Powered by Deep Web Technologies
Note: This page contains sample records for the topic "vermont yankee nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Vermont Nuclear Profile - Vermont Yankee  

U.S. Energy Information Administration (EIA) Indexed Site

Vermont Yankee" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

2

VERMONT YANKEE NUCLEAR POWER STATION- NRC LICENSE  

E-Print Network (OSTI)

your application for a renewed license of your Vermont Yankee Nuclear Power Station. The enclosed report documents the result of the inspection which was discussed with members of your staff on May 24, 2007, at a publicly observed exit meeting conducted at the Latchis Theater in Brattleboro, VY. The purpose of this inspection was to examine the plant activities and documents that supported the application for a renewed license of the Vermont Yankee Nuclear Power Station. The inspection reviewed the screening and scoping of non-safety related systems, structures, and components, as required in 10 CFR 54.4(a)(2), and determined whether the proposed aging management programs are capable of reasonably managing the effects of aging. These NRC inspection activities constitute one of several inputs into the NRC review process for license renewal applications. The inspection team concluded screening and scoping of nonsafety-related systems, structures, and components, were implemented as required in 10 CFR 54.4(a)(2), and the aging management portions of the license renewal activities were conducted as described in the License Renewal Application. The inspection results supported a conclusion that the

Mr. Theodore; A. Sullivan

2007-01-01T23:59:59.000Z

3

"1. Vermont Yankee","Nuclear","Entergy Nuclear Vermont Yankee",620  

U.S. Energy Information Administration (EIA) Indexed Site

Vermont" Vermont" "1. Vermont Yankee","Nuclear","Entergy Nuclear Vermont Yankee",620 "2. J C McNeil","Other Renewables","City of Burlington-Electric",52 "3. Bellows Falls","Hydroelectric","TransCanada Hydro Northeast Inc.,",48 "4. Wilder","Hydroelectric","TransCanada Hydro Northeast Inc.,",41 "5. Harriman","Hydroelectric","TransCanada Hydro Northeast Inc.,",41 "6. Berlin 5","Petroleum","Green Mountain Power Corp",35 "7. Vernon","Hydroelectric","TransCanada Hydro Northeast Inc.,",34 "8. Sheldon Springs Hydroelectric","Hydroelectric","Sheldon Vermont Hydro Co., Inc.",24

4

Peach Bottom and Vermont Yankee Nuclear Power Plants  

Science Conference Proceedings (OSTI)

A dramatic and extraordinary instance of state and local government control of nuclear power, the purchase by New York of the Shoreham plant is nonetheless indicative of the political demands that some states confront for additional involvement in the regulation of the radiological hazards associated with commercial nuclear power plants. Although the Supreme Court has appeared to expand, in the eight years since PG&E and Silkwood, the acceptable extent of state regulation, some states, in addition to New York, have acquired, with the acquiescence of the NRC, a degree of involvement that exceeds the role for state and local governments provided by the Court. For example, the Commonwealth of Pennsylvania concluded with the Philadelphia Electric Company (PECO) in June 1989 an agreement that commits PECO to various initiatives, not otherwise required under NRC regulations, for the safe operation of the Peach Bottom nuclear power plant in Pennsylvania. In July 1991 the State of Vermont and Vermont Yankee Nuclear Power Corporation (Vermont Yankee) concluded an agreement similar to that concluded between Pennsylvania and PECO. The agreement also commits Vermont Yankee to certain initiatives, not otherwise required under NRC regulations, related to its operation of the Vermont Yankee nuclear power plant in Vermont. The agreement was precipitated by a challenge to an application, submitted to the NRC by Vermont Yankee in April 1989, to amend the Vermont Yankee plant license to extend its expiration date from December 11, 2007 to March 21, 2012. The amendment would allow the Vermont Yankee plant to operate for forty full years.

NONE

1992-12-31T23:59:59.000Z

5

The debate over re-licensing the Vermont Yankee nuclear power plant  

Science Conference Proceedings (OSTI)

In 2009, the NRC's Atomic Safety and Licensing Board approved a 20-year license extension for the Vermont Yankee Nuclear Power plant. Less than seven months later, the Vermont State Senate voted 26-4 to block the required certificate for public good. How did a plant seen as likely to be re-licensed become the first in 20 years to be rejected in a public vote? (author)

Watts, Richard; Hines, Paul; Dowds, Jonathan

2010-05-15T23:59:59.000Z

6

Vermont Profile - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Vermont Yankee (Entergy Nuclear Vermont Yankee) find more: Distribution & Marketing ; Distribution Centers: Vermont: Oil Seaports/Oil Import Sites None:

7

Vermont Yankee Nucl Pwr Corp | Open Energy Information  

Open Energy Info (EERE)

Yankee Nucl Pwr Corp Jump to: navigation, search Name Vermont Yankee Nucl Pwr Corp Place Vermont Utility Id 19796 Utility Location Yes Ownership I NERC Location NPCC NERC NPCC Yes...

8

Vermont Yankee simulator qualification: large-break LOCA  

Science Conference Proceedings (OSTI)

Yankee Atomic Electric Company (YAEC) has developed simulator benchmark capabilities for the Seabrook, Maine Yankee, and Vermont Yankee Nuclear Power Station (VYNPS) simulators. The goal is to establish that each simulator has a satisfactory real-time response for different scenarios that will enhance operator training. Vermont Yankee purchased a full-scope plane simulator for the VYNPS, a four-unit boiling water reactor with a Mark-I containment. The following seven benchmark cases were selected by YAEC and VYNPC to supplement the Simulator Acceptance Test Program: (1) control rod swap; (2) partial reactor scram; (3) recirculation pump trip; (4) main steam isolation valve (MSIV) closure without scram, (5) main steamline break, (6) small-break loss-of-coolant accident (LOCA), and (7) large-break LOCA. Five simulator benchmark sessions have been completed. Each session identified simulator capabilities and limitations that needed correction. This paper discusses results from the latest large-break LOCA case.

Loomis, J.N.; Fernandez, R.T.

1987-01-01T23:59:59.000Z

9

CASMO-3/SIMULATE-3 benchmarking against Vermont Yankee  

Science Conference Proceedings (OSTI)

The cross-section generation code CASMO-3 and the advanced nodal code SIMULATE-3 are used to model Vermont Yankee (VY) cycles 9 through 13. Vermont Yankee is a small, high-power density boiling water reactor (BWR)-3 reactor. Cycles 9 through 13 were chosen for benchmarking because they have high-enrichment cores and use gamma-sensing traversing in-core probes (TIPs). To judge the merit of the new CASMO-3/SIMULATE-3 model, the results are compared to the old CASMO-2/SIMULATE-2 model. The figures of merit are consistent hot and cold eigenvalues near 1.0 and accurate reproduction of the plant TIP readings.

Hubbard, B.Y.; Morin, D.J.; Pappas, J.; Potter, R.C.; Woehlke, R.A. (Yankee Atomic Electric Co., Bolton, MA (USA))

1989-11-01T23:59:59.000Z

10

Nuclear Regulatory Commission Proceedings: A Guide for Intervenors  

E-Print Network (OSTI)

Workers, 367 U.S. 396 (1961); Vermont Yankee, 435 U.S. 519;in two 2. See, e.g. , Vermont Yankee Nuclear Power Corp. v.1143 (8th Cir. 1971); and Vermont Yankee Nuclear Power Corp.

Hansell, Dean

1982-01-01T23:59:59.000Z

11

Radiological characterization of Yankee Nuclear Power Station  

SciTech Connect

The Yankee nuclear power station located in Rowe, Massachusetts, permanently ceased power operations on February 26, 1992, after 31 yr of operation. Yankee has since initiated decommissioning planning activities. A significant component of these activities is the determination of the extent of radiological contamination of the Yankee site. This paper describes the site radiological characterization program that has been implemented for decommissioning the Yankee plant. Radiological scoping surveys were completed to support submittal of a decommissioning plan to the U.S. Nuclear Regulatory Commission (NRC) by October 1, 1993. These surveys were designed to provide sufficient detail to estimate the extent of contamination, volume of radiological waste, activity of radiological waste, and personnel dose estimates for removal activities. Surveys were conducted both inside and on the grounds outside of the Yankee plant buildings. Survey results were combined with analytical evaluations to characterize the Yankee site.

Bellini, F.X.; Cumming, E.R.; Hollenbeck, P. (Yankee Atomic Electric Co., Bolton, MA (United States))

1993-01-01T23:59:59.000Z

12

Chief Nuclear Officer of Maine Yankee  

E-Print Network (OSTI)

Company ("CY"), and Yankee Atomic Electric Company ("YR") (each a "Yankee Company," and together, "the Yankee Companies"), hereby respond to the Nuclear Regulatory Commission ("NRC") Third Request for Additional Information for Application for NRC Consent to Indirect License Transfer/Threshold Determination (TAC Nos. L24496, L24497, and L24498) ("RAI 3") received by the Yankee Companies on August 5, 2011. If you have questions or require additional information, please contact me or Joe Fay at (207) 350-0300. Sincerely, Wayne Norton

The Yankee Companies

2011-01-01T23:59:59.000Z

13

Determining Yankee Nuclear Power Station neutron activation  

Science Conference Proceedings (OSTI)

The Yankee nuclear power station located in Rowe, Massachusetts, permanently ceased power operations on February 26, 1992, after 31 yr of operation. Yankee has since initiated decommissioning planning activities. A significant component of these activities is a determination of the extent of radiological contamination of the Yankee site. Included in this effort was determination of the extent of neutron activation of plant components. This paper describes the determination of the neutron activation of the Yankee reactor vessel, associated internals, and surrounding structures. The Yankee reactor vessel is a 600-MW(thermal) stainless steel-lined, carbon steel vessel with stainless steel internal components designed by Westinghouse. The reactor vessel is surrounded and supported by a carbon steel neutron shield tank that was filled with chromated water during plant operation. A 5-ft-thick concrete biological shield wall surrounds the neutron shield tank. A project is under way to remove the reactor vessel internals from the reactor vessel.

Heider, K.J.; Morrissey, K.J. (Yankee Atomic Electric Co., Bolton, MA (United States))

1993-01-01T23:59:59.000Z

14

Review of the natural circulation effect in the Vermont Yankee spent-fuel pool  

Science Conference Proceedings (OSTI)

A 7429-node, three-dimensional computer model of the Vermont Yankee spent-fuel pool was set up and run using the porous media model of the TEMPEST computer code. The results of this analysis show that natural circulation is sufficient to ensure adequate cooling, regardless of the loading pattern used or the orientation of the cooling system discharge nozzle.

Wheeler, C.L.

1988-01-01T23:59:59.000Z

15

Vermont Yankee's benefits and concerns operating with Axially zoned GE9 fuel  

Science Conference Proceedings (OSTI)

Vermont Yankee (VY) is a 368-assembly, D-lattice, boiling water reactor (BWR)/4. The current cycle 16 contains 252 GE9 assemblies with axial zoning of gadolinium and enrichment, 112 GE8 assemblies with axially zoned gadolinium, and 4 Siemens 9 x 9-IX lead qualification assemblies. In this paper, the performance of the GE9-dominated core is evaluated against previous cores containing less sophisticated fuel designs.

Woehlke, R.A. (Yankee Atomic Electric Co., Bolton, MA (United States))

1993-01-01T23:59:59.000Z

16

BWR (boiling-water reactor) radiation control: In-plant demonstration at Vermont Yankee: Final report  

Science Conference Proceedings (OSTI)

Results of the RP1934 program, which was established by EPRI in 1981 to demonstrate the adequacy of BRAC program (RP819) principles for BWR radiation control at Vermont Yankee, are presented. Evaluations were performed of the effectiveness of optimization of purification system performance, control of feedwater dissolved oxygen concentrations, minimization of corrosion product and ionic transport, and improved startup, shutdown, and layup practices. The impact on shutdown radiation levels of these corrective actions was assessed based on extensive primary system radiation survey and component gamma scan data. Implementation of the BRAC recommendations was found to be insufficient to reduce the rate of activity buildup on out-of-core surfaces at Vermont Yankee, and additional corrective actions were found necessary. Specifically, replacement of cobalt-bearing materials in the control rod drive pins and rollers and feedwater regulating valves was pursued as was installation of electropolished 316 stainless steel during a recirculation piping replacement program. Aggressive programs to further reduce copper concentrations in the reactor water by improving condensate demineralizer efficiency and to minimize organic ingress to the power cycle by reducing organic concentrations in recycled radwaste also were undertaken. Evaluations of the impact on activity buildup of several pretreatment processes including prefilming in moist air, preexposure to high temperature water containing zinc, and electropolishing also were performed in a test loop installed in the reactor water cleanup system. A significant beneficial impact of electropolishing was shown to be present for periods up to 6000 hours.

Palino, G.F.; Hobart, R.L.; Sawochka, S.G.

1987-10-01T23:59:59.000Z

17

Yankee nuclear power station license renewal assessment  

Science Conference Proceedings (OSTI)

Nuclear power plants are initially licensed to operate for 40 years. Recent changes to US Nuclear Regulatory Commission regulations allow licenses to be renewed for up to 20 additional years. The new regulations require a comprehensive plant assessment to ensure continued effective aging management of equipment important to license renewal (ILR). Under the industry's lead plant program, Yankee Atomic Electric Company (YAEC) has assisted with development and demonstration of a generic license renewal assessment process. The generic assessment process developed under the lead plant program is the Nuclear Management and Resources Council methodology.

Hinkle, W.D. (Yankee Atomic Electric Co., Bolten, MA (United States))

1992-01-01T23:59:59.000Z

18

Reload design process at Yankee Atomic Electric Company  

Science Conference Proceedings (OSTI)

Yankee Atomic Electric Company (YAEC) performs reload design and licensing for their nuclear power plants: Yankee Rowe, Maine Yankee, and Vermont Yankee. Significant savings in labor and computer costs have been achieved in the reload design process by the use of the SIMULATE nodal code using the CASMO assembly burnup code or LEOPARD pin cell burnup code inputs to replace the PDQ diffusion theory code in many required calculations for the Yankee Rowe and Maine Yankee pressurized water reactors (PWRs). An efficient process has evolved for the design of reloads for the Vermont Yankee boiling water reactor (BWR). Due to the major differences in the core design of the three plants, different reload design processes have evolved for each plant.

Weader, R.J.

1986-01-01T23:59:59.000Z

19

A comparison of factors impacting on radiation buildup at the Vermont Yankee and Monticello BWRs (boiling-water reactors): Interim report  

SciTech Connect

Design and operating features of the Monticello and Vermont Yankee BWRs were compared in an attempt to explain why shutdown radiation levels at Vermont Yankee were significantly higher than at Monticello. The plants were shown to be similar in many respects, for example, condenser and feedwater system design and materials, condensate treatment system design, feedwater iron and copper concentrations, reactor water piping materials and fabrication techniques, reactor water cleanup system flowrates and equipment type, fuel cycle lengths, and fuel failure history. Differences were noted in core power density, jet pump design, reactor water conductivity, volume of radwaste recycle, and the amount of Stellite bearing materials in the feedwater system. Corrosion films on reactor system decontamination flanges from the two plants also were very different. At Monticello, the film was typical of that observed at other BWRs. The Vermont Yankee film contained significantly higher levels of zinc, chromium, and cobalt. Since reactor water Co-60 concentrations at Monticello were about twice those at Vermont Yankee, the Vermont Yankee corrosion film must exhibit a greater tendency to incorporate Co-60.

Palino, G.F.; Hobart, R.L.; Sawochka, S.G.

1987-03-01T23:59:59.000Z

20

Yankee Nuclear Power Station - analysis of decommissioning costs  

SciTech Connect

The preparation of decommissioning cost estimates for nuclear power generating stations has received a great deal of interest in the last few years. Owners are required by regulation to ensure that adequate funds are collected for the timely decommissioning of their facilities. The unexpected premature shutdown of several facilities and uncertainties associated with radioactive waste disposal and long-term spent-fuel storage, when viewed in the light of a deregulated electric utility industry, has caused many companies to reevaluate their decommissioning cost estimates. The decommissioning of the Yankee Nuclear Power Station represents the first large-scale project involving the complete decontamination and dismantlement of a commercial light water nuclear power generation facility in the United States. Since this pressurized water reactor operated for 32 yr at a respectable 74% lifetime capacity factor, the actual costs and resources required to decommission the plant, when compared with decommissioning estimates, will yield valuable benchmarking data.

Lessard, L.P. [Yankee Atomic Electric Co., Bolton, MA (United States)

1996-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "vermont yankee nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

UNITED STATES OF AMERICA NUCLEAR REGULATORY COMMISSION  

E-Print Network (OSTI)

1000 was designed by Westinghouse Electric Company, LLC, and has been formally approved by NRC. See, and show that the member has authorized the organization to intervene on his or her behalf. Vermont Yankee Nuclear Power Corp. (Vermont Yankee Nuclear Power Station), CLI-00-20, 52 NRC 151, 163 (2000). B. Ruling

Laughlin, Robert B.

22

Review and evaluation of the RELAP5YA computer code and the Vermont Yankee LOCA (Loss-of-Coolant Accident) licensing analysis model for use in small and large break BWR (Boiling Water Reactor) LOCAS  

SciTech Connect

A review has been completed of the RELAP5YA computer code to determine its acceptability for performing licensing analyses. The review was limited to Boiling Water Reactor (BWR) reactor applications. In addition, a Loss-Of-Coolant Accident (LOCA) licensing analysis method, using the RELAP5YA computer code, has been reviewed. This method is applicable to the Vermont Yankee Nuclear Power Station to perform full break spectra LOCA and fuel cycle independent analyses. The review of the RELAP5YA code consisted of an evaluation of all Yankee Atomic Electric Company (YAEC) incorporated modifications to the RELAP5/MOD1 Cycle 18 computer code from which the licensing version of the code originated. Qualifying separate and integral effects assessment calculations were reviewed to evaluate the validity and proper implementation of the various added models. The LOCA licensing method was assessed by reviewing two RELAP5YA system input models and evaluating several small and large break qualifying transient calculations. A review of the RELAP5YA code modifications and their assessments, as well as the submitted LOCA licensing method, is given and the results of the review are provided.

Jones, J.L.

1987-01-01T23:59:59.000Z

23

Experience with gadolinium at yankee  

SciTech Connect

The Vermont Yankee nuclear power station, a boiling water reactor, has been operating with gadolinium in the fuel bundles since 1973. The gadolinium has ranged from 2.0 to 4.0 wt% in 7 x 7, 8 x 8, and retrofit 8 x 8 bundle designs. When Yankee Atomic Electric Company initiated its program in 1978 to perform reload licensing analysis, these bundles and the core designs had to be modeled accurately. The basic calculational model consists of the cross section generation code, CASMO, and the three-dimensional nodal code, SIMULATE. The gadolinium cross sections for use in CASMO were generated using MICBURN to model each gadolinium pin individually. This combination of codes has been used to calculate 11 cycles of operation at Vermont Yankee. The model has been depleted each cycle using explicit plant conditions at equilibrium xenon. At various state points, the eigenvalues, hot and cold, were calculated and tabulated for each cycle. Comparisons were made between plant-measured and SIMULATE-calculated TIP values and between process computer and SIMULATE thermal margins. The model is also used to predict future cycle operating conditions and thermal margins based on past comparisons.

Cacciapouti, R.J.; Sironen, M.A.; Kaptiz, D.M.; Potter, R.C.

1985-11-01T23:59:59.000Z

24

Vermont Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

25

Vermont Nuclear Profile - All Fuels  

U.S. Energy Information Administration (EIA) Indexed Site

total electric power industry, summer capacity and net generation, by energy source, 2010" total electric power industry, summer capacity and net generation, by energy source, 2010" "Primary energy source","Summer capacity (mw)","Share of State total (percent)","Net generation (thousand mwh)","Share of State total (percent)" "Nuclear",620,55.0,"4,782",72.2 "Hydro and Pumped Storage",324,28.7,"1,347",20.3 "Natural Gas","-","-",4,0.1 "Other Renewable1",84,7.5,482,7.3 "Petroleum",100,8.9,5,0.1 "Total","1,128",100.0,"6,620",100.0 "1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable."

26

Construction or Extended Operation of Nuclear Plant (Vermont) | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Construction or Extended Operation of Nuclear Plant (Vermont) Construction or Extended Operation of Nuclear Plant (Vermont) Construction or Extended Operation of Nuclear Plant (Vermont) < Back Eligibility Investor-Owned Utility Utility Program Info State Vermont Program Type Siting and Permitting Any petition for approval of construction of a nuclear energy generating plant within the state, or any petition for approval of the operation of a nuclear energy generating plant beyond the date established in a certificate of public good issued under this title, must be submitted to the public service board no later than four years before the date upon which the approval may take effect. Upon receipt of a petition for approval of construction or operation as provided under this section, the public service board shall notify the

27

ASSESSMENT OF RADIONUCLIDE RELEASE FROM CONTAMINATED CONCRETE AT THE YANKEE NUCLEAR POWER STATION.  

Science Conference Proceedings (OSTI)

Yankee Atomic Energy Company (YAEC) is considering allowing portions of existing structures at the Yankee Nuclear Power Station (YNPS) to remain on site at the time of license termination. Accordingly, release of residual radioactive contaminants (i.e., H-3, C-14, Co-60, Ni-63, Sr-90, and Cs-137) from remaining subsurface concrete structures (Darman, 2004) and dose due to that release must be evaluated. Analyses were performed using DUST-MS to assess the rate of release for each radionuclide from the concrete, based upon an assumed concentration of 1 pCi/g and a concrete density of 2.5 g/cm{sup 3}. Using the same assumptions that were applied to the soil DCGL calculation (and where appropriate, the same input parameters), RESRAD was used to calculate the dose from water pathways. Values for selected RESRAD input parameters were chosen to match the release rate calculated by DUST-MS. The results indicated that Cs-137 yielded the highest dose.

SULLIVAN, T.

2004-03-01T23:59:59.000Z

28

Auxiliary feedwater system risk-based inspection guide for the Maine Yankee Nuclear Power Plant  

SciTech Connect

In a study sponsored by the US Nuclear Regulatory Commission (NRC), Pacific Northwest Laboratory has developed and applied a methodology for deriving plant-specific risk-based inspection guidance for the auxiliary feedwater (AFW) system at pressurized water reactors that have not undergone probabilistic risk assessment (PRA). This methodology uses existing PRA results and plant operating experience information. Existing PRA-based inspection guidance information recently developed for the NRC for various plants was used to identify generic component failure modes. The information was then combined with plant-specific and industry-wide component information and failure data to identify failure modes and failure mechanisms for the AFW system at the selected plants. Maine Yankee was selected as one of a series of plants for study. ne product of this effort is a prioritized listing of AFW failures which have occurred at the plant and at other PWRs. This listing is intended for use by NRC inspectors in the preparation of inspection plans addressing AFW risk-important components at the Maine Yankee plant.

Gore, B.F.; Vo, T.V.; Moffitt, N.E.; Bumgardner, J.D. (Pacific Northwest Lab., Richland, WA (United States))

1992-10-01T23:59:59.000Z

29

Nuclear thermal-hydraulics education: the Yankee Atomic/University of Lowell experience  

SciTech Connect

This paper summarizes the long and meaningful relationship between the University of Lowell (UL) and Yankee Atomic Electric Company (YAEC) in the area of nuclear thermal hydraulics. The UL has actively interacted with YAEC for many years. Many UL graduates from the nuclear program as well as health physics and other disciplines are employed by YAEC. Furthermore, many students have worked for YAEC on a part-time basis through summer employment or the coop program. Several graduate students have completed their thesis work under the joint direction of UL and YAEC personnel, and some faculty members have had consulting and research contracts with the company. At the same time, YAEC employees have taken advantage of the graduate program offered by UL and have earned advanced degrees. Some YAEC personnel have taught courses at UL and have served on the industrial advisory committees.

Husain, A.; Brown, G.J.; Yeung, W.S.

1986-01-01T23:59:59.000Z

30

Decommissioning Yankee Rowe  

Science Conference Proceedings (OSTI)

This article describes the process and progress of the decommissioning of the Yankee Rowe Nuclear Power Plant in Massachusetts. In 32 years Yankee Rowe was a safe, reliable and economical power source for New England. The uncertain near-term availability of disposal facilities for low-level waste, spent fuel, and other high level waste presents special challenges to the decommissioning. The decommissioning plan was submitted to the USNRC in December 1993 with final approval anticipated in 1994. Topics highlighted in this article are the decommissioning plan and the component removal program.

Heider, K.J.; Mellor, R.A.

1994-07-01T23:59:59.000Z

31

Technical evaluation of the adequacy of station electric distribution system voltages for the Yankee Rowe Nuclear Power Station  

SciTech Connect

This report documents the technical evaluation of the adequacy of the station electric distribution system voltages for the Yankee Rowe Nuclear Power Station. The evaluation is to determine if the onsite distribution system, in conjunction with the offsite power sources, has sufficient capacity to automatically start and operate all Class 1E loads within the equipment voltage ratings under certain conditions established by the Nuclear Regulatory Commission. The analysis shows that the station electric distribution system has the capacity and capability to supply voltage to the Class 1E equipment with their design ratings for the worst case loading condition.

Selan, J.C.

1981-05-29T23:59:59.000Z

32

Yankee bonds  

Science Conference Proceedings (OSTI)

Yankee and Euromarket bonds may soon find their way into the financing of power projects in Latin America. For developers seeking long-term commitments under build, own, operate, and transfer (BOOT) power projects in Latin America, the benefits are substantial.

Delaney, P. (Bear, Stearns Co. Inc., New York, NY (United States))

1993-10-01T23:59:59.000Z

33

Yankee Rowe Decommissioning Experience Record: Volume 1  

Science Conference Proceedings (OSTI)

This report describes Yankee Atomic's experiences in the process of decommissioning the Yankee Rowe nuclear power plant. This volume presents lessons learned during work finished by September 1997. A second volume, to be published in 1998, will complete the experience record. The recommendations and insights in this report will be valuable to other utilities with permanently shutdown plants.

1997-12-31T23:59:59.000Z

34

ASSESSMENT OF RADIONUCLIDE RELEASE FROM INTACT STRUCTURES BACKFILLED WITH CONTAMINATED CONCRETE AT THE YANKEE NUCLEAR POWER STATION.  

SciTech Connect

This calculation determines the release of residual radioactivity (including H-3, C-14, Co-60, Ni-63, Sr-90, and Cs-137), from subsurface structures filled with concrete debris at the Yankee Nuclear Power Station. Analyses were performed to assess the rate of release from the source of contamination and the resulting dose in the groundwater pathway. Two mechanisms were considered, diffusive release from the concrete structures (walls and floors) that remain intact and sorption onto concrete backfill placed within these structures. RESRAD was used to calculate the predicted maximum dose assuming a unit loading of 1 pCi/g on the intact structures. To the extent possible, the same assumptions in the soil DCGL calculations performed for Yankee Atomic were used in the calculation. However, modifications to some input parameter values were needed to represent the geometry of the subsurface facilities, flow through these facilities, and releases from the backfill and intact structures. Input parameters specific to these calculations included the leach rate, disposal geometry, pumping rate, porosity and bulk density. The dose results for a unit loading of 1 pCi/g on intact structures showed that Sr-90 had the highest dose (3.67E-02 mrem/yr).

SULLIVAN, T.

2004-09-30T23:59:59.000Z

35

U.S. Nuclear Regulatory  

E-Print Network (OSTI)

Consultation correspondence related to the evaluation of the renewal of the operating license | for Vermont Yankee Nuclear Power Station (VYNPS) is identified in Table E-1. Copies of the correspondence are included at the end of this appendix. The licenses, permits, consultations, and other approvals obtained from Federal and State | authorities for VYNPS are listed in Table E-2.

Commission (r. L. Franovich; U. S. Fish; Wildlife Service; U. S. Fish; Wildlife Service

2006-01-01T23:59:59.000Z

36

Review of reactor pressure vessel evaluation report for Yankee Rowe Nuclear Power Station (YAEC No. 1735)  

SciTech Connect

The Yankee Atomic Electric Company has performed an Integrated Pressurized Thermal Shock (IPTS)-type evaluation of the Yankee Rowe reactor pressure vessel in accordance with the PTS Rule (10 CFR 50. 61) and a US Regulatory Guide 1.154. The Oak Ridge National Laboratory (ORNL) reviewed the YAEC document and performed an independent probabilistic fracture-mechnics analysis. The review included a comparison of the Pacific Northwest Laboratory (PNL) and the ORNL probabilistic fracture-mechanics codes (VISA-II and OCA-P, respectively). The review identified minor errors and one significant difference in philosophy. Also, the two codes have a few dissimilar peripheral features. Aside from these differences, VISA-II and OCA-P are very similar and with errors corrected and when adjusted for the difference in the treatment of fracture toughness distribution through the wall, yield essentially the same value of the conditional probability of failure. The ORNL independent evaluation indicated RT{sub NDT} values considerably greater than those corresponding to the PTS-Rule screening criteria and a frequency of failure substantially greater than that corresponding to the ``primary acceptance criterion`` in US Regulatory Guide 1.154. Time constraints, however, prevented as rigorous a treatment as the situation deserves. Thus, these results are very preliminary.

Cheverton, R.D.; Dickson, T.L.; Merkle, J.G.; Nanstad, R.K. [Oak Ridge National Lab., TN (United States)

1992-03-01T23:59:59.000Z

37

Review of reactor pressure vessel evaluation report for Yankee Rowe Nuclear Power Station (YAEC No. 1735)  

Science Conference Proceedings (OSTI)

The Yankee Atomic Electric Company has performed an Integrated Pressurized Thermal Shock (IPTS)-type evaluation of the Yankee Rowe reactor pressure vessel in accordance with the PTS Rule (10 CFR 50. 61) and a US Regulatory Guide 1.154. The Oak Ridge National Laboratory (ORNL) reviewed the YAEC document and performed an independent probabilistic fracture-mechnics analysis. The review included a comparison of the Pacific Northwest Laboratory (PNL) and the ORNL probabilistic fracture-mechanics codes (VISA-II and OCA-P, respectively). The review identified minor errors and one significant difference in philosophy. Also, the two codes have a few dissimilar peripheral features. Aside from these differences, VISA-II and OCA-P are very similar and with errors corrected and when adjusted for the difference in the treatment of fracture toughness distribution through the wall, yield essentially the same value of the conditional probability of failure. The ORNL independent evaluation indicated RT{sub NDT} values considerably greater than those corresponding to the PTS-Rule screening criteria and a frequency of failure substantially greater than that corresponding to the primary acceptance criterion'' in US Regulatory Guide 1.154. Time constraints, however, prevented as rigorous a treatment as the situation deserves. Thus, these results are very preliminary.

Cheverton, R.D.; Dickson, T.L.; Merkle, J.G.; Nanstad, R.K. (Oak Ridge National Lab., TN (United States))

1992-03-01T23:59:59.000Z

38

Yankee links computing needs, increases productivity  

Science Conference Proceedings (OSTI)

Yankee Atomic Electric Company provides design and consultation services to electric utility companies that operate nuclear power plants. This means bringing together the skills and talents of more than 500 people in many disciplines, including computer-aided design, human resources, financial services, and nuclear engineering. The company was facing a problem familiar to many companies in the nuclear industry.Key corporate data and applications resided on UNIX or other types of computer systems, but most users at Yankee had personal computers on their desks. How could Yankee enable the PC users to share the data, applications, and resources of the larger computing environment such as UNIX, while ensuring they could still use their favorite PC applications? The solution was PC-NFS from Sunsoft, of Chelmsford, Mass., which links PCs to UNIX and other systems. The Yankee computing story is an example of computer downsizing-the trend of moving away from mainframe computers in favor of lower-cost, more flexible client/server computing. Today, Yankee Atomic has more than 350 PCs on desktops throughout the company, using PC-NFS, which enables them t;o use the data, applications, disks, and printers of the FUNIX server systems. This new client/server environment has reduced Yankee`s computing costs while increasing its computing power and its ability to respond to customers.

NONE

1994-10-01T23:59:59.000Z

39

Connecticut Yankee Decommissioning Experience Report  

Science Conference Proceedings (OSTI)

Several U.S. nuclear power plants entered decommissioning in the 1990's. Based on current information, the next group of plants whose license will expire will not begin decommissioning for nearly a decade. This report provides detailed information on the decommissioning of one power reactor - Connecticut Yankee, in order to provide their experience for future plants.

2006-11-20T23:59:59.000Z

40

Yankee Rowe Decommissioning Experience Record: Volume 2  

Science Conference Proceedings (OSTI)

This report describes Yankee Atomic Electric Company's (YAEC) recent experiences in the process of decommissioning the Yankee Rowe nuclear power plant. This volume supplements Volume 1 by presenting more lessons learned during work finished by September 1998. In 1999, EPRI will publish a final report completing the experience record. The recommendations and insights in this report will be valuable to other utilities with permanently shut down plants.

1998-12-18T23:59:59.000Z

Note: This page contains sample records for the topic "vermont yankee nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Connecticut Yankee risk reduction initiative  

Science Conference Proceedings (OSTI)

A Risk Reduction Task Force, comprised of an interdisciplinary team of Connecticut Yankee (CY) and Northeast Utilities (NU) personnel, was formed to identify means of reducing the core-melt frequency (CMF) and the overall risk at CY. Currently, Connecticut Yankee is the only NU nuclear power plant with a CMF significantly above the corporate nuclear safety goal of < 10{sup {minus}4}/yr. It was the purpose of this task force to brainstorm ideas for design and/or procedural changes that would improve safety while allowing for operational flexibility, and also give consideration to licensing issues and design basis/deterministic concerns. The final recommendations by the task force include the installation of a tornado-protected, air-cooled diesel generator; reconfiguration of the auxiliary feedwater (AFW) flow path; addition of a diverse AFW pump; additional modifications to address tornado concerns; and repowering of several motor-operated valves.

Oswald, E.A.; Dube, D.A.; Becker, W.H.; Flannery, G.A.; Weyland, S.J. (Northeast Utilities Service Co., Hartford, CT (United States))

1992-01-01T23:59:59.000Z

42

Technical evaluation of the susceptibility of safety-related systems to flooding caused by the failure of non-category 1 systems for the Yankee Rowe Nuclear Power Station  

SciTech Connect

This report documents the technical evaluation of the Maine Yankee Atomic Power Station. The purpose of this evaluation was to determine whether the failure of any non-Class I (seismic) equipment could result in a condition, such as flooding, that might adversely affect the performance of the safety-related equipment required for the safe shutdown of the facility, or to mitigate the consequences of an accident. Criteria developed by the US Nuclear Regulatory Commission were used to evaluate the acceptability of the existing protection system as well as measures taken by Maine Yankee Atomic Power Company (MYAPC) to minimize the danger of flooding and to protect safety-related equipment.

Epps, R.C.

1980-11-01T23:59:59.000Z

43

Public Participation and Wetlands Regulation  

E-Print Network (OSTI)

the legislation . Vermont Yankee Nuclear Power Corp. v.21 (1989) (arguing that Vermont Yankee is not good law). 59.rejected such a course in Vermont Yankee Nuclear Power Corp.

Gardner, Royal C.

1991-01-01T23:59:59.000Z

44

Shutdown plus 3 - a look at Yankee decommissioning experience  

Science Conference Proceedings (OSTI)

In three years, the Yankee Nuclear Power Station has not only made the transition from a facility with a full power operating license to a shut down facility but to a facility with a mature and experienced organization poised to effectively and efficiently decommission the remainder of the plant. Opportunities were acted upon to reduce the cost of running and dismantling a shut-down facility. This paper describes some of those opportunities and Yankee`s future strategy for dismantling in an environment with limited waste disposal availability.

Szymczak, W.J. [Yankee Atomic Electric Co., Bolton, MA (United States)

1995-12-31T23:59:59.000Z

45

Press Room - Testimony - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Vermont Yankee nuclear plant closure in 2014 will challenge New England energy markets. See More ...

46

Press Room - Events - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Vermont Yankee nuclear plant closure in 2014 will challenge New England energy markets. See More ...

47

Press Room - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Vermont Yankee nuclear plant closure in 2014 will challenge New England energy markets. See More ...

48

Microsoft Word - vermont.doc  

Gasoline and Diesel Fuel Update (EIA)

Vermont Vermont NERC Region(s) ....................................................................................................... NPCC Primary Energy Source........................................................................................... Nuclear Net Summer Capacity (megawatts) ....................................................................... 1,128 50 Electric Utilities ...................................................................................................... 260 45 Independent Power Producers & Combined Heat and Power ................................ 868 43 Net Generation (megawatthours) ........................................................................... 6,619,990 49 Electric Utilities ...................................................................................................... 720,853 44

49

Census Snapshot: Vermont  

E-Print Network (OSTI)

THE WILLIAMS INSTITUTE CENSUS SNAPSHOT VERMONT DECEMBER 2007VERMONT Adam P. Romero, Public Policy Fellow Amanda K.couples raising children in Vermont. We compare same-sex

Romero, Adam P; Baumle, Amanda K; Badgett, M.V. Lee; Gates, Gary J

2007-01-01T23:59:59.000Z

50

State Nuclear Profiles 2009  

U.S. Energy Information Administration (EIA)

Vermont Yankee 1 620 5,361 98.7 BWR 11/30/1972 3/21/2012 620 5,361 98.7 Data for 2009 BWR = Boiling Water Reactor. License Expiration Date

51

ARM - Campaign Instrument - pyran-yankee-isothermal  

NLE Websites -- All DOE Office Websites (Extended Search)

yankee-isothermal Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Yankee Isothermal Pyranometer...

52

Innovative implementation of decommissioning activities at Yankee  

SciTech Connect

The decommissioning of the Yankee Rowe reactor is described. Reactor dismantlement, radioactive waste manageemnt, and cost are discussed.

Kadak, A.C.; Maret, G.A.; Mellor, R.A.

1994-12-31T23:59:59.000Z

53

Yankee atomic experience with coastdown. Report YAEC-1270  

Science Conference Proceedings (OSTI)

This report summarizes Yankee Atomic's operating experience with 19 coastdowns in three different nuclear power plants. The observed effects of coastdown on plant capacity factor, efficiency, maneuverability, and fuel integrity are demonstrated. Calculations of resource requirements and fuel cycle economics for equilibrium cycles show typical savings of 3 to 5% for cycles using coastdown compared to those which produce the same energy without coastdown.

Quan, B.L.; Malone, J.P.; Pilat, E.E.

1981-05-01T23:59:59.000Z

54

Maine Yankee Decommissioning - Experience Report: Detailed Experiences 1997-2004  

Science Conference Proceedings (OSTI)

Several U.S. nuclear power plants began the decommissioning process in the 1990s. Based on current information, it will be several years before the next group of plant licenses expires, and the plants begin decommissioning. This report provides detailed information on the decommissioning of one power reactor, Maine Yankee, in order to document their experience for future plants.

2005-05-04T23:59:59.000Z

55

Vermont | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(Vermont) The purpose of the Employment Growth Incentive (VEGI) is to encourage job creation in Vermont by a Vermont company, a Vermont division of a company that plans to...

56

Vermont Sustainable Jobs Fund (Vermont)  

Energy.gov (U.S. Department of Energy (DOE))

The Vermont Sustainable Job Fund offers grants, loans, and technical assistance. VSJF's grant-making depends on the funds it raised and its strategic market development focus. Grant proposals are...

57

Evaluation of low flow characteristics of the Vermont Yankee plant  

Science Conference Proceedings (OSTI)

Boiling water reactor (BWR) core flow instrumentation inaccuracies under low-flow conditions have been the subject of both reactor vendor and regulatory communications in response to incidents of the reported core flow being less than the flow corresponding to the natural-circulation line on the power flow map. During single recirculation loop operation, low-flow conditions exist in the idle recirculation loop, and these flow inaccuracies can affect the usefulness of the reported core flow. Accurate core flow indications are needed above 25% power to administer fuel thermal limits and comply with restrictions associated with the potential for thermal-hydraulic instability. While the natural-circulation line on the power flow map is recognized to be a nominal estimate of the flow expected at and near natural-circulation conditions, the boundaries of the stability regions are associated with conditions assumed in safety analyses performed to demonstrate compliance with general design criteria 10 and 12.

Ganther, S.; LeFrancoi, M.; Bergeron, P. [Yankee Atomic Electric Co., Bolton, MA (United States)

1997-12-01T23:59:59.000Z

58

Effect of Feedwater Oxygen Control at the Vermont Yankee BWR  

Science Conference Proceedings (OSTI)

Tests in an operating BWR show that routine injection of oxygen into the feedwater to control radiation buildup is not warranted under normal operating conditions. However, since oxygen injection reduces the nickel release rate, it might be considered on a plant-by-plant basis for BWRs experiencing high nickel corrosion levels.

1985-08-02T23:59:59.000Z

59

BWR Radiation Control: In-Plant Demonstration at Vermont Yankee  

Science Conference Proceedings (OSTI)

A five-year program has demonstrated several techniques for reducing radiation fields in BWRs. Improved chemistry control, replacement of valves and control blades containing cobalt, and electropolishing and prefilming of replacement piping proved particularly beneficial.

1987-11-10T23:59:59.000Z

60

Yankee Rowe simulator core model validation  

Science Conference Proceedings (OSTI)

This paper presents the validation of the Yankee Rowe simulator core model. Link-Miles Simulation Corporation is developing the Yankee Rowe simulator and Yankee Atomic Electric Company is involved in input and benchmark data generation, as well as simulator validation. Core model validation by Yankee comprises three tasks: (1) careful generation of fuel reactivity characteristics (B constants); (2) nonintegrated core model testing; and (3) fully integrated core model testing. Simulator core model validation and verification is a multistage process involving input and benchmark data generation as well as interactive debugging. Core characteristics were brought within acceptable criteria by this process. This process was achieved through constant communication between Link-Miles and Yankee engineers. Based on this validation, the Yankee Rowe simulator core model is found to be acceptable for training purposes.

Napolitano, M.E.

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vermont yankee nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

September 6 2013  

U.S. Energy Information Administration (EIA)

Vermont Yankee nuclear plant closure in 2014 will challenge New England energy markets The pending closure of a 41-year-old nuclear plant located in Vermont will ...

62

Review of selected areas of Yankee Rowe probabilistic safety study  

SciTech Connect

The Yankee Nuclear Power Station Probabilistic Safety Study has been reviewed in three specific areas. These areas are (1) treatment of initiating events, (2) treatment of human actions, and (3) treatment of the emergency ac and dc power systems. The results reported here are based on three individual and highly focused reviews. Therefore, the conclusions offered are based within the context of each individual review. 22 tabs.

Arrieta, L.; Fitzpatrick, R.G.; Spettell, C.M.

1986-06-01T23:59:59.000Z

63

Confirmatory Survey Results for the Emergency Operations Facility (EOF) at the Connecticut Yankee Haddam Neck Plant, Haddam, Connecticut  

Science Conference Proceedings (OSTI)

The U.S. Nuclear Regulatory Commission (NRC) requested that the Oak Ridge Institute for Science and Education (ORISE) perform a confirmatory survey on the Emergency Operations Facility (EOF) at the Connecticut Yankee Haddam Neck Plant (HNP) in Haddam, Connecticut

W. C. Adams

2007-07-03T23:59:59.000Z

64

Hydraulic Fracturing (Vermont)  

Energy.gov (U.S. Department of Energy (DOE))

Vermont prohibits hydraulic fracturing or the collection, storage, or treatment of wastewater from hydraulic fracturing

65

Vermont Wetland Rules (Vermont) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wetland Rules (Vermont) Wetland Rules (Vermont) Vermont Wetland Rules (Vermont) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Vermont Program Type Environmental Regulations Provider Department of Environmental Conservation A permit is required for any activity within a Class I or Class II wetland

66

www.eia.gov  

U.S. Energy Information Administration (EIA)

Vermont Yankee Vermont Total VA Surry North Anna Virginia Total WA Columbia Generating Station Washington Total WI Point Beach Nuclear Plant Kewaunee Wisconsin Total

67

www.eia.gov  

U.S. Energy Information Administration (EIA)

Vermont Yankee Vermont Total VA Surry North Anna Virginia Total WA Columbia Generating Station Washington Total WI Point Beach Nuclear Plant Wisconsin Total U.S. Total.

68

Vermont Profile - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Most of Vermonts remaining generation is produced from renewable energy sources, largely from hydroelectric power and fuel wood.

69

401 Certification (Vermont) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

401 Certification (Vermont) 401 Certification (Vermont) Eligibility Utility Industrial Savings For Buying & Making Electricity Water Home Weatherization Program Information Vermont...

70

Evaluation of the Decontamination of the Reactor Coolant Systems at Maine Yankee and Connecticut Yankee  

Science Conference Proceedings (OSTI)

In 1998, utilities carried out chemical decontamination of the reactor coolant loops at two permanently closed PWR plants. They used EPRI's Decontamination For Decommissioning (DFD) process at Maine Yankee, and Siemens' Chemical Oxidation Reduction Decontamination (CORD) process at Connecticut Yankee. This report describes each application, and presents the results and lessons learned.

1999-03-08T23:59:59.000Z

71

Vermont Employment Growth Incentive (Vermont) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Employment Growth Incentive (Vermont) Employment Growth Incentive (Vermont) Vermont Employment Growth Incentive (Vermont) < Back Eligibility Utility Commercial Agricultural Investor-Owned Utility Industrial Construction Installer/Contractor Retail Supplier Fuel Distributor Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Vermont Program Type Industry Recruitment/Support Performance-Based Incentive Provider Vermont Agency of Commerce and Community Development The purpose of the Employment Growth Incentive (VEGI) is to encourage job creation in Vermont by a Vermont company, a Vermont division of a company that plans to grow and expand in Vermont, a company considering locating a new business or division in Vermont, or a Vermont start-up business

72

Vermont | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

farms, schools, buildersdevelopers, and local & state governments. July 12, 2013 Small Commercial Refrigeration Incentive Efficiency Vermont offers financial incentives to cover...

73

Capital Access Program (Vermont)  

Energy.gov (U.S. Department of Energy (DOE))

The Capital Access Program provides loan guarantees to small businesses seeking access to commercial credit. Premiums paid by the borrower and matched by Vermont Economic Development Authority fund...

74

Retail Unbundling - Vermont  

U.S. Energy Information Administration (EIA)

Status: The State has no unbundled services for residential customers. Overview: In September 2006, the Vermont Public Service Board (Board) approved a memorandum ...

75

Vermont | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

More Than 38.8 Million in Weatherization Funding and Energy Efficiency Grants for Vermont Part of nearly 8 billion in Recovery Act funding for energy efficiency efforts...

76

,"Vermont Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Vermont Natural Gas Prices",10,"Annual",2012,"6301980" ,"Release Date:","10312013" ,"Next Release...

77

,"Vermont Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

80SVT3","N3050VT3","N3010VT3","N3020VT3","N3035VT3","N3045VT3" "Date","Vermont Natural Gas Imports Price (Dollars per Thousand Cubic Feet)","Vermont Natural Gas Pipeline and...

78

State Energy Program Assurances - Vermont Governor Douglas |...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

State Energy Program Assurances - Vermont Governor Douglas State Energy Program Assurances - Vermont Governor Douglas Letter from Vermont Governor Douglas providing Secretary Chu...

79

Vermont/Incentives | Open Energy Information  

Open Energy Info (EERE)

Vermont/Incentives Vermont/Incentives < Vermont Jump to: navigation, search Contents 1 Financial Incentive Programs for Vermont 2 Rules, Regulations and Policies for Vermont Download All Financial Incentives and Policies for Vermont CSV (rows 1 - 100) Financial Incentive Programs for Vermont Download Financial Incentives for Vermont CSV (rows 1 - 50) Incentive Incentive Type Active 30% Business Tax Credit for Solar (Vermont) Corporate Tax Credit No Agricultural Lighting and Equipment Rebate Program (Vermont) State Rebate Program Yes Burlington Electric Department - Commercial Energy Efficiency Rebate Program (Vermont) Utility Rebate Program Yes Burlington Electric Department - Multi-Family Rental Energy Efficiency Rebate Program (Vermont) Utility Rebate Program Yes

80

Vermont/EZ Policies | Open Energy Information  

Open Energy Info (EERE)

and wages in the applicable tax year. The credit was established in 1998 to foster new job creation within Vermont. Underground Injection Control Rule (Vermont) Vermont...

Note: This page contains sample records for the topic "vermont yankee nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Vermont Energy Investors Corp | Open Energy Information  

Open Energy Info (EERE)

Vermont Energy Investors Corp Jump to: navigation, search Name Vermont Energy Investors Corp Place Burlington, Vermont Zip VT 05401-4 Sector Efficiency, Renewable Energy Product...

82

Reunion Power LLC Vermont | Open Energy Information  

Open Energy Info (EERE)

Reunion Power LLC Vermont Jump to: navigation, search Name Reunion Power LLC (Vermont) Place Vermont Sector Biomass Product Reunion Power holds a portfolio of biomass projects that...

83

Maine Yankee: Making the Transition from an Operating Plant to an Independent Spent Fuel Storage Installation (ISFSI)  

Science Conference Proceedings (OSTI)

The purpose of this paper is to describe the challenges faced by Maine Yankee Atomic Power Company in making the transition from an operating nuclear power plant to an Independent Spent Fuel Storage Installation (ISFSI). Maine Yankee (MY) is a 900-megawatt Combustion Engineering pressurized water reactor whose architect engineer was Stone & Webster. Maine Yankee was put into commercial operation on December 28, 1972. It is located on an 820-acre site, on the shores of the Back River in Wiscasset, Maine about 40 miles northeast of Portland, Maine. During its operating life, it generated about 1.2 billion kilowatts of power, providing 25% of Maine's electric power needs and serving additional customers in New England. Maine Yankee's lifetime capacity factor was about 67% and it employed more than 450 people. The decision was made to shutdown Maine Yankee in August of 1997, based on economic reasons. Once this decision was made planning began on how to accomplish safe and cost effective decommissioning of the plant by 2004 while being responsive to the community and employees.

Norton, W.; McGough, M. S.

2002-02-26T23:59:59.000Z

84

Vermont Seed Capital Fund (Vermont) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Seed Capital Fund (Vermont) Seed Capital Fund (Vermont) Vermont Seed Capital Fund (Vermont) < Back Eligibility Agricultural Commercial Construction Fuel Distributor Industrial Installer/Contractor Retail Supplier Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Vermont Program Type Corporate Tax Incentive Provider Vermont Department of Taxes The Vermont Seed Capital Fund increases the amount of investment capital available to new Vermont firms or to existing Vermont firms for the purpose of expansion. The first $5 million of capitalization contributed by taxpayers on or before January 1, 2014. Lesser of 4% of contribution or 50% of tax liability prior to allowance of this credit. There is a four year

85

Frog fence along Vermont Rt. 2 in sandbar wildlife management area collaboration between Vermont Agency of Transportation and Vermont Agency of Natural Resources  

E-Print Network (OSTI)

FROG FENCE ALONG VERMONT RT. 2MANAGEMENT AREA COLLABORATION BETWEEN VERMONT AGENCY OFTRANSPORTATION AND VERMONT AGENCY OF NATURAL RESOURCES

Hoffman, Nelson

2003-01-01T23:59:59.000Z

86

Thermal spray coatings on Yankee dryers  

SciTech Connect

Several failure investigations and recent research on thermal spray coatings on Yankee dryer surfaces show at least three modes of environmentally induced degradation. Corrosion may occur with the ingress of certain chemicals into coating pores. Erosion or corrosion is manifested by streaks at local sites of high doctor blade loading. Erosion and cracking occur due to coating parameters, thermal stress, and differential expansion. While most of the results described in this paper are from investigations of molybdenum, stainless steel coatings also are discussed.

Bowers, D.F. (Packer Engineering, Inc., Naperville, IL (United States))

1994-08-01T23:59:59.000Z

87

Efficiency Vermont | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficiency Vermont Efficiency Vermont Efficiency Vermont < Back Eligibility Agricultural Commercial Industrial Institutional Local Government Nonprofit Residential Schools State Government Program Info State Vermont Program Type Public Benefits Fund Provider Efficiency Vermont In June 1999, Vermont enacted legislation authorizing the Vermont Public Service Board (PSB) to establish a volumetric charge on all electric customers' bills to support energy-efficiency programs. As a result, in 2000 the PSB established Efficiency Vermont and a funding mechanism to support it. The funding mechanism, which varies by utility, is based on factors unique to each utility's service territory and is reviewed periodically and adjusted as necessary by the PSB.* It should be noted that Burlington Electric Department is not required to fund Efficiency Vermont;

88

Vermont | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 15, 2010 A woodchip-fired combined heat and power system will be built in Montpelier, Vt. | File photo Jobs, sustainable heating coming to Vermont city Their new...

89

Vermont | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Program - Passumpsic CX(s) Applied: B5.1 Date: 04192010 Location(s): St. Johnsbury, Vermont Office(s): Energy Efficiency and Renewable Energy, National Energy...

90

Vermont Gasoline Price Data  

NLE Websites -- All DOE Office Websites (Extended Search)

Vermont Exit Fueleconomy.gov The links below are to pages that are not part of the fueleconomy.gov. We offer these external links for your convenience in accessing additional...

91

Vermont | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Determination Clean Energy Development Fund - Renewable Energy Program - Candelora Hydro Project CX(s) Applied: B1.15, B5.1 Date: 04282011 Location(s): Pownal, Vermont...

92

The Vermont Gasifier  

DOE Green Energy (OSTI)

A new demonstration biomass gasifier in Burlington, Vermont, is a major advance toward biopower systems of the 21st century. The purpose of the project is to verify design and operating characteristics of this gasification technology at an intermediate size. The Vermont gasifier is rated at 200 tons of biomass per day. The demonstration will allow further scale-up to a first-of-its-kind commercial gasifier to be demonstrated in the future at an industrial or utility scale.

Jones, J.; Wulf, T.

1998-09-28T23:59:59.000Z

93

Competitive Wind Grants (Vermont) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Competitive Wind Grants (Vermont) Competitive Wind Grants (Vermont) Eligibility Agricultural Commercial Construction Industrial Institutional Local Government Low-Income...

94

Simulating Online Yankee Auctions to Optimize Sellers Revenue  

Science Conference Proceedings (OSTI)

The online Yankee auction sells multiple units of the same good to multiple buyers using an ascending and open auction mechanism. One of the important controllable factors of the Yankee auction is the minimum bid increment, specified at the beginning ... Keywords: Simulation, Online Auctions, E-commerce

R. Bapna; P. Goes; A. Gupta

2001-01-01T23:59:59.000Z

95

Today in Energy - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Vermont Yankee nuclear plant closure in 2014 will challenge New England energy markets. July 2, 2013 Lower power prices and high repair costs drive nuclear retirements.

96

EA-82 Vermont Electric Power Company | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

82 Vermont Electric Power Company EA-82 Vermont Electric Power Company Order authorizing Vermont Electric Power Company to export electric energy to Canada EA-82 Vermont Electric...

97

Quarterly Nuclear Deployment Scorecard - October 2013 | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

October 2013 October 2013 Quarterly Nuclear Deployment Scorecard - October 2013 News Updates Dominion has filed an updated integrated resource plan with Virginia and North Carolina State regulators; the plan sets an "earliest possible" in-service date of October 2024 for North Anna 3. Earlier this year, the company announced its intention to return to the General Electric-Hitachi (GEH) ESBWR reactor design with an amended Combined Operating License (COL) to be filed by the end of 2013. Entergy announced that it will close its single unit Vermont Yankee nuclear power plant in late 2014; sustained low natural gas prices, financial impacts of cumulative regulations, and the wholesale market structure all contributed to the company's decision to shutter the plant.

98

Vermont 504 Loan Program (Vermont) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

504 Loan Program (Vermont) 504 Loan Program (Vermont) Vermont 504 Loan Program (Vermont) < Back Eligibility Commercial Agricultural Industrial Construction Installer/Contractor Retail Supplier Fuel Distributor Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Vermont Program Type Loan Program Provider Vermont Economic Development Authority The Vermont 504 Loan Program makes SBA 504 loans to eligible borrowers whose business net worth is no more than $15 million and whose average net profit after taxes does not exceed $5 million for two prior years. The program uses proceeds of SBA debentures to finance borrowers' business needs. SBA 504 loans are made in conjunction other third party lenders that

99

Vermont.indd  

NLE Websites -- All DOE Office Websites (Extended Search)

Vermont Vermont www.effi cientwindows.org March 2013 1. Meet the Energy Code and Look for the ENERGY STAR ® Windows must comply with your local energy code. Windows that are ENERGY STAR qualifi ed typically meet or exceed energy code requirements. To verify if specific window energy properties comply with the local code requirements, go to Step 2. 2. Look for Effi cient Properties on the NFRC Label The National Fenestration Rating Council (NFRC) label is needed for verifi cation of energy code compliance (www.nfrc. org). The NFRC label displays whole- window energy properties and appears on all fenestration products which are part of the ENERGY STAR program.

100

Vermont.indd  

NLE Websites -- All DOE Office Websites (Extended Search)

Vermont Vermont www.effi cientwindows.org March 2013 1. Meet the Energy Code and Look for the ENERGY STAR ® Windows must comply with your local energy code. Windows that are ENERGY STAR qualifi ed typically meet or exceed energy code requirements. To verify if specific window energy properties comply with the local code requirements, go to Step 2. 2. Look for Effi cient Properties on the NFRC Label The National Fenestration Rating Council (NFRC) label is needed for verifi cation of energy code compliance (www.nfrc. org). The NFRC label displays whole- window energy properties and appears on all fenestration products which are part of the ENERGY STAR program.

Note: This page contains sample records for the topic "vermont yankee nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Vermont Climate Change Indicators  

Science Conference Proceedings (OSTI)

Climate change indicators are developed for Vermont in recent decades based on the trends in freeze dates, the length of the growing season, the frozen period of small lakes, and the onset of spring. These trends, which show a consistent pattern ...

Alan K. Betts

2011-04-01T23:59:59.000Z

102

Today in Energy - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Vermont Yankee nuclear plant closure in 2014 will challenge New England energy markets. July 8, 2013 Pumped storage provides grid reliability even with net generation ...

103

The Vermont Study on Domestic Violence and the Workplace............................................................. 7  

E-Print Network (OSTI)

the Vermont Workplace? A survey of male offenders enrolled in batterer intervention programs in Vermont

Michele Cranwell Schmidt

2011-01-01T23:59:59.000Z

104

Vermont - State Energy Profile Overview - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Vermont Business Energy Conservation Loan Program, Vermont Economic Development Authority. more. Background. Updates. Notes & Sources.

105

QUARTERLY NUCLEAR POWER DEPLOYMENT SUMMARY OCTOBER 2013 News Updates  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 3 News Updates  Dominion has filed an updated integrated resource plan with Virginia and North Carolina State regulators; the plan sets an "earliest possible" in- service date of October 2024 for North Anna 3. Earlier this year, the company announced its intention to return to the General Electric-Hitachi (GEH) ESBWR reactor design with an amended Combined Operating License (COL) to be filed by the end of 2013.  Entergy announced that it will close its single unit Vermont Yankee nuclear power plant in late 2014; sustained low natural gas prices, financial impacts of cumulative regulations, and the wholesale market structure all contributed to the company's decision to shutter the plant. This is the fourth plant this year to announce decommissioning plans. Dominion's closure of its single unit Kewaunee plant also followed from low wholesale

106

Vermont/EZFeed Policies | Open Energy Information  

Open Energy Info (EERE)

StateProvince The purpose of the Employment Growth Incentive (VEGI) is to encourage job creation in Vermont by a Vermont company, a Vermont division of a company that plans to...

107

Vermont Datos del Precio de la Gasolina  

NLE Websites -- All DOE Office Websites (Extended Search)

VermontGasPrices.com (Busqueda por Ciudad o Cdigo Postal) - GasBuddy.com Vermont Gas Prices (Ciudades Selectas) - GasBuddy.com Vermont Gas Prices (Organizado por Condado)...

108

STUDENT MOBILITY IN VERMONT SCHOOLS:.  

E-Print Network (OSTI)

??This dissertation project researched sudent mobility school changes not due to customary promotion and its educational correlates, for students and schools in Vermont. Student mobility (more)

Morgan, Annabelle

109

Vermont/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Vermont/Geothermal Vermont/Geothermal < Vermont Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Vermont Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Vermont No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Vermont No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Vermont No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Vermont Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

110

Direct Discharge Permit (Vermont) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Discharge Permit (Vermont) Direct Discharge Permit (Vermont) Eligibility Utility Agricultural Investor-Owned Utility Industrial MunicipalPublic Utility Rural Electric Cooperative...

111

Energy Crossroads: Utility Energy Efficiency Programs Vermont...  

NLE Websites -- All DOE Office Websites (Extended Search)

Vermont Energy Crossroads Index Utility Energy Efficiency Programs Index Suggest a Listing Green Mountain Power Information for Businesses Central Vermont Public Service...

112

Wind powering America: Vermont  

DOE Green Energy (OSTI)

Wind resources in the state of Vermont show great potential for wind energy development according to the wind resource assessment conducted by the state, its utilities, and NREL. This fact sheet provides a brief description of the resource assessment and a link to the resulting wind resource map produced by NREL. The fact sheet also provides a description of the state's net metering program, its financial incentives, and green power programs as well as a list of contacts for more information.

NREL

2000-04-11T23:59:59.000Z

113

Observations and comments on the turbine failure at Yankee Atomic Electric Company, Rowe, Massachusetts  

Science Conference Proceedings (OSTI)

A preliminary analysis is presented of the catastrophic disc failure in the low-pressure turbine at the Yankee Rowe nuclear reactor plant. The analysis is based on on-site inspection and documentation of fractured components. Heavily oxidized thumbnail cracks were observed on fractured surfaces of the first-stage generator-end disc, indicating stress corrosion cracking as the precursor to the catastrophic failure of this disc. No evidence of such cracks was seen on the corresponding fractured governor-end disc. We propose a number of alternative possible causes for the failures and for the differences observed between the two discs.

Goldberg, A.; Streit, R.D.

1980-11-15T23:59:59.000Z

114

Nuclear Regulatory Commission issuances  

SciTech Connect

This document is the March 1996 listing of NRC issuances. Included are: (1) NRC orders granting Cleveland Electric Illuminating Company`s petition for review of the ASLB order LBP-95-17, (2) NRC orders relating to the potential disqualification of two commissioners in the matter of the decommissioning of Yankee Nuclear Power Station, (3) ASLB orders pertaining to the Oncology Services Corporation, (4) ASLB orders pertaining to the Radiation Oncology Center, (5) ASLB orders pertaining to the Yankee Nuclear Power Station, and (6) Director`s decision pertaining to the Yankee Nuclear Power Station.

NONE

1996-03-01T23:59:59.000Z

115

Vermont | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Vermont Vermont Last updated on 2013-06-03 Current News The Vermont Commercial Building Energy Standards (CBES) became effective January 3, 2012. The CBES incorporates elements of the 2012 IECC. Commercial Residential Code Change Current Code State Specific Amendments / Additional State Code Information 2011 Vermont Commercial Building Energy Standards (CBES) are based on the 2009 IECC. Commercial Building Energy Standards Approved Compliance Tools State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Vermont (BECP Report, Sept. 2009) Approximate Energy Efficiency More energy efficient than 2009 IECC Effective Date 01/03/2012 Adoption Date 10/03/2011 Code Enforcement Mandatory DOE Determination ASHRAE 90.1-2007: No ASHRAE 90.1-2010: No

116

PP-82 Vermont Electric Power Company, Inc. (VELCO) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vermont Electric Power Company, Inc. (VELCO) PP-82 Vermont Electric Power Company, Inc. (VELCO) Presidental Permit authorizing Vermont Electric Power Company, Inc. (VELCO) to...

117

Vermont Air Pollution Control Regulations, Major Stationary Sources...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Major Stationary Sources and Major Modifications (Vermont) Vermont Air Pollution Control Regulations, Major Stationary Sources and Major Modifications (Vermont) Eligibility Utility...

118

The Sanderistas and a Metamorphosis of Burlington, Vermont  

E-Print Network (OSTI)

and a Metamorphosis of Burlington, Vermont Bryan Higgins HowConnecticut; and Burlington, Vermont, which elected angeography of Burlington, Vermont. A look at the geographies

Higgins, Bryan

1986-01-01T23:59:59.000Z

119

PP-76 The Vermont Electric Transmission Company | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 The Vermont Electric Transmission Company PP-76 The Vermont Electric Transmission Company Presidential Permit authorizing The Vermont Electric Transmission Company to construct,...

120

Vermont Air Pollution Control Regulations, Ambient Air Quality...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ambient Air Quality Standards (Vermont) Vermont Air Pollution Control Regulations, Ambient Air Quality Standards (Vermont) Eligibility Utility Agricultural Investor-Owned Utility...

Note: This page contains sample records for the topic "vermont yankee nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

PP-76-1 The Vermont Electric Transmission Company | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

76-1 The Vermont Electric Transmission Company PP-76-1 The Vermont Electric Transmission Company Presidential Permit authorizing The Vermont Electric Transmission Company to...

122

EA-288 Vermont Electric Cooperative, Inc. | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 Vermont Electric Cooperative, Inc. EA-288 Vermont Electric Cooperative, Inc. Order authorizing Vermont Electric Cooperative, Inc. to export electric energy to Canada EA-288...

123

PP-69 Vermont Electric Cooperative, Inc. | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9 Vermont Electric Cooperative, Inc. PP-69 Vermont Electric Cooperative, Inc. Presidential permit authorizing Vermont Electric Cooperative, Inc. to construct, operate, and maintain...

124

Alternative Fuels Data Center: Vermont Information  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vermont Information to Vermont Information to someone by E-mail Share Alternative Fuels Data Center: Vermont Information on Facebook Tweet about Alternative Fuels Data Center: Vermont Information on Twitter Bookmark Alternative Fuels Data Center: Vermont Information on Google Bookmark Alternative Fuels Data Center: Vermont Information on Delicious Rank Alternative Fuels Data Center: Vermont Information on Digg Find More places to share Alternative Fuels Data Center: Vermont Information on AddThis.com... Vermont Information This state page compiles information related to alternative fuels and advanced vehicles in Vermont and includes new incentives and laws, alternative fueling station locations, truck stop electrification sites, fuel prices, and local points of contact. Select a new state Select a State Alabama Alaska Arizona Arkansas

125

Evaluation of a wildlife underpass on Vermont State Highway 289 in Essex, Vermont  

E-Print Network (OSTI)

Scharf, technicians for the Vermont Department of Fish andEVALUATION OF A WILDLIFE UNDERPASS ON VERMONT STATE HIGHWAY289 IN ESSEX, VERMONT John M. Austin and Larry Garland,

Austin, John M.; Garland, Larry

2001-01-01T23:59:59.000Z

126

Vermont Air Pollution Control Regulations, Ambient Air Quality Standards (Vermont)  

Energy.gov (U.S. Department of Energy (DOE))

The ambient air quality standards are based on the national ambient air quality standards. The Vermont standards are classified as primary and secondary standards and judged adequate to protect...

127

Seismic margin review of the Maine Yankee Atomic Power Station: Fragility analysis  

SciTech Connect

This Fragility Analysis is the third of three volumes for the Seismic Margin Review of the Maine Yankee Atomic Power Station. Volume 1 is the Summary Report of the first trial seismic margin review. Volume 2, Systems Analysis, documents the results of the systems screening for the review. The three volumes are part of the Seismic Margins Program initiated in 1984 by the Nuclear Regulatory Commission (NRC) to quantify seismic margins at nuclear power plants. The overall objectives of the trial review are to assess the seismic margins of a particular pressurized water reactor, and to test the adequacy of this review approach, quantification techniques, and guidelines for performing the review. Results from the trial review will be used to revise the seismic margin methodology and guidelines so that the NRC and industry can readily apply them to assess the inherent quantitative seismic capacity of nuclear power plants.

Ravindra, M. K.; Hardy, G. S.; Hashimoto, P. S.; Griffin, M. J.

1987-03-01T23:59:59.000Z

128

Forestry Policies (Vermont) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vermont) Vermont) Forestry Policies (Vermont) < Back Eligibility Commercial Agricultural Program Info State Vermont Program Type Environmental Regulations Provider Vermont Department of Forests, Parks and Recreation Vermont forests cover nearly 5 million acres, a large portion of the state. These lands are managed by the Vermont Division of Forestry (http://www.vtfpr.org/htm/forestry.cfm). The Division completed its Forest Resources Plan in 2010, which includes discussion of forest wood for energy: http://www.vtfpr.org/htm/documents/VT%20Forest%20Resources%20Plan.pdf In 2007 the Biomass Energy Resource Center issued "The Vermont Wood Fuel Supply Study", a review of the availability, location, estimated cost, and recommendations for woody biomass material from Vermont forests:

129

Solid Waste Management Rules (Vermont)  

Energy.gov (U.S. Department of Energy (DOE))

These rules establish procedures and standards to protect public health and the environment by ensuring the safe, proper, and sustainable management of solid waste in Vermont. The rules apply to...

130

Recovery Act State Memos Vermont  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vermont Vermont For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................ 4

131

Small Business Loan Program (Vermont) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vermont) Small Business Loan Program (Vermont) Eligibility Commercial Agricultural Industrial Construction InstallerContractor Retail Supplier Fuel Distributor Savings For...

132

Pressurized thermal shock probabilistic fracture mechanics sensitivity analysis for Yankee Rowe reactor pressure vessel  

SciTech Connect

The Nuclear Regulatory Commission (NRC) requested Oak Ridge National Laboratory (ORNL) to perform a pressurized-thermal-shock (PTS) probabilistic fracture mechanics (PFM) sensitivity analysis for the Yankee Rowe reactor pressure vessel, for the fluences corresponding to the end of operating cycle 22, using a specific small-break-loss- of-coolant transient as the loading condition. Regions of the vessel with distinguishing features were to be treated individually -- upper axial weld, lower axial weld, circumferential weld, upper plate spot welds, upper plate regions between the spot welds, lower plate spot welds, and the lower plate regions between the spot welds. The fracture analysis methods used in the analysis of through-clad surface flaws were those contained in the established OCA-P computer code, which was developed during the Integrated Pressurized Thermal Shock (IPTS) Program. The NRC request specified that the OCA-P code be enhanced for this study to also calculate the conditional probabilities of failure for subclad flaws and embedded flaws. The results of this sensitivity analysis provide the NRC with (1) data that could be used to assess the relative influence of a number of key input parameters in the Yankee Rowe PTS analysis and (2) data that can be used for readily determining the probability of vessel failure once a more accurate indication of vessel embrittlement becomes available. This report is designated as HSST report No. 117.

Dickson, T.L.; Cheverton, R.D.; Bryson, J.W.; Bass, B.R.; Shum, D.K.M.; Keeney, J.A. [Oak Ridge National Lab., TN (United States)

1993-08-01T23:59:59.000Z

133

Seismic margin review of the Maine Yankee Atomic Power Station: Summary report  

SciTech Connect

This Summary Report is the first of three volumes for the Seismic Margin Review of the Maine Yankee Atomic Power Station. Volume 2 is the Systems Analysis of the first trial seismic margin review. Volume 3 documents the results of the fragility screening for the review. The three volumes demonstrate how the seismic margin review guidance (NUREG/CR-4482) of the Nuclear Regulatory Commission (NRC) Seismic Design Margins Program can be applied. The overall objectives of the trial review are to assess the seismic margins of a particular pressurized water reactor, and to test the adequacy of this review approach, quantification techniques, and guidelines for performing the review. Results from the trial review will be used to revise the seismic margin methodology and guidelines so that the NRC and industry can readily apply them to assess the inherent quantitative seismic capacity of nuclear power plants.

Prassinos, P.G.; Murray, R.C.; Cummings, G.E.

1987-03-01T23:59:59.000Z

134

Better Buildings Partners: Rutland County, Vermont  

NLE Websites -- All DOE Office Websites (Extended Search)

Rutland County, Vermont Rutland County, Vermont H.E.A.T. Squad Warms Homeowners up to Energy Efficiency Photo of an ornate historical building, with flowering trees beside it. A...

135

Burnup Credit -- Contribution to the Analysis of the Yankee Rowe Radiochemical Assays  

Science Conference Proceedings (OSTI)

This report presents a methodology for validation of the isotopic contents of spent light water reactor fuel for actinide-only burnup credit with additional high-quality radiochemistry assay (RCA) data obtained from the Yankee Rowe pressurized water reactor. The additional Yankee Rowe RCA data were not included in previous isotopic validation studies for burnup credit due to the difficulty of accurately modeling the complex Yankee Rowe fuel assembly design using the SAS2H one-dimensional sequence of the ...

2011-10-11T23:59:59.000Z

136

Maine Yankee steam generator tube modification from a radiobiological prospective  

SciTech Connect

Maine Yankee installed permanent sleeving in the primary secondary interface tubing of their steam generators. This repair was necessary because of numerous defects approaching or exceeding technical specification requirements. This project was accomplished under budget, and for a radiation exposure of 141.974 person-rem. This paper addresses the ALARA considerations, temporary lead shielding, mockup training, radiation worker training, radiological initiatives, and lessons learned.

Heath, E.; Granados, B. [Maine Yankee, Wiscasset, MA (United States)

1996-06-01T23:59:59.000Z

137

The Fork+ Developmental Measurement Campaign at Maine Yankee  

Science Conference Proceedings (OSTI)

The use of burnup credit in the design of spent-fuel storage and transportation systems significantly reduces risks and decreases costs. However, approval of storage and transportation designs using burnup credit will likely require independent measurement of the spent-fuel assembly burnup. EPRI's Fork(plus) system has been designed for measuring spent-fuel burnup without recourse to reactor records. This report presents results from testing of the Fork(plus) system prototype at the Maine Yankee reactor ...

1999-06-22T23:59:59.000Z

138

Routine application of the in situ soil analysis technique by the Yankee Atomic Environmental Laboratory  

Science Conference Proceedings (OSTI)

Using a technique developed by the Environmental Measurements Laboratory (EML) for field spectrometry, the Yankee Atomic Environmental Laboratory (YAEL) has routinely performed in situ soil measurements in the vicinity of five nuclear power stations for more than a decade. As a special research endeavor, several locations at the FURNAS Angra 1 site in Brazil having high natural backgrounds were also measured in 1987. The technical basis of the technique, a comparison of soil radionuclide concentrations predicted by the in situ technique to soil radionuclide concentrations predicted by the in situ technique to soil analyses from the same sites, the advantages and disadvantages of the in situ methodology, and the evolution of the portable equipment utilized at YAEL for the field measurements are presented in this paper.

Murray, J.C.; McCurdy, D.E.; Laurenzo, E.L.

1989-01-01T23:59:59.000Z

139

Climate Action Plan (Vermont) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vermont) Vermont) Climate Action Plan (Vermont) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Vermont Program Type Climate Policies Provider Vermont Agency of Natural Resources There is a growing scientific consensus that increasing emissions of greenhouse gases to the atmosphere are affecting the temperature and

140

Flexible Capital Fund (Vermont) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Flexible Capital Fund (Vermont) Flexible Capital Fund (Vermont) Flexible Capital Fund (Vermont) < Back Eligibility Commercial Agricultural Construction Rural Electric Cooperative Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Vermont Program Type Loan Program Provider Vermont Sustainable Jobs Fund The Vermont Sustainable Jobs Fund's Flexible Capital Fund (the "Flex Fund") is designed for companies in Vermont's rural areas that are smaller and work on a less-than global scale, offering a return on investment that does not always meet venture capital levels. These rural companies may need a form of "equity" to fuel growth but need it in lesser amounts and perhaps at lower returns than traditional venture

Note: This page contains sample records for the topic "vermont yankee nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

The removal and segmentation of the Yankee Rowe reactor vessel internals  

Science Conference Proceedings (OSTI)

A major element of the reactor decommissioning of the Rowe Yankee reactor was the segmentation and packaging of the reactor internals. PCI Energy Services, specializing in remote cutting, machining, and welding, performed this work under contract to Yankee Atomic Electric Company. Removal techniques are described.

Child, C.; McGough, M.; Smith, G. [Power Cutting Inc., Lake Bluff, IL (United States)

1995-12-31T23:59:59.000Z

142

Vermont State Briefing Book on low-level radioactive waste management  

Science Conference Proceedings (OSTI)

The Vermont State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Vermont. The profile is the result of a survey of Nuclear Regulatory Commission licensees in Vermont. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may affect waste management practices in Vermont.

Not Available

1981-07-01T23:59:59.000Z

143

Categorical Exclusion Determinations: Vermont | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vermont Vermont Categorical Exclusion Determinations: Vermont Location Categorical Exclusion Determinations issued for actions in Vermont. DOCUMENTS AVAILABLE FOR DOWNLOAD August 15, 2013 CX-010757: Categorical Exclusion Determination The New England Solar cost-Reduction Challenge Partnership CX(s) Applied: A9, A11 Date: 08/15/2013 Location(s): Vermont, New Hampshire, Rhode Island, Massachusetts, Connecticut Offices(s): Golden Field Office June 14, 2013 CX-010522: Categorical Exclusion Determination Gravity head Energy System (GHES) CX(s) Applied: A9, B3.6 Date: 06/14/2013 Location(s): Vermont, Texas Offices(s): Golden Field Office April 26, 2013 CX-010174: Categorical Exclusion Determination A Comprehensive Investigation of Unsteady Reciprocating Effects on Near-Wall Heat Transfer in Engines

144

VERMONT AGENCY OF TRANSPORTATION WILDLIFE CROSSING TEAM; BUILDING AN INTER-AGENCY PLANNING TOOL TO ADDRESS ECOLOGICAL CONNECTIVITY IN VERMONT  

E-Print Network (OSTI)

He serves as chair of the Vermont Reptile and Amphibianis coordinator of the Vermont Reptile and Amphibian Atlas.biologist with the Vermont Dept. of Fish and Wildlife. John

Slesar, Chris; Morse, Susan C.; Austin, John M.

2003-01-01T23:59:59.000Z

145

Agricultural Lighting and Equipment Rebate Program (Vermont)...  

Open Energy Info (EERE)

with form History Share this page on Facebook icon Twitter icon Agricultural Lighting and Equipment Rebate Program (Vermont) This is the approved revision of this page, as...

146

Vermont Gas- Commercial Energy Efficiency Program  

Energy.gov (U.S. Department of Energy (DOE))

Vermont Gas (VGS) offers two energy efficiency programs for commercial customers: the WorkPlace New Construction Program and the WorkPlace Equipment Replacement and Retrofit Program.

147

Investment Tax Credit (Vermont) | Open Energy Information  

Open Energy Info (EERE)

DSIRE 07072012 References DSIRE1 Summary Vermont offers an investment tax credit for installations of renewable energy equipment on business properties. The credit is equal to...

148

GMP - Biomass Electricity Production Incentive (Vermont) | Open...  

Open Energy Info (EERE)

with form History Share this page on Facebook icon Twitter icon GMP - Biomass Electricity Production Incentive (Vermont) This is the approved revision of this page, as well...

149

Vermont Transco, LLC | Open Energy Information  

Open Energy Info (EERE)

Transco, LLC Jump to: navigation, search Name Vermont Transco, LLC Place Rutland, VT Website http:www.vermonttransco.com References SGIC1 No information has been entered for...

150

VERMONT INCARCERATED WOMENS INITIATIVE DRUG EDUCATION.  

E-Print Network (OSTI)

??The Vermont Agency of Human Services Incarcerated Womens Initiative (IWI), constituted in April of 2005, was instrumental in supporting the development and implementation of a (more)

Onderwyzer, Susan

2005-01-01T23:59:59.000Z

151

,"Vermont Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Vermont Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","72013" ,"Release...

152

Direct Loan Program Subchapter 5 (Vermont) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Subchapter 5 (Vermont) Subchapter 5 (Vermont) Direct Loan Program Subchapter 5 (Vermont) < Back Eligibility Commercial Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Vermont Program Type Loan Program Provider Vermont Economic Development Authority The Direct Loan Program assists Vermont borrowers in financing fixed assets and in cooperation with commercial banks. The Vermont Economic Development Authority may either make its own direct loan or purchase a portion of a bank loan to enable greater access to debt financing for Vermont businesses. The loan may be used for the purchase of land and buildings, including construction or renovation, and for the purchase and installation

153

Bennington County, Vermont ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Bennington County, Vermont ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Bennington County, Vermont ASHRAE Standard ASHRAE 169-2006 Climate...

154

Vermont Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Vermont Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Vermont Natural Gas Pipeline and Distribution Use (Million...

155

Vermont Natural Gas Pipeline and Distribution Use Price (Dollars...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Vermont Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Vermont Natural Gas Pipeline and...

156

Vermont Recovery Act State Memo | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vermont Recovery Act State Memo Vermont Recovery Act State Memo The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and...

157

Interview: LaborWorks@NeighborWorks Provides Vermont Contractors...  

NLE Websites -- All DOE Office Websites (Extended Search)

Focus Series LaborWorks@NeighborWorks Provides Vermont Contractors With Help When They Need It NeighborWorks of Western Vermont (NWWVT), a nonprofit home ownership organization...

158

Vermont Propane Retail Sales by Refiners (Thousand Gallons per Day)  

U.S. Energy Information Administration (EIA)

Referring Pages: Propane (Consumer Grade) Sales to End Users Refiner Sales Volumes; Vermont Propane (Consumer Grade) Refiner Sales Volumes; Vermont Sales to End Users ...

159

Joint Regulation of Radionuclides at Connecticut Yankee Haddam Neck Plant - Finding Common Ground and Lessons Learned  

Science Conference Proceedings (OSTI)

During the site closure of nuclear facilities where both radionuclides and chemicals are present in environmental media, state and federal regulatory agencies other than the Nuclear Regulatory Commission often have a stake in the regulation of the site closure process. At the Connecticut Yankee Atomic Power Company (CYAPCO) Haddam Neck Plant in Haddam, Connecticut, the site closure process includes both radiological and chemical cleanup which is regulated by two separate divisions within the state and two federal agencies. Each of the regulatory agencies has unique closure criteria which pertain to radionuclides and, consequently, there is overlapping and in some cases disparate regulation of radionuclides. Considerable effort has been expended by CYAPCO to find common ground in meeting the site closure requirements for radionuclides required by each of the agencies. This paper discusses the approaches that have been used by CYAPCO to address radionuclide site closure requirements. Significant lessons learned from these approaches include the demonstration that public health cleanup criteria for most radionuclides of concern at nuclear power generation facilities are protective for chemical toxicity concerns and are protective for ecological receptors and, consequently, performing a baseline ecological risk assessment for radionuclides at power generation facilities is not generally necessary. (authors)

Peters, J.; Glucksberg, N.; Fogg, A. [MACTEC Engineering and Consulting, Inc., Portland, Maine 04112 (United States); Couture, B. [Connecticut Yankee Atomic Power Company, Haddam Neck Plant, Haddam, Connecticut 06424 (United States)

2006-07-01T23:59:59.000Z

160

Technical evaluation of the susceptibility of safety-related systems to flooding caused by the failure of non-Category I systems for the Maine Yankee Atomic Power Station  

SciTech Connect

This report documents the technical evaluation of the Maine Yankee Atomic Power Station. The purpose of this evaluation was to determine whether the failure of any non-Class I (seismic) equipment could result in a condition, such as flooding, that might adversely affect the performance of the safety-related equipment required for the safe shutdown of the facility, or to mitigate the consequences of an accident. Criteria developed by the US Nuclear Regulatory Commission were used to evaluate the acceptability of the existing protection system as well as measures taken by Maine Yankee Atomic Power Company (MYAPC) to minimize the danger of flooding and to protect safety-related equipment. Based on the information supplied, we conclude that the licensee, Maine Yankee Atomic Power Company (MYAPC), has demonstrated in its analysis that the Maine Yankee Atomic Power Station has the capacity and capability to manage and mitigate any single incident, such as flooding from a non-Class I system component or pipe, so that this flooding will not prevent a safe shutdown of the facility. 7 refs.

Epps, R.C.

1981-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "vermont yankee nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Energy Incentive Programs, Vermont | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vermont Vermont Energy Incentive Programs, Vermont October 29, 2013 - 1:19pm Addthis Updated December 2012 What public-purpose-funded energy efficiency programs are available in my state? In 1999, Vermont's state legislature approved legislation giving the Public Service Board (PSB) the authority to establish a systems benefit charge to fund statewide energy efficiency programs via a non-utility entity (in lieu of utility-specific programs). Subsequently, the PSB approved the creation of an "energy efficiency utility" to run energy conservation programs in the state. The program administrator, Efficiency Vermont, had its budget increased by the PSB in 2006 such that funding levels moved from roughly $19 million in 2006 to over $35 million in 2010 (including low income and

162

Categorical Exclusion Determinations: Vermont | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June 27, 2011 June 27, 2011 CX-006204: Categorical Exclusion Determination Vermont Biofuels Initiative: Green Mountain Spark CX(s) Applied: B3.6 Date: 06/27/2011 Location(s): Burlington, Vermont Office(s): Energy Efficiency and Renewable Energy, Golden Field Office June 17, 2011 CX-006134: Categorical Exclusion Determination Clean Energy Development Fund Renewable Energy Program Market Title - Goddard College Biomass Heating Plant CX(s) Applied: B1.15, B5.1 Date: 06/17/2011 Location(s): Plainfield, Vermont Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory May 18, 2011 CX-005933: Categorical Exclusion Determination Sustainable Energy For Vermont Schools CX(s) Applied: B5.1 Date: 05/18/2011 Location(s): Burlington, Vermont Office(s): Energy Efficiency and Renewable Energy, Golden Field Office

163

Safety Evaluation Report, pump and valve inservice testing program, Maine Yankee Atomic Power Station  

Science Conference Proceedings (OSTI)

This EG and G, Inc., report presents the results of our evaluation of the Maine Yankee Atomic Power Station, Inservice Testing Program for pumps and valves whose function is important to safety.

Rockhold, H.C.; Stromberg, H.M.

1985-04-01T23:59:59.000Z

164

Vermont Marble Company, Proctor, Vermont: Otter Creek hydroelectric feasibility report  

DOE Green Energy (OSTI)

Vermont Marble Company (VMCO) owns and operates four hydroelectric projects in a 50-mile reach of Otter Creek in west central Vermont. This study concerns three of the installations - Center Rutland, Beldens, and Huntington Falls. The fourth site is known as Proctor and will be studied separately. All four plants operate as run-of-river stations, and the limited reservoir storage capacity places severe limitations on any other type of operation. The plants are presently operating at much lower outputs than can be obtained, because they do not use the available discharge and head. The results show that, under the assumptions made in this study, Beldens and Huntington Falls can be economically improved. The rehabilitation of the Center Rutland plant did not look economically attractive. However, the improvement of Center Rutland should not be eliminated from further consideration, because it could become economically attractive if the cost of energy starts escalating at a rate of around 10% per year. The study included a brief appraisal of the existing generating facilities and condition of existing concrete structures, a geological reconnaissance of the sites, analysis of the power potential, flood studies, technical and economic investigations and comparative evaluations of the alternatives for developing the streamflow for power generation, selection of the most suitable alternative, financial analysis, preparation of drawings, and preparation of detailed quantity and cost estimates.

None

1979-02-01T23:59:59.000Z

165

Health hazard evaluation report HETA 96-0137-2607, Yankee Atomic Electric Company, Rowe, Massachusetts  

SciTech Connect

In response to a request from the Health and Safety Supervisor at the Yankee Nuclear Power Station (SIC-4911), Rowe, Massachusetts, an investigation was begun into ozone (10028156) exposure during plasma arc cutting and welding. Welders had reported chest tightness, dry cough, and throat and bronchial irritation. The nuclear power station was in the process of being decommissioned, and workers were dismantling components using welding and cutting methods. Of the operations observed during the site visit, the highest ozone concentrations were generated during plasma arc cutting, followed by metal inert gas (MIG) welding and arc welding. During plasma arc cutting the average and peak concentrations exceeded the NIOSH ceiling recommended exposure limit of 0.1 part per million. The author concludes that ozone exposure during plasma arc cutting and MIG welding presented a health hazard to welders. The author recommends that improvements be made in the local exhaust ventilation, that nitrogen-dioxide levels be monitored during hot work, and that many exposed workers wear protective clothing, use ultraviolet blocking lotion, and continue the use appropriate shade of eye protection.

Sylvain, D.C.

1996-10-01T23:59:59.000Z

166

Qualification of in-service examination of the Yankee Rowe reactor pressure vessel  

SciTech Connect

Technical support was provided to assist the Yankee Atomic Electric Company with their restart effort for the Yankee plant in Rowe, Massachusetts. Demonstration of adequate margin during a postulated pressurized thermal shock accident was an important part of the justification for restarting the plant, and effective inservice examination of the critical inner surface of the vessel in the beltline region was a key objective and a significant component of the safety analysis. This report discussed this inservice inspection.

Ammirato, F.; Kietzman, K.; Becker, L.; Ashwin, P.; Selby, G.; Krzywosz, K.; Findlan, S. (Electric Power Research Inst., Charlotte, NC (United States). Nondestructive Evaluation Center); Lance, J. (Yankee Atomic Electric Co., Bolton, MA (United States))

1992-12-01T23:59:59.000Z

167

PP-82-2 Vermont Electric Power Company, Inc. (VELCO) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 Vermont Electric Power Company, Inc. (VELCO) PP-82-2 Vermont Electric Power Company, Inc. (VELCO) Presidential Permit authorizing Vermont Electric Power Company, Inc. (VELCO) to...

168

PP-66-1 Vermont Electric Power Company, Inc. | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 Vermont Electric Power Company, Inc. PP-66-1 Vermont Electric Power Company, Inc. Presidential Permit authorizing Vermont Electric Power Company, Inc. to construct, operate, and...

169

PP-66-2 Vermont Electric Power Company, Inc. | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 Vermont Electric Power Company, Inc. PP-66-2 Vermont Electric Power Company, Inc. Presidential Permit authorizing Vermont Electric Power Company, Inc. to construct, operate and...

170

A GIS-based identification of potentially significant wildlife habitats associated with roads in Vermont  

E-Print Network (OSTI)

Capen. 1997. A report on the biophysical regions in Vermont.report prepared for the Vermont Ecomapping Roundtable.scientist with the Vermont Fish and Wildlife Department and

Austin, John M.; Viani, Kevin; Hammond, Forrest; Slesar, Chris

2005-01-01T23:59:59.000Z

171

PP-80-1 Vermont Electric Cooperative, Inc. | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

-1 Vermont Electric Cooperative, Inc. PP-80-1 Vermont Electric Cooperative, Inc. Presidential Permit authorizing Vermont Electric Cooperative, Inc to construct, operate and...

172

Alternative Fuels Data Center: Vermont Points of Contact  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vermont Points of Vermont Points of Contact to someone by E-mail Share Alternative Fuels Data Center: Vermont Points of Contact on Facebook Tweet about Alternative Fuels Data Center: Vermont Points of Contact on Twitter Bookmark Alternative Fuels Data Center: Vermont Points of Contact on Google Bookmark Alternative Fuels Data Center: Vermont Points of Contact on Delicious Rank Alternative Fuels Data Center: Vermont Points of Contact on Digg Find More places to share Alternative Fuels Data Center: Vermont Points of Contact on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Vermont Points of Contact The following people or agencies can help you find more information about Vermont's clean transportation laws, incentives, and funding opportunities.

173

Alternative Fuels Data Center: Vermont Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vermont Laws and Vermont Laws and Incentives to someone by E-mail Share Alternative Fuels Data Center: Vermont Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Vermont Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Vermont Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Vermont Laws and Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Vermont Laws and Incentives Listed below are incentives, laws, and regulations related to alternative fuels and advanced vehicles for Vermont. Your Clean Cities coordinator at

174

Vermont's At-large congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Vermont's At-large congressional district: Energy Resources Vermont's At-large congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Vermont. Contents 1 US Recovery Act Smart Grid Projects in Vermont's At-large congressional district 2 Registered Policy Organizations in Vermont's At-large congressional district 3 Registered Energy Companies in Vermont's At-large congressional district 4 Energy Generation Facilities in Vermont's At-large congressional district US Recovery Act Smart Grid Projects in Vermont's At-large congressional district Vermont Transco, LLC Smart Grid Project Registered Policy Organizations in Vermont's At-large congressional district Clean Energy States Alliance

175

Health physics support for thermal shield repair at Connecticut Yankee  

Science Conference Proceedings (OSTI)

This article describes the radiation and safety controls used by Connecticut Yankee Atomic Power Company to support underwater repair work on the Haddam Neck Plant's core barrel thermal shield. The work was conducted by divers in the reactor cavity using remote tools and protected by a specially-constructed physical barrier that restricted their movements to a carefully defined and thoroughly surveyed area. A unique dosimetry test rig was used to determine the dose rate profiles within the work areas, and all underwater survey equipment was qualified against personnel dosimetric devices. Underwater operations were monitored and controlled by remote means (video surveillance and dosimetry telemetry), and health physics technicians were rotated through job coverage to avoid complacency and maximize training opportunities. A single, hot particle event occurred during one dive, but this was identified almost immediately and controlled to prevent excessive exposure to the diver.

Nevelos, W.F.; Gates, W.J. (Connecticut Yankee Atomic Power Co., East Hampton, CT (United States))

1988-10-01T23:59:59.000Z

176

Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Vermont: Energy Resources Vermont: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.5588028,"lon":-72.5778415,"alt":0,"address":"Vermont","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

177

A new town hall for Norwich, Vermont  

E-Print Network (OSTI)

... the public building is not an abstract symbol, but partakes in daily life, which relates to what is timeless and common. The objective of this thesis was to design a new town hall for Norwich, Vermont. The design ...

Harboe, Peter Thomas McIlvaine

1988-01-01T23:59:59.000Z

178

Alternative Regulation (Vermont) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Regulation (Vermont) Regulation (Vermont) Alternative Regulation (Vermont) < Back Eligibility Agricultural Commercial Fuel Distributor Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative State/Provincial Govt Systems Integrator Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Vermont Program Type Generating Facility Rate-Making Utility regulators, including the Public Service Board, have applied a new type of regulation, often called "alternative regulation" or "incentive regulation." There are many variants of this type of regulation, but the common foundation is that rates are set differently from the traditional cost-of-service approach. Sometimes there is a performance-based aspect to

179

Vermont/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Vermont/Wind Resources Vermont/Wind Resources < Vermont Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Vermont Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

180

Categorical Exclusion Determinations: Vermont | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 4, 2010 August 4, 2010 CX-003316: Categorical Exclusion Determination Biomass Heating Project Under Public Serving Institutions Market Title CX(s) Applied: B5.1 Date: 08/04/2010 Location(s): Newport, Vermont Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory August 4, 2010 CX-003228: Categorical Exclusion Determination Vermont Biofuels Initiative: Bournes CX(s) Applied: B3.6 Date: 08/04/2010 Location(s): Vermont Office(s): Energy Efficiency and Renewable Energy, Golden Field Office August 3, 2010 CX-003317: Categorical Exclusion Determination Light Emitting Diode (LED) Lighting Project for Public Serving Institutions Market Title CX(s) Applied: B5.1 Date: 08/03/2010 Location(s): Swanton, Vermont Office(s): Energy Efficiency and Renewable Energy, National Energy

Note: This page contains sample records for the topic "vermont yankee nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Stream Obstruction Regulations (Vermont) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vermont law prohibits the installation of a structure, such as a dam, that prevents fish movement, unless an approval has been granted by the Commissioner of Fish and Wildlife....

182

Regulations and Permits Related to Dams (Vermont)  

Energy.gov (U.S. Department of Energy (DOE))

Vermont law requires a permit, or a dam order, for the construction, alteration, or removal of dams impounding more than 500,000 cubic feet of water, including any accumulated sediments. Dam...

183

VERMONT  

Science Conference Proceedings (OSTI)

... for purchase without the assistance of sales personnel. ... in one receptacle for the purpose of a one-priced sale. ... with a label such as a gun type label. ...

2011-03-21T23:59:59.000Z

184

Isotopic validation for PWR actinide-only burnup credit using Yankee Rowe data  

Science Conference Proceedings (OSTI)

Safety analyses of criticality control systems for transportation packages include an assumption that the spent nuclear fuel (SNF) loaded into the package is fresh or unirradiated. In other words, the spent fuel is assumed to have its original, as-manufactured U-235 isotopic content. The ``fresh fuel`` assumption is very conservative since the potential reactivity of the nuclear fuel is substantially reduced after being irradiated in the reactor core. The concept of taking credit for this reduction in nuclear fuel reactivity due to burnup of the fuel, instead of using the fresh fuel assumption in the criticality safety analysis, is referred to as ``Burnup Credit.`` Burnup credit uses the actual physical composition of the fuel and accounts for the net reduction of fissile material and the buildup of neutron absorbers in the fuel as it is irradiated. Neutron absorbers include actinides and other isotopes generated as a result of the fission process. Using only the change in actinide isotopes in the burnup credit criticality analysis is referred to as ``Actinide-Only Burnup Credit.`` The use of burnup credit in the design of criticality control systems enables more spent fuel to be placed in a package. Increased package capacity results in a reduced number of storage, shipping and disposal containers for a given number of SNF assemblies. Fewer shipments result in a lower risk of accidents associated with the handling and transportation of spent fuel, thus reducing both radiological and nonradiological risk to the public. This paper describes the modeling and the results of comparison between measured and calculated isotopic inventories for a selected number of samples taken from a Yankee Rowe spent fuel assembly.

NONE

1997-11-01T23:59:59.000Z

185

Vermont Standard Offer for Qualifying SPEED Resources | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vermont Standard Offer for Qualifying SPEED Resources Vermont Standard Offer for Qualifying SPEED Resources Vermont Standard Offer for Qualifying SPEED Resources < Back Eligibility Agricultural Commercial Industrial Savings Category Bioenergy Water Buying & Making Electricity Solar Home Weatherization Wind Maximum Rebate Varies by technology Program Info Start Date 09/30/2009 State Vermont Program Type Performance-Based Incentive Rebate Amount Varies by technology Provider VEPP, Inc. '''''Note: The first RFP for the new competitive award process has passed; applications were accepted through May 1, 2013. See the program web site for information regarding future solicitations. ''''' In May 2009, Vermont enacted legislation requiring all Vermont retail electricity providers to purchase electricity generated by eligible

186

Vermont Land Use and Development, Act 250 (Vermont) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Land Use and Development, Act 250 (Vermont) Land Use and Development, Act 250 (Vermont) Vermont Land Use and Development, Act 250 (Vermont) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Vermont Program Type Environmental Regulations Provider Agency of Natural Resources The Act 250 program provides a public, quasi-judicial process for reviewing

187

Examination of turbine discs from nuclear power plants  

SciTech Connect

Investigations were performed on a cracked turbine disc from the Cooper Nuclear Power Station, and on two failed turbine discs (governor and generator ends) from the Yankee-Rowe Nuclear Power Station. Cooper is a boiling water reactor (BWR) which went into commercial operation in July 1974, and Yankee-Rowe is a pressurized water reactor (PWR) which went into commercial operation in June 1961. Cracks were identified in the bore of the Cooper disc after 41,913 hours of operation, and the disc removed for repair. At Yankee-Rowe two discs failed after 100,000 hours of operation. Samples of the Cooper disc and both Yankee-Rowe disc (one from the governor and one from the generator end of the LP turbine) were sent to Brookhaven National Laboratory (BNL) for failure analysis.

Czajkowski, C.J.; Weeks, J.R.

1982-01-01T23:59:59.000Z

188

Regional Vermont Agency Provides Work in Tight-Knit Communities |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vermont Agency Provides Work in Tight-Knit Communities Vermont Agency Provides Work in Tight-Knit Communities Regional Vermont Agency Provides Work in Tight-Knit Communities June 11, 2010 - 4:33pm Addthis Weatherization auditors and crews assist in making a Vermont home more energy-efficient in New England winters. | Photo Courtesy of Southeastern Vermont Community Action (SEVCA) Agency | Weatherization auditors and crews assist in making a Vermont home more energy-efficient in New England winters. | Photo Courtesy of Southeastern Vermont Community Action (SEVCA) Agency | Joshua DeLung "I think everyone has their heart in it. I think we see weatherization as a really worthy process." Morgan McKane, weatherization auditor at SEVCA Morgan McKane spent most of his career in southeast Vermont working in the

189

Alternative Fuels Data Center: Vermont Laws and Incentives for NEVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

NEVs to someone by E-mail NEVs to someone by E-mail Share Alternative Fuels Data Center: Vermont Laws and Incentives for NEVs on Facebook Tweet about Alternative Fuels Data Center: Vermont Laws and Incentives for NEVs on Twitter Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for NEVs on Google Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for NEVs on Delicious Rank Alternative Fuels Data Center: Vermont Laws and Incentives for NEVs on Digg Find More places to share Alternative Fuels Data Center: Vermont Laws and Incentives for NEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Vermont Laws and Incentives for NEVs The list below contains summaries of all Vermont laws and incentives

190

Alternative Fuels Data Center: Vermont Laws and Incentives for Other  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Other to someone by E-mail Other to someone by E-mail Share Alternative Fuels Data Center: Vermont Laws and Incentives for Other on Facebook Tweet about Alternative Fuels Data Center: Vermont Laws and Incentives for Other on Twitter Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Other on Google Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Other on Delicious Rank Alternative Fuels Data Center: Vermont Laws and Incentives for Other on Digg Find More places to share Alternative Fuels Data Center: Vermont Laws and Incentives for Other on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Vermont Laws and Incentives for Other The list below contains summaries of all Vermont laws and incentives

191

Alternative Fuels Data Center: Vermont Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

to someone by E-mail to someone by E-mail Share Alternative Fuels Data Center: Vermont Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Vermont Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Vermont Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Vermont Laws and Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Vermont Laws and Incentives Listed below are the summaries of all current Vermont laws, incentives, regulations, funding opportunities, and other initiatives related to

192

Alternative Fuels Data Center: Vermont Laws and Incentives for Other  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Other to someone by E-mail Other to someone by E-mail Share Alternative Fuels Data Center: Vermont Laws and Incentives for Other on Facebook Tweet about Alternative Fuels Data Center: Vermont Laws and Incentives for Other on Twitter Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Other on Google Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Other on Delicious Rank Alternative Fuels Data Center: Vermont Laws and Incentives for Other on Digg Find More places to share Alternative Fuels Data Center: Vermont Laws and Incentives for Other on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Vermont Laws and Incentives for Other The list below contains summaries of all Vermont laws and incentives

193

Alternative Fuels Data Center: Vermont Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Vermont Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Vermont Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Vermont Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Vermont Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Vermont Laws and Incentives for Ethanol The list below contains summaries of all Vermont laws and incentives

194

Alternative Fuels Data Center: Vermont Laws and Incentives for Other  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Other to someone by E-mail Other to someone by E-mail Share Alternative Fuels Data Center: Vermont Laws and Incentives for Other on Facebook Tweet about Alternative Fuels Data Center: Vermont Laws and Incentives for Other on Twitter Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Other on Google Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Other on Delicious Rank Alternative Fuels Data Center: Vermont Laws and Incentives for Other on Digg Find More places to share Alternative Fuels Data Center: Vermont Laws and Incentives for Other on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Vermont Laws and Incentives for Other The list below contains summaries of all Vermont laws and incentives

195

Alternative Fuels Data Center: Vermont Laws and Incentives for Biodiesel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel to someone by E-mail Biodiesel to someone by E-mail Share Alternative Fuels Data Center: Vermont Laws and Incentives for Biodiesel on Facebook Tweet about Alternative Fuels Data Center: Vermont Laws and Incentives for Biodiesel on Twitter Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Biodiesel on Google Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Biodiesel on Delicious Rank Alternative Fuels Data Center: Vermont Laws and Incentives for Biodiesel on Digg Find More places to share Alternative Fuels Data Center: Vermont Laws and Incentives for Biodiesel on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Vermont Laws and Incentives for Biodiesel The list below contains summaries of all Vermont laws and incentives

196

Alternative Fuels Data Center: Vermont Laws and Incentives for Other  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Other to someone by E-mail Other to someone by E-mail Share Alternative Fuels Data Center: Vermont Laws and Incentives for Other on Facebook Tweet about Alternative Fuels Data Center: Vermont Laws and Incentives for Other on Twitter Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Other on Google Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Other on Delicious Rank Alternative Fuels Data Center: Vermont Laws and Incentives for Other on Digg Find More places to share Alternative Fuels Data Center: Vermont Laws and Incentives for Other on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Vermont Laws and Incentives for Other The list below contains summaries of all Vermont laws and incentives

197

Alternative Fuels Data Center: Vermont Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Vermont Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Vermont Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Vermont Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Vermont Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Vermont Laws and Incentives for EVs The list below contains summaries of all Vermont laws and incentives related to EVs.

198

Vermont Electric Trans Co Inc | Open Energy Information  

Open Energy Info (EERE)

Trans Co Inc Jump to: navigation, search Name Vermont Electric Trans Co Inc Place Vermont Utility Id 19950 Utility Location Yes Ownership T NERC Location NPCC NERC NPCC Yes ISO NE...

199

Comparison of three-dimensional neutron flux calculations for Maine Yankee  

SciTech Connect

Calculations have been performed on the Maine Yankee Power Plant to obtain three-dimensional neutron fluxes using the spatial synthesis with the two-dimensional discrete ordinates code DORT, the three-dimensional discrete ordinates code THREEDANT and the three-dimensional Monte Carlo code MCNP. Neutron fluxes are compared for energies above 0.1 MeV and 1.0 MeV as well as dpa. Results were obtained at the Yankee dosimetry locations and special test regions within the pressure vessel, in the reactor cavity, and in a shield tank detector well.

Urban, W.T.; Crotzer, L.A.; Waters, L.S.; Parsons, D.K.; Alcouffe, R.E. [Los Alamos National Lab., NM (United States); Spinney, K.B.; Cacciapouti, R.J. [Yankee Atomic Electric Co., Bolton, MA (United States)

1996-10-01T23:59:59.000Z

200

Nuclear Regulatory Commission issuances, June 1996. Volume 43, Number 6  

Science Conference Proceedings (OSTI)

This report covers the issuances received during the specified period form the Commission, the Atomic Safety and licensing Boards, the administrative Law Judges, the Director`s decisions and the Decisions on Petitions for Rulemaking. Included are a memorandum and order on the decommissioning plan for Yankee Nuclear Power Station, a memorandum and order suspending byproduct material license for Eastern Testing and Inspection, Inc., an initial decision of the source materials license for Sequoyah Fuels Corporation, Director`s decisions for Palo Verde Nuclear Generating Station, Indian Point, Peach Bottom Atomic Power Station, Trojan Nuclear Plant, Rancho Seco Nuclear Generating Station, San Onofre Nuclear Generating Station, and Yankee Nuclear Power Station.

NONE

1996-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "vermont yankee nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Radiological Emergency Response Plan (Vermont)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation establishes a radiological emergency response plan fund, into which any entity operating a nuclear reactor or storing nuclear fuel and radioactive waste in this state (referred to...

202

The return of the Eastern Racer to Vermont; successful conservation through proactive project development and interagency collaboration  

E-Print Network (OSTI)

specialist at the Vermont Agency of Transportation. He hasHe serves as chair of the Vermont Reptile and Amphibianis coordinator of the Vermont Reptile and Amphibian Atlas.

Slesar, Chris; Andrews, James S.

2005-01-01T23:59:59.000Z

203

Strategies for restoring ecological connectivity and establishing wildlife passage for the upgrade of Route 78 in Swanton, Vermont: an overview  

E-Print Network (OSTI)

on Black bears in Vermont. Stratton Mountain Black BearStudy. Final Report. Vermont Agency of Natural Resources,biologist with the Vermont Fish and Wildlife Department.

Austin, John M.; Ferguson, Mark; Gingras, Glenn; Bakos, Greg

2003-01-01T23:59:59.000Z

204

Utilizing a Multi-Technique, Multi-Taxa Approach to Monitoring Wildlife Passageways on the Bennington Bypass in Southern Vermont  

E-Print Network (OSTI)

highway in southern Vermont. We are utilizing a variety offor future studies in Vermont and through- out the Unitedas Arizona, Montana and Vermont. Through cooperative efforts

Bellis, Mark A; Jackson, Scott D.; Griffin, Curtice R; Warren, Paige S; Thompson, Alan O

2007-01-01T23:59:59.000Z

205

Alternative Fuels Data Center: Vermont Laws and Incentives for Idle  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction to someone by E-mail Idle Reduction to someone by E-mail Share Alternative Fuels Data Center: Vermont Laws and Incentives for Idle Reduction on Facebook Tweet about Alternative Fuels Data Center: Vermont Laws and Incentives for Idle Reduction on Twitter Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Idle Reduction on Google Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Idle Reduction on Delicious Rank Alternative Fuels Data Center: Vermont Laws and Incentives for Idle Reduction on Digg Find More places to share Alternative Fuels Data Center: Vermont Laws and Incentives for Idle Reduction on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Vermont Laws and Incentives for Idle Reduction

206

Alternative Fuels Data Center: Vermont Laws and Incentives for Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Tax Incentives to someone by E-mail Tax Incentives to someone by E-mail Share Alternative Fuels Data Center: Vermont Laws and Incentives for Tax Incentives on Facebook Tweet about Alternative Fuels Data Center: Vermont Laws and Incentives for Tax Incentives on Twitter Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Tax Incentives on Google Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Tax Incentives on Delicious Rank Alternative Fuels Data Center: Vermont Laws and Incentives for Tax Incentives on Digg Find More places to share Alternative Fuels Data Center: Vermont Laws and Incentives for Tax Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Vermont Laws and Incentives for Tax Incentives

207

Alternative Fuels Data Center: Vermont Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Vermont Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Vermont Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Vermont Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Vermont Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Vermont Laws and Incentives for Propane (LPG)

208

Alternative Fuels Data Center: Vermont Laws and Incentives for Driving /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Vermont Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Vermont Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Vermont Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Vermont Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Vermont Laws and Incentives for Driving / Idling

209

Spare-parts replacement and the commercial grade issues at Connecticut Yankee  

Science Conference Proceedings (OSTI)

Connecticut Yankee was designed and built according to code B31.1 of the American National Standards Institute for pressure piping and began commercial operations in 1968, 2 yr prior to 10CFR50 Appendix B of the Code of Federal Regulations. Therefore, at the time of commercial operation, the entire plant, except for several major primary plant components, met the current criteria for commercial grade items (CGIs). When spare parts were needed, 10CFR50 Appendix B and 10CFR21 requirements had to be backfitted onto suppliers who had not agreed to these requirements when supplying the original equipment. The problem of identifying original equipment manufacturers that would or would not accept these additional requirements was compounded at Connecticut Yankee by three related problems that also became apparent at approximately the same time: (1) The accuracy of the material, equipment, parts list (Q-list) was being questioned. (2) The use of existing spare parts bought without additional current quality assurance requirements and the adequacy of the existing inventory to support plant operations were being questioned. (3) The general industry concerns over use of GCIs in safety-related applications needed to be resolved. Connecticut Yankee management recognized the need to address each of these problems. Three specific actions were taken: (1) A Q-list upgrade program was funded. (2) A spare parts bill of materials (BOM) project was funded. (3) Connecticut Yankee's engineering department dedicated several engineers to address procurement issues and specifically to develop a CGI program.

Nichols, E.M.; Scott, D.J.; Maret, D.L.

1989-01-01T23:59:59.000Z

210

Qualification of In-Service Examination of the Yankee Rowe Reactor Pressure Vessel  

Science Conference Proceedings (OSTI)

An effective in-service examination of the reactor pressure vessel was an essential part of the restart program for the Yankee Atomic Power Company plant in Rowe, Massachusetts. This report describes development of an effective examination strategy, demonstration of performance of the examination procedures, and development of data on the distribution of flaws in reactor pressure vessels.

1993-01-01T23:59:59.000Z

211

Vermont gasifier project. Final report, Phase I  

DOE Green Energy (OSTI)

This report presents an engineering status report for the Vermont gasifier project. Technical areas of concern are discussed with the cyclone performance, agglomeration problems in the combustor, particlate emissions, valve design, deflagration venting, gasifier and combustion blower surge control, and other related areas. Attachments pertaining to the drawing and specification register are included.

NONE

1995-07-01T23:59:59.000Z

212

Nuclear Fuels Storage & Transportation Planning Project | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Fuels Storage & Nuclear Fuels Storage & Transportation Planning Project Nuclear Fuels Storage & Transportation Planning Project Independent Spent Fuel Storage Installation (ISFSI) at the shutdown Connecticut Yankee site. The ISFSI includes 40 multi-purpose canisters, within vertical concrete storage casks, containing 1019 used nuclear fuel assemblies [412.3 metric ton heavy metal (MTHM)] and 3 canisters of greater-than-class-C (GTCC) low-level radioactive waste. Photo courtesy of Connecticut Yankee (http://www.connyankee.com/html/fuel_storage.html). Independent Spent Fuel Storage Installation (ISFSI) at the shutdown Connecticut Yankee site. The ISFSI includes 40 multi-purpose canisters, within vertical concrete storage casks, containing 1019 used nuclear fuel

213

The Economic Impact of Extending Marriage to Same-Sex Couples in Vermont  

E-Print Network (OSTI)

March 2008). A copy of a Vermont marriage license costs $10.00. Vermont Department of Health. http://Impact on the State of Vermont of Allowing Same-Sex Couples

Ramos, Christopher; Badgett, M.V. Lee; Sears, Brad

2009-01-01T23:59:59.000Z

214

Vermont Sexual Orientation and Gender Identity Law and Documentation of Discrimination  

E-Print Network (OSTI)

1204(b); Civil Unions in Vermont are defined in V.S.A. tit.V.S.A. 9700- 18 V.S.A. 5075. VERMONT Williams InstituteReport G. Parenting Vermont law permits any person,

Sears, Brad

2009-01-01T23:59:59.000Z

215

Review: Pilgrimage to Vallombrosa: From Vermont to Italy in the Footsteps of George Perkins Marsh by John Elder  

E-Print Network (OSTI)

to Vallombrosa: From Vermont to Italy in the Footsteps ofto Vallombrosa: From Vermont to Italy in the Footsteps of

Miller, Ryder W.

2007-01-01T23:59:59.000Z

216

The Payroll Tax Credit (Vermont) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Payroll Tax Credit (Vermont) The Payroll Tax Credit (Vermont) The Payroll Tax Credit (Vermont) < Back Eligibility Utility Commercial Agricultural Investor-Owned Utility Industrial Construction Installer/Contractor Fuel Distributor Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Vermont Program Type Corporate Tax Incentive Provider Vermont Economic Progress Council The Payroll Tax Credit provided by the Vermont Economic Progress Council provides a credit against income tax equivalent to a percentage of increased payroll costs. A company with sales less than $10 million may receive equal to 10 percent of its increased costs of salaries and wages in the applicable tax year. The credit was established in 1998 to foster new

217

Alternative Fuels Data Center: Vermont Laws and Incentives for Acquisition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Acquisition / Fuel Use to someone by E-mail Acquisition / Fuel Use to someone by E-mail Share Alternative Fuels Data Center: Vermont Laws and Incentives for Acquisition / Fuel Use on Facebook Tweet about Alternative Fuels Data Center: Vermont Laws and Incentives for Acquisition / Fuel Use on Twitter Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Acquisition / Fuel Use on Google Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Acquisition / Fuel Use on Delicious Rank Alternative Fuels Data Center: Vermont Laws and Incentives for Acquisition / Fuel Use on Digg Find More places to share Alternative Fuels Data Center: Vermont Laws and Incentives for Acquisition / Fuel Use on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

218

Alternative Fuels Data Center: Vermont Laws and Incentives for Hydrogen  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hydrogen Fuel Cells to someone by E-mail Hydrogen Fuel Cells to someone by E-mail Share Alternative Fuels Data Center: Vermont Laws and Incentives for Hydrogen Fuel Cells on Facebook Tweet about Alternative Fuels Data Center: Vermont Laws and Incentives for Hydrogen Fuel Cells on Twitter Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Hydrogen Fuel Cells on Google Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Hydrogen Fuel Cells on Delicious Rank Alternative Fuels Data Center: Vermont Laws and Incentives for Hydrogen Fuel Cells on Digg Find More places to share Alternative Fuels Data Center: Vermont Laws and Incentives for Hydrogen Fuel Cells on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

219

Clean Cities: State of Vermont Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

State of Vermont Clean Cities Coalition State of Vermont Clean Cities Coalition The State of Vermont Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. State of Vermont Clean Cities coalition Contact Information Michelle McCutcheon-Schour 802-656-9864 mmschour.uvm@gmail.com Coalition Website Clean Cities Coordinator Michelle McCutcheon-Schour Photo of Michelle McCutcheon-Schour Michelle McCutcheon-Schour is the Coordinator for the State of Vermont Clean Cities which is hosted by the University of Vermont Transportation Research Center (TRC). McCutcheon-Schour served as an intern for the coalition in the summer of 2011 through the Clean Cities University Workforce Development Program, has been working at the TRC since then and

220

Uniform Capacity Tax and Exemption for Solar (Vermont) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Uniform Capacity Tax and Exemption for Solar (Vermont) Uniform Capacity Tax and Exemption for Solar (Vermont) Uniform Capacity Tax and Exemption for Solar (Vermont) < Back Eligibility Agricultural Commercial Industrial Low-Income Residential Residential Savings Category Solar Buying & Making Electricity Program Info State Vermont Program Type Property Tax Incentive Rebate Amount 100% property tax exemption for systems 10 kilowatts or less Uniform $4/kilowatt property tax payment Provider Vermont Department of Taxes During the 2012 legislative session, Vermont passed a 100% property tax exemption for solar photovoltaic (PV) systems up to and including 10 kilowatts (kW). For systems greater than 10 kW, the state assesses a uniform $4 per kilowatt (kW). This applies to the equipment, not to the land. The 100% exemption for small PV systems expires January 1, 2023, although a

Note: This page contains sample records for the topic "vermont yankee nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Energy Generation Project Permitting (Vermont) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Generation Project Permitting (Vermont) Generation Project Permitting (Vermont) Energy Generation Project Permitting (Vermont) < Back Eligibility Construction Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Vermont Program Type Environmental Regulations Provider Agency of Natural Resources The Vermont Energy Generation Siting Policy Commission is mandated to survey best practices for siting approval of electric generation projects (all facilities except for net- and group-net-metered facilities) and for public participation and representation in the siting process, and to report to the Governor and to the Vermont Legislature on their findings by

222

Alternative Fuels Data Center: Vermont Laws and Incentives for AFV  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

AFV Manufacturer/Retrofitter to someone by E-mail AFV Manufacturer/Retrofitter to someone by E-mail Share Alternative Fuels Data Center: Vermont Laws and Incentives for AFV Manufacturer/Retrofitter on Facebook Tweet about Alternative Fuels Data Center: Vermont Laws and Incentives for AFV Manufacturer/Retrofitter on Twitter Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for AFV Manufacturer/Retrofitter on Google Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for AFV Manufacturer/Retrofitter on Delicious Rank Alternative Fuels Data Center: Vermont Laws and Incentives for AFV Manufacturer/Retrofitter on Digg Find More places to share Alternative Fuels Data Center: Vermont Laws and Incentives for AFV Manufacturer/Retrofitter on AddThis.com... More in this section...

223

Alternative Fuels Data Center: Vermont Laws and Incentives for Climate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Climate Change / Energy Initiatives to someone by E-mail Climate Change / Energy Initiatives to someone by E-mail Share Alternative Fuels Data Center: Vermont Laws and Incentives for Climate Change / Energy Initiatives on Facebook Tweet about Alternative Fuels Data Center: Vermont Laws and Incentives for Climate Change / Energy Initiatives on Twitter Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Climate Change / Energy Initiatives on Google Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Climate Change / Energy Initiatives on Delicious Rank Alternative Fuels Data Center: Vermont Laws and Incentives for Climate Change / Energy Initiatives on Digg Find More places to share Alternative Fuels Data Center: Vermont Laws and Incentives for Climate Change / Energy Initiatives on

224

Alternative Fuels Data Center: Vermont Laws and Incentives for Fleet  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fleet Purchaser/Manager to someone by E-mail Fleet Purchaser/Manager to someone by E-mail Share Alternative Fuels Data Center: Vermont Laws and Incentives for Fleet Purchaser/Manager on Facebook Tweet about Alternative Fuels Data Center: Vermont Laws and Incentives for Fleet Purchaser/Manager on Twitter Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Fleet Purchaser/Manager on Google Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Fleet Purchaser/Manager on Delicious Rank Alternative Fuels Data Center: Vermont Laws and Incentives for Fleet Purchaser/Manager on Digg Find More places to share Alternative Fuels Data Center: Vermont Laws and Incentives for Fleet Purchaser/Manager on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

225

Alternative Fuels Data Center: Vermont Laws and Incentives for Vehicle  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle Owner/Driver to someone by E-mail Vehicle Owner/Driver to someone by E-mail Share Alternative Fuels Data Center: Vermont Laws and Incentives for Vehicle Owner/Driver on Facebook Tweet about Alternative Fuels Data Center: Vermont Laws and Incentives for Vehicle Owner/Driver on Twitter Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Vehicle Owner/Driver on Google Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Vehicle Owner/Driver on Delicious Rank Alternative Fuels Data Center: Vermont Laws and Incentives for Vehicle Owner/Driver on Digg Find More places to share Alternative Fuels Data Center: Vermont Laws and Incentives for Vehicle Owner/Driver on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

226

Application of Non-Nuclear Robotics to Nuclear Industry Decommissioning  

Science Conference Proceedings (OSTI)

Segmentation of radioactive components, including reactor cavity internals, has proved to be a challenging job for the nuclear power industry during decommissioning. The innovative use of robotic technology to perform debris cleanup can help utilities maximize worker safety. This report documents a first of its kind robotics experience at Connecticut Yankee.

2004-08-11T23:59:59.000Z

227

Ferrisburgh, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Ferrisburgh, Vermont: Energy Resources Ferrisburgh, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.2056098°, -73.2462341° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.2056098,"lon":-73.2462341,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

228

Tinmouth, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Tinmouth, Vermont: Energy Resources Tinmouth, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.448682°, -73.0495501° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.448682,"lon":-73.0495501,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

229

Killington, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Killington, Vermont: Energy Resources Killington, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.6775677°, -72.7798247° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.6775677,"lon":-72.7798247,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

230

Buels, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Buels, Vermont: Energy Resources Buels, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.2046372°, -72.9494461° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.2046372,"lon":-72.9494461,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

231

Reading, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Vermont: Energy Resources Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.4893362°, -72.5914616° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.4893362,"lon":-72.5914616,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

232

Underhill, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Underhill, Vermont: Energy Resources Underhill, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.5258842°, -72.9451267° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.5258842,"lon":-72.9451267,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

233

Cornwall, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Cornwall, Vermont: Energy Resources Cornwall, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.960893°, -73.2103951° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.960893,"lon":-73.2103951,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

234

Bridport, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Bridport, Vermont: Energy Resources Bridport, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.9756551°, -73.3289141° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.9756551,"lon":-73.3289141,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

235

Middlesex, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Vermont: Energy Resources Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.2928358°, -72.6792807° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.2928358,"lon":-72.6792807,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

236

Colchester, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Colchester, Vermont: Energy Resources Colchester, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.5439375°, -73.1479068° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.5439375,"lon":-73.1479068,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

237

Vermont, Wisconsin: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Vermont, Wisconsin: Energy Resources Vermont, Wisconsin: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.0722172°, -89.7856786° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.0722172,"lon":-89.7856786,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

238

Cavendish, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Cavendish, Vermont: Energy Resources Cavendish, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.3820171°, -72.608149° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.3820171,"lon":-72.608149,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

239

Woodbury, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Woodbury, Vermont: Energy Resources Woodbury, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.4408888°, -72.4164957° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.4408888,"lon":-72.4164957,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

240

Poultney, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Poultney, Vermont: Energy Resources Poultney, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.5170132°, -73.2362199° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.5170132,"lon":-73.2362199,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "vermont yankee nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Moretown, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Moretown, Vermont: Energy Resources Moretown, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.2508918°, -72.7609496° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.2508918,"lon":-72.7609496,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

242

Wilder, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Wilder, Vermont: Energy Resources Wilder, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.6728484°, -72.3087022° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.6728484,"lon":-72.3087022,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

243

Ira, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Ira, Vermont: Energy Resources Ira, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.5345134°, -73.0620512° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.5345134,"lon":-73.0620512,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

244

Orwell, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Orwell, Vermont: Energy Resources Orwell, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.8039502°, -73.2978936° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.8039502,"lon":-73.2978936,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

245

Whiting, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Whiting, Vermont: Energy Resources Whiting, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.8639503°, -73.2003929° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.8639503,"lon":-73.2003929,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

246

Waitsfield, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Waitsfield, Vermont: Energy Resources Waitsfield, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.1900592°, -72.8248379° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.1900592,"lon":-72.8248379,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

247

Fayston, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Fayston, Vermont: Energy Resources Fayston, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.2074374°, -72.8756638° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.2074374,"lon":-72.8756638,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

248

Danby, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Danby, Vermont: Energy Resources Danby, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.3461841°, -72.9953817° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.3461841,"lon":-72.9953817,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

249

Weathersfield, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Weathersfield, Vermont: Energy Resources Weathersfield, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.3921862°, -72.4494848° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.3921862,"lon":-72.4494848,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

250

Chittenden, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Chittenden, Vermont: Energy Resources Chittenden, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.7078445°, -72.9481629° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.7078445,"lon":-72.9481629,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

251

Waterbury, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Waterbury, Vermont: Energy Resources Waterbury, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.3378343°, -72.756229° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.3378343,"lon":-72.756229,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

252

Middlebury, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Middlebury, Vermont: Energy Resources Middlebury, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.0153371°, -73.16734° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.0153371,"lon":-73.16734,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

253

Weybridge, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Weybridge, Vermont: Energy Resources Weybridge, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.0664463°, -73.2156751° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.0664463,"lon":-73.2156751,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

254

Plymouth, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Vermont: Energy Resources Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.5359031°, -72.7214873° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.5359031,"lon":-72.7214873,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

255

Barnard, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Barnard, Vermont: Energy Resources Barnard, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.728679°, -72.6189876° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.728679,"lon":-72.6189876,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

256

Hinesburg, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Hinesburg, Vermont: Energy Resources Hinesburg, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.3292199°, -73.110679° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.3292199,"lon":-73.110679,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

257

Cabot, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Cabot, Vermont: Energy Resources Cabot, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.4014456°, -72.3123248° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.4014456,"lon":-72.3123248,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

258

Ripton, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Ripton, Vermont: Energy Resources Ripton, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.973673°, -73.0340033° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.973673,"lon":-73.0340033,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

259

Winooski, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Winooski, Vermont: Energy Resources Winooski, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.491438°, -73.1856832° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.491438,"lon":-73.1856832,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

260

Panton, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Panton, Vermont: Energy Resources Panton, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.1486654°, -73.340402° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.1486654,"lon":-73.340402,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "vermont yankee nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Vermont Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History Volumes Delivered to Consumers

262

Sudbury, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Sudbury, Vermont: Energy Resources Sudbury, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.7992291°, -73.2045583° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.7992291,"lon":-73.2045583,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

263

Clarendon, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Clarendon, Vermont: Energy Resources Clarendon, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.5161807°, -72.9698271° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.5161807,"lon":-72.9698271,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

264

Vergennes, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Vergennes, Vermont: Energy Resources Vergennes, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.1672771°, -73.2540111° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.1672771,"lon":-73.2540111,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

265

Jericho, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Jericho, Vermont: Energy Resources Jericho, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.5039395°, -72.9976266° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.5039395,"lon":-72.9976266,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

266

Calais, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Calais, Vermont: Energy Resources Calais, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.3690953°, -72.4581362° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.3690953,"lon":-72.4581362,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

267

Perkinsville, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Perkinsville, Vermont: Energy Resources Perkinsville, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.3736842°, -72.5137019° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.3736842,"lon":-72.5137019,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

268

Rutland, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Rutland, Vermont: Energy Resources Rutland, Vermont: Energy Resources (Redirected from Rutland, VT) Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.6106237°, -72.9726065° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.6106237,"lon":-72.9726065,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

269

Brattleboro, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Brattleboro, Vermont: Energy Resources Brattleboro, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.8509152°, -72.5578678° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.8509152,"lon":-72.5578678,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

270

Hubbardton, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Hubbardton, Vermont: Energy Resources Hubbardton, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.7072867°, -73.1842783° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.7072867,"lon":-73.1842783,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

271

Starksboro, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Starksboro, Vermont: Energy Resources Starksboro, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.2272782°, -73.0573427° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.2272782,"lon":-73.0573427,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

272

Monkton, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Monkton, Vermont: Energy Resources Monkton, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.2095151°, -73.1359861° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.2095151,"lon":-73.1359861,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

273

Pawlet, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Pawlet, Vermont: Energy Resources Pawlet, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.3467399°, -73.1762181° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.3467399,"lon":-73.1762181,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

274

Commercial Lighting and LED Lighting Incentives (Vermont) | Open...  

Open Energy Info (EERE)

form History Share this page on Facebook icon Twitter icon Commercial Lighting and LED Lighting Incentives (Vermont) This is the approved revision of this page, as well as...

275

Energy Star Homes (New Construction) (Vermont) | Open Energy...  

Open Energy Info (EERE)

Incentive Programs Amount Base Tier HERS RatingTechnical Assistance: Free (750 value) HERS Certificate: Free Vermont Residential Building Energy Standards Certificate:...

276

ENERGY STAR Lighting - Instant Coupons (Vermont) | Open Energy...  

Open Energy Info (EERE)

with form History Share this page on Facebook icon Twitter icon ENERGY STAR Lighting - Instant Coupons (Vermont) This is the approved revision of this page, as well as...

277

30% Business Tax Credit for Solar (Vermont) | Open Energy Information  

Open Energy Info (EERE)

allocation to select a grant in lieu of the tax credit. Vermont offered the "Business Solar Tax Credit" for installations of solar energy equipment on business properties. The...

278

Efficiency Vermont - Home Performance with ENERGY STAR (Existing...  

Open Energy Info (EERE)

DSIRE Review 2010-03-31 References DSIRE1 Summary Efficiency Vermont works with homeowners on comprehensive energy efficiency projects and offers several financial incentives....

279

,"Vermont Natural Gas Price Sold to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Vermont Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

280

EVALUATION OF ALTERNATIVE FUNGICIDES FOR ORGANIC APPLE PRODUCTION IN VERMONT.  

E-Print Network (OSTI)

??A major challenge in organic apple production in Vermont is the available fungicide options for apple scab management. The standard lime sulfur/sulfur fungicide program used (more)

Cromwell, Morgan

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vermont yankee nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Alternative Fuels Data Center: Vermont Laws and Incentives for...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Dealer to someone by E-mail Share Alternative Fuels Data Center: Vermont Laws and Incentives for Alternative Fuel Dealer on Facebook Tweet about Alternative Fuels Data Center:...

282

,"Vermont Natural Gas Industrial Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Vermont Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","72013"...

283

SUSTAINABILITY INDICATORS IN THE VERMONT-REGIONAL FOOD SYSTEM.  

E-Print Network (OSTI)

??Food systems are inherently complex areas of interaction between economic, environmental, and social factors. The local food movement in Vermont presents new opportunities to shape (more)

Schattman, Rachel

284

Alternative Fuels Data Center: Vermont Laws and Incentives for...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Aftermarket Conversions to someone by E-mail Share Alternative Fuels Data Center: Vermont Laws and Incentives for Aftermarket Conversions on Facebook Tweet about Alternative Fuels...

285

Alternative Fuels Data Center: Vermont Laws and Incentives for...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Purchaser to someone by E-mail Share Alternative Fuels Data Center: Vermont Laws and Incentives for Alternative Fuel Purchaser on Facebook Tweet about Alternative Fuels Data...

286

Fuel Source and Environmental Impact Disclosure (Vermont) | Open...  

Open Energy Info (EERE)

suppliers to disclose information on fuel sources and the environmental impacts of electricity generation. Vermont's disclosure standards may address label forms and information...

287

,"Vermont Natural Gas Imports Price (Dollars per Thousand Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Vermont Natural Gas Imports Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release Date:","12...

288

Addison County, Vermont ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Addison County, Vermont ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Addison County, Vermont ASHRAE Standard ASHRAE 169-2006 Climate Zone...

289

Yankee hood performance studies; The effect of air balance on thermal efficiency  

Science Conference Proceedings (OSTI)

With today's ever-increasing production rates on tissue-grade machines, many mills experience a need to increase the contribution of Yankee hoods to drying. Until the cylinder is replaced, its contribution to drying is fixed at its maximum drying rate. Consequently, the hoods should be checked routinely to ensure that they run optimally. Most air systems are not gas-or oil-fired, in contrast to the original steam-heated designs. As a result, Yankee air systems are energy intensive. A proper hood balance ensures minimum thermal consumption, or optimum thermal efficiency. Thermal efficiency is defined as the Btu's consumed by the burner per pound of water evaporated by hood. A simple engineering survey, or system examination, allows the papermaker to verify hood performance and balance the air system. In this paper typical data from a such a survey are shown. These surveys can often lead to considerably savings in burner fuel.

Schukov, V. (Yankee Air Systems (US)); Wozny, J. (Enerquin Air Inc., Montreal, Quebec (CA))

1991-04-01T23:59:59.000Z

290

Qualifying RPS State Export Markets (Vermont) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vermont) Vermont) Qualifying RPS State Export Markets (Vermont) < Back Eligibility Developer Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Vermont Program Type Renewables Portfolio Standards and Goals This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in Vermont as eligible sources towards their RPS targets or goals. For specific information with regard to eligible technologies or other restrictions which may vary by state, see the RPS policy entries for the individual states, shown below in the Authority listings. Typically energy must be delivered to an in-state utility or Load Serving Entity, and often only a portion of compliance

291

Achieving Universal Coverage through Comprehensive Health Reform: The Vermont Experience Evaluation Results  

E-Print Network (OSTI)

Vermonts comprehensive health reform law, the Health Care Affordability Acts (HCAA) for Vermonters, was passed in 2006 with the following three goals in mind: 1. To achieve universal access to affordable health insurance for all Vermonters 2. To improve quality of care and contain costs through health system reform

Ronald Deprez; Sherry Glied; Kira Rodriguez; Bill Perry; Brian Robertson; Nina Schwabe

2011-01-01T23:59:59.000Z

292

Examination of cracked turbine discs from nuclear power plants  

SciTech Connect

Investigations were performed on a cracked turbine disc from the Cooper Nuclear Power Station (BWR), and on two failed turbine discs from the Yankee-Rowe Nuclear Power Station (PWR). The Yankee-Rowe discs were subjected to SEM/EDAX, uniaxial tension tests, hardness testing, notch sensitivity tests, and environmental notched tensile tests. The results of this investigation support the model whereby the cracks initiated at startup of the turbine, probably from H/sub 2/S produced by hydrolysis of MoS/sub 2/, and grew at a rate consistent with published data for propagation of cracks in pure steam.

Czajkowski, C.J.; Weeks, J.R.

1983-03-01T23:59:59.000Z

293

Vermont -- A Versatile Monitoring Toolkit for IPFIX and PSAMP  

E-Print Network (OSTI)

In this paper, we present Vermont, a flexible network monitoring toolkit for packet filtering and packet sampling, flow accounting, and flow aggregation. This toolkit supports the export and collection of IPFIX/PSAMP compliant monitoring data. Packet capturing is based on the well-known pcap library, which enables deployment on various hardware platforms and operating systems. Apart from an overview to Vermont's architecture, we present evaluation results with regard to performance, interoperability, and robustness. Furthermore, we compare Vermont to other open-source implementations of monitoring probes with respect to supported features and functionality.

Ronny T. Lampert; Christoph Sommer; Gerhard Mnz; Falko Dressler

2006-01-01T23:59:59.000Z

294

Nuclear Regulatory Commission issuances  

Science Conference Proceedings (OSTI)

This report includes the issuances received during the April 1996 reporting period from the Commission, the Atomic Safety and Licensing Boards, the Administrative Law Judges, the Directors` Decisions, and the Decisions on Petitions for Rulemaking. Included are issuances pertaining to: (1) Yankee Nuclear Power Station, (2) Georgia Tech Research Reactor, (3) River Bend Station, (4) Millstone Unit 1, (5) Thermo-Lag fire barrier material, and (6) Louisiana Energy Services.

NONE

1996-04-01T23:59:59.000Z

295

In cooperation with the Vermont Agency of Natural Resources Department of Environmental Conservation SIMULATION OF THE EFFECTS OF STREAMBED-MANAGEMENT PRACTICES ON FLOOD LEVELS IN VERMONT  

E-Print Network (OSTI)

resulted in rapid runoff and severe flooding in parts of Vermont. During the storm, streambed and streambank erosion

unknown authors

1997-01-01T23:59:59.000Z

296

Vermont Manufacturing Plant Opens with Support from the Recovery Act |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vermont Manufacturing Plant Opens with Support from the Recovery Vermont Manufacturing Plant Opens with Support from the Recovery Act Vermont Manufacturing Plant Opens with Support from the Recovery Act December 6, 2010 - 12:00am Addthis WASHINGTON, D.C. - U.S. Secretary of Energy Steven Chu issued a statement highlighting today's ribbon cutting event at SBE, Inc.'s new production plant in Barre, Vermont .The plant will manufacture electric vehicle direct current bus capacitors, components for next generation advanced vehicles. The facility was funded in part by a $8.5 million grant through the American Recovery and Reinvestment Act, also known as the stimulus bill "Today's ribbon cutting puts Barre at the forefront of green innovation in America's automotive industry," said Secretary Chu. "This is another

297

Town of Readsboro, Vermont (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Readsboro, Vermont (Utility Company) Readsboro, Vermont (Utility Company) Jump to: navigation, search Name Town of Readsboro Place Vermont Service Territory Vermont Green Button Reference Page www.efficiencyvermont.com Green Button Committed Yes Utility Id 15718 Utility Location Yes Ownership M NERC Location NPCC NERC NPCC Yes ISO NE Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cable Television Rate 15 Commercial Commercial and Industrial Time of Use Rate 63 Commercial Commercial and Industrial Time of Use Rate 65 Commercial Commercial and Industrial Time of Use- Critical Peak Rider Commercial

298

Village of Ludlow, Vermont (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Ludlow, Vermont (Utility Company) Ludlow, Vermont (Utility Company) Jump to: navigation, search Name Village of Ludlow Place Vermont Service Territory Vermont Website www.ludlow.vt.us/ Green Button Reference Page www.efficiencyvermont.com Green Button Committed Yes Utility Id 11305 Utility Location Yes Ownership M NERC Location NPCC NERC NPCC Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 01 Residential Residential 05 Off Peak Water Heating Residential 06 General Service Single Phase 06 General Service Single Phase CT Metering

299

Village of Hyde Park, Vermont (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Hyde Park, Vermont (Utility Company) Hyde Park, Vermont (Utility Company) Jump to: navigation, search Name Hyde Park Village of Place Vermont Service Territory Vermont Website www.hydeparkvt.com/watera Green Button Reference Page www.efficiencyvermont.com Green Button Committed Yes Utility Id 9144 Utility Location Yes Ownership M NERC Location NPCC NERC NPCC Yes ISO NE Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png All Electric (AE) Residential General Service (GS) Commercial Large General Service Industrial Residential (RS) Residential Security Lights - Ded. Pole Lighting

300

Town of Stowe, Vermont (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Vermont (Utility Company) Vermont (Utility Company) Jump to: navigation, search Name Town of Stowe Place Vermont Service Territory Vermont Website www.townofstowevt.org/ Green Button Reference Page www.efficiencyvermont.com Green Button Committed Yes Utility Id 27316 Utility Location Yes Ownership M NERC Location NPCC NERC NPCC Yes ISO NE Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial 20-Single Phase Commercial Commercial Demand 25 Commercial Commercial Demand 25 Primary Metering Discount Commercial Commercial Demand 25 Transformer Ownership Discount Commercial

Note: This page contains sample records for the topic "vermont yankee nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Village of Lyndonville, Vermont (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Lyndonville, Vermont (Utility Company) Lyndonville, Vermont (Utility Company) Jump to: navigation, search Name Lyndonville Village of Place Vermont Service Territory Vermont Green Button Reference Page www.efficiencyvermont.com Green Button Committed Yes Utility Id 11359 Utility Location Yes Ownership M NERC Location NPCC NERC NPCC Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service Large (GL) Commercial General Service Small (GS) Commercial Load Management (GS) Commercial Load Management (RE) Commercial

302

Village of Morrisville, Vermont (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Vermont (Utility Company) Vermont (Utility Company) Jump to: navigation, search Name Village of Morrisville Place Vermont Service Territory Vermont Website www.mwlvt.com/ Green Button Reference Page www.efficiencyvermont.com Green Button Committed Yes Utility Id 12989 Utility Location Yes Ownership M NERC Location NPCC NERC NPCC Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Rate Schedule 2 Commercial Commercial Time-of-Day Rate Schedule 8 Commercial

303

Vermont/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Vermont/Wind Resources/Full Version Vermont/Wind Resources/Full Version < Vermont‎ | Wind Resources Jump to: navigation, search Print PDF Vermont Wind Resources VermontMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

304

Vermont Manufacturing Plant Opens with Support from the Recovery Act |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vermont Manufacturing Plant Opens with Support from the Recovery Vermont Manufacturing Plant Opens with Support from the Recovery Act Vermont Manufacturing Plant Opens with Support from the Recovery Act December 6, 2010 - 12:00am Addthis WASHINGTON, D.C. - U.S. Secretary of Energy Steven Chu issued a statement highlighting today's ribbon cutting event at SBE, Inc.'s new production plant in Barre, Vermont .The plant will manufacture electric vehicle direct current bus capacitors, components for next generation advanced vehicles. The facility was funded in part by a $8.5 million grant through the American Recovery and Reinvestment Act, also known as the stimulus bill "Today's ribbon cutting puts Barre at the forefront of green innovation in America's automotive industry," said Secretary Chu. "This is another

305

Village of Enosburg Falls, Vermont (Utility Company) | Open Energy  

Open Energy Info (EERE)

Enosburg Falls, Vermont (Utility Company) Enosburg Falls, Vermont (Utility Company) Jump to: navigation, search Name Village of Enosburg Falls Place Vermont Service Territory Vermont Website www.villageofenosburgfall Green Button Reference Page www.efficiencyvermont.com Green Button Committed Yes Utility Id 5915 Utility Location Yes Ownership M NERC Location NPCC NERC NPCC Yes ISO NE Yes Operates Generating Plant Yes Activity Generation Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Industrial Demand Rate - Rate 04 Industrial

306

Vermont Regions | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Vermont Regions Vermont Regions National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov High School Regionals Vermont Regions Print Text Size: A A A RSS Feeds FeedbackShare Page Vermont Coaches can review the high school regional locations listed below. Please note: Registrations are based on the location of your school. Please be sure to select the regional that is designated for your school's state, county, city, or district.

307

Vermont Regions | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Vermont Regions Vermont Regions National Science Bowl® (NSB) NSB Home About High School Middle School Middle School Students Middle School Coaches Middle School Regionals Middle School Rules, Forms, and Resources Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Middle School Regionals Vermont Regions Print Text Size: A A A RSS Feeds FeedbackShare Page Vermont Coaches can review the middle school regional locations listed below. Please note: Registrations are based on the location of your school. Please be sure to select the regional that is designated for your

308

Clean Energy Development Fund (CEDF) (Vermont) | Open Energy...  

Open Energy Info (EERE)

31 million in total). Legislation enacted in 2012 authorized 3 million in appropriations from the Vermont general fund to the CEDF as long as the general fund is in the...

309

Vermont Natural Gas Number of Residential Consumers (Number of...  

Gasoline and Diesel Fuel Update (EIA)

Residential Consumers (Number of Elements) Vermont Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

310

Vermont Natural Gas Vehicle Fuel Consumption (Million Cubic Feet...  

Gasoline and Diesel Fuel Update (EIA)

Vehicle Fuel Consumption (Million Cubic Feet) Vermont Natural Gas Vehicle Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

311

Vermont Natural Gas % of Total Residential Deliveries (Percent...  

Annual Energy Outlook 2012 (EIA)

% of Total Residential Deliveries (Percent) Vermont Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

312

Vermont Heat Content of Natural Gas Deliveries to Consumers ...  

Annual Energy Outlook 2012 (EIA)

Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Vermont Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Decade Year-0 Year-1...

313

Vermont Natural Gas Total Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Total Consumption (Million Cubic Feet) Vermont Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

314

Vermont Natural Gas Number of Industrial Consumers (Number of...  

Annual Energy Outlook 2012 (EIA)

Industrial Consumers (Number of Elements) Vermont Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

315

Vermont Natural Gas Input Supplemental Fuels (Million Cubic Feet...  

Gasoline and Diesel Fuel Update (EIA)

Input Supplemental Fuels (Million Cubic Feet) Vermont Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

316

Vermont Natural Gas Number of Commercial Consumers (Number of...  

Annual Energy Outlook 2012 (EIA)

Commercial Consumers (Number of Elements) Vermont Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

317

Alternative Fuels Data Center: Vermont Laws and Incentives for...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Gas Tax Natural gas used to propel a motor vehicle is not subject to the state gasoline tax, but is subject to sales and use tax. (Reference Vermont Statutes Title 32,...

318

Vermont Natural Gas Imports (No intransit Receipts) (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

(No intransit Receipts) (Million Cubic Feet) Vermont Natural Gas Imports (No intransit Receipts) (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

319

Vermont Natural Gas Imports Price (Dollars per Thousand Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Vermont Natural Gas Imports Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

320

,"Vermont U.S. Natural Gas Imports & Exports"  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Natural Gas Imports & Exports" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Vermont...

Note: This page contains sample records for the topic "vermont yankee nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

US hydropower resource assessment for Vermont  

DOE Green Energy (OSTI)

The Department of Energy is developing an estimate of the undeveloped hydropower potential in this country. The Hydropower Evaluation Software is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The software measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven software program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the State of Vermont.

Conner, A.M.; Francfort, J.E.

1996-02-01T23:59:59.000Z

322

Emergency management span of control optimizing organizational structures to better prepare Vermont for the next major or catastrophic disaster .  

E-Print Network (OSTI)

??During a statewide disaster in Vermont, one of the most important actions Vermont Emergency Management should take during the response phase is to maintain awareness (more)

Schumacher, Ludwig J.

2008-01-01T23:59:59.000Z

323

Nuclear Regulatory Commission issuances. Volume 44, Number 3  

Science Conference Proceedings (OSTI)

This report includes issuances received during September 1996. After reviewing in detail each of the claims made in this informal proceeding the presiding officer sustained the staff of the USNRC in its determination that the applicant did not pass the written portion of his examination to become a licensed operator of a nuclear power plant. In the proceeding concerning citizen group challenges to the decommissioning plan for the Rowe Yankee power station, the licensing board grants licensee Yankee Atomic Electric Company`s motion for summary disposition.

NONE

1996-09-01T23:59:59.000Z

324

Alternative Fuels Data Center: Vermont Laws and Incentives for HEVs / PHEVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Vermont Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Vermont Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Vermont Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Vermont Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Vermont Laws and Incentives for HEVs / PHEVs The list below contains summaries of all Vermont laws and incentives

325

Alternative Fuels Data Center: Vermont Laws and Incentives for Natural Gas  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas to someone by E-mail Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Vermont Laws and Incentives for Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Vermont Laws and Incentives for Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Natural Gas on Google Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Natural Gas on Delicious Rank Alternative Fuels Data Center: Vermont Laws and Incentives for Natural Gas on Digg Find More places to share Alternative Fuels Data Center: Vermont Laws and Incentives for Natural Gas on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Vermont Laws and Incentives for Natural Gas The list below contains summaries of all Vermont laws and incentives

326

Behavior of Irradiated B4C  

Science Conference Proceedings (OSTI)

A project sponsored by the Nuclear Fuel Industry Research (NFIR) Group was conducted to evaluate the behavior of irradiated B4C absorber material from LWR control components that had been discharged after having reached a relatively high exposure. Vibratory compacted B4C powder from a Vermont Yankee BWR control blade was examined after reaching a maximum local B-10 depletion of 70%. Hot pressed B4C pellets from a Maine Yankee PWR control rod were examined after ...

1986-06-01T23:59:59.000Z

327

EVALUATION OF THE MIGRATION POTENTIAL FOR 60Co AND 137Cs AT THE MAINE YANKEE SITE.  

SciTech Connect

The objective of this report is to discuss the degree of sorption and desorption of {sup 137}Cs and {sup 60}Co that may be associated with the granite bedrock and the ''popcorn'' cement drain system that underlie the Maine Yankee Containment Foundation. The purpose is to estimate how much retardation of these two radionuclides takes place in groundwater that flows in the near-field of the Containment Foundation, specifically with respect to contamination originating at the PAB Test Pit. Specific concerns revolve around the potential for the contamination originating near the PAB to create a radioactive dose to a hypothetical ''resident farmer'' using a well intercepting this water to exceed 4 millirems/yr.

FUHRMANN,M.SULLIVAN,T.

2002-08-08T23:59:59.000Z

328

Validation of the YAEC (Yankee Atomic Electric Company) criticality safety methodology  

Science Conference Proceedings (OSTI)

The Yankee Atomic Electric Company's (YEAC's) criticality safety methodology has evolved over the years to analyze high-density spent fuel rack designs, new fuel vault optimum moderation, burnup credit, pin consolidation, storage rack sensitivities, and large spent fuel rack arrays. The present methodology has three calculational paths: NITAWL-S/ KENO V.a Monte Carlo, CASMO-3 integral transport, and CASMO-3/CHART-2/PDQ-7 diffusion theory analysis. These calculational paths have been validated by caparison to 21 Babock Wilcox (B W) fuel storage criticals. These criticals covered a range of fuel storage conditions in which criticality was maintained by a combination of water height, soluble boron, fixed poison, and array spacing. Statistical analysis of the 21 calculated k{sub eff}'s gives a method bias and 95/95 method uncertainty for each path.

Napolitano, D.G.; Carpenito, F.L.; Rashid, P.J.

1988-01-01T23:59:59.000Z

329

Jobs, sustainable heating coming to Vermont city | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Jobs, sustainable heating coming to Vermont city Jobs, sustainable heating coming to Vermont city Jobs, sustainable heating coming to Vermont city March 15, 2010 - 6:07pm Addthis A woodchip-fired combined heat and power system will be built in Montpelier, Vt. | File photo A woodchip-fired combined heat and power system will be built in Montpelier, Vt. | File photo Joshua DeLung What will the project do? Their new woodchip-fired combined heat and power system will heat the Capitol Complex, the city's schools, City Hall and as many as 156 other buildings in the downtown area. Montpelier, Vt., netted $8 million in American Recovery and Reinvestment Act funding in January for a woodchip-fired combined heat and power system. The money will help build a 1.8 million kWh-generating plant that will heat the Capitol Complex, the city's schools, City Hall and as many

330

Jobs, sustainable heating coming to Vermont city | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Jobs, sustainable heating coming to Vermont city Jobs, sustainable heating coming to Vermont city Jobs, sustainable heating coming to Vermont city March 15, 2010 - 6:07pm Addthis A woodchip-fired combined heat and power system will be built in Montpelier, Vt. | File photo A woodchip-fired combined heat and power system will be built in Montpelier, Vt. | File photo Joshua DeLung What will the project do? Their new woodchip-fired combined heat and power system will heat the Capitol Complex, the city's schools, City Hall and as many as 156 other buildings in the downtown area. Montpelier, Vt., netted $8 million in American Recovery and Reinvestment Act funding in January for a woodchip-fired combined heat and power system. The money will help build a 1.8 million kWh-generating plant that will heat the Capitol Complex, the city's schools, City Hall and as many

331

Telephoning for Energy Efficiency in Vermont | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Telephoning for Energy Efficiency in Vermont Telephoning for Energy Efficiency in Vermont Telephoning for Energy Efficiency in Vermont November 8, 2010 - 3:59pm Addthis Eldred French had the basement in his home (pictured above) insulated and sealed by local contractors. | Photo Courtesy of NWWVT Eldred French had the basement in his home (pictured above) insulated and sealed by local contractors. | Photo Courtesy of NWWVT Stephen Graff Former Writer & editor for Energy Empowers, EERE Most telethons raise money for charities or events and have local celebrities and even dancing children. But the subdued, small telethon in Shrewsbury, Vt., in a unique twist, didn't ask for money: town volunteers offered up a home energy audit-at a fraction of the typical cost-to the person on the other end to help

332

City of Burlington-Electric, Vermont (Utility Company) | Open Energy  

Open Energy Info (EERE)

Burlington-Electric, Vermont (Utility Company) Burlington-Electric, Vermont (Utility Company) Jump to: navigation, search Name City of Burlington-Electric Place Vermont Utility Id 2548 Utility Location Yes Ownership M NERC Location NPCC NERC NPCC Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Large General (LG) Rate Demand is less than 25KW- Net Metered Renewable

333

Vermont Wind Measurement Company Still Strong | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vermont Wind Measurement Company Still Strong Vermont Wind Measurement Company Still Strong Vermont Wind Measurement Company Still Strong April 9, 2010 - 3:16pm Addthis NRG's new building utilizes solar power, but their products measure wind potential. | Photo courtesy NRG Systems NRG's new building utilizes solar power, but their products measure wind potential. | Photo courtesy NRG Systems Joshua DeLung NRG Systems, of Hinesburg, Vt., has made products to help its customers measure and understand the potential of wind energy since 1982. Now, because of additional opportunities the Recovery Act has created for renewable energy companies, small businesses such as NRG Systems are poised to grow with the increased demand for proven wind measurement and turbine control equipment. NRG Systems' customers are primarily developers, utilities and research

334

Telephoning for Energy Efficiency in Vermont | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Telephoning for Energy Efficiency in Vermont Telephoning for Energy Efficiency in Vermont Telephoning for Energy Efficiency in Vermont November 8, 2010 - 3:59pm Addthis Eldred French had the basement in his home (pictured above) insulated and sealed by local contractors. | Photo Courtesy of NWWVT Eldred French had the basement in his home (pictured above) insulated and sealed by local contractors. | Photo Courtesy of NWWVT Stephen Graff Former Writer & editor for Energy Empowers, EERE Most telethons raise money for charities or events and have local celebrities and even dancing children. But the subdued, small telethon in Shrewsbury, Vt., in a unique twist, didn't ask for money: town volunteers offered up a home energy audit-at a fraction of the typical cost-to the person on the other end to help

335

Vermont Transco, LLC Smart Grid Project | Open Energy Information  

Open Energy Info (EERE)

Transco, LLC Smart Grid Project Transco, LLC Smart Grid Project Jump to: navigation, search Project Lead Vermont Transco, LLC Country United States Headquarters Location Rutland, Vermont Recovery Act Funding $68,928,650.00 Total Project Value $137,857,302.00 Coverage Area Coverage Map: Vermont Transco, LLC Smart Grid Project Coordinates 43.6106237°, -72.9726065° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

336

Vermont Wind Measurement Company Still Strong | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vermont Wind Measurement Company Still Strong Vermont Wind Measurement Company Still Strong Vermont Wind Measurement Company Still Strong April 9, 2010 - 3:16pm Addthis NRG's new building utilizes solar power, but their products measure wind potential. | Photo courtesy NRG Systems NRG's new building utilizes solar power, but their products measure wind potential. | Photo courtesy NRG Systems Joshua DeLung NRG Systems, of Hinesburg, Vt., has made products to help its customers measure and understand the potential of wind energy since 1982. Now, because of additional opportunities the Recovery Act has created for renewable energy companies, small businesses such as NRG Systems are poised to grow with the increased demand for proven wind measurement and turbine control equipment. NRG Systems' customers are primarily developers, utilities and research

337

Central Vermont Pub Serv Corp | Open Energy Information  

Open Energy Info (EERE)

Pub Serv Corp Pub Serv Corp Jump to: navigation, search Name Central Vermont Pub Serv Corp Place Vermont Service Territory Vermont Website www.cvps.com Green Button Reference Page www.efficiencyvermont.com Green Button Committed Yes Utility Id 3292 Utility Location Yes Ownership I NERC Location NPCC NERC NPCC Yes ISO NE Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules

338

Vermont Public Pwr Supply Auth | Open Energy Information  

Open Energy Info (EERE)

Public Pwr Supply Auth Public Pwr Supply Auth Jump to: navigation, search Name Vermont Public Pwr Supply Auth Place Vermont Utility Id 19780 Utility Location Yes Ownership P NERC Location NPCC NERC NPCC Yes ISO NE Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Wholesale Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Vermont_Public_Pwr_Supply_Auth&oldid=411933"

339

Vermont Electric Power Co, Inc | Open Energy Information  

Open Energy Info (EERE)

Co, Inc Co, Inc Jump to: navigation, search Name Vermont Electric Power Co, Inc Place Vermont Utility Id 19792 Utility Location Yes Ownership T NERC Location NPCC NERC NPCC Yes ISO NE Yes Activity Transmission Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Vermont_Electric_Power_Co,_Inc&oldid=411931" Categories: EIA Utility Companies and Aliases Utility Companies

340

Nuclear plant owners move closer to life extension  

Science Conference Proceedings (OSTI)

A major debate is now underway about the safety of 40-year-old nuclear power plants. Under the Atomic Energy Act of 1954 a nuclear power plant's license is limited to a maximum of 40 years. Although the act permits the renewal of an operating license, it does not outline any standards or procedures for determining when or under what conditions a plant's operating license should be renewed. This paper reports that the Electric Power Research Institute (EPRI) and the U.S. Department of Energy (DOE) are co-sponsors of a program to demonstrate the license renewal process for two nuclear power plants - Yankee Atomic Electric's 175-MW Yankee PWR plant and Northern States Power's 536-MW Monticello BWR plant. The demonstration is known as the lead plant project. Yankee Atomic has already analyzed the plant's condition and evaluated aging using computer-based expert systems and the plant's operating experience. During these tests Yankee Atomic found embrittlement of the reactor vessel.

Smith, D.J.

1991-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "vermont yankee nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Preliminary Evaluation of Removing Used Nuclear Fuel from Shutdown Sites  

SciTech Connect

This report fulfills the M2 milestone M2FT-13PN0912022, Stranded Sites De-Inventorying Report. In January 2013, the U.S. Department of Energy (DOE) issued the Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste (DOE 2013). Among the elements contained in this strategy is an initial focus on accepting used nuclear fuel from shutdown reactor sites. This focus is consistent with the recommendations of the Blue Ribbon Commission on Americas Nuclear Future, which identified removal of stranded used nuclear fuel at shutdown sites as a priority so that these sites may be completely decommissioned and put to other beneficial uses (BRC 2012). Shutdown sites are defined as those commercial nuclear power reactor sites where the nuclear power reactors have been shut down and the site has been decommissioned or is undergoing decommissioning. In this report, a preliminary evaluation of removing used nuclear fuel from 12 shutdown sites was conducted. The shutdown sites were Maine Yankee, Yankee Rowe, Connecticut Yankee, Humboldt Bay, Big Rock Point, Rancho Seco, Trojan, La Crosse, Zion, Crystal River, Kewaunee, and San Onofre. These sites have no other operating nuclear power reactors at their sites and have also notified the U.S. Nuclear Regulatory Commission that their reactors have permanently ceased power operations and that nuclear fuel has been permanently removed from their reactor vessels. Shutdown reactors at sites having other operating reactors are not included in this evaluation.

Maheras, Steven J.; Best, Ralph E.; Ross, Steven B.; Buxton, Kenneth A.; England, Jeffery L.; McConnell, Paul E.

2013-09-30T23:59:59.000Z

342

Wind resource mapping of the state of Vermont  

DOE Green Energy (OSTI)

This paper summarizes the results of a wind mapping project and a validation study for the state of Vermont. The computerized wind resource mapping technique used for this project was developed at the National Renewable Energy Laboratory (NREL). The technique uses Geographic Information System (GIS) software and produces high resolution (1km{sup 2}) wind resource maps.

Elliott, D.; Schwartz, M.; Nierenberg, R.

2000-12-13T23:59:59.000Z

343

Sustainable Energy Resources for Consumers (SERC) Vermont Highlight (Fact Sheet)  

DOE Green Energy (OSTI)

Case study on Vermont's innovative strategy for helping low-income families save energy through its Sustainable Energy Resources for Consumers (SERC) program. The DOE Weatherization Assistance Program (WAP) granted Vermont to give its weatherization clients access to solar energy systems and one-on-one assistance from energy efficiency coaches to help clients achieve meaningful and long-lasting reductions in their energy bills. Vermont-SERC is administered by the Vermont Office of Economic Opportunity and is carried out by five local weatherization agencies. The purpose of the program is to identify technologies and new approaches-in this case, solar energy and energy efficiency coaches-that can improve weatherization services to low-income clients. The program selects households that have previously received weatherization services. This has several advantages. First, the clients already understand how weatherization works and are willing to strive for additional energy savings. Second, the weatherization agencies are working with clients who have previously had weatherization and therefore have complete energy usage data from utility bills collected during the first energy upgrade installation. This allows the agencies to select the best potential candidates for solar energy. Agencies have existing knowledge of the homes and can pre-screen them for potential structural problems or lack of south-facing exposure.

Not Available

2012-01-01T23:59:59.000Z

344

Vermont Natural Gas Vehicle Fuel Consumption (Million Cubic Feet...  

Gasoline and Diesel Fuel Update (EIA)

Vermont Natural Gas Vehicle Fuel Consumption (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0...

345

Sustainable Energy Resources for Consumers (SERC) Vermont Highlight (Fact Sheet)  

SciTech Connect

Case study on Vermont's innovative strategy for helping low-income families save energy through its Sustainable Energy Resources for Consumers (SERC) program. The DOE Weatherization Assistance Program (WAP) granted Vermont to give its weatherization clients access to solar energy systems and one-on-one assistance from energy efficiency coaches to help clients achieve meaningful and long-lasting reductions in their energy bills. Vermont-SERC is administered by the Vermont Office of Economic Opportunity and is carried out by five local weatherization agencies. The purpose of the program is to identify technologies and new approaches-in this case, solar energy and energy efficiency coaches-that can improve weatherization services to low-income clients. The program selects households that have previously received weatherization services. This has several advantages. First, the clients already understand how weatherization works and are willing to strive for additional energy savings. Second, the weatherization agencies are working with clients who have previously had weatherization and therefore have complete energy usage data from utility bills collected during the first energy upgrade installation. This allows the agencies to select the best potential candidates for solar energy. Agencies have existing knowledge of the homes and can pre-screen them for potential structural problems or lack of south-facing exposure.

2012-01-01T23:59:59.000Z

346

Integrated safety assessment of an oxygen reduction project at Connecticut Yankee Atomic Power's Haddam Neck plant  

SciTech Connect

Connecticut Yankee Atomic Power Company (CYAPCo) has implemented an Integrated Safety Assessment Program (ISAP) for the integrated evaluation and prioritization of plant-specific licensing issues, regulatory policy issues, and plant improvement projects. As part of the ISAP process, probabilistic risk assessment (PRA) is utilized to evaluate the net safety impact of plant modification projects. On a few occasions, implementation of this approach has resulted in the identification of projects with negative safety impacts that could not be quantified via the normal design review and 10CFR50.59 safety evaluation process. An example is a plant modification that was proposed to reduce the oxygen in the Haddam Neck plant's demineralized water storage tank (DWST). The project involved the design and installation of a nitrogen blanketing system on the DWST. The purpose of the project was to reduce the oxygen content on the secondary side, consistent with recommendations from the Electric Power Research Institute Steam Generator Owners Group. Oxygen is one of the contributors to the corrosion process in systems in contact with the feedwater and can cause damage to associated components if not controlled.

Aubrey, J.E.

1987-01-01T23:59:59.000Z

347

Aesthetic Theory and Landscape Protection: The Many Meanings of Beauty and Their Implications for the Design, Control and Protection of Vermont's Landscape  

E-Print Network (OSTI)

1984). 19. See C. ZULICK, THE VERMONT BACKROAt M \\NI--" \\NCIN Y.S 2d 235 (1976). 126. Vermont Elec. Power Co. v. Bandel,Ist Cir. 1982). 35. See VERMONT NATURAL RESOURCES COUNCIL

Brooks, Richard O.; Lavigne, Peter

1985-01-01T23:59:59.000Z

348

Results of deep exploratory drilling between long and Newark Valleys, White Pine County, Nevada - implications for oil migration in the nearby Yankee gold mine paleohydrothermal system  

Science Conference Proceedings (OSTI)

In mid-1992, a consortium headed by Pioneer Oil and Gas (Midvale, Utah) drilled a deep (6700 ft) exploratory well in the southern Ruby Mountains-Buck Mountain are near the Alligator Ridge mining district in White Pine County, Nevada. The test well is located 1.5 mi southwest of USMX, Inc.'s, Yankee gold mine, an open-pit operation centered on a Carlin-type, sediment-hosted gold orebody noteworthy for containing abundant, fracture-controlled live oil. The Pioneer well as dry, but intersected much of the same stratigraphic section hosting gold at Yankee, thereby providing valuable clues to mechanisms of oil migration at this unusual, oil-bearing precious-metal deposit. Most of the gold at Yankee is hosted by the Devonian Pilot Shale, with a basal argillaceous limestone containing the bulk of the deposit's live oil. The equivalent section in the Pioneer wildcat well is a silty calcareous dolomite. Whereas the basal Pilot limestone at Yankee is rich in thick, locally gold- and arsenic-anomalous calcite veins and modules hosting abundant oil-bearing fluid inclusion, the basal Pilot dolomite in the Pioneer well contains only a few thin calcite-pyrite veinlets devoid of fluid inclusions. Moreover, the Yankee calcite veins have the same light-stable-isotope signatures as hydrothermal carbonate veins near or elsewhere in the Alligator Ridge district. These relationships imply that oil at Yankee migrated in the same hydrothermal system responsible for gold mineralization. Such systems elsewhere in the eastern Basin and Range, given favorable source rocks, traps, seals, and migratory pathways, might well have formed not only gold deposits, but also rich, spatially coincident oil reservoirs.

Pinnell, M.L. (Pioneer Oil and Gas, Midvale, UT (United States)); Hulen, J.B. (Univ. of Utah Research Institute, Salt Lake City, UT (United States)); Cox, J.W. (USMX, Reno, NV (United States))

1993-08-01T23:59:59.000Z

349

Alternative Fuels Data Center: Vermont Laws and Incentives for Fuel Economy  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Vermont Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Vermont Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Vermont Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Vermont Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section... Federal State Advanced Search

350

Alternative Fuels Data Center: Vermont Laws and Incentives for Air Quality  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Air Quality / Emissions to someone by E-mail Air Quality / Emissions to someone by E-mail Share Alternative Fuels Data Center: Vermont Laws and Incentives for Air Quality / Emissions on Facebook Tweet about Alternative Fuels Data Center: Vermont Laws and Incentives for Air Quality / Emissions on Twitter Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Air Quality / Emissions on Google Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Air Quality / Emissions on Delicious Rank Alternative Fuels Data Center: Vermont Laws and Incentives for Air Quality / Emissions on Digg Find More places to share Alternative Fuels Data Center: Vermont Laws and Incentives for Air Quality / Emissions on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

351

STATE OF NUCLEAR TECHNOLOGY-JANUARY 1962  

SciTech Connect

Events in nuclear technology in 1961 are reviewed. The SL-1 incident, operation of the Yankee plant, restarting of the Dresden plant, contributions to the state of water reactor technology, transitions to private industry, dry criticality in EBR-II, startup of Los Alamos Molten Plutonium Reactor Experiment (LAMPRE), successful Tory tests, performance of SNAP reactor tests, and use of radioisotope-powered electric source in Transit IV A are discussed. (M.C.G.)

Crewe, A.; Lawreski, S.; Spinrad, B.I.

1961-11-01T23:59:59.000Z

352

Wind Resource Mapping of the State of Vermont  

NLE Websites -- All DOE Office Websites (Extended Search)

Resource Mapping of the Resource Mapping of the State of Vermont November 1999 * NREL/CP-500-27507 D. Elliott and M. Schwartz National Renewable Energy Laboratory R. Nierenberg Consulting Meteorologist Presented at Windpower '99 Burlington, Vermont June 20 - 23, 1999 National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute * * * * Battelle * * * * Bechtel Contract No. DE-AC36-99-GO10337 NOTICE The submitted manuscript has been offered by an employee of the Midwest Research Institute (MRI), a contractor of the US Government under Contract No. DE-AC36-99GO10337. Accordingly, the US Government and MRI retain a nonexclusive royalty-free license to publish or reproduce the published

353

Chester-Chester Depot, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Chester-Chester Depot, Vermont: Energy Resources Chester-Chester Depot, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.25705°, -72.58773° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.25705,"lon":-72.58773,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

354

Graniteville-East Barre, Vermont: Energy Resources | Open Energy  

Open Energy Info (EERE)

Graniteville-East Barre, Vermont: Energy Resources Graniteville-East Barre, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.1543632°, -72.4747801° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.1543632,"lon":-72.4747801,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

355

Rutland County, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Rutland County, Vermont: Energy Resources Rutland County, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.6448675°, -72.9932969° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.6448675,"lon":-72.9932969,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

356

Essex Junction, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Junction, Vermont: Energy Resources Junction, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.4906054°, -73.1109604° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.4906054,"lon":-73.1109604,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

357

Lamoille County, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Lamoille County, Vermont: Energy Resources Lamoille County, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.6433418°, -72.6314026° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.6433418,"lon":-72.6314026,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

358

Village of Orleans, Vermont (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Orleans Village of Orleans Village of Place Vermont Service Territory Vermont Green Button Reference Page www.efficiencyvermont.com Green Button Committed Yes Utility Id 14261 Utility Location Yes Ownership M NERC Location NPCC NERC NPCC Yes ISO NE Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial Industrial Industrial Municipal Service Commercial Residential Residential Average Rates Residential: $0.1230/kWh Commercial: $0.1350/kWh Industrial: $0.1460/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

359

Village of Johnson, Vermont (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Johnson Village of Johnson Village of Place Vermont Service Territory Vermont Website www.townofjohnson.com/Gov Green Button Reference Page www.efficiencyvermont.com Green Button Committed Yes Utility Id 9806 Utility Location Yes Ownership M NERC Location NPCC NERC NPCC Yes ISO NE Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Johnson State College Commercial Standard Large Commercial Commercial Standard Public Authority Commercial Standard Residential Residential Standard Small Commercial Commercial Standard Street Light Lighting Average Rates Residential: $0.1610/kWh

360

Village of Northfield, Vermont (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Northfield Northfield Place Vermont Service Territory Vermont Website www.northfield-vt.gov/tex Green Button Reference Page www.efficiencyvermont.com Green Button Committed Yes Utility Id 13789 Utility Location Yes Ownership M NERC Location NPCC NERC NPCC Yes ISO NE Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Rate: GS Commercial Large Power Consumption Rate: A Industrial Large Power Consumption Rate: B (New Tariff) Industrial Large Power Consumption: ED Industrial Residential Rate: R Residential Street and Highway Lighting Rate: SL - 20 LED 37 Watts Lighting

Note: This page contains sample records for the topic "vermont yankee nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Village of Jacksonville, Vermont (Utility Company) | Open Energy  

Open Energy Info (EERE)

Village of Village of Place Vermont Service Territory Vermont Green Button Reference Page www.efficiencyvermont.com Green Button Committed Yes Utility Id 9610 Utility Location Yes Ownership M NERC Location NPCC NERC NPCC Yes ISO NE Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial Industrial Industrial Municipal LED Streetlights Lighting Municipal Street Lights 175 watt Lighting Residential Residential Residential LED Security Light Lighting Residential Security Light 175 watt Lighting Average Rates Residential: $0.1690/kWh

362

Chittenden County, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Chittenden County, Vermont: Energy Resources Chittenden County, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.3959289°, -72.9962431° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.3959289,"lon":-72.9962431,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

363

Middletown Springs, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Springs, Vermont: Energy Resources Springs, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.4856255°, -73.1181624° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.4856255,"lon":-73.1181624,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

364

Windsor County, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Windsor County, Vermont: Energy Resources Windsor County, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.4369244°, -72.6151169° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.4369244,"lon":-72.6151169,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

365

West Windsor, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Vermont: Energy Resources Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.4744768°, -72.4968189° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.4744768,"lon":-72.4968189,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

366

South Barre, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Barre, Vermont: Energy Resources Barre, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.1770059°, -72.5056602° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.1770059,"lon":-72.5056602,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

367

Town of Hardwick, Vermont (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Town of Hardwick Town of Hardwick Place Vermont Service Territory Vermont Website hardwickvt.org/government Green Button Reference Page www.efficiencyvermont.com Green Button Committed Yes Utility Id 8104 Utility Location Yes Ownership M NERC Location NPCC NERC NPCC Yes ISO NE Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Rate 02 Commercial Industrial and Large Commercial 03 Industrial Residential Rate 01 Residential Seasonal Rate 04 Commercial

368

Village of Swanton, Vermont (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Village of Swanton Village of Swanton Place Vermont Service Territory Vermont Website www.swanton.net/ Green Button Reference Page www.efficiencyvermont.com Green Button Committed Yes Utility Id 18371 Utility Location Yes Ownership M NERC Location NPCC NERC NPCC Yes ISO NE Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Service Schedule "B" Commercial Commercial Service Schedule "B" water Heater Rider Commercial

369

South Burlington, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Burlington, Vermont: Energy Resources Burlington, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.4669941°, -73.1709604° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.4669941,"lon":-73.1709604,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

370

Caledonia County, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Caledonia County, Vermont: Energy Resources Caledonia County, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.55051°, -72.0481907° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.55051,"lon":-72.0481907,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

371

PUTTING AESTHETICS IN ITS PLACE IN THE VERMONT WIND POWER DEBATE.  

E-Print Network (OSTI)

??In the last decade, Vermonters have debated the benefits and costs of wind power in the state. Media accounts of the debate have portrayed oppositionparticularly (more)

Miles, Brian

372

Stances on the Land: Political Perspectives on Land Use Governance in Vermont.  

E-Print Network (OSTI)

??Vermont, like many rural places in the developed world, has been the destination of many urban migrants seeking lifestyle amenities unavailable in the city. This (more)

Young, Thomas Hugh Niven

2012-01-01T23:59:59.000Z

373

Arsenic Distribution and Speciation in Antigorite-Rich Rocks from Vermont, USA .  

E-Print Network (OSTI)

??Summary Serpentinites from the northern Vermont were examined for the distribution and abundance of As. XRD and electron microprobe showed the samples are composed of (more)

Niu, Lijie

2011-01-01T23:59:59.000Z

374

Flushing sprawl down the drain : is TIF an option for Vermont growth center wastewater projects?.  

E-Print Network (OSTI)

??In keeping with a long history of striving to preserve its traditional settlement pattern and promote smart growth, Vermont's most recent growth management policies encourage (more)

Markarian, Molly E. (Molly Elizabeth)

2007-01-01T23:59:59.000Z

375

TECHNICAL AND ECONOMIC FEASIBILITY OF BIODIESEL PRODUCTION IN VERMONT: EVIDENCE FROM A FARM-SCALE STUDY AND A COMMERCIAL-SCALE SIMULATION ANALYSIS.  

E-Print Network (OSTI)

??Concerns about Vermonts dairy farm viability, greenhouse gas emissions, and reliance on fossil fuels have prompted growing interest in the production of biodiesel and oilseed (more)

Stebbins, Emily

376

NEPA at 19: A Primer on an "Old" Law with Solutions to New Problems  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and 40 C.F.R. 1506.3 for adoption procedures. 40 C.F. R. 1502.10. See Vermont Yankee Nuclear Power Corp. v. Natural Resources DefenseCouncil, Inc., 435U.S. 519,8 ELR...

377

Short-circuit simulations help quantify wheeling flow  

SciTech Connect

During the late 1960s, three nuclear power plants were constructed in New England: Connecticut Yankee (590 MW, located in Haddam, Connecticut), Maine Yankee (870 MW located in Wiscasset, Maine), and Vermont Yankee (520 MW, located in Vernon, Vermont). Up to thirty-three New England utilities and municipalities participate in each. These units, called the Yankee units, are connected to the New England 345 kV transmission system. Built before the conception of the New England Power Pool (NEPOOL), these units rely on negotiated transmission agreements to implement the purchased power contracts. The Yankee Transmission Agreements were established to provide a mechanism for New England utilities, which provide the transmission wheeling services, to be adequately compensated for delivering the Yankee power. Under the agreements, the purchasing utilities (those utilities who purchase power from the nuclear plants) would pay into separate transmission funds based on their entitlement in the unit. The fund is then distributed among the transmitting utilities (those utilities providing the transmission wheeling services) based on the calculated use of their transmission systems. A methodology was established that could equal the units` life, offer flexibility to a changing system, and provide equitable results. This article describes how using commercially available software to automate simulations, perform the MW-miles calculation, and tabulate the results significantly reduces the time and computational effort to perform the wheeling calculations.

Scarfone, A.

1995-04-01T23:59:59.000Z

378

Certificate of Public Good--Gas and Electric (Vermont) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Certificate of Public Good--Gas and Electric (Vermont) Certificate of Public Good--Gas and Electric (Vermont) Certificate of Public Good--Gas and Electric (Vermont) < Back Eligibility Agricultural Commercial Construction Developer Investor-Owned Utility Rural Electric Cooperative Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Vermont Program Type Siting and Permitting This Public Service Board rule limits the construction of electric and natural gas facilities and restricts the amounts that companies can buy from non-Vermont sources. No company, as defined in section 201 of this title, may in any way purchase electric capacity or energy from outside the state; invest in an electric generation or transmission facility located

379

Flushing sprawl down the drain : is TIF an option for Vermont growth center wastewater projects?  

E-Print Network (OSTI)

In keeping with a long history of striving to preserve its traditional settlement pattern and promote smart growth, Vermont's most recent growth management policies encourage municipalities to plan for and accommodate ...

Markarian, Molly E. (Molly Elizabeth)

2007-01-01T23:59:59.000Z

380

Spotlight on Rutland County, Vermont: How Local Ties Lead to Local Wins  

NLE Websites -- All DOE Office Websites (Extended Search)

April 2011 Version 2 April 2011 Version 2 betterbuildings.energy.gov/neighborhoods Spotlight on Rutland County, Vermont: How Local Ties Lead to Local Wins Driving Demand The Better Buildings Neighborhood Program is part of the national Better Buildings Initiative led by the U.S. Department of Energy. To learn how the Better Buildings Neighborhood Program is making homes more comfortable and businesses more lucrative and to read more from this Spotlight series, visit betterbuildings.energy.gov/neighborhoods. Neighbors Excel in Spreading the Value of Energy Efficiency in Rutland, Vermont Building on their understanding of homeowners in Rutland County, Vermont, NeighborWorks of Western Vermont (NWWVT) has enlisted well-respected local citizens and organizations to spread the word about home energy efficiency

Note: This page contains sample records for the topic "vermont yankee nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Weatherization Grows in the Green Mountain State (Vermont): Weatherization Assistance Close-Up Fact Sheet  

Science Conference Proceedings (OSTI)

Vermont demonstrates its commitment to technology and efficiency through the Weatherization Program. Weatherization uses advanced technologies and techniques to reduce energy costs for low-income families by increasing the energy efficiency of their homes.

D& R International

2001-10-10T23:59:59.000Z

382

Synoptic-Scale Precursors to Significant Cold-Season Precipitation Events in Burlington, Vermont  

Science Conference Proceedings (OSTI)

Several classes of significant cold-season precipitation events occurring in Burlington, Vermont (KBTV), during the 33-yr period from 1963 to 1995, are studied with the objective of identifying large-scale circulation precursors to the more ...

Paul A. Sisson; John R. Gyakum

2004-10-01T23:59:59.000Z

383

Small Wind Electric Systems: A Vermont Consumer's Guide  

DOE Green Energy (OSTI)

Small Wind Electric Systems: A Vermont Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

Not Available

2007-04-01T23:59:59.000Z

384

Small Wind Electric Systems: A Vermont Consumer's Guide  

DOE Green Energy (OSTI)

The Vermont Consumer's Guide for Small Wind Electric Systems provides consumers with enough information to help them determine if a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include: how to make your home more energy efficient, how to choose the right size turbine, the parts of a wind electric system, determining if there is enough wind resource on your site, choosing the best site for your turbine, connecting your system to the utility grid, and if it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a state wind resource map and a list of state incentives and state contacts for more information.

O'Dell, K.

2001-10-01T23:59:59.000Z

385

Yankee Mine oil seep: New research yields additional evidence of thrusting; original oil volume in the seep was possibly two orders of magnitude greater than previously calculated  

SciTech Connect

Mesomic thrusting combined with subsequent Eocene hydrothermal activity have created a regime favorable to major accumulation of both oil and gold in the Long Valley - Buck Mountain - Maverick Springs Range area of northeastern Nevada. Discoveries from ongoing exploration include: Numerous economic accumulations of hydrocarbon associated gold; various thrust relationships from surface geologic mapping and drill holes identifying Devonian rocks faulted onto Permian, Pennsylvanian (?) and Mississippian age rocks; numerous small scale compressional folds and faults indicative of both cast vergent (expected) and west vergent (unexpected) structural elements. Seismic data indicates that oil source rocks, primarily Chainman Shale and Pilot Shale formations, are present to the west in a downdip, subthrust position where hydrocarbon generation and migration would provide large oil volumes to migrate easterly (updip) prior to the formation of the Basin and Range. The Eocene age hydothermal cell which emplaced gold and oil bearing fluids into the Yankee and associated gold mines probably initiated directly below or east of the Yankee area, but certainly not west of it since no hydrothermal mineralization is present in the Yankee Mine 27-23X Well drilled by Pioneer Oil and Gas west of the mines.

Pinnell, M.L. [Pioneer Oil and Gas, Midvale, UT (United States); Anderson, D.W. [Anderson Geological Corp., Westminster, CO (United States)

1995-06-01T23:59:59.000Z

386

Nuclear Regulatory Commission issuances, Volume 44, No. 4  

SciTech Connect

This report includes the issuances received in October 1996. Issuances are from the Commission, the Atomic Safety and Licensing Boards, and the Directors` Decisions. 15 issuances were received and are abstracted individually in the database: Louisiana Energy Services, U.S. Enrichment Corporation, Yankee Atomic Electric Company, General Public Utilities Nuclear Corporation, James L. Shelton, Juan Guzman, Northern States Power Company, TESTCO Inc., Washington Public Power Supply System, all nuclear plants, Cleveland Electric Illuminating Company, Duke Power Company, Florida Power Corporation, and Northeast Nuclear Energy Company (2 issuances). No issuances were received from the the Administrative Law Judges or the Decisions on Petitions for Rulemaking.

NONE

1996-10-01T23:59:59.000Z

387

Vermont Biofuels Initiative: Local Production for Local Use to Supply a Portion of Vermontâ??s Energy Needs  

SciTech Connect

The Vermont Biofuels initiative (VBI) is the Vermont Sustainable Jobs Fundâ??s (VSJF) biomass-to-biofuels market development program. Vermont is a small state with a large petroleum dependency for transportation (18th in per capita petroleum consumption) and home heating (55% of all households use petroleum for heating). The VBI marks the first strategic effort to reduce Vermontâ??s dependency on petroleum through the development of homegrown alternatives. As such, it supports the four key priorities of the U.S. Department of Energyâ??s Multi-year Biomass Plan: 1.) Dramatically reduce dependence on foreign oil; 2.) Promote the use of diverse, domestic and sustainable energy resources; 3.) Reduce carbon emissions from energy production and consumption; 4.) Establish a domestic bioindustry. In 2005 VSJF was awarded with a $496,000 Congressionally directed award from U.S. Senator Patrick Leahy. This award was administered through the U.S. Department of Energy (DE-FG36- 05GO85017, hereafter referred to as DOE FY05) with $396,000 to be used by VSJF for biodiesel development and $100,000 to be used by the Vermont Department of Public Service for methane biodigester projects. The intent and strategic focus of the VBI is similar to another DOE funded organizationâ?? the Biofuels Center of North Carolinaâ??in that it is a nonprofit driven, statewide biofuels market development effort. DOE FY05 funds were expensed from 2006 through 2008 for seven projects: 1) a feedstock production, logistics, and biomass conversion research project conducted by the University of Vermont Extension; 2) technical assistance in the form of a safety review and engineering study of State Line Biofuels existing biodiesel production facility; 3) technical assistance in the form of a safety review and engineering study of Borderview Farmâ??s proposed biodiesel production facility; 4) technology and infrastructure purchases for capacity expansion at Green Technologies, LLC, a waste vegetable biodiesel producer; 5) technical assistance in the form of feasibility studies for AgNorth Biopower LLCâ??s proposed multi-feedstock biodigester; 6) technology and infrastructure purchases for the construction of a â??Cow Powerâ? biodigester at Gervais Family Farm; and 7) the education and outreach activities of the Vermont Biofuels Association. DOE FY05 funded research, technical assistance, and education and outreach activities have helped to provide Vermont farmers and entrepreneurs with important feedstock production, feedstock logistics, and biomass conversion information that did not exist prior as we work to develop an instate biodiesel sector. The efficacy of producing oilseed crops in New England is now established: Oilseed crops can grow well in Vermont, and good yields are achievable given improved harvesting equipment and techniques. DOE FY05 funds used for technology and infrastructure development have expanded Vermontâ??s pool of renewable electricity and liquid fuel generation. It is now clear that on-farm energy production provides an opportunity for Vermont farmers and entrepreneurs to reduce on-farm expenditures of feed and fuel while providing for their energy security. Meanwhile they are developing new value-added revenue sources (e.g., locally produced livestock meal), retaining more dollars in the local economy, and reducing greenhouse gas emissions.

Scott Sawyer; Ellen Kahler

2009-05-31T23:59:59.000Z

388

An assessment of citizen action committees as a risk communication strategy in the decommissioning of Connecticut Yankee nuclear power plant.  

E-Print Network (OSTI)

??Public utility companies manage unexpected crises by disseminating usable and understandable information about the incident/crisis to the general public. It is often hard to deal (more)

Pillittere, Joseph T., Jr

2002-01-01T23:59:59.000Z

389

Preliminary Evaluation of Removing Used Nuclear Fuel From Nine Shutdown Sites  

SciTech Connect

he Blue Ribbon Commission on Americas Nuclear Future identified removal of stranded used nuclear fuel at shutdown sites as a priority so that these sites may be completely decommissioned and put to other beneficial uses. In this report, a preliminary evaluation of removing used nuclear fuel from nine shutdown sites was conducted. The shutdown sites included Maine Yankee, Yankee Rowe, Connecticut Yankee, Humboldt Bay, Big Rock Point, Rancho Seco, Trojan, La Crosse, and Zion. At these sites a total of 7649 used nuclear fuel assemblies and a total of 2813.2 metric tons heavy metal (MTHM) of used nuclear fuel are contained in 248 storage canisters. In addition, 11 canisters containing greater-than-Class C (GTCC) low-level radioactive waste are stored at these sites. The evaluation was divided in four components: characterization of the used nuclear fuel and GTCC low-level radioactive waste inventory at the shutdown sites an evaluation of the onsite transportation conditions at the shutdown sites an evaluation of the near-site transportation infrastructure and experience relevant to the shipping of transportation casks containing used nuclear fuel from the shutdown sites an evaluation of the actions necessary to prepare for and remove used nuclear fuel and GTCC low-level radioactive waste from the shutdown sites. Using these evaluations the authors developed time sequences of activities and time durations for removing the used nuclear fuel and GTCC low-level radioactive waste from a single shutdown site, from three shutdown sites located close to each other, and from all nine shutdown sites.

Maheras, Steven J.; Best, Ralph; Ross, Steven B.; Buxton, Kenneth A.; England, Jeffery L.; McConnell, Paul

2013-04-30T23:59:59.000Z

390

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Vermont profile Vermont profile Vermont total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 620 55.0 4,782 72.2 Hydro and Pumped Storage 324 28.7 1,347 20.3 Natural Gas - - 4 0.1 Other Renewable1 84 7.5 482 7.3 Petroleum 100 8.9 5 0.1 Total 1,128 100.0 6,620 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. - = No data reported. Notes: Totals may not equal sum of components due to independent rounding. Other Renewable: Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind.

391

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Vermont profile Vermont profile Vermont total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 620 55.0 4,782 72.2 Hydro and Pumped Storage 324 28.7 1,347 20.3 Natural Gas - - 4 0.1 Other Renewable1 84 7.5 482 7.3 Petroleum 100 8.9 5 0.1 Total 1,128 100.0 6,620 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. - = No data reported. Notes: Totals may not equal sum of components due to independent rounding. Other Renewable: Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind.

392

An Analysis of Restorative Justice in Vermont: Assessing the Relationships Between the Attitudes of Citizens and the Practices of the Department of Corrections.  

E-Print Network (OSTI)

??The purpose of this study was to examine the relationship between the attitudes of citizens in Vermont and the newly instated restorative justice programs of (more)

Melbardis, Dustin Robert

2012-01-01T23:59:59.000Z

393

Effort, Burden, What Do They Really Mean? Assessing The Fairness Of School Funding Alternatives In Vermont  

E-Print Network (OSTI)

. On February 5, 1997 the Vermont Supreme Court declared the state's system for funding public education unconstitutional in case of Amanda Brigham v. State of Vermont. Now two years later, the state has made radical and sweeping changes in the form of The Equal Educational Opportunity Act of 1997 (Act 60). Act 60 has been greeted with a variety of responses by Vermont citizens and the media, being framed as a socialist plot to a much needed reform. In the wake of extensive criticisms of Act 60, a variety of modifications and alternate proposals have emerged. The objective of this study is to begin by asking the questions -- What has Act 60 accomplished so far? And what key issues are yet to be addressed? Among the key concerns is the way in which the question of taxpayer equity has been addressed by simply imposing a uniform statewide property tax rate. This study finds that while Act 60 has remedied some disparities in tax rates and per pupil spending, it has not remedied variance in...

Bruce D. Baker

1999-01-01T23:59:59.000Z

394

Environmental behavior of transuranic nuclides leaked from water cooled nuclear power plants. Final report, August 1, 1977-December 31, 1978  

Science Conference Proceedings (OSTI)

Release data are reported for three coastal water-cooled nuclear reactors: Millstone Point No. 1 and No. 2 (for the period January 1977 through April 1978), and Maine Yankee (for the period 20 June 1977 through 25 March 1978); release samples were analyzed for /sup 55/Fe, /sup 60/Co, /sup 134/Cs, /sup 137/Cs, /sup 238/Pu, /sup 239,240/Pu, /sup 241/Am, /sup 242/Cm, and /sup 244/Cm, but not all nuclides on every sample. Radioiron is a major component of the releases measured; the transuranium nuclides are less significant components than was expected, but levels have occasionally reached microcuries per month. Pulses of this size are adequate for tracer studies. Environmental samples (water, sediments, and biota) have been analyzed from about the two reactor sites noted, and that of the Pilgrim No. 1 reactor. No water samples remote from reactor outflows have unequivocally shown reactor contamination. No sediment samples from near Millstone Point or Pilgrim 1 have shown reactor contamination; this has been clearly evident in several sediment collections from near Maine Yankee. Biota so far measured from near Millstone Point show reactor contamination only when taken from the effluent canal. From the Maine Yankee and Plymouth areas, however, biota samples frequently prove to show slight, but definite, reactor contamination.

Bowen, V.T.

1980-09-01T23:59:59.000Z

395

Final report on the use of wood as a heat source and the quality of insulation in Vermont households  

SciTech Connect

The State of Vermont Energy Office conducted a study to provide the quantitative attitudinal and behavioral information essential to assessing the use of wood as a heat source in the state. General results show that 54% of all home owners in Vermont burn wood to some degree, 47% use wood as a supplementary heat source, 9% use wood as a primary source, and the extent to which wood is used does not differ by geographic area. Results on household uses (cooking and heating) are summarized. A summary of queries on insulation attitudes, awareness, and practices shows that a majority of homeowners believe they have adequate insulation, but are unaware of R factor. In Vermont, about one-fourth of homeowners improved their insulation in the last three years. (MCW)

1976-01-01T23:59:59.000Z

396

,"Vermont Natural Gas Input Supplemental Fuels (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (MMcf)" Input Supplemental Fuels (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Vermont Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1400_svt_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1400_svt_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:58:57 AM"

397

MATH 337, by T. Lakoba, University of Vermont 140 15 The Heat equation in 2 and 3 spatial dimensions  

E-Print Network (OSTI)

the Heat equation (15.1), we cover domain D with a two-dimensional grid. As we have just noted above also discretize the time variable with a step size . Then the three-dimensional grid for the 2D HeatMATH 337, by T. Lakoba, University of Vermont 140 15 The Heat equation in 2 and 3 spatial

Lakoba, Taras I.

398

State Nuclear Profiles 2010  

Gasoline and Diesel Fuel Update (EIA)

60 60 Vermont Vermont total electric power industry, summer capacity and net generation, by energy source, 2010 Nuclear 620 55.0 4,782 72.2 Hydro and Pumped Storage 324 28.7 1,347 20.3 Natural Gas - - 4 0.1 Other Renewable 1 84 7.5 482 7.3 Petroleum 100 8.9 5 0.1 Total 1,128 100.0 6,620 100.0 - = No data reported. Source: Form EIA-860, "Annual Electric Generator Report," and Form EIA-923, "Power Plant Operations Report." Share of State total (percent) 1 Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. Notes: Totals may not equal sum of components due to independent rounding. Other Renewable: Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts,

399

Department of Energy interest and involvement in nuclear plant license renewal activities  

SciTech Connect

Recognizing the importance of nuclear license renewal to the nation's energy strategy, the Department of Energy (DOE) initiated a plant lifetime improvement program during 1985 to determine the feasibility of the license renewal option for US nuclear plants. Initial activities of the DOE program focused on determining whether there were technical and economic obstacles that might preclude or limit the successful implementation of the license renewal option. To make this determination, DOE cosponsored with the Electric Power Research Institute (EPRI) pilot-plant efforts by Virginia Electric Power and Northern States Power. Both pilot-plant efforts concluded that life extension is technically and economically feasible. In parallel with the pilot-plant activities, DOE performed national economic studies that demonstrated the economic desirability of life extension. Having demonstrated the feasibility of life extension, DOE, in conjunction with EPRI, selected two lead plants to demonstrate the license renewal process. These lead plants are Yankee Atomic's Yankee Rowe facility and Northern States Power's Monticello facility. DOE also initiated activities to develop the technical and regulatory bases to support the license renewal process in the United States. DOE has recently identified nuclear plant license renewal to be an important element of its National Energy Strategy. This paper summarizes the significant results, conclusions, and ongoing activities of the DOE effort. 18 refs.

Bustard, L.D. (Sandia National Labs., Albuquerque, NM (USA)); Harrison, D.L. (USDOE Assistant Secretary for Nuclear Energy, Washington, DC (USA). Office of LWR Safety and Technology)

1991-01-01T23:59:59.000Z

400

The Meaning of Success: Young Women and High Academic Achievement in Rapidly Developed Areas. A Comparative Study of Contemporary Rural Vermont, USA and Leinster, Ireland.  

E-Print Network (OSTI)

??This thesis is an in-depth, comparative international study on young womens high academic achievement in rural Leinster (Ireland) and Vermont (USA). The research analyses how (more)

Fuller, Wendy Irene

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vermont yankee nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Report to Congress on Plan for Interim Storage of Spent Nuclear Fuel from Decommissioned Reactors  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 6 Report to Congress on the Demonstration of the Interim Storage of Spent Nuclear Fuel from Decommissioned Nuclear Power Reactor Sites December 2008 U.S. Department of Energy Office of Civilian Radioactive Waste Management Washington, D.C. Report to Congress on the Demonstration of the Interim Storage of Spent Nuclear Fuel The picture on the cover is the Connecticut Yankee Independent Spent Fuel Storage Installation site in Haddam, Connecticut, with 43 dry storage NRC-licensed dual-purpose (storage and transport) casks. ii Report to Congress on the Demonstration of the Interim Storage of Spent Nuclear Fuel EXECUTIVE SUMMARY The House Appropriations Committee Print that accompanied the Consolidated Appropriations Act, 2008, requests that the U.S. Department of Energy (the Department):

402

Small Wind Electric Systems: A Vermont Consumer's Guide  

SciTech Connect

Small Wind Electric Systems: A Vermont Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

2007-04-01T23:59:59.000Z

403

www.eia.gov  

U.S. Energy Information Administration (EIA)

Vermont Yankee 1 VIRGINIA Surry 1 Surry 2 North Anna 1 North Anna 2 WASHINGTON Columbia Generating Sta. WISCONSIN Point Beach 1 Point Beach 2 Kewaunee U.S. TOTAL

404

Solar-energy-system performance evaluation, Cathedral Square, Burlington, Vermont, July-December 1981  

DOE Green Energy (OSTI)

The Cathedral Square solar site is a 10-story multiunit apartment building in Vermont. Its active solar energy system is designed to supply 51% of the hot water load, and consists of 1798 square feet of flat plate collectors, 2699-gallon water tank in an enclosed mechanical room on the roof, and two auxiliary natural gas boilers to supply hot water to immersed heat exchanger in an auxiliary storage tank. The measured solar fraction was only 28%, not 51%, which, it is concluded, is an unreasonable expectation. Other performance data include the solar savings ratio, conventional fuel savings, system performance factor, and solar system coefficient of performance. Monthly performance data are given for the solar system overall, and for the collector, storage, and hot water subsystems. Also included are insolation data, typical storage fluid temperatures, domestic hot water consumption, and solar heat exchangers inlet/outlet temperatures, and typical domestic hot water subsystem temperatures. In addition, the system operating sequence and solar energy utilization are given. Appended are a system description, performance evaluation techniques, long-term weather data. (LEW)

Welch, K.M.

1981-01-01T23:59:59.000Z

405

A survey of carbon monoxide and nitrogen dioxide in indoor ice arenas in Vermont  

Science Conference Proceedings (OSTI)

Because of the history of health problems traceable to the exhaust of ice resurfacing machines, state sanitarians used detector tubes to measure carbon monoxide (CO) and nitrogen dioxide (NO[sub 2]) levels in enclosed ice arenas in Vermont during high school hockey games. Five of eight arenas had average game CO measurements of 30 ppm carbon monoxide or more. Two of the three periods of play had average CO readings in excess of 100 ppm in one arena. Only six arenas had the complete series of nitrogen dioxide measurements. One had an average game NO[sub 2] level of 1.2 ppm. Two had one or more periods of play that averaged in excess of 0.5 ppm. Despite the ample documentation of the hazards of operating combustion-powered resurfacing machines inside enclosed ice arenas, a significant portion of the arenas had undesirable levels of carbon monoxide or nitrogen dioxide. Ice arenas should be routinely monitored for air contaminants. Considerations should be given to the purchase of electric ice resurfacing machines for new arenas and arenas that have air contamination that cannot be resolved with ventilation.

Paulozzi, L.J. (Vermont Health Dept., Burlington, VT (United States)); Spengler, R.F.; Vogt, R.L.; Carney, J.K.

1993-12-01T23:59:59.000Z

406

Valuing Good Health in Vermont: The Costs and Benefits of Earned Health Care Time  

E-Print Network (OSTI)

Policymakers across the country are increasingly interested in ensuring that workers can earn paid time off to use when they are sick. In addition to concerns about workers ability to respond to their own health needs, there is growing recognition that, with so many dual-earner and single-parent families, family members health needs also sometimes require workers to take time off from their job. Allowing workers with contagious illness to avoid unnecessary contact with co-workers and customers has important public health benefits. Earned health care time also protects workers from being disciplined or fired when they are too sick to work, helps families and communities economically by preventing lost income due to illness, and offers savings to employers by reducing turnover and minimizing absenteeism. Legislators in Vermont are considering Bill H.208, An Act Relating to Absence from Work for Health Care and Safety. Using the parameters of the proposed legislation and publicly available data, the Institute for Womens Policy Research (IWPR) estimates the anticipated costs and some of the anticipated benefits of the law for employers providing new leave, as well as some of the benefits for employees. The briefing paper uses data collected by the U.S. Bureau of Labor Statistics, the Centers for Disease

unknown authors

2013-01-01T23:59:59.000Z

407

ESTIMATES FOR RELEASE OF RADIONUCLIDES FROM POTENTIALLY CONTAMINATED CONCRETE AT THE HADDAM NECK NUCLEAR PLANT.  

Science Conference Proceedings (OSTI)

Decommissioning of the Haddam Neck Nuclear Power Plant operated by Connecticut Yankee is in progress. Figure 1 shows a schematic of the Containment Building and Spent Fuel Pool (SFP) Building. Consideration is being given to leaving some subsurface concrete from the Containment, Spent Fuel and certain other buildings in place following NRC license termination. Characterization data of most of these structures show small amounts of residual contamination. The In-Core Sump area of the Containment Building has shown elevated levels of tritium, Co-60, Fe-55, and Eu-152 and lesser quantities of other radionuclides due to neutron activation of the concrete in this area. This analysis is provided to determine levels of residual contamination that will not cause releases to the groundwater in excess of the acceptable dose limits. The objective is to calculate a conservative relationship between the radionuclide concentration of subsurface concrete and the maximum groundwater concentration (pCi/L) for the concrete that may remain following license termination at Connecticut Yankee.

SULLIVAN, T.

2004-09-15T23:59:59.000Z

408

SNMSP II: A system to fully automate special nuclear materials accountability reporting for electric utilities  

SciTech Connect

The USNRC requires each licensee who is authorized to possess Special Nuclear Materials (SNM) to prepare and submit reports concerning SNM received, produced, possessed, transferred, consumed, disposed of, or lost. These SNM accountability reports, which need to be submitted twice a year, contain detailed information on the origin, quantity, and type of SNM for several locations. The amount of detail required makes these reports very time consuming and error prone when prepared manually. Yankee Atomic is developing an IBM PC-based computer code that fully automates the process of generating SNM accountability reports. The program, called SNMSP II, prints a number of summaries including facsimiles of the NRC/DOE-741, 742, 742C, and RW-859 reports in a format that can be submitted directly to the NRC/DOE. SNMSP II is menu-driven and is especially designed for people with little or no computer training. Input can be either from a mainframe-based corporate data base or manually through user-friendly screens. In addition, extensive quality assurance features are available to ensure the security and accuracy of the data. This paper discusses the major features of the code and describes its implementation at Yankee.

Pareto, V.; Venegas, R.

1987-07-01T23:59:59.000Z

409

DOE/EA-1503: Finding of No Significant Impact for the Vermont Electric Power Company Proposed Northern Loop Project Environmental Assessment (01/21/04)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vermont Electric Power Company Vermont Electric Power Company FE Dockets PP-66-2 and PP-82-3 Background Under Executive Order (EO) 10485, as amended by EO 12038, no person may construct, operate, maintain, or connect facilities at the international border of the United States for the transmission of electric energy between the United States and a foreign country without first obtaining a Presidential permit from the Department of Energy (DOE). On June 21, 1979, DOE issued Presidential Permit PP-66 to Citizens Utilities Company (now Citizens Communications Company; "Citizens") for one 120,000-volt (120-kV) electric transmission line that crosses the United States border with Canada near Derby Line, Vermont, and interconnects with similar transmission facilities in Canada owned by Hydro-Quebec.

410

YAEC's view of the cause and control of escalating nuclear plant O and M costs  

Science Conference Proceedings (OSTI)

This paper provides insights on this issue in terms of both the genesis and effective long-term control of O and M costs. Yankee Atomic Electric Company's (YAEC's) insights stem not only from an analysis of certain industry data, but also from its unique position within the nuclear industry in terms of its age, plant size, and organization. First, at 30 yr of age, the YAEC plant has endured the full swing of the regulatory/institutional pendulum and the associated impact on O and M costs. Second, with a size of only 185 MW(electric), YAEC's imperative since start-up has been the strict control of O and M costs while still achieving operational excellence. Finally, YAEC is an organization strictly focused on nuclear power operations and has not been distracted by fossil plant operations or other utility requirements like distribution, retail sales, etc., that may have plagued other plant operators.

Haseltine, J.D.; Lessard, L.P.

1990-01-01T23:59:59.000Z

411

Global carbon impacts of using forest harvest residues for district heating in Vermont  

DOE Green Energy (OSTI)

Forests in Vermont are selectively logged periodically to generate wood products and useful energy. Carbon remains stored in the wood products during their lifetime and in fossil fuel displaced by using these products in place of energy-intensive products. Additional carbon is sequestered by new forest growth, and the forest inventory is sustained using this procedure. A significant portion of the harvest residue can be used as biofuel in central plants to generate electricity and thermal energy, which also displaces the use of fossil fuels. The impact of this action on the global carbon balance was analyzed using a model derived from the Graz/Oak Ridge Carbon Accounting Model (GORCAM). The analysis showed that when forests are harvested only to manufacture wood products, more than 100 years are required to match the sequestered carbon present if the forest is left undisturbed. If part of the harvest residue is collected and used as biofuel in place of oil or natural gas, it is possible to reduce this time to about 90 years, but it is usually longer. Given that harvesting the forest for products will continue, carbon emission benefits relative to this practice can start within 10 to 70 years if part of the harvest residue is used as biofuel. This time is usually higher for electric generation plants, but it can be reduced substantially by converting to cogeneration operation. Cogeneration makes possible a ratio of carbon emission reduction for district heating to carbon emission increase for electricity generation in the range of 3 to 5. Additional sequestering benefits can be realized by using discarded wood products as biofuels.

McLain, H.A.

1998-07-01T23:59:59.000Z

412

The environmental behavior of transuranic nuclides released from water cooled nuclear power plants. Final report, 1 August 1977-31 December 1978  

Science Conference Proceedings (OSTI)

Release data are reported for three coastal water-cooled nuclear reactors: Millstone Point No. 1 and No. 2 (for the period January 1977 through April 1978), and Maine Yankee (for the period 20 June 1977 through 25 March 1978); release samples were analyzed for (55)Fe, (60)Co, (134)Cs, (137)Cs, (238)Pu, (239), (240)Pu, (241)Am, (242)Cm and (244)Cm, but not all nuclides on every sample. Radioiron is a major component of the releases measured; the transuranium nuclides are less significant components than was expected, but levels have occasionally reached microcuries per month. Pulses of this size are adequate for tracer studies. Environmental samples (water, sediments, and biota) have been analyzed from about the two reactor sites noted, and that of the Pilgrim No. 1 reactor. No water samples remote from reactor outflows have unequivocally shown reactor contamination. No sediment samples from near Millstone Point or Pilgrim 1 have shown reactor contamination; this has been clearly evident in several sediment collections from near Main Yankee.

Bowen, V.T.

1981-03-01T23:59:59.000Z

413

Vermont Hazardous Waste Management Regulations (Vermont)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations are intended to protect public health and the environment by comprehensively regulating the generation, storage, collection, transport, treatment, disposal, use, reuse, and...

414

2005 ORAU/ORISE Bibliography  

NLE Websites -- All DOE Office Websites (Extended Search)

May 2005. Adams, W. C. Confirmatory Survey of the Primary Auxiliary Building, Yankee Nuclear Power Station, Rowe, Massachusetts, Prepared for the U.S. Nuclear Regulatory...

415

Assessment of the Impacts of Green Mountain Power Corporation's Wind Power Facility on Breeding and Migrating Birds in Searsburg, Vermont: July 1996--July 1998  

DOE Green Energy (OSTI)

A 6-megawatt, 11 turbine wind power development was constructed by Green Mountain Power Corporation in Searsburg, southern Vermont, in 1996. To determine whether birds were impacted, a series of modified BA (Before, After) studies was conducted before construction (1993-1996), during (1996), and after (1997) construction on the project site. The studies were designed to monitor changes in breeding bird community (species composition and abundance) on the site, examine the behavior and numbers of songbirds migrating at night over the site and hawks migrating over the site in daylight, and search for carcasses of birds that might have collided with the turbines.

Kerlinger, P.

2002-03-01T23:59:59.000Z

416

Who pays to close a nuke  

Science Conference Proceedings (OSTI)

Treating nuclear power plant decommissioning as an externality helps reduce the costs of the decisions we will be forced to make soon. According to the British magazine Atom, more than 60 nuclear power plants will be candidates for decommissioning worldwide by 2000. Another 350 commercial reactors worldwide will become eligible for decommissioning two decades after that. The United States has about one-quarter of the world's commercial reactors, many of which are nearing the end of their licensed life. While various organizations and government agencies debate the future direction of nuclear power in the United States, reactor retirements already are starting to accumulate. Vermont Yankee, Yankee Rowe, Indian Point 1, Dresden 1, LaCrosse, Peach Bottom 1, Ft. St. Vrain, Three Mile Island 2, Rancho Seco, and Humboldt Bay 3 all have been announced for decommissioning. Shippingport Atomic Station, near Pittsburgh, has been dismantled and removed. Many questions are emerging as the specter of abandoned hulks and mountains of radioactive debris begins to loom on the horizon. A useful way to address some of the problems of nuclear decommissioning is through the work of University of Chicago Professor Ronald Coase. Coase received the Nobel Prize in economics in October 1991 primarily for his work on externalities; that is, the by-products of production or consumption activities that affect others besides the producer or consumer.

Pasqualetti, M.J.; Rothwell, G.

1993-01-15T23:59:59.000Z

417

Massachusetts nuclear power referendum: Lessons learned from the campaign trail  

Science Conference Proceedings (OSTI)

Last November, Massachusetts voters cast their ballots on a binding initiative which, if passed, would have prohibited the production of high-level waste, thereby permanently shutting down the state's two nuclear power plants: Yankee and Pilgrim. Question 4, as the initiative became known, posed an unprecedented challenge for the state's six major utilities. Essentially, Question 4 was defeated for two reasons: compelling arguments and a well-founded strategy for communicating those arguments. One part of that strategy was the use of debates and public-speaking engagements before both civic groups and on radio/television. These debates and presentations were clearly the most interesting part of the campaign and provided many insights that may be applied to long-term public policy and informational programs. Obviously, there is a significant difference between an intense, focused campaign and an ongoing, diverse public information program-but many of the principles are the same. The purpose of this paper is to review some of the key lessons learned from over 300 debates and presentations in the highly emotional atmosphere of the Question 4 campaign. Throughout the campaign, debaters and speakers submitted after action reports, and it is from these as well as the overall campaign results that the lessons and anecdotes are derived.

Allen, S.R.

1989-01-01T23:59:59.000Z

418

Small break LOCA analysis for Maanshan nuclear power plant  

SciTech Connect

Since 1990, Taiwan Power Company has conducted a LWR LOCA technology transfer program on RELAP5YA computer code from Yankee Atomic Electric Company (YAEC). One objective of this program is to acquire the RELAP5YA computer code from YAEC for Taipower in-house licensing analysis. The RELAP5YA is a computer program developed at YAEC for analysing the dynamic behaviour of thermal-hydraulic systems, and it can cover most of the postulated accidents and transients in light water reactor systems. In this paper, Taipower`s engineers have performed a small break loss of coolant accidents analysis for Maanshan nuclear power plant. Thais action is used to perform the licensing actions for increasing the operation margin on the steam generator tube plugging. The result is shown that the steam generator tube can be plugged slightly without a reduction in safety margins. This analysis covers a spectrum of break size for a small break LOCA. For a complete spectrum of the transient and accident analysis, the large break LOCA and the non-LOCA analysis were performed by the fuel vendor for the reload safety evaluation.

Jer-Cherng Kang; Shou-Chuan Chiang; Lang-Chen Wang [Taiwan Power Company, Taipei (China)

1994-12-31T23:59:59.000Z

419

Nuclear data for nuclear transmutation  

Science Conference Proceedings (OSTI)

Current status on nuclear data for the study of nuclear transmutation of radioactive wastes is reviewed

Hideo Harada

2009-01-01T23:59:59.000Z

420

Feasibility Study of Economics and Performance of Solar Photovoltaics at the VAG Mine Site in Eden and Lowell, Vermont. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites  

DOE Green Energy (OSTI)

The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Vermont Asbestos Group (VAG) Mine site in Eden, Vermont, and Lowell, Vermont, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site.

Simon, J.; Mosey, G.

2013-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "vermont yankee nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Considerations in the evaluation of concrete structures for continued service in aged Nuclear Power Plants (NPPs)  

SciTech Connect

Currently, there are /approximately/119 commercial nuclear power plants (NPPs) in the US either under construction, operating at low-to-full power, or awaiting an operating license. Together, these units have a net generating capacity of /approximately/110 GW(e). Assuming no life extension of present facilities, the operating licenses for these plants will start to expire in the middle of the next decade with Yankee Rowe being the first plant to attain this status. Where it is noted that with no life extension of facilities, a potential loss of electrical generating capacity in excess of 75 GW(e) could occur during the time period 2006 to 2020 when the operating licenses of 80 to 90 NPPs are scheduled to expire. A potential timely and cost-effective solution to meeting future electricity demand, which has worked well for non-nuclear generating plants, is to extend the service life (operating licenses) of existing NPPs. Since the concrete components in these plants provide a vital safety function, any continued service considerations must include an in-depth assessment of the safety-related concrete structures. 7 refs.

Naus, D.; Marchbanks, M.; Oland, B.; Arndt, G.; Brown, T.

1989-01-01T23:59:59.000Z

422

Vermont | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

equipment. The program offers a rebate incentive for efficient lighting technologies, boilers, ventilation systems, and refrigerators. A receipt or invoice for purchased equipment...

423

Vermont Natural Gas Prices  

Gasoline and Diesel Fuel Update (EIA)

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History Imports Price 8.51 9.74 6.34 6.54 5.81 4.90 1989-2012 Pipeline and Distribution Use Price 1982-2005 Citygate Price 10.03 10.66 9.33 8.29 7.98 6.63 1984-2012 Residential Price 15.99 18.31 17.29 16.14 16.17 16.73 1980-2012 Percentage of Total Residential Deliveries included in Prices 100.0 100.0 100.0 100.0 100.0 100.0 1989-2012 Commercial Price 12.79 14.31 12.96 11.82 11.90 12.09 1980-2012 Percentage of Total Commercial Deliveries included in Prices 100 100 100 100 100 100 1990-2012 Industrial Price 9.08 9.60 7.93 6.57 6.09 4.89 1997-2012 Percentage of Total Industrial Deliveries included in Prices 78.0 79.6 77.9 77.1 80.9 100.0 1997-2012 Electric Power Price 7.72 9.14 5.66 5.73 5.26 4.14 1997-2012

424

Climate Action Plan (Vermont)  

Energy.gov (U.S. Department of Energy (DOE))

There is a growing scientific consensus that increasing emissions of greenhouse gases to the atmosphere are affecting the temperature and variability of the Earths climate. Recognizing the...

425

Vermont | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Renewable Energy April 19, 2010 CX-002104: Categorical Exclusion Determination Street Light and Signal Relamping CX(s) Applied: B5.1 Date: 04192010 Location(s):...

426

Vermont | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of the building, and improvements to thermal envelope, power, heating, ventilation and cooling systems, lighting, and energy efficiency HVAC equipment are generally eligible....

427

Vermont | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 14, 2010 A 5 Million Boost for Midsize Wind Turbines and Grid Connectivity With better forecasting, utilities can more reliably connect variable power sources such as...

428

Vermont | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

utilizing anaerobic digestion of agricultural products, byproducts or wastes to generate electricity. GMP purchases the renewable energy credits for up to 0.04 per kWh with full...

429

Vermont Natural Gas Summary  

U.S. Energy Information Administration (EIA) Indexed Site

478 274 137 93 85 1989-2013 Commercial 404 347 201 108 85 83 1989-2013 Industrial 302 286 247 206 204 233 2001-2013 Vehicle Fuel 0 0 0 0 0 0 2010-2013 Electric Power 4 4 1 4 4 3...

430

Alternative Regulation (Vermont)  

Energy.gov (U.S. Department of Energy (DOE))

Utility regulators, including the Public Service Board, have applied a new type of regulation, often called "alternative regulation" or "incentive regulation." There are many variants of this type...

431

Department of Energy - Vermont  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Supplier

Institutional
Multi-Family Residential
Systems Integrator

432

Vermont | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

per square foot of natural gas over the past year are eligible for this program, as are multi-family buildings. Typical measures include blown-in cellulose insulation for walls...

433

Vermont Natural Gas Summary  

Gasoline and Diesel Fuel Update (EIA)

8.51 9.74 6.34 6.54 5.81 1989-2011 Pipeline and Distribution Use 1982-2005 Citygate 10.03 10.66 9.33 8.29 7.98 6.63 1984-2012 Residential 15.99 18.31 17.29 16.14 16.17 16.73...

434

Stormwater Permits (Vermont)  

Energy.gov (U.S. Department of Energy (DOE))

Stormwater permits are required for the construction of a new generation facility, the reconstruction or expansion of a facility, the operation of a generation facility which discharges stormwater...

435

Vermont | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

or lighting) and for a variety of equipment including plate coolers, variable speed milk transfer systems, heat recovery units, milk vacuum pumps VFD and sap vacuum pumps VFD,...

436

Vermont | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 14, 2011 EA-1814: Final Environmental Assessment City of Montpelier Combined Heat and Power and District Energy System July 12, 2011 EA-1814: DOE Notice of Availability...

437

Vermont | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CX-002589: Categorical Exclusion Determination Clean Energy Development Fund - Renewable Energy Program - Burlington City Market Co-op Solar CX(s) Applied: B5.1 Date: 03242010...

438

Vermont Pasture Network Calendar  

E-Print Network (OSTI)

, cleaning grain, the milling process, and packaging flour. He'll also discuss the history of milling for a tour of Wild Hive Farm Community Grain Project and a look at how local milling plays an important role

Hayden, Nancy J.

439

Vermont Natural Gas Prices  

U.S. Energy Information Administration (EIA) Indexed Site

20.00 22.97 23.69 1989-2013 Percentage of Total Residential Deliveries included in Prices 100.0 100.0 100.0 100.0 100.0 100.0 2002-2013 Commercial Price 11.53 11.62 11.68 11.97...

440

Vermont Natural Gas Prices  

U.S. Energy Information Administration (EIA) Indexed Site

16.14 16.17 16.73 1980-2012 Percentage of Total Residential Deliveries included in Prices 100.0 100.0 100.0 100.0 100.0 100.0 1989-2012 Commercial Price 12.79 14.31 12.96 11.82...

Note: This page contains sample records for the topic "vermont yankee nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Vermont Natural Gas Prices  

U.S. Energy Information Administration (EIA) Indexed Site

7.20 7.16 1989-2013 Residential Price 15.21 14.73 14.78 15.10 15.61 17.74 1989-2013 Percentage of Total Residential Deliveries included in Prices 100.0 100.0 100.0 100.0 100.0...

442

Vermont | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

property taxes would still apply). Eligible systems include, but are not limited to, "windmills, facilities for the collection of solar energy or the conversion of organic matter...

443

Nuclear & Uranium  

U.S. Energy Information Administration (EIA)

Nuclear & Uranium. Uranium fuel ... nuclear reactors, generation, spent fuel. Total Energy. Comprehensive data summaries, comparisons, analysis, and projections ...

444

Nuclear power and nuclear weapons  

SciTech Connect

The proliferation of nuclear weapons and the expanded use of nuclear energy for the production of electricity and other peaceful uses are compared. The difference in technologies associated with nuclear weapons and nuclear power plants are described.

Vaughen, V.C.A.

1983-01-01T23:59:59.000Z

445

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Vermont Electricity Profile 2010 Vermont profile Table 1. 2010 Summary Statistics (Vermont) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Nuclear Net Summer...

446

Related Resources - Nuclear Data Program, Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

447

Publications: Other Resources - Nuclear Data Program - Nuclear...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

448

Publications 2005 - Nuclear Data Program - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

449

Publications 2003 - Nuclear Data Program - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

450

Contacts - Nuclear Data Program, Nuclear Engineering Division...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

451

Publications 2001 - Nuclear Data Program - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

452

Publications 2004 - Nuclear Data Program - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

453

Publications 2009 - Nuclear Data Program - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

454

Nuclear Criticality Safety: Current Activities - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

455

Nuclear Criticality Safety - Nuclear Engineering Division (Argonne...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

456

Nuclear Systems Analysis - Nuclear Engineering Division (Argonne...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

457

Publications 2011 - Nuclear Data Program - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

458

Nuclear Resonance Fluorescence for Nuclear Materials Assay  

E-Print Network (OSTI)

Potential of Nuclear Resonance Fluorescence . . . . . . . .2.9.1 Nuclear ThomsonSections . . . . . . . . . . . . . . . Nuclear Resonance

Quiter, Brian Joseph

2010-01-01T23:59:59.000Z

459

One-dimensional kinetics modifications for BWR reload methods  

SciTech Connect

Yankee Atomic Electric Company (YAEC) currently uses RETRAN-02 to analyze limiting transients and establish operating minimum critical power ratio (MCPR) limits for Vermont Yankee (VY) boiling water reactor (BWR) reload analysis. The US Nuclear Regulatory Commission-approved analysis methods, used in previous cycles, use the point-kinetics modeling option in RETRAN-02 to represent transient-induced neutronic feedback. RETRAN-02 also contains a one-dimensional (1-D) kinetics neutronic feedback model option that provides a more accurate transient power prediction than the point-kinetics model. In the past few fuel cycles, the thermal or MCPR operating margin at VY has eroded due to increases in fuel cycle length. To offset this decrease, YAEC has developed the capability to use the more accurate 1-D kinetics RETRAN option. This paper reviews the qualification effort for the YAEC BWR methods. This paper also presents a comparison between RETRAN-02 predictions using 1-D and point kinetics for the limiting transient, and demonstrates the typical gain in thermal margin from 1-D kinetics.

Chandola, V.; Robichaud, J.D.

1990-01-01T23:59:59.000Z

460

BWR radiation control: plant demonstration  

Science Conference Proceedings (OSTI)

The first year's progress is presented for a four-year program intended to implement and evaluate BRAC radiation reduction operational guidelines at the Vermont Yankee BWR and to document the results in sufficient detail to provide guidance to other BWR owners. Past operational, chemistry and radiation level data have been reviewed to provide a historical base of reference. Extensive sampling and chemistry monitoring systems have been installed to evaluate plant chemistry status and the effects of program implemented changes. Radiation surveys and piping gamma scans are being performed at targeted locations to quantify radiation level trends and to identify and quantify piping isotopics. Contact radiation levels on the recirculation line at Vermont Yankee have been increasing at a rate of 175 mR/h-EFPY since 1978. A materials survey of feedwater and reactor components in contact with the process liquid has been performed to identify sources of corrosion product release, particularly cobalt and nickel. A feedwater oxygen injection system has been installed to evaluate the effects of oxygen control on feedwater materials corrosion product releases. A baseline performance evaluation of the condensate treatment and reactor water cleanup systems has been completed. Data on organics and ionics at Vermont Yankee have been obtained. A methodology of BWR feedwater system layup during extended outages was developed, and an evaluation performed of layup and startup practices utilized at Vermont Yankee during the fall 1980 and 1981 refueling outages.

Palino, G.F.; Hobart, R.L.; Wall, P.S.; Sawochka, S.G.

1982-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "vermont yankee nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

BWR radiation control: plant demonstration. Volume 2. Appendixes  

Science Conference Proceedings (OSTI)

The first year's progress is presented for a four-year program intended to implement and evaluate BRAC radiation reduction operational guidelines at the Vermont Yankee BWR and to document the results in sufficient detail to provide guidance to other BWR owners. Past operational, chemistry and radiation level data have been reviewed to provide a historical base of reference. Extensive sampling and chemistry monitoring systems have been installed to evaluate plant chemistry status and the effects of program implemented changes. Radiation surveys and piping gamma scans are being performed at targeted locations to quantify radiation level trends and to identify and quantify piping isotopics. Contact radiation levels on the recirculation line at Vermont Yankee have been increasing at a rate of 175 mR/h-EFPY since 1978. A materials survey of feedwater and reactor components in contact with the process liquid has been performed to identify sources of corrosion product release, particularly cobalt and nickel. A feedwater oxygen injection system has been installed to evaluate the effects of oxygen control on feedwater materials corrosion product releases. A baseline performance evaluation of the condensate treatment and reactor water cleanup systems has been completed. Data on organics and ionics at Vermont Yankee have been obtained. A methodology of BWR feedwater system layup during extended outages was developed, and an evaluation performed of layup and startup practices utilized at Vermont Yankee during the fall 1980 and 1981 refueling outages.

Palino, G.F.; Hobart, R.L.; Wall, P.S.; Sawochka, S.G.

1982-11-01T23:59:59.000Z

462

Hybrid Technique in SCALE for Fission Source Convergence Applied to Used Nuclear Fuel Analysis  

SciTech Connect

The new hybrid SOURCE ConveRgence accelERator (SOURCERER) sequence in SCALE deterministically computes a fission distribution and uses it as the starting source in a Monte Carlo eigenvalue criticality calculation. In addition to taking the guesswork out of defining an appropriate, problem-dependent starting source, the more accurate starting source provided by the deterministic calculation decreases the probability of producing inaccurate tally estimates associated with undersampling problems caused by inadequate source convergence. Furthermore, SOURCERER can increase the efficiency of the overall simulation by decreasing the number of cycles that has to be skipped before the keff accumulation. SOURCERER was applied to a representative example for a used nuclear fuel cask utilized at the Maine Yankee storage site {Scaglione and Ilas}. Because of the time constraints of the Used Fuel Research, Development, and Demonstration project, it was found that using more than 30,000 neutrons per cycle will lead to inaccurate Monte Carlo calculation of keff due to the inevitable decrease in the number of skipped and active cycles used with this problem. For a fixed uncertainty objective and by using 30,000 neutron per cycle, the use of SOURCERER increased the efficiency of the keff calculation by 60%compared to a Monte Carlo calculation that used a starting source distributed uniformly in fissionable regions, even with the inclusion of the extra computational time required by the deterministic calculation. Additionally, the use of SOURCERER increased the reliability of keff calculation using any number of skipped cycles below 350.

Ibrahim, Ahmad M [ORNL; Peplow, Douglas E. [ORNL; Bekar, Kursat B [ORNL; Celik, Cihangir [ORNL; Scaglione, John M [ORNL; Ilas, Dan [ORNL; Wagner, John C [ORNL

2013-01-01T23:59:59.000Z

463

Nuclear Reactions  

NLE Websites -- All DOE Office Websites (Extended Search)

Reactions Nuclear reactions and nuclear scattering are used to measure the properties of nuclei. Reactions that exchange energy or nucleons can be used to measure the energies of...

464

Nuclear Safety  

Energy.gov (U.S. Department of Energy (DOE))

Nuclear Safety information site that provides assistance and resources to field elements in implementation of requirements and resolving nuclear safety, facility safety, and quality assurance issues.

465

Nuclear Materials  

Science Conference Proceedings (OSTI)

Materials and Fuels for the Current and Advanced Nuclear Reactors III ... response of oxide ceramics for nuclear applications through experiment, theory, and...

466

Nuclear Matter and Nuclear Dynamics  

E-Print Network (OSTI)

Highlights on the recent research activity, carried out by the Italian Community involved in the "Nuclear Matter and Nuclear Dynamics" field, will be presented.

M Colonna

2009-02-26T23:59:59.000Z

467

Fusion Nuclear Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Systems Modeling, Simulation & Validation Nuclear Systems Technology Reactor Technology Nuclear Science Home | Science & Discovery | Nuclear Science | Research...

468

Detailed Burnup Calculations for Testing Nuclear Data  

Science Conference Proceedings (OSTI)

A general method (MCQ) has been developed by introducing a microscopic burnup scheme that uses the Monte Carlo calculated fluxes and microscopic reaction rates of a complex system and a depletion code for burnup calculations as a basis for solving nuclide material balance equations for each spatial region in which the system is divided. Continuous energy-dependent cross-section libraries and full 3D geometry of the system can be input for the calculations. The resulting predictions for the system at successive burnup time steps are thus based on a calculation route where both geometry and cross sections are accurately represented, without geometry simplifications and with continuous energy data, providing an independent approach for benchmarking other methods and nuclear data of actinides, fission products, and other burnable absorbers. The main advantage of this method over the classical deterministic methods currently used is that the MCQ System is a direct 3D method without the limitations and errors introduced on the homogenization of geometry and condensation of energy of deterministic methods. The Monte Carlo and burnup codes adopted until now are the widely used MCNP and ORIGEN codes, but other codes can be used also. For using this method, there is need of a well-known set of nuclear data for isotopes involved in burnup chains, including burnable poisons, fission products, and actinides. For fixing the data to be included in this set, a study of the present status of nuclear data is performed, as part of the development of the MCQ method. This study begins with a review of the available cross-section data of isotopes involved in burnup chains for power and research nuclear reactors. The main data needs for burnup calculations are neutron cross sections, decay constants, branching ratios, fission energy, and yields. The present work includes results of selected experimental benchmarks and conclusions about the sensitivity of different sets of cross-section data for burnup calculations, using some of the main available evaluated nuclear data files (ENDF-B-VI-Rel.8, JEFF-3.0, JENDL-3.3), on an isotope-by-isotope basis as much as possible. The selected experimental burnup benchmarks are reference cases for LWR and HWR reactors, with analysis of isotopic composition as a function of burnup. For LWR (H2O-moderated uranium oxide lattices) four benchmarks are included: ATM-104 NEA Burnup credit criticality benchmark; Yankee-Rowe Core V; H.B.Robinson Unit 2 and Turkey Point Unit 3. For HWR (D2O-moderated uranium oxide cluster lattices), three benchmarks were selected: NPD-19-rod Fuel Clusters; Pickering-28-rod Fuel Clusters; and Bruce-37-rod Fuel Clusters. The isotopes with experimental concentration data included in these benchmarks are: Se-79, Sr90, Tc99, Ru106, Sn126, Sb125,1129, Cs133-137, Nd143, 145, Sm149-150, 152, Eul53-155, U234-235, 238, Np237, Pu238-242, Am241-243, and Cm242-248. Results and analysis of differences between calculated and measured absolute and/or relative concentrations of these isotopes for the seven benchmarks are included in this work.

Leszczynski, F. [Centro Atomico Bariloche (CNEA), 8400 S.C.de Bariloche (Argentina)

2005-05-24T23:59:59.000Z

469

Nuclear Analytical Chemistry Portal  

Science Conference Proceedings (OSTI)

NIST Home > Nuclear Analytical Chemistry Portal. Nuclear Analytical Chemistry Portal. ... see all Nuclear Analytical Chemistry news ... ...

2010-08-02T23:59:59.000Z

470

Future of Nuclear Data for Nuclear Astrophysics  

Science Conference Proceedings (OSTI)

Nuclear astrophysics is an exciting growth area in nuclear science. Because of the enormous nuclear data needs of this field

Michael S. Smith

2005-01-01T23:59:59.000Z

471

Countering Nuclear Terrorism | National Nuclear Security Administratio...  

NLE Websites -- All DOE Office Websites (Extended Search)

Countering Nuclear Terrorism | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response...

472

Nuclear Detonation Detection | National Nuclear Security Administratio...  

National Nuclear Security Administration (NNSA)

Nuclear Nonproliferation Program Offices > Office of Nonproliferation Research & Development > Nuclear Detonation Detection Nuclear Detonation Detection Develop, Demonstrate, and...

473

Chernobyl Nuclear Accident | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Chernobyl Nuclear Accident | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response...

474

Nuclear Science  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science Science and Engineering Education Sourcebook 2013 American Nuclear Society US Department of Energy Nuclear Science & Engineering Education Sourcebook 2013 North American Edition American Nuclear Society Education, Training, and Workforce Division US Department of Energy Office of Nuclear Energy Editor and Founder John Gilligan Professor of Nuclear Engineering North Carolina State University Version 5.13 Welcome to the 2013 Edition of the Nuclear Science and Engineering Education (NS&EE) Sourcebook. We have evolved and improved! The core mission of the Sourcebook has not changed, however. Our purpose is to facilitate interaction among faculty, students, industry, and government agencies to accomplish nuclear research, teaching and service activities. Since 1986 we have compiled critical information on nuclear

475

Nuclear forces  

Science Conference Proceedings (OSTI)

These lectures present an introduction into the theory of nuclear forces. We focus mainly on the modern approach

2013-01-01T23:59:59.000Z

476

Factors hindering the development of small-scale municipal hydropower: a case study of the Black River project in Springfield, Vermont  

DOE Green Energy (OSTI)

There are many good reasons to use New England's small-scale hydropower resources to generate electricity. But current production capacity in the three northern states is only 1300 MW, just 35% of the 3710 MW estimated to be available to the states. Though the benefits of properly designed projects seem substantial, many factors combine to hinder their development. The Black River project in Springfield, Vermont, exemplifies the problem. Even after the two has invested over five years and $1 million in its effort to develop 30 MW of capacity, it still has not received either federal or state approval to proceed with construction. The first 4 years of the Springfield experience are described and factors that have greatly increased the cost and planning time for the project are identified. The purpose is to identify changes that could facilitate efforts to develop small-scale hydropower at other acceptable sites. On the basis of this experience it is recommended that: after issuance of a FERC permit, a preliminary determination of the project's impacts should be made by FERC officials; if environmental impacts are solely local or limited, environmental analysis/determination should be placed in the hands of the state; short-form licensing should be used for all run-of-river hydro projects that utilize and do not significantly modify existing water impoundment areas and do not significantly alter downstream flow patterns; and a hydro ombudsman with power at the state level should be established to facilitate governmental inter-agency coordination and project-related information transfer: one-stop licensing. (LCL)

Peters, E.; Berger, G.; Amlin, J.; Meadows, D.

1979-03-01T23:59:59.000Z

477

Nuclear weapons, nuclear effects, nuclear war  

SciTech Connect

This paper provides a brief and mostly non-technical description of the militarily important features of nuclear weapons, of the physical phenomena associated with individual explosions, and of the expected or possible results of the use of many weapons in a nuclear war. Most emphasis is on the effects of so-called ``strategic exchanges.``

Bing, G.F.

1991-08-20T23:59:59.000Z

478

NRC Consent to Indirect License Transfer/Threshold Determination- Merger  

E-Print Network (OSTI)

Company ("CY"), and Yankee Atomic Electric Company ("YR") (each a "Yankee Company," and together, "the Yankee Companies"), hereby respond to the Nuclear Regulatory Commission ("NRC") Third Request for Additional Information for Application for NRC Consent to Indirect License Transfer/Threshold Determination (TAC Nos. L24496, L24497, and L24498) ("RAI 3") received by the Yankee Companies on August 5, 2011. If you have questions or require additional information, please contact me or Joe Fay at (207) 350-0300. Sincerely, Wayne Norton

The Yankee Companies

2011-01-01T23:59:59.000Z

479

Nuclear Deterrence  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Deterrence Nuclear Deterrence Nuclear Deterrence LANL's mission is to develop and apply science and technology to ensure the safety, security, and effectiveness of the U.S. nuclear deterrent; reduce global threats; and solve other emerging national security and energy challenges. April 12, 2012 A B-2 Spirit bomber refuels from a KC-135 Stratotanker A B-2 Spirit bomber refuels from a KC-135 Stratotanker. Contact Operator Los Alamos National Laboratory (505) 667-5061 Charlie McMillan, Director: "For the last 70 years there has not been a world war, and I have to think that our strong deterrent has something to do with that fact." Mission nuclear weapons Charlie McMillan, Director of Los Alamos National Laboratory 1:06 Director McMillan on nuclear deterrence While the role and prominence of nuclear weapons in U.S. security policy

480

CASMO-2 spent-fuel-rack criticality analysis  

SciTech Connect

In recent years, utilities have needed to increase their spent-fuel storage capacity. Both Maine Yankee pressurized water reactor (PWR) and Vermont Yankee boiling water reactor (BWR) have increased their spent-fuel rack capacity by decreasing the canister center-to-center spacing while adding fixed poison. Licensing criticality analysis of such changes in spent-fuel rack design have been performed at Yankee Atomic Electric Co. (YAEC) using NITAWL-KENO-IV and the 123-group XSDRN library. However, KENO/Monte Carlo analysis has inherent drawbacks when applied to spent-fuel rack design and modification. These include statistical uncertainty and long computer time. In contrast, the transport theory code, CASMO-2, provides deterministic and fast criticality analysis. Also, since collapsed and transport-corrected cross sections are generated, PDQ can be used to analyze large array problems which are prohibitively expensive using KENO. In this work, the authors apply the CASMO-PDQ methodology to the Maine Yankee and Vermont Yankee high-density spent-fuel rack designs, and compare the final results against KENO.

Napolitano, D.G.; Heinrichs, D.P.; Gorski, J.P.

1986-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "vermont yankee nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Nuclear Energy  

Nuclear Energy Environmental Mgmt. Study Objectives: Respond to the pressing need to refine existing corrosion models: Predict performance in wide range of environments

482

Nuclear Reactors  

NLE Websites -- All DOE Office Websites (Extended Search)

Reactors Nuclear reactors created not only large amounts of plutonium needed for the weapons programs, but a variety of other interesting and useful radioisotopes. They produced...

483

Nuclear Astrophysics  

Science Conference Proceedings (OSTI)

I review progress that has been made in nuclear astrophysics over the past few years and summarize some of the questions that remain. Topics selected include solar neutrinos

W. C. Haxton

2006-01-01T23:59:59.000Z

484

Nuclear & Uranium  

U.S. Energy Information Administration (EIA)

Table 17. Purchases of enrichment services by owners and operators of U.S. civilian nuclear power reactors by contract type in delivery year, 2012

485

Nuclear Weapons  

NLE Websites -- All DOE Office Websites (Extended Search)

nuclear science that has had a significant global influence. Following the observation of fission products of uranium by Hahn and Strassmann in 1938, a uranium fission weapon...

486

NUCLEAR ENERGY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

could improve the economic and safety performance of these advanced reactors. Nuclear power can reduce GHG emissions from electricity production and possibly in co-generation...

487

Nuclear Forces and Nuclear Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Forces and Nuclear Systems Forces and Nuclear Systems Our goal is to achieve a description of nuclear systems ranging in size from the deuteron to nuclear matter and neutron stars using a single parameterization of the nuclear forces. Our work includes both the construction of two- and three-nucleon potentials and the development of many-body techniques for computing nuclear properties with these interactions. Detailed quantitative, computationally intense studies are essential parts of this work. In the last decade we have constructed several realistic two- and three-nucleon potential models. The NN potential, Argonne v18, has a dominant charge-independent piece plus additional charge-dependent and charge-symmetry-breaking terms, including a complete electromagnetic interaction. It fits 4301 pp and np elastic scattering data with a chi**2

488

Nuclear Weapons Journal Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Weapons Journal Archive Nuclear Weapons Journal The Nuclear Weapons Journal ceased publication after Issue 2, 2009. Below are Nuclear Weapons Journal archived issues. Issue...

489

Nonreactor Nuclear Facilities Division  

NLE Websites -- All DOE Office Websites (Extended Search)

role in developing science and technology for nuclear power programs, nuclear propulsion, nuclear medicine, and the nation's nuclear weapon program among others. Many...

490

Interview with Andrew C. Kadak  

Science Conference Proceedings (OSTI)

This article is an interview with the president and Chief Executive Officer of the Yankee Atomic Electric Company about a wide variety of aspects of the decommissioning of the Yankee Nuclear Power plant. Included are discussions of political aspects, decommissioning schedules, local impacts, technical issues of decommissioning, personnel management during decommissioning, etc.

Schabes, D. [ed.

1996-01-01T23:59:59.000Z

491

Nuclear hadrodynamics  

Science Conference Proceedings (OSTI)

The role of hadron dynamics in the nucleus is illustrated to show the importance of nuclear medium effects in hadron interactions. The low lying hadron spectrum is considered to provide the natural collective variable for nuclear systems. Recent studies of nucleon?nucleon and delta?nucleon interactions are reviewed

D. F. Geesaman

1984-01-01T23:59:59.000Z

492

PROBING DENSE NUCLEAR MATTER VIA NUCLEAR COLLISIONS  

E-Print Network (OSTI)

University of California. LBL-12095 Probing Dense NuclearMatter Nuclear Collisions* v~a H. Stocker, M.Gyulassy and J. Boguta Nuclear Science Division Lawrence

Stocker, H.

2012-01-01T23:59:59.000Z

493

Nuclear Materials Management & Safeguards System | National Nuclear...  

National Nuclear Security Administration (NNSA)

Management & Safeguards System Nuclear Materials Management & Safeguards System NMMSS U.S. Department of Energy U.S. Nuclear Regulatory Commission Nuclear Materials...

494

Nuclear Materials Management & Safeguards System | National Nuclear...  

NLE Websites -- All DOE Office Websites (Extended Search)

Our Jobs Our Jobs Working at NNSA Blog Nuclear Materials Management & Safeguards System Home > About Us > Our Programs > Nuclear Security > Nuclear Materials Management &...

495

Nuclear Resonance Fluorescence for Nuclear Materials Assay  

E-Print Network (OSTI)

that are of interest for nuclear security applications. Theof interest to nuclear security. To either make theseother targets of nuclear security interest, such kilogram-

Quiter, Brian Joseph

2010-01-01T23:59:59.000Z

496

Nuclear Resonance Fluorescence for Nuclear Materials Assay  

E-Print Network (OSTI)

and Diablo Canyon 2 nuclear reactors. Data were taken fromCapacity Operation of nuclear reactors for power generationby the operation of nuclear reactors. Therefore, ap-

Quiter, Brian Joseph

2010-01-01T23:59:59.000Z

497

Nuclear Materials Management & Safeguards System | National Nuclear...  

National Nuclear Security Administration (NNSA)

System Nuclear Materials Management & Safeguards System NMMSS U.S. Department of Energy U.S. Nuclear Regulatory Commission Nuclear Materials Management & Safeguards System...

498

Nuclear Systems Modeling, Simulation & Validation | Nuclear Science...  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Areas Fuel Cycle Science & Technology Fusion Nuclear Science Isotope Development and Production Nuclear Security Science & Technology Nuclear Systems Modeling, Simulation...

499

Nuclear Resonance Fluorescence for Nuclear Materials Assay  

E-Print Network (OSTI)

Energy Transmission say for Nuclear Fuel Assemblies 4.1Facilities Spent nuclear fuel is another example wherein intact spent nuclear fuel would be a technological

Quiter, Brian Joseph

2010-01-01T23:59:59.000Z

500

Nuclear Halos  

Science Conference Proceedings (OSTI)

We show that extreme nuclear halos are caused only by pairs of s?wave neutrons (or single s?wave neutrons) and that such states occur much more frequently in the periodic table than previously believed. Besides lingering long near zero neutron separation energy such extreme halos have very remarkable properties: they can contribute significantly to the nuclear density at more than twice the normal nuclear radius and their spreading width can be very narrow. The properties of these states are primarily determined by the thickness of the nuclear surface in the mean?free nuclear potential and thus their importance increases greatly as we approach the neutron drip line. We discuss what such extreme halos are

Erich Vogt

2010-01-01T23:59:59.000Z