Sample records for verification working group

  1. QEP WORKING GROUP CHARGES Assessment Working Group

    E-Print Network [OSTI]

    Liu, Paul

    and a framework that details timelines, leadership, resource allocation, and an assessment plan that is clearlyQEP WORKING GROUP CHARGES Assessment Working Group The topic of the QEP should fit should be supported by a thorough understanding of the institutional context and by assessment data

  2. Interagency Sustainability Working Group

    Broader source: Energy.gov [DOE]

    The Interagency Sustainability Working Group (ISWG) is the coordinating body for sustainable buildings in the federal government.

  3. Working group report: Neutrino physics

    E-Print Network [OSTI]

    2009-01-01T23:59:59.000Z

    Working group report: Neutrino physics Acknowledgements TheWorking group report: Neutrino physics Coordinators: SANDHYAthe report of the neutrino physics working group at WHEPP-X.

  4. Working Group Report: Sensors

    SciTech Connect (OSTI)

    Artuso, M.; et al.,

    2013-10-18T23:59:59.000Z

    Sensors play a key role in detecting both charged particles and photons for all three frontiers in Particle Physics. The signals from an individual sensor that can be used include ionization deposited, phonons created, or light emitted from excitations of the material. The individual sensors are then typically arrayed for detection of individual particles or groups of particles. Mounting of new, ever higher performance experiments, often depend on advances in sensors in a range of performance characteristics. These performance metrics can include position resolution for passing particles, time resolution on particles impacting the sensor, and overall rate capabilities. In addition the feasible detector area and cost frequently provides a limit to what can be built and therefore is often another area where improvements are important. Finally, radiation tolerance is becoming a requirement in a broad array of devices. We present a status report on a broad category of sensors, including challenges for the future and work in progress to solve those challenges.

  5. High Temperature Membrane Working Group

    Broader source: Energy.gov [DOE]

    This presentation provides an overview of the High Temperature Membrane Working Group Meeting in May 2007.

  6. Site clearance working group

    SciTech Connect (OSTI)

    NONE

    1997-03-01T23:59:59.000Z

    The Gulf of Mexico and Louisiana continue to be areas with a high level of facility removal, and the pace of removal is projected to increase. Regulations were promulgated for the Gulf of Mexico and Louisiana requiring that abandoned sites be cleared of debris that could interfere with fishing and shrimping activities. The site clearance regulations also required verification that the sites were clear. Additionally, government programs were established to compensate fishermen for losses associated with snagging their equipment on oil and gas related objects that remained on the water bottoms in areas other than active producing sites and sites that had been verified as clear of obstructions and snags. The oil and gas industry funds the compensation programs. This paper reviews the regulations and evolving operating practices in the Gulf of Mexico and Louisiana where site clearance and fisherman`s gear compensation regulations have been in place for a number of years. Although regulations and guidelines may be in place elsewhere in the world, this paper focuses on the Gulf of Mexico and Louisiana. Workshop participants are encouraged to bring up international issues during the course of the workshop. Additionally, this paper raises questions and focuses on issues that are of concern to the various Gulf of Mexico and Louisiana water surface and water bottom stakeholders. This paper does not have answers to the questions or issues. During the workshop participants will debate the questions and issues in an attempt to develop consensus opinions and/or make suggestions that can be provided to the appropriate organizations, both private and government, for possible future research or policy adjustments. Site clearance and facility removal are different activities. Facility removal deals with removal of the structures used to produce oil and gas including platforms, wells, casing, piles, pipelines, well protection structures, etc.

  7. Water Resources Working Group Report

    E-Print Network [OSTI]

    Sheridan, Jennifer

    Water Resources Working Group Report This report provided content for the Wisconsin Initiative in February 2011. #12;Water Resources Working Group Wisconsin Initiative on Climate Change Impacts October 2010 #12;Water Resources Working Group Members ­ WICCI Tim Asplund (Co-Chair) - Wisconsin Department

  8. Working Group Reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsingWhat is abigpresented in theWorkBusiness1: Model4:

  9. Infrared Thermography (IRT) Working Group

    Broader source: Energy.gov (indexed) [DOE]

    Infrared Thermography (IRT) Working Group Sco McWilliams U.S. Photovoltaic Manufacturing Consor;um (PVMC) Infrared Thermography Infrared Thermography (IRT) has been demonstrated...

  10. Federal Utility Partnership Working Group

    Broader source: Energy.gov [DOE]

    The Federal Utility Partnership Working Group (FUPWG) establishes partnerships and facilitates communications among Federal agencies, utilities, and energy service companies. The group develops strategies to implement cost-effective energy efficiency and water conservation projects through utility incentive programs at Federal sites.

  11. TEC Working Group Topic Groups Archives Communications Meeting...

    Office of Environmental Management (EM)

    TEC Working Group Topic Groups Archives Communications Conference Call Summaries TEC Meeting Summaries - January 1997 TEC Working Group Topic Groups Tribal Conference Call...

  12. Comment submitted by Hobart/ITW Food Equipment Group regarding the Energy Star Verification Testing Program

    Broader source: Energy.gov [DOE]

    This document is a comment submitted by Hobart/ITW Food Equipment Group regarding the Energy Star Verification Testing Program

  13. CFCC working group meeting: Proceedings

    SciTech Connect (OSTI)

    NONE

    1997-12-31T23:59:59.000Z

    This report is a compilation of the vugraphs presented at this meeting. Presentations covered are: CFCC Working Group; Overview of study on applications for advanced ceramics in industries for the future; Design codes and data bases: The CFCC program and its involvement in ASTM, ISO, ASME, and military handbook 17 activities; CFCC Working Group meeting (McDermott Technology); CFCC Working Group meeting (Textron); CFCC program for DMO materials; Developments in PIP-derived CFCCs; Toughened Silcomp (SiC-Si) composites for gas turbine engine applications; CFCC program for CVI materials; Self-lubricating CFCCs for diesel engine applications; Overview of the CFCC program`s supporting technologies task; Life prediction methodologies for CFCC components; Environmental testing of CFCCs in combustion gas environments; High-temperature particle filtration ORNL/DCC CRADA; HSCT CMC combustor; and Case study -- CFCC shroud for industrial gas turbines.

  14. Chemical Safety Vulnerability Working Group report. Volume 2

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    The Chemical Safety Vulnerability (CSV) Working Group was established to identify adverse conditions involving hazardous chemicals at DOE facilities that might result in fires or explosions, release of hazardous chemicals to the environment, or exposure of workers or the public to chemicals. A CSV Review was conducted in 148 facilities at 29 sites. Eight generic vulnerabilities were documented related to: abandoned chemicals and chemical residuals; past chemical spills and ground releases; characterization of legacy chemicals and wastes; disposition of legacy chemicals; storage facilities and conditions; condition of facilities and support systems; unanalyzed and unaddressed hazards; and inventory control and tracking. Weaknesses in five programmatic areas were also identified related to: management commitment and planning; chemical safety management programs; aging facilities that continue to operate; nonoperating facilities awaiting deactivation; and resource allocations. Volume 2 consists of seven appendices containing the following: Tasking memorandums; Project plan for the CSV Review; Field verification guide for the CSV Review; Field verification report, Lawrence Livermore National Lab.; Field verification report, Oak Ridge Reservation; Field verification report, Savannah River Site; and the Field verification report, Hanford Site.

  15. Federal Utility Partnership Working Group Meeting Chairman's...

    Office of Environmental Management (EM)

    Meeting Chairman's Corner Federal Utility Partnership Working Group Meeting Chairman's Corner Presentation-given at the Fall 2012 Federal Utility Partnership Working Group (FUPWG)...

  16. Federal Utility Partnership Working Group Meeting: Washington...

    Broader source: Energy.gov (indexed) [DOE]

    Federal Utility Partnership Working Group Meeting: Washington Update fupwgspring12unruh.pdf More Documents & Publications Federal Utility Partnership Working Group Meeting:...

  17. Federal Utility Partnership Working Group Participants | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Participants Federal Utility Partnership Working Group Participants The following Federal agencies have participated in the Federal Utility Partnership Working Group or engaged in...

  18. Federal Utility Partnership Working Group Seminar: Chairman's...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Utility Partnership Working Group Seminar: Chairman's Corner Federal Utility Partnership Working Group Seminar: Chairman's Corner Presentation covers the Federal Utility...

  19. Federal Utility Partnership Working Group Meeting: Washington...

    Energy Savers [EERE]

    Federal Utility Partnership Working Group Meeting: Washington Update Federal Utility Partnership Working Group Meeting: Washington Update Presentation-given at the Fall 2012...

  20. Federal Utility Partnership Working Group Utility Partners

    Broader source: Energy.gov [DOE]

    Federal Utility Partnership Working Group (FUPWG) utility partners are eager to work closely with Federal agencies to help achieve energy management goals.

  1. Agenda: High Temperature Membrane Working Group Meeting

    Broader source: Energy.gov [DOE]

    Agenda for the High Temperature Membrane Working Group (HTMWG) meeting on May 18, 2009, in Arlington, Virginia

  2. Employment Verification Form The University of Florida Human Resource Services uses The Work Number to provide employment

    E-Print Network [OSTI]

    Mazzotti, Frank

    Rev. 2/14 Employment Verification Form The University of Florida Human Resource Services uses The Work Number to provide employment verifications for current and former employees who terminated-800-367-5690 to obtain employment verification. For more information regarding The Work Number, or UF employment

  3. TEC Working Group Topic Groups Rail Conference Call Summaries...

    Office of Environmental Management (EM)

    September 11, 1998 Meeting June 22, 1998 Meeting May 27, 1998 Meeting November 3, 1997 Meeting September 18, 1997 Meeting More Documents & Publications TEC Working Group...

  4. Federal Utility Partnership Working Group Participants

    Broader source: Energy.gov [DOE]

    The following Federal agencies have participated in the Federal Utility Partnership Working Group or engaged in a utility energy service contract project.

  5. Federal Utility Partnership Working Group Industry Commitment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industry Commitment Federal Utility Partnership Working Group Industry Commitment Investor-owned electric utility industry members of the Edison Electric Institute pledge to assist...

  6. Fusion Technology Working Group Presented by

    E-Print Network [OSTI]

    Abdou, Mohamed

    Snowmass Fusion Technology Working Group Summary Presented by M. Abdou, S. Milora Snowmass July 23, 1999 #12;Technology Working Group Subgroup # 1 Subgroup # 2 Solid Walls Ulrickson / Mattas Liquid Walls / Ying Chamber Technology Abdou / Ulrickson Heating/CD/Fueling Swain / Temkin Magnets Schultz / Woolley

  7. September 8, 2011, HSS/Union Focus Group Work Group Telecom - Work Group Charter

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary of EnergyFocus Group HSS/Union Work Group Telecom

  8. September 8, 2011, HSS/Union Focus Group Work Group Telecom - Work Group Guidance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary of EnergyFocus Group HSS/Union Work Group Telecom7-29-11

  9. September 8, 2011, HSS/Union Focus Group Work Group Telecom - Work Group matrix

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary of EnergyFocus Group HSS/Union Work Group Telecom7-29-11Rev

  10. RISK ASSESSMENT TECHNICAL EXPERT WORKING GROUP

    Broader source: Energy.gov [DOE]

    The Risk Assessment Technical Expert Working Group (RWG) is established to assist the Department of Energy (DOE) with the appropriate and effective use of quantitative risk assessment in nuclear...

  11. Safety Monitor Joint Working Group (JWG) Tour

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 th Meeting of the Joint Working Group of the U.S.-Japan Coordinating Committee of Fusion Energy on Safety in Inter-Institutional Collaborations (U.S.-Japan Safety Monitoring...

  12. Energy Management Working Group: Accelerating Energy Management 

    E-Print Network [OSTI]

    Scheihing, P.

    2014-01-01T23:59:59.000Z

    Countries participating in the Global Superior Energy Performance (GSEP) Energy Management Working Group (EMWG) are leveraging their resources and taking collective action to strengthen national and international efforts to facilitate the adoption...

  13. Federal Utility Partnership Working Group Seminar Agenda

    Office of Environmental Management (EM)

    Federal Utility Partnership Working Group Seminar November 5-6, 2014 Cape Canaveral, FL Hosted by: Florida Power & Light Monday, November 3 9:00 am - 4:30 pm Advanced UESC...

  14. Informal Assessment Work Group Meeting Notes

    E-Print Network [OSTI]

    O'Laughlin, Jay

    Informal Assessment Work Group Meeting Notes November 15, 2006 Present: Rula Awwad-Rafferty, Doug Baker, Dick Battaglia, Ben Beard, Suzi Billington, Alton Campbell, Jeanne Christiansen, Gail Eckwright is completed for all programs by May 2007? (Can we do the level of work needed in this time period?) Doug

  15. Military Munitions Waste Working Group report

    SciTech Connect (OSTI)

    Not Available

    1993-11-30T23:59:59.000Z

    This report presents the findings of the Military Munitions Waste Working Group in its effort to achieve the goals directed under the Federal Advisory Committee to Develop On-Site Innovative Technologies (DOIT Committee) for environmental restoration and waste management. The Military Munitions Waste Working Group identified the following seven areas of concern associated with the ordnance (energetics) waste stream: unexploded ordnance; stockpiled; disposed -- at known locations, i.e., disposal pits; discharged -- impact areas, unknown disposal sites; contaminated media; chemical sureties/weapons; biological weapons; munitions production; depleted uranium; and rocket motor and fuel disposal (open burn/open detonation). Because of time constraints, the Military Munitions Waste Working Group has focused on unexploded ordnance and contaminated media with the understanding that remaining waste streams will be considered as time permits. Contents of this report are as follows: executive summary; introduction; Military Munitions Waste Working Group charter; description of priority waste stream problems; shortcomings of existing approaches, processes and technologies; innovative approaches, processes and technologies, work force planning, training, and education issues relative to technology development and cleanup; criteria used to identify and screen potential demonstration projects; list of potential candidate demonstration projects for the DOIT committee decision/recommendation and appendices.

  16. Locally Led Conservation The Local Work Group

    E-Print Network [OSTI]

    Grants ­ Conservation Stewardship Program ­ Environmental Quality Incentive Program ­ Farm & Ranch Lands1 Locally Led Conservation & The Local Work Group Mark Habiger NRCS #12;2 What Is "Locally Led Conservation"? · Community Stakeholders ­ 1. Assessing their natural resource conservation needs ­ 2. Setting

  17. DOE Hydrogen Pipeline Working Group Workshop

    E-Print Network [OSTI]

    Laporte, TX to near Lake Charles, LA. This system has approximately 228 miles of DOT regulated H2 pipeline of DOT regulated H2 pipeline. Portions of this system operating since early 1983. Pipeline sizeDOE Hydrogen Pipeline Working Group Workshop August 31, 2005 Augusta, Georgia #12;Hydrogen Pipeline

  18. Spent Fuel Working Group Report. Volume 1

    SciTech Connect (OSTI)

    O`Toole, T.

    1993-11-01T23:59:59.000Z

    The Department of Energy is storing large amounts of spent nuclear fuel and other reactor irradiated nuclear materials (herein referred to as RINM). In the past, the Department reprocessed RINM to recover plutonium, tritium, and other isotopes. However, the Department has ceased or is phasing out reprocessing operations. As a consequence, Department facilities designed, constructed, and operated to store RINM for relatively short periods of time now store RINM, pending decisions on the disposition of these materials. The extended use of the facilities, combined with their known degradation and that of their stored materials, has led to uncertainties about safety. To ensure that extended storage is safe (i.e., that protection exists for workers, the public, and the environment), the conditions of these storage facilities had to be assessed. The compelling need for such an assessment led to the Secretary`s initiative on spent fuel, which is the subject of this report. This report comprises three volumes: Volume I; Summary Results of the Spent Fuel Working Group Evaluation; Volume II, Working Group Assessment Team Reports and Protocol; Volume III; Operating Contractor Site Team Reports. This volume presents the overall results of the Working Group`s Evaluation. The group assessed 66 facilities spread across 11 sites. It identified: (1) facilities that should be considered for priority attention. (2) programmatic issues to be considered in decision making about interim storage plans and (3) specific vulnerabilities for some of these facilities.

  19. Federal ESPC Steering Committee Working Group Charter ESPC Data Working Group (WG)

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Federal ESPC Steering Committee Working Group Charter Name ESPC Data Working Group (WG) Problem information on their ESPC projects, differing reporting requirements and definitions of terms have made underscored the need to make ESPC-related data more accurate and complete, so that it can be used more

  20. Chemical Safety Vulnerability Working Group report. Volume 3

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    The Chemical Safety Vulnerability (CSV) Working Group was established to identify adverse conditions involving hazardous chemicals at DOE facilities that might result in fires or explosions, release of hazardous chemicals to the environment, or exposure of workers or the public to chemicals. A CSV Review was conducted in 148 facilities at 29 sites. Eight generic vulnerabilities were documented related to: abandoned chemicals and chemical residuals; past chemical spills and ground releases; characterization of legacy chemicals and wastes; disposition of legacy chemicals; storage facilities and conditions; condition of facilities and support systems; unanalyzed and unaddressed hazards; and inventory control and tracking. Weaknesses in five programmatic areas were also identified related to: management commitment and planning; chemical safety management programs; aging facilities that continue to operate; nonoperating facilities awaiting deactivation; and resource allocations. Volume 3 consists of eleven appendices containing the following: Field verification reports for Idaho National Engineering Lab., Rocky Flats Plant, Brookhaven National Lab., Los Alamos National Lab., and Sandia National Laboratories (NM); Mini-visits to small DOE sites; Working Group meeting, June 7--8, 1994; Commendable practices; Related chemical safety initiatives at DOE; Regulatory framework and industry initiatives related to chemical safety; and Chemical inventory data from field self-evaluation reports.

  1. TEC Working Group Topic Groups Routing | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2Uranium Transferon the PassingRouting TEC Working Group Topic Groups Routing

  2. TEC Working Group Topic Groups Section 180(c) Meeting Summaries |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2Uranium Transferon the PassingRouting TEC Working Group Topic Groups

  3. Energy Management Working Group: Accelerating Energy Management

    E-Print Network [OSTI]

    Scheihing, P.

    2014-01-01T23:59:59.000Z

    for Standardization (ISO) published the ISO 50001 energy management standard in 2011. ISO 50001 provides industrial companies with guidelines for integrating energy efficiency into their management practices— including fine-tuning production processes... efficiency. GSEP’s Energy Management Working Group (EMWG) advocates the increased adoption of EnMS or ISO 50001 in industry and commercial buildings. It goal is to accelerate the adoption and use of energy management systems in industrial facilities...

  4. TEC Working Group Topic Groups Security | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2Uranium Transferon the PassingRouting TEC Working Group Topic

  5. TEC Working Group Topic Groups Tribal | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2Uranium Transferon the PassingRouting TEC Working Group TopicDepartmentTribal

  6. Federal Utility Partnership Working Group Overview (FUPWG) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-07-01T23:59:59.000Z

    Fact sheet overview of the Federal Utility Partnership Working Group (FUPWG), including group objectives, activities, and services.

  7. Photoelectrochemical Working Group | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHA Administrative Judgea. Part BPhotoelectrochemical Working Group

  8. Infrared Thermography (IRT) Working Group | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Infrared Thermography (IRT) Working Group Infrared Thermography (IRT) Working Group Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado...

  9. 2014-07-08 Issuance: ASRAC Manufactured Housing Working Group...

    Energy Savers [EERE]

    4-07-08 Issuance: ASRAC Manufactured Housing Working Group; Notice of Membership 2014-07-08 Issuance: ASRAC Manufactured Housing Working Group; Notice of Membership This document...

  10. Hydrogen Storage Systems Anlaysis Working Group Meeting, December...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Anlaysis Working Group Meeting, December 12, 2006 Hydrogen Storage Systems Anlaysis Working Group Meeting, December 12, 2006 This document provides a summary of the Hydrogen...

  11. Hydrgoen Storage Systems Analysis Working Group Meeting Summary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrgoen Storage Systems Analysis Working Group Meeting Summary Report Hydrgoen Storage Systems Analysis Working Group Meeting Summary Report Summary report from the May 17, 2007...

  12. Fuel Cell Council Working Group on Aircraft and Aircraft Ground...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Council Working Group on Aircraft and Aircraft Ground Support Fuel Cell Applications Fuel Cell Council Working Group on Aircraft and Aircraft Ground Support Fuel Cell Applications...

  13. Working Group Report: Lattice Field Theory

    SciTech Connect (OSTI)

    Blum, T.; et al.,

    2013-10-22T23:59:59.000Z

    This is the report of the Computing Frontier working group on Lattice Field Theory prepared for the proceedings of the 2013 Community Summer Study ("Snowmass"). We present the future computing needs and plans of the U.S. lattice gauge theory community and argue that continued support of the U.S. (and worldwide) lattice-QCD effort is essential to fully capitalize on the enormous investment in the high-energy physics experimental program. We first summarize the dramatic progress of numerical lattice-QCD simulations in the past decade, with some emphasis on calculations carried out under the auspices of the U.S. Lattice-QCD Collaboration, and describe a broad program of lattice-QCD calculations that will be relevant for future experiments at the intensity and energy frontiers. We then present details of the computational hardware and software resources needed to undertake these calculations.

  14. Federal Utility Partnership Working Group Seminar: Washington Update

    Broader source: Energy.gov [DOE]

    Presentation covers the Federal Utility Partnership Working Group Seminar: Washington Update on May 22, 2013.

  15. EFCOG Work Management Sub-Working Group Session on Overview and...

    Broader source: Energy.gov (indexed) [DOE]

    EFCOG Work Management Sub-Working Group Session on Overview and Results from WP&C Assist Visits across Complex EFCOG Work Management Sub-Working Group Session on Overview and...

  16. THE HIGGS WORKING GROUP: SUMMARY REPORT.

    SciTech Connect (OSTI)

    DAWSON, S.; ET AL.

    2005-08-01T23:59:59.000Z

    This working group has investigated Higgs boson searches at the Tevatron and the LHC. Once Higgs bosons are found their properties have to be determined. The prospects of Higgs coupling measurements at the LHC and a high-energy linear e{sup +}e{sup -} collider are discussed in detail within the Standard Model and its minimal supersymmetric extension (MSSM). Recent improvements in the theoretical knowledge of the signal and background processes are presented and taken into account. The residual uncertainties are analyzed in detail. Theoretical progress is discussed in particular for the gluon-fusion processes gg {yields} H(+j), Higgs-bremsstrahlung off bottom quarks and the weak vector-boson-fusion (VBF) processes. Following the list of open questions of the last Les Houches workshop in 2001 several background processes have been calculated at next-to-leading order, resulting in a significant reduction of the theoretical uncertainties. Further improvements have been achieved for the Higgs sectors of the MSSM and NMSSM. This report summarizes our work performed before and after the workshop in Les Houches. Part A describes the theoretical developments for signal and background processes. Part B presents recent progress in Higgs boson searches at the Tevatron collider. Part C addresses the determination of Higgs boson couplings, part D the measurement of tan {beta} and part E Higgs boson searches in the VBF processes at the LHC. Part F summarizes Higgs searches in supersymmetric Higgs decays, part G photonic Higgs decays in Higgs-strahlung processes at the LHC, while part H concentrates on MSSM Higgs bosons in the intense-coupling regime at the LHC. Part I presents progress in charged Higgs studies and part J the Higgs discovery potential in the NMSSM at the LHC. The last part K describes Higgs coupling measurements at a 1 TeV linear e{sup +}e{sup -} collider.

  17. T2 working group summary report

    SciTech Connect (OSTI)

    S. Caspi et al.

    2002-11-19T23:59:59.000Z

    The T2 Working Group has reviewed and discussed the issues and challenges of a wide range of magnet technologies: superconducting magnets using NbTi, Nb{sub 3}Sn and HTS conductor with fields ranging from 2-15 T and permanent magnets up to 4 T. The development time of these technologies varies significantly, but all are considered viable, providing an unprecedented variety of choice that can be determined by a balance of cost and application requirements. One of the most significant advances since Snowmass '96 is the increased development and utilization of Nb{sub 3}Sn. All of the current US magnet programs (BNL, FNAL, LBNL, and Texas A and M) have programs using Nb{sub 3}Sn. There are also active programs in HTS development at BNL and LBNL. A DOE/HEP sponsored program to increase the performance and reduce the cost of Nb{sub 3}Sn is in its second year. The program has already made significant advances. The current funding for this program is $500k/year and an increase to $2M has been proposed for FY02.

  18. Federal Utility Partnership Working Group 2011 Meeting: Washington...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2011 Meeting: Washington Update Federal Utility Partnership Working Group 2011 Meeting: Washington Update Presentation-given at the Fall 2011 Federal Utility Partnership Working...

  19. Working Group Report on - Space Nuclear Power Systems and Nuclear...

    Energy Savers [EERE]

    Working Group Report on - Space Nuclear Power Systems and Nuclear Waste Technology R&D Working Group Report on - Space Nuclear Power Systems and Nuclear Waste Technology R&D "Even...

  20. High Temperature Membrane Working Group Meeting, May 14, 2007

    Broader source: Energy.gov [DOE]

    This agenda provides information about the High Temperature Membrane Working Group Meeting on May 14, 2007 in Arlington, Va.

  1. Proposed Agenda for High T Working Group Meeting: Paris

    Broader source: Energy.gov [DOE]

    Proposed agenda for the High Temperature Membrane Working Group Meeting held in Arlington, Virginia, Thursday, May 26,2005.

  2. Agenda for the High Temperature Membrane Working Group Meeting

    Broader source: Energy.gov [DOE]

    This agenda provides information about the Agenda for the High Temperature Membrane Working Group Meeting on September 14, 2006.

  3. Federal Utility Partnership Working Group: Welcome to Portland

    Broader source: Energy.gov [DOE]

    Presentation covers welcoming attendees to Portland at the Spring 2011 Federal Utility Partnership Working Group (FUPWG) meeting.

  4. International Working Group for New Virtual Reality Applications in Architecture

    E-Print Network [OSTI]

    's developed VR applications in architecture. Group members come from eight universities around the worldWORLD8 International Working Group for New Virtual Reality Applications in Architecture YOSHIHIRO the activities of World8, an international working group on virtual reality (VR), and demonstrates the group

  5. Hydrogen Storage Workshop Advanced Concepts Working Group

    E-Print Network [OSTI]

    / Current Status · Aerogels are the scaffold; template with organic functional groups; physisorption, acid benign ­ Inexpensive #12;Self-Assembled Nanocomposites ­ R&D Needs 1. Studying silica aerogels 2. Modifying aerogels 3. Theoretical Modeling - various chemical structures / materials 4. Functionalization

  6. September 2012, Work Force Retention Work Group Status Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary of Energy Advisory10MEASUREMENTSensors,8, 200810Work Force

  7. Work Force Retention Work Group Charter | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian Nuclear Warheads|ofEvents »SSL BasicsKawtarSue CangeWendeWoodWork Force

  8. Water Electrolysis Working Group | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradley Nickell Director ofDepartmentDRAFTEnergy ReviewInnovativeThe

  9. TEC Working Group Topic Groups Security Meeting Summaries | Department of

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssues DOE'sSummaryDepartmentEnergy Meeting Summaries TEC Working

  10. Catalysis Working Group | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJuneWaste To Wisdom:EnergyJoshuaThis work plan proposesThe

  11. Transuranic Waste Transportation Working Group Agenda

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssuesEnergyTransportation Work Package ReportsSouthern States Energy

  12. Research Highlights Sorted by Working Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements Recently ApprovedReliabilityPrincipalResearchMaking SenseTitleWorking

  13. Meetings of the Federal Utility Partnership Working Group

    Broader source: Energy.gov [DOE]

    The Federal Utility Partnership Working Group (FUPWG) meets twice per year to share success stories, information on Federal Energy Management Program activities and other business.

  14. 2014-06-09 Issuance: Regional Standards Enforcement Working Group...

    Energy Savers [EERE]

    ISSUANCE 2015-06-30: Appliance Standards and Rulemaking Federal Advisory Committee: Notice of Intent to Establish the Central Air Conditioners and Heat Pumps Working Group...

  15. Hydrogen Storage Systems Analysis Working Group Meeting: Summary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Summary of June 11, 2008, biannual meeting of the Hydrogen Storage Systems Analysis Working Group. ssawgsummaryreport0608.pdf More Documents & Publications Hydrgoen Storage...

  16. Federal Utility Partnership Working Group Meeting Financing Session Compilation

    Broader source: Energy.gov [DOE]

    Presentation covers the Space Coast Next Generation Solar Energy Center given at the Spring 2009 Federal Utility Partnership Working Group (FUPWG) meeting in Biloxi, Mississippi.

  17. assessment working group: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (PV) Systems June 2012 First Edition 12;California Solar Permitting Guidebook2 47 DOE Hydrogen Pipeline Working Group Workshop Renewable Energy Websites Summary: DOE Hydrogen...

  18. airp work group: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (PV) Systems June 2012 First Edition 12;California Solar Permitting Guidebook2 35 DOE Hydrogen Pipeline Working Group Workshop Renewable Energy Websites Summary: DOE Hydrogen...

  19. analysis working group: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (PV) Systems June 2012 First Edition 12;California Solar Permitting Guidebook2 48 DOE Hydrogen Pipeline Working Group Workshop Renewable Energy Websites Summary: DOE Hydrogen...

  20. aer working group: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (PV) Systems June 2012 First Edition 12;California Solar Permitting Guidebook2 37 DOE Hydrogen Pipeline Working Group Workshop Renewable Energy Websites Summary: DOE Hydrogen...

  1. Webinar: ASRAC Commercial/Industrial Pumps Working Group

    Broader source: Energy.gov [DOE]

    DOE is conducting a public meeting and webinar for the Appliance Standards and Rulemaking Federal Advisory Committee's (ASRAC) Commercial and Industrial Pumps Working Group. For more information,...

  2. Federal Utility Partnership Working Group Meeting Financing Session...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Financing Session Compilation Federal Utility Partnership Working Group Meeting Financing Session Compilation Presentation covers the Space Coast Next Generation Solar Energy...

  3. LPCC MB&UE Working Group CERN February 7, 2011

    E-Print Network [OSTI]

    Field, Richard

    of 2! Jan Fiete Grosse-Oetringhaus LPCC MB&UE Meeting September 2010 #12;LPCC MB&UE Working Group CERN

  4. Hydrogen Storage Systems Analysis Working Group Meeting: Summary...

    Broader source: Energy.gov (indexed) [DOE]

    Hydrogen Storage Systems Analysis Working Group Meeting Argonne DC Offices L'Enfant Plaza, Washington, DC December 4, 2007 SUMMARY REPORT Compiled by Romesh Kumar Argonne National...

  5. International Technical Working Group Round Robin Tests

    SciTech Connect (OSTI)

    Dudder, Gordon B.; Hanlen, Richard C.; Herbillion, Georges M.

    2003-02-01T23:59:59.000Z

    The goal of nuclear forensics is to develop a preferred approach to support illicit trafficking investigations. This approach must be widely understood and accepted as credible. The principal objectives of the Round Robin Tests are to prioritize forensic techniques and methods, evaluate attribution capabilities, and examine the utility of database. The HEU (Highly Enriched Uranium) Round Robin, and previous Plutonium Round Robin, have made tremendous contributions to fulfilling these goals through a collaborative learning experience that resulted from the outstanding efforts of the nine participating internal laboratories. A prioritized list of techniques and methods has been developed based on this exercise. Current work is focused on the extent to which the techniques and methods can be generalized. The HEU Round Robin demonstrated a rather high level of capability to determine the important characteristics of the materials and processes using analytical methods. When this capability is combined with the appropriate knowledge/database, it results in a significant capability to attribute the source of the materials to a specific process or facility. A number of shortfalls were also identified in the current capabilities including procedures for non-nuclear forensics and the lack of a comprehensive network of data/knowledge bases. The results of the Round Robin will be used to develop guidelines or a ''recommended protocol'' to be made available to the interested authorities and countries to use in real cases.

  6. Summary of the TeV33 working group

    SciTech Connect (OSTI)

    Bagley, P.P.; Bieniosek, F.M.; Colestock, P. [and others

    1996-10-01T23:59:59.000Z

    This summary of the TeV33 working group at Snowmass reports on work in the areas of Tevatron store parameters, the beam-beam interaction, Main Injector intensity (slip stacking), antiproton production, and electron cooling.

  7. Summary Report of the Energy Issues Working Group

    E-Print Network [OSTI]

    Information Agency Annual Energy Outlook 1999. #12;Fusion Power Plant Attractiveness, Technical RiskSummary Report of the Energy Issues Working Group Organizer: Farrokh Najmabadi Covenors: Jeffrey Sauthoff 1999 Fusion Summer Study July 12-23, 1999, Snowmass, CO Energy Working Group Web Site: http

  8. Hydrogen Storage Systems Analysis Working Group Meeting Argonne DC Offices

    E-Print Network [OSTI]

    Hydrogen Storage Systems Analysis Working Group Meeting Argonne DC Offices L'Enfant Plaza, Washington, DC December 4, 2007 SUMMARY REPORT Compiled by Romesh Kumar Argonne National Laboratory Working Group Meeting December 4, 2007 Argonne DC Offices, L'Enfant Plaza, Washington, DC Meeting

  9. Presentation of progress of work in the "Accident Analysis" working group

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Presentation of progress of work in the "Accident Analysis" working group J.P. PINEAU INERIS Summary The "Accident Analysis" - AA - working group, initiated in January 1993, was at the origin of this investigation were presented at the Autumn 1994 ESReDA Seminar on Accident Analysis. A second step of the AA

  10. Working Group 5 Applying Mathematics in Realistic Situations Group Leaders: Ivan Meznik & Enrica Lemut

    E-Print Network [OSTI]

    Spagnolo, Filippo

    Working Group 5 ­ Applying Mathematics in Realistic Situations Group Leaders: Ivan Meznik & Enrica Lemut Seven papers have been presented and discussed out of the 9 announced and the 8 included people presenting a contribution participated to all the Working Group sessions; also other people

  11. STAFFREPORT Prepared for the Bioenergy Interagency Working Group

    E-Print Network [OSTI]

    STAFFREPORT Prepared for the Bioenergy Interagency Working Group: Air Resources Board 2010 2009 PROGRESS TO PLAN BIOENERGY ACTION PLAN FOR CALIFORNIA CALIFORNIA ENERGY COMMISSION #12, and et. al. 2010. 2009 Progress to Plan Bioenergy Action Plan for California. California Energy

  12. Microsoft PowerPoint - DEC1387487090408 OECM Working Group April...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Team MA-50 DOEOECM 1 OECM PARS II Working Group: OA Module April 9, 2009 Created by: EESDekker PARS II Team Agenda * Obtain Consensus On Data Elements That Appear On...

  13. Federal Utility Partnership Working Group- Utility Interconnection Panel

    Broader source: Energy.gov [DOE]

    Presentation—given at at the Fall 2012 Federal Utility Partnership Working Group (FUPWG) meeting—discusses solar/photovoltaic (PV) projects to connect with utility in California and their issues.

  14. ASRAC Fans and Blower Working Group Creation Notice of Intent

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    consensus on the 7 terms of a proposed rule. Representation on the advisory committee or working group may be direct; that is, each member may represent a specific interest, or...

  15. Catalysis Working Group Kick-Off Meeting Agenda

    Broader source: Energy.gov [DOE]

    Agenda for the kick-off meeting of the U.S. Department of Energy Fuel Cell Technologies Program's Catalysis Working Group, held May 14, 2012, in Arlington, Virginia.

  16. NuFact'03 machine working group summary

    SciTech Connect (OSTI)

    T.R. Edgecock; S. Machida; R.A. Rimmer

    2004-10-01T23:59:59.000Z

    The machine working group sessions at NuFact workshops have always been characterized by the presentation and discussion of both new ideas and the developments in existing concepts and by lively debate. The machine sessions at NuFact'03 were no exception to this. In this article, we will try and summarize the work presented and the discussion that took place.

  17. Work and Energy Simulation Name_______________________ Lab Worksheet Group member names__________________________________

    E-Print Network [OSTI]

    Winokur, Michael

    Work and Energy Simulation Name_______________________ Lab Worksheet Group member names://phet.colorado.edu, in a browser and click on the Go to the simulations button. Open Work, Energy, and Power on the left. This lab uses three of the simulations on this page, Masses and Springs, Energy Skate Park, and The Ramp. I

  18. Relative projective cover works for Broue's abelian defect group

    E-Print Network [OSTI]

    Thévenaz, Jacques

    University, Chiba, Japan Tue. 22 June, 2010 Joint work with J¨urgen M¨uller and Felix Noeske Brou´e's abelian that A is a block algebra of OG with a defect group P and that AN is a block algebra of ONG(P) which is the Brauer´e's abelian defect group conjecture holds for all primes p and for all block algebras of OG if G = Co3, where

  19. Museum group works against cyberbullying By Abby Stewart

    E-Print Network [OSTI]

    Belogay, Eugene A.

    Museum group works against cyberbullying By Abby Stewart StarNews Correspondent Published: Monday Month, and to recognize that, local students are participating in The Burnett-Eaton Museum Foundation-Eaton Museum Foundation. Winners of the contest will be announced at a program at 6:30 p.m. Saturday, Oct. 30

  20. BP and Hydrogen Pipelines DOE Hydrogen Pipeline Working Group Workshop

    E-Print Network [OSTI]

    efforts were undertaken · Conversion took place during a period of less regulation on pipeline activityBP and Hydrogen Pipelines DOE Hydrogen Pipeline Working Group Workshop August 30-31, 2005 Gary P · UK partnership opened the first hydrogen demonstration refueling station · Two hydrogen pipelines

  1. Federal Utility Partnership Working Group Spring 2009 Meeting Welcome

    Broader source: Energy.gov [DOE]

    Presentation—given at the Spring 2009 Federal Utility Partnership Working Group (FUPWG) meeting—covers the Federal Energy Management Program (FEMP) mission and services; Energy Independence and Security Act (EISA) Section 432 guidance; and American Reinvestment and Recovery Act (ARRA).

  2. Catalyst Working Group Kick-off Meeting: Personal Commentary

    Broader source: Energy.gov [DOE]

    Personal commentary on future directions in fuel cell electrocatalysis, presented by Mark Debe, 3M, at the kick-off meeting of the U.S. Department of Energy Fuel Cell Technologies Program's Catalysis Working Group, held May 14, 2012, in Arlington, Virginia.

  3. Tennessee Valley and Eastern Kentucky Wind Working Group

    SciTech Connect (OSTI)

    Katie Stokes

    2012-05-03T23:59:59.000Z

    In December 2009, the Southern Alliance for Clean Energy (SACE), through a partnership with the Appalachian Regional Commission, EKPC, Kentucky's Department for Energy Development and Independence, SACE, Tennessee's Department of Environment and Conservation, and TVA, and through a contract with the Department of Energy, established the Tennessee Valley and Eastern Kentucky Wind Working Group (TVEKWWG). TVEKWWG consists of a strong network of people and organizations. Working together, they provide information to various organizations and stakeholders regarding the responsible development of wind power in the state. Members include representatives from utility interests, state and federal agencies, economic development organizations, non-government organizations, local decision makers, educational institutions, and wind industry representatives. The working group is facilitated by the Southern Alliance for Clean Energy. TVEKWWG supports the Department of Energy by helping educate and inform key stakeholders about wind energy in the state of Tennessee.

  4. PROLIFERATION RESISTANCE AND PHYSICAL PROTECTION WORKING GROUP: METHODOLOGY AND APPLICATIONS

    SciTech Connect (OSTI)

    Bari R. A.; Whitlock, J.; Therios, I.U.; Peterson, P.F.

    2012-11-14T23:59:59.000Z

    We summarize the technical progress and accomplishments on the evaluation methodology for proliferation resistance and physical protection (PR and PP) of Generation IV nuclear energy systems. We intend the results of the evaluations performed with the methodology for three types of users: system designers, program policy makers, and external stakeholders. The PR and PP Working Group developed the methodology through a series of demonstration and case studies. Over the past few years various national and international groups have applied the methodology to nuclear energy system designs as well as to developing approaches to advanced safeguards.

  5. HEP-FCE Working Group on Libraries and Tools

    E-Print Network [OSTI]

    Anders Borgland; Peter Elmer; Michael Kirby; Simon Patton; Maxim Potekhin; Brett Viren; Brian Yanny

    2015-06-03T23:59:59.000Z

    This is a report from the Libraries and Tools Working Group of the High Energy Physics Forum for Computational Excellence. It presents the vision of the working group for how the HEP software community may organize and be supported in order to more efficiently share and develop common software libraries and tools across the world's diverse set of HEP experiments. It gives prioritized recommendations for achieving this goal and provides a survey of a select number of areas in the current HEP software library and tools landscape. The survey identifies aspects which support this goal and areas with opportunities for improvements. The survey covers event processing software frameworks, software development, data management, workflow and workload management, geometry information management and conditions databases.

  6. HEP-FCE Working Group on Libraries and Tools

    E-Print Network [OSTI]

    Borgland, Anders; Kirby, Michael; Patton, Simon; Potekhin, Maxim; Viren, Brett; Yanny, Brian

    2015-01-01T23:59:59.000Z

    This is a report from the Libraries and Tools Working Group of the High Energy Physics Forum for Computational Excellence. It presents the vision of the working group for how the HEP software community may organize and be supported in order to more efficiently share and develop common software libraries and tools across the world's diverse set of HEP experiments. It gives prioritized recommendations for achieving this goal and provides a survey of a select number of areas in the current HEP software library and tools landscape. The survey identifies aspects which support this goal and areas with opportunities for improvements. The survey covers event processing software frameworks, software development, data management, workflow and workload management, geometry information management and conditions databases.

  7. Transport Modeling Working Group Meeting Reports | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic|IndustrialCenter Gets PeopleTransmissionModeling Working Group

  8. Summary of the particle physics and technology working group

    SciTech Connect (OSTI)

    Stephan Lammel et al.

    2002-12-10T23:59:59.000Z

    Progress in particle physics has been tightly related to technological advances during the past half century. Progress in technologies has been driven in many cases by the needs of particle physics. Often, these advances have benefited fields beyond particle physics: other scientific fields, medicine, industrial development, and even found commercial applications. The particle physics and technology working group of Snowmass 2001 reviewed leading-edge technologies recently developed or in the need of development for particle physics. The group has identified key areas where technological advances are vital for progress in the field, areas of opportunities where particle physics may play a principle role in fostering progress, and areas where advances in other fields may directly benefit particle physics. The group has also surveyed the technologies specifically developed or enhanced by research in particle physics that benefit other fields and/or society at large.

  9. Preliminary results of the APAC spills working group

    SciTech Connect (OSTI)

    Brereton, S.; Hesse, D.; kalinich, D.; Lazaro, M.; Mubayi, V.; Shinn, J.

    1996-04-01T23:59:59.000Z

    The Spills Working Group is one of 6 working groups under the DOE-DP Accident Phenomenology and Consequence (APAC) methodology evaluation program. Objectives are to assess methodologies available in this area, evaluate their adequacy for accident analysis at DOE facilities, identify development needs, and define standard practices to be followed in the analyses supporting facility safety basis documentation. The group focused on methodologies for estimating 4 types of spill source terms: liquid chemical spills and evaporation, pressurized liquid/gas releases, solid spills and resuspension/sublimation, and resuspension of particulate matter from liquid spills. Computer models were identified with capabilities for quantifying release rates or released amounts from spills, and a set of sample test problems was established for evaluating a specific model for some common or probable accident release scenarios. The group agreed on a set of recommended computer codes which are classified according to spill type and hazard category. Code results for a given problem varied by up to an order of magnitude; this is attributed to differences in how the physics and thermodynamics of the problems were treated by the models.

  10. LEDSGP/about/working-groups | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to: navigation,working-groups < LEDSGP‎ | about Jump to: navigation, search

  11. US-EU-Japan Working Group on Critical Materials

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian Nuclear Warheads into Fuel forShale_Gas.pdfUS-EU-Japan Working Group on

  12. Work Group Leadership Meetings: Transition Elements | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric VehicleCenters | DepartmentKavita RaviValerie ReedWork Group Leadership

  13. Summary of working group g: beam material interaction

    SciTech Connect (OSTI)

    Kiselev, D.; /PSI, Villigen; Mokhov, N.V.; /Fermilab; Schmidt, R.; /CERN

    2010-11-01T23:59:59.000Z

    For the first time, the workshop on High-Intensity and High-Brightness Hadron Beams (HB2010), held at Morschach, Switzerland and organized by the Paul Scherrer Institute, included a Working group dealing with the interaction between beam and material. Due to the high power beams of existing and future facilities, this topic is already of great relevance for such machines and is expected to become even more important in the future. While more specialized workshops related to topics of radiation damage, activation or thermo-mechanical calculations, already exist, HB2010 provided the occasion to discuss the interplay of these topics, focusing on components like targets, beam dumps and collimators, whose reliability are crucial for a user facility. In addition, a broader community of people working on a variety of issues related to the operation of accelerators could be informed and their interest sparked.

  14. November 13 - 15, 2012 HSS Work Group Leadership Meeting Summary - Work Force Retention

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment of Energy NorthB O|Work Force Retention Work Group

  15. September 8, 2011, HSS/Union Focus Group Work Group Telecom - Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary of EnergyFocus Group HSS/Union Work Group Telecom September

  16. September 8, 2011, HSS/Union Focus Group Work Group Telecom - Meeting Overview and Action Summary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary of EnergyFocus Group HSS/Union Work Group Telecom September

  17. TEC Working Group Topic Groups Section 180(c) | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2Uranium Transferon the PassingRouting TEC Working Group Topic GroupsSection

  18. Working Group Report: Computing for the Intensity Frontier

    SciTech Connect (OSTI)

    Rebel, B.; Sanchez, M.C.; Wolbers, S.

    2013-10-25T23:59:59.000Z

    This is the report of the Computing Frontier working group on Lattice Field Theory prepared for the proceedings of the 2013 Community Summer Study ("Snowmass"). We present the future computing needs and plans of the U.S. lattice gauge theory community and argue that continued support of the U.S. (and worldwide) lattice-QCD effort is essential to fully capitalize on the enormous investment in the high-energy physics experimental program. We first summarize the dramatic progress of numerical lattice-QCD simulations in the past decade, with some emphasis on calculations carried out under the auspices of the U.S. Lattice-QCD Collaboration, and describe a broad program of lattice-QCD calculations that will be relevant for future experiments at the intensity and energy frontiers. We then present details of the computational hardware and software resources needed to undertake these calculations.

  19. Minutes of the October 2008 Meeting of the High Temperature Membrane Working Group

    Broader source: Energy.gov [DOE]

    Meeting minutes of the High Temperature Membrane Working Group from October 16, 2008, in Honolulu, Hawaii.

  20. Working Groups Collaborate on U.S. Virgin Islands Clean Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Working Groups Collaborate on U.S. Virgin Islands Clean Energy Vision and Road Map Working Groups Collaborate on U.S. Virgin Islands Clean Energy Vision and Road Map A diverse set...

  1. 12010-10-21 ESDSWG -Technolgy Infusion Working Group Technology Infusion Process

    E-Print Network [OSTI]

    Christian, Eric

    12010-10-21 ESDSWG - Technolgy Infusion Working Group Technology Infusion Process Steve Olding 9th Infusion Working Group Technology Infusion Process 2009 Stakeholder needs identification Science needs End technologies Candidate technologies Known infusion barriers Infusion planning Technology matching Identified

  2. Interagency Sustainability Working Group: Update Report; December 2009, Federal Energy Management Program (FEMP) (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2009-12-01T23:59:59.000Z

    December 2009 update report offered by the Interagency Sustainability Working Group (ISWG). This report is updated bi-annually.

  3. INDIAN COUNTRY ENERGY AND INFRASTRUCTURE WORKING GROUP ICEIWG

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    waste (which addresses tribal environmental issues) o How to encourage DOE to develop a technology assessment group focused on biomass? o Role of U.S. Department of Agriculture...

  4. Doing Ethos-Work: Exploring Group Ethos Among Indie Musicians

    E-Print Network [OSTI]

    Warnock, Jon D.

    2010-04-26T23:59:59.000Z

    Utilizing the perspectives of Goffman, Aristotle and Burke this study investigated the concepts of ethos and group ethos in three case studies of indie music artists as discursive performances of character in action through ...

  5. Group work with families of nursing home residents 

    E-Print Network [OSTI]

    Duncan, Richard Tillett

    1985-01-01T23:59:59.000Z

    the counseling orientation. Both formats have been offered to families of nursing home residents, but it is not known if one format offers more positive results than the other, or if there is any difference. The study attempts to measure results in terms... consist. Thus, one of the goals of this study was to eventually improve the programs and services which nursing homes provide. By observing and recording the development of each group and by measuring each group's effectiveness in the terms described...

  6. United States-Japan Nuclear Security Working Group | National Nuclear

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City,EnrichedSupplemental Directives |and

  7. Workforce Retention Work Group Status Overview - July 2012 | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradley NickellApril 16, 2008Ms.12.1AJanuary 2013,This report

  8. EM QA Working Group September 2011 Meeting Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory Board Contributions EM HighlightsSeptemberQUALITY ASSURANCE WORKING

  9. July 2012, 10 CFR 851 Work Group Status Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report: I11IG002RTC3 |Julian Wong About10 CFR 851 Work

  10. Catalysis Working Group Meeting: June 2014 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Change RequestFirstchampions, checklists,CaseyCatalysis Working

  11. Working Group Reports A Short-Wave Radiometer Array Across

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsingWhat is abigpresented in theWorkBusiness1: Model4:9

  12. Working Group Reports Unmanned Aerospace Vehicle Workshop J. Vitko, Jr.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsingWhat is abigpresented in theWorkBusiness1: Model4:97

  13. State and Tribal Government Working Group Visits the Fernald Preserve |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014,Zaleski - PolicyWorkSunShotBelowTheThe documentLessonsReview |out

  14. Metadata Working Group Activity Summary for 2009-2010 (Prepared by Steven Folsom, Chair of Metadata Working Group)

    E-Print Network [OSTI]

    Schweik, Charles M.

    Service - Inform the process for inclusion of local digital collections in a discovery service platform of metadata for digital objects within the UMass Libraries. The survey was sent to all Department Heads and a small number of other librarians who are known to work with digital objects and metadata. The questions

  15. The ChiCI Group This paper describes the work, the vision, and the

    E-Print Network [OSTI]

    welcomes associate members from similar research groups around the globe. Eight of the full membersThe ChiCI Group Abstract This paper describes the work, the vision, and the approach of the Child Computer Interaction (ChiCI) group at the University of Central Lancashire in the UK. This group, formed

  16. 2015-03-26 Issuance: Fans and Blowers ASRAC Working Group; Notice...

    Office of Environmental Management (EM)

    Group Notice of Intent.pdf More Documents & Publications 2015-03-26: Miscellaneous Refrigeration Products; Notice of Intent to Establish an ASRAC Working Group 2014-06-09...

  17. Risk Assessment Technical Expert Working Group (RWG) Conference Call Minutes, March 8, 2010

    Broader source: Energy.gov [DOE]

    Risk Assessment Technical Experts Working Group Charter – The steeringcommittee discussed the draft charter. Two recommended changes were agreed upon:• A sentence will be added to identify that the...

  18. Network Working Group S. Bryant, Ed. Request for Comments: 3985 Cisco Systems

    E-Print Network [OSTI]

    Wood, Lloyd

    Network Working Group S. Bryant, Ed. Request for Comments: 3985 Cisco Systems Category . . . . . . . . . . . . . . . . . . . . . . . . . 17 5. PW Encapsulation. . . . . . . . . . . . . . . . . . . . . . . 18 Bryant & Pate Standards Track

  19. Risk Assessment Technical Expert Working Group (RWG)Conference Call Minutes, February 20, 2010

    Broader source: Energy.gov [DOE]

    Risk Assessment Technical Experts Working Group Charter – discussed whoshould sign and at what level the charter should be authorized. It was concluded thatthe Under Secretaries as the Central...

  20. High Temperature Membrane Working Group, Minutes of Meeting on September 14, 2006

    Broader source: Energy.gov [DOE]

    These meeting minutes provide information about the High Temperature Membrane Working Group meeting on September 14, 2006 in San Francisco, Ca.

  1. AGS SUPER NEUTRINO BEAM FACILITY ACCELERATOR AND TARGET SYSTEM DESIGN (NEUTRINO WORKING GROUP REPORT-II).

    SciTech Connect (OSTI)

    DIWAN,M.; MARCIANO,W.; WENG,W.; RAPARIA,D.

    2003-04-21T23:59:59.000Z

    This document describes the design of the accelerator and target systems for the AGS Super Neutrino Beam Facility. Under the direction of the Associate Laboratory Director Tom Kirk, BNL has established a Neutrino Working Group to explore the scientific case and facility requirements for a very long baseline neutrino experiment. Results of a study of the physics merit and detector performance was published in BNL-69395 in October 2002, where it was shown that a wide-band neutrino beam generated by a 1 MW proton beam from the AGS, coupled with a half megaton water Cerenkov detector located deep underground in the former Homestake mine in South Dakota would be able to measure the complete set of neutrino oscillation parameters: (1) precise determination of the oscillation parameters {Delta}m{sub 32}{sup 2} and sin{sup 2} 2{theta}{sub 32}; (2) detection of the oscillation of {nu}{sub {mu}}-{nu}{sub e} and measurement of sin{sup 2} 2{theta}{sub 13}; (3) measurement of {Delta}m{sub 21}{sup 2} sin 2{theta}{sub 12} in a {nu}{sub {mu}} {yields} {nu}{sub e} appearance mode, independent of the value of {theta}{sub 13}; (4) verification of matter enhancement and the sign of {Delta}m{sub 32}{sup 2}; and (5) determination of the CP-violation parameter {delta}{sub CP} in the neutrino sector. This report details the performance requirements and conceptual design of the accelerator and the target systems for the production of a neutrino beam by a 1.0 MW proton beam from the AGS. The major components of this facility include a new 1.2 GeV superconducting linac, ramping the AGS at 2.5 Hz, and the new target station for 1.0 MW beam. It also calls for moderate increase, about 30%, of the AGS intensity per pulse. Special care is taken to account for all sources of proton beam loss plus shielding and collimation of stray beam halo particles to ensure equipment reliability and personal safety. A preliminary cost estimate and schedule for the accelerator upgrade and target system are also included.

  2. May 21, 2012, Office of Health, Safety and Security (HSS) Focus Group Work Force Retention Work Group Charter

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312), October 20122 DOEDepartmentJune 29,05-21-12Work Force

  3. The SM and NLO Multileg Working Group: Summary Report

    SciTech Connect (OSTI)

    Andersen, J.R.; Archibald, J.; Badger, S.; Ball, R.D.; Bevilacqua, G.; Bierenbaum, I.; Binoth, T.; Boudjema, F.; Boughezal, R.; Bredenstein, A.; Britto, R.; Campanelli, M.; Campbell, J.; Carminati, L.; Chachamis, G.; Ciulli, V.; Cullen, G.; Czakon, M.; Del Debbio, L.; Denner, A.; Dissertori, G.; /Edinburgh U. /Zurich, ETH /Michigan State U. /CAFPE, Granada /CERN /Durham U., IPPP /DESY, Zeuthen /Democritos Nucl. Res. Ctr. /Valencia U., IFIC /Annecy, LAPTH /Zurich U. /KEK, Tsukuba /Saclay, SPhT /University Coll. London /Fermilab /INFN, Milan /Milan U. /PSI, Villigen /Florence U. /INFN, Florence /RWTH Aachen U.

    2012-04-10T23:59:59.000Z

    After years of waiting, and after six Les Houches workshops, the era of LHC running is finally upon us, albeit at a lower initial center-of-mass energy than originally planned. Thus, there has been a great sense of anticipation from both the experimental and theoretical communities. The last two years, in particular, have seen great productivity in the area of multi-parton calculations at leading order (LO), next-to-leading order (NLO) and next-to-next-to-leading order (NNLO), and this productivity is reflected in the proceedings of the NLM group. Both religions, Feynmanians and Unitarians, as well as agnostic experimenters, were well-represented in both the discussions at Les Houches, and in the contributions to the write-up. Next-to-leading order (NLO) is the first order at which the normalization, and in some cases the shape, of perturbative cross sections can be considered reliable. This can be especially true when probing extreme kinematic regions, as for example with boosted Higgs searches considered in several of the contributions to this writeup. A full understanding for both standard model and beyond the standard model physics at the LHC requires the development of fast, reliable programs for the calculation of multi-parton final states at NLO. There have been many advances in the development of NLO techniques, standardization and automation for such processes and this is reflected in the contributions to the first section of this writeup. Many calculations have previously been performed with the aid of semi-numerical techniques. Such techniques, although retaining the desired accuracy, lead to codes which are slow to run. Advances in the calculation of compact analytic expressions for Higgs + 2 jets have resulted in the development of much faster codes, which extend the phenomenology that can be conducted, as well as making the code available to the public for the first time. A prioritized list of NLO cross sections was assembled at Les Houches in 2005 and added to in 2007. This list includes cross sections which are experimentally important, and which are theoretically feasible (if difficult) to calculate. Basically all 2-3 cross sections of interest have been calculated, with the frontier now extending to 2 {yields} 4 calculations. Often these calculations exist only as private codes. Since 2007, two additional calculations have been completed: t{bar t}b{bar b} and W+3 jets, reflecting the advance of the NLO technology to 2 {yields} 4 processes. In addition, the cross section for b{bar b}b{bar b} has been calculated for the q{bar q} initial state with the gg initial state calculation in progress. Final states of such complexity usually lead to multi-scale problems, and the correct choice of scales to use can be problematic not only at LO, but also at NLO. The size of the higher order corrections and of the residual scale dependence at NLOcan depend strongly on whether the considered cross section is inclusive, or whether a jet veto cut has been applied. Depending on the process, dramatically different behavior can be observed upon the application of a jet veto. There is a trade-off between suppressing the NLO cross section and increasing the perturbative uncertainty, with application of a jet veto sometimes destroying the cancellation between infra-red logs of real and virtual origin, and sometimes just suppressing large (and very scale-sensitive) tree-level contributions. So far, there is no general rule predicting the type of behavior to be expected, but this is an important matter for further investigation. From the experimental side, an addition to the above wish-list that will be crucial is the determination of the accuracy to which each of the calculations needs to be known. This is clearly related to the experimental accuracy at which the cross sections can be measured at the LHC, and can determine, for example, for what processes it may be necessary to calculate electo-weak corrections, in addition to the higher order QCD corrections. On the theoretical side, it would also be interesting to categorize

  4. CCSM Polar Climate Working Group The Village at Breckenridge, Aspen/Bighorn Rooms

    E-Print Network [OSTI]

    CCSM Polar Climate Working Group AGENDA The Village at Breckenridge, Aspen/Bighorn Rooms Wednesday (Aspen/Bighorn Rooms) Focus: Abrupt Climate Change 1:30 PM-1:40 PM Opening Statement (M. Holland and Z Polar Climate Working Group Meeting (Aspen/Bighorn Rooms) Focus: Model Intercomparison Studies 3:30 PM-3

  5. Joint Working Group-39, Manufacturing Technology Subworking Group-F, remote handling and automation

    SciTech Connect (OSTI)

    Merrill, R.D.

    1995-02-01T23:59:59.000Z

    The terms of reference were reviewed and continue to encompass the scope of activities of the SUBWOG. No revisions to the terms of reference were proposed. The list of site contacts who should receive copies of SUBWOG correspondence and meeting minutes was reviewed and updated. Documents exchanged related to the meeting include: Minutes of the sixth SUBOG 39F meeting; transactions of the fifth topical meeting on robotics and remote handling; data on manipulators was forwarded to LLNL from the robotics group at AEA Harwell; and the specifications of the duct remediation robot from the Rocky Flats Plant.

  6. July 10-11, 2012, HSS Focus Group Training Work Group - Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report: I11IG002RTC3 |Julian Wong About UsHSS Focus Group

  7. July 10-11, 2012, HSS Focus Group Training Work Group - Attendees

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report: I11IG002RTC3 |Julian Wong About UsHSS Focus Group

  8. Chair, CTBT working group B Radionuclide Expert Group and the U.S.

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTubahq.na.gov Office of theNuclear Security AdministrationRadionuclide

  9. TEC Working Group Topic Groups Rail Conference Call Summaries Rail Topic

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssues DOE'sSummaryDepartment ofSecurity03Subgroup | Department ofGroup

  10. April 24, 2012, HSS Focus Group Training Working Group (TWG) Meeting - Agenda

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'s ReplyApplication of SyntheticPowerManagementOpportunityUse23Group Charter

  11. Interagency Advanced Power Group, Joint Electrical and Nuclear Working Group, meeting minutes, November 16--17, 1993

    SciTech Connect (OSTI)

    Not Available

    1993-12-31T23:59:59.000Z

    Reports on soldier power R&D review, N-MCT power electronic building blocks, silicon carbide power semiconductor work, and ground based radar were made to the Power Conditioning Panel. An introduction to high temperature electronics needs, research and development was made to the High Temperature Electronics Subcommittee. The Pulse Power Panel received reports on the navy ETC gun, and army pulse power. The Superconductivity Panel received reports on high-tc superconducting wires, superconducting magnetic energy storage, and superconducting applications. The Nuclear Working Group received presentations on the Topaz nuclear power program, and space nuclear work in the Department of Energy.

  12. Report of the Finance Cost Reduction Working Group to the Federal ESPC Steering Committee

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Report of the Finance Cost Reduction Working Group to the Federal ESPC Steering Committee Reducing Financing Costs for Federal ESPCs Federal Energy Management Program Energy Savings Performance Contracting 2. REQUIREMENTS FOR COMPETITIVE FINANCING ACQUISITION .................................7 2.1 Use

  13. Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group Background Paper

    Broader source: Energy.gov [DOE]

    Paper by Arlene Anderson and Tracy Carole presented at the Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group, with a focus on key drivers, purpose, and scope.

  14. The FERC EBB working group: Put a fork in us, we`re done

    SciTech Connect (OSTI)

    White, B.

    1995-12-31T23:59:59.000Z

    The Federal Energy Regulatory Commission`s (FERC) Order 636 required interstate pipelines to set up electronic bulletin boards for trading released capacity. Their goal was to foster an efficient and competitive secondary market for pipeline capacity. Five working groups were created to address the issues of core capacity, operationally available capacity, customer specific gas flows, communications protocols/operational logistics, and common codes. This paper describes the scope of the working groups and their accomplishments.

  15. Voltage verification unit

    DOE Patents [OSTI]

    Martin, Edward J. (Virginia Beach, VA)

    2008-01-15T23:59:59.000Z

    A voltage verification unit and method for determining the absence of potentially dangerous potentials within a power supply enclosure without Mode 2 work is disclosed. With this device and method, a qualified worker, following a relatively simple protocol that involves a function test (hot, cold, hot) of the voltage verification unit before Lock Out/Tag Out and, and once the Lock Out/Tag Out is completed, testing or "trying" by simply reading a display on the voltage verification unit can be accomplished without exposure of the operator to the interior of the voltage supply enclosure. According to a preferred embodiment, the voltage verification unit includes test leads to allow diagnostics with other meters, without the necessity of accessing potentially dangerous bus bars or the like.

  16. Lessons learned from facilitating the state and tribal government working group

    SciTech Connect (OSTI)

    Kurstedt, H.A. Jr.

    1994-12-31T23:59:59.000Z

    Thirteen lessons learned from my experience in facilitating the State and Tribal Government Working Group for the U.S. Department of Energy have been identified. The conceptual base for supporting the veracity of each lesson has been developed and the lessons are believed to be transferable to any stakeholder group. The crux of stakeholder group success if the two-directional, two-mode empowerment required in this case. Most of the lessons learned deal with the scope of that empowerment. A few of the lessons learned deal with the operations of the group.

  17. Closing plenary summary of working group 4 instrumentation and controls for ERL2011

    SciTech Connect (OSTI)

    Gassner, D.; Obina, T.

    2011-10-16T23:59:59.000Z

    Working group 4 was charged with presentations and discussions on instrumentation and controls with regards to Energy Recovery Linacs (ERL). There were 4 sessions spanning 3.5 hours in which 7 talks were delivered, the first being an invited plenary presentation. The time allotted for each talk was limited to 20-25 minutes in order to allow 5-10 minutes for discussion. Most of the talks were held in joint session with working group 5 (Unwanted Beam Loss). This format was effective for the purpose of this workshop. A final series of discussion sessions were also held with working group 5. Summary of the working group 4 activities, presented in the closing plenary session. We had a plenary presentation on operational performance, experience, and future plans at the existing ERL injector prototype at Cornell. This included instrumentation data, controls system configurations, as well as description of future needs. This was followed by four talks from KEK and RIKEN/SPring-8 that described electron beam instrumentation already in use or under development that can be applied to ERL facilities. The final talks described the ERLs under construction at KEK and BNL. The format of having joint sessions with working group 5 was beneficial as there were a significant number of common topics and concerns with regards to the causes of beam loss, instrumentation hardware, and techniques used to measure and analyze beam loss.

  18. Final report of the accident phenomenology and consequence (APAC) methodology evaluation. Spills Working Group

    SciTech Connect (OSTI)

    Brereton, S.; Shinn, J. [Lawrence Livermore National Lab., CA (United States); Hesse, D [Battelle Columbus Labs., OH (United States); Kaninich, D. [Westinghouse Savannah River Co., Aiken, SC (United States); Lazaro, M. [Argonne National Lab., IL (United States); Mubayi, V. [Brookhaven National Lab., Upton, NY (United States)

    1997-08-01T23:59:59.000Z

    The Spills Working Group was one of six working groups established under the Accident Phenomenology and Consequence (APAC) methodology evaluation program. The objectives of APAC were to assess methodologies available in the accident phenomenology and consequence analysis area and to evaluate their adequacy for use in preparing DOE facility safety basis documentation, such as Basis for Interim Operation (BIO), Justification for Continued Operation (JCO), Hazard Analysis Documents, and Safety Analysis Reports (SARs). Additional objectives of APAC were to identify development needs and to define standard practices to be followed in the analyses supporting facility safety basis documentation. The Spills Working Group focused on methodologies for estimating four types of spill source terms: liquid chemical spills and evaporation, pressurized liquid/gas releases, solid spills and resuspension/sublimation, and resuspension of particulate matter from liquid spills.

  19. European Working Groupe on Internal Erorion in embankment dams April 12th to 14th 2010, Granada, Spain

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    European Working Groupe on Internal Erorion in embankment dams April 12th to 14th 2010, Granada Working Groupe on Internal Erosion in embankment dams, Granada : Spain (2010)" #12;

  20. Report on the NGS3 Working Group on Safeguards by Design For Aqueous Reprocessing Plants

    SciTech Connect (OSTI)

    Johnson, Shirley J.; Ehinger, Michael; Schanfein, Mark

    2011-02-01T23:59:59.000Z

    The objective of the Working Group on SBD for Aqueous Reprocessing Facilities was to provide recommendations, for facility operators and designers, which would aid in the coordination and integration of nuclear material accountancy and the safeguards requirements of all concerned parties - operators, state/regional authorities, and the IAEA. The recommendations, which are to be provided to the IAEA, are intended to assist in optimizing facility design and operating parameters to ensure the safeguardability of the facility while minimizing impact on the operations. The one day Working Group session addressed a wide range of design and operating topics.

  1. From Awareness to TeamRooms, GroupWeb and TurboTurtle: Eight Snapshots of Recent Work in the

    E-Print Network [OSTI]

    Greenberg, Saul

    From Awareness to TeamRooms, GroupWeb and TurboTurtle: Eight Snapshots of Recent Work in the Group. and Cockburn, A. (1995) From Awareness to TeamRooms, GroupWeb and TurboTurtle: Eight Snapshots of Recent Work in the GroupLab Project. Research Report 95/580/32, Department of Computer Science, University of Calgary

  2. Parity Violation in Photonuclear Reactions at HIGS Submission to Fundamental Symmetries and Neutrino Physics Working Group

    E-Print Network [OSTI]

    and Neutrino Physics Working Group H. Gao,1 S.S. Jawalker,1 M.R. Schindler,2 W.M. Snow,3 R.P. Springer,1 and Ying Wu1 1 Department of Physics, Duke University, Durham, NC 27708, USA 2 Department of Physics; W. Xu*, Shanghai Institute of Applied Physics; Shi-Lin Zhu, Peking U; * to be confirmed I

  3. Service station requirements for safe use of hydrogen based fuels: NHA work group update

    SciTech Connect (OSTI)

    Coutts, D.A. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1997-12-31T23:59:59.000Z

    This paper consists of viewgraphs which summarize the results of the meeting of the working group on safety standards. A standard for an odorant for hydrogen leak detection is set forth. Recent activities with the National Fire Protection Association and the International Standard Organization are enumerated. The path forward is also summarized.

  4. Updated by Cornell University Library PSEC Documentation Working Group (August 2010) Search GuideCornell University

    E-Print Network [OSTI]

    Rodriguez, Carlos

    the specific item you wish to find. Boolean operators To search for an exact phrase, enclose the search terms, will search for either of the words listed in the search box. The minus sign will exclude terms from yourUpdated by Cornell University Library PSEC Documentation Working Group (August 2010) Search Guide

  5. HUMAN RESOURCES WORKING GROUP: ACTION PLAN VISION PRIORITY: MAXIMIZING OUR HUMAN RESOURCES

    E-Print Network [OSTI]

    Sheridan, Jennifer

    HUMAN RESOURCES WORKING GROUP: ACTION PLAN VISION PRIORITY: MAXIMIZING OUR HUMAN RESOURCES, and student body." From David Ward, "A Vision for the Future," p. 9. This document lists the human-resource goals and plans of the Office of Human Resources, the Equity and Diversity Resource Center

  6. Hydrogen Storage Systems Analysis Working Group Meeting 2007 Hydrogen Program Annual Review

    E-Print Network [OSTI]

    applications. The IPHE (International Partnership for the Hydrogen Economy) safety program to assess storageHydrogen Storage Systems Analysis Working Group Meeting 2007 Hydrogen Program Annual Review Crystal Laboratory and Elvin Yuzugullu Sentech, Inc. June 28, 2007 #12;SUMMARY REPORT Hydrogen Storage

  7. Hydrogen Storage Systems Analysis Working Group Meeting Argonne National Laboratory DC Offices

    E-Print Network [OSTI]

    at Savannah River National Laboratory (Don Anton and Bruce Hardy, SRNL) Based on the operating conditionsHydrogen Storage Systems Analysis Working Group Meeting Argonne National Laboratory DC Offices 955 by Romesh Kumar Argonne National Laboratory and Laura Verduzco Sentech, Inc. February 28, 2007 #12;SUMMARY

  8. Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group & Hydrogen Production Technical Team Research Review

    E-Print Network [OSTI]

    -Oil Reforming, NREL, Darlene Steward o High Pressure Steam Ethanol Reforming, ANL, Romesh Kumar 12:00 - 12:30 Lunch 12:30 Research Review Continued o Investigation of Bio-ethanol Steam Reforming over Cobalt basedBio-Derived Liquids to Hydrogen Distributed Reforming Working Group (BILIWG) & Hydrogen Production

  9. Working Group Meeting Presentation Guidance at a Glance Distributed Reforming of Biomass Pyrolysis Oils

    E-Print Network [OSTI]

    .31 O2 + 0.26 H2O 0.71 CO2 + 0.96 H2 #12;Key Performance Metrics Catalytic Steam Reforming of Bio-Oil Case (Ethanol Case) Bio-oil Storage Tank $106,040 Reformer $803,000 Shift Reactor, PSA, BOP $1Working Group Meeting Presentation Guidance at a Glance Distributed Reforming of Biomass Pyrolysis

  10. Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group (BILIWG),

    E-Print Network [OSTI]

    ReviewReport. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 12:30ResearchReviewContinued Investigation of Bio-ethanol Steam Reforming over Cobalt based Ethanol Reforming,ANL,RomeshKumar ..................23 MeritBio-Derived Liquids to Hydrogen Distributed Reforming Working Group (BILIWG), Hydrogen

  11. Euro Working Group on Transportation 2014 Estimating Travel Time Distribution under different Traffic

    E-Print Network [OSTI]

    Boyer, Edmond

    Euro Working Group on Transportation 2014 Estimating Travel Time Distribution under different of the distribution of travel time is needed to properly estimate these values. Congestion distorts the distribution and particular statistical distributions are needed. Different distributions have been proposed in the literature

  12. 2012 Bioenergy Action Plan Prepared by the Bioenergy Interagency Working Group

    E-Print Network [OSTI]

    and the California Energy Commission with input from the Bioenergy Interagency Working Group. This report to Governor Edmund G. Brown Karen Ross Secretary, Department of Food and Agriculture Matthew Rodriquez, California Energy Commission Ken Pimlott Director, Department of Forestry and Fire Protection Caroll

  13. Library Web Standards Recommendations of the SCIS Web Standards Working Group

    E-Print Network [OSTI]

    Seldin, Jonathan P.

    Library Web Standards Recommendations of the SCIS Web Standards Working Group Prepared by L. Jacobs: In support of research, teaching, and public service, the mission of the University of Lethbridge Library of the Library. Goals of Library Web Pages: To facilitate access to Library resources To supplement access

  14. PALeo-constraints on SEA-level rise (PALSEA) -a PAGES/IMAGES working group

    E-Print Network [OSTI]

    Siddall, Mark

    PALeo-constraints on SEA-level rise (PALSEA) - a PAGES/IMAGES working group Coordinators: Mark for the reduction in ice sheets and subsequent rise in sea level over the next century are highly uncertain rise. Interglacial sea levels constrain the global sensitivity of sea-level to radiative forcing. Well

  15. EFCOG Work Management Sub-Working Group Session on Overview and Results from WP&C Assist Visits across Complex

    Broader source: Energy.gov [DOE]

    Slide Presentation by Donna J. Governor, EFCOG Work Management Subgroup Chair. EFCOG Work Management Subgroup--Introduction and Overview.

  16. Algorithm development and verification of UASCM for multi-dimension and multi-group neutron kinetics model

    SciTech Connect (OSTI)

    Si, S. [Shanghai Nuclear Engineering Research and Design Inst., No. 29 Hongcao Road, Shanghai 200233 (China)

    2012-07-01T23:59:59.000Z

    The Universal Algorithm of Stiffness Confinement Method (UASCM) for neutron kinetics model of multi-dimensional and multi-group transport equations or diffusion equations has been developed. The numerical experiments based on transport theory code MGSNM and diffusion theory code MGNEM have demonstrated that the algorithm has sufficient accuracy and stability. (authors)

  17. Les Houches 2013: Physics at TeV Colliders: New Physics Working Group Report

    E-Print Network [OSTI]

    G. Brooijmans; R. Contino; B. Fuks; F. Moortgat; P. Richardson; S. Sekmen; A. Weiler; A. Alloul; A. Arbey; J. Baglio; D. Barducci; A. J. Barr; L. Basso; M. Battaglia; G. Bélanger; A. Belyaev; J. Bernon; A. Bharucha; O. Bondu; F. Boudjema; E. Boos; M. Buchkremer; V. Bunichev; G. Cacciapaglia; G. Chalons; E. Conte; M. J. Dolan; A. Deandrea; K. De Causmaecker; A. Djouadi; B. Dumont; J. Ellis; C. Englert; A. Falkowski; S. Fichet; T. Flacke; A. Gaz; M. Ghezzi; R. Godbole; A. Goudelis; M. Gouzevitch; D. Greco; R. Grober; C. Grojean; D. Guadagnoli; J. F. Gunion; B. Herrmann; J. Kalinowski; J. H. Kim; S. Kraml; M. E. Krauss; S. Kulkarni; S. J. Lee; S. H. Lim; D. Liu; F. Mahmoudi; Y. Maravin; A. Massironi; L. Mitzka; K. Mohan; G. Moreau; M. M. Mühlleitner; D. T. Nhung; B. O'Leary; A. Oliveira; L. Panizzi; D. Pappadopulo; S. Pataraia; W. Porod; A. Pukhov; F. Riva; J. Rojo; R. Rosenfeld; J. Ruiz-Álvarez; H. Rzehak; V. Sanz; D. Sengupta; M. Spannowsky; M. Spira; J. Streicher; N. Strobbe; A. Thamm; M. Thomas; R. Torre; W. Waltenberger; K. Walz; A. Wilcock; A. Wulzer; F. Würthwein; C. Wymant

    2014-05-07T23:59:59.000Z

    We present the activities of the "New Physics" working group for the "Physics at TeV Colliders" workshop (Les Houches, France, 3--21 June, 2013). Our report includes new computational tool developments, studies of the implications of the Higgs boson discovery on new physics, important signatures for searches for natural new physics at the LHC, new studies of flavour aspects of new physics, and assessments of the interplay between direct dark matter searches and the LHC.

  18. Philosophy 148 --Assignment #4 This assignment is due Thursday, April 17 at 3pm. If you work in a group, list your group members at the

    E-Print Network [OSTI]

    Fitelson, Branden

    work in a group, list your group members at the top of your submitted work. Hempel's Desiderata algebra B of propositions. Consider the following seven conditions that might be met by a confirmation restrict these seven principles to contingent E's and H's, then 6/7 of them can be satisfied by some

  19. Introduction Verification

    E-Print Network [OSTI]

    Kuhn, Matthew R.

    Introduction Model Verification Entropy model for granular materials at the critical state Matthew at the critical state. 2D materials only. Biaxial loading conditions. Six contact quantities Objective: Contact forces, movements, and orientations at the critical state. 2D materials only. Biaxial loading

  20. 2014-06-09 Issuance: Manufactured Housing Working Group; Notice of Intent

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register? notice of intent to establish the manufactured housing working group to negotiate a notice of proposed rulemaking for energy efficiency standards for manufactured housing, as issued by the Deputy Assistant Secretary for Energy Efficiency on June 9, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

  1. Proceedings of the IEA Working Group meeting on ferritic/martensitic steels

    SciTech Connect (OSTI)

    Klueh, R.L.

    1996-12-31T23:59:59.000Z

    An IEA working group on ferritic/martensitic steels for fusion applications, consisting of researchers from Japan, European Union, USA, and Switzerland, met at the headquarters of the Joint European Torus, Culham, UK. At the meeting, preliminary data generated on the large heats of steels purchased for the IEA program and on other heats of steels were presented and discussed. Second purpose of the meeting was to continue planning and coordinating the collaborative test program in progress on reduced-activation ferritic/martensitic steels. The majority of this report consists of viewographs for the presentations.

  2. Assumptions and Expectations for Annual Energy Outlook 2014: Oil and Gas Working Group

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy IDecade Year-0 Year-1Year Jan4: Oil and Gas Working Group

  3. Assumptions and Expectations for Annual Energy Outlook 2015: Oil and Gas Working Group

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy IDecade Year-0 Year-1Year Jan4: Oil and Gas Working Group5: Oil

  4. Assumptions for Annual Energy Outlook 2014: Liquid Fuels Markets Working Group

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy IDecade Year-0 Year-1Year Jan4: Oil and Gas Working Group5:

  5. Hydrogen Delivery Pipeline Working Group Workshop September 25-26, 2007 Center for Hydrogen Research, Aiken, GA

    E-Print Network [OSTI]

    Hydrogen Delivery Pipeline Working Group Workshop September 25-26, 2007 Center for Hydrogen..................................................................................................... 1. Introduction The DOE Hydrogen Pipeline Working Group (PWG) met on September 25-26, 2007 challenges and future goals for hydrogen pipeline research and development (R&D). One of the near-term goals

  6. 13 Sep 2001 http://www.ccsm.ucar.edu/working_groups/Software/reports/010628.html Report on CCSM Software Engineering Working Group Meeting

    E-Print Network [OSTI]

    the meeting with an overview of the new CCSM Software Engineering Group (CSEG). Tony is managing the group methodology. Steve Thomas (NCAR/SCD) presented early results from a high-performance spectral element method Kluzek erik@ucar.edu NCAR Keith Lindsay klindsay@ucar.edu NCAR Rebecca McKeown beckym@nrel

  7. Final Report. An Integrated Partnership to Create and Lead the Solar Codes and Standards Working Group

    SciTech Connect (OSTI)

    Rosenthal, Andrew [New Mexico State Univ., Las Cruces, NM (United States)

    2013-12-30T23:59:59.000Z

    The DOE grant, “An Integrated Partnership to Create and Lead the Solar Codes and Standards Working Group,” to New Mexico State University created the Solar America Board for Codes and Standards (Solar ABCs). From 2007 – 2013 with funding from this grant, Solar ABCs identified current issues, established a dialogue among key stakeholders, and catalyzed appropriate activities to support the development of codes and standards that facilitated the installation of high quality, safe photovoltaic systems. Solar ABCs brought the following resources to the PV stakeholder community; Formal coordination in the planning or revision of interrelated codes and standards removing “stove pipes” that have only roofing experts working on roofing codes, PV experts on PV codes, fire enforcement experts working on fire codes, etc.; A conduit through which all interested stakeholders were able to see the steps being taken in the development or modification of codes and standards and participate directly in the processes; A central clearing house for new documents, standards, proposed standards, analytical studies, and recommendations of best practices available to the PV community; A forum of experts that invites and welcomes all interested parties into the process of performing studies, evaluating results, and building consensus on standards and code-related topics that affect all aspects of the market; and A biennial gap analysis to formally survey the PV community to identify needs that are unmet and inhibiting the market and necessary technical developments.

  8. Digital Creation and Preservation Working Group Plan and oversee implementation for the Libraries' digital preservation program, particularly in relation

    E-Print Network [OSTI]

    Schweik, Charles M.

    for the Libraries' digital preservation program, particularly in relation to the Libraries' unique resources to the Digital Strategies Group. Chair: Appointed by the Director of Libraries Membership: Members serveDigital Creation and Preservation Working Group Charge: Plan and oversee implementation

  9. Report by the ESA-ESO Working Group on Extra-Solar Planets

    E-Print Network [OSTI]

    M. Perryman; O. Hainaut; D. Dravins; A. Leger; A. Quirrenbach; H. Rauer; F. Kerber; R. Fosbury; F. Bouchy; F. Favata; M. Fridlund; R. Gilmozzi; A. -M. Lagrange; T. Mazeh; D. Rouan; S. Udry; J. Wambsganss

    2005-06-08T23:59:59.000Z

    Various techniques are being used to search for extra-solar planetary signatures, including accurate measurement of radial velocity and positional (astrometric) displacements, gravitational microlensing, and photometric transits. Planned space experiments promise a considerable increase in the detections and statistical knowledge arising especially from transit and astrometric measurements over the years 2005-15, with some hundreds of terrestrial-type planets expected from transit measurements, and many thousands of Jupiter-mass planets expected from astrometric measurements. Beyond 2015, very ambitious space (Darwin/TPF) and ground (OWL) experiments are targeting direct detection of nearby Earth-mass planets in the habitable zone and the measurement of their spectral characteristics. Beyond these, `Life Finder' (aiming to produce confirmatory evidence of the presence of life) and `Earth Imager' (some massive interferometric array providing resolved images of a distant Earth) appear as distant visions. This report, to ESA and ESO, summarises the direction of exo-planet research that can be expected over the next 10 years or so, identifies the roles of the major facilities of the two organisations in the field, and concludes with some recommendations which may assist development of the field. The report has been compiled by the Working Group members and experts over the period June-December 2004.

  10. Management response plan for the Chemical Safety Vulnerability Working Group report. Volume 1

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    The Chemical Safety Vulnerability (CSV) Working Group was established to identify adverse conditions involving hazardous chemicals at DOE facilities that might result in fires or explosions, release of hazardous chemicals to the environment, or exposure of workers or the public to chemicals. A CSV Review was conducted in 146 facilities at 29 sites. Eight generic vulnerabilities were documented related to: abandoned chemicals and chemical residuals; past chemical spills and ground releases; characterization of legacy chemicals and wastes; disposition of legacy chemicals; storage facilities and conditions; condition of facilities and support systems; unanalyzed and unaddressed hazards; and inventory control and tracking. Weaknesses in five programmatic areas were also identified related to: management commitment and planning; chemical safety management programs; aging facilities that continue to operate; nonoperating facilities awaiting deactivation; and resource allocations. Volume 1 contains a discussion of the chemical safety improvements planned or already underway at DOE sites to correct facility or site-specific vulnerabilities. The main part of the report is a discussion of each of the programmatic deficiencies; a description of the tasks to be accomplished; the specific actions to be taken; and the organizational responsibilities for implementation.

  11. Design for manufacturability Design verification

    E-Print Network [OSTI]

    Patel, Chintan

    -digital effects · Heterogeneous systems · Analog-Mixed signal · Soft failures · Verification for redundancy #12; · Robustness · Verification metrics · Software · Reuse · Specialized verification methodology · Specialized

  12. Beam diagnostics, collimation, injection/extraction, targetry, accidents and commissioning: Working group C&G summary report

    SciTech Connect (OSTI)

    Mokhov, N.V.; /Fermilab; Hasegawa, K.; /JAEA, Ibaraki; Henderson, S.; /Oak Ridge; Schmidt, R.; /CERN; Tomizawa, M.; /KEK, Tsukuba; Wittenburg, K.; /DESY

    2006-11-01T23:59:59.000Z

    The performance of accelerators with high beam power or high stored beam energy is strongly dependent on the way the beam is handled, how beam parameters are measured and how the machine is commissioned. Two corresponding working groups have been organized for the Workshop: group C ''Beam diagnostics, collimation, injection/extraction and targetry'' and group G ''Commissioning strategies and procedures''. It has been realized that the issues to be discussed in these groups are interlaced with the participants involved and interested in the above topics, with an extremely important subject of beam-induced accidents as additional topic. Therefore, we have decided to combine the group sessions as well as this summary report. Status, performance and outstanding issues of each the topic are described in the sections below, with additional observations and proposals by the joint group at the end.

  13. Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group (BILIWG) Kick-Off Meeting Proceedings Hilton Garden Inn-BWI,Baltimore, MD October 24, 2006

    Broader source: Energy.gov [DOE]

    Proceedings from the October 24, 2006 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group Kick-Off Meeting.

  14. Les Houches Physics at TeV Colliders 2005 Beyond the Standard Model Working Group: Summary Report

    SciTech Connect (OSTI)

    Allanach, B.C.; /Cambridge U., DAMTP; Grojean, C.; /Saclay, SPhT /CERN; Skands, P.; /Fermilab; Accomando, E.; Azuelos, G.; Baer, H.; Balazs, C.; Belanger, G.; Benakli, K.; Boudjema, F.; Brelier, B.; Bunichev, V.; Cacciapaglia, G.; Carena, M.; Choudhury, D.; Delsart, P.-A.; De Sanctis, U.; Desch, K.; Dobrescu, B.A.; Dudko, L.; El Kacimi, M.; /Saclay,

    2006-03-17T23:59:59.000Z

    The work contained herein constitutes a report of the ''Beyond the Standard Model'' working group for the Workshop ''Physics at TeV Colliders'', Les Houches, France, 2-20 May, 2005. We present reviews of current topics as well as original research carried out for the workshop. Supersymmetric and non-supersymmetric models are studied, as well as computational tools designed in order to facilitate their phenomenology.

  15. Spent Fuel Working Group report on inventory and storage of the Department`s spent nuclear fuel and other reactor irradiated nuclear materials and their environmental, safety and health vulnerabilities. Volume 2, Working Group Assessment Team reports; Vulnerability development forms; Working group documents

    SciTech Connect (OSTI)

    Not Available

    1993-11-01T23:59:59.000Z

    The Secretary of Energy`s memorandum of August 19, 1993, established an initiative for a Department-wide assessment of the vulnerabilities of stored spent nuclear fuel and other reactor irradiated nuclear materials. A Project Plan to accomplish this study was issued on September 20, 1993 by US Department of Energy, Office of Environment, Health and Safety (EH) which established responsibilities for personnel essential to the study. The DOE Spent Fuel Working Group, which was formed for this purpose and produced the Project Plan, will manage the assessment and produce a report for the Secretary by November 20, 1993. This report was prepared by the Working Group Assessment Team assigned to the Hanford Site facilities. Results contained in this report will be reviewed, along with similar reports from all other selected DOE storage sites, by a working group review panel which will assemble the final summary report to the Secretary on spent nuclear fuel storage inventory and vulnerability.

  16. NNSA ASC Exascale Environment Planning, Applications Working Group, Report February 2011

    SciTech Connect (OSTI)

    Still, C H; Arsenlis, A; Bond, R B; Steinkamp, M J; Swaminarayan, S; Womble, D E; Koniges, A E; Harrison, J R; Chen, J H

    2011-02-25T23:59:59.000Z

    The scope of the Apps WG covers three areas of interest: Physics and Engineering Models (PEM), multi-physics Integrated Codes (IC), and Verification and Validation (V&V). Each places different demands on the exascale environment. The exascale challenge will be to provide environments that optimize all three. PEM serve as a test bed for both model development and 'best practices' for IC code development, as well as their use as standalone codes to improve scientific understanding. Rapidly achieving reasonable performance for a small team is the key to maintaining PEM innovation. Thus, the environment must provide the ability to develop portable code at a higher level of abstraction, which can then be tuned, as needed. PEM concentrate their computational footprint in one or a few kernels that must perform efficiently. Their comparative simplicity permits extreme optimization, so the environment must provide the ability to exercise significant control over the lower software and hardware levels. IC serve as the underlying software tools employed for most ASC problems of interest. Often coupling dozens of physics models into very large, very complex applications, ICs are usually the product of hundreds of staff-years of development, with lifetimes measured in decades. Thus, emphasis is placed on portability, maintainability and overall performance, with optimization done on the whole rather than on individual parts. The exascale environment must provide a high-level standardized programming model with effective tools and mechanisms for fault detection and remediation. Finally, V&V addresses the infrastructure and methods to facilitate the assessment of code and model suitability for applications, and uncertainty quantification (UQ) methods for assessment and quantification of margins of uncertainty (QMU). V&V employs both PEM and IC, with somewhat differing goals, i.e., parameter studies and error assessments to determine both the quality of the calculation and to estimate expected deviations of simulations from experiments. The exascale environment must provide a performance envelope suitable both for capacity calculations (high through-put) and full system capability runs (high performance). Analysis of the results place shared demand on both the I/O as well as the visualization subsystems.

  17. Meeting of The New York State Sustainability Education Working Group Syracuse Center of Excellence In Environmental and Energy Systems

    E-Print Network [OSTI]

    Linsley, Braddock K.

    In Environmental and Energy Systems 727 East Washington Street Syracuse, New York April 1, 2012 RECOMMENDED ACTIONMeeting of The New York State Sustainability Education Working Group Syracuse Center of Excellence STEPS The Goal: Every graduate of a New York college or university will be literate about how to live

  18. Final report of the NRC-Agreement State Working Group to evaluate control and accountability of licensed devices

    SciTech Connect (OSTI)

    NONE

    1996-10-01T23:59:59.000Z

    US NRC staff acknowledged that licensees were having problems maintaining control over and accountability for devices containing radioactive material. In June 1995, NRC approved the staff`s suggestion to form a joint NRC-Agreement State Working Group to evaluate the problem and propose solutions. The staff indicated that the Working Group was necessary to address the concerns from a national perspective, allow for a broad level of Agreement State input, and to reflect their experience. Agreement State participation in the process was essential since some Agreement States have implemented effective programs for oversight of device users. This report includes the 5 recommendations proposed by the Working Group to increase regulatory oversight, increase control and accountability of devices, ensure proper disposal, and ensure disposal of orphaned devices. Specifically, the Working Group recommends that: (1) NRC and Agreement States increase regulatory oversight for users of certain devices; (2) NRC and Agreement State impose penalties on persons losing devices; (3) NRC and Agreement States ensure proper disposal of orphaned devices; (4) NRC encourage States to implement similar oversight programs for users of Naturally-Occurring or Accelerator- Produced Material; and (5) NRC encourage non-licensed stakeholders to take appropriate actions, such as instituting programs for material identification.

  19. Journal of Astronomical History and Heritage, 15(3), 255-257 (2012). IAU HISTORIC RADIO ASTRONOMY WORKING GROUP

    E-Print Network [OSTI]

    Groppi, Christopher

    2012-01-01T23:59:59.000Z

    Journal of Astronomical History and Heritage, 15(3), 255-257 (2012). Page 255 IAU HISTORIC RADIO Wielebinski Hugo van Woerden 1 INTRODUCTION The IAU Working Group on Historical Radio Astron- omy (WGHRA Astronomy) and 41 (History of Astronomy), in order to: a) assemble a master list of surviving historically

  20. Journal of Astronomical History and Heritage, 12(3), 249-253 (2009). THE IAU HISTORIC RADIO ASTRONOMY WORKING GROUP.

    E-Print Network [OSTI]

    Groppi, Christopher

    2009-01-01T23:59:59.000Z

    Journal of Astronomical History and Heritage, 12(3), 249-253 (2009). 249 THE IAU HISTORIC RADIO and Heritage. 1 Role of the Working Group This WG was formed at the 2003 General Assembly of the IAU as a joint a master list of surviving historically- significant radio telescopes and associated instru- mentation

  1. GSDI Legal and Economic Working Group: A Template for Reporting National Legal and Economic Issues Affecting Spatial Data

    E-Print Network [OSTI]

    Onsrud, Harlan J.

    complementary laws. A basic policy assumption underlying most U.S. information law is that the economicGSDI Legal and Economic Working Group: A Template for Reporting National Legal and Economic Issues Affecting Spatial Data Infrastructure Developments The primary objective of the GSDI Legal and Economic

  2. Chernobyl Studies Project: Working group 7.0, Environmental transport and health effects. Progress report, March--September 1994

    SciTech Connect (OSTI)

    Anspaugh, L.R.; Hendrickson, S.M. [eds.

    1994-12-01T23:59:59.000Z

    In April 1988, the US and the former-USSR signed a Memorandum of Cooperation (MOC) for Civilian Nuclear Reactor Safety; this MOC was a direct result of the accident at the Chernobyl Nuclear Power Plant Unit 4 and the following efforts by the two countries to implement a joint program to improve the safety of nuclear power plants and to understand the implications of environmental releases. A Joint Coordinating Committee for Civilian Nuclear Reactor Safety (JCCCNRS) was formed to implement the MOC. The JCCCNRS established many working groups; most of these were the responsibility of the Nuclear Regulatory Commission, as far as the US participation was concerned. The lone exception was Working Group 7 on Environmental Transport and Health Effects, for which the US participation was the responsibility of the US Department of Energy (DOE). The purpose of Working Group 7 was succintly stated to be, ``To develop jointly methods to project rapidly the health effects of any future nuclear reactor accident.`` To implement the work DOE then formed two subworking groups: 7.1 to address Environmental Transport and 7.2 to address Health Effects. Thus, the DOE-funded Chernobyl Studies Project began. The majority of the initial tasks for this project are completed or near completion. The focus is now turned to the issue of health effects from the Chernobyl accident. Currently, we are involved in and making progress on the case-control and co-hort studies of thyroid diseases among Belarussian children. Dosimetric aspects are a fundamental part of these studies. We are currently working to implement similar studies in Ukraine. A major part of the effort of these projects is supporting these studies, both by providing methods and applications of dose reconstruction and by providing support and equipment for the medical teams.

  3. Proceedings of the DOE/Industry Sensor Working Group meeting, Austin, Texas

    SciTech Connect (OSTI)

    Not Available

    1988-11-01T23:59:59.000Z

    This paper report contains topics presented at a sensor workshop group meeting. The topics describe measuring instruments of use in the pulp and paper industry. Topics include: measurement of solids fraction; process instrumentation research for the pulp paper industry; real-time non-contact optical surface motion monitor; on-machine sensors to measure paper mechanical properties; hierarchical intelligent control of industrial processes -- an in-parallel lime kiln application; proposal for research on lignin concentration measurement in pulping liquors; and advanced polymeric sensor materials for industrial drying.

  4. United States-Japan Nuclear Security Working Group Fact Sheet | National

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City,EnrichedSupplemental Directives |and RadioactiveCooperation

  5. Working Group Report on - Space Nuclear Power Systems and Nuclear Waste

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradley NickellApril 16, 2008Ms.12.1AJanuaryEnergyTechnology

  6. 2001-2002 Long Range Plan Working Group Members | U.S. DOE Office of

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe LifeUserWork's The's's

  7. 2007 Long Range Plan Working Group Members | U.S. DOE Office of Science

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe LifeUserWork's

  8. Microsoft PowerPoint - Highlights of the Industry Working Group_Jessica White-Horton

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysis and Feedback onWorking

  9. Working Group Presentations | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhavenMassachusetts RegionsPaulShadesVirginia RegionsWisconsinWorking

  10. Working Group Reports Calibration of Radiation Codes Used in Climate Models:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsingWhat is abigpresented in theWorkBusiness1: Model4:97

  11. Working Group Reports Summary of Single-Column Model Intensive Observation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsingWhat is abigpresented in theWorkBusiness1: Model4:97

  12. State and Tribal Government Working Group Visits the Weldon Spring Site |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014,Zaleski - PolicyWorkSunShotBelowTheThe documentLessonsReview

  13. US DOE-EM On-Site Disposal Cell Working Group - Fostering Communication On Performance Assessment Challenges

    SciTech Connect (OSTI)

    Seitz, Roger R. [Savannah River Site (SRS), Aiken, SC (United States); Suttora, Linda C. [U.S. Department of Energy, Office of Site Restoration, Germantown, MD (United States); Phifer, Mark [Savannah River Site (SRS), Aiken, SC (United States)

    2014-03-01T23:59:59.000Z

    On-site disposal cells are in use and being considered at several U.S. Department of Energy (USDOE) sites as the final disposition for large amounts of waste associated with cleanup of contaminated areas and facilities. These facilities are typically developed with regulatory oversight from States and/or the US Environmental Protection Agency (USEPA) in addition to USDOE. The facilities are developed to meet design standards for disposal of hazardous waste as well as the USDOE performance based standards for disposal of radioactive waste. The involvement of multiple and different regulators for facilities across separate sites has resulted in some differences in expectations for performance assessments and risk assessments (PA/RA) that are developed for the disposal facilities. The USDOE-EM Office of Site Restoration formed a working group to foster improved communication and sharing of information for personnel associated with these Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) disposal cells and work towards more consistent assumptions, as appropriate, for technical and policy considerations related to performance and risk assessments in support of a Record of Decision and Disposal Authorization Statement. The working group holds teleconferences, as needed, focusing on specific topics of interest. The topics addressed to date include an assessment of the assumptions used for performance assessments and risk assessments (PA/RAs) for on-site disposal cells, requirements and assumptions related to assessment of inadvertent intrusion, DOE Manual 435.1-1 requirements, and approaches for consideration of the long-term performance of liners and covers in the context of PAs. The working group has improved communication among the staff and oversight personnel responsible for onsite disposal cells and has provided a forum to identify and resolve common concerns.

  14. Solar America Initiative State Working Group: Final Scientific/Technical Report

    SciTech Connect (OSTI)

    Julie Taylor

    2012-03-30T23:59:59.000Z

    Through the support from the Department of Energy, NARUC has educated thousands of stakeholders, including Public Utility Commissioners, commission staff, and State energy officials on solar energy technology, implementation, and policy. During the lifetime of this grant, NARUC staff engaged stakeholders in policy discussions, technical research, site visits, and educational meetings/webinars/materials that provided valuable education and coordination on solar energy technology and policy among the States. Primary research geared toward State decision-makers enabled stakeholders to be informed on current issues and created new solar energy leaders throughout the United States. Publications including a Frequently Asked Questions guide on feed-in tariffs and a legal analysis of state implementation of feed-in tariffs gave NARUC members the capacity to understand complex issues related to the economic impacts of policies supportive of solar energy, and potential paths for implementation of technology. Technical partnerships with the National Renewable Energy Laboratory (NREL) instructed NARUC members on feed-in tariff policy for four States and solar PV resource assessment in seven States, as well as economic impacts of solar energy implementation in those States. Because many of the States in these technical partnerships had negligible amounts of solar energy installed, this research gave them new capacity to understand how policies and implementation could impact their constituency. This original research produced new data now available, not only to decision-makers, but also to the public at-large including educational institutions, NGOs, consumer groups, and other citizens who have an interest in solar energy adoption in the US. Under this grant, stakeholders engaged in several dialogs. These educational opportunities brought NARUC members and other stakeholders together several times each year, shared best practices with State decision-makers, fostered partnerships and relationships with solar energy experts, and aided in increasing the implementation of smart policies that will foster solar technology deployment. The support from the Department of Energyâ??s Office of Energy Efficiency and Renewable Energy has created solar energy leaders in the States; leaders who will serve to be a continuing valuable resource as States consider adoption of new low-carbon and domestic energy supply to meet the energy needs of the United States.

  15. New Physics at the LHC: A Les Houches Report. Physics at Tev Colliders 2007 - New Physics Working Group

    SciTech Connect (OSTI)

    Brooijmans, Gustaaf H.; /Columbia U.; Delgado, A.; /Notre Dame U.; Dobrescu, Bogdan A.; /Fermilab; Grojean, C.; /CERN /Saclay, SPhT; Narain, Meenakshi; /Brown U.; Alwall, Johan; /SLAC; Azuelos, Georges; /Montreal U. /TRIUMF; Black, K.; /Harvard U.; Boos, E.; /SINP, Moscow; Bose, Tulika; /Brown U.; Bunichev, V.; /SINP, Moscow; Chivukula, R.S.; /Michigan State U.; Contino, R.; /CERN; Djouadi, A.; /Louis Pasteur U., Strasbourg I /Orsay, LAL; Dudko, Lev V.; /Durham U.; Ferland, J.; /Montreal U.; Gershtein, Yuri S.; /Florida State U.; Gigg, M.; /Durham U.; Gonzalez de la Hoz, S.; /Valencia U., IFIC; Herquet, M.; /Louvain U.; Hirn, J.; /Yale U. /Brown U. /Boston U. /Annecy, LAPTH /INFN, Turin /Valencia U., IFIC /Yale U. /Arizona U. /Louis Pasteur U., Strasbourg I /Orsay, LAL /KEK, Tsukuba /Moscow State U. /Lisbon, LIFEP /CERN /Durham U. /Valencia U., IFIC /Sao Paulo, IFT /Fermilab /Zurich, ETH /Boston U. /DESY /CERN /Saclay, SPhT /Durham U. /Cambridge U. /Michigan State U. /Louis Pasteur U., Strasbourg I /Orsay, LAL /Annecy, LAPTH /Fermilab /CERN /Arizona U. /Northwestern U. /Argonne /Kyoto U. /Valencia U., IFIC /UC, Berkeley /LBL, Berkeley

    2011-12-05T23:59:59.000Z

    We present a collection of signatures for physics beyond the standard model that need to be explored at the LHC. The signatures are organized according to the experimental objects that appear in the final state, and in particular the number of high p{sub T} leptons. Our report, which includes brief experimental and theoretical reviews as well as original results, summarizes the activities of the 'New Physics' working group for the 'Physics at TeV Colliders' workshop (Les Houches, France, 11-29 June, 2007).

  16. 2014-05-05 Issuance: ASRAC Commercial and Industrial Pumps Working Group; Notice of Open Teleconference/Webinar

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register notice of open teleconference/webinar regarding the commercial and industrial pumps working group, as issued by the Deputy Assistant Secretary for Energy Efficiency on May 5, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

  17. Deep Underground Science and Engineering Lab: S1 Dark Matter Working Group

    SciTech Connect (OSTI)

    Akerib, Daniel S.; Aprile, E.; /Case Western Reserve U. /Columbia U.; Baltz, E.A.; /KIPAC, Menlo Park; Dragowsky, M.R.; /Case Western Reserve U.; Gaitskell, R.J.; /Brown U.; Gondolo, P.; /Utah U.; Hime, A.; /Los Alamos; Martoff, C.J.; /Temple U.; Mei, D.-M.; /Los Alamos; Nelson, H.; /UC, Santa Barbara; Sadoulet, B.; /UC, Berkeley; Schnee, R.W.; /Case Western; Sonnenschein, A.H.; /Fermilab; Strigari, L.E.; /UC, Irvine

    2006-06-09T23:59:59.000Z

    In this report we have described the broad and compelling range of astrophysical and cosmological evidence that defines the dark matter problem, and the WIMP hypothesis, which offers a solution rooted in applying fundamental physics to the dynamics of the early universe. The WIMP hypothesis is being vigorously pursued, with a steady march of sensitivity improvements coming both from astrophysical searches and laboratory efforts. The connections between these approaches are profound and will reveal new information from physics at the smallest scales to the origin and workings of the entire universe. Direct searches for WIMP dark matter require sensitive detectors that have immunity to electromagnetic backgrounds, and are located in deep underground laboratories to reduce the flux from fast cosmic-ray-muon-induced neutrons which is a common background to all detection methods. With US leadership in dark matter searches and detector R&D, a new national laboratory will lay the foundation of technical support and facilities for the next generation of scientists and experiments in this field, and act as magnet for international cooperation and continued US leadership. The requirements of depth, space and technical support for the laboratory are fairly generic, regardless of the approach. Current experiments and upgraded versions that run within the next few years will probe cross sections on the 10{sup -45}-10{sup -44} cm{sup 2} scale, where depths of 3000-4000 m.w.e. are sufficient to suppress the neutron background. On the longer term, greater depths on the 5000-6000 level are desirable as cross sections down to 10{sup -46} cm{sup 2} are probed, and of course, if WIMPs are discovered then building up a statistical sample free of neutron backgrounds will be essential to extracting model parameters and providing a robust solution to the dark matter problem. While most of the detector technologies are of comparable physical scale, i.e., the various liquid and solid-state detector media under consideration have comparable density, a notable exception is the low-pressure gaseous detectors. These detectors are very likely to play a critical role in establishing the galactic origin of a signal, and so it is important to design the lab with this capability in mind. For example, for a WIMP-nucleon cross section of 10{sup -43} cm{sup 2} (just below the present limit [20]), 100 of the current DRIFT-II modules of 1 m{sup 3} at 40 torr CS{sub 2} [63] would require a two-year exposure [61] to get the approximately 200 events [64] required to establish the signal's galactic origin. While detector improvements are under investigation, a simple scaling for the bottom of the MSSM region at 10{sup -46} cm{sup 2} would require a 100,000 m{sup 3} detector volume. If a factor of 10 reduction in required volume is achieved (e.g., higher pressure operation, more detailed track reconstruction, etc.) then an experimental hall of (50 m){sup 3} could accommodate the experiment. Because the WIMP-nucleon cross section is unknown, it is impossible to make a definitive statement as to the ultimate requirements for a directional gaseous dark matter detector, or any other device, for that matter. What is clear, however, is that whatever confidence one gives to specific theoretical considerations, the foregoing discussion clearly indicates the high scientific priority of, broad intellectual interest in, and expanding technical capabilities for increasing the ultimate reach of direct searches for WIMP dark matter. Upcoming experiments will advance into the low-mass Supersymmetric region and explore the most favored models in a complementary way to the LHC, and on a similar time scale. The combination of astrophysical searches and accelerator experiments stands to check the consistency of the solution to the dark matter problem and provide powerful constraints on the model parameters. Knowledge of the particle properties from laboratory measurements will help to isolate and reduce the astrophysical uncertainties, which will allow a more complete picture of

  18. Executive summary of major NuMI lessons learned: a review of relevant meetings of Fermilab's DUSEL Beamline Working Group

    SciTech Connect (OSTI)

    Andrews, Mike; Appel, Jeffrey A.; Bogert, Dixon; Childress, Sam; Cossairt, Don; Griffing, William; Grossman, Nancy; Harding, David; Hylen, Jim; Kuchler, Vic; Laughton, Chris; /Fermilab /Argonne /Brookhaven /LBL, Berkeley

    2009-05-01T23:59:59.000Z

    We have gained tremendous experience with the NuMI Project on what was a new level of neutrino beams from a high power proton source. We expect to build on that experience for any new long baseline neutrino beam. In particular, we have learned about some things which have worked well and/or where the experience is fairly directly applicable to the next project (e.g., similar civil construction issues including: tunneling, service buildings, outfitting, and potential claims/legal issues). Some things might be done very differently (e.g., decay pipe, windows, target, beam dump, and precision of power supply control/monitoring). The NuMI experience does lead to identification of critical items for any future such project, and what issues it will be important to address. The DUSEL Beamline Working Group established at Fermilab has been meeting weekly to collect and discuss information from that NuMI experience. This document attempts to assemble much of that information in one place. In this Executive Summary, we group relevant discussion of some of the major issues and lessons learned under seven categories: (1) Differences Between the NuMI Project and Any Next Project; (2) The Process of Starting Up the Project; (3) Decision and Review Processes; (4) ES&H: Environment, Safety, and Health; (5) Local Community Buy-In; (6) Transition from Project Status to Operation; and (7) Some Lessons on Technical Elements. We concentrate here on internal project management issues, including technical areas that require special attention. We cannot ignore, however, two major external management problems that plagued the NuMI project. The first problem was the top-down imposition of an unrealistic combination of scope, cost, and schedule. This situation was partially corrected by a rebaselining. However, the full, desirable scope was never achievable. The second problem was a crippling shortage of resources. Critical early design work could not be done in a timely fashion, leading to schedule delays, inefficiencies, and corrective actions. The Working Group discussions emphasized that early planning and up-front appreciation of the problems ahead are very important for minimizing the cost and for the greatest success of any such project. Perhaps part of the project approval process should re-enforce this need. The cost of all this up-front work is now reflected in the DOE cost of any project we do. If we are being held to an upper limit on the project cost, the only thing available for compromise is the eventual project scope.

  19. 173TURTLE TAXONOMY WORKING GROUP Annotated List of Turtle Taxa Defining Turtle Diversity: Proceedings of a Workshop on Genetics, Ethics, and Taxonomy of Freshwater Turtles and Tortoises

    E-Print Network [OSTI]

    Grether, Gregory

    173TURTLE TAXONOMY WORKING GROUP ­ Annotated List of Turtle Taxa Defining Turtle Diversity: Proceedings of a Workshop on Genetics, Ethics, and Taxonomy of Freshwater Turtles and Tortoises H. Bradley with Comments on Areas of Taxonomic Instability and Recent Change TURTLE TAXONOMY WORKING GROUP* * Authorship

  20. A National Forum on Demand Response: Results on What Remains to Be Done to Achieve Its Potential- Measurement and Verification Working Group

    Broader source: Energy.gov [DOE]

    In July 2011, the Federal Energy Regulatory Commission's (FERC) staff and the Department of Energy (DOE) jointly submitted to Congress a required “Implementation Proposal for the National Action...

  1. Trails Working Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plan 5th Annual Report for FY 2011 (pdf) Trails Management Program Mitigation Action Plan 4th Annual Report for FY 2010 (pdf) General Background Trails Use Survey Summary The...

  2. Trails Working Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1TrackingTrails » Trails

  3. CSTEC Working Groups

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess StoriesFebruary 26,Computers » Discussion CS267:

  4. Macro Industrial Working Group

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 3400, U.S.MajorMarketsNov-14Biomass feedstocksMU Eneg a~-s

  5. Winter 2013 Working Groups

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfires may contribute more to globalWindWind Vision:Window3

  6. Buildings Sector Working Group

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy IDecade Year-0 Year-1Year Jan4: Oil andDecade Year-0 FullJuly

  7. Winter 2014 Working Groups

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >Internship Program TheSiteEurekaWeekly UserWhat's New TodayWindows,4 C

  8. SCM Working Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited Release PrintedDEVIATIONS F O R NEUTRINO

  9. SCM Working Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited Release PrintedDEVIATIONS F O R NEUTRINOcloud

  10. SCM Working Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited Release PrintedDEVIATIONS F O R NEUTRINOcloudHow Do the

  11. Radiative Processes Working Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Radiation Protection Regulations: The

  12. Fall 2012 Working Groups

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA)Budget » FY 2014FacilitiesSheet2 C STEC W orking G

  13. Fall 2013 Working Groups

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA)Budget » FY 2014FacilitiesSheet2 C STEC W orking G3 C

  14. Summer 2012 Working Groups

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solid ...Success Stories Touching The LivesSummer 2 012 C STEC W

  15. Verification Testing Test Driven Development Testing with JUnit Verification

    E-Print Network [OSTI]

    Peters, Dennis

    Verification Testing Test Driven Development Testing with JUnit Verification Any activity should be verified. #12;Verification Testing Test Driven Development Testing with JUnit Approaches to verification 1 Testing 2 Static Analysis · Peer review · Insepction/Walk-through/Structured review · Formal

  16. Nuclear Data Verification and Standardization

    SciTech Connect (OSTI)

    Karam, Lisa R.; Arif, Muhammad; Thompson, Alan K.

    2011-10-01T23:59:59.000Z

    The objective of this interagency program is to provide accurate neutron interaction verification and standardization data for the U.S. Department of Energy Division of Nuclear Physics programs which include astrophysics, radioactive beam studies, and heavy-ion reactions. The measurements made in this program are also useful to other programs that indirectly use the unique properties of the neutron for diagnostic and analytical purposes. These include homeland security, personnel health and safety, nuclear waste disposal, treaty verification, national defense, and nuclear based energy production. The work includes the verification of reference standard cross sections and related neutron data employing the unique facilities and capabilities at NIST and other laboratories as required; leadership and participation in international intercomparisons and collaborations; and the preservation of standard reference deposits. An essential element of the program is critical evaluation of neutron interaction data standards including international coordinations. Data testing of critical data for important applications is included. The program is jointly supported by the Department of Energy and the National Institute of Standards and Technology.

  17. University of Massachusetts Amherst Measurement & Verification Guidelines

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    University of Massachusetts Amherst Measurement & Verification Guidelines & Template Plan 11 ..............................................................................................................1 UMASS AMHERST MEASUREMENT & VERIFICATION (M&V) GUIDELINES ..........3 PREFACE ....................................................................................................................................................................3 BENEFITS OF MEASUREMENT & VERIFICATION

  18. Carbon Storage Monitoring, Verification and Accounting Research...

    Office of Environmental Management (EM)

    Monitoring, Verification and Accounting Research Carbon Storage Monitoring, Verification and Accounting Research Reliable and cost-effective monitoring, verification and accounting...

  19. INL/EXT-14-33201 RELAP-7 Software Verification

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    01 RELAP-7 Software Verification and Validation Plan Curtis L. Smith Yong-Joon Choi Ling Zou September 25, 2014 NOTICE This report was prepared as an account of work sponsored by...

  20. Verification of RADTRAN

    SciTech Connect (OSTI)

    Kanipe, F.L.; Neuhauser, K.S.

    1995-12-31T23:59:59.000Z

    This document presents details of the verification process of the RADTRAN computer code which was established for the calculation of risk estimates for radioactive materials transportation by highway, rail, air, and waterborne modes.

  1. 73TURTLE TAXONOMY WORKING GROUP Recommendations and Guidelines Defining Turtle Diversity: Proceedings of a Workshop on Genetics, Ethics, and Taxonomy of Freshwater Turtles and Tortoises

    E-Print Network [OSTI]

    Grether, Gregory

    73TURTLE TAXONOMY WORKING GROUP ­ Recommendations and Guidelines Defining Turtle Diversity: Proceedings of a Workshop on Genetics, Ethics, and Taxonomy of Freshwater Turtles and Tortoises H. Bradley 4:73-84 · © 2007 by Chelonian Research Foundation Turtle Taxonomy: Methodology, Recommendations

  2. Fuel Retrieval System Design Verification Report

    SciTech Connect (OSTI)

    GROTH, B.D.

    2000-04-11T23:59:59.000Z

    The Fuel Retrieval Subproject was established as part of the Spent Nuclear Fuel Project (SNF Project) to retrieve and repackage the SNF located in the K Basins. The Fuel Retrieval System (FRS) construction work is complete in the KW Basin, and start-up testing is underway. Design modifications and construction planning are also underway for the KE Basin. An independent review of the design verification process as applied to the K Basin projects was initiated in support of preparation for the SNF Project operational readiness review (ORR). A Design Verification Status Questionnaire, Table 1, is included which addresses Corrective Action SNF-EG-MA-EG-20000060, Item No.9 (Miller 2000).

  3. Fuel Retrieval System (FRS) Design Verification

    SciTech Connect (OSTI)

    YANOCHKO, R.M.

    2000-01-27T23:59:59.000Z

    This document was prepared as part of an independent review to explain design verification activities already completed, and to define the remaining design verification actions for the Fuel Retrieval System. The Fuel Retrieval Subproject was established as part of the Spent Nuclear Fuel Project (SNF Project) to retrieve and repackage the SNF located in the K Basins. The Fuel Retrieval System (FRS) construction work is complete in the KW Basin, and start-up testing is underway Design modifications and construction planning are also underway for the KE Basin. An independent review of the design verification process as applied to the K Basin projects was initiated in support of preparation for the SNF Project operational readiness review (ORR).

  4. IUFRO Landscape Ecology Working Group International Conference, 2127 September, 2010 Bragana, Symposium 7: A landscape approach to sustainable forest management: the

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    on biodiversity conservation as a proxy for ecological dimensions of sustainable forest management the workIUFRO Landscape Ecology Working Group International Conference, 2127 September, 2010 Bragança, Portugal Symposium 7: A landscape approach to sustainable forest management: the challenge to adaptive

  5. Measurement and Basic Physics Committee of the U.S. Cross-Section Evaluation Working Group annual report 1997

    SciTech Connect (OSTI)

    Smith, D.L. [ed.] [comp.] [Argonne National Lab., IL (United States)] [ed.; comp.; Argonne National Lab., IL (United States); McLane, V. [ed.] [comp.] [Brookhaven National Lab., Upton, NY (United States)] [ed.; comp.; Brookhaven National Lab., Upton, NY (United States)

    1997-10-01T23:59:59.000Z

    The Cross-Section Evaluation Working Group (CSEWG) is a long-standing committee charged with responsibility for organizing and overseeing the US cross-section evaluation effort. It`s main product is the official US evaluated nuclear data file, ENDF. In 1992 CSEWG added the Measurements Committee to its list of standing committees and subcommittees. This action was based on a recognition of the importance of experimental data in the evaluation process as well as the realization that measurement activities in the US were declining at an alarming rate and needed considerable encouragement to avoid the loss of this resource. The mission of the Committee is to maintain contact with experimentalists in the Us and to encourage them to contribute to the national nuclear data effort. Improved communication and the facilitation of collaborative activities are among the tools employed in achieving this objective. In 1994 the Committee was given an additional mission, namely, to serve as an interface between the applied interests represented in CSEWG and the basic nuclear science community. Accordingly, its name was changed to the Measurement and Basic Physics Committee. The present annual report is the third such document issued by the Committee. It contains voluntary contributions from several laboratories in the US. Their contributions were submitted to the Chairman for compilation and editing.

  6. Environmental Technology Verification of Mobile Sources Control...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environmental Technology Verification of Mobile Sources Control Technologies Environmental Technology Verification of Mobile Sources Control Technologies 2005 Diesel Engine...

  7. Electric Utility Measurement & Verification Program

    E-Print Network [OSTI]

    Lau, K.; Henderson, G.; Hebert, D.

    Electric Utility Measurement & Verification Program Ken Lau, P.Eng., CMVP Graham Henderson, P.Eng., CMVP Dan Hebert, P.Eng.,CMVP Mgr, Measurement & Verification Engineering Team Leader Senior Engineer BC Hydro Burnaby, BC Canada...

  8. MULTIVESSEL BATCH DISTILLATION EXPERIMENTAL VERIFICATION

    E-Print Network [OSTI]

    Skogestad, Sigurd

    MULTIVESSEL BATCH DISTILLATION ­ EXPERIMENTAL VERIFICATION Bernd Wittgens and Sigurd Skogestad 1 The experimental verification of the operation of a multivessel batch distillation column, operated under total vessels, provides a generalization of previously proposed batch distillation schemes. We propose a simple

  9. CSEWG SYMPOSIUM, A CSWEG RETROSPECTIVE. 35TH ANNIVERSARY CROSS SECTION EVALUATION WORKING GROUP, NOV. 5, 2001, BROOKHAVEN NATIONAL LABORATORY.

    SciTech Connect (OSTI)

    DUNFORD, C.; HOLDEN, N.; PEARLSTEIN, S.

    2001-11-05T23:59:59.000Z

    This publication has been prepared to record some of the history of the Cross Section Evaluation Working Group (CSEWG). CSEWG is responsible for creating the evaluated nuclear data file (ENDF/B) which is widely used by scientists and engineers who are involved in the development and maintenance of applied nuclear technologies. This organization has become the model for the development of nuclear data libraries throughout the world. The data format (ENDF) has been adopted as the international standard. On November 5, 2001, a symposium was held at Brookhaven National Laboratory to celebrate the 50 th meeting of the CSEWG organization and the 35 th anniversary of its first meeting in November 1966. The papers presented in this volume were prepared by present and former CSEWG members for presentation at the November 2001 symposium. All but two of the presentations are included. I have included an appendix to list all of the CSEWG members and their affiliations, which has been compiled from the minutes of each of the CSEWG meetings. Minutes exist for all meetings except the 4 th meeting held in January 1968. The list includes 348 individuals from 71 organizations. The dates for each of the 50 CSEWG meetings are listed. The committee structure and chairmen of all committees and subcommittees are also included in the appendix. This volume is dedicated to three individuals whose foresight and talents made CSEWG possible and successful. They are Henry Honeck who lead the effort to develop the ENDF format and the CSEWG system, Ira Zartman, the Atomic Energy Commission program manager who provided the programmatic direction and support, and Sol Pearlstein who led the development of the CESWG organization and the ENDF/B evaluated nuclear data library.

  10. MEASUREMENT AND BASIC PHYSICS COMMITTEE OF THE U.S. CROSS-SECTION EVALUATION WORKING GROUP, ANNUAL REPORT 1997

    SciTech Connect (OSTI)

    SMITH,D.L.; MCLANE,V.

    1998-10-20T23:59:59.000Z

    The Cross-Section Evaluation Working Group (CSEWG) is a long-standing committee charged with responsibility for organizing and overseeing the US cross-section evaluation effort. Its main product is the official US evaluated nuclear data file, ENDF. The current version of this file is Version VI. All evaluations included in ENDF, as well as periodic modifications and updates to the file, are reviewed and approved by CSEWG and issued by the US Nuclear Data Center, Brookhaven National Laboratory. CSEWG is comprised of volunteers from the US nuclear data community who possess expertise in evaluation methodologies and who collectively have been responsible for producing most of the evaluations included in ENDF. In 1992 CSEWG added the Measurements Committee to its list of standing committees and subcommittees. This action was based on a recognition of the importance of experimental data in the evaluation process as well as the realization that measurement activities in the US were declining at an alarming rate and needed considerable encouragement to avoid the loss of this resource. The mission of the Committee is to maintain contact with experimentalists in the US and to encourage them to contribute to the national nuclear data effort. Improved communication and the facilitation of collaborative activities are among the tools employed in achieving this objective. In 1994 the Committee was given an additional mission, namely, to serve as an interface between the applied interests represented in CSEWG and the basic nuclear science community. Accordingly, its name was changed to the Measurement and Basic Physics Committee. The present annual report is the third such document issued by the Committee. It contains voluntary contributions from several laboratories in the US. Their contributions were submitted to the Chairman for compilation and editing.

  11. Nuclear disarmament verification

    SciTech Connect (OSTI)

    DeVolpi, A.

    1993-12-31T23:59:59.000Z

    Arms control treaties, unilateral actions, and cooperative activities -- reflecting the defusing of East-West tensions -- are causing nuclear weapons to be disarmed and dismantled worldwide. In order to provide for future reductions and to build confidence in the permanency of this disarmament, verification procedures and technologies would play an important role. This paper outlines arms-control objectives, treaty organization, and actions that could be undertaken. For the purposes of this Workshop on Verification, nuclear disarmament has been divided into five topical subareas: Converting nuclear-weapons production complexes, Eliminating and monitoring nuclear-weapons delivery systems, Disabling and destroying nuclear warheads, Demilitarizing or non-military utilization of special nuclear materials, and Inhibiting nuclear arms in non-nuclear-weapons states. This paper concludes with an overview of potential methods for verification.

  12. Verification and validation benchmarks.

    SciTech Connect (OSTI)

    Oberkampf, William Louis; Trucano, Timothy Guy

    2007-02-01T23:59:59.000Z

    Verification and validation (V&V) are the primary means to assess the accuracy and reliability of computational simulations. V&V methods and procedures have fundamentally improved the credibility of simulations in several high-consequence fields, such as nuclear reactor safety, underground nuclear waste storage, and nuclear weapon safety. Although the terminology is not uniform across engineering disciplines, code verification deals with assessing the reliability of the software coding, and solution verification deals with assessing the numerical accuracy of the solution to a computational model. Validation addresses the physics modeling accuracy of a computational simulation by comparing the computational results with experimental data. Code verification benchmarks and validation benchmarks have been constructed for a number of years in every field of computational simulation. However, no comprehensive guidelines have been proposed for the construction and use of V&V benchmarks. For example, the field of nuclear reactor safety has not focused on code verification benchmarks, but it has placed great emphasis on developing validation benchmarks. Many of these validation benchmarks are closely related to the operations of actual reactors at near-safety-critical conditions, as opposed to being more fundamental-physics benchmarks. This paper presents recommendations for the effective design and use of code verification benchmarks based on manufactured solutions, classical analytical solutions, and highly accurate numerical solutions. In addition, this paper presents recommendations for the design and use of validation benchmarks, highlighting the careful design of building-block experiments, the estimation of experimental measurement uncertainty for both inputs and outputs to the code, validation metrics, and the role of model calibration in validation. It is argued that the understanding of predictive capability of a computational model is built on the level of achievement in V&V activities, how closely related the V&V benchmarks are to the actual application of interest, and the quantification of uncertainties related to the application of interest.

  13. HEATING6 verification

    SciTech Connect (OSTI)

    Bryan, C.B.; Childs, K.W.; Giles, G.E.

    1986-12-01T23:59:59.000Z

    The HEATING series of general purpose, finite-difference, conduction heat transfer codes have been in use for many years. During this time the codes have been used extensively, and a general confidence has been developed in regard to their accuracy. However, there has never been a formal verification in a published, citable document. This report documents just such a verification study for the latest code in the HEATING series, HEATING6. This study confirms that HEATING6 is capable of producing accurate results for a large class of heat transfer problems. 11 refs., 170 figs., 82 tabs.

  14. Environmental Technology Verification Program

    E-Print Network [OSTI]

    Activities.................4 Table 2.0 Records Management Responsibilities for the MMR CenterEnvironmental Technology Verification Program Quality Management Plan (QMP) for the ETV Materials Management and Remediation Center Version 1.0 #12;QUALITY MANAGEMENT PLAN (QMP) for the ETV MATERIALS

  15. EDUCATION AT THE CONTROL LABORATORY Lately, teaching emphasis has been more on group and individual works and

    E-Print Network [OSTI]

    3 2 EDUCATION AT THE CONTROL LABORATORY Lately, teaching emphasis has been more on group processes. The laboratory carries a major role in this program. Control engineering students have seven

  16. GRIMHX verification and validation action matrix summary

    SciTech Connect (OSTI)

    Trumble, E.F.

    1991-12-01T23:59:59.000Z

    WSRC-RP-90-026, Certification Plan for Reactor Analysis Computer Codes, describes a series of action items to be completed for certification of reactor analysis computer codes used in Technical Specifications development and for other safety and production support calculations. Validation and verification of the code is an integral part of this process. This document identifies the work performed and documentation generated to satisfy these action items for the Reactor Physics computer code GRIMHX. Each action item is discussed with the justification for its completion. Specific details of the work performed are not included in this document but are found in the references. The publication of this document signals the validation and verification effort for the GRIMHX code is completed.

  17. Survey of Existing Tools for Formal Verification.

    SciTech Connect (OSTI)

    Punnoose, Ratish J.; Armstrong, Robert C.; Wong, Matthew H.; Jackson, Mayo

    2014-12-01T23:59:59.000Z

    Formal methods have come into wide use because of their effectiveness in verifying %22safety and security%22 requirements of digital systems; a set of requirements for which testing is mostly ineffective. Formal methods are routinely used in the design and verification of high-consequence digital systems in industry. This report outlines our work in assessing the capabilities of commercial and open source formal tools and the ways in which they can be leveraged in digital design workflows.

  18. On Incremental Quantitative Verification for Probabilistic Systems

    E-Print Network [OSTI]

    Oxford, University of

    . Quantitative verification is an automated method to establish quantitative properties of a system model, non- probabilistic verification, which, in addition to exhaustive exploration of a system modelOn Incremental Quantitative Verification for Probabilistic Systems Marta Kwiatkowska, David Parker

  19. Health and Safety Work Plan for Sampling Colloids in Waste Area Grouping 5 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Marsh, J.D.; McCarthy, J.F.

    1994-01-01T23:59:59.000Z

    This Work Plan/Site Safety and Health Plan (SSHP) and the attached work plan are for the performance of the colloid project at WAG 5. The work will be conducted by the Oak Ridge National Laboratory (ORNL) Environmental Sciences Division (ESD) and associated ORNL environmental, safety, and health support groups. The purpose of this document is to establish health and safety guidelines to be followed by all personnel involved in conducting work for this project. The levels of protection and the procedures specified in this plan are based on the best information available from historical data and preliminary evaluations of the area. Therefore, these recommendations represent the minimum health and safety requirements to be observed by all personnel engaged in this project.

  20. Verification of Network Management System Configurations David L. Cohrs

    E-Print Network [OSTI]

    Miller, Barton P.

    , with the use of simple, ad hoc tools. However in a large network, managing the net- work management system the amount of sharing and coordination possible in configuring the net- work management system. EachVerification of Network Management System Configurations David L. Cohrs (608) 262-6617 dave

  1. EMPLOYMENT VERIFICATION LETTER Student's Name: ________________________________________________________

    E-Print Network [OSTI]

    Bolding, M. Chad

    Rev. 10/04 EMPLOYMENT VERIFICATION LETTER Student's Name: ________________________________________________________ (Family Name) (First) (Middle Initial) TO BE COMPLETED BY EMPLOYER OR HIRING DEPARTMENT: Employment Department__________________________________________________ Employment Position

  2. Operable Unit 3-13, Group 3, Other Surface Soils Remediation Sets 4-6 (Phase II) Remedial Design/Remedial Action Work Plan

    SciTech Connect (OSTI)

    D. E. Shanklin

    2006-06-01T23:59:59.000Z

    This Remedial Design/Remedial Action Work Plan provides the framework for defining the remedial design requirements, preparing the design documentation, and defining the remedial actions for Waste Area Group 3, Operable Unit 3-13, Group 3, Other Surface Soils, Remediation Sets 4-6 (Phase II) located at the Idaho Nuclear Technology and Engineering Center at the Idaho National Laboratory. This plan details the design developed to support the remediation and disposal activities selected in the Final Operable Unit 3-13, Record of Decision.

  3. November 6, 2008; HSS/Union Working Group Meeting on Aging Workforce/Strategic Initiatives - Meeting Summary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment of Energy NorthB O|Work ForceNovember 4, 2014

  4. November 6, 2008; HSS/Union Working Group Meeting on Aging Workforce/Strategic Initiatives - Package Bookmark

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment of Energy NorthB O|Work ForceNovember 4,

  5. November 6, 2008; HSS/Union Working Group Meeting on Aging Workforce/Strategic Initiatives- Illness and Injury Surveillance Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment of Energy NorthB O|Work ForceNovember 4, Office of

  6. December 4, 2008; HSS/Union Working Group Meeting on 2008 HSS/Union Topical Wrap Up - Action Matrix

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197 This workDayton: ENERGY8 Deaerators3 SEAB Meeting4 2008

  7. December 4, 2008; HSS/Union Working Group Meeting on 2008 HSS/Union Topical Wrap Up - Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197 This workDayton: ENERGY8 Deaerators3 SEAB Meeting4

  8. December 4, 2008; HSS/Union Working Group Meeting on 2008 HSS/Union Topical Wrap Up - Summary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197 This workDayton: ENERGY8 Deaerators3 SEABTopical

  9. Commissioning and Verification Procedures for the Automated Roller Shade System at

    E-Print Network [OSTI]

    Commissioning and Verification Procedures for the Automated Roller Shade System at The New York for verification testing of a newly installed automated roller shade system. The automated roller shade system has-available system works prior to building occupancy. A high dynamic range luminance measurement tool, developed

  10. Security and Verification Provable cryptography

    E-Print Network [OSTI]

    Gregoire, Benjamin - Institut National de Recherche en Informatique et en Automatique, Centre de recherche Sophia Antipolis

    Security and Verification Provable cryptography Benjamin Grégoire1 Tamara Rezk1 1INRIA Sophia Antipolis - Méditerranée, France Cours de Master 2 Univerisité de Nice Sophia-Antipolis Security and Verification 1/ 33 #12;Cryptanalysis-driven Security Propose a cryptographic scheme Wait for someone to come

  11. Software Verification and Validation Procedure

    SciTech Connect (OSTI)

    Olund, Thomas S.

    2008-09-15T23:59:59.000Z

    This Software Verification and Validation procedure provides the action steps for the Tank Waste Information Network System (TWINS) testing process. The primary objective of the testing process is to provide assurance that the software functions as intended, and meets the requirements specified by the client. Verification and validation establish the primary basis for TWINS software product acceptance.

  12. ORISE: Independent verification

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE ProjectCrisisIndependent verification ORISE

  13. Model Verification and Validation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A.Model Verification and Validation Engineering

  14. Information basis for developing comprehensive waste management system-US-Japan joint nuclear energy action plan waste management working group phase I report.

    SciTech Connect (OSTI)

    Nutt, M.; Nuclear Engineering Division

    2010-05-25T23:59:59.000Z

    The activity of Phase I of the Waste Management Working Group under the United States - Japan Joint Nuclear Energy Action Plan started in 2007. The US-Japan JNEAP is a bilateral collaborative framework to support the global implementation of safe, secure, and sustainable, nuclear fuel cycles (referred to in this document as fuel cycles). The Waste Management Working Group was established by strong interest of both parties, which arise from the recognition that development and optimization of waste management and disposal system(s) are central issues of the present and future nuclear fuel cycles. This report summarizes the activity of the Waste Management Working Group that focused on consolidation of the existing technical basis between the U.S. and Japan and the joint development of a plan for future collaborative activities. Firstly, the political/regulatory frameworks related to nuclear fuel cycles in both countries were reviewed. The various advanced fuel cycle scenarios that have been considered in both countries were then surveyed and summarized. The working group established the working reference scenario for the future cooperative activity that corresponds to a fuel cycle scenario being considered both in Japan and the U.S. This working scenario involves transitioning from a once-through fuel cycle utilizing light water reactors to a one-pass uranium-plutonium fuel recycle in light water reactors to a combination of light water reactors and fast reactors with plutonium, uranium, and minor actinide recycle, ultimately concluding with multiple recycle passes primarily using fast reactors. Considering the scenario, current and future expected waste streams, treatment and inventory were discussed, and the relevant information was summarized. Second, the waste management/disposal system optimization was discussed. Repository system concepts were reviewed, repository design concepts for the various classifications of nuclear waste were summarized, and the factors to consider in repository design and optimization were then discussed. Japan is considering various alternatives and options for the geologic disposal facility and the framework for future analysis of repository concepts was discussed. Regarding the advanced waste and storage form development, waste form technologies developed in both countries were surveyed and compared. Potential collaboration areas and activities were next identified. Disposal system optimization processes and techniques were reviewed, and factors to consider in future repository design optimization activities were also discussed. Then the potential collaboration areas and activities related to the optimization problem were extracted.

  15. TFE Verification Program

    SciTech Connect (OSTI)

    Not Available

    1993-05-01T23:59:59.000Z

    The objective of the semiannual progress report is to summarize the technical results obtained during the latest reporting period. The information presented herein will include evaluated test data, design evaluations, the results of analyses and the significance of results. The program objective is to demonstrate the technology readiness of a TFE (thermionic fuel element) suitable for use as the basic element in a thermionic reactor with electric power output in the 0.5 to 5.0 MW(e) range, and a full-power life of 7 years. The TFE Verification Program builds directly on the technology and data base developed in the 1960s and early 1970s in an AEC/NASA program, and in the SP-100 program conducted in 1983, 1984 and 1985. In the SP-100 program, the attractive features of thermionic power conversion technology were recognized but concern was expressed over the lack of fast reactor irradiation data. The TFE Verification Program addresses this concern.

  16. Learning Minimal Separating DFA's for Compositional Verification

    E-Print Network [OSTI]

    Clarke, Edmund M.

    version is evaluated on the LTSA benchmarks and compared with other automated com- positional verification

  17. Energy infrastructure of the United States and projected siting needs: Scoping ideas, identifying issues and options. Draft report of the Department of Energy Working Group on Energy Facility Siting to the Secretary

    SciTech Connect (OSTI)

    Not Available

    1993-12-01T23:59:59.000Z

    A Department of Energy (DOE) Working Group on Energy Facility Siting, chaired by the Policy Office with membership from the major program and staff offices of the Department, reviewed data regarding energy service needs, infrastructure requirements, and constraints to siting. The Working Group found that the expeditious siting of energy facilities has important economic, energy, and environmental implications for key Administration priorities.

  18. Department of Computing CSP||B modelling for railway verification

    E-Print Network [OSTI]

    Doran, Simon J.

    University of Surrey Department of Computing Computing Sciences Report CS-12-03 CSP||B modelling Schneider Helen Treharne March 30th 2012 #12;CSP||B modelling for railway verification: the double junction work in verifying railway systems through CSP k B modelling and analysis. In particular we consider

  19. Runtime verification for stochastic systems

    E-Print Network [OSTI]

    Wilcox, Cristina M

    2010-01-01T23:59:59.000Z

    We desire a capability for the safety monitoring of complex, mixed hardware/software systems, such as a semi-autonomous car. The field of runtime verification has developed many tools for monitoring the safety of software ...

  20. Software Modeling and Verification Professors

    E-Print Network [OSTI]

    Ábrahám, Erika

    Software Modeling and Verification Staff · Professors Prof. Dr. Ir. Joost-Pieter Katoen Prof. em) Mark Timmer (Uni Twente, NL) Dr. Olga Tveretina (Karlsruhe University, D) Ralf Wimmer (Universität

  1. EMPLOYMENT VERIFICATION LETTER Student's Name: ________________________________________________________

    E-Print Network [OSTI]

    Bolding, M. Chad

    Rev. 10/04 EMPLOYMENT VERIFICATION LETTER Student's Name: ________________________________________________________ (Family Name) (First) (Middle Initial) TO BE COMPLETED BY EMPLOYER OR HIRING DEPARTMENT: Employment Department_ Clemson University ________________________________ Employment Posn Title

  2. Massachusetts Wind Working Group Meeting

    Broader source: Energy.gov [DOE]

    The meeting will feature a panel presentation and discussion on Shadow-Flicker, as well as updates related to the Community Wind Outreach Initiative.   Panel speakers so far include: Elizabeth King...

  3. High Temperature Membrane Working Group

    Broader source: Energy.gov (indexed) [DOE]

    Using Advanced Polymeric Membranes BESP 20 Michael Heben NREL Carbon Nanotube Materials for Substrate Enhanced Control of Catalytic Activity BESP 21 G. Kane Jennings...

  4. CFCC working group meeting: Proceedings

    SciTech Connect (OSTI)

    NONE

    1995-12-31T23:59:59.000Z

    The theme of the meeting was ``A Path to Commercialization`` and discussion was devoted to addressing the nearest-term products and the time frame for implementation. The objectives of the meeting were to identify the barriers to commercialization, methods to overcome these barriers, and the actions required to achieve success. The meeting was planned to bring together government agencies and industry customers and, suppliers to discuss and conclude where the CFCC Program is today, where it is going, and how they plan to get there. It was also planned to join component developers with end users who can describe systems needs and projected schedules for introducing CFCC components in industrial applications.

  5. Mechanical Working Group meeting minutes

    SciTech Connect (OSTI)

    Not Available

    1992-12-01T23:59:59.000Z

    This documents contains the minutes and viewgraphs from the October 27--28, 1992 meeting on the subject of power generation and delivery systems for military applications. Attendees represented the US Air Force and NASA. The thermal management panel reported on the capillary pump loop test facility, thermal control systems and compressors, and the oxygen heat pipe flight experiment. The aerospace power panel reported on the integrated power unit for the more electric airplane, the solar dynamic power system, the modular high temperature gas cooled reactor-gas-turbine program, the multi-megawatt CBC power system, and analytical modeling for heat pipe performance. The terrestrial power panel reported on a free piston stirling engine power generation system, fuel cell vehicles, and the advanced gas turbine project.

  6. Renewable Electricity Working Group Presentation

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard Errors forA2.

  7. Working Group Industrial Presentation-2014

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25, 20123 (Million13) Monthly

  8. 2011-2012 Working Groups

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >InternshipDepartment ofAugust 2011 Thu, 08/18/2011MarchDecember1

  9. ARM Aerosol Working Group Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP Update Information on new, existing, and futureAn

  10. ARM Aerosol Working Group Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP Update Information on new, existing, and futureAn and MFRSR

  11. ARM Aerosol Working Group Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP Update Information on new, existing, and futureAn and

  12. BEDES Strategic Working Group Recommendations

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform is alwaysISOSource1-01 Audit LetterYearAvi Shultz Avi7

  13. Verification as a Foundation for Validation of a Nuclear Fuel Performance Code

    SciTech Connect (OSTI)

    J. D. Hales; S. R. Novascone; B. W. Spencer; R. L. Williamson; G. Pastore; D. M. Perez

    2014-09-01T23:59:59.000Z

    Complex multiphysics simulations such as nuclear fuel performance analysis are composed of many submodels used to describe specific phenomena. These phenomena include, as examples, the relationship between stress and strain, heat transfer across a gas gap, and mechanical contact. These submodels work in concert to simulate real-world events, like the behavior of a fuel rod in a reactor. If a simulation tool is able to represent real-world behavior, the tool is said to be validated. While much emphasis is rightly placed on validation, model verification may be undervalued. Verification involves showing that a model performs as intended, that it computes results consistent with its mathematical description. This paper explains the differences between verification and validation and shows how validation should be preceded by verification. Specific verification problems, including several specific to nuclear fuel analysis, are given. Validation results are also presented.

  14. Plutonium working group report on environmental, safety and health vulnerabilities associated with the Department`s plutonium storage. Volume 2, Appendix A: Process and protocol

    SciTech Connect (OSTI)

    NONE

    1994-09-01T23:59:59.000Z

    This appendix contains documentation prepared by the Plutonium ES and H Vulnerability Working Group for conducting the Plutonium ES and H Vulnerability Assessment and training the assessment teams. It has the following five parts. (1) The Project Plan describes the genesis of the project, sets forth the goals, objectives and scope, provides definitions, the projected schedule, and elements of protocol. (2) The Assessment Plan provides a detailed methodology necessary to guide the many professionals who have been recruited to conduct the DOE-wide assessment. It provides guidance on which types and forms of plutonium are to be considered within the scope of the assessment, and lays out the assessment methodology to be used. (3) The memorandum from the Project to Operations Office Managers provides the protocol and direction for participation in the assessment by external stakeholders and members of the public; and the guidance for the physical inspection of plutonium materials in storage. (4) The memorandum from the Project to the assessment teams provides guidance for vulnerability screening criteria, vulnerability evaluation and prioritization process, and vulnerability quantification for prioritization. (5) The Team Training manual was used at the training session held in Colorado Springs on April 19--21, 1994 for all members of the Working Group Assessment Teams and for the leaders of the Site Assessment Teams. The goal was to provide the same training to all of the individuals who would be conducting the assessments, and thereby provide consistency in the conduct of the assessments and uniformity in reporting of the results. The training manual in Section A.5 includes supplemental material provided to the attendees after the meeting.

  15. Generation of RTL verification input stimulus

    E-Print Network [OSTI]

    Selvarathinam, Anand Manivannan

    2001-01-01T23:59:59.000Z

    This thesis presents an approach for generating input stimulus for verification of register-transfer level (RTL) design of VLSI circuits. RTL design is often subjected to a significant verification effort due to errors introduced during manual...

  16. Technical challenges for dismantlement verification

    SciTech Connect (OSTI)

    Olinger, C.T.; Stanbro, W.D.; Johnston, R.G.; Nakhleh, C.W.; Dreicer, J.S.

    1997-11-01T23:59:59.000Z

    In preparation for future nuclear arms reduction treaties, including any potential successor treaties to START I and II, the authors have been examining possible methods for bilateral warhead dismantlement verification. Warhead dismantlement verification raises significant challenges in the political, legal, and technical arenas. This discussion will focus on the technical issues raised by warhead arms controls. Technical complications arise from several sources. These will be discussed under the headings of warhead authentication, chain-of-custody, dismantlement verification, non-nuclear component tracking, component monitoring, and irreversibility. The authors will discuss possible technical options to address these challenges as applied to a generic dismantlement and disposition process, in the process identifying limitations and vulnerabilities. They expect that these considerations will play a large role in any future arms reduction effort and, therefore, should be addressed in a timely fashion.

  17. Verification = Specification + Deduction + Computation + Abstraction Logical foundations

    E-Print Network [OSTI]

    Jouannaud, Jean-Pierre

    of powerful, secure, interactive tools #12;Verification Given a system to be analyzed, 1. elaborate a model, interactive tools #12;Verification Given a system to be analyzed, 1. elaborate a model of the system. 2. Test;Verification Given a system to be analyzed, 1. elaborate a model of the system. 2. Test some liveness property

  18. TEC Working Group Topic Groups Archives Consolidated Grant Topic Group |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssues DOE'sSummaryDepartment ofSecurity03 -Summaries |

  19. Independent Verification and Validation

    E-Print Network [OSTI]

    Kemner, Ken

    : CMTS ­ Compliance Monitoring and Tracking System OSMAPS ­ Open Skies Management and Planning System&V. #12;A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC Argonne's team of IV Opportunity Decision and Information Sciences Division Information Sciences Group More than ever, systems

  20. Exploring the Possible Use of Information Barriers for future Biological Weapons Verification Regimes

    SciTech Connect (OSTI)

    Luke, S J

    2011-12-20T23:59:59.000Z

    This report describes a path forward for implementing information barriers in a future generic biological arms-control verification regime. Information barriers have become a staple of discussion in the area of arms control verification approaches for nuclear weapons and components. Information barriers when used with a measurement system allow for the determination that an item has sensitive characteristics without releasing any of the sensitive information. Over the last 15 years the United States (with the Russian Federation) has led on the development of information barriers in the area of the verification of nuclear weapons and nuclear components. The work of the US and the Russian Federation has prompted other states (e.g., UK and Norway) to consider the merits of information barriers for possible verification regimes. In the context of a biological weapons control verification regime, the dual-use nature of the biotechnology will require protection of sensitive information while allowing for the verification of treaty commitments. A major question that has arisen is whether - in a biological weapons verification regime - the presence or absence of a weapon pathogen can be determined without revealing any information about possible sensitive or proprietary information contained in the genetic materials being declared under a verification regime. This study indicates that a verification regime could be constructed using a small number of pathogens that spans the range of known biological weapons agents. Since the number of possible pathogens is small it is possible and prudent to treat these pathogens as analogies to attributes in a nuclear verification regime. This study has determined that there may be some information that needs to be protected in a biological weapons control verification regime. To protect this information, the study concludes that the Lawrence Livermore Microbial Detection Array may be a suitable technology for the detection of the genetic information associated with the various pathogens. In addition, it has been determined that a suitable information barrier could be applied to this technology when the verification regime has been defined. Finally, the report posits a path forward for additional development of information barriers in a biological weapons verification regime. This path forward has shown that a new analysis approach coined as Information Loss Analysis might need to be pursued so that a numerical understanding of how information can be lost in specific measurement systems can be achieved.

  1. Automated Verification of Practical Garbage Collectors

    E-Print Network [OSTI]

    Hawblitzel, Chris

    2010-01-01T23:59:59.000Z

    Garbage collectors are notoriously hard to verify, due to their low-level interaction with the underlying system and the general difficulty in reasoning about reachability in graphs. Several papers have presented verified collectors, but either the proofs were hand-written or the collectors were too simplistic to use on practical applications. In this work, we present two mechanically verified garbage collectors, both practical enough to use for real-world C# benchmarks. The collectors and their associated allocators consist of x86 assembly language instructions and macro instructions, annotated with preconditions, postconditions, invariants, and assertions. We used the Boogie verification generator and the Z3 automated theorem prover to verify this assembly language code mechanically. We provide measurements comparing the performance of the verified collector with that of the standard Bartok collectors on off-the-shelf C# benchmarks, demonstrating their competitiveness.

  2. Departement de formation doctorale en informatique Ecole doctorale IAEM Lorraine Contributions `a la verification

    E-Print Network [OSTI]

    Boyer, Edmond

    Contributions `a la v´erification automatique de protocoles de groupes TH`ESE pr´esent´ee et soutenue groupe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.3 Gestion de clefs´esum´e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.5 Impact des agents malhonn^etes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2

  3. Genomics:GTL Contractor-Grantee Workshop IV and Metabolic Engineering Working Group Inter-Agency Conference on Metabolic Engineering 2006

    SciTech Connect (OSTI)

    Mansfield, Betty Kay [ORNL; Martin, Sheryl A [ORNL

    2006-02-01T23:59:59.000Z

    Welcome to the 2006 joint meeting of the fourth Genomics:GTL Contractor-Grantee Workshop and the six Metabolic Engineering Working Group Inter-Agency Conference. The vision and scope of the Genomics:GTL program continue to expand and encompass research and technology issues from diverse scientific disciplines, attracting broad interest and support from researchers at universities, DOE national laboratories, and industry. Metabolic engineering's vision is the targeted and purposeful alteration of metabolic pathways to improve the understanding and use of cellular pathways for chemical transformation, energy transduction, and supramolecular assembly. These two programs have much complementarity in both vision and technological approaches, as reflected in this joint workshop. GLT's challenge to the scientific community remains the further development and use of a broad array of innovative technologies and computational tools to systematically leverage the knowledge and capabilities brought to us by DNA sequencing projects. The goal is to seek a broad and predictive understanding of the functioning and control of complex systems--individual microbes, microbial communities, and plants. GTL's prominent position at the interface of the physical, computational, and biological sciences is both a strength and challenge. Microbes remain GTL's principal biological focus. In the complex 'simplicity' of microbes, they find capabilities needed by DOE and the nation for clean and secure energy, cleanup of environmental contamination, and sequestration of atmospheric carbon dioxide that contributes to global warming. An ongoing challenge for the entire GTL community is to demonstrate that the fundamental science conducted in each of your research projects brings us a step closer to biology-based solutions for these important national energy and environmental needs.

  4. Group X

    SciTech Connect (OSTI)

    Fields, Susannah

    2007-08-16T23:59:59.000Z

    This project is currently under contract for research through the Department of Homeland Security until 2011. The group I was responsible for studying has to remain confidential so as not to affect the current project. All dates, reference links and authors, and other distinguishing characteristics of the original group have been removed from this report. All references to the name of this group or the individual splinter groups has been changed to 'Group X'. I have been collecting texts from a variety of sources intended for the use of recruiting and radicalizing members for Group X splinter groups for the purpose of researching the motivation and intent of leaders of those groups and their influence over the likelihood of group radicalization. This work included visiting many Group X websites to find information on splinter group leaders and finding their statements to new and old members. This proved difficult because the splinter groups of Group X are united in beliefs, but differ in public opinion. They are eager to tear each other down, prove their superiority, and yet remain anonymous. After a few weeks of intense searching, a list of eight recruiting texts and eight radicalizing texts from a variety of Group X leaders were compiled.

  5. Verification Monitoring Report

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona,Site Operations Guide Doc.5 R A DUnied StatesSURVEY OFand

  6. Functional Verification through Operation Diagnostics

    E-Print Network [OSTI]

    Burgoyne, B.

    ICEBO'11 Abstract Burgoyne 110328.docx Page 1 of 1 ? Ebert & Baumann Consulting Engineers, Inc. A B S T R A C T ICEBO 2011 New York City March 28, 2011 Functional Verification through Operation Diagnostics One of the core objectives... of actual operation produces the most accurate results. This is accomplished through trend logging. With analysis of regularly recorded control point data through visualization (including graphs, charts, etc.), a quick and accurate diagnosis of incorrect...

  7. Verification Challenges at Low Numbers

    SciTech Connect (OSTI)

    Benz, Jacob M.; Booker, Paul M.; McDonald, Benjamin S.

    2013-06-01T23:59:59.000Z

    Many papers have dealt with the political difficulties and ramifications of deep nuclear arms reductions, and the issues of “Going to Zero”. Political issues include extended deterrence, conventional weapons, ballistic missile defense, and regional and geo-political security issues. At each step on the road to low numbers, the verification required to ensure compliance of all parties will increase significantly. Looking post New START, the next step will likely include warhead limits in the neighborhood of 1000 . Further reductions will include stepping stones at1000 warheads, 100’s of warheads, and then 10’s of warheads before final elimination could be considered of the last few remaining warheads and weapons. This paper will focus on these three threshold reduction levels, 1000, 100’s, 10’s. For each, the issues and challenges will be discussed, potential solutions will be identified, and the verification technologies and chain of custody measures that address these solutions will be surveyed. It is important to note that many of the issues that need to be addressed have no current solution. In these cases, the paper will explore new or novel technologies that could be applied. These technologies will draw from the research and development that is ongoing throughout the national laboratory complex, and will look at technologies utilized in other areas of industry for their application to arms control verification.

  8. Image Hashes as Templates for Verification

    SciTech Connect (OSTI)

    Janik, Tadeusz; Jarman, Kenneth D.; Robinson, Sean M.; Seifert, Allen; McDonald, Benjamin S.; White, Timothy A.

    2012-07-17T23:59:59.000Z

    Imaging systems can provide measurements that confidently assess characteristics of nuclear weapons and dismantled weapon components, and such assessment will be needed in future verification for arms control. Yet imaging is often viewed as too intrusive, raising concern about the ability to protect sensitive information. In particular, the prospect of using image-based templates for verifying the presence or absence of a warhead, or of the declared configuration of fissile material in storage, may be rejected out-of-hand as being too vulnerable to violation of information barrier (IB) principles. Development of a rigorous approach for generating and comparing reduced-information templates from images, and assessing the security, sensitivity, and robustness of verification using such templates, are needed to address these concerns. We discuss our efforts to develop such a rigorous approach based on a combination of image-feature extraction and encryption-utilizing hash functions to confirm proffered declarations, providing strong classified data security while maintaining high confidence for verification. The proposed work is focused on developing secure, robust, tamper-sensitive and automatic techniques that may enable the comparison of non-sensitive hashed image data outside an IB. It is rooted in research on so-called perceptual hash functions for image comparison, at the interface of signal/image processing, pattern recognition, cryptography, and information theory. Such perceptual or robust image hashing—which, strictly speaking, is not truly cryptographic hashing—has extensive application in content authentication and information retrieval, database search, and security assurance. Applying and extending the principles of perceptual hashing to imaging for arms control, we propose techniques that are sensitive to altering, forging and tampering of the imaged object yet robust and tolerant to content-preserving image distortions and noise. Ensuring that the information contained in the hashed image data (available out-of-IB) cannot be used to extract sensitive information about the imaged object is of primary concern. Thus the techniques are characterized by high unpredictability to guarantee security. We will present an assessment of the performance of our techniques with respect to security, sensitivity and robustness on the basis of a methodical and mathematically precise framework.

  9. Modeling and Verification of a Distributed Transmission Protocol Lubomir Ivanov

    E-Print Network [OSTI]

    Ivanov, Lubomir

    -parallel poset verification is a powerful methodology for proving the design correctness of complex systemsModeling and Verification of a Distributed Transmission Protocol Lubomir Ivanov Department verification methodologies has evolved in two directions: powerful, general techniques capable of accurately

  10. Employment Verifications Requests for verification of title and dates of employment for Harvard staff are

    E-Print Network [OSTI]

    Paulsson, Johan

    Employment Verifications Requests for verification of title and dates of employment for Harvard information during the verification process. Need Proof of Employment? Give the person needing proof of your employment the following information: Your Social Security Number Harvard University Employer Code: 14392

  11. EMERGING RENEWABLES PROGRAM SYSTEMS VERIFICATION REPORT

    E-Print Network [OSTI]

    survey that measured customer experience in applying to the ERP, receiving utility interconnection, renewable energy, shading, solar, system performance, system verification, utility interconnection, wind #12

  12. Guide to good practices for independent verification

    SciTech Connect (OSTI)

    NONE

    1998-12-01T23:59:59.000Z

    This Guide to Good Practices is written to enhance understanding of, and provide direction for, Independent Verification, Chapter X of Department of Energy (DOE) Order 5480.19, Conduct of Operations Requirements for DOE Facilities. The practices in this guide should be considered when planning or reviewing independent verification activities. Contractors are advised to adopt procedures that meet the intent of DOE Order 5480.19. Independent Verification is an element of an effective Conduct of Operations program. The complexity and array of activities performed in DOE facilities dictate the necessity for coordinated independent verification activities to promote safe and efficient operations.

  13. Verification and Validation of Facilities Procedures Assessment...

    Broader source: Energy.gov (indexed) [DOE]

    Verification and Validation of Facilities Procedures Assessment Plan NNSANevada Site Office Independent Oversight Division Performance Objective: The purpose of this assessment is...

  14. DOE Zero Energy Ready Home Verification...

    Broader source: Energy.gov (indexed) [DOE]

    Zero Energy Ready Home Verification Summary DRAFT REMRate - Residential Energy Analysis and Rating Software v14.5.1 This information does not constitute any warranty of energy...

  15. Assessment of Evaluation, Measurement, and Verification Methods...

    Broader source: Energy.gov (indexed) [DOE]

    smart meters, devices, and analytics to enable the delivery of streamlined measurement and verification (M&V) that reduces cost while increasing the speed and accuracy of...

  16. M. D. Lemmon and P. J. Antsaklis, "Towards a Working Characterization of "Intelligent" Supervisory Control," Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems) Group, No. ISIS-

    E-Print Network [OSTI]

    Antsaklis, Panos

    Control," Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems) Group, No. ISIS Characterization of "Intelligent" Supervisory Control," Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems) Group, No. ISIS- 93-007, Univ of Notre Dame, November 1993. #12;M. D. Lemmon and P. J

  17. Mobile Pit verification system design based on passive special nuclear material verification in weapons storage facilities

    SciTech Connect (OSTI)

    Paul, J. N.; Chin, M. R.; Sjoden, G. E. [Nuclear and Radiological Engineering Program, George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 770 State St, Atlanta, GA 30332-0745 (United States)

    2013-07-01T23:59:59.000Z

    A mobile 'drive by' passive radiation detection system to be applied in special nuclear materials (SNM) storage facilities for validation and compliance purposes has been designed through the use of computational modeling and new radiation detection methods. This project was the result of work over a 1 year period to create optimal design specifications to include creation of 3D models using both Monte Carlo and deterministic codes to characterize the gamma and neutron leakage out each surface of SNM-bearing canisters. Results were compared and agreement was demonstrated between both models. Container leakages were then used to determine the expected reaction rates using transport theory in the detectors when placed at varying distances from the can. A 'typical' background signature was incorporated to determine the minimum signatures versus the probability of detection to evaluate moving source protocols with collimation. This established the criteria for verification of source presence and time gating at a given vehicle speed. New methods for the passive detection of SNM were employed and shown to give reliable identification of age and material for highly enriched uranium (HEU) and weapons grade plutonium (WGPu). The finalized 'Mobile Pit Verification System' (MPVS) design demonstrated that a 'drive-by' detection system, collimated and operating at nominally 2 mph, is capable of rapidly verifying each and every weapon pit stored in regularly spaced, shelved storage containers, using completely passive gamma and neutron signatures for HEU and WGPu. This system is ready for real evaluation to demonstrate passive total material accountability in storage facilities. (authors)

  18. Reviewing Measurement and Verification Plans for Federal ESPC...

    Office of Environmental Management (EM)

    Measurement and Verification Plans for Federal ESPC Projects Reviewing Measurement and Verification Plans for Federal ESPC Projects Document provides a framework for implementing...

  19. M&V Guidelines: Measurement and Verification for Federal Energy...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Introduction to Measurement & Verification for DOE Super ESPC Projects Introduction to Measurement and Verification for DOE Super ESPC Projects DRAFT...

  20. ENERGY STAR Test Procedures and Verification | Department of...

    Energy Savers [EERE]

    ENERGY STAR ENERGY STAR Test Procedures and Verification ENERGY STAR Test Procedures and Verification The Department of Energy (DOE) is the lead agency in the development and...

  1. M&V Guidelines: Measurement and Verification for Federal Energy...

    Broader source: Energy.gov (indexed) [DOE]

    M&V Guidelines: Measurement and Verification for Federal Energy Projects (Version 3.0) Draft M&V Guidelines: Measurement and Verification for Federal Energy Projects...

  2. CARB Verification of Catalyzed Diesel Particulate Filters for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CARB Verification of Catalyzed Diesel Particulate Filters for Emergency Generator Sets CARB Verification of Catalyzed Diesel Particulate Filters for Emergency Generator Sets 2005...

  3. Measurement and Verification Plan and Savings Calculations Methods...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Measurement and Verification Plan and Savings Calculations Methods Outline (IDIQ Attachment J-8) Measurement and Verification Plan and Savings Calculations Methods Outline (IDIQ...

  4. ADDRESSING PROCESS PLANNING AND VERIFICATION ISSUES WITH MTCONNECT

    E-Print Network [OSTI]

    Vijayaraghavan, Athulan; Dornfeld, David; Artisanal Software; Remmele Engineering Inc.

    2009-01-01T23:59:59.000Z

    Surfaces in the Cybercut Process Planning Pipeline”, Trans.ADDRESSING PROCESS PLANNING AND VERIFICATION ISSUES WITHInc. Big Lake, MN KEYWORDS Process planning verification,

  5. This work utilizes data obtained by the Global Oscillation Network Group (GONG++) Program and the SOI/MDI instrument on SoHO. GONG++ is managed by the National

    E-Print Network [OSTI]

    Braun, Douglas C.

    This work utilizes data obtained by the Global Oscillation Network Group (GONG++) Program and the SOI/MDI instrument on SoHO. GONG++ is managed by the National Solar Observatory, which is operated 3 Stanford University, Stanford, California Both MDI and GONG++ Programs provide daily helioseismic

  6. Formal Specification and Verification of Concurrent

    E-Print Network [OSTI]

    Berry, Daniel M.

    Formal Specification and Verification of Concurrent ProgramsCurriculum Module SEI-CM-27-1.0 #12;Formal Specification and Verification of Concurrent Programs SEI Curriculum Module SEI-CM-27-1.0 February 1993 Daniel M. Berry Technion and Software Engineering Institute Software Engineering Institute

  7. The monitoring and verification of nuclear weapons

    SciTech Connect (OSTI)

    Garwin, Richard L., E-mail: RLG2@us.ibm.com [IBM Fellow Emeritus, IBM Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598 (United States)

    2014-05-09T23:59:59.000Z

    This paper partially reviews and updates the potential for monitoring and verification of nuclear weapons, including verification of their destruction. Cooperative monitoring with templates of the gamma-ray spectrum are an important tool, dependent on the use of information barriers.

  8. Department of Computer Science AUTOMATIC VERIFICATION OF

    E-Print Network [OSTI]

    Oxford, University of

    Department of Computer Science AUTOMATIC VERIFICATION OF COMPETITIVE STOCHASTIC SYSTEMS Taolue Chen Automatic verification techniques for probabilistic systems have been success- fully applied in a variety systems also exhibit non- deterministic behaviour, e.g. due to concurrency, underspecification or control

  9. Verification after Synthesis Alan Mishchenko Robert Brayton

    E-Print Network [OSTI]

    Brayton, Robert K.

    in verification based on BDDs, SAT, and AIGs (And-Inverter Graphs), these results do not readily transfer to large are necessary to advance both synthesis and verification. We propose a methodology for scalable sequential it by a functionally equivalent one (up to complementation of outputs). (2) Retiming changes the positions of one

  10. A Verification Platform System on Chip

    E-Print Network [OSTI]

    Melham, Tom

    A Verification Platform for System on Chip Kong Woei Susanto A Dissertation submitted a platform based design method, called a system integration platform. In this design methodology, a system specifications. Subsequently, a similar platform can be constructed for formal verification. Every component

  11. Technical Documentation and Verification for the

    E-Print Network [OSTI]

    PNNL-15202 Technical Documentation and Verification for the Buildings Module in the Visual Sample://www.ntis.gov/ordering.htm This document was printed on recycled paper. (9/2003) #12;PNNL-15202 Technical Documentation and Verification ...................................................................... 1 2.0 Documentation of Statistical Methods and Computations

  12. CASE STUDY -- LEAN 94-02: A Case Study of Self-Directed Work Teams at Boeing Defense and Space Group - Corinth

    E-Print Network [OSTI]

    Klein, Janice

    1994-02-24T23:59:59.000Z

    Boeing Defense & Space Group - Corinth (BD&SG-C) is a self-directed team based unionized facility in the defense and commercial aircraft industry. The plant was a greenfield start-up in 1987. Due to the nature of the defense ...

  13. Cyber-Physical System Verification Embedded Systems Group

    E-Print Network [OSTI]

    Berns, Karsten

    (Felipe Bichued) 21 Introducing Simulation of Hybrid Systems with the Modelica Tool 32 #12;Cyber Physical

  14. Supporting the President's Arms Control and Nonproliferation Agenda: Transparency and Verification for Nuclear Arms Reductions

    SciTech Connect (OSTI)

    Doyle, James E [Los Alamos National Laboratory; Meek, Elizabeth [Los Alamos National Laboratory

    2009-01-01T23:59:59.000Z

    The President's arms control and nonproliferation agenda is still evolving and the details of initiatives supporting it remain undefined. This means that DOE, NNSA, NA-20, NA-24 and the national laboratories can help define the agenda, and the policies and the initiatives to support it. This will require effective internal and interagency coordination. The arms control and nonproliferation agenda is broad and includes the path-breaking goal of creating conditions for the elimination of nuclear weapons. Responsibility for various elements of the agenda will be widely scattered across the interagency. Therefore an interagency mapping exercise should be performed to identify the key points of engagement within NNSA and other agencies for creating effective policy coordination mechanisms. These can include informal networks, working groups, coordinating committees, interagency task forces, etc. It will be important for NA-20 and NA-24 to get a seat at the table and a functional role in many of these coordinating bodies. The arms control and nonproliferation agenda comprises both mature and developing policy initiatives. The more mature elements such as CTBT ratification and a follow-on strategic nuclear arms treaty with Russia have defined milestones. However, recent press reports indicate that even the START follow-on strategic arms pact that is planned to be complete by the end of 2009 may take significantly longer and be more expansive in scope. The Russians called for proposals to count non-deployed as well as deployed warheads. Other elements of the agenda such as FMCT, future bilateral nuclear arms reductions following a START follow-on treaty, nuclear posture changes, preparations for an international nuclear security summit, strengthened international safeguards and multilateral verification are in much earlier stages of development. For this reason any survey of arms control capabilities within the USG should be structured to address potential needs across the near-term (1-4) years and longer-term (5-10) years planning horizons. Some final observations include acknowledging the enduring nature of several key objectives on the Obama Administration's arms control and nonproliferation agenda. The CTBT, FMCT, bilateral nuclear arms reductions and strengthening the NPT have been sought by successive U.S. Administrations for nearly thirty years. Efforts towards negotiated arms control, although de-emphasized by the G.W. Bush Administration, have remained a pillar of U.S. national security strategy for decades and are likely to be of enduring if not increasing importance for decades to come. Therefore revitalization and expansion of USG capabilities in this area can be a positive legacy no matter what near-term arms control goals are achieved over the next four years. This is why it is important to reconstruct integrated bureaucratic, legislative, budgetary and diplomatic strategies to sustain the arms control and nonproliferation agenda. In this endeavor some past lessons must be taken to heart to avoid bureaucratic overkill and keep interagency policy-making and implementation structures lean and effective. On the Technical side a serious, sustained multilateral program to develop, down select and performance test nuclear weapons dismantlement verification technologies and procedures should be immediately initiated. In order to make this happen the United States and Russia should join with the UK and other interested states in creating a sustained, full-scale research and development program for verification at their respective nuc1ear weapons and defense establishments. The goals include development of effective technologies and procedures for: (1) Attribute measurement systems to certify nuclear warheads and military fissile materials; (2) Chain-of-custody methods to track items after they are authenticated and enter accountability; (3) Transportation monitoring; (4) Storage monitoring; (5) Fissile materials conversion verification. The remainder of this paper focuses on transparency and verification for nuclear arms a

  15. Term-Level Verification of a Pipelined CISC Microprocessor

    E-Print Network [OSTI]

    Term-Level Verification of a Pipelined CISC Microprocessor Randal E. Bryant December, 2005 CMU verification, Microprocessor verification, UCLID #12;Abstract By abstracting the details of the data representations and operations in a microprocessor, term-level verification can formally prove that a pipelined

  16. TermLevel Verification of a Pipelined CISC Microprocessor

    E-Print Network [OSTI]

    Term­Level Verification of a Pipelined CISC Microprocessor Randal E. Bryant December, 2005 CMU verification, Microprocessor verification, UCLID #12; Abstract By abstracting the details of the data representations and operations in a microprocessor, term­level verification can formally prove that a pipelined

  17. Reuse of Verification Results Conditional Model Checking, Precision Reuse,

    E-Print Network [OSTI]

    Beyer, Dirk

    further verification runs of the system; information about the level of abstraction in the abstract modelReuse of Verification Results Conditional Model Checking, Precision Reuse, and Verification checker which parts of the system should be verified; thus, later verification runs can use the output

  18. The KivApproach to Software Verification ? Wolfgang Reif

    E-Print Network [OSTI]

    Reif, Wolfgang

    systems, a powerful proof component, and an evolutionary verification model supporting incremen­ tal error approach to the design and verification of large sequential systems. It is based on structured alge­ braic correction and verification. We present the design methodology for modular systems, a feasible verification

  19. Example Measurement & Verification Plan for a Super ESPC Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    REPORTING FOR VERIFICATION ACTIVITIES ... 5 2.4 OPERATIONS, PREVENTIVE MAINTENANCE, REPAIR, AND REPLACEMENT REPORTING REQUIREMENTS...

  20. Combustion Group Group members

    E-Print Network [OSTI]

    Wang, Wei

    Combustion Group Group members: Thierry Poinsot, Emilien Courtine, Luc Vervisch, Benjamin Farcy 2014 #12;Combustion Group Combustion Physics and Modeling Pollutants, Emissions, and Soot Formation Thermoacoustics and Combustion Dynamics Research focus § Examine mechanisms responsible for flame stabilization

  1. The Role of Independent Verification and Validation in Maintaining a Safety Critical Evolutionary Software in a

    E-Print Network [OSTI]

    Zelkowitz, Marvin V.

    with requirements for high reliability and mission safety taxes current development methods. In this paper we, Software safety and reliability 1 INTRODUCTION The use of an independent group to provide verification of the process used to ensure mission safety and reliability for NASA Space Shuttle software. The software has

  2. Battery Technology Life Verification Testing and Analysis

    SciTech Connect (OSTI)

    Jon P. Christophersen; Gary L. Hunt; Ira Bloom; Ed Thomas; Vince Battaglia

    2007-12-01T23:59:59.000Z

    A critical component to the successful commercialization of batteries for automotive applications is accurate life prediction. The Technology Life Verification Test (TLVT) Manual was developed to project battery life with a high level of statistical confidence within only one or two years of accelerated aging. The validation effort that is presently underway has led to several improvements to the original methodology. For example, a newly developed reference performance test revealed a voltage path dependence effect on resistance for lithium-ion cells. The resistance growth seems to depend on how a target condition is reached (i.e., by a charge or a discharge). Second, the methodology for assessing the level of measurement uncertainty was improved using a propagation of errors in the fundamental measurements to the derived response (e.g., resistance). This new approach provides a more realistic assessment of measurement uncertainty. Third, the methodology for allocating batteries to the test matrix has been improved. The new methodology was developed to assign batteries to the matrix such that the average of each test group would be representative of the overall population. These changes to the TLVT methodology will help to more accurately predict a battery technology’s life capability with a high degree of confidence.

  3. Automata groups

    E-Print Network [OSTI]

    Muntyan, Yevgen

    2010-01-16T23:59:59.000Z

    automata over the alphabet of 2 letters and 2-state automata over the 3-letter alphabet. We continue the classification work started by the research group at Texas A&M University ([BGK+07a, BGK+07b]) and further reduce the number of pairwise nonisomorphic...

  4. verification

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysisDarby/%2A en NGSI Safeguards by Design

  5. Simplifying EPID dosimetry for IMRT treatment verification

    SciTech Connect (OSTI)

    Pecharroman-Gallego, R.; Mans, Anton; Sonke, Jan-Jakob; Stroom, Joep C.; Olaciregui-Ruiz, Igor; Herk, Marcel van; Mijnheer, Ben J. [Department of Radiation Oncology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam (Netherlands)

    2011-02-15T23:59:59.000Z

    Purpose: Electronic portal imaging devices (EPIDs) are increasingly used for IMRT dose verification, both pretreatment and in vivo. In this study, an earlier developed backprojection model has been modified to avoid the need for patient-specific transmission measurements and, consequently, leads to a faster procedure. Methods: Currently, the transmission, an essential ingredient of the backprojection model, is estimated from the ratio of EPID measurements with and without a phantom/patient in the beam. Thus, an additional irradiation to obtain ''open images'' under the same conditions as the actual phantom/patient irradiation is required. However, by calculating the transmission of the phantom/patient in the direction of the beam instead of using open images, this extra measurement can be avoided. This was achieved by using a model that includes the effect of beam hardening and off-axis dependence of the EPID response on photon beam spectral changes. The parameters in the model were empirically obtained by performing EPID measurements using polystyrene slab phantoms of different thickness in 6, 10, and 18 MV photon beams. A theoretical analysis to verify the sensitivity of the model with patient thickness changes was performed. The new model was finally applied for the analysis of EPID dose verification measurements of step-and-shoot IMRT treatments of head and neck, lung, breast, cervix, prostate, and rectum patients. All measurements were carried out using Elekta SL20i linear accelerators equipped with a hydrogenated amorphous silicon EPID, and the IMRT plans were made using PINNACLE software (Philips Medical Systems). Results: The results showed generally good agreement with the dose determined using the old model applying the measured transmission. The average differences between EPID-based in vivo dose at the isocenter determined using either the new model for transmission and its measured value were 2.6{+-}3.1%, 0.2{+-}3.1%, and 2.2{+-}3.9% for 47 patients treated with 6, 10, and 18 MV IMRT beams, respectively. For the same group of patients, the differences in mean {gamma} analysis (3% maximum dose, 3 mm) were 0.16{+-}0.26%, 0.21{+-}0.24%, and 0.02{+-}0.12%, respectively. For a subgroup of 11 patients, pretreatment verification was also performed, showing similar dose differences at the isocenter: -1.9{+-}0.9%, -1.4{+-}1.2%, and -0.4{+-}2.4%, with somewhat lower mean {gamma} difference values: 0.01{+-}0.09%, 0.01{+-}0.07%, and -0.09{+-}0.10%, respectively. Clinical implementation of the new model would save 450 h/yr spent in measurement of open images. Conclusions: It can be concluded that calculating instead of measuring the transmission leads to differences in the isocenter dose generally smaller than 2% (2.6% for 6 MV photon beams for in vivo dose) and yielded only slightly higher {gamma}-evaluation parameter values in planes through the isocenter. Hence, the new model is suitable for clinical implementation and measurement of open images can be omitted.

  6. Transforming PLC Programs into Formal Models for Verification Purposes

    E-Print Network [OSTI]

    Darvas, D; Blanco, E

    2013-01-01T23:59:59.000Z

    Most of CERN’s industrial installations rely on PLC-based (Programmable Logic Controller) control systems developed using the UNICOS framework. This framework contains common, reusable program modules and their correctness is a high priority. Testing is already applied to find errors, but this method has limitations. In this work an approach is proposed to transform automatically PLC programs into formal models, with the goal of applying formal verification to ensure their correctness. We target model checking which is a precise, mathematical-based method to check formalized requirements automatically against the system.

  7. First working group meeting on the minority carrier diffusion length/lifetime measurement: Results of the round robin lifetime/diffusion length tests

    SciTech Connect (OSTI)

    Cudzinovic, M.; Sopori, B. [comp.] [comp.

    1995-11-01T23:59:59.000Z

    As was noted in the cover letter that accompanied the samples, the eleven bare silicon samples were from various manufacturers. Table I lists the codes for the samples and the manufacturer of each sample. It also notes if the sample was single or poly-crystalline. The samples had been polished on one side before being sent out for measurements, but no further processing was done. The participants of the study were asked to measure either the lifetime or diffusion length of each of the samples using their standard procedure. Table II shows the experimental conditions used by the groups who measured diffusion length. All the diffusion length measurements were performed using the Surface Photovoltage method (SPV). Table M shows the experimental conditions for the lifetime measurements. All the lifetime measurements were made using the Photoconductance Decay method (PCD) under low level injection. These tables show the diameter of the spot size used during the measurement (the effective sampling area), the locations where measurements were taken, and the number of measurements taken at each location. Table N shows the results of the measurements. The table is divided into diffusion length and lifetime measurements for each sample. The values listed are the average values reported by each group. One of the immediate artifacts seen in the data is the large variation in the lifetime measurements. The values from MIT and Mobil are generally close. However, the measurements from NCSU are typically an order of magnitude lower.

  8. November 6, 2008; HSS/Union Working Group Meeting on Aging Workforce/Strategic Initiatives - DOE Illness and Injury Surveillance Program Worker Health Summary, 1995-2004

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment of Energy NorthB O|Work ForceNovember 4, 2014 U.S.

  9. September 16, 2008; HSS/Union Working Group Meeting, Former Worker and Energy Compensation Programs, CAIRS Reporting, Central Worker Data Tracking - Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary of Energy Advisory10MEASUREMENTSensors, Controls,Working

  10. September 16, 2008; HSS/Union Working Group Meeting, Former Worker and Energy Compensation Programs, CAIRS Reporting, Central Worker Data Tracking - Information Package

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary of Energy Advisory10MEASUREMENTSensors, Controls,WorkingDOE

  11. December 4, 2008; HSS/Union Working Group Meeting on 2008 HSS/Union Topical Wrap Up - EEOICPA related activities and initiatives

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197 This workDayton: ENERGY8 Deaerators3 SEAB Meeting4Worker

  12. December 4, 2008; HSS/Union Working Group Meeting on 2008 HSS/Union Topical Wrap Up - HSS/Union Training Workgroup Recommendations

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197 This workDayton: ENERGY8 Deaerators3 SEAB

  13. December 4, 2008; HSS/Union Working Group Meeting on 2008 HSS/Union Topical Wrap Up - PRIORITY NEAR-TERM ACTION OVERVIEW

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197 This workDayton: ENERGY8 Deaerators3 SEABTopical Wrap-Up

  14. December 4, 2008; HSS/Union Working Group Meeting on 2008 HSS/Union Topical Wrap Up - Union Lead Action Priorities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197 This workDayton: ENERGY8 Deaerators3 SEABTopicalUNION

  15. Process Mining and Verification of Properties: An Approach based on Temporal Logic

    E-Print Network [OSTI]

    van der Aalst, Wil

    , temporal logic, business process management, workflow management, data mining, Petri nets. 1 IntroductionProcess Mining and Verification of Properties: An Approach based on Temporal Logic W.M.P. van der flexible, both the need for, and the complexity of monitoring increases. Our earlier work on process mining

  16. DEMAND SIDE ENERGY MANAGEMENT AND CONSERVATION PROGRAM Measurement and Verification Program

    E-Print Network [OSTI]

    Hofmann, Hans A.

    DEMAND SIDE ENERGY MANAGEMENT AND CONSERVATION PROGRAM Measurement and Verification Program 4 Works Association Research Foundation (AwwaRF) and building demographics for savings calculations 4-retrofit; calculate savings in room by room spreadsheet 5. Pre-retrofit (Process water audit) ­ Walk buildings

  17. The Mechanized Verification of Garbage Collector Implementations

    E-Print Network [OSTI]

    Abstract The Mechanized Verification of Garbage Collector Implementations Andrew Evan Mc complex, requiring a garbage collector. Garbage collectors are becoming increasingly sophis- ticated to adapt them to high-performance, concurrent and real-time applications, making internal collector

  18. Runtime verification of object lifetime specifications

    E-Print Network [OSTI]

    Benjamin, Zev (Zev A.)

    2009-01-01T23:59:59.000Z

    This thesis reports on the implementation of a runtime verification system for object lifetime specifications. This system is used to explore and evaluate the expressiveness object lifetime specifications. Object lifetime ...

  19. Identifying, Visualizing, and Fusing Social Media Data to Support Nonproliferation and Arms Control Treaty Verification: Preliminary Results

    SciTech Connect (OSTI)

    Gastelum, Zoe N.; Cramer, Nicholas O.; Benz, Jacob M.; Kreyling, Sean J.; Henry, Michael J.; Corley, Courtney D.; Whattam, Kevin M.

    2013-07-11T23:59:59.000Z

    While international nonproliferation and arms control verification capabilities have their foundations in physical and chemical sensors, state declarations, and on-site inspections, verification experts are beginning to consider the importance of open source data to complement and support traditional means of verification. One of those new, and increasingly expanding, sources of open source information is social media, which can be ingested and understood through social media analytics (SMA). Pacific Northwest National Laboratory (PNNL) is conducting research to further our ability to identify, visualize, and fuse social media data to support nonproliferation and arms control treaty verification efforts. This paper will describe our preliminary research to examine social media signatures of nonproliferation or arms control proxy events. We will describe the development of our preliminary nonproliferation and arms control proxy events, outline our initial findings, and propose ideas for future work.

  20. Combustion Group Group members

    E-Print Network [OSTI]

    Wang, Wei

    Combustion Group Group members: Thierry Poinsot, Emilien Courtine, Luc Vervisch, Benjamin Farcy § New combustion and energy-conversion concepts #12;Introduction Combustion research thrusts Combustion Dynamics and Flame-Stabilization Research objectives § Obtain fundamental understanding of combustion

  1. Monitoring and verification R&D

    SciTech Connect (OSTI)

    Pilat, Joseph F [Los Alamos National Laboratory; Budlong - Sylvester, Kory W [Los Alamos National Laboratory; Fearey, Bryan L [Los Alamos National Laboratory

    2011-01-01T23:59:59.000Z

    The 2010 Nuclear Posture Review (NPR) report outlined the Administration's approach to promoting the agenda put forward by President Obama in Prague on April 5, 2009. The NPR calls for a national monitoring and verification R&D program to meet future challenges arising from the Administration's nonproliferation, arms control and disarmament agenda. Verification of a follow-on to New START could have to address warheads and possibly components along with delivery capabilities. Deeper cuts and disarmament would need to address all of these elements along with nuclear weapon testing, nuclear material and weapon production facilities, virtual capabilities from old weapon and existing energy programs and undeclared capabilities. We only know how to address some elements of these challenges today, and the requirements may be more rigorous in the context of deeper cuts as well as disarmament. Moreover, there is a critical need for multiple options to sensitive problems and to address other challenges. There will be other verification challenges in a world of deeper cuts and disarmament, some of which we are already facing. At some point, if the reductions process is progressing, uncertainties about past nuclear materials and weapons production will have to be addressed. IAEA safeguards will need to continue to evolve to meet current and future challenges, and to take advantage of new technologies and approaches. Transparency/verification of nuclear and dual-use exports will also have to be addressed, and there will be a need to make nonproliferation measures more watertight and transparent. In this context, and recognizing we will face all of these challenges even if disarmament is not achieved, this paper will explore possible agreements and arrangements; verification challenges; gaps in monitoring and verification technologies and approaches; and the R&D required to address these gaps and other monitoring and verification challenges.

  2. DEVELOPMENT OF A PORTAL MONITOR FOR UF6 CYLINDER VERIFICATION

    SciTech Connect (OSTI)

    Smith, Leon E.; Curtis, Michael M.; Shaver, Mark W.; Benz, Jacob M.; Misner, Alex C.; Mace, Emily K.; Jordan, David V.; Noss, Daniel; Ford, Herbert

    2009-10-06T23:59:59.000Z

    International Atomic Energy Agency (IAEA) inspectors currently perform periodic inspections at uranium enrichment plants to verify UF6 cylinder enrichment declarations. Measurements are performed with handheld high-resolution sensors on a sampling of cylinders taken to be representative of the facility’s operations. As additional enrichment plans come online to support the expansion of nuclear power, reducing person-days of inspection will take on greater importance. Pacific Northwest National Laboratory (PNNL) is developing a concept to automate the verification of enrichment plant cylinders to enable 100% product-cylinder verification and potentially, mass-balance calculations on the facility as a whole (by also measuring feed and tails cylinders). The Automated Cylinder Enrichment Verification System (ACEVS) would be located at key measurement points and will positively identify each cylinder, measure its mass and enrichment, store the data along with operator inputs in a secure database, and maintain continuity of knowledge on measured cylinders until IAEA inspector arrival. Given the potential for reduced inspector presence, the operational and manpower-reduction benefits of the portal concept are clear. However, it is necessary to assess whether the cylinder portal concept can meet, or potentially improve upon, today’s U-235 enrichment assay performance. PNNL’s ACEVS concept utilizes sensors that could be operated in an unattended mode: moderated He-3 neutron detectors and large NaI(Tl) scintillators for gamma-ray spectroscopy. The medium-resolution NaI(Tl) scintillators are a sacrifice in energy resolution but do provide high collection efficiency for signatures above 1 MeV. The He-3/NaI sensor combination allows the exploitation of additional, more-penetrating signatures than those currently utilized: Neutrons produced from F-19(?,n) reactions (spawned primarily from U-234 alpha emission) and high-energy gamma rays (extending up to 10 MeV) induced by neutrons interacting in the steel cylinder. These signatures are indirect measures of U-235 that require a relatively stable U-234/U-235 ratio in the product material in order to be useful. The hypothesis of this work is that the U-234/U-235 ratio is sufficiently constant, for the specific facility where the automated system is installed, to rely on neutron and high-energy gamma-ray signatures for indirect measurement of U-235. Further, these highly penetrating signatures can be combined with a modified form of NaI-based 185-keV enrichment measurements to meet target uncertainties for the verification of product cylinders, with the additional benefits of full-volume assay of the cylinder and 100% product-cylinder verification (as opposed to today’s sampling-based approach). This paper focuses on the enrichment measurement aspects of the ACEVS concept: neutron and high-energy gamma-ray signatures, the radiation sensors designed to collect those signatures, and proof-of-principle cylinder measurements and analysis. Preliminary analysis indicates that an automated cylinder verification approach has the potential to meet target uncertainty values for 30B products cylinders (5%), assuming ore-based enrichment feed and a facility-specific calibration. Also described is the additional work needed to more definitively assess the concept’s viability, particularly through a better understanding of the U-234/U-235 ratio variability in modern enrichment plants.

  3. MODELING, VERIFICATION AND OPTIMIZATION OF HYBRID GROUND SOURCE HEAT PUMP

    E-Print Network [OSTI]

    MODELING, VERIFICATION AND OPTIMIZATION OF HYBRID GROUND SOURCE HEAT PUMP SYSTEMS IN ENERGYPLUS, VERIFICATION AND OPTIMIZATION OF HYBRID GROUND SOURCE HEAT PUMP SYSTEMS IN ENERGYPLUS Thesis Approved by: Dr.................................................................................................................... 16 MODELING OF HYBRID GROUND SOURCE HEAT PUMP SYSTEMS IN ENERGYPLUS

  4. M&V Guidelines: Measurement and Verification for Federal Energy...

    Office of Environmental Management (EM)

    M&V Guidelines: Measurement and Verification for Federal Energy Projects (Version 3.0) M&V Guidelines: Measurement and Verification for Federal Energy Projects (Version 3.0)...

  5. A Tutorial on Text-Independent Speaker Verification

    E-Print Network [OSTI]

    Bimbot, Frederic

    This paper presents an overview of a state-of-the-art text-independent speaker verification system. First, an introduction proposes a modular scheme of the training and test phases of a speaker verification system. Then, ...

  6. ECE/CS 584: Fall 2012 Embedded System Verification

    E-Print Network [OSTI]

    Liberzon, Daniel

    powerful software tools (model checkers, SMT solvers, & theorem provers) for designing & analyzing systems · Real-time and hybrid system models, stability verification: Multiple Lyapunov functions, slow switchingECE/CS 584: Fall 2012 Embedded System Verification URL: http

  7. Verification of full functional correctness for imperative linked data structures

    E-Print Network [OSTI]

    Zee, Karen K

    2010-01-01T23:59:59.000Z

    We present the verification of full functional correctness for a collection of imperative linked data structures implemented in Java. A key technique that makes this verification possible is a novel, integrated proof ...

  8. Measurement and Verification for Commissioning Projects: Challenges and Opportunities

    E-Print Network [OSTI]

    Heinemeier, K.

    2005-01-01T23:59:59.000Z

    ESL-IC-10/05-49 1 Measurement and Verification for Commissioning Projects: Challenges and Opportunities Kristin Heinemeier, Ph.D., P.E. Portland Energy Conservation, Inc., Sacramento CA Measurement and Verification (M&V) is a key...

  9. Draft M&V Guidelines: Measurement and Verification for Federal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Draft M&V Guidelines: Measurement and Verification for Federal Energy Projects (Version 4.0) Draft M&V Guidelines: Measurement and Verification for Federal Energy Projects (Version...

  10. July 2012, Work Force Retention Work Group Status Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report: I11IG002RTC3 |Julian Wong About10 CFR

  11. Work Force Retention Work Group Charter | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2Uranium TransferonUS-IndiaVALUEWaterWhereChinn Women @Department ofForceForce

  12. River Protection Project Integrated safety management system phase II verification report, volumes I and II - 8/19/99

    SciTech Connect (OSTI)

    SHOOP, D.S.

    1999-09-10T23:59:59.000Z

    The Department of Energy policy (DOE P 450.4) is that safety is integrated into all aspects of the management and operations of its facilities. In simple and straightforward terms, the Department will ''Do work safely.'' The purpose of this River Protection Project (RPP) Integrated Safety Management System (ISMS) Phase II Verification was to determine whether ISMS programs and processes are implemented within RFP to accomplish the goal of ''Do work safely.'' The goal of an implemented ISMS is to have a single integrated system that includes Environment, Safety, and Health (ES&H) requirements in the work planning and execution processes to ensure the protection of the worker, public, environment, and federal property over the RPP life cycle. The ISMS is comprised of the (1) described functions, components, processes, and interfaces (system map or blueprint) and (2) personnel who are executing those assigned roles and responsibilities to manage and control the ISMS. Therefore, this review evaluated both the ''paper'' and ''people'' aspects of the ISMS to ensure that the system is implemented within RPP. Richland Operations Office (RL) conducted an ISMS Phase I Verification of the TWRS from September 28-October 9, 1998. The resulting verification report recommended that TWRS-RL and the contractor proceed with Phase II of ISMS verification given that the concerns identified from the Phase I verification review are incorporated into the Phase II implementation plan.

  13. Shared Signals: Using Existing Facility Meters for Energy Savings Verification

    E-Print Network [OSTI]

    McBride, J. R.; Bohmer, C. J.; Price, S. D.; Carlson, K.; Lopez, J.

    of metering. Facility engineers wonder whether existing meters can be used for savings verification purposes. They want to know whether an existing energy management and control system (EMCS) can serve double duty and be used for savings verification... an existing EMCS for energy savings verification purposes is even more complex. While at first glance the idea of using an existing EMCS for energy savings verification purposes seems absolutely reasonable, the practicality of the situation must...

  14. Plug-and-Play Architectural Design and Verification

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    uses finite-state verification techniques (e.g., SPIN [17], SMV [19], LTSA [22], FLAVERS [10]) to check

  15. Active alignment/contact verification system

    DOE Patents [OSTI]

    Greenbaum, William M. (Modesto, CA)

    2000-01-01T23:59:59.000Z

    A system involving an active (i.e. electrical) technique for the verification of: 1) close tolerance mechanical alignment between two component, and 2) electrical contact between mating through an elastomeric interface. For example, the two components may be an alumina carrier and a printed circuit board, two mating parts that are extremely small, high density parts and require alignment within a fraction of a mil, as well as a specified interface point of engagement between the parts. The system comprises pairs of conductive structures defined in the surfaces layers of the alumina carrier and the printed circuit board, for example. The first pair of conductive structures relate to item (1) above and permit alignment verification between mating parts. The second pair of conductive structures relate to item (2) above and permit verification of electrical contact between mating parts.

  16. Fluor Hanford Integrated Safety Management System Phase II Verification Vol 1 & Vol 2

    SciTech Connect (OSTI)

    PARSONS, J.E.

    2000-07-15T23:59:59.000Z

    The U.S. Department of Energy (DOE) is committed to conducting work efficiently and in a manner that ensures protection of the workers, public, and environment. DOE policy mandates that safety management systems be used to systematically integrate safety into management and work practices at all levels while accomplishing mission goals in an effective and efficient manner. The purpose of the Fluor Hanford (FH) Integrated Safety Management System (ISMS) verification was to determine whether FH's ISM system and processes are sufficiently implemented to accomplish the goal of ''Do work safely.'' The purpose of the DOE, Richland Operations Office (RL) verification was to determine whether RL has established processes that adequately describe RL's role in safety management and if those processes are sufficiently implemented.

  17. Software Verification and Testing Lecture Notes: Testing I

    E-Print Network [OSTI]

    Struth, Georg

    of Testing Methods dynamic testing: software component is executed with concrete input values (in a realSoftware Verification and Testing Lecture Notes: Testing I #12;Motivation verification: · powerful · automated techniques rather limited testing: (as "poor man's verification") · can only detect presence

  18. Competition on Software Verification University of Passau, Germany

    E-Print Network [OSTI]

    Beyer, Dirk

    and Analysis of Systems (TACAS). 1 Introduction The area of verification, in particular model checking, has). Several new and powerful software-verification tools became available, but they have not been comparedCompetition on Software Verification (SV-COMP) Dirk Beyer University of Passau, Germany Abstract

  19. Applied Verification: The Ptolemy Approach Chihhong Patrick Cheng

    E-Print Network [OSTI]

    stronger claims regarding the correctness of the system. Theoretically, modeling and verification should face when doing formal verifi- cation. Existing theories and practices in verification are powerful, but when applying formal techniques, the use of detailed mathematical model descriptions in verification

  20. MODELING AND VERIFICATION OF A PIPELINED CPU Lubomir Ivanov

    E-Print Network [OSTI]

    Ivanov, Lubomir

    of complex hardware and software systems. Several powerful verification methods, such as Symbolic ModelMODELING AND VERIFICATION OF A PIPELINED CPU Lubomir Ivanov Department of Computer Science, Iona interleavings of events in a system. In [8] we introduced a new partial order verification method, referred

  1. Measurement and Verification (M&V)

    E-Print Network [OSTI]

    Masuda, H

    2014-01-01T23:59:59.000Z

    5. Continuous Commissioning Measures 6. Measurement and Verification 2 ESL-KT-14-11-39 CATEE 2014: Clean Air Through Efficiency Conference, Dallas, Texas Nov. 18-20 Measurement and Verification (M&V) Joseph T. Martinez, PCC Carlos Yagua, PE Hiroko...Workshop on the Continuous Commissioning® Process Joseph T. Martinez, PCC Carlos Yagua, PE Hiroko Masuda, Juan-Carlos Baltazar, PhD, PE Ahmet Ugursal, PhD Clean Air Through Energy Efficiency (CATEE) Conference, Dallas, Texas. November 18, 2014...

  2. Focus Group Training Work Group Meeting | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12 OPAM Revised DOE AcquisitionActivitiesDates: July 10 - 11

  3. Focus Group Training Work Group Meeting | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12 OPAM Revised DOE AcquisitionActivitiesDates: July 10 -

  4. TEC Working Group Topic Groups Archives Communications Conference Call

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssues DOE'sSummaryDepartment ofSecurity03 -Summaries | Department of

  5. TEC Working Group Topic Groups Archives Communications | Department of

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssues DOE'sSummaryDepartment ofSecurity03 -Summaries | Department

  6. TEC Working Group Topic Groups Archives Protocols Meeting Summaries |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssues DOE'sSummaryDepartment ofSecurity03 -Summaries |Assistance

  7. TEC Working Group Topic Groups Archives Protocols | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssues DOE'sSummaryDepartment ofSecurity03 -Summaries

  8. TEC Working Group Topic Groups Archives Route Identification Process |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssues DOE'sSummaryDepartment ofSecurity03 -SummariesDepartment of

  9. TEC Working Group Topic Groups Archives Training - Medical Training |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssues DOE'sSummaryDepartment ofSecurity03 -SummariesDepartment

  10. TEC Working Group Topic Groups Rail Conference Call Summaries Inspections

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssues DOE'sSummaryDepartment ofSecurity03Subgroup | Department of

  11. TEC Working Group Topic Groups Rail Conference Call Summaries | Department

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssues DOE'sSummaryDepartment ofSecurity03Subgroup | Department

  12. TEC Working Group Topic Groups Rail Key Documents Intermodal Subgroup |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssues DOE'sSummaryDepartment ofSecurity03Subgroup |

  13. TEC Working Group Topic Groups Rail Key Documents Planning Subgroup |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssues DOE'sSummaryDepartment ofSecurity03Subgroup |Department of

  14. TEC Working Group Topic Groups Rail Key Documents Radiation Monitoring

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssues DOE'sSummaryDepartment ofSecurity03Subgroup |Department

  15. TEC Working Group Topic Groups Rail Meeting Summaries | Department of

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssues DOE'sSummaryDepartment ofSecurity03Subgroup |DepartmentEnergy

  16. TEC Working Group Topic Groups Routing Conference Call Summaries |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssues DOE'sSummaryDepartment ofSecurity03Subgroup

  17. TEC Working Group Topic Groups Routing Meeting Summaries | Department of

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssues DOE'sSummaryDepartment ofSecurity03SubgroupKey Documents

  18. TEC Working Group Topic Groups Section 180(c) Meeting Summaries |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssues DOE'sSummaryDepartment ofSecurity03SubgroupKeyDepartment of

  19. TEC Working Group Topic Groups Security Conference Call Summaries |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssues DOE'sSummaryDepartment ofSecurity03SubgroupKeyDepartment

  20. TEC Working Group Topic Groups Security Key Documents | Department of

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssues DOE'sSummaryDepartment

  1. TEC Working Group Topic Groups Tribal Conference Call Summaries |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssues DOE'sSummaryDepartmentEnergy Meeting Summaries TEC

  2. TEC Working Group Topic Groups Archives Communications Meeting Summaries |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014,ZaleskiThis Decision considers an Appeal ofIn1097 -Through theDepartment

  3. TEC Working Group Topic Groups Rail Archived Documents | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014,ZaleskiThis Decision considers an Appeal ofIn1097 -ThroughEnergy

  4. TEC Working Group Topic Groups Tribal Conference Call Summaries |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014,ZaleskiThis Decision considers an Appeal ofIn1097

  5. TEC Working Group Topic Groups Tribal Meeting Summaries | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014,ZaleskiThis Decision considers an Appeal ofIn1097Key Documents

  6. TEC Working Group Topic Groups | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014,ZaleskiThis Decision considers an Appeal ofIn1097Key DocumentsTopic

  7. TEC Working Group Topic Groups Archives | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2Uranium Transferon the Passing ofDepartmentRenewableArbitraryMARCH9Archives TEC

  8. TEC Working Group Topic Groups Manual Review | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2Uranium Transferon the Passing ofDepartmentRenewableArbitraryMARCH9Archives

  9. TEC Working Group Topic Groups Rail | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2Uranium Transferon the Passing

  10. Federal Utility Partnership Working Group Industry Commitment

    Broader source: Energy.gov [DOE]

    Investor-owned electric utility industry members of the Edison Electric Institute pledge to assist Federal agencies in achieving energy-saving goals. These goals are set in the Energy Policy Act of...

  11. Chemical Safety Vulnerability Working Group Report

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    This report marks the culmination of a 4-month review conducted to identify chemical safety vulnerabilities existing at DOE facilities. This review is an integral part of DOE's efforts to raise its commitment to chemical safety to the same level as that for nuclear safety.

  12. Integrated Initiative Teams and Working Groups

    E-Print Network [OSTI]

    Initiative Team Mark McFarland, chair Juan Anciso Todd Bilby Diane Boellstorff Gary Bryant Anthony Camerino Todd Bilby Diane Boellstorff Elizabeth Brown John Carey Alex Castillo Rudy Dunlap Gary Ellis Morgan

  13. State & Tribal Government Working Group (STGWG) | Department...

    Office of Environmental Management (EM)

    on issues such as long-term stewardship, tribal issues, transportation planning, nuclear waste and materials disposition, and deactivation and decommissioning activities....

  14. Report of the Bulk Working Group

    SciTech Connect (OSTI)

    Tobin, J G

    2010-02-09T23:59:59.000Z

    The world in general and the USA in particular are facing an oncoming energy shortage. One key mechanism to provide carbon-free energy is nuclear fission. At this point, 20% of the US electrical power grid is supplied by nuclear energy. (Interestingly, it is 50% in Illinois.) European nations such as Sweden (50% nuclear electricity) and France (80% nuclear electricity) are pushing ahead with permanent radioactive waste storage and processing. If nothing else, the USA needs to provide the scientific foundation for improving its nuclear-power generation facilities. One key issue and how the APS could affect it are discussed below. (This discussion of this issue is not meant to be a comprehension argument in support of a facility but merely an example of the sort of science that could be pursued. An exhaustive collection of arguments would take more time and effort.) The modification of various zones inside a nuclear fuel is an important issue. This includes microscopic re-crystallization, stress, fission gas production, He bubble formation and the intermixing, depletion and enrichment of various chemical, daughter and other isotopic species. For example, past studies of the ternary nuclear fuel UPuZr have demonstrated constituent redistribution when irradiated or with thermal treatment. The concentration variations shown above are of significant concern. Driven in part by the thermal gradient within the nuclear fuel, these variations can affect reactor performance and fuel burn-up levels. Similar gradients were observed in samples that were not irradiated but underwent thermal gradient treatments. From measurement such as these, kinetic parameters such as effective inter-diffusion coefficients were derived. The amount of such experimental data is very limited. Interaction of the fuel constituents with cladding and coolant are also important. At present, INL scientists pursue a number of measurements on-site at INL and off-site to address issues such as this. Here, we will propose two key examples of how a new facility at the APS could impact this technological issue.

  15. Report of the Working Group on

    E-Print Network [OSTI]

    Radcliffe, David

    student awareness of water conservation, energy savings, and recycling through the umbrella organization Conservation Award. · The University is embarking upon an ambitious recycling program, with 35% of its waste with environmental analysis to better inform their decisionmaking. · More than 25 student organizations raise

  16. Technical Working Group on Biological Evidence Preservation

    E-Print Network [OSTI]

    Perkins, Richard A.

    of Forensic Science (AAFS) Annual Meeting Thursday, February 20, 2014 #12;The State of Biological Evidence Dennis Davenport, Senior Crime Scene Investigator, Commerce City PD Rock Harmon, Consultant, DNARock

  17. High Temperature Membrane Working Group Meeting Minutes

    Broader source: Energy.gov (indexed) [DOE]

    who also introduced the first speaker, Ahmet Kusoglu, who was presenting for Adam Weber of LBL. Kusoglu began with a discussion of the continuum modeling of membrane...

  18. Really large hadron collider working group summary

    SciTech Connect (OSTI)

    Dugan, G. [Cornell Univ., Ithaca, NY (United States); Limon, P. [Fermilab, Batavia, IL (United States); Syphers, M. [Brookhaven National Lab., Upton, NY (United States)

    1996-12-01T23:59:59.000Z

    A summary is presented of preliminary studies of three 100 TeV center-of-mass hadron colliders made with magnets of different field strengths, 1.8T, 9.5T and 12.6T. Descriptions of the machines, and some of the major and most challenging subsystems, are presented, along with parameter lists and the major issues for future study.

  19. BILIWG Meeting: DOE Hydrogen Quality Working Group

    E-Print Network [OSTI]

    natural gas and ethanol are similar Product gas composition from steam reforming Species Natural Gas: distributed (forecourt) production ­ reforming of natural gas (autothermal & steam reforming) ­ reforming the H2A ­ Argonne is modeling a steam reformer + PSA process ­ Results will be incorporated into H2A

  20. PURIWG Meeting: DOE Hydrogen Quality Working Group

    E-Print Network [OSTI]

    ) production by ­ reforming of natural gas (ATR & SMR) ­ reforming of renewable fuels, e.g., ethanol (i.e., E are being developed to support the H2A ­ Argonne is modeling a steam reformer + PSA process ­ Results

  1. Workforce Retention Work Group | Department of Energy

    Energy Savers [EERE]

    skilled workforce retention; health, safety and productivity; and especially preventive health care. Inform and support improvement andor development of wellness, fitness, and...

  2. Federal Utility Partnership Working Group Utility Partners |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Kentucky Elizabethtown Gas Kathy Robb 404-584-4372 New Jersey Energy Trust of Oregon Edgar Wales 503-445-2954 Oregon Entergy Jennifer Gary 504-576-3877 Arkansas, Louisiana,...

  3. High Temperature Membrane Working Group Minutes

    Broader source: Energy.gov (indexed) [DOE]

    effect on hysteresis. A system with porous graphite plates versus a system with smooth aluminum plates may have different effects on the hysteresis. Although this effect is not...

  4. SUMMARY OF WORKING GROUP ON COLLECTIVE INSTABILITIES

    E-Print Network [OSTI]

    Zisman, M.S.

    2010-01-01T23:59:59.000Z

    that beam position monitors (BPM's), bellows, and kickersBeam PositiOn Monitors The BPM's for RHIC are striplinesby: I = 50 n. Z) ( n and BPM = -I ·If . Z 2L (qlo)2 21t Z.L

  5. Microsoft Word - Project Mgt Working Group Report

    Office of Environmental Management (EM)

    of the Bevatron Demolition Project, located at Lawrence Berkeley National Laboratory (LBNL), was to deactivate, demolish, and dispose of the Bevatron accelerator, ancillary...

  6. Developed by: Solar Permitting Work Group

    E-Print Network [OSTI]

    by the California Center for Sustainable Energy #12;California Solar Permitting Guidebook 3 TABLE OF CONTENTS leader in renewable energy generation. Solar and wind power, as well as emerging technologies such as biomass and fuel cells, are transforming California. Renewable energy is helping to power the state

  7. EM QA Working Group September 2011 Notes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory Board Contributions EM HighlightsSeptemberQUALITY ASSURANCE

  8. Training Work Group | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo

  9. Strategic Initiatives Work Group | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    DOE, contractor and worker representatives, provides a forum for information sharing; data collection and analysis; as well as, identifying best practices and initiatives to...

  10. FINAL Transportation External Coordination Working Group (TEC)

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of Year 2010SaltInstrumentation andFEFACILITY1 - In the6 -

  11. July 2012, Training Work Group Status Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report: I11IG002RTC3 |Julian Wong About10 CFR 851Training

  12. Hydrogen Pipeline Working Group | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To:Department ofOral Testimony ofMonitoring, ProtectionofHydrogen Pipeline

  13. Safety Monitor Joint Working Group (JWG) Tour

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcome ton nSafeguardsUpdates > Safety4 th

  14. Macro-Industrial Working Group 2

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 3400, U.S.MajorMarketsNov-14Biomass feedstocksMU Eneg a~-s2

  15. Macro-Industrial Working Group: meeting 1

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 3400, U.S.MajorMarketsNov-14Biomass feedstocksMU Eneg a~-s2July

  16. Macro-Industrial Working Group: meeting 1

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 3400, U.S.MajorMarketsNov-14Biomass feedstocksMU Eneg

  17. Macro-Industrial Working Group: meeting 1

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 3400, U.S.MajorMarketsNov-14Biomass feedstocksMU Eneg30 2013

  18. Sandia Energy - UFD Working Group 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home DistributionTransportation Safety Home Stationary Power

  19. ASRAC MREF Working Group Notice of Intent

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartmentDepartment of2 of 5) ALARA TrainingANDREW ( ARI|

  20. Wind Working Group Toolkit | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCaliforniaWeifang Swisselectronic Co LtdLtd

  1. Workforce Retention Work Group | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sureReportsofDepartmentSeriesDepartment of Energy

  2. TEC Working Group Background | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014,ZaleskiThis Decision considers an Appeal ofIn1097 -Through the TEC/WG,

  3. TEC Working Group Members | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014,ZaleskiThis Decision considers an Appeal ofIn1097 -Through the

  4. NEMS Buildings Sector Working Group Meeting

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of FossilFoot) Year JanCubicXIV.Mr.NEMS Buildings

  5. Federal Utility Partnership Working Group Meeting

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy June 6-7, 2013 Meeting Federal RegisterCoal1 Report Page 1NOVEMBERof2

  6. Federal Utility Partnership Working Group Meeting

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy June 6-7, 2013 Meeting Federal RegisterCoal1 Report Page

  7. Federal Utility Partnership Working Group Meeting

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy June 6-7, 2013 Meeting Federal RegisterCoal1 Report Page3 Report Page

  8. Federal Utility Partnership Working Group Meeting Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy June 6-7, 2013 Meeting Federal RegisterCoal1 Report Page3MAY 3-4,

  9. Training Work Group Charter | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2, 2015 - JanuaryTankToledo, Ohio, Data DashboardToolsTrackTraining

  10. Cloud Properties Working Group Break Out Session

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t zManufacturing:DOE NationalCommittee of thePresence

  11. Cloud Properties Working Group Low Clouds Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t zManufacturing:DOE NationalCommittee of

  12. Comments on: UFD Working Group 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE

  13. Transport Modeling Working Group | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23,EnergyChicopeeTechnologyfact sheetTransferring thefor Analyzing andThe

  14. Strategic Initiatives Work Group | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary900Steep SlopeStochastic WeeklyStores

  15. Transportation External Coordination Working Group (TEC)

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssuesEnergy SolarRadioactiveITransactional7AMelissaofDepartment

  16. Transportation External Coordination Working Group (TEC)

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssuesEnergy SolarRadioactiveITransactional7AMelissaofDepartment

  17. Interagency Sustainability Working Group | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of BlytheDepartmentEnergyDemonstration

  18. Interagency Working Groups | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of BlytheDepartmentEnergyDemonstrationInteragency Task Force on

  19. September 2012, Training Work Group Status Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary of Energy Advisory10MEASUREMENTSensors,8, 200810

  20. AEO 2013 Liquid Fuels Markets Working Group

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy I I'26,282.1chemical7Host and Presentor Contactsite. IfHome

  1. AEO2014 Renewables Working Group Meeting

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy I I'26,282.1chemical7Host and Presentor3 Oil and

  2. AEO2015 Coal Working Group Meeting Summary

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy I I'26,282.1chemical7Host and Presentor3 Oil andFor

  3. AEO2015 Transportation Working Group Meeting

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy I I'26,282.1chemical7Host and Presentor3 Oil

  4. Microsoft Word - Project Mgt Working Group Report

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked Questions forCheneyNovember S.Fluor-B&WOPOWER07.docFINAL.doc |ofNews i TABLE

  5. 2010-2011 Working Groups website

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >InternshipDepartment of Energy09 Tue,September0December2010---2011

  6. Durability Working Group | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal Register / Vol. 73, No. 219Does3-E Wholesale Power Rate

  7. Macro-Industrial Working Group 2

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYearUnderground Storage Volume16, 2012Peter Gross

  8. Indian Country Energy and Infrastructure Working Group

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked Questions for DOEthe RankingReform atSolar2014 || DepartmentMarchINDIAN COUNTRY

  9. ARM Cloud Properties Working Group: Meeting Logistics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP Update Information on new, existing, and futureAn

  10. Aerosol Working Group Contributions Accomplishments for 2006

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973 1BP-14Scripting forForcing DuringContributions

  11. Interagency Sustainability Working Group | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment of EnergyIndustry15 Intellectual PropertyDrilling |Program

  12. Management System Verification (MSV) Tool

    Broader source: Energy.gov [DOE]

    The MSV process developed by ACC is a tool (not a requirement) that DOE sites may consider to help determine whether their ES&H program is truly integrated into all work at all levels by all employees.

  13. EXPERIMENTAL VERIFICATION OF DYNAMIC OPERATION OF

    E-Print Network [OSTI]

    Skogestad, Sigurd

    - ponent mixtures can be separated into a number of product fractions, whereas in continuous distillationEXPERIMENTAL VERIFICATION OF DYNAMIC OPERATION OF CONTINUOUS AND MULTIVESSEL BATCH DISTILLATION to the paper "Evaluation of Dynamic Models of Distillation Columns with Emphasis on the Initial Response

  14. SAVCBS 2003 Specification and Verification of

    E-Print Network [OSTI]

    Leavens, Gary T.

    ://www.cs.iastate.edu/SAVCBS/ September 1-2, 2003 Helsinki, Finland Workshop at ESEC/FSE 2003 9th European Software Engineering ConferenceSAVCBS 2003 Specification and Verification of Component-Based Systems ESEC/FSE 2003 9th European Software Engineering Conference and 11th ACM SIGSOFT Symposium on the Foundations of Software Engineering

  15. SOCIAL SECURITY NUMBER AND NAME VERIFICATION

    E-Print Network [OSTI]

    Amin, S. Massoud

    SOCIAL SECURITY NUMBER AND NAME VERIFICATION Academic Year 2014­2015 *FA552-A* Please recycle. DIRECTIONS--You must verify your name and Social Security number for processing of your 2014­2015 Free Application for Federal Student Aid (FAFSA) to continue. Please attach a legible copy of your Social Security

  16. SOCIAL SECURITY NUMBER AND NAME VERIFICATION

    E-Print Network [OSTI]

    Amin, S. Massoud

    SOCIAL SECURITY NUMBER AND NAME VERIFICATION Academic Year 2013­2014 *FA552-A* Please recycle. DIRECTIONS--You must verify your name and Social Security number for processing of your 2013­2014 Free Application for Federal Student Aid (FAFSA) to continue. Please attach a legible copy of your Social Security

  17. Machine Learning for Signature Verification Harish Srinivasan

    E-Print Network [OSTI]

    types of learning to be accomplished. In the first, the training set consists of genuines and forgeriesMachine Learning for Signature Verification Harish Srinivasan , Sargur N. Srihari and Matthew J it can be viewed as one that involves machine learning from a population of signatures. There are two

  18. Formal Verification of Hybrid Systems Rajeev Alur

    E-Print Network [OSTI]

    Alur, Rajeev

    -1-4503-0714-7/11/10 ...$5.00. mathematical model for design of embedded control systems is hybrid systems that combines for dynamical systems. Such models can capture both the controller -- the system under design, and the plant@cis.upenn.edu ABSTRACT In formal verification, a designer first constructs a model, with mathematically precise semantics

  19. RELAP-7 SOFTWARE VERIFICATION AND VALIDATION PLAN

    SciTech Connect (OSTI)

    Smith, Curtis L [Idaho National Laboratory; Choi, Yong-Joon [Idaho National Laboratory; Zou, Ling [Idaho National Laboratory

    2014-09-01T23:59:59.000Z

    This INL plan comprehensively describes the software for RELAP-7 and documents the software, interface, and software design requirements for the application. The plan also describes the testing-based software verification and validation (SV&V) process—a set of specially designed software models used to test RELAP-7.

  20. Continuous Commissioning Results Verification and Follow-up For an Institutional Building: A Case Study

    E-Print Network [OSTI]

    Chen, H.; Deng, S.; Bruner, H. L.; Claridge, D. E.; Turner, W. D.

    2002-01-01T23:59:59.000Z

    in the building from June - August 1996 with additional follow-up during the period from June 1998 through April 1999. The CC measures and design EMCS settings are shown in Table 2. From June 1996 to July 1999, the hot water savings were $482... performed not only troubleshooting, but also CC verification. The CC group performed extensive field tests and analyses on two SDVAV AHU systems, two chilled water pumps, and the Energy Management Control System (EMCS) control algorithms. Several...

  1. MACCS2 development and verification efforts

    SciTech Connect (OSTI)

    Young, M.; Chanin, D.

    1997-03-01T23:59:59.000Z

    MACCS2 represents a major enhancement of the capabilities of its predecessor MACCS, the MELCOR Accident Consequence Code System. MACCS, released in 1987, was developed to estimate the potential impacts to the surrounding public of severe accidents at nuclear power plants. The principal phenomena considered in MACCS/MACCS2 are atmospheric transport and deposition under time-variant meteorology, short-term and long-term mitigative actions and exposure pathways, deterministic and stochastic health effects, and economic costs. MACCS2 was developed as a general-purpose analytical tool applicable to diverse reactor and nonreactor facilities. The MACCS2 package includes three primary enhancements: (1) a more flexible emergency response model, (2) an expanded library of radionuclides, and (3) a semidynamic food-chain model. In addition, errors that had been identified in MACCS version1.5.11.1 were corrected, including an error that prevented the code from providing intermediate-phase results. MACCS2 version 1.10 beta test was released to the beta-test group in May, 1995. In addition, the University of New Mexico (UNM) has completed an independent verification study of the code package. Since the beta-test release of MACCS2 version 1.10, a number of minor errors have been identified and corrected, and a number of enhancements have been added to the code package. The code enhancements added since the beta-test release of version 1.10 include: (1) an option to allow the user to input the {sigma}{sub y} and {sigma}{sub z} plume expansion parameters in a table-lookup form for incremental downwind distances, (2) an option to define different initial dimensions for up to four segments of a release, (3) an enhancement to the COMIDA2 food-chain model preprocessor to allow the user to supply externally calculated tables of tritium food-chain dose per unit deposition on farmland to support analyses of tritium releases, and (4) the capability to calculate direction-dependent doses.

  2. NEUTRON MULTIPLICITY AND ACTIVE WELL NEUTRON COINCIDENCE VERIFICATION MEASUREMENTS PERFORMED FOR MARCH 2009 SEMI-ANNUAL DOE INVENTORY

    SciTech Connect (OSTI)

    Dewberry, R.; Ayers, J.; Tietze, F.; Klapper, K.

    2010-02-05T23:59:59.000Z

    The Analytical Development (AD) Section field nuclear measurement group performed six 'best available technique' verification measurements to satisfy a DOE requirement instituted for the March 2009 semi-annual inventory. The requirement of (1) yielded the need for SRNL Research Operations Department Material Control & Accountability (MC&A) group to measure the Pu content of five items and the highly enrich uranium (HEU) content of two. No 14Q-qualified measurement equipment was available to satisfy the requirement. The AD field nuclear group has routinely performed the required Confirmatory Measurements for the semi-annual inventories for fifteen years using sodium iodide and high purity germanium (HpGe) {gamma}-ray pulse height analysis nondestructive assay (NDA) instruments. With appropriate {gamma}-ray acquisition modeling, the HpGe spectrometers can be used to perform verification-type quantitative assay for Pu-isotopics and HEU content. The AD nuclear NDA group is widely experienced with this type of measurement and reports content for these species in requested process control, MC&A booking, and holdup measurements assays Site-wide. However none of the AD HpGe {gamma}-ray spectrometers have been 14Q-qualified, and the requirement of reference 1 specifically excluded a {gamma}-ray PHA measurement from those it would accept for the required verification measurements. The requirement of reference 1 was a new requirement for which the Savannah River National Laboratory (SRNL) Research Operations Department (ROD) MC&A group was unprepared. The criteria for exemption from verification were: (1) isotope content below 50 grams; (2) intrinsically tamper indicating or TID sealed items which contain a Category IV quantity of material; (3) assembled components; and (4) laboratory samples. Therefore all (SRNL) Material Balance Area (MBA) items with greater than 50 grams total Pu or greater than 50 grams HEU were subject to a verification measurement. The pass/fail criteria of reference 7 stated 'The facility will report measured values, book values, and statistical control limits for the selected items to DOE SR...', and 'The site/facility operator must develop, document, and maintain measurement methods for all nuclear material on inventory'. These new requirements exceeded SRNL's experience with prior semi-annual inventory expectations, but allowed the AD nuclear field measurement group to demonstrate its excellent adaptability and superior flexibility to respond to unpredicted expectations from the DOE customer. The requirements yielded five SRNL items subject to Pu verification and two SRNL items subject to HEU verification. These items are listed and described in Table 1.

  3. High-Resolution Fast-Neutron Spectrometry for Arms Control and Treaty Verification

    SciTech Connect (OSTI)

    David L. Chichester; James T. Johnson; Edward H. Seabury

    2012-07-01T23:59:59.000Z

    Many nondestructive nuclear analysis techniques have been developed to support the measurement needs of arms control and treaty verification, including gross photon and neutron counting, low- and high-resolution gamma spectrometry, time-correlated neutron measurements, and photon and neutron imaging. One notable measurement technique that has not been extensively studied to date for these applications is high-resolution fast-neutron spectrometry (HRFNS). Applied for arms control and treaty verification, HRFNS has the potential to serve as a complimentary measurement approach to these other techniques by providing a means to either qualitatively or quantitatively determine the composition and thickness of non-nuclear materials surrounding neutron-emitting materials. The technique uses the normally-occurring neutrons present in arms control and treaty verification objects of interest as an internal source of neutrons for performing active-interrogation transmission measurements. Most low-Z nuclei of interest for arms control and treaty verification, including 9Be, 12C, 14N, and 16O, possess fast-neutron resonance features in their absorption cross sections in the 0.5- to 5-MeV energy range. Measuring the selective removal of source neutrons over this energy range, assuming for example a fission-spectrum starting distribution, may be used to estimate the stoichiometric composition of intervening materials between the neutron source and detector. At a simpler level, determination of the emitted fast-neutron spectrum may be used for fingerprinting 'known' assemblies for later use in template-matching tests. As with photon spectrometry, automated analysis of fast-neutron spectra may be performed to support decision making and reporting systems protected behind information barriers. This paper will report recent work at Idaho National Laboratory to explore the feasibility of using HRFNS for arms control and treaty verification applications, including simulations and experiments, using fission-spectrum neutron sources to assess neutron transmission through composite low-Z attenuators.

  4. Conceptual design. Final report: TFE Verification Program

    SciTech Connect (OSTI)

    Not Available

    1994-03-01T23:59:59.000Z

    This report documents the TFE Conceptual Design, which provided the design guidance for the TFE Verification program. The primary goals of this design effort were: (1) establish the conceptual design of an in-core thermionic reactor for a 2 Mw(e) space nuclear power system with a 7-year operating lifetime; (2) demonstrate scalability of the above concept over the output power range of 500 kW(e) to 5 MW(e); and (3) define the TFE which is the basis for the 2 MW (e) reactor design. This TFE specification provided the basis for the test program. These primary goals were achieved. The technical approach taking in the conceptual design effort is discussed in Section 2, and the results are discussed in Section 3. The remainder of this introduction draws a perspective on the role that this conceptual design task played in the TFE Verification Program.

  5. NGSI: IAEA Verification of UF6 Cylinders

    SciTech Connect (OSTI)

    Curtis, Michael M.

    2012-06-05T23:59:59.000Z

    The International Atomic Energy Agency (IAEA) is often ignorant of the location of declared, uranium hexafluoride (UF6) cylinders following verification, because cylinders are not typically tracked onsite or off. This paper will assess various methods the IAEA uses to verify cylinder gross defects, and how the task could be ameliorated through the use of improved identification and monitoring. The assessment will be restricted to current verification methods together with one that has been applied on a trial basis—short-notice random inspections coupled with mailbox declarations. This paper is part of the NNSA Office of Nonproliferation and International Security’s Next Generation Safeguards Initiative (NGSI) program to investigate the concept of a global monitoring scheme that uniquely identifies and tracks UF6 cylinders.

  6. Finite Model Finding for Parameterized Verification

    E-Print Network [OSTI]

    Lisitsa, Alexei

    2010-01-01T23:59:59.000Z

    In this paper we investigate to which extent a very simple and natural "reachability as deducibility" approach, originated in the research in formal methods in security, is applicable to the automated verification of large classes of infinite state and parameterized systems. The approach is based on modeling the reachability between (parameterized) states as deducibility between suitable encodings of states by formulas of first-order predicate logic. The verification of a safety property is reduced to a pure logical problem of finding a countermodel for a first-order formula. The later task is delegated then to the generic automated finite model building procedures. In this paper we first establish the relative completeness of the finite countermodel finding method (FCM) for a class of parameterized linear arrays of finite automata. The method is shown to be at least as powerful as known methods based on monotonic abstraction and symbolic backward reachability. Further, we extend the relative completeness of ...

  7. Uranium systems to enhance benchmarks for use in the verification of criticality safety computer models. Final report, February 16, 1990--December 31, 1994

    SciTech Connect (OSTI)

    Busch, R.D. [New Mexico Univ., Albuquerque, NM (United States). Dept. of Chemical and Nuclear Engineering

    1995-02-24T23:59:59.000Z

    Dr. Robert Busch of the Department of Chemical and Nuclear Engineering was the principal investigator on this project with technical direction provided by the staff in the Nuclear Criticality Safety Group at Los Alamos. During the period of the contract, he had a number of graduate and undergraduate students working on subtasks. The objective of this work was to develop information on uranium systems to enhance benchmarks for use in the verification of criticality safety computer models. During the first year of this project, most of the work was focused on setting up the SUN SPARC-1 Workstation and acquiring the literature which described the critical experiments. By august 1990, the Workstation was operational with the current version of TWODANT loaded on the system. MCNP, version 4 tape was made available from Los Alamos late in 1990. Various documents were acquired which provide the initial descriptions of the critical experiments under consideration as benchmarks. The next four years were spent working on various benchmark projects. A number of publications and presentations were made on this material. These are briefly discussed in this report.

  8. Logic verification using recursive learning, ATPG and transformations

    E-Print Network [OSTI]

    Paul, Debjyoti

    1996-01-01T23:59:59.000Z

    17 Example Circuits for Verification Showing an Existing Condi- tional Don't Care Condition. 33 18 Justification of the Conditional Don't Care Condition in the Ex- ample Circuits. FIGURE Page Transformation Using Conditional Don't Care Condition... of the Implementation Verification phase, sometimes it is termed Design Verification as in [17j. In this case the specification and design are both at logic level. Logic circuits can be combinational or sequential. If the circuits being compared are combinational, i...

  9. SAT-based Verification for Analog and Mixed-signal Circuits

    E-Print Network [OSTI]

    Deng, Yue

    2012-07-16T23:59:59.000Z

    The wide application of analog and mixed-signal (AMS) designs makes the verification of AMS circuits an important task. However, verification of AMS circuits remains as a significant challenge even though verification techniques for digital circuits...

  10. A golden anniversary for space-based treaty verification

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    enabled serendipitous discoveries of remarkable natural phenomena such as cosmic gamma-ray bursts, X-ray novae and solar wind composition. Modern space-based verification systems...

  11. Introduction to Measurement and Verification for DOE Super ESPC...

    Broader source: Energy.gov (indexed) [DOE]

    and verification is conducted in super energy savings performance contracts (ESPC) projects. Topics include allocating project risk, steps to verify savings, and M&V...

  12. Measurement and Verification for Federal Energy Savings Performance Contracts

    Broader source: Energy.gov [DOE]

    Measurement and verification (M&V) activities help agencies confirm that legally and contractually required savings guarantees are met in federal energy savings performance contracts (ESPCs).

  13. Example Measurement & Verification Plan for a Super ESPC Project

    Broader source: Energy.gov [DOE]

    Report features a comprehensive measurement and verification (M&V) plan for a fictitious super energy savings performance contract (ESPC) project.

  14. ESPC Measurement and Verification (M&V) Planning Tool

    Broader source: Energy.gov [DOE]

    Document provides instructions for Federal agencies on how to use a measurement and verification (M&V) planning tool for energy savings performance contracts (ESPCs).

  15. Optimization Online - Termination and Verification for Ill-Posed ...

    E-Print Network [OSTI]

    Christian Jansson

    2005-06-17T23:59:59.000Z

    Jun 17, 2005 ... Termination and Verification for Ill-Posed Semidefinite Programming Problems. Christian Jansson (jansson ***at*** tu-harburg.de). Abstract: ...

  16. assertions based verification: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A possible explanation is given. 1 SCIAMACHY'S PMD CHANNELS Graaf, Martin de 418 LTSA-WS: a tool for modelbased verification of web service compositions and choreography...

  17. Thermal Hydraulic Modeling: Cross-Verification, Validation and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aleks Obabko, Paul Fischer, and Tim Tautges, Argonne National Laboratory Thermal Hydraulic Modeling: Cross-Verification, Validation and Co-design PI Name: Paul F. Fischer PI...

  18. attribute verification system: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    our results are well founded. Index TermsBiometric verification systems, statistical pattern recognition, Bayes error rate, rejection error rate, hand geometry, human face....

  19. addressing verification challenges: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kulyukin Computer Technologies and Information Sciences Websites Summary: A Cartesian Robot for RFID Signal Distribution Model Verification Aliasgar Kutiyanawala Vladimir (PRF)...

  20. automated verification process: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kulyukin Computer Technologies and Information Sciences Websites Summary: A Cartesian Robot for RFID Signal Distribution Model Verification Aliasgar Kutiyanawala Vladimir (PRF)...