the exclusion of unwanted ion species of higher ionization potential. Also described is a method of producing selected ions from a compound, such as P{sup +} from PH{sub 3}. The invention comprises a plasma chamber, an electron source, a means for introducing a gas to be ionized by electrons from the electron source, means for limiting electron energy from the electron source to a value between the ionization energy of the selected ion species and the greater ionization energy of an unwanted ion specie, and means for extracting the target ion specie from the plasma chamber. In one embodiment, the electrons are generated in a plasma cathode chamber immediately adjacent to the plasma chamber. A small extractor draws the electrons from the plasma cathode chamber into the relatively positive plasma chamber. The energy of the electrons extracted in this manner is easily controlled. The invention is particularly useful for doping silicon with P{sup +}, As{sup +}, and B{sup +} without the problematic presence of hydrogen, helium, water, or carbon oxide ions. Doped silicon is important for manufacture of semiconductors and semiconductor devices. 6 figs.

  9. Sealed Radioactive Source Accountability

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1991-12-24

    To establish Department of Energy (DOE) interim policy and to provide guidance for sealed radioactive source accountability. The directive does not cancel any directives. Extended by DOE N 5400.10 to 12-24-93 & Extended by DOE N 5400.12 to 12-24-94.

  10. Sealed Radioactive Source Accountability

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1994-12-22

    This Notice extends DOE N 5400.9, Sealed Radioactive Source Accountability, of 12-24-91, until 12-24-95, unless sooner superseded or rescinded. The contents of DOE N 5400.9 will be updated and incorporated in the revised DOE O 5480.11, Radiation Protection for Occupational Workers.

  11. Modular P2P-Based Approach for RDF Data Storage and Retrieval Imen Filali, Laurent Pellegrino, Francesco Bongiovanni, Fabrice Huet and Francoise Baude

    E-Print Network [OSTI]

    Boyer, Edmond

    Modular P2P-Based Approach for RDF Data Storage and Retrieval Imen Filali, Laurent Pellegrino elements of the Semantic Web is the Resource Description Framework (RDF). Efficient storage and retrieval in our design architecture. We have evaluated our system using the Grid'5000 testbed over 300 peers on 75

  12. IEEE Int. Symposium on Circ. and Systems (ISCAS), Bangkok Thailand, May 2003. A Modular Sensor Microsystem Utilizing a Universal Interface Circuit

    E-Print Network [OSTI]

    Mason, Andrew

    IEEE Int. Symposium on Circ. and Systems (ISCAS), Bangkok Thailand, May 2003. A Modular Sensor: Corning IntelliSense, 36 Jonspin Rd., Wilmington, MA 01887 ABSTRACT The performance features of MEMS transducers allow the development of a new class of small, low-power sensor microsystems which utilize a suite

  13. Modular Inverter for Advanced Control Applications In the fall of 2003, a team of graduate students was assembled to design and construct a

    E-Print Network [OSTI]

    Kimball, Jonathan W.

    students was assembled to design and construct a research-grade inverter. The goal was to have available report contains all of the important specifications and design details required to use and repair modular. This work was supported by the Grainger Center for Electric Machinery and Electromechanics and was advised

  14. Source waters Several factors influence the selection of source

    E-Print Network [OSTI]

    1 Source waters Several factors influence the selection of source waters to feed desalination plants: the location of the plant in relation to water sources available, the deliv- ery destination of the treated water, the quality of the source water, the pretreatment options available, and the ecological

  15. BRIEF COMMUNICATION Path to Market for Compact Modular Fusion Power Cores

    E-Print Network [OSTI]

    products are benign is hard to measure, but at no time in history has this energy source been more needed from DOE Office of Science to the energy market can come at the Proof of Principle development stage outlays which inhibits both their development and commercial deployment. The Department of Energy (DOE

  16. A MODULAR SHM-SCHEME FOR ENGINEERING STRUCTURES UNDER CHANGING CONDITIONS: APPLICATION TO AN OFFSHORE WIND

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    TO AN OFFSHORE WIND TURBINE Moritz W. H¨ackell1, Raimund Rolfes1 1 Institute of Structural Analysis, Leibniz in common. A shift from fossil to renewable energy source is the logical con- sequence. (Offshore) wind : Offshore Wind Turbine, Machine Learning, Condition Parameter, Control Charts, Affinity Propagation

  17. LITERATURE REVIEWS TO SUPPORT ION EXCHANGE TECHNOLOGY SELECTION FOR MODULAR SALT PROCESSING

    SciTech Connect (OSTI)

    King, W

    2007-11-30

    This report summarizes the results of literature reviews conducted to support the selection of a cesium removal technology for application in a small column ion exchange (SCIX) unit supported within a high level waste tank. SCIX is being considered as a technology for the treatment of radioactive salt solutions in order to accelerate closure of waste tanks at the Savannah River Site (SRS) as part of the Modular Salt Processing (MSP) technology development program. Two ion exchange materials, spherical Resorcinol-Formaldehyde (RF) and engineered Crystalline Silicotitanate (CST), are being considered for use within the SCIX unit. Both ion exchange materials have been studied extensively and are known to have high affinities for cesium ions in caustic tank waste supernates. RF is an elutable organic resin and CST is a non-elutable inorganic material. Waste treatment processes developed for the two technologies will differ with regard to solutions processed, secondary waste streams generated, optimum column size, and waste throughput. Pertinent references, anticipated processing sequences for utilization in waste treatment, gaps in the available data, and technical comparisons will be provided for the two ion exchange materials to assist in technology selection for SCIX. The engineered, granular form of CST (UOP IE-911) was the baseline ion exchange material used for the initial development and design of the SRS SCIX process (McCabe, 2005). To date, in-tank SCIX has not been implemented for treatment of radioactive waste solutions at SRS. Since initial development and consideration of SCIX for SRS waste treatment an alternative technology has been developed as part of the River Protection Project Waste Treatment Plant (RPP-WTP) Research and Technology program (Thorson, 2006). Spherical RF resin is the baseline media for cesium removal in the RPP-WTP, which was designed for the treatment of radioactive waste supernates and is currently under construction in Hanford, WA. Application of RF for cesium removal in the Hanford WTP does not involve in-riser columns but does utilize the resin in large scale column configurations in a waste treatment facility. The basic conceptual design for SCIX involves the dissolution of saltcake in SRS Tanks 1-3 to give approximately 6 M sodium solutions and the treatment of these solutions for cesium removal using one or two columns supported within a high level waste tank. Prior to ion exchange treatment, the solutions will be filtered for removal of entrained solids. In addition to Tanks 1-3, solutions in two other tanks (37 and 41) will require treatment for cesium removal in the SCIX unit. The previous SCIX design (McCabe, 2005) utilized CST for cesium removal with downflow supernate processing and included a CST grinder following cesium loading. Grinding of CST was necessary to make the cesium-loaded material suitable for vitrification in the SRS Defense Waste Processing Facility (DWPF). Because RF resin is elutable (and reusable) and processing requires conversion between sodium and hydrogen forms using caustic and acidic solutions more liquid processing steps are involved. The WTP baseline process involves a series of caustic and acidic solutions (downflow processing) with water washes between pH transitions across neutral. In addition, due to resin swelling during conversion from hydrogen to sodium form an upflow caustic regeneration step is required. Presumably, one of these basic processes (or some variation) will be utilized for MSP for the appropriate ion exchange technology selected. CST processing involves two primary waste products: loaded CST and decontaminated salt solution (DSS). RF processing involves three primary waste products: spent RF resin, DSS, and acidic cesium eluate, although the resin is reusable and typically does not require replacement until completion of multiple treatment cycles. CST processing requires grinding of the ion exchange media, handling of solids with high cesium loading, and handling of liquid wash and conditioning solutions. RF processing requires h

  18. Westinghouse Small Modular Reactor passive safety system response to postulated events

    SciTech Connect (OSTI)

    Smith, M. C.; Wright, R. F. [Westinghouse Electric Company, 600 Cranberry Woods Drive (United States)

    2012-07-01

    The Westinghouse Small Modular Reactor (SMR) is an 800 MWt (>225 MWe) integral pressurized water reactor. This paper is part of a series of four describing the design and safety features of the Westinghouse SMR. This paper focuses in particular upon the passive safety features and the safety system response of the Westinghouse SMR. The Westinghouse SMR design incorporates many features to minimize the effects of, and in some cases eliminates the possibility of postulated accidents. The small size of the reactor and the low power density limits the potential consequences of an accident relative to a large plant. The integral design eliminates large loop piping, which significantly reduces the flow area of postulated loss of coolant accidents (LOCAs). The Westinghouse SMR containment is a high-pressure, compact design that normally operates at a partial vacuum. This facilitates heat removal from the containment during LOCA events. The containment is submerged in water which also aides the heat removal and provides an additional radionuclide filter. The Westinghouse SMR safety system design is passive, is based largely on the passive safety systems used in the AP1000{sup R} reactor, and provides mitigation of all design basis accidents without the need for AC electrical power for a period of seven days. Frequent faults, such as reactivity insertion events and loss of power events, are protected by first shutting down the nuclear reaction by inserting control rods, then providing cold, borated water through a passive, buoyancy-driven flow. Decay heat removal is provided using a layered approach that includes the passive removal of heat by the steam drum and independent passive heat removal system that transfers heat from the primary system to the environment. Less frequent faults such as loss of coolant accidents are mitigated by passive injection of a large quantity of water that is readily available inside containment. An automatic depressurization system is used to reduce the reactor pressure in a controlled manner to facilitate the passive injection. Long-term decay heat removal is accomplished using the passive heat removal systems augmented by heat transfer through the containment vessel to the environment. The passive injection systems are designed so that the fuel remains covered and effectively cooled throughout the event. Like during the frequent faults, the passive systems provide effective cooling without the need for ac power for seven days following the accident. Connections are available to add additional water to indefinitely cool the plant. The response of the safety systems of the Westinghouse SMR to various initiating faults has been examined. Among them, two accidents; an extended station blackout event, and a LOCA event have been evaluated to demonstrate how the plant will remain safe in the unlikely event that either should occur. (authors)

  19. Combined Modular Pumped Hydro Energy Storage Plus Solar PV Proposal for Rio Rancho High School, New Mexico

    SciTech Connect (OSTI)

    Bibeault, Mark Leonide

    2015-08-25

    This is a proposal to locate a combined Modular Pumped Hydro (MPH) Energy Storage plus PV solar facility at Rio Rancho High School, NM. The facility will functionally provide electricity at night derived from renewable solar energy. Additionally the facility will provide STEM related educational opportunities for students and staff of the school, public community outreach, and validation of an energy storage approach applicable for the Nation (up to 1,000,000 kWh per installation). The proposal will summarize the nature of electricity, why energy storage is useful, present the combined MPH and solar PV production design, present how the actual design will be built and operated in a sustainable manner, how the project could be funded, and how the project could be used in STEM related activities.

  20. RASTtk: A modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes

    SciTech Connect (OSTI)

    Brettin, Thomas; Davis, James J.; Disz, Terry; Edwards, Robert A.; Gerdes, Svetlana; Olsen, Gary J.; Olson, Robert; Overbeek, Ross; Parrello, Bruce; Pusch, Gordon D.; Shukla, Maulik; Thomason, III, James A.; Stevens, Rick; Vonstein, Veronika; Wattam, Alice R.; Xia, Fangfang

    2015-02-10

    The RAST (Rapid Annotation using Subsystem Technology) annotation engine was built in 2008 to annotate bacterial and archaeal genomes. It works by offering a standard software pipeline for identifying genomic features (i.e., protein-encoding genes and RNA) and annotating their functions. Recently, in order to make RAST a more useful research tool and to keep pace with advancements in bioinformatics, it has become desirable to build a version of RAST that is both customizable and extensible. In this paper, we describe the RAST tool kit (RASTtk), a modular version of RAST that enables researchers to build custom annotation pipelines. RASTtk offers a choice of software for identifying and annotating genomic features as well as the ability to add custom features to an annotation job. RASTtk also accommodates the batch submission of genomes and the ability to customize annotation protocols for batch submissions. This is the first major software restructuring of RAST since its inception.

  1. User's guide for the BNW-III optimization code for modular dry/wet-cooled power plants

    SciTech Connect (OSTI)

    Braun, D.J.; Faletti, D.W.

    1984-09-01

    This user's guide describes BNW-III, a computer code developed by the Pacific Northwest Laboratory (PNL) as part of the Dry Cooling Enhancement Program sponsored by the US Department of Energy (DOE). The BNW-III code models a modular dry/wet cooling system for a nuclear or fossil fuel power plant. The purpose of this guide is to give the code user a brief description of what the BNW-III code is and how to use it. It describes the cooling system being modeled and the various models used. A detailed description of code input and code output is also included. The BNW-III code was developed to analyze a specific cooling system layout. However, there is a large degree of freedom in the type of cooling modules that can be selected and in the performance of those modules. The costs of the modules are input to the code, giving the user a great deal of flexibility.

  2. Magnitude and reactivity consequences of moisture ingress into the modular High-Temperature Gas-Cooled Reactor core

    SciTech Connect (OSTI)

    Smith, O.L. (Oak Ridge National Lab., TN (United States))

    1992-12-01

    Inadvertent admission of moisture into the primary system of a modular high-temperature gas-cooled reactor has been identified in US Department of Energy-sponsored studies as an important safety concern. The work described here develops an analytical methodology to quantify the pressure and reactivity consequences of steam-generator tube rupture and other moisture-ingress-related incidents. Important neutronic and thermohydraulic processes are coupled with reactivity feedback and safety and control system responses. The rate and magnitude of steam buildup are found to be dominated by major system features such as break size compared with safety valve capacity and reliability and less sensitive to factors such as heat transfer coefficients. The results indicate that ingress transients progress at a slower pace than previously predicted by bounding analyses, with milder power overshoots and more time for operator or automatic corrective actions.

  3. RASTtk: A modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Brettin, Thomas; Davis, James J.; Disz, Terry; Edwards, Robert A.; Gerdes, Svetlana; Olsen, Gary J.; Olson, Robert; Overbeek, Ross; Parrello, Bruce; Pusch, Gordon D.; et al

    2015-02-10

    The RAST (Rapid Annotation using Subsystem Technology) annotation engine was built in 2008 to annotate bacterial and archaeal genomes. It works by offering a standard software pipeline for identifying genomic features (i.e., protein-encoding genes and RNA) and annotating their functions. Recently, in order to make RAST a more useful research tool and to keep pace with advancements in bioinformatics, it has become desirable to build a version of RAST that is both customizable and extensible. In this paper, we describe the RAST tool kit (RASTtk), a modular version of RAST that enables researchers to build custom annotation pipelines. RASTtk offersmore »a choice of software for identifying and annotating genomic features as well as the ability to add custom features to an annotation job. RASTtk also accommodates the batch submission of genomes and the ability to customize annotation protocols for batch submissions. This is the first major software restructuring of RAST since its inception.« less

  4. Calibrated vapor generator source

    DOE Patents [OSTI]

    Davies, J.P.; Larson, R.A.; Goodrich, L.D.; Hall, H.J.; Stoddard, B.D.; Davis, S.G.; Kaser, T.G.; Conrad, F.J.

    1995-09-26

    A portable vapor generator is disclosed that can provide a controlled source of chemical vapors, such as, narcotic or explosive vapors. This source can be used to test and calibrate various types of vapor detection systems by providing a known amount of vapors to the system. The vapor generator is calibrated using a reference ion mobility spectrometer. A method of providing this vapor is described, as follows: explosive or narcotic is deposited on quartz wool, placed in a chamber that can be heated or cooled (depending on the vapor pressure of the material) to control the concentration of vapors in the reservoir. A controlled flow of air is pulsed over the quartz wool releasing a preset quantity of vapors at the outlet. 10 figs.

  5. Calibrated vapor generator source

    DOE Patents [OSTI]

    Davies, John P. (Idaho Falls, ID); Larson, Ronald A. (Idaho Falls, ID); Goodrich, Lorenzo D. (Shelley, ID); Hall, Harold J. (Idaho Falls, ID); Stoddard, Billy D. (Idaho Falls, ID); Davis, Sean G. (Idaho Falls, ID); Kaser, Timothy G. (Idaho Falls, ID); Conrad, Frank J. (Albuquerque, NM)

    1995-01-01

    A portable vapor generator is disclosed that can provide a controlled source of chemical vapors, such as, narcotic or explosive vapors. This source can be used to test and calibrate various types of vapor detection systems by providing a known amount of vapors to the system. The vapor generator is calibrated using a reference ion mobility spectrometer. A method of providing this vapor is described, as follows: explosive or narcotic is deposited on quartz wool, placed in a chamber that can be heated or cooled (depending on the vapor pressure of the material) to control the concentration of vapors in the reservoir. A controlled flow of air is pulsed over the quartz wool releasing a preset quantity of vapors at the outlet.

  6. Filtered cathodic arc source

    DOE Patents [OSTI]

    Falabella, S.; Sanders, D.M.

    1994-01-18

    A continuous, cathodic arc ion source coupled to a macro-particle filter capable of separation or elimination of macro-particles from the ion flux produced by cathodic arc discharge is described. The ion source employs an axial magnetic field on a cathode (target) having tapered sides to confine the arc, thereby providing high target material utilization. A bent magnetic field is used to guide the metal ions from the target to the part to be coated. The macro-particle filter consists of two straight solenoids, end to end, but placed at 45[degree] to one another, which prevents line-of-sight from the arc spot on the target to the parts to be coated, yet provides a path for ions and electrons to flow, and includes a series of baffles for trapping the macro-particles. 3 figures.

  7. Evaluated teletherapy source library

    DOE Patents [OSTI]

    Cox, Lawrence J. (Los Alamos, NM); Schach Von Wittenau, Alexis E. (Livermore, CA)

    2000-01-01

    The Evaluated Teletherapy Source Library (ETSL) is a system of hardware and software that provides for maintenance of a library of useful phase space descriptions (PSDs) of teletherapy sources used in radiation therapy for cancer treatment. The PSDs are designed to be used by PEREGRINE, the all-particle Monte Carlo dose calculation system. ETSL also stores other relevant information such as monitor unit factors (MUFs) for use with the PSDs, results of PEREGRINE calculations using the PSDs, clinical calibration measurements, and geometry descriptions sufficient for calculational purposes. Not all of this information is directly needed by PEREGRINE. It also is capable of acting as a repository for the Monte Carlo simulation history files from which the generic PSDs are derived.

  8. Electrofuels: Versatile Transportation Energy Solutions

    SciTech Connect (OSTI)

    None

    2010-07-01

    Electrofuels Project: ARPA-E’s Electrofuels Project is using microorganisms to create liquid transportation fuels in a new and different way that could be up to 10 times more energy efficient than current biofuel production methods. ARPA-E is the only U.S. government agency currently funding research on Electrofuels.

  9. High current ion source

    DOE Patents [OSTI]

    Brown, Ian G. (1088 Woodside Rd., Berkeley, CA 94708); MacGill, Robert A. (645 Kern St., Richmond, CA 94805); Galvin, James E. (2 Commodore Dr. #276, Emeryville, CA 94608)

    1990-01-01

    An ion source utilizing a cathode and anode for producing an electric arc therebetween. The arc is sufficient to vaporize a portion of the cathode to form a plasma. The plasma leaves the generation region and expands through another regon. The density profile of the plasma may be flattened using a magnetic field formed within a vacuum chamber. Ions are extracted from the plasma to produce a high current broad on beam.

  10. The European Spallation Source

    SciTech Connect (OSTI)

    Peggs, S; Eshraqi, M; Hahn, H; Jansson, A; Lindroos, M; Ponton, A; Rathsman, K; Trahern, G; Bousso, S; Calaga, R; Devanz, G; Duperrier, R D; Eguia, J; Gammino, S; Moller, S P; Oyon, C; Ruber, R.J.M.Y.

    2011-03-01

    The European Spallation Source (ESS) is a 5 MW, 2.5 GeV long pulse proton linac, to be built and commissioned in Lund, Sweden. The Accelerator Design Update (ADU) project phase is under way, to be completed at the end of 2012 by the delivery of a Technical Design Report. Improvements to the 2003 ESS design will be summarised, and the latest design activities will be presented.

  11. BERNAS ION SOURCE DISCHARGE SIMULATION

    SciTech Connect (OSTI)

    RUDSKOY,I.; KULEVOY, T.V.; PETRENKO, S.V.; KUIBEDA, R.P.; SELEZNEV, D.N.; PERSHIN, V.I.; HERSHCOVITCH, A.; JOHNSON, B.M.; GUSHENETS, V.I.; OKS, E.M.; POOLE, H.J.

    2007-08-26

    The joint research and development program is continued to develop steady-state ion source of decaborane beam for ion implantation industry. Bemas ion source is the wide used ion source for ion implantation industry. The new simulation code was developed for the Bemas ion source discharge simulation. We present first results of the simulation for several materials interested in semiconductors. As well the comparison of results obtained with experimental data obtained at the ITEP ion source test-bench is presented.

  12. Improved negative ion source

    DOE Patents [OSTI]

    Delmore, J.E.

    1984-05-01

    A method and apparatus for providing a negative ion source accelerates electrons away from a hot filament electron emitter into a region of crossed electric and magnetic fields arranged in a magnetron configuration. During a portion of the resulting cycloidal path, the electron velocity is reduced below its initial value. The electron accelerates as it leaves the surface at a rate of only slightly less than if there were no magnetic field, thereby preventing a charge buildup at the surface of the emitter. As the electron traverses the cycloid, it is decelerated during the second, third, and fourth quadrants, then reaccelerated as it approaches the end of the fourth quadrant to regain its original velocity. The minimum velocity occurs during the fourth quadrant, and corresponds to an electron temperature of 200 to 500/sup 0/C for the electric and magnetic fields commonly encountered in the ion sources of magnetic sector mass spectrometers. An ion source using the above-described thermalized electrons is also disclosed.

  13. Negative ion source

    DOE Patents [OSTI]

    Delmore, James E. (Idaho Falls, ID)

    1987-01-01

    A method and apparatus for providing a negative ion source accelerates electrons away from a hot filament electron emitter into a region of crossed electric and magnetic fields arranged in a magnetron configuration. During a portion of the resulting cycloidal path, the electron velocity is reduced below its initial value. The electron accelerates as it leaves the surface at a rate of only slightly less than if there were no magnetic field, thereby preventing a charge buildup at the surface of the emitter. As the electron traverses the cycloid, it is decelerated during the second, third, and fourth quadrants, then reeccelerated as it approaches the end of the fourth quadrant to regain its original velocity. The minimum velocity occurs during the fourth quadrant, and corresponds to an electron temperature of 200.degree. to 500.degree. for the electric and magnetic fields commonly encountered in the ion sources of magnetic sector mass spectrometers. An ion source using the above-described thermalized electrons is also disclosed.

  14. Source Selection Guide | Department of Energy

    Energy Savers [EERE]

    Source Selection Guide Source Selection Guide Source Selection Guide More Documents & Publications Source Selection Guide Attachment FY2011-77 OPAM Policy Flash 2011-77 Attachment...

  15. Fukushima Nuclear Crisis Recovery: A Modular Water Treatment System Deployed in Seven Weeks - 12489

    SciTech Connect (OSTI)

    Denton, Mark S.; Mertz, Joshua L. [Kurion, Inc., P.O. Box 5901, Oak Ridge, Tennessee 37831 (United States); Bostick, William D. [Materials and Chemistry Laboratory, Inc. (MCL) ETTP, Building K-1006, 2010 Highway 58, Suite 1000, Oak Ridge, Tennessee 37830 (United States)

    2012-07-01

    On March 11, 2011, the magnitude 9.0 Great East Japan earthquake, Tohoku, hit off the Fukushima coast of Japan. This was one of the most powerful earthquakes in recorded history and the most powerful one known to have hit Japan. The ensuing tsunami devastated a huge area resulting in some 25,000 persons confirmed dead or missing. The perfect storm was complete when the tsunami then found the four reactor, Fukushima-Daiichi Nuclear Station directly in its destructive path. While recovery systems admirably survived the powerful earthquake, the seawater from the tsunami knocked the emergency cooling systems out and did extensive damage to the plant and site. Subsequent hydrogen generation caused explosions which extended this damage to a new level and further flooded the buildings with highly contaminated water. Some 2 million people were evacuated from a fifty mile radius of the area and evaluation and cleanup began. Teams were assembled in Tokyo the first week of April to lay out potential plans for the immediate treatment of some 63 million gallons (a number which later exceeded 110 million gallons) of highly contaminated water to avoid overflow from the buildings as well as supply the desperately needed clean cooling water for the reactors. A system had to be deployed with a very brief cold shake down and hot startup before the rainy season started in early June. Joined by team members Toshiba (oil removal system), AREVA (chemical precipitation system) and Hitachi-GE (RO system), Kurion (cesium removal system following the oil separator) proposed, designed, fabricated, delivered and started up a one of a kind treatment skid and over 100 metric tons of specially engineered and modified Ion Specific Media (ISM) customized for this very challenging seawater/oil application, all in seven weeks. After a very short cold shake down, the system went into operation on June 17, 2011 on actual waste waters far exceeding 1 million Bq/mL in cesium and many other isotopes. One must remember that, in addition to attempting to do isotope removal in the competition of seawater (as high as 18,000 ppm sodium due to concentration), some 350,000 gallons of turbine oil was dispersed into the flooded buildings as well. The proposed system consisted of a 4 guard vessel skid for the oil and debris, 4 skids containing 16 cesium towers in a lead-lag layout with removable vessels (sent to an interim storage facility), and a 4 polishing vessel skid for iodine removal and trace cesium levels. At a flow rate of at least 220 gallons per minute, the system has routinely removed over 99% of the cesium, the main component of the activity, since going on line. To date, some 50% of the original activity has been removed and stabilized and cold shutdown of the plant was announced on December 10, 2011. In March and April alone, 10 cubic feet of Engineered Herschelite was shipped to Seabrook Nuclear Power Plant, NPP, to support the April 1, 2011 outage cleanup; 400 cubic feet was shipped to Oak Ridge National Laboratory (ORNL) for strontium (Sr-90) ground water remediation; and 6000 cubic feet (100 metric tons, MT, or 220,400 pounds) was readied for the Fukushima Nuclear Power Station with an additional 100 MT on standby for replacement vessels. This experience and accelerated media production in the U.S. bore direct application to what was to soon be used in Fukushima. How such a sophisticated and totally unique system and huge amount of media could be deployable in such a challenging and changing matrix, and in only seven weeks, is outlined in this paper as well as the system and operation itself. As demonstrated herein, all ten major steps leading up to the readiness and acceptance of a modular emergency technology recovery system were met and in a very short period of time, thus utilizing three decades of experience to produce and deliver such a system literally in seven weeks: - EPRI - U.S. Testing and Experience Leading to Introduction to EPRI - Japan and Subsequently TEPCO Emergency Meetings - Three Mile Island (TMI) Media and Vitrification Experience

  16. Interfacing transitions of different alkali atoms and telecom bands using one narrowband photon pair source

    E-Print Network [OSTI]

    Schunk, Gerhard; Strekalov, Dmitry V; Förtsch, Michael; Sedlmeir, Florian; Schwefel, Harald G L; Göbelt, Manuela; Christiansen, Silke; Leuchs, Gerd; Marquardt, Christoph

    2015-01-01

    Photon-atom coupling, in particular for proposed quantum repeater schemes, requires pure and versatile sources of quantum light. Here we demonstrate coupling to alkali dipole transitions in the near-infrared with a tunable source of photon pairs generated via spontaneous parametric down-conversion in a whispering-gallery mode resonator (WGMR). We have developed novel wavelength tuning mechanisms, which allow for a coarse step-wise central wavelength tuning from 790 nm to 1630 nm as well as continuous tuning with MHz resolution. We demonstrate the compatibility of our source with atomic transitions, such as the D1 line of rubidium at 795 nm (idler at 1608 nm) and cesium at 895\\,nm (idler at 1312 nm). At the cesium D1 transition, we exemplarily show a continuous scanning of the signal wavelength over the Doppler-broadened absorption line, and finally a heralded single photon spectroscopy of the atomic decay. Providing this flexibility in connecting various atomic transitions with telecom wavelengths, we demonst...

  17. Sources of tritium

    SciTech Connect (OSTI)

    Phillips, J.E.; Easterly, C.E.

    1980-12-01

    A review of tritium sources is presented. The tritium production and release rates are discussed for light water reactors (LWRs), heavy water reactors (HWRs), high temperature gas cooled reactors (HTGRs), liquid metal fast breeder reactors (LMFBRs), and molten salt breeder reactors (MSBRs). In addition, release rates are discussed for tritium production facilities, fuel reprocessing plants, weapons detonations, and fusion reactors. A discussion of the chemical form of the release is included. The energy producing facilities are ranked in order of increasing tritium production and release. The ranking is: HTGRs, LWRs, LMFBRs, MSBRs, and HWRs. The majority of tritium has been released in the form of tritiated water.

  18. Compact ion accelerator source

    DOE Patents [OSTI]

    Schenkel, Thomas; Persaud, Arun; Kapadia, Rehan; Javey, Ali

    2014-04-29

    An ion source includes a conductive substrate, the substrate including a plurality of conductive nanostructures with free-standing tips formed on the substrate. A conductive catalytic coating is formed on the nanostructures and substrate for dissociation of a molecular species into an atomic species, the molecular species being brought in contact with the catalytic coating. A target electrode placed apart from the substrate, the target electrode being biased relative to the substrate with a first bias voltage to ionize the atomic species in proximity to the free-standing tips and attract the ionized atomic species from the substrate in the direction of the target electrode.

  19. Photon Source Parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeeding access| DepartmentPeerFederal FleetUp in thePhoton Source Parameters Print

  20. Photon Source Parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeeding access| DepartmentPeerFederal FleetUp in thePhoton Source Parameters

  1. Heat Source Lire,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journalvivo Low-DoseOptions for AccidentalHealth, Safety,FOIAHeatSource

  2. Photon Source Parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesseworkSURVEYI/OPerformance andAreaPhotoinduced electron transferPhoton Source

  3. Advanced Photon Source Upgrade Project

    ScienceCinema (OSTI)

    Mitchell, John; Gibson, Murray; Young, Linda; Joachimiak, Andrzej

    2013-04-19

    Upgrade to Advanced Photon Source announced by Department Of Energy. Read more: http://go.usa.gov/ivZ

  4. Completeness of Integrated Information Sources

    E-Print Network [OSTI]

    Freytag, Johann-Christoph

    Completeness of Integrated Information Sources Felix Naumann, Johann-Christoph Freytag, Ulf Leser attributes of these entities. Mediator-based information systems allow integrated access to such sources new merge operators, which formalize the integration of multiple source responses. A completeness

  5. Multiple source heat pump

    DOE Patents [OSTI]

    Ecker, Amir L. (Duncanville, TX)

    1983-01-01

    A heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating a fluid in heat exchange relationship with a refrigerant fluid, at least three refrigerant heat exchangers, one for effecting heat exchange with the fluid, a second for effecting heat exchange with a heat exchange fluid, and a third for effecting heat exchange with ambient air; a compressor for compressing the refrigerant; at least one throttling valve connected at the inlet side of a heat exchanger in which liquid refrigerant is vaporized; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circuit and pump for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and directional flow of refrigerant therethrough for selecting a particular mode of operation. Also disclosed are a variety of embodiments, modes of operation, and schematics therefor.

  6. Neutrino Sources and Properties

    E-Print Network [OSTI]

    Francesco Vissani

    2015-05-19

    In this lecture, prepared for PhD students, basic considerations on neutrino interactions, properties and sites of production are overviewed. The detailed content is as follows: Sect. 1, Weak interactions and neutrinos: Fermi coupling; definition of neutrinos; global numbers. Sect. 2, A list of neutrino sources: Explanatory note and examples (solar pp- and supernova-neutrinos). Sect. 3, Neutrinos oscillations: Basic formalism (Pontecorvo); matter effect (Mikheev, Smirnov, Wolfenstein); status of neutrino masses and mixings. Sect. 4, Modifying the standard model to include neutrinos masses: The fermions of the standard model; one additional operator in the standard model (Weinberg); implications. One summary table and several exercises offer the students occasions to check, consolidate and extend their understanding; the brief reference list includes historical and review papers and some entry points to active research in neutrino physics.

  7. Thulium-170 heat source

    DOE Patents [OSTI]

    Walter, Carl E. (Pleasanton, CA); Van Konynenburg, Richard (Livermore, CA); VanSant, James H. (Tracy, CA)

    1992-01-01

    An isotopic heat source is formed using stacks of thin individual layers of a refractory isotopic fuel, preferably thulium oxide, alternating with layers of a low atomic weight diluent, preferably graphite. The graphite serves several functions: to act as a moderator during neutron irradiation, to minimize bremsstrahlung radiation, and to facilitate heat transfer. The fuel stacks are inserted into a heat block, which is encased in a sealed, insulated and shielded structural container. Heat pipes are inserted in the heat block and contain a working fluid. The heat pipe working fluid transfers heat from the heat block to a heat exchanger for power conversion. Single phase gas pressure controls the flow of the working fluid for maximum heat exchange and to provide passive cooling.

  8. Device for modular input high-speed multi-channel digitizing of electrical data

    DOE Patents [OSTI]

    VanDeusen, Alan L. (Lee's Summit, MO); Crist, Charles E. (Waxahachie, TX)

    1995-09-26

    A multi-channel high-speed digitizer module converts a plurality of analog signals to digital signals (digitizing) and stores the signals in a memory device. The analog input channels are digitized simultaneously at high speed with a relatively large number of on-board memory data points per channel. The module provides an automated calibration based upon a single voltage reference source. Low signal noise at such a high density and sample rate is accomplished by ensuring the A/D converters are clocked at the same point in the noise cycle each time so that synchronous noise sampling occurs. This sampling process, in conjunction with an automated calibration, yields signal noise levels well below the noise level present on the analog reference voltages.

  9. Modular framework for dynamic modeling and analyses of legged robots S.V. Shah, S.K. Saha , J.K. Dutt

    E-Print Network [OSTI]

    Saha, Subir Kumar

    Modular framework for dynamic modeling and analyses of legged robots S.V. Shah, S.K. Saha , J; fax: +91 11 26582053. E-mail addresses: surilvshah@gmail.com (S.V. Shah), saha@mech.iitd.ac.in (S.K. Saha), jkdutt@mech.iitd.ac.in (J.K. Dutt). 0094-114X/$ ­ see front matter © 2011 Elsevier Ltd. All

  10. A 4p BaF2 detector for (n,g) cross section measurements at a spallation neutron source

    E-Print Network [OSTI]

    Heil, M; Fowler, M M; Haight, R C; Käppeler, F; Rundberg, R S; Seabury, E H; Ullmann, J L; Wilhelmy, J B; Wisshak, K

    2013-01-01

    The quest for improved neutron capture cross sections for advanced reactor concepts, transmutation of radioactive wastes as well as for astrophysical scenarios of neutron capture nucleosynthesis has motivated new experimental efforts based on modern techniques. Recent measurements in the keV region have shown that a 4p BaF2 detector represents an accurate and versatile instrument for such studies. The present work deals with the potential of such a 4p BaF2 detector in combination with spallation neutron sources, which offer large neutron fluxes over a wide energy range. Detailed Monte Carlo simulations with the GEANT package have been performed to investigate the critical backgrounds at a spallation facility, to optimize the detector design, and to discuss alternative solutions.

  11. SCALE: A modular code system for performing standardized computer analyses for licensing evaluation. Control modules -- Volume 1, Revision 4

    SciTech Connect (OSTI)

    Landers, N.F.; Petrie, L.M.; Knight, J.R.

    1995-04-01

    SCALE--a modular code system for Standardized Computer Analyses Licensing Evaluation--has been developed by Oak Ridge National Laboratory at the request of the US Nuclear Regulatory Commission. The SCALE system utilizes well-established computer codes and methods within standard analysis sequences that (1) allow an input format designed for the occasional user and/or novice, (2) automate the data processing and coupling between modules, and (3) provide accurate and reliable results. System development has been directed at problem-dependent cross-section processing and analysis of criticality safety, shielding, heat transfer, and depletion/decay problems. Since the initial release of SCALE in 1980, the code system has been heavily used for evaluation of nuclear fuel facility and package designs. This revision documents Version 4.2 of the system. This manual is divided into three volumes: Volume 1--for the control module documentation, Volume 2--for the functional module documentation, and Volume 3 for the documentation of the data libraries and subroutine libraries.

  12. SCALE: A modular code system for performing standardized computer analyses for licensing evaluation: Control modules C4, C6

    SciTech Connect (OSTI)

    1997-03-01

    This Manual represents Revision 5 of the user documentation for the modular code system referred to as SCALE. The history of the SCALE code system dates back to 1969 when the current Computational Physics and Engineering Division at Oak Ridge National Laboratory (ORNL) began providing the transportation package certification staff at the U. S. Atomic Energy Commission with computational support in the use of the new KENO code for performing criticality safety assessments with the statistical Monte Carlo method. From 1969 to 1976 the certification staff relied on the ORNL staff to assist them in the correct use of codes and data for criticality, shielding, and heat transfer analyses of transportation packages. However, the certification staff learned that, with only occasional use of the codes, it was difficult to become proficient in performing the calculations often needed for an independent safety review. Thus, shortly after the move of the certification staff to the U.S. Nuclear Regulatory Commission (NRC), the NRC staff proposed the development of an easy-to-use analysis system that provided the technical capabilities of the individual modules with which they were familiar. With this proposal, the concept of the Standardized Computer Analyses for Licensing Evaluation (SCALE) code system was born. This volume is part of the manual related to the control modules for the newest updated version of this computational package.

  13. SCALE: A modular code system for performing standardized computer analyses for licensing evaluation. Miscellaneous -- Volume 3, Revision 4

    SciTech Connect (OSTI)

    Petrie, L.M.; Jordon, W.C.; Edwards, A.L. |

    1995-04-01

    SCALE--a modular code system for Standardized Computer Analyses Licensing Evaluation--has been developed by Oak Ridge National Laboratory at the request of the US Nuclear Regulatory Commission. The SCALE system utilizes well-established computer codes and methods within standard analysis sequences that (1) allow an input format designed for the occasional user and/or novice; (2) automate the data processing and coupling between modules, and (3) provide accurate and reliable results. System developments has been directed at problem-dependent cross-section processing and analysis of criticality safety, shielding, heat transfer, and depletion/decay problems. Since the initial release of SCALE in 1980, the code system has been heavily used for evaluation of nuclear fuel facility and package designs. This revision documents Version 4.2 of the system. This manual is divided into three volumes: Volume 1--for the control module documentation, Volume 2--for the functional module documentation, and Volume 3--for the data libraries and subroutine libraries.

  14. SCALE: A modular code system for performing standardized computer analyses for licensing evaluation: Functional modules, F9-F11

    SciTech Connect (OSTI)

    NONE

    1997-03-01

    This Manual represents Revision 5 of the user documentation for the modular code system referred to as SCALE. The history of the SCALE code system dates back to 1969 when the current Computational Physics and Engineering Division at Oak Ridge National Laboratory (ORNL) began providing the transportation package certification staff at the U.S. Atomic Energy Commission with computational support in the use of the new KENO code for performing criticality safety assessments with the statistical Monte Carlo method. From 1969 to 1976 the certification staff relied on the ORNL staff to assist them in the correct use of codes and data for criticality, shielding, and heat transfer analyses of transportation packages. However, the certification staff learned that, with only occasional use of the codes, it was difficult to become proficient in performing the calculations often needed for an independent safety review. Thus, shortly after the move of the certification staff to the U.S. Nuclear Regulatory Commission (NRC), the NRC staff proposed the development of an easy-to-use analysis system that provided the technical capabilities of the individual modules with which they were familiar. With this proposal, the concept of the Standardized Computer Analyses for Licensing Evaluation (SCALE) code system was born. This volume consists of the section of the manual dealing with three of the functional modules in the code. Those are the Morse-SGC for the SCALE system, Heating 7.2, and KENO V.a. The manual describes the latest released versions of the codes.

  15. Design of a Modular Multilevel Converter as an Active Front-End for a magnet supply application

    E-Print Network [OSTI]

    Panagiotis, Asimakopoulos; Massimo, Bongiorno

    2015-01-01

    The aim of this work is to describe the general design procedure of a Modular Multilevel Converter (MMC) applied as an Active Front-End (AFE) for a magnet supply for beam accelerators. The dimensioning criteria for the converter and the dc-link capacitance are presented and the grid transformer requirements are set. Considering the converter design, the arm inductance calculation is based on the specifications for the arm-current ripple and the DC-link fault tolerance, but, also, on the limitation of the second harmonic and the second-order LC resonance of the arm current. The module capacitance value is evaluated by focusing on the required switching dynamics and the capacitor-voltage ripple according to a newly proposed graphical method. The loading of each semiconductor in the half bridge is calculated via simulation, indicating the unsymmetrical current distribution. It is concluded that the current distribution for each semiconductor depends on the mode of operation of the converter. The different criter...

  16. SIPS: A small modular process unit for the in-tank pretreatment of high-level wastes

    SciTech Connect (OSTI)

    Reich, M.; Powell, J.; Barletta, R. [Brookhaven National Lab., Upton, NY (United States)

    1996-12-31

    As a result of the U.S. weapons production program, there are now hundreds of large tanks containing highly radioactive wastes. Safe disposal of these wastes requires their processing and separations into a small volume of highly radioactive waste (HLW) and a much larger volume of low-level waste (LLW). The HLW waste would then be vitrified and transported to a geologic repository. To date, the principal approach proposed for the separation envisions a large, centralized process facility. The small in-tank processing system (SIPS) is a proposed new, small modular concept for the in-tank processing and separation of wastes into HLW and LLW output streams suitable for vitrification. Instead of pumping the retrieved tank wastes as a solid/liquid slurry over long distances to a centralized process facility, SIPS would employ a small process module, typically {approximately}1 m in diameter and 4 m long, which would be inserted into the tank. Over a period of {approx} 6 months, the module would process the solid/liquid materials in the tank, producing separated liquid HLW and liquid LLW output streams that are pumped away in two small-diameter ({approx}3-cm outside diameter) pipes. The SIPS module would be serviced by five auxiliary small pipes - a water feed pipe, a water feed pipe containing micron-size ferromagnetic particles, a nitric acid ({approx}3 M) feed pipe, and input/out pipes to hydraulically load/unload ion exchange beads.

  17. SMITHERS: An object-oriented modular mapping methodology for MCNP-based neutronic–thermal hydraulic multiphysics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Richard, Joshua; Galloway, Jack; Fensin, Michael; Trellue, Holly

    2015-04-04

    A novel object-oriented modular mapping methodology for externally coupled neutronics–thermal hydraulics multiphysics simulations was developed. The Simulator using MCNP with Integrated Thermal-Hydraulics for Exploratory Reactor Studies (SMITHERS) code performs on-the-fly mapping of material-wise power distribution tallies implemented by MCNP-based neutron transport/depletion solvers for use in estimating coolant temperature and density distributions with a separate thermal-hydraulic solver. The key development of SMITHERS is that it reconstructs the hierarchical geometry structure of the material-wise power generation tallies from the depletion solver automatically, with only a modicum of additional information required from the user. In addition, it performs the basis mapping from themore »combinatorial geometry of the depletion solver to the required geometry of the thermal-hydraulic solver in a generalizable manner, such that it can transparently accommodate varying levels of thermal-hydraulic solver geometric fidelity, from the nodal geometry of multi-channel analysis solvers to the pin-cell level of discretization for sub-channel analysis solvers.« less

  18. A Scalable Correlator Architecture Based on Modular FPGA Hardware, Reuseable Gateware, and Data Packetization

    E-Print Network [OSTI]

    Aaron Parsons; Donald Backer; Henry Chen; Pierre Droz; Terry Filiba; Jason Manley; David MacMahon; Peter McMahon; Arash Parsa; Andrew Siemion; Dan Werthimer; Melvyn Wright

    2009-03-17

    A new generation of radio telescopes is achieving unprecedented levels of sensitivity and resolution, as well as increased agility and field-of-view, by employing high-performance digital signal processing hardware to phase and correlate large numbers of antennas. The computational demands of these imaging systems scale in proportion to BMN^2, where B is the signal bandwidth, M is the number of independent beams, and N is the number of antennas. The specifications of many new arrays lead to demands in excess of tens of PetaOps per second. To meet this challenge, we have developed a general purpose correlator architecture using standard 10-Gbit Ethernet switches to pass data between flexible hardware modules containing Field Programmable Gate Array (FPGA) chips. These chips are programmed using open-source signal processing libraries we have developed to be flexible, scalable, and chip-independent. This work reduces the time and cost of implementing a wide range of signal processing systems, with correlators foremost among them,and facilitates upgrading to new generations of processing technology. We present several correlator deployments, including a 16-antenna, 200-MHz bandwidth, 4-bit, full Stokes parameter application deployed on the Precision Array for Probing the Epoch of Reionization.

  19. Constricted glow discharge plasma source

    DOE Patents [OSTI]

    Anders, Andre (Albany, CA); Anders, Simone (Albany, CA); Dickinson, Michael (San Leandro, CA); Rubin, Michael (Berkeley, CA); Newman, Nathan (Winnetka, IL)

    2000-01-01

    A constricted glow discharge chamber and method are disclosed. The polarity and geometry of the constricted glow discharge plasma source is set so that the contamination and energy of the ions discharged from the source are minimized. The several sources can be mounted in parallel and in series to provide a sustained ultra low source of ions in a plasma with contamination below practical detection limits. The source is suitable for applying films of nitrides such as gallium nitride and oxides such as tungsten oxide and for enriching other substances in material surfaces such as oxygen and water vapor, which are difficult process as plasma in any known devices and methods. The source can also be used to assist the deposition of films such as metal films by providing low-energy ions such as argon ions.

  20. Alternative Energy Sources – Myths and Realities

    E-Print Network [OSTI]

    Youngquist, Walter

    1998-01-01

    Alternative Energy Sources - Myths and Realities Walterneed to think about alternative energy sources; the worlddepletion of oil? Alternative energy sources can be divided

  1. Media Center | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    distributed to all APS users and others interested in the APS. Research Highlights Books Articles on Advanced Photon Source research and engineering highlights that are...

  2. Linac Coherent Light Source Overview

    Office of Energy Efficiency and Renewable Energy (EERE)

    Take an animated tour of the Linac Coherent Light Source (LCLS). Follow the laser pulse from the injector gun all the way through to the Far Experimental Hall.

  3. Linac Coherent Light Source Overview

    ScienceCinema (OSTI)

    None

    2013-05-29

    Take an animated tour of the Linac Coherent Light Source (LCLS). Follow the laser pulse from the injector gun all the way through to the Far Experimental Hall.

  4. APS Publications | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publications Publications Database The APS Publications Database is a searchable compendium of information on results from research at the APS. It is the official source for...

  5. THE ONLY SOURCE OF ENERGY

    E-Print Network [OSTI]

    Calvin, Genevieve J.

    2011-01-01

    s allotment of energy and today's needs, before completelytoday's sunlight which is, and always has been, the ONLY source of energy.

  6. Advanced Neutron Source (ANS) Project

    SciTech Connect (OSTI)

    Campbell, J.H.; Selby, D.L.; Harrington, R.M.; Peretz, F.J.

    1991-02-01

    This report discusses the research and development, design and safety of the Advanced Neutron Source at Oak Ridge National Laboratory. (LSP)

  7. The SIAM Photon Source

    SciTech Connect (OSTI)

    Pairsuwan, Weerapong

    2007-01-19

    A short history of the SIAM Photon Source in Thailand is described. The facility is based on the 1 GeV storage ring obtained from the SORTEC consortium in Japan. After a redesign to include insertion straight sections it produced the first light in December 2001 and the first beam line became operational in early 2002. Special difficulties appear when a synchrotron light facility is obtained by donation, which have mostly to do with the absence of human resource development that elsewhere is commonly accomplished during design and construction. Additional problems arise by the distance of a developing country like Thailand from the origin of technical parts of the donation. A donation does not provide time to generate local capabilities or include in the technical design locally obtainable parts. This makes future developments, repairs and maintenance more time consuming, difficult and expensive than it should be. In other cases, parts of components are proprietary or obsolete or both which requires redesign and engineering at a time when the replacement part should be available to prevent stoppage of operation.The build-up of a user community is very difficult, especially when the radiation spectrum is confined to the VUV regime. Most of scientific interest these days is focused on the x-ray regime. Due to its low beam energy, the SIAM storage ring did not produce useful x-ray intensities and we are therefore in the midst of an upgrade to produce harder radiation. The first step has been achieved with a 20% increase of energy to 1.2 GeV. This step shifts the critical photon energy of bending magnet radiation from 800 eV to 1.4 keV providing useful radiation up to 7 keV. A XAS-beam line has been completed in 2005 and experimentation is very active by now. The next step is to install a 6.4 T wavelength shifter by the end of 2006 resulting in a critical photon energy of 6.15 keV. Further upgrades are planed for the comming years.

  8. Hollow electrode plasma excitation source

    DOE Patents [OSTI]

    Ballou, Nathan E. (West Richland, WA)

    1992-01-01

    A plasma source incorporates a furnace as a hollow anode, while a coaxial cathode is disposed therewithin. The source is located in a housing provided with an ionizable gas such that a glow discharge is produced between anode and cathode. Radiation or ionic emission from the glow discharge characterizes a sample placed within the furnace and heated to elevated temperatures.

  9. Hollow electrode plasma excitation source

    DOE Patents [OSTI]

    Ballou, N.E.

    1992-04-14

    A plasma source incorporates a furnace as a hollow anode, while a coaxial cathode is disposed therewithin. The source is located in a housing provided with an ionizable gas such that a glow discharge is produced between anode and cathode. Radiation or ionic emission from the glow discharge characterizes a sample placed within the furnace and heated to elevated temperatures. 5 figs.

  10. The Linac Coherent Light Source

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    White, William E.; Robert, Aymeric; Dunne, Mike

    2015-05-01

    The Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory was the first hard X-ray free-electron laser (FEL) to operate as a user facility. After five years of operation, LCLS is now a mature FEL user facility. Our personal views about opportunities and challenges inherent to these unique light sources are discussed.

  11. Particle Acceleration in Astrophysical Sources

    E-Print Network [OSTI]

    Amato, Elena

    2015-01-01

    Astrophysical sources are extremely efficient accelerators. Some sources emit photons up to multi-TeV energies, a signature of the presence, within them, of particles with energies much higher than those achievable with the largest accelerators on Earth. Even more compelling evidence comes from the study of Cosmic Rays, charged relativistic particles that reach the Earth with incredibly high energies: at the highest energy end of their spectrum, these subatomic particles are carrying a macroscopic energy, up to a few Joules. Here I will address the best candidate sources and mechanisms as cosmic particle accelerators. I will mainly focus on Galactic sources such as Supernova Remnants and Pulsar Wind Nebulae, which being close and bright, are the best studied among astrophysical accelerators. These sources are held responsible for most of the energy that is put in relativistic particles in the Universe, but they are not thought to accelerate particles up to the highest individual energies, $\\approx 10^{20}$ eV...

  12. THE CHEMICAL AND RADIATION RESISTANCE OF POLYPHENYLENE SULFIIDE AS ENCOUNTERED IN THE MODULAR CAUSTIC SIDE SOLVENT EXTRACTION PROCESSES

    SciTech Connect (OSTI)

    Fondeur, F.; Herman, D.; Poirier, M.; Fink, S.

    2011-06-30

    Polyphenylene sulfide (PPS) is a semicrystalline polymer with excellent engineering plastic properties and suitable processing temperatures. PPS can also be made containing branches (using a trifunctional monomer) and with crosslinked microstructure (when curing the monomer at high temperature in the presence of oxygen). PPS is made from the condensation reaction between para-dichlorobenzene and sodium sulfide with the assistance of a catalyst (to lower the activation barrier). The synthesis conditions for making PPS has evolved since its invention in the 1960's to the optimal conditions developed by the Philips Corporation in the 1970's. The resulting polymer consists of chemically stable molecular moieties such as benzene rings and ether like sulfur linkages between the aromatic rings. Polyphenylene sulfide (PPS) is extremely resistant to gamma irradiation, caustic solution, and dilute nitric acid. PPS is the material of construction for the coalescers used in the Modular Caustic-Side Solvent Extraction Unit (MCU). After applying the equivalent of 3.3 E8 rad (330 Mrad), or the equivalent of 11 years of gamma irradiation (assuming a stripping solution concentration of 7.5 Ci/gal), and several months of exposures to 3M caustic solution and caustic salt simulant, no dimensional changes nor chemical changes were detected in PPS whether the PPS was in fiber form or in a composite with E-glass fibers. However, PPS acts as a media for heterogeneous nucleation. In particular, PPS appears to favor aluminosilicate formation in saturated solutions of aluminum and silicon in caustic environments. Parallel testing, in progress, is examining the stability of PPS when exposed to the new solvent formulation under development for MCU. Preliminary data, after two months of exposure, demonstrates PPS is stable to the new solvent.

  13. Technical Readiness and Gaps Analysis of Commercial Optical Materials and Measurement Systems for Advanced Small Modular Reactors

    SciTech Connect (OSTI)

    Anheier, Norman C.; Suter, Jonathan D.; Qiao, Hong; Andersen, Eric S.; Berglin, Eric J.; Bliss, Mary; Cannon, Bret D.; Devanathan, Ramaswami; Mendoza, Albert; Sheen, David M.

    2013-08-06

    This report intends to support Department of Energy’s Office of Nuclear Energy (DOE-NE) Nuclear Energy Research and Development Roadmap and industry stakeholders by evaluating optical-based instrumentation and control (I&C) concepts for advanced small modular reactor (AdvSMR) applications. These advanced designs will require innovative thinking in terms of engineering approaches, materials integration, and I&C concepts to realize their eventual viability and deployability. The primary goals of this report include: 1. Establish preliminary I&C needs, performance requirements, and possible gaps for AdvSMR designs based on best available published design data. 2. Document commercial off-the-shelf (COTS) optical sensors, components, and materials in terms of their technical readiness to support essential AdvSMR in-vessel I&C systems. 3. Identify technology gaps by comparing the in-vessel monitoring requirements and environmental constraints to COTS optical sensor and materials performance specifications. 4. Outline a future research, development, and demonstration (RD&D) program plan that addresses these gaps and develops optical-based I&C systems that enhance the viability of future AdvSMR designs. The development of clean, affordable, safe, and proliferation-resistant nuclear power is a key goal that is documented in the Nuclear Energy Research and Development Roadmap. This roadmap outlines RD&D activities intended to overcome technical, economic, and other barriers, which currently limit advances in nuclear energy. These activities will ensure that nuclear energy remains a viable component to this nation’s energy security.

  14. Solid state power amplifier as 805 MHz master source for the LANSCE coupled-cavity linac

    SciTech Connect (OSTI)

    Lyles, J.; Davis, J.

    1998-12-31

    From 100 to 800 MeV, the Los Alamos Neutron Science Center (LANSCE) proton linac receives RF power from forty-four 1.25 MW klystrons at 805 Megahertz (MHz). A single master RF source provides a continuous high level phase reference signal which drives the klystrons along the 731 meter-long linac through a coaxial transmission line. A single point failure of this system can deenergize the entire coupled-cavity linac (CCL) RF plant. The authors replaced a physically large air-cooled tetrode amplifier with a compact water-cooled unit based on modular amplifier pallets developed at LANSCE. Each 600 Watt pallet utilizes eight push-pull bipolar power transistor pairs operated in class AB. Four of these can easily provide the 2000 watt reference carrier from the stable master RF source. A radial splitter and combiner parallels the modules. This amplifier has proven to be completely reliable after two years of operation without failure. A second unit was constructed and installed for redundancy, and the old tetrode system was removed in 1998. The compact packaging for cooling, DC power, impedance matching, RF interconnection, and power combining met the electrical and mechanical requirements. CRT display of individual collector currents and RF levels is made possible with built-in samplers and a VXI data acquisition unit.

  15. Diversity employment and recruitment sources

    SciTech Connect (OSTI)

    Not Available

    1994-08-01

    Effective human resources management has been identified as one of four critical success factors in the Department of Energy Strategic Plan. The Plan states relative to this factor: ``The Department seeks greater alignment of resources with agency priorities and increased diversification of the workforce, including gender, ethnicity, age, and skills. This diversification will bring new thinking and perspectives that heretofore have not had a voice in departmental decision-making.`` This Guide has been developed as a key tool to assist Department of Energy management and administrative staff in achieving Goal 2 of this critical success factor, which is to ``Ensure a diverse and talented workforce.`` There are numerous sources from which to recruit minorities, women and persons with disabilities. Applying creativity and proactive effort, using traditional and non-traditional approaches, and reaching out to various professional, academic and social communities will increase the reservoir of qualified candidates from which to make selections. In addition, outreach initiatives will undoubtedly yield further benefits such as a richer cultural understanding and diversity awareness. The resource listings presented in this Guide are offered to encourage active participation in the diversity recruitment process. This Guide contains resource listings by state for organizations in the following categories: (1) African American Recruitment Sources; (2) Asian American/Pacific Islander Recruitment Sources; (3) Hispanic Recruitment Sources; (4) Native American/Alaskan Native Recruitment Sources; (5) Persons with Disabilities Recruitment Sources; and (6) Women Recruitment Sources.

  16. International Data on Radiological Sources

    SciTech Connect (OSTI)

    Martha Finck; Margaret Goldberg

    2010-07-01

    ABSTRACT The mission of radiological dispersal device (RDD) nuclear forensics is to identify the provenance of nuclear and radiological materials used in RDDs and to aid law enforcement in tracking nuclear materials and routes. The application of databases to radiological forensics is to match RDD source material to a source model in the database, provide guidance regarding a possible second device, and aid the FBI by providing a short list of manufacturers and distributors, and ultimately to the last legal owner of the source. The Argonne/Idaho National Laboratory RDD attribution database is a powerful technical tool in radiological forensics. The database (1267 unique vendors) includes all sealed sources and a device registered in the U.S., is complemented by data from the IAEA Catalogue, and is supported by rigorous in-lab characterization of selected sealed sources regarding physical form, radiochemical composition, and age-dating profiles. Close working relationships with global partners in the commercial sealed sources industry provide invaluable technical information and expertise in the development of signature profiles. These profiles are critical to the down-selection of potential candidates in either pre- or post- event RDD attribution. The down-selection process includes a match between an interdicted (or detonated) source and a model in the database linked to one or more manufacturers and distributors.

  17. Three chamber negative ion source

    DOE Patents [OSTI]

    Leung, K.N.; Ehlers, K.W.; Hiskes, J.R.

    1983-11-10

    It is an object of this invention provide a negative ion source which efficiently provides a large flux of negatively ionized particles. This invention provides a volume source of negative ions which has a current density sufficient for magnetic fusion applications and has electrons suppressed from the output. It is still another object of this invention to provide a volume source of negative ions which can be electrostatically accelerated to high energies and subsequently neutralized to form a high energy neutral beam for use with a magnetically confined plasma.

  18. Electric utility transmission and distribution upgrade deferral benefits from modular electricity storage : a study for the DOE Energy Storage Systems Program.

    SciTech Connect (OSTI)

    Eyer, James M.

    2009-06-01

    The work documented in this report was undertaken as part of an ongoing investigation of innovative and potentially attractive value propositions for electricity storage by the United States Department of Energy (DOE) and Sandia National Laboratories (SNL) Electricity Storage Systems (ESS) Program. This study characterizes one especially attractive value proposition for modular electricity storage (MES): electric utility transmission and distribution (T&D) upgrade deferral. The T&D deferral benefit is characterized in detail. Also presented is a generalized framework for estimating the benefit. Other important and complementary (to T&D deferral) elements of possible value propositions involving MES are also characterized.

  19. Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 9: Mixed Alcohols From Syngas -- State of Technology

    SciTech Connect (OSTI)

    Nexant Inc.

    2006-05-01

    This deliverable is for Task 9, Mixed Alcohols from Syngas: State of Technology, as part of National Renewable Energy Laboratory (NREL) Award ACO-5-44027, ''Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup and Oxygen Separation Equipment''. Task 9 supplements the work previously done by NREL in the mixed alcohols section of the 2003 technical report Preliminary Screening--Technical and Economic Assessment of Synthesis Gas to Fuels and Chemicals with Emphasis on the Potential for Biomass-Derived Syngas.

  20. APS News | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Young, Director of the X-ray Science Division in Argonne's Advanced Photon Source; Elliot Kanter, of the Atomic, Molecular, and Optical Physics Group in the X-ray Science...