Sample records for vermont utility industrial

  1. Electric Utility Industry Update

    Broader source: Energy.gov [DOE]

    Presentation—given at the April 2012 Federal Utility Partnership Working Group (FUPWG) meeting—covers significant electric industry trends and industry priorities with federal customers.

  2. Village of Ludlow, Vermont (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin BaxinUmweltVillage of Boonville, NewVillageVillage of Ludlow, Vermont

  3. Utility and Industrial Partnerships

    E-Print Network [OSTI]

    Sashihara, T. F.

    In the past decade, many external forces have shocked both utilities and their large industrial customers into seeking more effective ways of coping and surviving. One such way is to develop mutually beneficial partnerships optimizing the use...

  4. Town of Hardwick, Vermont (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolarTharaldsonInformationTorpedoBoylston,Information TownTown of

  5. Village of Enosburg Falls, Vermont (Utility Company) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planningFlowmeter LoggingVillage of Cashton,Deshler,Information

  6. Village of Orleans, Vermont (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planningFlowmeter LoggingVillage ofVillageMorrill,

  7. Efficiency Vermont's Enhanced Building Operations Programs

    E-Print Network [OSTI]

    Laflamme, S.

    2011-01-01T23:59:59.000Z

    assistance, economic analysis, and financial incentives to help Vermont households and businesses reduce their energy costs 4 Efficiency Vermont?s Commercial & Industrial Programs New Construction Program ? Prescriptive - Rebates ? Core Performance... ? Custom Market Opportunity Program ? Prescriptive - Rebates ? Custom Retrofit Program ? Custom* * includes improving building operations programs More Information at www.efficiencyvermont.com 5 Efficiency Vermont?s Operational Improvement...

  8. Innovative Utility Pricing for Industry

    E-Print Network [OSTI]

    Ross, J. A.

    tariffs can re a market for power during the time when it has sult in benefits to industry, to the electric abundant capacity available. From the other rate utility, and to other ratepayers on the electric payers' perspective, there will be a continued...INNOVATIVE UTILITY PRICING FOR INDUSTRY James A. Ross Drazen-Brubaker &Associates, Inc. St. Louis, Missouri ABSTRACT The electric utility industry represents only one source of power available to industry. Al though the monopolistic...

  9. Vermont Employment Growth Incentive (Vermont)

    Broader source: Energy.gov [DOE]

    The purpose of the Employment Growth Incentive (VEGI) is to encourage job creation in Vermont by a Vermont company, a Vermont division of a company that plans to grow and expand in Vermont, a...

  10. Federal Utility Partnership Working Group Industry Commitment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industry Commitment Federal Utility Partnership Working Group Industry Commitment Investor-owned electric utility industry members of the Edison Electric Institute pledge to assist...

  11. Vermont Wind Measurement Company Still Strong | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Vermont Wind Measurement Company Still Strong Vermont Wind Measurement Company Still Strong April 9, 2010 - 3:16pm Addthis NRG's new building utilizes solar power, but their...

  12. Industrial Customer Perspectives on Utility Energy Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Customer Perspectives on Utility Energy Efficiency Programs Industrial Customer Perspectives on Utility Energy Efficiency Programs These presentations from ATK Aerospace Systems,...

  13. Vermont Nuclear Profile - Vermont Yankee

    U.S. Energy Information Administration (EIA) Indexed Site

    Vermont Yankee" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  14. Industrial Low Temperature Waste Heat Utilization

    E-Print Network [OSTI]

    Altin, M.

    1981-01-01T23:59:59.000Z

    In this paper, some common and emerging techniques to better utilize energy in the chemical process industries are discussed. Temperature levels of waste heat available are pointed out. Emerging practices for further economical utilization of waste...

  15. Vermont Sustainable Jobs Fund (Vermont)

    Broader source: Energy.gov [DOE]

    The Vermont Sustainable Job Fund offers grants, loans, and technical assistance. VSJF's grant-making depends on the funds it raised and its strategic market development focus. Grant proposals are...

  16. Deregulating the electric utility industry

    E-Print Network [OSTI]

    Bohn, Roger E.

    1982-01-01T23:59:59.000Z

    Many functions must be performed in any large electric power system. A specific proposal for a deregulated power system, based on a real-time spot energy marketplace, is presented and analyzed. A central T&D utility acts ...

  17. Integrated Industrial Wood Chip Utilization

    E-Print Network [OSTI]

    Owens, E. T.

    1984-01-01T23:59:59.000Z

    The sources of supply of wood residues for energy generation are described and the rationale for exploring the potential available from forest harvesting is developed. Details of three industrial-scale projects are presented and the specific...

  18. Electric Utility Industrial Conservation Programs

    E-Print Network [OSTI]

    Norland, D. L.

    1983-01-01T23:59:59.000Z

    The Alliance to Save Energy conducted a study, funded by the John A. Hartford Foundation, of industrial and commercial electricity conservation opportunities in the service territory of Arkansas Power and Light Company (AP&L). The study determined...

  19. Federal Utility Partnership Working Group Industry Commitment

    Broader source: Energy.gov [DOE]

    Investor-owned electric utility industry members of the Edison Electric Institute pledge to assist Federal agencies in achieving energy-saving goals. These goals are set in the Energy Policy Act of...

  20. Industrial Utilization of Coal-Oil Mixtures

    E-Print Network [OSTI]

    Dunn, J. E.; Hawkins, G. T.

    1982-01-01T23:59:59.000Z

    Coal-oil mixtures (COM) are receiving increasing interest as economical alternatives to residual fuel oil and natural gas used in heavy industrial and utility applications. Four basic approaches are currently employed in the manufacture of COM...

  1. Utility Roles in Preserving the Industrial Base

    E-Print Network [OSTI]

    Gilbert, J. S.

    While the price of energy may have stabilized for the moment, the impact of several years of rate increases in the cost of energy, materials, and labor has made American industry re-evaluate its operations. Utilities serving clusters of industrial...

  2. Energy Department Develops Tool with Industry to Help Utilities...

    Energy Savers [EERE]

    Energy Department Develops Tool with Industry to Help Utilities Strengthen Their Cybersecurity Capabilities Energy Department Develops Tool with Industry to Help Utilities...

  3. Sandia National Laboratories: Vermont

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vermont A Model for the Nation: Promoting Education and Innovation in Vermont's Electricity Sector On May 8, 2012, in Climate, Customers & Partners, Energy, Energy Surety,...

  4. Hydraulic Fracturing (Vermont)

    Broader source: Energy.gov [DOE]

    Vermont prohibits hydraulic fracturing or the collection, storage, or treatment of wastewater from hydraulic fracturing

  5. Vermont Nuclear Profile - Vermont Yankee

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYear JanPropane,Thousand Cubic Feet)totalVermont

  6. What Does Industry Expect From An Electrical Utility 

    E-Print Network [OSTI]

    Jensen, C. V.

    1989-01-01T23:59:59.000Z

    WHAT DOES INDUSTRY EXPECT FROM AN ELECTRICAL UTILITY C. V. JENSEN Manager, Energy Policy and Supply Union Carbide Corporation Danbury, Connecticut ABSTRACT and federal laws, rules and regulations. The electric utility industry...

  7. Forestry Policies (Vermont)

    Broader source: Energy.gov [DOE]

    Vermont forests cover nearly 5 million acres, a large portion of the state. These lands are managed by the Vermont Division of Forestry (http://www.vtfpr.org/htm/forestry.cfm). The Division...

  8. Flexible Capital Fund (Vermont)

    Broader source: Energy.gov [DOE]

    The Vermont Sustainable Jobs Fund's Flexible Capital Fund (the “Flex Fund”) is designed for companies in Vermont's rural areas that are smaller and work on a less-than global scale, offering a...

  9. How One Utility is Building Industrial Consumer Relationships

    E-Print Network [OSTI]

    Hamilton, D. E.

    HOW ONE UT1~ITY IS BUILDING INDUSTRIAL CONSUMER RELATIONSHIPS DONALD E. HAMILTON Manager-Industrial Services and Cogeneration Gulf States Utilities Company Beaumont, Texas COMPETITION AND THE UTILITY INDUSTRY The refining and petrochemical... in the eighties: depletion of old low cost oil and gas fields within the United States, the formation of OPEC, a run-up in oil and gas prices, leveling of demand in the petrochemical industry, the transfer of substantial wealth from industrial to oil...

  10. Electricity Industry Leaders U.S. Utilities, Grid Operators,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    is Focus of New Effort by Electricity Industry Leaders U.S. Utilities, Grid Operators, Others Come Together in National Effort to Tackle Important New Electricity Area (Washington,...

  11. Anaheim Public Utilities- Commercial & Industrial New Construction Rebate Program

    Broader source: Energy.gov [DOE]

    Anaheim Public Utilities (APU) offers commercial, industrial, and institutional customers the New Construction Incentives Program to offset construction and installation costs of energy efficient...

  12. PPL Electric Utilities- Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    PPL Electric Utilities offers rebates and incentives for commercial and industrial products installed in their service area. The program offers rebates for lighting, heat pumps, refrigeration...

  13. Wells Public Utilities- Commercial & Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    SMMPA develops innovative products and services to help them deliver value to customers. With help from SMMPA, Wells Public Utilities provides incentives for its commercial and industrial custome...

  14. Capital Access Program (Vermont)

    Broader source: Energy.gov [DOE]

    The Capital Access Program provides loan guarantees to small businesses seeking access to commercial credit. Premiums paid by the borrower and matched by Vermont Economic Development Authority fund...

  15. Cogeneration: The Need for Utility-Industry Cooperation

    E-Print Network [OSTI]

    Limaye, D. R.

    1982-01-01T23:59:59.000Z

    in industrial cogeneration pro jects. Utilities viewed cogeneration as competition and were concerned about the loss of their base load. In a recent survey of utilities, conducted by EPRI as a part of case studies of industrial cogen eration (3), utilities.... EVALUATION OF COOPERATIVE EFFORTS In a current EPRI project to evaluate cogenera tion alternatives, Synergic Resources Corporation is developing a computerized evaluation tool to assess the costs and benefits of alternative insti tutional arrangements...

  16. Providing Utilities with Tools for Industrial Marketing Programs

    E-Print Network [OSTI]

    Cahill, L. E.

    PROVIDING UTILITIES WITH TOOLS FOR INDUSTRIAL MARKETING PROGRAMS Laura E. Cahi 11 Center "for Metals Fabrication Columbus, Ohio Marketing electrotechnologies to industrial customers can be a complex task unless the right tools are available... to marketing representa tives. The Center for Metals Fabrication is using several tools to tailor marketing programs for 18 electric utilities. CMF provides: o A hotline that customer and utility representatives can use to get advice on implenenting...

  17. Murphy Tools: Utilizing Extracted GUI Models for Industrial Software Testing

    E-Print Network [OSTI]

    Memon, Atif M.

    --graphical user interface; GUI test automation; model extraction; reverse engineering; industrial test environment is a technique for using models as a basis for automated test generation. The industrial adoption of MBTMurphy Tools: Utilizing Extracted GUI Models for Industrial Software Testing Pekka Aho VTT

  18. Driving Demand: Lessons From Vermont

    Broader source: Energy.gov [DOE]

    Describes the Efficiency Vermont program and provides lessons learned in marketing and development of creative strategies.

  19. Industrial Boiler Optimization Utilizing CO Control

    E-Print Network [OSTI]

    Ruoff, C. W.; Reiter, R. E.

    1980-01-01T23:59:59.000Z

    complex is the focus of many corporate and plant managers. This paper discusses the approach of a large chemical company that is effectively utilizing a direct digital control (DOC) system coupled with the measurement of carbon monoxide to optimize...

  20. What Does Industry Expect From An Electrical Utility

    E-Print Network [OSTI]

    Jensen, C. V.

    The electric utility industry is an important supplier to Union Carbide and as such must become a proactive participant in our quality programs which are aimed at continuous improvement in everything we do. The essential ingredients in the supplier...

  1. The Gas Utility View of Industrial Energy Conservation

    E-Print Network [OSTI]

    Loberg, T. J.

    1980-01-01T23:59:59.000Z

    The gas industry fostered more efficient energy utilization long before the idea of energy conservation became fashionable. It became apparent in the late '60's that misguided Federal Legislation was discouraging necessary search for new gas...

  2. Promoting Energy Efficiency in Industry: Utility Roles and Perspectives

    E-Print Network [OSTI]

    Limaye, D. R.; Davis, T. D.

    1984-01-01T23:59:59.000Z

    successful utility marketing puget Sound Power and Light programs related to commercial/industrial end (Puget Power) -- The most flex use efficiency are: ible rebate program offered. Commercial/industrial customers ? Customer Education may submit... proposals and engineering designs for a rebate Pacific Gas and Electric Company up to $100,000. Utility (PG&E) -- Technical briefs of engineers also help with drawing new, emerging technologies. up bid specifications. Energy consumption monitoring...

  3. The Industry/Utility Interface - An Overview

    E-Print Network [OSTI]

    Hamilton, D. E.

    For many years, starting in the Jate forties, a number of different factors combined to make self-generation of electrical energy cost-prohibitive except for a few very large users of electrical service. The nation's utilities were virtually a true...

  4. Industry/Utility Partnerships: Formula for Success

    E-Print Network [OSTI]

    Smith, W. R.; Spriggs, H. D.

    needs. 23 ESL-IE-95-04-05 Proceedings from the Seventeenth Industrial Energy Technology Conference, Houston, TX, April 5-6, 1995 REVERSE OSMOSIS RESUl TS SpocJfi""tioru: lJQUId Row R.t. Igollmlnl: 100 Polutant eonc.nVltion (:)omJ: 100 MoI.eut.u W...

  5. Perspectives on the future of the electric utility industry

    SciTech Connect (OSTI)

    Tonn, B. [Oak Ridge National Lab., TN (United States); Schaffhauser, A. [Tennessee Univ., Knoxville, TN (United States)

    1994-04-01T23:59:59.000Z

    This report offers perspectives on the future of the electric utility industry. These perspectives will be used in further research to assess the prospects for Integrated Resource Planning (IRP). The perspectives are developed first by examining economic, political and regulatory, societal, technological, and environmental trends that are (1) national and global in scope and (2) directly related to the electric utility industry. Major national and global trends include increasing global economic competition, increasing political and ethnic strife, rapidly changing technologies, and increasing worldwide concern about the environment. Major trends in the utility industry include increasing competition in generation; changing patterns of electricity demand; increasing use of information technology to control power systems; and increasing implementation of environmental controls. Ways in which the national and global trends may directly affect the utility industry are also explored. The trends are used to construct three global and national scenarios- ``business as usual,`` ``technotopia future,`` and ``fortress state`` -and three electric utility scenarios- ``frozen in headlights,`` ``megaelectric,`` and ``discomania.`` The scenarios are designed to be thought provoking descriptions of potential futures, not predictions of the future, although three key variables are identified that will have significant impacts on which future evolves-global climate change, utility technologies, and competition. While emphasis needs to be placed on understanding the electric utility scenarios, the interactions between the two sets of scenarios is also of interest.

  6. Stream Obstruction Regulations (Vermont)

    Broader source: Energy.gov [DOE]

    Vermont law prohibits the installation of a structure, such as a dam, that prevents fish movement, unless an approval has been granted by the Commissioner of Fish and Wildlife. For permits,...

  7. Electric utility industry experience with geomagnetic disturbances

    SciTech Connect (OSTI)

    Barnes, P.R.; Rizy, D.T.; McConnell, B.W. [Oak Ridge National Lab., TN (United States); Taylor, E.R. Jr. [ABB Power Systems, Inc., Pittsburgh, PA (United States); Tesche, F.M.

    1991-09-01T23:59:59.000Z

    A geomagnetic disturbance (GMD) by its nature occurs globally and almost simultaneously. Severe geomagnetic storms cause problems for electric power systems. The vulnerability of electric power systems to such events has apparently increased during the last 10 to 20 years because power system transmission lines have become more interconnected and have increased in length and because power systems are now operated closer to their limits than in the past. In this report, the experience of electric utilities during geomagnetic storms is examined and analyzed. Measured data, effects on power system components, and power system impacts are considered. It has been found that electric power systems are susceptible to geomagnetically induced earth-surface potential gradients as small as few (2 to 3) volts per kilometer, corresponding to a storm of K-6 intensity over an area of high earth resistivity. The causes and effects are reasonably well understood, but additional research is needed to develop a better understanding of solar-induced geomagnetic storms and the responses of power systems to these types of storms. A better understanding of geomagnetic storms and the power systems` responses to GMDs is needed so that mitigation measures can be implemented that will make power systems less susceptible to severe geomagnetic disturbances. A GMD caused by a large high-altitude nuclear detonation is similar in many ways to that of solar-induced geomagnetic storms except that a nuclear-caused disturbance would be much more intense with a far shorter duration. 49 refs.

  8. Electric utility industry experience with geomagnetic disturbances

    SciTech Connect (OSTI)

    Barnes, P.R.; Rizy, D.T.; McConnell, B.W. (Oak Ridge National Lab., TN (United States)); Taylor, E.R. Jr. (ABB Power Systems, Inc., Pittsburgh, PA (United States)); Tesche, F.M.

    1991-09-01T23:59:59.000Z

    A geomagnetic disturbance (GMD) by its nature occurs globally and almost simultaneously. Severe geomagnetic storms cause problems for electric power systems. The vulnerability of electric power systems to such events has apparently increased during the last 10 to 20 years because power system transmission lines have become more interconnected and have increased in length and because power systems are now operated closer to their limits than in the past. In this report, the experience of electric utilities during geomagnetic storms is examined and analyzed. Measured data, effects on power system components, and power system impacts are considered. It has been found that electric power systems are susceptible to geomagnetically induced earth-surface potential gradients as small as few (2 to 3) volts per kilometer, corresponding to a storm of K-6 intensity over an area of high earth resistivity. The causes and effects are reasonably well understood, but additional research is needed to develop a better understanding of solar-induced geomagnetic storms and the responses of power systems to these types of storms. A better understanding of geomagnetic storms and the power systems' responses to GMDs is needed so that mitigation measures can be implemented that will make power systems less susceptible to severe geomagnetic disturbances. A GMD caused by a large high-altitude nuclear detonation is similar in many ways to that of solar-induced geomagnetic storms except that a nuclear-caused disturbance would be much more intense with a far shorter duration. 49 refs.

  9. Vermont Documentation University of Erlangen

    E-Print Network [OSTI]

    Breu, Ruth

    ! "monk-it" Vermont Documentation University of Erlangen Computer Networks and Communication . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2. Vermont Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.1. Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2.2. Manager

  10. Vermont Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    mwh)","Share of State nuclear net generation (percent)","Owner" "Vermont Yankee Unit 1",620,"4,782",100.0,"Entergy Nuclear Vermont Yankee" "1 Plant 1 Reactor",620,"4,782",100.0...

  11. GUIDO BARTELS General Manager Global Energy & Utilities Industry, IBM

    E-Print Network [OSTI]

    Energy Inc., a U.S. based publicly-traded, green energy technology company. Bartels is a frequent speakerGUIDO BARTELS General Manager Global Energy & Utilities Industry, IBM Chairman, Global Smart Grid Federation Board Member and Former Chairman, GridWise Alliance Guido Bartels heads up IBM's energy

  12. Energy Conservation and Management for Electric Utility Industrial Customers

    E-Print Network [OSTI]

    McChesney, H. R.; Obee, T. N.; Mangum, G. F.

    within an industrial plant. Detai 1s of an EPRI sponsored pilot program are sUl1ll1arized and results presented on the use of the computer model to provide comprehensive EC&M system evaluations of potential energy management opportun ities in HL... Conference, Houston, TX, May 12-15, 1985 (EPRI) in close association with several participat ing electric utilities and selected industrial cus tomers (1). In initiating this service, the first step would normally involve periodic contact between a...

  13. Industrial recovered-materials-utilization targets for the metals and metal-products industry

    SciTech Connect (OSTI)

    None

    1980-03-01T23:59:59.000Z

    The National Energy Conservation Policy Act of 1978 directs DOE to set targets for increased utilization of energy-saving recovered materials for certain industries. These targets are to be established at levels representing the maximum feasible increase in utilization of recovered materials that can be achieved progressively by January 1, 1987 and is consistent with technical and economic factors. A benefit to be derived from the increased use of recoverable materials is in energy savings, as state in the Act. Therefore, emhasis on different industries in the metals sector has been related to their energy consumption. The ferrous industry (iron and steel, ferrour foundries and ferralloys), as defined here, accounts for approximately 3%, and all others for the remaining 3%. Energy consumed in the lead and zinc segments is less than 1% each. Emphasis is placed on the ferrous scrap users, followed by the aluminum and copper industries. A bibliography with 209 citations is included.

  14. Vermont Water Quality Certification Application for Hydroelectric...

    Open Energy Info (EERE)

    Vermont Water Quality Certification Application for Hydroelectric Facilities Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Vermont Water Quality...

  15. Sandia National Laboratories: Vermont-Sandia Partnership

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vermont-Sandia Partnership A Model for the Nation: Promoting Education and Innovation in Vermont's Electricity Sector On May 8, 2012, in Climate, Customers & Partners, Energy,...

  16. Sandia National Laboratories: Vermont partnership

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    partnership A Model for the Nation: Promoting Education and Innovation in Vermont's Electricity Sector On May 8, 2012, in Climate, Customers & Partners, Energy, Energy Surety,...

  17. Recovery Act State Memos Vermont

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    million under the Smart Grid Investment Grant program to expand the deployment of Vermont smart meters, implement customer systems, secure control systems for substations and...

  18. Cyber Security Challenges in Using Cloud Computing in the Electric Utility Industry

    SciTech Connect (OSTI)

    Akyol, Bora A.

    2012-09-01T23:59:59.000Z

    This document contains introductory material that discusses cyber security challenges in using cloud computing in the electric utility industry.

  19. Five Stories The University of Vermont

    E-Print Network [OSTI]

    Neher, Deborah A.

    Bedded Pack in Vermont: Five Stories The University of Vermont E X T E N S I O N Plant and Soil.P. and Neher, D. A. 2012. Bedded pack in Vermont: Five stories. University of Vermont. Cover Picture: Solar

  20. The Vermont-Sandia Smart Grid Partnership Powering the Future: The Vermont Smart Grid and Beyond

    E-Print Network [OSTI]

    Hayden, Nancy J.

    The Vermont-Sandia Smart Grid Partnership Powering the Future: The Vermont Smart Grid and Beyond BURLINGTON SHERATON HOTEL & CONFERENCE CENTER MAY Laboratories 9:10-10:15 a.m. Opening Plenary: The Vermont-Sandia Smart Grid

  1. Vermont Air Pollution Control Regulations, Ambient Air Quality Standards (Vermont)

    Broader source: Energy.gov [DOE]

    The ambient air quality standards are based on the national ambient air quality standards. The Vermont standards are classified as primary and secondary standards and judged adequate to protect...

  2. Vermont Land Use and Development, Act 250 (Vermont)

    Broader source: Energy.gov [DOE]

    The Act 250 program provides a public, quasi-judicial process for reviewing and managing the environmental consequences of major developments in Vermont. The program is implemented through 9...

  3. Warren, Vermont: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwide Permit webpageWalthallFacilityVermont: Energy Resources Jump to:

  4. Westford, Vermont: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED JumpHills, NewWestbrook,Westfield Center, Ohio:Vermont: Energy

  5. Whiting, Vermont: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTEDBird, Idaho: Energy ResourcesOhio:Whitestown,Whiting, Vermont:

  6. Sharon, Vermont: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd JumpInformationScottsOklahoma:SevinShamilTLSharon,Vermont: Energy

  7. Shoreham, Vermont: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, New York: EnergySumoncleShida BatteryShipVermont: Energy

  8. Worcester, Vermont: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: Energy ResourcesWoods County,NewWoodwardCounty,Vermont: Energy

  9. Royalton, Vermont: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to:Roscommon County,Vermont: Energy Resources Jump to: navigation,

  10. Rutland, Vermont: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to:Roscommon County,Vermont:Kentucky:

  11. Vermont: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planning methodologiesVenkataraya|Vermont: Energy Resources Jump to:

  12. Energy Generation Project Permitting (Vermont)

    Broader source: Energy.gov [DOE]

    The Vermont Energy Generation Siting Policy Commission is mandated to survey best practices for siting approval of electric generation projects (all facilities except for net- and group-net-metered...

  13. Solid Waste Management Rules (Vermont)

    Broader source: Energy.gov [DOE]

    These rules establish procedures and standards to protect public health and the environment by ensuring the safe, proper, and sustainable management of solid waste in Vermont. The rules apply to...

  14. An Evaluation of Industrial Heat Pumps for Effective Low-Temperature Heat Utilization 

    E-Print Network [OSTI]

    Leibowitz, H. M.; Colosimo, D. D.

    1980-01-01T23:59:59.000Z

    The implementation of industrial heat pumps utilizing waste water from various industrial processes for the production of process steam is presented as a viable economic alternative to a conventional fossil-fired boiler and as an effective fuel...

  15. An Evaluation of Industrial Heat Pumps for Effective Low-Temperature Heat Utilization

    E-Print Network [OSTI]

    Leibowitz, H. M.; Colosimo, D. D.

    1980-01-01T23:59:59.000Z

    The implementation of industrial heat pumps utilizing waste water from various industrial processes for the production of process steam is presented as a viable economic alternative to a conventional fossil-fired boiler and as an effective fuel...

  16. Austin Utilities (Gas and Electric)- Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Austin Utilities offers incentives to its commercial and industrial customers for the installation of energy-efficient equipment in eligible facilities. Rebates are available for lighting equipment...

  17. Moorhead Public Service Utility- Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    [http://www.mpsutility.com Moorhead Public Service Utility] offers the Bright Energy Solutions Programs for commercial and industrial customers that purchase and install qualifying energy-efficient...

  18. Coldwater Board of Public Utilities- Commercial and Industrial Lighting Rebate Program

    Broader source: Energy.gov [DOE]

    The Coldwater Board of Public Utility, in conjunction with American Municipal Power's "Efficiency Smart" program, offers a wide range of incentives that encourage commercial and industrial to...

  19. Industrial-Utility Cooperation: Moving Into Strategic Alliance

    E-Print Network [OSTI]

    Gilbert, J. S.

    the utility would do anything and that IS exactly what is happening. Instead, ask questions that indicate your utility is working consistent with the customer's time lines, financial constraints, etc. Always add a blank space for su~gestions...

  20. RISK MANAGEMENT HANDBOOK The UNIVERSITY of VERMONT

    E-Print Network [OSTI]

    Hayden, Nancy J.

    RISK MANAGEMENT HANDBOOK UVM PEOPLE WORKING 2004 The UNIVERSITY of VERMONT #12;2 © 2004 University · Fire and Life Safety · Property Protection · Vehicle Safety · Liability Risk Management · Insurance & Claims Management RISK MANAGEMENT HANDBOOKThe UNIVERSITY of VERMONT #12;4 © 2004 University of Vermont

  1. Deregulation and environmental differentiation in the electric utility industry

    E-Print Network [OSTI]

    Delmas, M; Russo, M V; Montes-Sancho, M J

    2007-01-01T23:59:59.000Z

    Press. Portland General Electric Company. 2004. Renewablegreen power is Portland General Electric. The utility workswind energy use (Portland General Electric, 2004). From the

  2. Shakopee Public Utilities- Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Shakopee Public Utilities (SPU) offers a wide array of rebates and incentives encouraging its commercial customers to increase the energy efficiency of their facilities. Broadly, rebates exist for...

  3. Using DOE Industrial Energy Audit Data for Utility Program Design

    E-Print Network [OSTI]

    Glaser, C. J.; Packard, C. P.; Parfomak, P.

    . Baltimore Gas & Electric Company BG&E provides natural gas and electric service to central Maryland, serving approximately 1,000,000 residential customers, 100,000 commercial customers, and 3,000 industrial customers. The industrial customers in BG... time-of-use rates, credits for reducing demand during critical periods, and rebates for efficient lighting, motors, and air compressors. In 1992, BG&E also began the design of its Custom Industrial Plant Upgrade Program, intended to provide custom...

  4. New Advanced System Utilizes Industrial Waste Heat to Power Water...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    is crucial to ensuring their status as global competitors. Currently, most industries treat water to meet standards for direct discharge to surface water. The process includes a...

  5. Sustainable Energy Resources for Consumers (SERC) Vermont Highlight (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-01-01T23:59:59.000Z

    Case study on Vermont's innovative strategy for helping low-income families save energy through its Sustainable Energy Resources for Consumers (SERC) program. The DOE Weatherization Assistance Program (WAP) granted Vermont to give its weatherization clients access to solar energy systems and one-on-one assistance from energy efficiency coaches to help clients achieve meaningful and long-lasting reductions in their energy bills. Vermont-SERC is administered by the Vermont Office of Economic Opportunity and is carried out by five local weatherization agencies. The purpose of the program is to identify technologies and new approaches-in this case, solar energy and energy efficiency coaches-that can improve weatherization services to low-income clients. The program selects households that have previously received weatherization services. This has several advantages. First, the clients already understand how weatherization works and are willing to strive for additional energy savings. Second, the weatherization agencies are working with clients who have previously had weatherization and therefore have complete energy usage data from utility bills collected during the first energy upgrade installation. This allows the agencies to select the best potential candidates for solar energy. Agencies have existing knowledge of the homes and can pre-screen them for potential structural problems or lack of south-facing exposure.

  6. Electric Utility Industrial DSM and M&V Program 

    E-Print Network [OSTI]

    Lau, K. P. K.

    2008-01-01T23:59:59.000Z

    for residential, commercial and industrial customers. The Power Smart Partners Program (PSP) is the premier demand-side management program for BC Hydro’s large commercial and industrial non-transmission class customers. It is a direct energy acquisition program...

  7. Electric Utility Industrial DSM and M&V Program

    E-Print Network [OSTI]

    Lau, K. P. K.

    2008-01-01T23:59:59.000Z

    for residential, commercial and industrial customers. The Power Smart Partners Program (PSP) is the premier demand-side management program for BC Hydro’s large commercial and industrial non-transmission class customers. It is a direct energy acquisition program...

  8. Industrial-Utility Cooperation: Moving Into Strategic Alliance 

    E-Print Network [OSTI]

    Gilbert, J. S.

    1990-01-01T23:59:59.000Z

    have we learned? Several actual electric utility "case studies" will be reviewed illustrating foundational principals which include executive involvement and commitment, establishing the correct agendas, problem clearing mechanisms and resource...

  9. Economic Impact of Control and Optimization on Industrial Utilities

    E-Print Network [OSTI]

    Collins, D.; Lang, R.

    . They typically represent only 3 to 11% of manufacturing cost and are perceived as an unavoidable cost. However, in an era of heighten global manufacturing competition and world wide reallocation of natural resources, utilities are recognized as a variable cost...

  10. Waseca Utilities- Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Southern Minnesota Municipal Power Agency (SMMPA) is a joint-action agency which generates and sells reliable electricity at wholesale to its eighteen non-profit, municipally-owned member utilities...

  11. Providing Utilities with Tools for Industrial Marketing Programs 

    E-Print Network [OSTI]

    Cahill, L. E.

    1986-01-01T23:59:59.000Z

    , planning seminars and demonstrations, hosting breakfast and lunch meetings, creating users groups, getting involved with local technical schools, and touring their customers' plants. All of the e activities add up to a lot of proactive marketing... and utility personnel in choosing electrotechnologies for the right application. o educates the customer before he talks to a vendor ;." o targets for specific customers o used in utility/customer seminars o provide an entree into customers...

  12. Utilizing Industrial Engineers to Implement "Lean Enterprise" at Company A

    E-Print Network [OSTI]

    Stein, Jean D'Ann

    2012-12-14T23:59:59.000Z

    in the implementation of continuous improvement and lean thinking. This skillset has recently allowed IEs to work outside their normal realm of manufacturing, and focus on areas more closely related to service organizations. At Company A, Industrial Engineers...

  13. The Gas Utility View of Industrial Energy Conservation 

    E-Print Network [OSTI]

    Loberg, T. J.

    1980-01-01T23:59:59.000Z

    supplies and the gas industry mounted a determined engineering and development effort to stretch existing supplies until changes in the legislation could be implemented. These and similar programs are ongoing even now that the outlook for new gas supplies...

  14. Spotlight on Rutland County, Vermont: How Local Ties Lead to...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rutland County, Vermont: How Local Ties Lead to Local Wins Spotlight on Rutland County, Vermont: How Local Ties Lead to Local Wins Spotlight on Rutland County, Vermont: How Local...

  15. The Utility-Industry Partnership for Economic Development: A Troubled Marriage?

    E-Print Network [OSTI]

    Haeri, M. H.; Shaffer, S.

    The electric utilities' relationship with their industrial customers and the importance of the product and services that they offer, uniquely position them as an influential player in the economy of the communities that they serve. Traditionally...

  16. Electric Utilities' Role in Industrial Competitiveness: Going Beyond the Energy Audit

    E-Print Network [OSTI]

    Jeffress, R. D.

    This paper describes EPRI's Partnership for Industrial Competitiveness. The Partnership, comprised of over 15 EPRI member utllities, was established to help electric utilities identify, develop; and implement competitiveness improvement...

  17. Evaluation and Design of Utility Co-Owned Cogeneration Systems for Industrial Parks

    E-Print Network [OSTI]

    Hu, D. S.; Tamaro, R. F.; Schiller, S. R.

    1984-01-01T23:59:59.000Z

    The Electric Power Research Institute, EPRI, is currently evaluating the potential of utility co-owned cogeneration facilities in industrial parks. This paper describes part of the work performed by one of EPRI's contractors, Impell Corporation...

  18. Impact of Industrial Electric Rate Structure on Energy Conservation - A Utility Viewpiont

    E-Print Network [OSTI]

    Williams, M. M.

    1981-01-01T23:59:59.000Z

    As the price of energy rises, changes in industrial electric rates will have an impact on energy usage and conservation. Utilities interested in reducing system peak demands may reflect this need in the rate structure as an incentive...

  19. Evaluation of Industrial Energy Options for Cogeneration, Waste Heat Recovery and Alternative Fuel Utilization

    E-Print Network [OSTI]

    Hencey, S.; Hinkle, B.; Limaye, D. R.

    1980-01-01T23:59:59.000Z

    This paper describes the energy options available to Missouri industrial firms in the areas of cogeneration, waste heat recovery, and coal and alternative fuel utilization. The project, being performed by Synergic Resources Corporation...

  20. The Public Utility and Industry: A Customer- Supplier Relationship for Long-Term Survival

    E-Print Network [OSTI]

    Janson, J. R.

    The entire country is undergoing a significant change in customer attitide toward services and products. This change is geared toward a quality service/ product for the least cost. Industry and the utility sector need to apply the aspects of quality...

  1. The Future of Combustion Turbine Technology for Industrial and Utility Power Generation 

    E-Print Network [OSTI]

    Karp, A. D.; Simbeck, D. R.

    1994-01-01T23:59:59.000Z

    examines the status, economic outlook, and future directions of combustion turbine technology for industrial and utility power generation. The discussion takes into account the ongoing deregulation and increasing competition that are shaping the electric...

  2. Efficient Energy Utilization in the Industrial Sector - Case Studies 

    E-Print Network [OSTI]

    Davis, S. R.

    1984-01-01T23:59:59.000Z

    . As indicated earlier, the industrial complex, w~ich uses 44 percent of the total energy, has the langest share in the balancing of energy supply and dem~nd. Because of this, many companies are finding that an organized energy conservation program can reduc... is now expen sive; therefore, the available supply of cheap oil and gas is being rapidly exhausted, and consumption cannot continue to grow at the pace to which we have become accustomed. Changes are taking place, espe cially in the industrial sector...

  3. "2013 Utility Bundled Retail Sales- Industrial"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49.Transportation"Industrial"

  4. Alternative Regulation (Vermont)

    Broader source: Energy.gov [DOE]

    Utility regulators, including the Public Service Board, have applied a new type of regulation, often called "alternative regulation" or "incentive regulation." There are many variants of this type...

  5. Industrial Load Shaping: A Utility Strategy to Deal with Competition

    E-Print Network [OSTI]

    Bules, D.

    manufacturing facilities. Both the customer and the utility should realize benefits from these changes. There are five generic load shaping categories: rescheduling operations, capacity additions, product storage, automation and flexible manufacturing... Implementation * Program Monitoring LOAD SHAPE ALTERNATIVES General categories of load shape alternatives include process rescheduling, capacity additions, product storage, automation and flexible manufacturing and electrotechnologies. Process rescheduling...

  6. Use of Utility Interval Meters in an Industrial Energy Audit

    E-Print Network [OSTI]

    Wallace, M.

    2007-01-01T23:59:59.000Z

    This paper describes a unique approach to an energy audit of a large tank farm. The audit was unusual in that it was located out-of-doors and the energy-using equipment was made up almost entirely of pumps. The auditors used the utility interval...

  7. Cogeneration: The Need for Utility-Industry Cooperation 

    E-Print Network [OSTI]

    Limaye, D. R.

    1982-01-01T23:59:59.000Z

    to implement cogeneration (D. The objectives of the EPRI project, called "Evaluation of Dual Energy Use Systems (DEUS) Appli cations" are to (.!!.): ? Develop a methodology to assess cogen eration options, with explicit consid eration of utility... Development Act of 1980. 7. Synergic Resources Corporation, Evaluation of Dual Energy Use Systems: Volume I, Executive Summary, Draft Report, March 1981. 8. Synergic Resources Corporation, Evaluation of Dual Energy Use Systems (DEUS) Applications...

  8. The Electric Utility Industry--Change and Challenge

    E-Print Network [OSTI]

    Williams, M. H.

    , quality circles, and strategic planning are but a few of the latest buzzwords making their way around utilities these days. The terms are frequently misunderstood, are sometimes intimidating, and consequently may get in the way of implementing improved... resource needs, be estimated so that intelligent decisions regarding resource allocation, timing and trade-offs can be made. Summgry The process outlined above most closely resembles strategic planning. This procedure represents a structured...

  9. Application of Expert Systems to Industrial Utility Equipment Optimization

    E-Print Network [OSTI]

    Hayes,S.; Burton,K.; O'Sullivan,D.

    2014-01-01T23:59:59.000Z

    have included Bayes belief networks (Lee 2001) (automotive FMEA). Rule-Based Systems. In (Bruton et al 2014), an AFDD tool was developed using a rule-based approach, with the intended goal of detecting faults and their causes in Air Handling Units... compressor,” Mechanical Systems and Signal Processing, 9(5), 485–496. Lee, B.H. (2001) “Using Bayes belief networks in industrial FMEA modeling and analysis,” Annual Reliability and Maintainability Symposium. 2001 Proceedings. International Symposium...

  10. New Concept for Industrial Energy/Utility Values

    E-Print Network [OSTI]

    O'Brien, W. J.

    -up for emergencies and waste heat ooiler outages. It is also inflated because all steam fran waste heat ooilers is credited at full offsite boiler steam cost. Detennining an equitable value for a utility, particularly steam, is a canp1ex problem involving many... with three 500 klb/hr offsite boilers i operating normally at 400 klb/hr total in at system that has 1150 klb/hr of CO and waste t boiler steam production. I lao PSIG o---%-.~7~::-----,-....L_----r-_--I.._+---o 1&0 PSIG o--'--:";-;:::--~':'::'-"T:"13...

  11. Industrial Customer Perspectives on Utility Energy Efficiency Programs |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of BlytheDepartment of EnergyTreatment andJune 25,IndustrialDepartment

  12. UNIVERSITY OF VERMONT CATERING WEB SITE

    E-Print Network [OSTI]

    Bermingham, Laura Hill

    UNIVERSITY OF VERMONT CATERING WEB SITE Food Venue Manual #12;Sodexo - Food Venue of 1 STATEMENT Services at the University of Vermont. #12;Sodexo - Food Venue of 1 WEB SITE ADDRESS;Sodexo - Food Venue 4 of 1 WEB SITE ADDRESS Connect to University Dining Services Catering Web site

  13. The Vermont Primary Care Workforce 2012 SNAPSHOT

    E-Print Network [OSTI]

    Hayden, Nancy J.

    T PrimArY cAre PerSiSTS #12;About vermont AHec The Vermont Area Health Education Centers (AHEC) Program, in collaboration with many partners, improves access to quality health care through its focus on workforce and residents at Fletcher Allen Health Care; and support to help recruit and retain a high-quality healthcare

  14. Practical Training in Microalgae Utilization with Key Industry Engineering Group Key Industry Engineering Group s.r.o. has developed a biotechnology for the production of an animal

    E-Print Network [OSTI]

    Practical Training in Microalgae Utilization with Key Industry Engineering Group Key Industry on a suspension of Planktochlorella microalgae. The product consists of a suspension of algae in the growing

  15. Use of Thermal Energy Storage to Enhance the Recovery and Utilization of Industrial Waste Heat

    E-Print Network [OSTI]

    McChesney, H. R.; Bass, R. W.; Landerman, A. M.; Obee, T. N.; Sgamboti, C. T.

    1982-01-01T23:59:59.000Z

    The recovery and reuse of industrial waste heat may be limited if an energy source cannot be fully utilized in an otherwise available out of phase or unequal capacity end-use process. This paper summarizes the results of a technical and economic...

  16. Vermont - Compare - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14TotalTheE. Great Basin Oil and Gas FieldsLiquidsVermont

  17. Vermont Agency of Natural Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planning methodologiesVenkataraya Fibres2072286°,OpenVermont Agency

  18. Vermont Application for Individual Section 401 Water Quality Certification

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planning methodologiesVenkataraya Fibres2072286°,OpenVermont Agency|

  19. Vermont Department of Energy Conservation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planning methodologiesVenkataraya Fibres2072286°,OpenVermont

  20. Vermont Electric Power Co, Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planning methodologiesVenkataraya Fibres2072286°,OpenVermontElectric

  1. Vermont NPDES Stormwater Permit Project Risk Evaluation | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planning methodologiesVenkataraya| Open EnergyInformation Vermont

  2. Vermont Section 401 Water Quality Certification Program | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planning methodologiesVenkataraya| OpenInformation Vermont

  3. Vermont Standards and Specifications for Erosion Prevention and Sediment

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planning methodologiesVenkataraya| OpenInformation VermontControl

  4. Regulations and Permits Related to Dams (Vermont)

    Broader source: Energy.gov [DOE]

    Vermont law requires a permit, or a dam order, for the construction, alteration, or removal of dams impounding more than 500,000 cubic feet of water, including any accumulated sediments. Dam...

  5. Alternative Fuels Data Center: Vermont Information

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    production facilities in Vermont, use the TransAtlas interactive mapping tool or use BioFuels Atlas to show the use and potential production of biofuels throughout the U.S. and...

  6. eEnergy Vermont Case Study

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    part of a broad "eState Initiative" that includes the electricity, telecommunications and health care sectors throughout the State. eEnergy Vermont received a 138 million Smart...

  7. Calculation of the degree of utilization of oxygen in the oxidation of bitumen under industrial conditions

    SciTech Connect (OSTI)

    Marakaeva, L.A.; Bereznikov, A.V.; Rozental', D.A.

    1988-09-10T23:59:59.000Z

    The degree of utilization of air oxygen plays an important role in bitumen production. This parameter depends firstly on the capacity of the compressor that could be reduced at a more complete utilization of oxygen; secondly, a high oxygen content of the waste gases can lead to explosions and coke formation. Besides this, the waste gases contain toxic substances at concentrations which are not permitted for discharge into the atmosphere. Thus, the possibility of calculating the oxygen content of waste gases on industrial installation was investigated. The authors have derived an equation which describes the oxygen content of the waste gases as a function of the temperature and depth of oxidation, the oxygen flow rate, and the height of the liquid phase, for a laboratory unit; it was taken as the basis for the transition to the industrial scale.

  8. Cogeneration for industrial and mixed-use parks. Volume 1. A handbook for utilities. Final report

    SciTech Connect (OSTI)

    Schiller, S.R.; Minicucci, D.D.; Tamaro, R.F.

    1986-05-01T23:59:59.000Z

    The purpose of this handbook is to assist utility personnel in identifying existing or planned mixed-use and industrial parks as potential cogeneration plant sites. This handbook describes a process for evaluating the potential of a given site for cogeneration. The process involves a set of screenings, based on selection criteria and some basic analyses, to identify sites which have the highest likelihood of supporting a successful cogeneration project. Also included in the handbook are worksheets and case studies.

  9. Expedited Permitting Process for Solar Photovoltaic Systems (Vermont)

    Broader source: Energy.gov [DOE]

    Vermont has established an expedited permitting process for solar photovoltaic systems that are 10 kilowatts-AC (kW) or less. In order to interconnect and net meter, electric customers in Vermont...

  10. Regional secondary resource utilization parks: The industrial parks of the future

    SciTech Connect (OSTI)

    Kuusinen, T.L.; Beck, J.E.; Holter, G.M.

    1992-11-01T23:59:59.000Z

    Obstacles currently facing the solid waste recycling industry are often related to lack of public and investor confidence, issues of profitability and liability, and insufficient consumer identification with products made from recycled materials. Resolution of these issues may not be possible without major changes in the way the solid waste recycling business is structured. One potential solution takes the form of the secondary resource utilization park. The premise is simple: Provide a strategically located facility where a broad range of secondary resources are separated, refined or converted, and made into new products on the site. The secondary material resources would come from municipal solid waste, demolition waste, landscape trimmings, used tires, scrap metal, agricultural waste, food processing waste, and other non-hazardous forms. The park would consist of separation and conversion facilities, research and product standards laboratories, and industries that convert the materials into products and fuels. Energy conversion systems using some waste streams as fuel could be located at the park to supplement energy demands of the industrial operations. The strategic co-location of the resource providers and user industries would also minimize transportation costs and could provide a test case for an industrial ecology'' approach to sustainable economic development.

  11. Regional secondary resource utilization parks: The industrial parks of the future

    SciTech Connect (OSTI)

    Kuusinen, T.L.; Beck, J.E.; Holter, G.M.

    1992-11-01T23:59:59.000Z

    Obstacles currently facing the solid waste recycling industry are often related to lack of public and investor confidence, issues of profitability and liability, and insufficient consumer identification with products made from recycled materials. Resolution of these issues may not be possible without major changes in the way the solid waste recycling business is structured. One potential solution takes the form of the secondary resource utilization park. The premise is simple: Provide a strategically located facility where a broad range of secondary resources are separated, refined or converted, and made into new products on the site. The secondary material resources would come from municipal solid waste, demolition waste, landscape trimmings, used tires, scrap metal, agricultural waste, food processing waste, and other non-hazardous forms. The park would consist of separation and conversion facilities, research and product standards laboratories, and industries that convert the materials into products and fuels. Energy conversion systems using some waste streams as fuel could be located at the park to supplement energy demands of the industrial operations. The strategic co-location of the resource providers and user industries would also minimize transportation costs and could provide a test case for an ``industrial ecology`` approach to sustainable economic development.

  12. Small Wind Electric Systems: A Vermont Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-04-01T23:59:59.000Z

    Small Wind Electric Systems: A Vermont Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  13. Industrial Consortium for the Utilization of the Geopressured-Geothermal Resource. Volume 2

    SciTech Connect (OSTI)

    Negus-deWys, J. (ed.)

    1990-03-01T23:59:59.000Z

    The Geopressured-Geothermal Program, now in its fifteenth year, is entering the transition period to commercial use. The industry cost-shared proposals to the consortium, represented in the presentations included in these proceedings, attest to the interest developing in the industrial community in utilizing the geopressured-geothermal resource. Sixty-five participants attended these sessions, two-thirds of whom represented industry. The areas represented by cost-shared proposals include (1) thermal enhanced oil recovery, (2) direct process use of thermal energy, e.g., aquaculture and agriculture, (3) conversion of thermal energy to electricity, (4) environment related technologies, e.g., use of supercritical processes, and (5) operational proposals, e.g., a field manual for scale inhibitors. It is hoped that from this array of potential use projects, some will persist and be successful in proving the viability of using the geopressured-geothermal resource. Such industrial use of an alternative and relatively clean energy resource will benefit our nation and its people.

  14. Industrial Consortium for the Utilization of the Geopressured-Geothermal Resource. Volume 1

    SciTech Connect (OSTI)

    Negus-deWys, J. (ed.)

    1990-03-01T23:59:59.000Z

    The Geopressured-Geothermal Program, now in its fifteenth year, is entering the transition period to commercial use. The industry cost-shared proposals to the consortium, represented in the presentations included in these proceedings, attest to the interest developing in the industrial community in utilizing the geopressured-geothermal resource. Sixty-five participants attended these sessions, two-thirds of whom represented industry. The areas represented by cost-shared proposals include (1) thermal enhanced oil recovery, (2) direct process use of thermal energy, e.g., aquaculture and agriculture, (3) conversion of thermal energy to electricity, (4) environment related technologies, e.g., use of supercritical processes, and (5) operational proposals, e.g., a field manual for scale inhibitors. It is hoped that from this array of potential use projects, some will persist and be successful in proving the viability of using the geopressured-geothermal resource. Such industrial use of an alternative and relatively clean energy resource will benefit our nation and its people.

  15. The geothermal partnership: Industry, utilities, and government meeting the challenges of the 90's

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    Each year the Geothermal Division of the US Department of Energy conducts an in-depth review of its entire geothermal R D program. The conference serves several purposes: a status report on current R D activities, an assessment of progress and problems, a review of management issues, and a technology transfer opportunity between DOE and the US geothermal community. This year's conference, Program Review IX, was held in San Francisco on March 19--21, 1991. The theme of this review was The Geothermal Partnership -- Industry, Utilities, and Government Meeting the Challenges of the 90's.'' The importance of this partnership has increased markedly as demands for improved technology must be balanced with available research resources. By working cooperatively, the geothermal community, including industry, utilities, DOE, and other state and federal agencies, can more effectively address common research needs. The challenge currently facing the geothermal partnership is to strengthen the bonds that ultimately will enhance opportunities for future development of geothermal resources. Program Review IX consisted of eight sessions including an opening session. The seven technical sessions included presentations by the relevant field researchers covering DOE-sponsored R D in hydrothermal, hot dry rock, and geopressured energy and the progress associated with the Long Valley Exploratory Well. Individual papers have been cataloged separately.

  16. The Vermont Primary Care Workforce 2013 SNAPSHOT

    E-Print Network [OSTI]

    Hayden, Nancy J.

    with many partners, improves access to health care through its focus on workforce development. AHEC work at Fletcher Allen Health Care; and support to help recruit and retain an appropriate healthcare workforce programming to Vermont's primary care practitioners and supports community health education. AHEC believes

  17. Champlain Valley AHEC Northeastern Vermont AHEC

    E-Print Network [OSTI]

    Hayden, Nancy J.

    , in collaboration with many partners, improves access to quality health care through its focus on workforce and residents at Fletcher Allen Health Care; and support to help recruit and retain a high-quality healthcare improvement programming to Vermont's primary care practitioners and supports community health education. AHEC

  18. Vermont gasifier project. Final report, Phase I

    SciTech Connect (OSTI)

    NONE

    1995-07-01T23:59:59.000Z

    This report presents an engineering status report for the Vermont gasifier project. Technical areas of concern are discussed with the cyclone performance, agglomeration problems in the combustor, particlate emissions, valve design, deflagration venting, gasifier and combustion blower surge control, and other related areas. Attachments pertaining to the drawing and specification register are included.

  19. Compliance problems of small utility systems with the Powerplant and Industrial Fuel Use Act of 1978: volume II - appendices

    SciTech Connect (OSTI)

    None

    1981-01-01T23:59:59.000Z

    A study of the problems of compliance with the Powerplant and Industrial Fuel Use Act of 1978 experienced by electric utility systems which have a total generating capacity of less than 2000 MW is presented. This volume presents the following appendices: (A) case studies (Farmington, New Mexico; Lamar, Colorado; Dover, Delaware; Wolverine Electric Cooperative, Michigan; Central Telephone and Utilities, Kansas; Sierra Pacific Power Company, Nevada; Vero Beach, Florida; Lubbock, Texas; Western Farmers Cooperative, Oklahoma; and West Texas Utilities Company, Texas); (B) contacts and responses to study; (C) joint action legislation chart; (D) Texas Municipal Power Agency case study; (E) existing generating units jointly owned with small utilities; (F) future generating units jointly owned with small utilities; (G) Federal Register Notice of April 17, 1980, and letter of inquiry to utilities; (H) small utility responses; and (I) Section 744, PIFUA. (WHK)

  20. Characterizing the Response of Commercial and Industrial Facilities to Dynamic Pricing Signals from the Utility

    SciTech Connect (OSTI)

    Mathieu, Johanna L.; Gadgil, Ashok J.; Callaway, Duncan S.; Price, Phillip N.; Kiliccote, Sila

    2010-07-01T23:59:59.000Z

    We describe a method to generate statistical models of electricity demand from Commercial and Industrial (C&I) facilities including their response to dynamic pricing signals. Models are built with historical electricity demand data. A facility model is the sum of a baseline demand model and a residual demand model; the latter quantifies deviations from the baseline model due to dynamic pricing signals from the utility. Three regression-based baseline computation methods were developed and analyzed. All methods performed similarly. To understand the diversity of facility responses to dynamic pricing signals, we have characterized the response of 44 C&I facilities participating in a Demand Response (DR) program using dynamic pricing in California (Pacific Gas and Electric's Critical Peak Pricing Program). In most cases, facilities shed load during DR events but there is significant heterogeneity in facility responses. Modeling facility response to dynamic price signals is beneficial to the Independent System Operator for scheduling supply to meet demand, to the utility for improving dynamic pricing programs, and to the customer for minimizing energy costs.

  1. Vermont Agency of Natural Resources Wastewater Management Division...

    Open Energy Info (EERE)

    Vermont Agency of Natural Resources Wastewater Management Division Water Pollution Control Permit Regulations Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  2. Sustainable Energy Resources for Consumers (SERC) Vermont Highlight...

    Broader source: Energy.gov (indexed) [DOE]

    on Vermont's innovative strategy for helping low-income families save energy through its Sustainable Energy Resources for Consumers (SERC) program. sercvthighlight.pdf More...

  3. Spotlight on Rutland County, Vermont: How Local Ties Lead to...

    Energy Savers [EERE]

    Rutland County, Vermont: How Local Ties Lead to Local Wins Driving Demand The Better Buildings Neighborhood Program is part of the national Better Buildings Initiative led by the...

  4. University of Vermont Center for Biomedical Imaging

    SciTech Connect (OSTI)

    Bernstein, Dr. Ira [University of Vermont and State Agricultural College

    2013-08-02T23:59:59.000Z

    This grant was awarded in support of Phase 2 of the University of Vermont Center for Biomedical Imaging. Phase 2 outlined several specific aims including: The development of expertise in MRI and fMRI imaging and their applications The acquisition of peer reviewed extramural funding in support of the Center The development of a Core Imaging Advisory Board, fee structure and protocol review and approval process.

  5. Research utilization in the building industry: decision model and preliminary assessment

    SciTech Connect (OSTI)

    Watts, R.L.; Johnson, D.R.; Smith, S.A.; Westergard, E.J.

    1985-10-01T23:59:59.000Z

    The Research Utilization Program was conceived as a far-reaching means for managing the interactions of the private sector and the federal research sector as they deal with energy conservation in buildings. The program emphasizes a private-public partnership in planning a research agenda and in applying the results of ongoing and completed research. The results of this task support the hypothesis that the transfer of R and D results to the buildings industry can be accomplished more efficiently and quickly by a systematic approach to technology transfer. This systematic approach involves targeting decision makers, assessing research and information needs, properly formating information, and then transmitting the information through trusted channels. The purpose of this report is to introduce elements of a market-oriented knowledge base, which would be useful to the Building Systems Division, the Office of Buildings and Community Systems and their associated laboratories in managing a private-public research partnership on a rational systematic basis. This report presents conceptual models and data bases that can be used in formulating a technology transfer strategy and in planning technology transfer programs.

  6. Hydrology and Geostatistics of a Vermont, USA Kettlehole Peatland

    E-Print Network [OSTI]

    Vermont, University of

    Hydrology and Geostatistics of a Vermont, USA Kettlehole Peatland Paula J. Mousera,*, W. Cully to hydrologic changes is imperative for successful conservation and remediation efforts. We studied a 1.25-ha Vermont kettlehole bog for one year (September 2001­October 2002) to identify hydrologic controls

  7. University of Vermont Sustainability Studies and Global Environmental Equity

    E-Print Network [OSTI]

    Hayden, Nancy J.

    , conservation psychology, environmental literature and art. Applicants for all three positions may come fromUniversity of Vermont Sustainability Studies and Global Environmental Equity Faculty positions The Rubenstein School of Environment and Natural Resources and Environmental Program of the University of Vermont

  8. Energy Efficiency: Marketing and Service Potential for Energy Utilities' Industrial Markets 

    E-Print Network [OSTI]

    Russel, C.; Tate, R.; Tubiolo, A.

    2002-01-01T23:59:59.000Z

    of manufacturers as well as utilities, the failing is often a function of priorities. These differences are not insurmountable, however, as an array of public energy efficiency resources, already developed and freely available, can be tapped by utilities to better...

  9. Measurement and prediction of aerosol formation for thesafe utilization of industrial fuids

    E-Print Network [OSTI]

    Krishna, Kiran

    2004-09-30T23:59:59.000Z

    Mist or aerosol explosions present a serious hazard to process industries. Heat transfer fluids are widely used in the chemical process industry, are flammable above their flash points, and can cause aerosol explosions. Though the possibility...

  10. Measurement and prediction of aerosol formation for thesafe utilization of industrial fuids 

    E-Print Network [OSTI]

    Krishna, Kiran

    2004-09-30T23:59:59.000Z

    Mist or aerosol explosions present a serious hazard to process industries. Heat transfer fluids are widely used in the chemical process industry, are flammable above their flash points, and can cause aerosol explosions. ...

  11. Leicester, Vermont: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and Wind EnergyIndiana:New York: Energy Resources Jump to:Vermont:

  12. Ludlow, Vermont: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners andLodgepole,Lotsee,EnergyAlabama:Ludlow Falls, Ohio:Vermont:

  13. Brandon, Vermont: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouthbyBoston Heights,BoyneTennessee:Brandl MotorVermont: Energy

  14. Brattleboro, Vermont: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouthbyBostonBrattleboro, Vermont: Energy Resources Jump to:

  15. Bristol, Vermont: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainable and Innovative Energy TechnologiesCounty, Virginia:NewVermont:

  16. Cabot, Vermont: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL Gas Recovery Biomass Facility JumpCabot, Vermont: Energy

  17. Castleton, Vermont: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSLInformationMissouri: EnergyCastleton, Vermont: Energy

  18. Cavendish, Vermont: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.Telluric Survey as explorationpage?Cavendish, Vermont: Energy

  19. Charlotte, Vermont: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.Telluric Survey asWest,CEICharlotte County, Virginia:Vermont: Energy

  20. Chester, Vermont: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.Telluric SurveyChelanVermont: Energy Resources Jump to: navigation,

  1. Essex, Vermont: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania: Energy Resources JumpVermont: Energy Resources Jump to:

  2. Fayston, Vermont: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania:57427°, -89.4742177° Show Map LoadingFayston, Vermont:

  3. Burlington, Vermont: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LP Biomass Facility JumpBurleigh County, NorthBurlingtonVermont:

  4. Pittsfield, Vermont: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: EnergyPiratini Energia S A Jump to:Pittsburg,Vermont: Energy

  5. Pittsford, Vermont: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: EnergyPiratini Energia S A Jump to:Pittsburg,Vermont:

  6. Goshen, Vermont: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG Contracting Jump to:Echo,GEFLakes,GoliadGordon,Vermont: Energy

  7. Granville, Vermont: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG Contracting JumpGoveNebraska: Energy ResourcesSouth, Ohio:Vermont:

  8. Marshfield, Vermont: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther,JemezMissouri:Marshfield Hills, Massachusetts:Vermont: Energy

  9. Mendon, Vermont: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio: Energy8429°,Meeteetse,Illinois:MendocinoVermont: Energy

  10. Milton, Vermont: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio:Menomonee|Mililani Town,Millinocket,Milo, Maine:Vermont: Energy

  11. Cornwall, Vermont: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew|Core Analysis At Geysers|Cornwall, Vermont: Energy

  12. Baltimore, Vermont: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIM 2011-003Vermont: Energy Resources Jump to:

  13. Barnard, Vermont: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIMBarnard, Vermont: Energy Resources Jump to:

  14. Barre, Vermont: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIMBarnard, Vermont:Carolina: Energy Resources

  15. Benson, Vermont: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions IncBayBelmont County,InformationBenson, Vermont: Energy

  16. Berlin, Vermont: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouth Carolina: EnergyConnecticut: Energy ResourcesVermont:

  17. Clarendon, Vermont: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformation SmyrnaNew York: Energy Resources JumpClarendon, Vermont:

  18. Hinesburg, Vermont: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | Open EnergyInformation Hess RetailHillsdaleHinesburg, Vermont:

  19. www.abb.com\\careers ABB is a leader in power and automation technologies that enables utility and industry customers to improve perfo r-

    E-Print Network [OSTI]

    Mannheim, Universität

    their production based on energy pricing. Project: Workforce Scheduling in the Utility Industry Your profile: You in research & development is a prerequisite for ABB's business success. Essential contributions grow out for Power. Industrial planning and scheduling problems Optimization of energy efficiency in industrial

  20. The Mobile Test and Demonstration Unit, A Cooperative Project Between EPRI, Utilities and Industry to Demonstrate New Water Treatment Technologies

    E-Print Network [OSTI]

    Strasser, J.; Mannapperuma, J.

    THE MOBILE TEST AND DEMONSTRATION UNIT, A COOPERATIVE PROJECT BETWEEN EPRl, UTll.JTIES AND INDUSTRY TO DEMONSTRATE NEW WATER TREATMENT TECHNOLOGIES Jurgen Strasser Consultant to the EPRI Food Office Process & Equipment Technology... agencies are encouraging the reduction of the discharge of high BOD and TSS waste water to the local mlUlicipalities and/or waterways. EPRI collaborated with utilities, the US Dept. of Energy, food processor trade groups, and scientists from the Calif...

  1. Industrial-Load-Shaping: The Practice of and Prospects for Utility/Industry Cooperation to Manage Peak Electricity Demand

    E-Print Network [OSTI]

    Bules, D. J.; Rubin, D. E.; Maniates, M. F.

    in programs that influence electric demand in ways that produce desired changes in the pattern and magnitude of a utility's electric load profile. These programs, commonly termed "de mand side management" (DSH) , have a customer orien tation... such a rescheduling. The residential customer class appears least suited to load-shaping efforts. Al though characterized by a relatively low load-profile (high peak-to-average ratio) and consistent electricity consumption pat terns, the timing...

  2. City of Burlington-Electric, Vermont (Utility Company) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.TelluricPowerCity of Aplington, IowaCity ofBurlingame,City

  3. Town of Stowe, Vermont (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin Baxin Hydropower StationTown of Skiatook,Springer, NewTown ofTown of

  4. Village of Hyde Park, Vermont (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin BaxinUmweltVillage of Boonville, NewVillage ofHolley, New YorkHyde

  5. Village of Jacksonville, Vermont (Utility Company) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin BaxinUmweltVillage of Boonville, NewVillage ofHolley, NewVillage

  6. Village of Johnson, Vermont (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin BaxinUmweltVillage of Boonville, NewVillage ofHolley,

  7. Village of Lyndonville, Vermont (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin BaxinUmweltVillage of Boonville, NewVillageVillage of Ludlow,Village

  8. Village of Morrisville, Vermont (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin BaxinUmweltVillage of Boonville, NewVillageVillageVillage of

  9. Village of Northfield, Vermont (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin BaxinUmweltVillage of Boonville,Information Village of NewVillage

  10. Village of Swanton, Vermont (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin BaxinUmweltVillage ofInformation Village of Skaneateles,Village

  11. Port Angeles Public Works and Utilities- Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Port Angeles Public Works and Utilities provides incentives for business customers to increase the energy efficiency of eligible facilities. Rebates are offered for a variety of improvements...

  12. A THERMODYNAMICS STUDY ON THE UTILIZATION OF JORDANIAN OIL SHALE IN CEMENT INDUSTRY

    E-Print Network [OSTI]

    Awni Y. Al-otoom

    Oil shale can be utilized in manufacturing the Portland cement. In addition to the utilization of the spent oil shale after combustion, it can also reduce the required temperature for the clinkering reactions. A study on the Jordanian oil shale was performed to maximize the use of oil shale in the

  13. Utility/Industry Partnerships Involving Distributed Generation Technologies in Evolving Electricity Markets

    E-Print Network [OSTI]

    Rastler, D. M.

    Wires Manage Wires defer capital Optimize Energy Services Not Utility Business Not Utility Business New Business Opportunities DISTRIBUTED GENERATION Distributed generation includes small gas turbines, micro-turbines, fuel cells, storage...UTILITYIINDUSTRY PARTNERSHIPS INVOLVING DISTRIBUTED GENERATION TECHNOLOGIES IN EVOLVING ELECTRICITY MARKETS Daniel M. Rastler Manager, Fuel Cells and Distributed Generation Electric Power Research Institute Palo Alto, California ABSTRACT...

  14. Medical Device Integration Copyright 2010 The University of Vermont

    E-Print Network [OSTI]

    Hayden, Nancy J.

    Case Study Medical Device Integration Copyright© 2010 The University of Vermont Physiologic Monitor232 Portable Device Patient Patient Patient Clinician Clinician ICU Biomedical EHR Device Integration. Challenge: Determine the feasibility of biomedical device integration to the electronic health record

  15. Certificate of Public Good--Gas and Electric (Vermont)

    Broader source: Energy.gov [DOE]

    This Public Service Board rule limits the construction of electric and natural gas facilities and restricts the amounts that companies can buy from non-Vermont sources. No company, as defined in...

  16. Vermont Gas- Residential Energy Efficiency Loan and Rebate Program

    Broader source: Energy.gov [DOE]

    Vermont Gas customers whose homes have used at least 0.5 Ccf per square foot of natural gas over the past year are eligible for this program, as are multi-family buildings. Typical measures include...

  17. Uniform Capacity Tax and Exemption for Solar (Vermont)

    Broader source: Energy.gov [DOE]

    During the 2012 legislative session, Vermont passed a 100% property tax exemption for solar photovoltaic (PV) systems up to and including 10 kilowatts (kW). For systems greater than 10 kW, the...

  18. Regional Vermont Agency Provides Work in Tight-Knit Communities

    Broader source: Energy.gov [DOE]

    Morgan McKane is a full-time weatherization auditor at the Southeastern Vermont Community Action (SEVCA) agency. He shares his experience working to help low-income residents increase their energy efficiency and quality of living.

  19. Blooming Prairie Public Utilities- Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Southern Minnesota Municipal Power Agency (SMMPA) is a joint-action agency which generates and sells reliable electricity at wholesale to its eighteen non-profit, municipally-owned member utilities...

  20. Utility and state industrial EMS incentives programs: Experience and success factors

    SciTech Connect (OSTI)

    Roop, J.M.; Stucky, D.J.

    1993-03-01T23:59:59.000Z

    This paper summarizes the results of a survey of utility and state demand-side management (DSM) programs that address efficient motor systems. The paper discusses the incentive structures in place at both the state and utility levels to encourage efficient motor systems, and the market barriers associated with implementation of efficient motor equipment. The paper also assesses how the current incentives might address the market barriers to the implementation of efficient motor systems.

  1. The Impacts of Utility-Sponsored Demand-Side Management Programs on Industrial Electricity Consumers

    E-Print Network [OSTI]

    Rosenblum, J. I.

    in this paper of the arguments and recommendations of DSM-advocates are general, particular attention is paid to the potentially damaging effects of these proposals on large commercial and industrial customers....

  2. Operation of a Joint Utility/Industry Ambient Air Monitoring Program in the Houston Area

    E-Print Network [OSTI]

    Kush, J. A.

    of Significant Deterioration (PSD) permit and ESL-IE-91-06-28 Proceedings from the 13th National Industrial Energy Technology Conference, Houston, TX, June 12-13, 1991 Texas Air Control Board (TACB) construction and operating permit requirements. The objectives... member companies with representative criteria pollutant and meteorological data for industry located within a 900 square mile area encompassing east Harris and west Chambers Counties. Data from this network has been approved by the ACB and EPA Region VI...

  3. Utility/Industry Partnerships Involving Distributed Generation Technologies in Evolving Electricity Markets 

    E-Print Network [OSTI]

    Rastler, D. M.

    1997-01-01T23:59:59.000Z

    Wires Manage Wires defer capital Optimize Energy Services Not Utility Business Not Utility Business New Business Opportunities DISTRIBUTED GENERATION Distributed generation includes small gas turbines, micro-turbines, fuel cells, storage... Residential Single Family Multi Family 1-10 kW 15- 50 kW Ultra micro-turbines Stirling Engines Fuel Cells PEMFC SOFC PV BatterylUPS Remote Loads 5 kW - 1,000 kW IC engines Off Grid Diesel Engine Micro turbine Stirling Engines Distribution...

  4. Lessons Learned: A review of utility experience with conservation and load management programs for commercial and industrial customers

    SciTech Connect (OSTI)

    Nadel, S.

    1990-10-01T23:59:59.000Z

    This report examines utility experience with conservation and load management (C LM) programs of commercial and industrial (C I) customers in order to summarize the lessons learned from program experiences to date and what these teach us about how to operate successful programs in the future. This analysis was motivated by a desire to learn about programs which achieve high participation rates and high electricity savings while remaining cost effective. Also, we wanted to review the very latest experiences with innovative program approaches -- approaches that might prove useful to utilities as they scale up their C LM activities. Specific objectives of this phase of the study are threefold: (1) To disseminate information on utility C LM experience to a nationwide audience. (2) To review current New York State utility programs and make suggestions on how these programs can be improved. (3) To collect data for the final phase of the American Council for an Energy-Efficient Economy/New York State Energy Research and Development Authority project, which will examine the savings that are achievable if C LM programs are pushed to the limit'' of current knowledge on how to structure and run cost-effective C LM programs. 19 tabs.

  5. NeighborWorks On-Bill Option Simplifies Loan Payments in Vermont...

    Energy Savers [EERE]

    Loan Payments in Vermont Photo of a family standing in front of a house. Paying for energy improvements just got easier in the Green Mountain State. Customers of Vermont...

  6. The Future of Combustion Turbine Technology for Industrial and Utility Power Generation

    E-Print Network [OSTI]

    Karp, A. D.; Simbeck, D. R.

    Low capital cost and ample low-cost natural gas supplies will make natural gas-fired combustion turbine systems the power generation technology of choice over the next decade. Against the background of earlier use by electric utilities, this paper...

  7. Energy Efficiency: Marketing and Service Potential for Energy Utilities' Industrial Markets

    E-Print Network [OSTI]

    Russel, C.; Tate, R.; Tubiolo, A.

    to serve a specific customer segment. Example companies: ? Kansas Gas Service (Kansas City & Wichita, KS) ? Public Service Gas &Electric (Newark, NJ) ? NW Natural (Portland, OR) ? Reliant Minnegasco (Minneapolis, MN) ? Oklahoma Natural Gas (Okla... information or links to other sites that do. A collaboration of New England based utilities have developed the GasNetworks website for both marketing and customer service purposes. Other examples: ? NW Natural (Portland, OR); ? Piedmont Natural Gas...

  8. Neural network technology as a pollution prevention tool in the electric utility industry

    SciTech Connect (OSTI)

    Johnson, M.L.

    1998-07-01T23:59:59.000Z

    This paper documents efforts by the Lower Colorado River Authority (LCRA) to pilot test the use of neural network technology as a pollution prevention tool for reducing stack emissions from a natural gas-fired power generating facility. The project was funded in part by a grant from the US Environmental Protection Agency (EPA), Region VI. combustion control is quickly becoming an emerging alternative for reducing utility plant emissions without installing costly end of pipe controls. The LCRA estimates that the technology has the potential to improve the thermal efficiency of a large utility boiler by more than 1 percent. preliminary calculations indicate that a 1% improvement in thermal efficiency at the 430 MW gas-fired utility boiler could results in an estimated energy savings of 142, 140 mmBtus and carbon dioxide (CO{sub 2}) reductions of 8,774 tons per year. This paper describes the process that were undertaken to identify and implement the pilot project at LCRA's Thomas C. Ferguson Power Plant, located in Marble Falls, Texas, Activities performed and documented include lessons learned, equipment selection, data acquisition, model evaluation and projected emission reductions.

  9. Operation of a Joint Utility/Industry Ambient Air Monitoring Program in the Houston Area 

    E-Print Network [OSTI]

    Kush, J. A.

    1991-01-01T23:59:59.000Z

    of Commerce or any other business or industrial organization. HRM's officers and directors are employees of its participating companies. HRM does not have any paid employees it contracts for all necessary services. Radian Corporation has been contracted... participating companies. HRM does not have any paid employees it contracts for 119 all necessary services. Radian Corporation has been contracted for the ambient air monitoring and special studies for all phases of HRM thus far. All participating companies...

  10. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    SHIP - Solar heat for industrial processes. Internationalsolar power could be used to provide process heat for

  11. Vermont Natural Gas Industrial Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan FebIncreases (BillionThousand27,262Feet)Decade

  12. Vermont Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan FebIncreases

  13. Vermont Natural Gas Number of Industrial Consumers (Number of Elements)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan FebIncreasesCommercial Consumers (Number of

  14. Vermont Natural Gas Industrial Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197 14,197 14,197(BillionYear Jan Feb Mar Apr May

  15. Vermont Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197 14,197 14,197(BillionYear Jan Feb Mar Apr

  16. Vermont Transco, LLC Smart Grid Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin BaxinUmwelt ManagementVera Irrigation DistrictVermont ElectricVermont

  17. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    oil, starch and corn refining, since these can be a source of fuel products. The sugar cane industry

  18. Re-utilization of Industrial CO2 for Algae Production Using a Phase Change Material

    SciTech Connect (OSTI)

    Joseph, Brian

    2013-12-31T23:59:59.000Z

    This is the final report of a 36-month Phase II cooperative agreement. Under this project, Touchstone Research Laboratory (Touchstone) investigated the merits of incorporating a Phase Change Material (PCM) into an open-pond algae production system that can capture and re-use the CO2 from a coal-fired flue gas source located in Wooster, OH. The primary objective of the project was to design, construct, and operate a series of open algae ponds that accept a slipstream of flue gas from a coal-fired source and convert a significant portion of the CO2 to liquid biofuels, electricity, and specialty products, while demonstrating the merits of the PCM technology. Construction of the pilot facility and shakedown of the facility in Wooster, OH, was completed during the first two years, and the focus of the last year was on operations and the cultivation of algae. During this Phase II effort a large-scale algae concentration unit from OpenAlgae was installed and utilized to continuously harvest algae from indoor raceways. An Algae Lysing Unit and Oil Recovery Unit were also received and installed. Initial parameters for lysing nanochloropsis were tested. Conditions were established that showed the lysing operation was effective at killing the algae cells. Continuous harvesting activities yielded over 200 kg algae dry weight for Ponds 1, 2 and 4. Studies were conducted to determine the effect of anaerobic digestion effluent as a nutrient source and the resulting lipid productivity of the algae. Lipid content and total fatty acids were unaffected by culture system and nutrient source, indicating that open raceway ponds fed diluted anaerobic digestion effluent can obtain similar lipid productivities to open raceway ponds using commercial nutrients. Data were also collected with respect to the performance of the PCM material on the pilot-scale raceway ponds. Parameters such as evaporative water loss, temperature differences, and growth/productivity were tracked. The pond with the PCM material was consistently 2 to 5°C warmer than the control pond. This difference did not seem to increase significantly over time. During phase transitions for the PCM, the magnitude of the difference between the daily minimum and maximum temperatures decreased, resulting in smaller daily temperature fluctuations. A thin layer of PCM material reduced overall water loss by 74% and consistently provided algae densities that were 80% greater than the control pond.

  19. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    of its electricity requirements in the USA (US DOE, 2002)USA, where motor-driven systems account for 63% of industrial electricity

  20. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    iron and steel production. IEA Greenhouse Gas R&D Programme,tempera- ture range. IEA/Caddet, Sittard, The Netherlands.industry. Cheltenham, UK, IEA Greenhouse Gas R&D Programme,

  1. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    process residual like bagasse are now available (Cornland etsugar in- dustry uses bagasse and the edible oils industrySection 7.4.7. ). The use of bagasse for energy is likely to

  2. Industrial - Utility Cogeneration Systems

    E-Print Network [OSTI]

    Harkins, H. L.

    1979-01-01T23:59:59.000Z

    Cogeneration may be described as an efficient method for the production of electric power in conjunction with process steam or heat which optimizes the energy supplied as fuel to maximize the energy produced for consumption. In a conventional...

  3. Industry

    SciTech Connect (OSTI)

    Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

    2007-12-01T23:59:59.000Z

    This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of industrial mitigation for sustainable development is discussed in Section 7.7. Section 7.8 discusses the sector's vulnerability to climate change and options for adaptation. A number of policies have been designed either to encourage voluntary GHG emission reductions from the industrial sector or to mandate such reductions. Section 7.9 describes these policies and the experience gained to date. Co-benefits of reducing GHG emissions from the industrial sector are discussed in Section 7.10. Development of new technology is key to the cost-effective control of industrial GHG emissions. Section 7.11 discusses research, development, deployment and diffusion in the industrial sector and Section 7.12, the long-term (post-2030) technologies for GHG emissions reduction from the industrial sector. Section 7.13 summarizes gaps in knowledge.

  4. Winooski, Vermont: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTEDBird,Wilsonville,Winneconne,

  5. Starksboro, Vermont: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk,SoutheastSt. Francis(Redirected

  6. Sudbury, Vermont: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolar Jump to: navigation, search

  7. Vermont Energy Investors Corp | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planning methodologiesVenkataraya

  8. Vermont, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planning methodologiesVenkataraya|

  9. Analysis of the Clean Air Act Amendments of 1990: A forecast of the electric utility industry response to Title IV, Acid Deposition Control

    SciTech Connect (OSTI)

    Molburg, J.C.; Fox, J.A.; Pandola, G.; Cilek, C.M.

    1991-10-01T23:59:59.000Z

    The Clean Air Act Amendments of 1990 incorporate, for the first time, provisions aimed specifically at the control of acid rain. These provisions restrict emissions of sulfur dioxide (SO{sub 2}) and oxides of nitrogen (NO{sub x}) from electric power generating stations. The restrictions on SO{sub 2} take the form of an overall cap on the aggregate emissions from major generating plants, allowing substantial flexibility in the industry`s response to those restrictions. This report discusses one response scenario through the year 2030 that was examined through a simulation of the utility industry based on assumptions consistent with characterizations used in the National Energy Strategy reference case. It also makes projections of emissions that would result from the use of existing and new capacity and of the associated additional costs of meeting demand subject to the emission limitations imposed by the Clean Air Act. Fuel-use effects, including coal-market shifts, consistent with the response scenario are also described. These results, while dependent on specific assumptions for this scenario, provide insight into the general character of the likely utility industry response to Title IV.

  10. Vermont Transco, LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global EnergyUtility Rate HomeVela Jump to:I WindVermoehlen Jump

  11. Vermont/Geothermal | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global EnergyUtility Rate HomeVela Jump to:I WindVermoehlensource

  12. Vermont/Incentives | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global EnergyUtility Rate HomeVela Jump to:I WindVermoehlensourcesource

  13. Vermont/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global EnergyUtility Rate HomeVela Jump to:I

  14. Proceedings of waste stream minimization and utilization innovative concepts: An experimental technology exchange. Volume 2, Industrial liquid waste processing, industrial gaseous waste processing

    SciTech Connect (OSTI)

    Lee, V.E. [ed.; Watts, R.L.

    1993-04-01T23:59:59.000Z

    This two-volume proceedings summarize the results of fifteen innovations that were funded through the US Department of Energy`s Innovative Concept Program. The fifteen innovations were presented at the sixth Innovative Concepts Fair, held in Austin, Texas, on April 22--23, 1993. The concepts in this year`s fair address innovations that can substantially reduce or use waste streams. Each paper describes the need for the proposed concept, the concept being proposed, and the concept`s economics and market potential, key experimental results, and future development needs. The papers are divided into two volumes: Volume 1 addresses innovations for industrial solid waste processing and municipal waste reduction/recycling, and Volume 2 addresses industrial liquid waste processing and industrial gaseous waste processing. Individual reports are indexed separately.

  15. Wallingford, Vermont: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwide Permit webpage JumpWaikane,(Redirected

  16. Waltham, Vermont: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwide Permit webpageWalthall County, Mississippi: Energy

  17. Waterbury, Vermont: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED Jump to: navigation,Area (Wood,Wall Turbine Jump| Open

  18. Weathersfield, Vermont: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED Jump to:Ohio: Energy ResourcesWeatherford,

  19. Wells, Vermont: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED Jump to:Ohio: EnergyWebGenWelcomeMaine:Wells,

  20. Weston, Vermont: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED JumpHills,2732°, -76.7798172° Show

  1. Weybridge, Vermont: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED JumpHills,2732°,Wetzel County, West Virginia:Wexford

  2. Wilder, Vermont: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTEDBird, Idaho: EnergyWhitmanLinkButton11759°,

  3. Williston, Vermont: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTEDBird, Idaho:Wildwood Crest,9179271°,Illinois:Maine:Williston,

  4. Windsor, Vermont: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTEDBird,Wilsonville, Oregon:WindPole

  5. Woodbury, Vermont: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: Energy Resources JumpWood, Wisconsin:Woodbridge, NewWoodbury,

  6. Salisbury, Vermont: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to:RoscommonSBY SolutionsChangeOklahoma:Open

  7. Shelburne, Vermont: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, New York: Energy Resources Jump to:Lake, Ohio:Shelburne

  8. Shrewsbury, Vermont: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, New York: EnergySumoncleShidaMinnesota:Shreveport,

  9. Woodstock, Vermont: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: Energy ResourcesWoods County,New Hampshire:

  10. Springfield, Vermont: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk,Southeast ColoradoOhio:Maine: Energy Resources Jump84078°,

  11. Stockbridge, Vermont: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk,SoutheastSt.SteepStimulation Prediction ModelsNew York:

  12. Tinmouth, Vermont: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolarTharaldson EthanolTillson, New York:Timor-Leste: EnergyTinmouth,

  13. Reading, Vermont: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation, searchRay County, Missouri:ReSun Energy

  14. Reunion Power LLC Vermont | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,Maze - Making theEngenharia Jump to: navigation,

  15. Richmond, Vermont: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,Maze - MakingMinnesota:Electric28288°,Texas:

  16. Ripton, Vermont: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,Maze -RichtonMissouri: Energy Resources Jump to:Ripton,

  17. Rochester, Vermont: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,MazeOhio:Ohio: Energy Resources Jump to:

  18. Roxbury, Vermont: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to:Roscommon County, Michigan:RotokawaRoxborough Park,

  19. Underhill, Vermont: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga, IndianaTurtle AirshipsUnalakleet Valley Elec

  20. Vergennes, Vermont: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planning methodologiesVenkataraya Fibres PvtVerdi EnergyVergennes,

  1. Vermont Water Quality Certification Application for Hydroelectric

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planning methodologiesVenkataraya| OpenInformationFacilities |

  2. Vermont Water Quality Standards | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planning methodologiesVenkataraya| OpenInformationFacilities

  3. Chester-Chester Depot, Vermont: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.Telluric SurveyChelanVermont: Energy Resources Jump to:

  4. East Montpelier, Vermont: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest, Illinois: Energy Resources Jump to:JumpMontpelier, Vermont:

  5. EA-82 Vermont Electric Power Company | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015 Business42.1Energy |FinalEESS-7 to export electric energy toCWP EnergyVermont

  6. Vermont Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhavenMassachusetts RegionsPaulShades of(SC)ScienceOfficeVermont

  7. New Haven, Vermont: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall, Pennsylvania: EnergyEnergyPPCR)Nevis EngineCity,New Hampshire:HavenVermont:

  8. Bennington County, Vermont: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions IncBayBelmont County,Information Vermont ASHRAE

  9. Vermont Electric Trans Co Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin BaxinUmwelt ManagementVera Irrigation DistrictVermont Electric Trans

  10. Vermont Public Pwr Supply Auth | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin BaxinUmwelt ManagementVera Irrigation DistrictVermont Electric

  11. Vermont Yankee Nucl Pwr Corp | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin BaxinUmwelt ManagementVera Irrigation DistrictVermont

  12. Analysis of the Clean Air Act Amendments of 1990: A forecast of the electric utility industry response to Title IV, Acid Deposition Control

    SciTech Connect (OSTI)

    Molburg, J.C.; Fox, J.A.; Pandola, G.; Cilek, C.M.

    1991-10-01T23:59:59.000Z

    The Clean Air Act Amendments of 1990 incorporate, for the first time, provisions aimed specifically at the control of acid rain. These provisions restrict emissions of sulfur dioxide (SO[sub 2]) and oxides of nitrogen (NO[sub x]) from electric power generating stations. The restrictions on SO[sub 2] take the form of an overall cap on the aggregate emissions from major generating plants, allowing substantial flexibility in the industry's response to those restrictions. This report discusses one response scenario through the year 2030 that was examined through a simulation of the utility industry based on assumptions consistent with characterizations used in the National Energy Strategy reference case. It also makes projections of emissions that would result from the use of existing and new capacity and of the associated additional costs of meeting demand subject to the emission limitations imposed by the Clean Air Act. Fuel-use effects, including coal-market shifts, consistent with the response scenario are also described. These results, while dependent on specific assumptions for this scenario, provide insight into the general character of the likely utility industry response to Title IV.

  13. Solar-energy-system performance evaluation, Cathedral Square, Burlington, Vermont, July-December 1981

    SciTech Connect (OSTI)

    Welch, K.M.

    1981-01-01T23:59:59.000Z

    The Cathedral Square solar site is a 10-story multiunit apartment building in Vermont. Its active solar energy system is designed to supply 51% of the hot water load, and consists of 1798 square feet of flat plate collectors, 2699-gallon water tank in an enclosed mechanical room on the roof, and two auxiliary natural gas boilers to supply hot water to immersed heat exchanger in an auxiliary storage tank. The measured solar fraction was only 28%, not 51%, which, it is concluded, is an unreasonable expectation. Other performance data include the solar savings ratio, conventional fuel savings, system performance factor, and solar system coefficient of performance. Monthly performance data are given for the solar system overall, and for the collector, storage, and hot water subsystems. Also included are insolation data, typical storage fluid temperatures, domestic hot water consumption, and solar heat exchangers inlet/outlet temperatures, and typical domestic hot water subsystem temperatures. In addition, the system operating sequence and solar energy utilization are given. Appended are a system description, performance evaluation techniques, long-term weather data. (LEW)

  14. International 345 kV transmission line to Highgate, Vermont: environmental assessment

    SciTech Connect (OSTI)

    Not Available

    1985-02-01T23:59:59.000Z

    The action under consideration is the issuance of a Presidential permit to the Vermont Electric Power Company, Inc. (VELCO) for the construction, operation, maintenance and connection of a facility that will cross the United States-Canada border for international transmission of electric energy. The proposed transmission facilities will consist of a 7.5 mile, alternating current (ac) transmission line and a 200 MW back-to-back direct current (dc) converter terminal station. None of the facilities will involve any polluting emissions. The construction and maintenance of the proposed converter terminal station and transmission facilities will have little or no impact on the geologic features of the region. The transmission line will have little or no effect on agricultural land. Impacts on commercial forestry in the area will be minimal. The proposed route will require clearing about 36 acres of forest. The proposed transmission line and converter terminal site will have no effect on recreational activities, mining activites, residential, commercial, or industrial land use. The proposed corridor will have a minimal impact on area terrestrial wildlife and plant communities. The proposed project will have little or no impact on future population distribution, the operation of local services, employment and economic benefit, or housing in either Franklin or Highgate. 16 references, 3 figures. (ACR)

  15. Deformations associated with relaxation of residual stresses in the Barre Granite of Vermont

    E-Print Network [OSTI]

    Nichols, Thomas Chester

    1972-01-01T23:59:59.000Z

    DEFORMATIONS ASSOCIATED WITH RELAXATION OF RESIDUAL STRESSES IN THE BARRE GRANITE OF VERMONT A Thesis by THOMAS CHESTER NICHOLS, JR. Submitted to the Graduate College of Texas AfM University in Partial fulfillment of the requirements... for the degree of MASTER QF SCIENCE May, 1972 Major Subject: Geology DEFORMATIONS ASSOCIATED WITH RELAXATION OF RESIDUAL STRESSES IN THE BARRE GRANITE OF VERMONT A Thesis THOMAS CHESTER NICHOLS, JR. Approved as to style and content by: airman o Committee...

  16. Commercial demonstration of biomass gasification the Vermont project

    SciTech Connect (OSTI)

    Farris, S.G.; Weeks, S.T. [Ruture Energy Resources Corp., Atlanta, GA (United States)

    1996-12-31T23:59:59.000Z

    Thermal gasification of biomass for use in gas turbine combined cycle plants will improve efficiencies and reduce capital intensity in the forest and paper industry. One such technology has over 20,000 successful hours of operation at Battelle Columbus Labs (BCL) process research unit (PRU), including the first U.S. demonstration of a gas turbine operating on fuel gas produced by the thermal gasification biomass. A commercial scale demo of the technology (rated at 200 dry tons per day) will be constructed and put into operation during the first quarter of 1997. The initial project phase will provide fuel gas to McNeil`s power boiler. A subsequent phase will utilize the fuel gas in a combustion gas turbine. The technology utilizes an extremely high throughput circulating fluid bed (CFB) gasifier in which biomass (which typically contains 85 percent to 90 percent volatiles) is fully devolatilized with hot sand from a CFB char combustor. The fuel gas is then cooled and conditioned by a conventional scrubbing system to remove particulate, condensable organics, ammonia and metal aerosols which could otherwise cause turbine emission and blade fouling problems. Alternate hot gas conditioning systems are also being developed for final gas clean-up. The fuel gas heating value is 450 to 500 Btus per standard cubic foot. A mid size gas turbine combined cycle plant utilizing the technology will have an approximate net cycle efficiency of 35-40 percent. This compares to a conventional biomass plant with an overall net cycle efficiency of 20-25 percent. Capital costs are expected to be low as the process operates at low pressures without the requirement of an oxygen plant.

  17. Vermont Biofuels Initiative: Local Production for Local Use to Supply a Portion of Vermont�s Energy Needs

    SciTech Connect (OSTI)

    Scott Sawyer; Ellen Kahler

    2009-05-31T23:59:59.000Z

    The Vermont Biofuels initiative (VBI) is the Vermont Sustainable Jobs Fund�s (VSJF) biomass-to-biofuels market development program. Vermont is a small state with a large petroleum dependency for transportation (18th in per capita petroleum consumption) and home heating (55% of all households use petroleum for heating). The VBI marks the first strategic effort to reduce Vermont�s dependency on petroleum through the development of homegrown alternatives. As such, it supports the four key priorities of the U.S. Department of Energy�s Multi-year Biomass Plan: 1.) Dramatically reduce dependence on foreign oil; 2.) Promote the use of diverse, domestic and sustainable energy resources; 3.) Reduce carbon emissions from energy production and consumption; 4.) Establish a domestic bioindustry. In 2005 VSJF was awarded with a $496,000 Congressionally directed award from U.S. Senator Patrick Leahy. This award was administered through the U.S. Department of Energy (DE-FG36- 05GO85017, hereafter referred to as DOE FY05) with $396,000 to be used by VSJF for biodiesel development and $100,000 to be used by the Vermont Department of Public Service for methane biodigester projects. The intent and strategic focus of the VBI is similar to another DOE funded organization� the Biofuels Center of North Carolina�in that it is a nonprofit driven, statewide biofuels market development effort. DOE FY05 funds were expensed from 2006 through 2008 for seven projects: 1) a feedstock production, logistics, and biomass conversion research project conducted by the University of Vermont Extension; 2) technical assistance in the form of a safety review and engineering study of State Line Biofuels existing biodiesel production facility; 3) technical assistance in the form of a safety review and engineering study of Borderview Farm�s proposed biodiesel production facility; 4) technology and infrastructure purchases for capacity expansion at Green Technologies, LLC, a waste vegetable biodiesel producer; 5) technical assistance in the form of feasibility studies for AgNorth Biopower LLC�s proposed multi-feedstock biodigester; 6) technology and infrastructure purchases for the construction of a �Cow Power� biodigester at Gervais Family Farm; and 7) the education and outreach activities of the Vermont Biofuels Association. DOE FY05 funded research, technical assistance, and education and outreach activities have helped to provide Vermont farmers and entrepreneurs with important feedstock production, feedstock logistics, and biomass conversion information that did not exist prior as we work to develop an instate biodiesel sector. The efficacy of producing oilseed crops in New England is now established: Oilseed crops can grow well in Vermont, and good yields are achievable given improved harvesting equipment and techniques. DOE FY05 funds used for technology and infrastructure development have expanded Vermont�s pool of renewable electricity and liquid fuel generation. It is now clear that on-farm energy production provides an opportunity for Vermont farmers and entrepreneurs to reduce on-farm expenditures of feed and fuel while providing for their energy security. Meanwhile they are developing new value-added revenue sources (e.g., locally produced livestock meal), retaining more dollars in the local economy, and reducing greenhouse gas emissions.

  18. Estimates of the Genuine Progress Indicator (GPI) for Vermont, Chittenden County and Burlington, from 1950 to 2000

    E-Print Network [OSTI]

    Vermont, University of

    work, costs of mobility and pollution, and the depletion of social and natural capital. ISEW or GPIANALYSIS Estimates of the Genuine Progress Indicator (GPI) for Vermont, Chittenden County and Natural Resources, The University of Vermont, Burlington, VT 05405-1708, United States c Environmental

  19. National Uranium Resource Evaluation: Albany Quadrangle, Massachusetts, New York, Connecticut, Vermont, and New Hampshire

    SciTech Connect (OSTI)

    Field, M T; Truesdell, D B

    1982-09-01T23:59:59.000Z

    The Albany 1/sup 0/ x 2/sup 0/ Quadrangle, Massachusetts, New York, Connecticut, Vermont, and New Hampshire, was evaluated to a depth of 1500 m for uranium favorability using National Uranium Resource Evaluation criteria. Areas of favorable geology and aeroradioactivity anomalies were examined and sampled. Most Triassic and Jurassic sediments in the Connecticut Basin, in the central part of the quadrangle, were found to be favorable for sandstone uranium deposits. Some Precambrian units in the southern Green Mountains of Vermont were found favorable for uranium deposits in veins in metamorphic rocks.

  20. The key to fully tapping the promise of the smart grid in the electric utility industry is highly secure and reliable communications--without that the data is, essentially, meaning-

    E-Print Network [OSTI]

    Fisher, Kathleen

    of solely in terms of meter solutions. However, the smart grid encompasses the entire grid--it must be used's environmental footprint.While the smart grid is starting with meter reads and outage information, it will soonThe key to fully tapping the promise of the smart grid in the electric utility industry is highly

  1. Vermont Wetland Rules (Vermont)

    Broader source: Energy.gov [DOE]

    A permit is required for any activity within a Class I or Class II wetland or wetland buffer zone which is not an allowed use. Activity in Class I or Class II wetland or its associated buffer zone...

  2. Presentations for Industry

    Broader source: Energy.gov [DOE]

    Learn energy-saving strategies from leading manufacturing companies and energy experts. The presentations are organized below by topic area. In addition, industrial energy managers, utilities, and...

  3. California | Connecticut | Illinois | Maine | Maryland | Massachusetts | Michigan | New Hampshire | New Jersey | New York | Oregon | Vermont | Washington STATES' PRINCIPLES ON REFORM OF THE

    E-Print Network [OSTI]

    | New Jersey | New York | Oregon | Vermont | Washington STATES' PRINCIPLES ON REFORM OF THE TOXIC chemical alternatives assessments. #12;States' Principles on Reform of the Toxic Substances Control Act

  4. ,"Vermont Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesRefinery, Bulk Terminal, and Natural GasU.S.Plantand Wyoming Natural

  5. Percent of Industrial Natural Gas Deliveries in Vermont Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear JanPricePrice (Percent) Year Jan

  6. Percent of Industrial Natural Gas Deliveries in Vermont Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear JanPricePrice (Percent) Year JanPrice

  7. Utility Partnerships

    Broader source: Energy.gov [DOE]

    Utility Partnerships 7/10/12. Provides an overview of LEAP's (Charlottesville, VA) partnership with local utilities.

  8. Published by The University of Vermont College of Medicine Office of Primary Care Winter 2013 A Newsletter Dedicated to T hose Who Deliver & Teach P rimary Care

    E-Print Network [OSTI]

    Hayden, Nancy J.

    collaboration between primary care, mental health, substance abuse and behavioral health and was attended by 115 who would qualify for a substance abuse diagnosis. Fletcher Allen Health Care, Vermont National GuardPublished by The University of Vermont College of Medicine Office of Primary Care Winter 2013

  9. Sustainability of the cement and concrete industries UWM Center for By-Products Utilization, University of Wisconsin-Milwaukee, Milwaukee, WI, USA

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    Sustainability of the cement and concrete industries T.R. Naik UWM Center for By of the most widely used construction materials in the world. However, the production of portland cement); production of one ton of portland cement produces about one ton of CO2 and other GHGs. The environmental

  10. Vermont's At-large congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global EnergyUtility Rate HomeVela Jump to:I WindVermoehlen

  11. Vermont/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global EnergyUtility Rate HomeVela Jump to:Isource History View New

  12. Washington County, Vermont: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global EnergyUtilityInformation WaiverShoals,Wasatch3°,

  13. West Haven, Vermont: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED Jump to:Ohio:Wendel,Brooklyn,Covina,285°,Hampton Dunes,Haven,

  14. West Rutland, Vermont: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED JumpHills, New York: EnergyMountain,Puente Valley,Rutland,

  15. West Windsor, Vermont: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED JumpHills, New York:Springfield,Vero(BLM) | OpenWindsor,

  16. Windham County, Vermont: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTEDBird,Wilsonville, Oregon:WindPole Ventures LLCWindfarm

  17. Vermont - Rankings - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14TotalTheE. Great Basin Oil and Gas

  18. Vermont - Search - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14TotalTheE. Great Basin Oil and Gas

  19. South Barre, Vermont: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, NewSingaporeSonix Japan Inc Jump

  20. South Burlington, Vermont: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, NewSingaporeSonix Japan Inc JumpBarrington

  1. St. George, Vermont: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk,SoutheastSt. Francis County, Arkansas: Energy

  2. Wind Resource Mapping of the State of Vermont

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsingWhat is abig world of tinyWind IndustryWindWindWind

  3. Vermont Agency of Natural Resources Permitting Energy Generation Projects |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planning methodologiesVenkataraya Fibres2072286°,Open Energy

  4. Vermont Agency of Natural Resources Wastewater Management Division Water

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planning methodologiesVenkataraya Fibres2072286°,Open

  5. Vermont Individual Stormwater Discharge Permit Application | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planning methodologiesVenkataraya| Open Energy

  6. Vermont Permit and License Information: NPDES Stormwater General Permits

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planning methodologiesVenkataraya| Open EnergyInformation

  7. Vermont Section 401 Water Quality Certification Application | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planning methodologiesVenkataraya| Open

  8. Vermont Stormwater Management Rule for Stormwater-Impaired Waters | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planning methodologiesVenkataraya| OpenInformation

  9. PP-66-1 Vermont Electric Power Company, Inc. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in235-1 Termoelectrica U.S LLCPP-63-1 Northern StatesPP-66-1 Vermont

  10. PP-82 Vermont Electric Power Company, Inc. (VELCO) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in235-1 Termoelectrica U.S LLCPP-63-1 Northern75 The82 Vermont Electric

  11. PP-82-2 Vermont Electric Power Company, Inc. (VELCO) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in235-1 Termoelectrica U.S LLCPP-63-1 Northern75 The82 Vermont

  12. Bennington County, Vermont ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions IncBayBelmont County,Information Vermont ASHRAE 169-2006

  13. Anoka Municipal Utility- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Anoka Municipal Utility (AMU) offers the Commercial and Industrial Lighting and Motor Rebate Program for commercial and industrial customers who install high efficiency lighting, motors, and...

  14. Future Competitive Positioning of Electric Utilities and their Customers

    E-Print Network [OSTI]

    Schrock, D.; Parker, G.; Baechler, M.

    This paper addresses the future competitive positioning of electric and gas utilities and their industrial customers. Each must respond to a dramatic reshaping of the utility industry while confronting aggressive environmental pressures and taking...

  15. Lodi Electric Utility- PV Rebate Program

    Broader source: Energy.gov [DOE]

    Lodi Electric Utility offers rebates to its residential, commercial, industrial and municipal customers who install photovoltaic (PV) systems. The rebate program is funded with approximately $6...

  16. Heat Recovery in the Forge Industry

    E-Print Network [OSTI]

    Shingledecker, R. B.

    1982-01-01T23:59:59.000Z

    Department of Energy figures reveal that in 1979 the forging and stamping operations were the primary consumers of energy (27%) within the 'Fabricated Metals Products Industry' (SIC 34). Industrial furnaces utilized by the forging industry often...

  17. Animal Industries Building 

    E-Print Network [OSTI]

    Unknown

    2011-08-17T23:59:59.000Z

    Industrial steam users recognize the need to reduce system cost in order to remain internationally competitive. Steam systems are a key utility that influence cost significantly, and represent a high value opportunity ...

  18. Utility planning tools catalog. Final report

    SciTech Connect (OSTI)

    Diamond, M.

    1985-02-01T23:59:59.000Z

    Planning methods new to the industry can help utilities steer a sound course in today's complex business environment. This catalog offers an overview of 23 innovative techniques drawn from other industries. The tools selected focus on supporting strategic analysis and decision making for utilities.

  19. A Case Study of Danville Utilities: Utilizing Industrial Assessment Centers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform is always evolving, soFuelDepartment of5|3DatRulemakingsReportingA

  20. Uranium Industry Annual, 1992

    SciTech Connect (OSTI)

    Not Available

    1993-10-28T23:59:59.000Z

    The Uranium Industry Annual provides current statistical data on the US uranium industry for the Congress, Federal and State agencies, the uranium and electric utility industries, and the public. The feature article, ``Decommissioning of US Conventional Uranium Production Centers,`` is included. Data on uranium raw materials activities including exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities including domestic uranium purchases, commitments by utilities, procurement arrangements, uranium imports under purchase contracts and exports, deliveries to enrichment suppliers, inventories, secondary market activities, utility market requirements, and uranium for sale by domestic suppliers are presented in Chapter 2.

  1. Vermont Village Green Program (Vermont)

    Broader source: Energy.gov [DOE]

    The purpose of this solicitation is to obtain proposals from eligible organizations for projects that implement renewable energy district heating projects (including combined heat and power). ...

  2. Marketing Reordering of the Electric Utility Industry

    E-Print Network [OSTI]

    Anderson, J. A.

    . Residential customers original ly used electricity to light their homes. Elec tric power now has literally thousands of uses. Similarly, commercial customers now use electricity to compute, control, provide comfort, as well as illuminate offices... generated power. However, such displacement requires "wheeling", which is the use of transmission facilities of one electric system to transmit power of and for others. Market forces are developing tremendous in dustrial interest in wheeling...

  3. Industrial Boiler Optimization Utilizing CO Control 

    E-Print Network [OSTI]

    Ruoff, C. W.; Reiter, R. E.

    1980-01-01T23:59:59.000Z

    of four No. 6 oil fired boilers with an in stalled capacity of 500,000 lbs/hr. Each boiler was previously designed to operate with excess oxygen as the control parameter. By and large the existing boiler control systems functioned as designed. However... strategies such as load allocation. Increased operating experience with this system promises to open new areas and provide better ways to accompliish boiler control. i REFERENCES 1. Spanbauer, J. P., "Energy Savings Through Advanced Boiler Control...

  4. Industrial Utilization of Coal-Oil Mixtures 

    E-Print Network [OSTI]

    Dunn, J. E.; Hawkins, G. T.

    1982-01-01T23:59:59.000Z

    is the need for concentrated developmental work in burner and boiler control technology. Many companies have worked extensively on the development of burners suited for COM combustion. Broader commercial availability of economical and efficient COM com...

  5. Industrial coal utilization: third annual symposium

    SciTech Connect (OSTI)

    Not Available

    1981-01-01T23:59:59.000Z

    Twelve articles of this DOE-sponsored symposium have been entered individually into the Energy Data Base and Energy Research Abstracts (ERA); three of the abstracts will appear in Energy Abstracts for Policy Analysis (EAPA).

  6. Breakthrough Industrial Carbon Capture, Utilization and Storage...

    Office of Environmental Management (EM)

    and Storage Project Begins Full-Scale Operations May 10, 2013 - 11:36am Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - The Energy Department's Acting Assistant...

  7. Women in the electric-utility industry

    SciTech Connect (OSTI)

    Reynolds, M.R.

    1983-01-01T23:59:59.000Z

    Potomic Electric Power Co. (PEPCO) has won recognition for its progress in placing women in nontraditional jobs at all levels through its affirmative action program. PEPCO representatives and personnel managers take the initiative in making women aware of widening career opportunities and reversing the attitudes that have historically tied women to traditional employment. (DCK)

  8. 2013 Utility Bundled Retail Sales- Industrial

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 Oil demand8)Commercial (Data from

  9. Market analysis methodology: a utility case study. Final report

    SciTech Connect (OSTI)

    Diamond, M.

    1985-02-01T23:59:59.000Z

    The case study described in this report was conducted as part of EPRI Project RP1634 - Analytic Methods Used Outside the Electric Utility Industry. The primary objectives of the project were to: (1) explore planning and analysis techniques in use outside the utility industry, (2) identify those techniques which show promise for addressing utility issues, and (3) test them in actual utility situations to understand their real value, and the issues associated with adapting them to utility use.

  10. Industrial Permit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protection Obeying Environmental Laws Industrial Permit Industrial Permit The Industrial Permit authorizes the Laboratory to discharge point-source effluents under the...

  11. Uranium industry annual 1994

    SciTech Connect (OSTI)

    NONE

    1995-07-05T23:59:59.000Z

    The Uranium Industry Annual 1994 (UIA 1994) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing during that survey year. The UIA 1994 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the 10-year period 1985 through 1994 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data collected on the ``Uranium Industry Annual Survey`` (UIAS) provide a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1994, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. A feature article, ``Comparison of Uranium Mill Tailings Reclamation in the United States and Canada,`` is included in the UIA 1994. Data on uranium raw materials activities including exploration activities and expenditures, EIA-estimated resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities, including purchases of uranium and enrichment services, and uranium inventories, enrichment feed deliveries (actual and projected), and unfilled market requirements are shown in Chapter 2.

  12. Status of State Electric Industry Restructuring Activity

    Reports and Publications (EIA)

    2010-01-01T23:59:59.000Z

    Presents an overview of the status of electric industry restructuring in each state. Restructuring means that a monopoly system of electric utilities has been replaced with competing sellers.

  13. By By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    Center for By By-Products Utilization THE ROLE OF FLOWABLE SLURRY IN SUSTAINABLE DEVELOPMENTS of Flowable Slurry in Sustainable Developments in Civil Engineering Tarun R. Naik and Rudolph N. Kraus Materials (CLSM) incorporating industrial by-products (coal fly ash, and used foundry sand). CLSM reference

  14. Utilities: Emerging Opportunities in Performance Contracting

    E-Print Network [OSTI]

    Wood, G. W.

    control over an ESCO's relationship with its largest commercial and industrial customers. In many cases, a utility is concerned that the ESCO will follow-up the lighting or motor retrofit program with a cogeneration or other load reduction program...

  15. The Utilities' Role in Conservation and Cogeneration

    E-Print Network [OSTI]

    Mitchell, R. C., III

    1982-01-01T23:59:59.000Z

    The electric utility industry is uniquely qualified and positioned to serve as an effective 'deliverer' of energy conservation services and alternative energy supply options, such as cogeneration, rather than merely as a 'facilitator...

  16. Contract Provisions and Ratchets: Utility Security or Customer Equity? 

    E-Print Network [OSTI]

    Penkala, B. A.

    1987-01-01T23:59:59.000Z

    The contract provisions and ratchets contained in an electric utility's tariffs for commercial and industrial customers are often subjects of debate between the utility and its customers during regulatory proceedings. Although customers argue...

  17. Utility reregulation: The ESCO fit

    SciTech Connect (OSTI)

    Hansen, S.J. [Kiona International, Annapolis, MD (United States); Weisman, J.C. [Hansen Associates, Inc., Atlanta, GA (United States)

    1998-10-01T23:59:59.000Z

    No one can think energy, and more particularly energy efficiency, these days without wondering what the impact of utility deregulation and competition will be on his or her operation. Suddenly, owners must get smart about buying power and making choices. The complexities inherent in this new era make what was learned through the deregulation of the telephone and natural gas industries look like rehearsals for the command performance. For ESCOs, the whole scenario becomes a crucial part of doing business. There is no question that changes in the new utility market place will have a significant impact on the way ESCOs do business. The market segments an ESCO strives to serve will change. In the near term, large industrial customers will have little interest in the relatively small action on the demand side of the meter when rate/price negotiations on the supply side can make a big difference in the utility bill.

  18. New Ulm Public Utilities- Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    New Ulm Public Utilities offers incentives for its residential, commercial, and industrial customers to install energy-efficient equipment in eligible homes and facilities. Equipment eligible for...

  19. Anaheim Public Utilities- Low-Interest Energy Efficiency Loan Program

    Broader source: Energy.gov [DOE]

    Anaheim Public Utilities offers low-cost financing for energy efficiency measures through State Assistance Fund for Enterprise, Business and Industrial Development Corporation (SAFE-BIDCO). Under...

  20. Avista Utilities (Electric)- Commercial Energy Efficiency Incentives Program

    Broader source: Energy.gov [DOE]

    Avista Utilities offers numerous incentives to commercial and industrial customers to increase the energy efficiency of customer facilities or equipment. Incentive options are available for heating...

  1. New Ulm Public Utilities- Solar Electric Rebate Program

    Broader source: Energy.gov [DOE]

    New Ulm Public Utilities provides solar photovoltaic (PV) rebates for residential, commercial, and industrial customers. Rebates are for $1 per nameplate watt, and customers must sign a net...

  2. Elk River Municipal Utilities- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Elk River Municipal Utilities offers a variety of rebates to commercial, industrial, and agricultural customers for the installation of specific energy efficient equipment. Rebates are available...

  3. Clark Public Utilities- Commercial Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Clark Public Utilities (CPU) offers a variety of energy efficiency rebates and services to help commercial and industrial customers save energy in existing and new facilities. Clark Public...

  4. alternative medicine utilization: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ian D Coulter; Evan M Willis 13 Evaluation of Industrial Energy Options for Cogeneration, Waste Heat Recovery and Alternative Fuel Utilization Texas A&M University -...

  5. Anaheim Public Utilities- Green Building and New Construction Rebate Program

    Broader source: Energy.gov [DOE]

    Anaheim Public Utilities (APU) offers commercial, industrial, residential, and institutional customers the Green Building Incentives Program to offset construction, installation and upgrade costs...

  6. Cedarburg Light and Water Utility- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Cedarburg Light and Water Utility provides incentives for commercial, industrial and agricultural customers to increase the energy efficiency of eligible facilities. Upon request, Cedarburg Light...

  7. Utility Partnerships Webinar Series: State Policies to Promote...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State Policies to Promote Utility Energy Efficiency Programs December 7, 2010 Industrial Technologies Program eere.energy.gov Speakers and Topics: * Franklin Energy Services, LLC,...

  8. Uranium industry annual 1996

    SciTech Connect (OSTI)

    NONE

    1997-04-01T23:59:59.000Z

    The Uranium Industry Annual 1996 (UIA 1996) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1996 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. Data on uranium raw materials activities for 1987 through 1996 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2006, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. A feature article, The Role of Thorium in Nuclear Energy, is included. 24 figs., 56 tabs.

  9. Industrial Engineering Industrial Advisory Board

    E-Print Network [OSTI]

    Gelfond, Michael

    Industrial Engineering Industrial Advisory Board (IAB) #12;PURPOSE: The Texas Tech University - Industrial Engineering Industrial Ad- visory Board (IAB) is an association of professionals with a com- mon goal - promoting and developing the Texas Tech Department of Industrial Engineering and its students

  10. Rules and Regulations of the Industrial Siting Council, Chapter 1 | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to:Roscommon County,Vermont: EnergyEasements | OpenEnergy

  11. Rules and Regulations of the Wyoming Industrial Siting Council - Chapter 1

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to:Roscommon County,Vermont: EnergyEasements | OpenEnergy| Open Energy

  12. Rules and Regulations of the Wyoming Industrial Siting Council - Chapter 2

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to:Roscommon County,Vermont: EnergyEasements | OpenEnergy| Open

  13. The Utility Battery Storage Systems Program Overview

    SciTech Connect (OSTI)

    Not Available

    1994-11-01T23:59:59.000Z

    Utility battery energy storage allows a utility or customer to store electrical energy for dispatch at a time when its use is more economical, strategic, or efficient. The UBS program sponsors systems analyses, technology development of subsystems and systems integration, laboratory and field evaluation, and industry outreach. Achievements and planned activities in each area are discussed.

  14. Utility Conservation Programs: Opportunities and Strategies

    E-Print Network [OSTI]

    Norland, D. L.; Wolf, J. L.

    . The utility may promote conservation through a variety of means that will be discussed -- traditional forms of financial incen tives such as loans or rebates or new institutional arrangements such as subsidiaries offering share-the -savings programs... the strategy the utility chooses to promote conservation investment. For example, a significant asset a utility possesses is the know ledge of the end-use patterns of its customers. Especially for commercial and industrial customers, demand characteristics...

  15. Federal Utility Partnership Working Group Utility Partners

    Broader source: Energy.gov [DOE]

    Federal Utility Partnership Working Group (FUPWG) utility partners are eager to work closely with Federal agencies to help achieve energy management goals.

  16. What Marketing Strategies Make Sense for Utilities

    E-Print Network [OSTI]

    Davis, T. D.

    that large commercial/industrial customers want the following from ' The successful utility will be the one who emp oys superior strategy, not the one who has superior resourc s. TIlE BUILDING OF UTILI1Y STRATEGY What strategy should utilities employ... their commercial/industrial efficiency (C/I) market Permit assistance SIC Power protection/conditioning. Size/control Needs/benefits 130 ESL-IE-89-09-28 Proceedings from the Eleventh National Industrial Energy Technology Conference, Houston, TX, September...

  17. Utility Partnerships Webinar Series: Gas Utility Energy Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utility Partnerships Webinar Series: Gas Utility Energy Efficiency Programs Utility Partnerships Webinar Series: Gas Utility Energy Efficiency Programs gasutilityeewebinarnov2...

  18. NET PRED UTILITY

    Energy Science and Technology Software Center (OSTI)

    002602IBMPC00 Normalized Elution Time Prediction Utility  http://omics.pnl.gov/software/NETPredictionUtility.php 

  19. Purdue Solar Energy Utilization Laboratory

    SciTech Connect (OSTI)

    Agrawal, Rakesh [Purdue] [Purdue

    2014-01-21T23:59:59.000Z

    The objective of this project is to establish and set-up a laboratory that will facilitate research and development of new low-cost and high-efficiency solar energy utilization technologies at Purdue University. The outcome will help spur the creation of solar energy start-up companies and eventually a solar energy industry in Indiana that can help fulfill the growing national demand for solar energy.

  20. Uranium industry annual 1995

    SciTech Connect (OSTI)

    NONE

    1996-05-01T23:59:59.000Z

    The Uranium Industry Annual 1995 (UIA 1995) provides current statistical data on the U.S. uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1995 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the period 1986 through 2005 as collected on the Form EIA-858, ``Uranium Industry Annual Survey``. Data collected on the ``Uranium Industry Annual Survey`` provide a comprehensive statistical characterization of the industry`s plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1995, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. Data on uranium raw materials activities for 1986 through 1995 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2005, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. The methodology used in the 1995 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ``Uranium Industry Annual Survey`` is provided in Appendix C. For the reader`s convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix D along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 14 figs., 56 tabs.

  1. Utility FGD Survey, January--December 1989

    SciTech Connect (OSTI)

    Hance, S.L.; McKibben, R.S.; Jones, F.M. (IT Corp., Cincinnati, OH (United States))

    1992-03-01T23:59:59.000Z

    The Utility flue gas desulfurization (FGD) Survey report, which is generated by a computerized data base management system, represents a survey of operational and planned domestic utility flue gas desulfurization (FGD) systems. It summarizes information contributed by the utility industry, system and equipment suppliers, system designers, research organizations, and regulatory agencies. The data cover system design, fuel characteristics, operating history, and actual system performance. Also included is a unit-by-unit discussion of problems and solutions associated with the boilers, scrubbers, and FGD systems. The development status (operational, under construction, or in the planning stages), system supplier, process, waste disposal practice, and regulatory class are tabulated alphabetically by utility company.

  2. Financial statistics of major publicly owned electric utilities, 1991

    SciTech Connect (OSTI)

    Not Available

    1993-03-31T23:59:59.000Z

    The Financial Statistics of Major Publicly Owned Electric Utilities publication presents summary and detailed financial accounting data on the publicly owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with data that can be used for policymaking and decisionmaking purposes relating to publicly owned electric utility issues.

  3. Quality electric motor repair: A guidebook for electric utilities

    SciTech Connect (OSTI)

    Schueler, V.; Douglass, J.

    1995-08-01T23:59:59.000Z

    This guidebook provides utilities with a resource for better understanding and developing their roles in relation to electric motor repair shops and the industrial and commercial utility customers that use them. The guidebook includes information and tools that utilities can use to raise the quality of electric motor repair practices in their service territories.

  4. Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT California Energy Balance Update and Decomposition Analysis for the Industry and Building Sectors

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2014-01-01T23:59:59.000Z

    Losses CHP, Commercial Power CHP, Electric Power CHP, Industrial Power Electric Generators, Utilities

  5. Survey Questionnaire on Environmental Management Practices: Summary of Results by Industry and practices

    E-Print Network [OSTI]

    Delmas, Magali A; Toffel, Michael W.

    2008-01-01T23:59:59.000Z

    and Engineering-Design Departments Management Utilities Refining Industry Paper Metals Machinery Electronics/Electrical ChemicalsEngineering - Design Department Utilities Refining Industry Paper Metals Machinery Electronics/Electrical Chemicals

  6. OTHER INDUSTRIES

    Broader source: Energy.gov [DOE]

    AMO funded research results in novel technologies in diverse industries beyond the most energy intensive ones within the U.S. Manufacturing sector. These technologies offer quantifiable energy...

  7. The electric power industry : deregulation and market structure

    E-Print Network [OSTI]

    Thomson, Robert George

    1995-01-01T23:59:59.000Z

    The US electricity industry currently consists of vertically integrated regional utilities welding monopolistic power over their own geographic markets under the supervision of state and federally appointed regulators. ...

  8. Advanced, Energy-Efficient Hybrid Membrane System for Industrial...

    Energy Savers [EERE]

    (1 slide) Develo Project Objecve Current StateChallenges Heavy industrial water utilization footprint Freshwater Withdrawals in the U.S. by Sector (2005) Domestic...

  9. Research Projects in Industrial Technology.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration. Industrial Technology Section.

    1990-06-01T23:59:59.000Z

    The purpose of this booklet is to briefly describe ongoing and completed projects being carried out by Bonneville Power Administration's (BPA) Industrial Technology Section. In the Pacific Northwest, the industrial sector is the largest of the four consuming sectors. It accounted for thirty-nine percent of the total firm demand in the region in 1987. It is not easy to asses the conservation potential in the industrial sector. Recognizing this, the Northwest Power Planning Council established an objective to gain information on the size, cost, and availability of the conservation resource in the industrial sector, as well as other sectors, in its 1986 Power Plan. Specifically, the Council recommended that BPA operate a research and development program in conjunction with industry to determine the potential costs and savings from efficiency improvements in industrial processes which apply to a wide array of industrial firms.'' The section, composed of multidisciplinary engineers, provides technical support to the Industrial Programs Branch by designing and carrying out research relating to energy conservation in the industrial sector. The projects contained in this booklet are arranged by sector --industrial, utility, and agricultural -- and, within each sector, chronologically from ongoing to completed, with those projects completed most recently falling first. For each project the following information is given: its objective approach, key findings, cost, and contact person. Completed projects also include the date of completion, a report title, and report number.

  10. Utility FGD survey, January--December 1989

    SciTech Connect (OSTI)

    Hance, S.L.; McKibben, R.S.; Jones, F.M. (IT Corp., Cincinnati, OH (United States))

    1992-03-01T23:59:59.000Z

    This is Volume 2 part 2, of the Utility flue gas desulfurization (FGD) Survey report, which is generated by a computerized data base management system, represents a survey of operational and planned domestic utility flue gas desulfurization (FGD) systems. It summarizes information contributed by the utility industry, system and equipment suppliers, system designers, research organizations, and regulatory agencies. The data cover system design, fuel characteristics, operating history, and actual system performance. Also included is a unit-by-unit discussion of problems and solutions associated with the boilers, scrubbers, and FGD systems. This volume particularly contains basic design and performance data.

  11. Cogeneration: An Industrial Steam and Power Option

    E-Print Network [OSTI]

    Orlando, J. A.; Stewart, M. M.; Roberts, J. R.

    Industrial facilities of all sizes have the ability to reduce and better control both power and steam costs with a cogeneration system. Unlike the larger systems that sell almost all of the cogenerated power to a regulated electric utility...

  12. Steam Path Audits on Industrial Steam Turbines 

    E-Print Network [OSTI]

    Mitchell, D. R.

    1992-01-01T23:59:59.000Z

    The electric utility industry has benefitted from steam path audits on steam turbines for several years. Benefits include the ability to identify areas of performance degradation during a turbine outage. Repair priorities can then be set...

  13. Industrial Waste Heat Recovery Using Heat Pipes 

    E-Print Network [OSTI]

    Ruch, M. A.

    1981-01-01T23:59:59.000Z

    For almost a decade now, heat pipes with secondary finned surfaces have been utilized in counter flow heat exchangers to recover sensible energy from industrial exhaust gases. Over 3,000 such heat exchangers are now in service, recovering...

  14. Daylighting Application and Effectiveness in Industrial Facilities

    E-Print Network [OSTI]

    McCowan, B.; Birleanu, D.

    2005-01-01T23:59:59.000Z

    during the industrial revolution, architects utilized various daylighting strategies such as window walls, skylighting, monitors, etc. However, glazing technologies were primitive compared with our modern choices, When more efficient and effective...

  15. PP-66-1 Vermont Electric Power Company, Inc. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEWResponse(Expired) | Department ofINCREASES1 Citizens Utilities1

  16. PP-66-2 Vermont Electric Power Company, Inc. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEWResponse(Expired) | Department ofINCREASES1 Citizens Utilities12

  17. Interview: LaborWorks@NeighborWorks Provides Vermont Contractors With Help

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment of EnergyIndustry15AmongPartnership forWhen They Need It |

  18. Interview: LaborWorks@NeighborWorks Provides Vermont Contractors With Help When They Need It

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment of EnergyIndustry15AmongPartnership forWhen They Need It |Focus

  19. Vermont General Permit 3-9020 for Stormwater Runoff from Construction Sites

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planning methodologiesVenkataraya| Open Energy Information

  20. Utilities Sell Lighting, Cooling and Heating to Large Customers 

    E-Print Network [OSTI]

    Horne, M. L.; Zien, H. B.

    1996-01-01T23:59:59.000Z

    , namely, other electric utilities. Compounding this situation are two recent occurrences: 1) the passage of the Energy Policy Act of 1992 which encourages wheeling, and 2) the trend toward institutional and industrial customers outsourcing energy...

  1. U.S. electric utility demand-side management 1993

    SciTech Connect (OSTI)

    NONE

    1995-07-01T23:59:59.000Z

    This report presents comprehensive information on electric power industry demand-side management activities in the United States at the national, regional, and utility levels. Data is included for energy savings, peakload reductions, and costs.

  2. Utilities Sell Lighting, Cooling and Heating to Large Customers

    E-Print Network [OSTI]

    Horne, M. L.; Zien, H. B.

    The electric utility industry is entering an era of unprecedented competition. Competition from traditional sources such as natural gas companies, customer cogeneration, and independent power producers are being joined by new sources of competition...

  3. City of Palo Alto Utilities- Solar Water Heating Program

    Broader source: Energy.gov [DOE]

    City of Palo Alto Utilities is offering incentives for their residential, commercial and industrial customers to install solar water heating systems on their homes and facilities with a goal of 1...

  4. Energy Efficiency in the Microelectronics Industry

    E-Print Network [OSTI]

    Bhatti, B.

    is utilized to meet the current and future objectives. In the Microelectronics Industry the use of Electricity far outweighs any other utility usage viz. Water, Natural Gas by at least a three to one ratio on a cost basis. Starting with a typical 100,000 S...

  5. NOx Dispatching in Plant Utility Systems Using Existing Tools

    E-Print Network [OSTI]

    Nath, R.; Kumana, J. D.

    NO x DISPATCHING IN PLANT UTILITY SYSTEMS - USING EXISTING TOOLS Ravi Nath and Jimmy D. Kumana Linnhoff March ABSTRACT Localized NO x reduction during Ozone Alerts is a problem of increasing importance to process industries in and around.... Economic dispatching of plant utility systems is commonly done by the gas and electric power companies and software tools for such dispatching already exist even at the industrial plant level [2]. The purpose of this paper is to show...

  6. alternative multi-attribute utility: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Here the proposed data Brennan, Sean 40 Evaluation of Industrial Energy Options for Cogeneration, Waste Heat Recovery and Alternative Fuel Utilization Texas A&M University -...

  7. Avista Utilities- Net Metering

    Broader source: Energy.gov [DOE]

    Idaho does not have a statewide net-metering policy. However, each of the state's three investor-owned utilities -- Avista Utilities, Idaho Power and Rocky Mountain Power -- has developed a net...

  8. Mississippi Public Utility Act

    Broader source: Energy.gov [DOE]

    The Mississippi Public Utility Act is relevant to any project that plans to generate energy. It requires that a utility must first obtain a Certificate of Public Convenience and Necessity (CPCN)...

  9. Electrical utilities relay settings

    SciTech Connect (OSTI)

    HACHE, J.M.

    1999-02-24T23:59:59.000Z

    This document contains the Hanford transmission and distribution system relay settings that are under the control of Electrical Utilities.

  10. GSA- Utility Interconnection Agreements

    Broader source: Energy.gov [DOE]

    Presentation given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Providence, Rhode Island.

  11. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    International Conference onFly Ash Disposal and Utilization,onJanuary 20-22, 1998, New Delhi, India. COAL ASH and Applied Science THE UNIVERSITY OF WISCONSIN - MILWAUKEE #12;COAL ASH GENERATIONANDUTILIZATION: A REVIEW and utilization of coal ash in many parts of the world. The utilization potential for coal ash generated from

  12. EPA may force scrubbers on industry boilers

    SciTech Connect (OSTI)

    Hume, M.

    1985-05-13T23:59:59.000Z

    An Environmental Protection Agency (EPA) proposal requiring scrubber standards for industrial energy users will force industry to invest in the costly pollution control equipment used mostly by utilities today. The New Source Performance Standards (NSPS) for sulfur dioxide emissions will require either scrubbing or fluidized-bed combustion regardless of the fuel's sulfur content. Protests from the Council of Industrial Boiler Owners that this is an unfair burden on non-utility boilers note that scrubbing is more costly for smaller boilers, and that it could impede air quality improvement by discouraging the replacement of old boilers. EPA contests these claims.

  13. YEAR 2 BIOMASS UTILIZATION

    SciTech Connect (OSTI)

    Christopher J. Zygarlicke

    2004-11-01T23:59:59.000Z

    This Energy & Environmental Research Center (EERC) Year 2 Biomass Utilization Final Technical Report summarizes multiple projects in biopower or bioenergy, transportation biofuels, and bioproducts. A prototype of a novel advanced power system, termed the high-temperature air furnace (HITAF), was tested for performance while converting biomass and coal blends to energy. Three biomass fuels--wood residue or hog fuel, corn stover, and switchgrass--and Wyoming subbituminous coal were acquired for combustion tests in the 3-million-Btu/hr system. Blend levels were 20% biomass--80% coal on a heat basis. Hog fuel was prepared for the upcoming combustion test by air-drying and processing through a hammer mill and screen. A K-Tron biomass feeder capable of operating in both gravimetric and volumetric modes was selected as the HITAF feed system. Two oxide dispersion-strengthened (ODS) alloys that would be used in the HITAF high-temperature heat exchanger were tested for slag corrosion rates. An alumina layer formed on one particular alloy, which was more corrosion-resistant than a chromia layer that formed on the other alloy. Research activities were completed in the development of an atmospheric pressure, fluidized-bed pyrolysis-type system called the controlled spontaneous reactor (CSR), which is used to process and condition biomass. Tree trimmings were physically and chemically altered by the CSR process, resulting in a fuel that was very suitable for feeding into a coal combustion or gasification system with little or no feed system modifications required. Experimental procedures were successful for producing hydrogen from biomass using the bacteria Thermotoga, a deep-ocean thermal vent organism. Analytical procedures for hydrogen were evaluated, a gas chromatography (GC) method was derived for measuring hydrogen yields, and adaptation culturing and protocols for mutagenesis were initiated to better develop strains that can use biomass cellulose. Fly ash derived from cofiring coal with waste paper, sunflower hulls, and wood waste showed a broad spectrum of chemical and physical characteristics, according to American Society for Testing and Materials (ASTM) C618 procedures. Higher-than-normal levels of magnesium, sodium, and potassium oxide were observed for the biomass-coal fly ash, which may impact utilization in cement replacement in concrete under ASTM requirements. Other niche markets for biomass-derived fly ash were explored. Research was conducted to develop/optimize a catalytic partial oxidation-based concept for a simple, low-cost fuel processor (reformer). Work progressed to evaluate the effects of temperature and denaturant on ethanol catalytic partial oxidation. A catalyst was isolated that had a yield of 24 mole percent, with catalyst coking limited to less than 15% over a period of 2 hours. In biodiesel research, conversion of vegetable oils to biodiesel using an alternative alkaline catalyst was demonstrated without the need for subsequent water washing. In work related to biorefinery technologies, a continuous-flow reactor was used to react ethanol with lactic acid prepared from an ammonium lactate concentrate produced in fermentations conducted at the EERC. Good yields of ester were obtained even though the concentration of lactic acid in the feed was low with respect to the amount of water present. Esterification gave lower yields of ester, owing to the lowered lactic acid content of the feed. All lactic acid fermentation from amylose hydrolysate test trials was completed. Management activities included a decision to extend several projects to December 31, 2003, because of delays in receiving biomass feedstocks for testing and acquisition of commercial matching funds. In strategic studies, methods for producing acetate esters for high-value fibers, fuel additives, solvents, and chemical intermediates were discussed with several commercial entities. Commercial industries have an interest in efficient biomass gasification designs but are waiting for economic incentives. Utility, biorefinery, pulp and paper, or o

  14. Vermont Hazardous Waste Management Regulations (Vermont)

    Broader source: Energy.gov [DOE]

    These regulations are intended to protect public health and the environment by comprehensively regulating the generation, storage, collection, transport, treatment, disposal, use, reuse, and...

  15. Deregulation in Japanese gas industries : significance and problems of gas rate deregulation for large industrial customers

    E-Print Network [OSTI]

    Inoue, Masayuki

    1994-01-01T23:59:59.000Z

    In recent years, the circumstances surrounding Japanese City gas industries have been changing drastically. On one hand, as energy suppliers, natural gas which has become major fuel resource for city gas, as public utilities, ...

  16. BENEFICIAL UTILIZATION OF USED FOUNDRY SANDS AS CONSTRUCTION MATERIALS

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    and state environmental agencies began to pay increasing attention to industrial pollution, safety and wasteBENEFICIAL UTILIZATION OF USED FOUNDRY SANDS AS CONSTRUCTION MATERIALS By Tarun R. Naik Director - 6696 Fax: (414) 229 - 6958 #12;-2- Beneficial Utilization of Used Foundry Sands as Construction

  17. Utility Marketing Strategies and Pricing Trends (An Overview)

    E-Print Network [OSTI]

    Reynolds, S.

    utility's costs and provide a sound fiscal footing for the utility, and yet still be attractive to industry and encourage the economic development of the region. However, lower rates are simply not the only answer in a sound marketing strategy. Rather than...

  18. EPA to utilities: Phone in. [US Environmental Protection Agency

    SciTech Connect (OSTI)

    Greenberger, L.S.

    1991-06-15T23:59:59.000Z

    This article discusses the US Environmental Protection Agency plan to dispense the Phase 1 extension bonus allowances provided for in Section 404(d). Topics are the basis for selection of utilities to receive bonuses, the method for taking applications, comments from industry organizations, how the utilities are allowed to use the bonuses during the extension period.

  19. Materials needs and opportunities in the pulp and paper industry

    SciTech Connect (OSTI)

    Angelini, P. [comp.

    1995-08-01T23:59:59.000Z

    The Department of Energy`s (DOE) Office of Industrial Technologies (OIT) supports research and development (R&D) in industry, the DOE national laboratories, and in universities to develop energy efficient, environmentally-acceptable industrial technologies. The Office of Industrial Technologies is working with seven energy-intensive industries to develop R&D roadmaps that will facilitate cooperative government-industry efforts to achieve energy-efficient, environmentally-acceptable, sustainable industries of the future. The forest products industry is one of the industries with which OIT is working to develop an R&D roadmap. The Advanced Industrial Materials (AIM) Program of the Office of Industrial Technologies sponsors long-term, directed research on materials that will enable industry to develop and utilize more energy-efficient, sustainable processes and technologies. The purpose of the study described in this report was to identify the material R&D needs and opportunities for the pulp and paper mill of the future.

  20. Utility FGD survey: January--December 1989

    SciTech Connect (OSTI)

    Hance, S.L.; McKibben, R.S.; Jones, F.M.

    1992-03-01T23:59:59.000Z

    This is Volume 1 of the Utility flue gas desulfurization (FGD) Survey report, which is generated by a computerized data base management system, represents a survey of operational and planned domestic utility flue gas desulfurization (FGD) systems. It summarizes information contributed by the utility industry, system and equipment suppliers, system designers, research organizations, and regulatory agencies. The data cover system design, fuel characteristics, operating history, and actual system performance. Also included is a unit-by-unit discussion of problems and solutions associated with the boilers, scrubbers, and FGD systems. The development status (operational, under construction, or in the planning stages), system supplier, process, waste disposal practice, and regulatory class are tabulated alphabetically by utility company.

  1. Utility FGD survey, Janurary--December 1988

    SciTech Connect (OSTI)

    Hance, S.L.; McKibben, R.S.; Jones, F.M. (IT Corp., Cincinnati, OH (United States))

    1991-09-01T23:59:59.000Z

    The Utility FGD Survey report, which is generated by a computerized data base management system, represents a survey of operational and planned domestic utility flue gas desulfurization (FGD) systems. It summarizes information contributed by the utility industry, system and equipment suppliers, system designers, research organizations, and regulatory agencies. The data cover system design, fuel characteristics, operating history, and actual system performance. Also included is a unit-by-unit discussion of problems and solutions associated with the boilers, scrubbers, and FGD systems. The development status (operational, under construction, or in the planning stages), system supplier, process, waste disposal practice, and regulatory class are tabulated alphabetically by utility company. Simplified process flow diagrams of FGD systems, definitions, and a glossary of terms are attached to the report. Current data for domestic FGD systems show systems in operation, systems under construction, and systems planned. The current total FGD-controlled capacity in the United States is 67,091 MW. 2 figs., 9 tabs.

  2. Utility FGD survey, January--December 1988

    SciTech Connect (OSTI)

    Hance, S.L.; McKibben, R.S.; Jones, F.M. (IT Corp., Cincinnati, OH (United States))

    1991-09-01T23:59:59.000Z

    The Utility FGD Survey report, which is generated by a computerized data base management system, represents a survey of operational and planned domestic utility flue gas desulfurization (FGD) systems. It summarizes information contributed by the utility industry, system and equipment suppliers, systems designers, research organizations, and regulatory agencies. The data cover system design, fuel characteristics, operating history, and actual system performance. Also included is a unit-by-unit discussion of problems and solutions associated with the boilers, scrubbers, and FGD systems. The development status (operational, under construction, or in the planning stages), system supplier, process, waste disposal practice, and regulatory class are tabulated alphabetically by utility company. Simplified process flow diagrams of FGD systems, definitions, and a glossary of terms are attached to the report. Current data for domestic FGD systems show systems in operation, systems under construction, and systems planned. The current total FGD-controlled capacity in the United States is 67,091 MW.

  3. Utility FGD survey, January--December 1988

    SciTech Connect (OSTI)

    Hance, S.L.; McKibben, R.S.; Jones, F.M. (IT Corp., Cincinnati, OH (United States))

    1991-09-01T23:59:59.000Z

    The Utility FGD Survey report, which is generated by a computerized data base management system, represents a survey of operational and planned domestic utility flue gas desulfurization (FGD) systems. It summarizes information contributed by the utility industry, system and equipment suppliers, system designers, research organizations, and regulatory agencies. The data cover system design, fuel characteristics, operating history, and actual system performance. Also included is a unit-by-unit discussion of problems and solutions associated with the boilers, scrubbers, and FGD systems. The development status (operational, under construction, or in the planning stages), system supplier, process, waste disposal practice, and regulatory class are tabulated alphabetically by utility company. Simplified process flow diagrams of FGD systems, definitions, and a glossary of terms are attached to the report. Current data for domestic FGD systems show systems in operation, systems under construction, and systems planned. The current total FGD-controlled capacity in the United States is 67,091 MW.

  4. Carrots for Utilities: Providing Financial Returns for Utility...

    Open Energy Info (EERE)

    Carrots for Utilities: Providing Financial Returns for Utility Investments in Energy Efficiency Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Carrots for Utilities:...

  5. "List of Covered Electric Utilities" under the Public Utility...

    Energy Savers [EERE]

    6 Revised "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) - 2006 Revised Under Title I of the Public Utility Regulatory...

  6. Financial statistics of selected investor-owned electric utilities, 1989

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    The Financial Statistics of Selected Investor-Owned Electric Utilities publication presents summary and detailed financial accounting data on the investor-owned electric utilities. The objective of the publication is to provide the Federal and State governments, industry, and the general public with current and historical data that can be used for policymaking and decisionmaking purposes related to investor-owned electric utility issues.

  7. Utility battery storage systems program report for FY 94

    SciTech Connect (OSTI)

    Butler, P.C.

    1995-03-01T23:59:59.000Z

    Sandia National Laboratories, New Mexico, conducts the Utility Battery Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Energy Management. The goal of this program is to assist industry in developing cost-effective battery systems as a utility resource option by 2000. Sandia is responsible for the engineering analyses, contracted development, and testing of rechargeable batteries and systems for utility energy storage applications. This report details the technical achievements realized during fiscal year 1994.

  8. Industry Profile

    Broader source: Energy.gov [DOE]

    Combined heat and power (CHP)—sometimes referred to as cogeneration—involves the sequential process of producing and utilizing electricity and thermal energy from a single fuel. CHP is widely recognized to save energy and costs, while reducing carbon dioxide (CO2) and other pollutants. CHP is a realistic, near-term option for large energy efficiency improvements and significant CO2 reductions.

  9. Feasibility Study of Economics and Performance of Solar Photovoltaics at the VAG Mine Site in Eden and Lowell, Vermont. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect (OSTI)

    Simon, J.; Mosey, G.

    2013-04-01T23:59:59.000Z

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Vermont Asbestos Group (VAG) Mine site in Eden, Vermont, and Lowell, Vermont, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site.

  10. Confidential data in a competitive utility environment: A regulatory perspective

    SciTech Connect (OSTI)

    Vine, E.

    1996-08-01T23:59:59.000Z

    Historically, the electric utility industry has been regarded as one of the most open industries in the United States in sharing information but their reputation is being challenged by competitive energy providers, the general public, regulators, and other stakeholders. As the prospect of competition among electricity power providers has increased in recent years, many utilities have been requesting that the data they submit to their utility regulatory commissions remain confidential. Withholding utility information from the public is likely to have serious and significant policy implications with respect to: (1) consumer education, the pursuit of truth, mutual respect among parties, and social cooperation; (2) the creation of a fair market for competitive energy services; (3) the regulatory balance; (4) regional and national assessments of energy-savings opportunities; (5) research and development; and (6) evaluations of utility programs, plans, and policies. In a telephone survey of all public utility commissions (PUCs) that regulate electric and gas utilities in the U.S., we found that almost all PUCs have received requests from utility companies for data to be filed as confidential, and confidential data filings appear to have increased (both in scope and in frequency) in those states where utility restructuring is being actively discussed. The most common types of data submitted as confidential by utilities dealt with specific customer data, market data, avoided costs, and utility costs.

  11. US electric utility demand-side management, 1994

    SciTech Connect (OSTI)

    NONE

    1995-12-26T23:59:59.000Z

    The report presents comprehensive information on electric power industry demand-side management (DSM) activities in US at the national, regional, and utility levels. Objective is provide industry decision makers, government policy makers, analysts, and the general public with historical data that may be used in understanding DSM as it relates to the US electric power industry. The first chapter, ``Profile: US Electric Utility Demand-Side Management,`` presents a general discussion of DSM, its history, current issues, and a review of key statistics for the year. Subsequent chapters present discussions and more detailed data on energy savings, peak load reductions, and costs attributable to DSM.

  12. Toxic Release Inventory (TRI), Vermont, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  13. Office of Industrial Technologies research in progress

    SciTech Connect (OSTI)

    Not Available

    1993-05-01T23:59:59.000Z

    The US Department of Energy (DOE) Office of Industrial Technologies (OIT) conducts research and development activities which focus on improving energy efficiency and providing for fuel flexibility within US industry in the area of industrial conservation. The mission of OIT is to increase the utilization of existing energy-efficient equipment and to find and promote new, cost-effective ways for industrial facilities to improve their energy efficiency and minimize waste products. To ensure advancement of the technological leadership of the United States and to improve the competitiveness of American industrial products in world markets, OIT works closely with industrial partners, the staffs of the national laboratories, and universities to identify research and development needs and to solve technological challenges. This report contains summaries of the currently active projects supported by the Office of Industrial Technologies.

  14. Utility Data Collection Service

    Broader source: Energy.gov [DOE]

    Presentation covers the utility data collection service and is given at the FUPWG 2006 Spring meeting, held on May 3-4, 2006 in Atlanta, Georgia.

  15. Joint Electrical Utilities (Iowa)

    Broader source: Energy.gov [DOE]

    Cities may establish utilities to acquire existing electric generating facilities or distribution systems. Acquisition, in this statute, is defined as city involvement, and includes purchase, lease...

  16. Utility Regulation (Indiana)

    Broader source: Energy.gov [DOE]

    The Indiana Utility Regulatory Commission enforces regulations in this legislation that apply to all individuals, corporations, companies, and partnerships that may own, operate, manage, or control...

  17. Utility Service Renovations

    Broader source: Energy.gov [DOE]

    Any upgrade to utility service provides an opportunity to revisit a Federal building's electrical loads and costs, but it also may provide an economic way to bundle the upgrade with an onsite renewable electricity project during renovation. Upgrading utility service to the site may involve improving or adding a transformer, upgrading utility meters, or otherwise modifying the interconnection equipment or services with the utility. In some cases, the upgrade may change the tariff structure for the facility and may qualify the property for a different structure with lower overall costs. In all cases, the implementation of renewable energy technologies should be identified during the design phase.

  18. Municipal Utility Districts (Texas)

    Broader source: Energy.gov [DOE]

    Municipal Utility Districts, regulated by the Texas Commission on Environmental Quality, may be created for the following purposes: (1) the control, storage, preservation, and distribution of its...

  19. MIT and Automotive Industries MIT Industry Brief

    E-Print Network [OSTI]

    Ceder, Gerbrand

    MIT and Automotive Industries MIT Industry Brief MIT's Industrial Liaison Program (ILP) can bring@ilp.mit.edu, or visit http://ilp-www.mit.edu. MIT and Automotive Industries The Massachusetts Institute of Technology (MIT) is a leading center of research and education on topics important to the automotive industry

  20. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    clean coal technology, are not extensively utilized in the cast concrete masonry products (bricks both conventional and clean coal technologies. A clean coal ash is defined as the ash derived from SO2Center for By-Products Utilization USE OF CLASS F FLY ASH AND CLEAN-COAL ASH BLENDS FOR CAST

  1. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    combustion by-products #12;3 generated by using both conventional and clean-coal technologies. A clean-coal that obtained from clean-coal technology, are not utilized in cast-concrete masonry products (bricks, blocksCenter for By-Products Utilization RECENT ADVANCES IN RECYCLING CLEAN- COAL ASH By Tarun R. Naik

  2. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    Fellow at the UWM-CBU. His research interests include the use of coal fly ash, coal bottom ash, and used in management, disposal, and sale of coal-combustion by-Center for By-Products Utilization USE OF UNDER-UTILIZED COAL- COMBUSTION PRODUCTS IN PERMEABLE

  3. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    of coal fly ash, coal bottom ash, and used foundry sand in concrete, bricks, blocks, and8 paving stones, Wisconsin. She is involved in management,11 disposal, and sale of coal-combustion by-products. She alsoCenter for By-Products Utilization UNDER-UTILIZED COAL-COMBUSTION PRODUCTS IN PERMEABLE ROADWAY

  4. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    Center for By-Products Utilization USE OF CLASS F FLY ASH AND CLEAN-COAL ASH BLENDS FOR CAST OF CLASS F FLYASHAND CLEAN-COAL ASHBLENDS FOR CAST CONCRETE PRODUCTS Authors: TarunR.Naik, Director, Center,Illinois Clean Coal Institute RudolphN.Kraus, Research Associate, UWM Center forBy-Products Utilization Shiw S

  5. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    -Milwaukee, P.O. Box 784, Milwaukee, WI 53201 d Project Manager, Illinois Clean Coal Institute * Director UWM products containing clean coal ash compared to conventional coal ash. Utilization of clean coal ash is much products that utilize clean coal ash. With increasing federal regulations on power plant emissions, finding

  6. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    Center for By-Products Utilization CLEAN COAL BY-PRODUCTS UTILIZATION IN ROADWAY, EMBANKMENTS-fueled plants, particularly use of eastern coals, has lead to the use of clean coal and using advanced sulfur dioxide control technologies. Figure 1 shows clean coal technology benefits(2) . In 1977, the concept

  7. Deregulation and environmental differentiation in the electric utility industry

    E-Print Network [OSTI]

    Delmas, M; Russo, M V; Montes-Sancho, M J

    2007-01-01T23:59:59.000Z

    between investments in coal generation and investments inthe greater the level of coal generation, the more difficultlower the level of coal generation, the greater the increase

  8. Deregulation and environmental differentiation in the electric utility industry

    E-Print Network [OSTI]

    Delmas, M; Russo, M V; Montes-Sancho, M J

    2007-01-01T23:59:59.000Z

    a Former Monopoly During Deregulation: the British Telecomand Smith, R. D. 1991. Deregulation, Strategic Change, andand Tokat, Y. 2005. Deregulation, Efficiency and Governance

  9. Deregulation and Resource Reconfiguration In The Electric Utility Industry

    E-Print Network [OSTI]

    Delmas, Magali; Russo, Michael V.; Montes-Sancho, Maria J.

    2005-01-01T23:59:59.000Z

    and Smith, R. D. 1991. Deregulation, Strategic Change, anda Former Monopoly During Deregulation: the British Telecomand Tokat, Y. 2005. Deregulation, Efficiency and Governance

  10. DEREGULATION AND RESOURCE RECONFIGURATION IN THE ELECTRIC UTILITY INDUSTRY

    E-Print Network [OSTI]

    Delmas, Magali A; Russo, Michael V.

    2005-01-01T23:59:59.000Z

    and Smit , R. D. 1991. Deregulation, Strategic h Change, anda Former Monopoly During Deregulation: the British Telecomand Tokat, Y. 2005. Deregulation, Efficiency and Governance

  11. Deregulation and environmental differentiation in the electric utility industry

    E-Print Network [OSTI]

    Delmas, M; Russo, M V; Montes-Sancho, M J

    2007-01-01T23:59:59.000Z

    Suppliers. Washington, DC: EIA, September. United StatesAdministration. 1998-1999. Form EIA-861, Annual ElectricInformation Administration (EIA), and the Federal Energy

  12. Deregulation and environmental differentiation in the electric utility industry

    E-Print Network [OSTI]

    Delmas, M; Russo, M V; Montes-Sancho, M J

    2007-01-01T23:59:59.000Z

    Electricity from Renewable Resources: A Review of Utilityprovision of power from renewable resources, the end resultinvestments in renewable energy generating resources. Hence:

  13. Measuring lumbar motion in industry, utilizing the lumbar motion monitor

    E-Print Network [OSTI]

    Bryan, Rex Wade

    1999-01-01T23:59:59.000Z

    for the three planes was 186/?s, 77/?s, and 121/?s respectively. The average maximum acceleration for the three planes was 1314/?s˛ 561/?s˛ and 752/?s˛ respectively. A secondary purpose of this study was to evaluate the LBD risk model incorporated into the LMM...

  14. Efficient Energy Utilization in the Industrial Sector - Case Studies

    E-Print Network [OSTI]

    Davis, S. R.

    1984-01-01T23:59:59.000Z

    . Leakage and misuse of compressed air can normally be reduced by 10 percent, resulting in an annual savings of approximately $10,000 to $20,000. Heat recovery, using air compressor cooling water, can and is being used for space heating...

  15. Economic Impact of Control and Optimization on Industrial Utilities 

    E-Print Network [OSTI]

    Collins, D.; Lang, R.

    1997-01-01T23:59:59.000Z

    that can be a major cost savings opportunity and a strategic contributor to corporate profit. This paper will discuss the economic justifications for boiler control, a methodology to identify and address energy savings, case studies of successful energy...

  16. Deregulation and environmental differentiation in the electric utility industry

    E-Print Network [OSTI]

    Delmas, M; Russo, M V; Montes-Sancho, M J

    2007-01-01T23:59:59.000Z

    States Energy Information Administration. 1998. ChallengesUnited States Energy Information Administration. 1998-1999.EPA), the U.S. Energy Information Administration (EIA), and

  17. Deregulation and environmental differentiation in the electric utility industry

    E-Print Network [OSTI]

    Delmas, M; Russo, M V; Montes-Sancho, M J

    2007-01-01T23:59:59.000Z

    inefficient set of generating plants. Here, in the price-all U.S. electricity generating plants. EGRID containsplants that serve only peak loads, coal has enjoyed steady popularity as a generating

  18. The ''optimal'' structure of the deregulated electric utility industry

    SciTech Connect (OSTI)

    Switzer, Sheldon; Trout, Jeffrey P.

    2007-07-15T23:59:59.000Z

    The optimal structure is one that does not adopt policies that interfere with competitive markets nor create price incentives or subsidies to serve special interests in an attempt to artificially stimulate retail competition. It needs to recognize that the ''natural monopoly'' and public interest criteria still require the regulation of delivery service. (author)

  19. Deregulation and environmental differentiation in the electric utility industry

    E-Print Network [OSTI]

    Delmas, M; Russo, M V; Montes-Sancho, M J

    2007-01-01T23:59:59.000Z

    value green power will see the chance to purchase it and beterm, these purchases can bring the costs of green power to

  20. Financial health of the electric-utility industry

    SciTech Connect (OSTI)

    Not Available

    1982-10-01T23:59:59.000Z

    The following chapters are included: (1) financial health, (2) capital access, (3) causes of deterioration, and (4) implications. (MOW)

  1. DEREGULATION AND RESOURCE RECONFIGURATION IN THE ELECTRIC UTILITY INDUSTRY

    E-Print Network [OSTI]

    Delmas, Magali A; Russo, Michael V.

    2005-01-01T23:59:59.000Z

    National Database of State Incentives for Renewable Energy (National Database of State Incentives for Renewable Energy (

  2. Deregulation and Resource Reconfiguration In The Electric Utility Industry

    E-Print Network [OSTI]

    Delmas, Magali; Russo, Michael V.; Montes-Sancho, Maria J.

    2005-01-01T23:59:59.000Z

    National Database of State Incentives for Renewable Energy (National Database of State Incentives for Renewable Energy (

  3. Deregulation and environmental differentiation in the electric utility industry

    E-Print Network [OSTI]

    Delmas, M; Russo, M V; Montes-Sancho, M J

    2007-01-01T23:59:59.000Z

    National Database of State Incentives for Renewable Energy (National Database of State Incentives for Renewable Energy (

  4. Deregulation and environmental differentiation in the electric utility industry

    E-Print Network [OSTI]

    Delmas, M; Russo, M V; Montes-Sancho, M J

    2007-01-01T23:59:59.000Z

    of State Incentives for Renewable Energy (DSIRE). Interstateof State Incentives for Renewable Energy (Interstate

  5. Fairmont Public Utilities- Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Southern Minnesota Municipal Power Agency ([http://www.smmpa.com SMMPA]) is a joint-action agency which generates and sells reliable electricity at wholesale to its eighteen non-profit, municipally...

  6. Wells Public Utilities- Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Southern Minnesota Municipal Power Agency ([http://www.smmpa.com SMMPA]) is a joint-action agency which generates and sells reliable electricity at wholesale to its eighteen non-profit,...

  7. Preston Public Utilities- Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Southern Minnesota Municipal Power Agency ([http://www.smmpa.com SMMPA]) is a joint-action agency which generates and sells reliable electricity at wholesale to its eighteen non-profit,...

  8. Litchfield Public Utilities- Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Southern Minnesota Municipal Power Agency ([http://www.smmpa.com SMMPA])is a joint-action agency which generates and sells reliable electricity at wholesale to its eighteen non-profit, municipally...

  9. Mora Municipal Utilities- Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Southern Minnesota Municipal Power Agency ([http://www.smmpa.com SMMPA]) is a joint-action agency which generates and sells reliable electricity at wholesale to its eighteen non-profit,...

  10. Lake City Utilities- Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Southern Minnesota Municipal Power Agency ([http://www.smmpa.com SMMPA]) is a joint-action agency which generates and sells reliable electricity at wholesale to its eighteen non-profit,...

  11. Energy Department Develops Tool with Industry to Help Utilities Strengthen

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian NuclearandJunetrackEllen O'KaneSystems (EGS)2015Their Cybersecurity

  12. Breakthrough Industrial Carbon Capture, Utilization and Storage Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Future of CSP: Challenges and OpportunitiesPitch foras

  13. Promoting Energy Efficiency in Industry: Utility Roles and Perspectives 

    E-Print Network [OSTI]

    Limaye, D. R.; Davis, T. D.

    1984-01-01T23:59:59.000Z

    transfer through to $100,000 for 23 energy effic workshops on third party ient projects for small financing and cogeneration. businesses; customized energy management incentives; energy ? Direct Customer Contact efficient motor incentives...

  14. Manufacturers and Utilities to Accelerate Industry Uptake of...

    Energy Savers [EERE]

    maximize competitive advantage." SEP is a certification program that builds on the ISO 50001 energy management standard to verify energy performance improvements and savings...

  15. Fort Collins Utilities - Commercial and Industrial Energy Efficiency Rebate

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy Chinaof EnergyImpactOnSTATEMENT8.pdf MoreRevisedProgramCostFWP brochure

  16. Secretary Moniz Announces the Launch of New Veterans' Utility Industry

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015ParentsMiddle SchoolPhysicsDeliveryfor LoanEfficientTransition Effort

  17. Secretary Moniz Announces the Launch of New Veterans' Utility Industry

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCO OverviewRepository |Complex" atTransformational Energy

  18. Federal Utility Partnership Working Group Industry Commitment | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy June 6-7, 2013 Meeting Federal RegisterCoal1 Report Page 1NOVEMBERof

  19. Workforce Trends in the Electric Utility Industry | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartment of EnergyThePatricia Hoffman isTheWorkforce PlanningSection

  20. Manufacturers and Utilities to Accelerate Industry Uptake of Superior

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas »ofMarketingSmart WindowsDepartment of

  1. Decoupling Utility Profits from Sales: Issues for the Photovoltaic Industry

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197 This workDayton: ENERGY8Decommissioning Plan| Department

  2. Working With Industry and Utilities to Promote Electric Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative JC3 RSS SeptemberRenewableAbout Key ActivitiesWhyCrystalRoad Map |

  3. Working With Industry and Utilities to Promote Electric Vehicles |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradley NickellApril 16,2015 Earth Day Photo Contest

  4. Workforce Trends in the Electric Utility Industry | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric VehicleCenters | DepartmentKavitaEnergy SafelyDepartment ofWorkforce

  5. Industrial Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The Energy Materials Center at CornellOf SmartIndustrial Users The

  6. Industry @ ALS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The Energy Materials Center at CornellOf SmartIndustrial Users

  7. Industrial Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)HydrogenRFP »summerlectures [ICO]default Sign InIndustrial

  8. Utility downsizings pose a dilemma for regulators

    SciTech Connect (OSTI)

    Cross, P.S.

    1993-08-01T23:59:59.000Z

    A utility's job-generating potential is critical to most local economies. At the same time, however, high utility employment levels maintain an upward pressure on rates, an effect that does not escape regulators' notice, especially during an economic slowdown. More than on regulator has been heard to say that hard-hit ratepayers should not be called on to support what some may seen as a bloated utility workforce scaled to better times. To complicate things even more, popular cost-cutting goals that include improving productivity and relying more on conservation could mean fewer jobs, at least at the utility. What's more, utility rates play a significant role in how local industries and businesses respond to an economic slowdown. This interplay of economic forces has complicated the ratemaking process. The size of a utility's workforce is an issue of growing significance in rate hearings. Forecasts for test-period salary and wage expenses are less reliable. Early retirement plans promise future savings for ratepayers, but at a cost today.

  9. Financial statistics of major US publicly owned electric utilities 1993

    SciTech Connect (OSTI)

    Not Available

    1995-02-01T23:59:59.000Z

    The 1993 edition of the Financial Statistics of Major U.S. Publicly Owned Electric Utilities publication presents five years (1989 to 1993) of summary financial data and current year detailed financial data on the major publicly owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with current and historical data that can be used for policymaking and decision making purposes related to publicly owned electric utility issues. Generator and nongenerator summaries are presented in this publication. The primary source of publicly owned financial data is the Form EIA-412, the Annual Report of Public Electric Utilities, filed on a fiscal basis.

  10. Utility battery storage systems. Program report for FY95

    SciTech Connect (OSTI)

    Butler, P.C.

    1996-03-01T23:59:59.000Z

    Sandia National Laboratories, New Mexico, conducts the Utility Battery Storage Systems Program, which is sponsored by the U.S. Department of Energy`s Office of Utility Technologies. The goal of this program is to assist industry in developing cost-effective battery systems as a utility resource option by 2000. Sandia is responsible for the engineering analyses, contracted development, and testing of rechargeable batteries and systems for utility energy storage applications. This report details the technical achievements realized during fiscal year 1995.

  11. Methodology and results of the impacts of modeling electric utilities ; a comparative evaluation of MEMM and REM

    E-Print Network [OSTI]

    Baughman, Martin L.

    1981-01-01T23:59:59.000Z

    This study compares two models of the U.S. electric utility industry including the EIA's electric utility submodel in the Midterm Energy Market Model (MEMM), and the Baughman-Joskow Regionalized Electricity Model (REM). ...

  12. Mechanical & Industrial Engineering

    E-Print Network [OSTI]

    Mountziaris, T. J.

    Mechanical & Industrial Engineering 1 Welcome MIE Industrial Advisory Board October 15, 2010 #12;Mechanical & Industrial Engineering 2 MIE Dorothy Adams Undergraduate/Graduate Secretary David Schmidt Associate Professor & Graduate Program Director #12;Mechanical & Industrial Engineering 3 MIE James Rinderle

  13. Industrial Decision Making 

    E-Print Network [OSTI]

    Elliott, R. N.; McKinney, V.; Shipley, A.

    2008-01-01T23:59:59.000Z

    and industrial investment decision-making. The paper will also address several important questions: • Why has industrial investment declined? • What is the outlook for industrial investment? • How can programs engage industry for future opportunities?...

  14. Financial statistics of selected publicly owned electric utilities 1989. [Contains glossary

    SciTech Connect (OSTI)

    Not Available

    1991-02-06T23:59:59.000Z

    The Financial Statistics of Selected Publicly Owned Electric Utilities publication presents summary and detailed financial accounting data on the publicly owned electric utilities. The objective of the publication is to provide the Federal and State governments, industry, and the general public with data that can be used for policymaking and decision making purposes relating to publicly owned electric utility issues. 21 tabs.

  15. Renewable Energy Price-Stability Benefits in Utility Green Power Programs

    SciTech Connect (OSTI)

    Bird, L. A.; Cory, K. S.; Swezey, B. G.

    2008-08-01T23:59:59.000Z

    This paper examines utility experiences when offering the fixed-price benefits of renewable energy in green pricing programs, including the methods utilized and the impact on program participation. It focuses primarily on utility green pricing programs in states that have not undergone electric industry restructuring.

  16. Public Utilities Act (Illinois)

    Broader source: Energy.gov [DOE]

    This act aims to make energy services in the state reliable and efficient, while preserving the quality if the environment. It states the duties of public utilities in terms of accounts and reports...

  17. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    Center for By-Products Utilization DRAFT REPORT CARBON DIOXIDE SEQUESTRATION IN CEMENTITIOUS-MILWAUKEE #12;CARBON DIOXIDE SEQUESTRATION IN CEMENTITIOUS PRODUCTS Progress Report by Tarun R. Naik, Rakesh of Carbon Dioxide Sequestration Technologies

  18. Public Utilities (Florida)

    Broader source: Energy.gov [DOE]

    Chapter 366 of the Florida Statutes governs the operation of public utilities, and includes a section pertaining to cogeneration and small power production (366.051). This section establishes the...

  19. Cogeneration - A Utility Perspective

    E-Print Network [OSTI]

    Williams, M.

    1983-01-01T23:59:59.000Z

    Cogeneration has become an extremely popular subject when discussing conservation and energy saving techniques. One of the key factors which effect conservation is the utility viewpoint on PURPA and cogeneration rule making. These topics...

  20. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    subbituminous and lignite coals. It is anticipated that increased number of coal- fired plants will utilize subbituminous and lignite coals to reduce sulfur-related emissions. Some correlation exists between chemical

  1. Gas Utilities (Maine)

    Broader source: Energy.gov [DOE]

    Rules regarding the production, sale, and transfer of manufactured gas will also apply to natural gas. This section regulates natural gas utilities that serve ten or more customers, more than one...

  2. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    -Products Utilization E-mail: ymchun@uwm.edu and F. D. Botha Project Manager, Illinois Clean Coal Institute 5776 Coal, University of Wisconsin-Milwaukee, Milwaukee, WI, USA. 4 Project Manager, Illinois Clean Coal Institute

  3. Gas Utilities (New York)

    Broader source: Energy.gov [DOE]

    This chapter regulates natural gas utilities in the State of New York, and describes standards and procedures for gas meters and accessories, gas quality, line and main extensions, transmission and...

  4. Extraction Utility Design Specification

    Energy Savers [EERE]

    Extraction Utility Design Specification January 11, 2011 Document Version 1.9 1 Revision History Date Version Section and Titles Author Summary of Change January 15, 2010 1.0 All...

  5. Utility Metering- AGL Resources

    Broader source: Energy.gov [DOE]

    Presentation—given at the Spring 2013 Federal Utility Partnership Working Group (FUPWG) meeting—discusses AGL Resources metering, including interruptible rate customers, large users, and meeting federal metering goals.

  6. Industrial DSM Programs: Low-Cost Resource and Smart Customer Service

    E-Print Network [OSTI]

    Jaussaud, D.

    customers through demand-side management programs. The economic consequences of the utility's involvement has been far-reaching in each of the cases presented, and these examples illustrate the close interdependence between utilities and all industries...

  7. INDUSTRIAL ENGINEERING Industrial engineering is concerned

    E-Print Network [OSTI]

    INDUSTRIAL ENGINEERING Industrial engineering is concerned with looking at the "big picture" of systems that allow organizations and individuals to perform at their best. Industrial engineers bridge should be used and how they should be used. The focus of industrial engineering is on process improvement

  8. INDUSTRIAL ENGINEERING Industrial engineering is concerned

    E-Print Network [OSTI]

    INDUSTRIAL ENGINEERING Industrial engineering is concerned with looking at the "big picture" of systems that allow organizations and individuals to perform at their best. Industrial engineers bridge should be used and how they should be used. Industrial engineers design and run the factories and systems

  9. Maximizing Energy Savings Reliability in BC Hydro Industrial Demand-side Management Programs

    E-Print Network [OSTI]

    Victoria, University of

    Maximizing Energy Savings Reliability in BC Hydro Industrial Demand-side Management Programs Supervisory Committee Maximizing Energy Savings Reliability in BC Hydro Industrial Demand-side Management of Environmental Studies) Departmental Member For energy utilities faced with expanded jurisdictional energy

  10. Industrial Energy: Counseling the Marriage Between Energy Users and Efficiency Programs

    E-Print Network [OSTI]

    Russell, C.

    2013-01-01T23:59:59.000Z

    to reduce utility bills can become a strategic partnership for boosting industry competitiveness and economic growth. This approach necessarily involves capital investment choices. Aside from the usual technical analyses, industry managers and program...

  11. Economic and Policy Factors Affecting Energy Efficiency Improvements in the U. S. Paper Industry

    E-Print Network [OSTI]

    Freund, S. H.

    1984-01-01T23:59:59.000Z

    The U.S. pulp, paper and paperboard industry has made significant improvements over the past eleven years in the energy efficiency of its operations. The industry is firmly committed to: increased utilization of important renewable domestic energy...

  12. Industrial Energy Management: Doing More with Less 

    E-Print Network [OSTI]

    Sheppard, J.; Tisot, A.

    2006-01-01T23:59:59.000Z

    INDUSTRIAL ENERGY MANAGEMENT: DOING MORE WITH LESS Jason Sheppard, Industrial Market Segment Manager Anthony Tisot, Communications Manager Power Monitoring and Control SCHNEIDER ELECTRIC Victoria, BC, Canada ABSTRACT The cost of doing... and quality of electricity can significantly affect operations and profits, it has traditionally been accepted as a non-negotiable business expense — the utility bill is paid each month without question, and the cost goes unchallenged. But energy is not a...

  13. Energy Conservation in China North Industries Corporation

    E-Print Network [OSTI]

    You, W. T.; De, C. H.; Chu, J. X.; Fu, L. R.

    . In some plants which have stable steam consumption we have established small scale power and steam cogeneration. This has improved boilers' efficiencies and utilization of energy. For further reduction oil firing, we have been studying on alternative... ENERGY CONSERVATION IN CHINA NORTH INDUSTRIES CORPORATION Wang Tian You, Chen Hua De, Jing Xing Chu, Ling Rui Fu, China North Industries Corporation Beijing, People's Republic of China ABSTRACT This paper describes an overview of the energy...

  14. Industrial Fuel Switching - Emerging NGL Opportunities 

    E-Print Network [OSTI]

    Cascone, R.

    2004-01-01T23:59:59.000Z

    INDUSTRIAL FUEL SWITCHING - EMERGING NGL OPPORTUNITIES Ron Cascone Manager Special Projects, Utilities and Environmental Nexant, Inc. White Plains, NY ABSTRACT Removing butanes and pentanes from gasoline to meet local... feedstocks, convert them to alternative fuels, or sell them as heating fuels. Industrial fuel users can switch from fuel oil, natural gas or LPG for short periods to these clean and/or more economic fuels. Current regulations will necessitate removing...

  15. Steam Path Audits on Industrial Steam Turbines

    E-Print Network [OSTI]

    Mitchell, D. R.

    in sellable power output as a result of improved turbine efficiency. The Lyondell facility is a combined cycle power plant where a gas turbine: heat recovery system supplies steam to the steam turbine. Since this steam is a bypropuct of the gas turbine...steam Path Audits on Industrial steam Turbines DOUGLAS R. MITCHELL. ENGINEER. ENCOTECH, INC., SCHENECTADY, NEW YORK ABSTRACT The electric utility industry has benefitted from steam path audits on steam turbines for several years. Benefits...

  16. Encouraging Industrial Demonstrations of Fuel Cell Applications

    E-Print Network [OSTI]

    Anderson, J. M.

    ENCOURAGING INDUSTRIAL DEMONSTRATIONS OF FUEL CELL APPLICATIONS Joseph M~ Anderson, P.E. INDUSTRIAL FUEL CELL ASSOCIATION Lake Charles, Louisiana ABSTRACT Fuel Cell technology has advanced from a space-age curiosity to near commercial status... within the last few years. Both the electric and the gas utilities in the United States have conducted ambitious programs to oemonstrate the practicality of fuel cell power plants in a number of applications. The Japanese have been equally active...

  17. Industrial Demand-Side Management in Texas

    E-Print Network [OSTI]

    Jaussaud, D.

    of programs result in lower consumption and/or lower peak demand, and ultimately reduce the need to build new capacity. Hence demand-side management can be used as a resource option to be considered alongside more traditional supply-side resources in a...INDUSTRIAL DEMAND-SIDE MANAGEMENT IN TEXAS Danielle Jaussaud Economic Analysis Section Public Utility Commission of Texas Austin, Texas ABSTRACT The industrial sector in Texas is highly energy intensive and represents a large share...

  18. "List of Covered Electric Utilities" under the Public Utility...

    Office of Environmental Management (EM)

    8 "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) - 2008 Under Title I of the Public Utility Regulatory Policies Act of 1978...

  19. "List of Covered Electric Utilities" under the Public Utility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9 "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) - 2009 Under Title I, Sec. 102(c) of the Public Utility Regulatory Policies...

  20. Guidebook for Using the Tool BEST Cement: Benchmarking and Energy Savings Tool for the Cement Industry

    E-Print Network [OSTI]

    Galitsky, Christina

    2009-01-01T23:59:59.000Z

    the small cement plants, earthen vertical kiln (and hollowcement plant in North China utilizing vertical shaft kilnsCement Industry Technical Conference: 75- Replacing Vertical Shaft Kilns