National Library of Energy BETA

Sample records for ver ne vall

  1. Ne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ne utrino s o urce π + 8 GeV p Be source of ν µ source of ν e background source of ν e background source of ν e background source of ν µ Κ + π          e     e Κ       Κ   e     e Κ  L  e     e ● Knowing the production cross sections for m esons produced at the target is critical for determ ing

  2. Gran Valle Qu mica | Open Energy Information

    Open Energy Info (EERE)

    Gran Valle Qu mica Jump to: navigation, search Name: Gran Valle Qu-mica Place: Brazil Product: Rio de Janeiro-based biodiesel producer. References: Gran Valle Qu-mica1 This...

  3. 18Ne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ne β+-Decay Evaluated Data Measurements 1954GO17: 18Ne. 1961BU05: 18Ne; measured not abstracted; deduced nuclear properties. 1961EC02: 18Ne; measured not abstracted; deduced nuclear properties. 1963FR10: 18Ne; measured not abstracted; deduced nuclear properties. 1965FR09: 18Ne; measured not abstracted; deduced nuclear properties. 1968GO05: 18Ne; measured Eγ, Iγ; deduced Iβ, log ft. 18F deduced levels, branching ratios. 1970AL11: 18Ne; measured T1/2; deduced log ft, β-branching. 1970AS06,

  4. Valles Caldera - Sulphur Springs Geothermal Area | Open Energy...

    Open Energy Info (EERE)

    Valles Caldera - Sulphur Springs Geothermal Area (Redirected from Valles Caldera - Sulphur Springs Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Valles Caldera...

  5. BooNE: About BooNE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BooNE Collaboration BooNE Experiment BooNE vs MiniBooNE Interesting Facts Posters Virtual Tour Picture Gallery News Articles BooNE photo montage Technical Information BooNE...

  6. 15Ne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ne Ground-State Decay Evaluated Data Measured Ground-State Γcm for 15Ne Adopted value: 0.59 MeV (2014WA09) Measured Mass Excess for 15Ne Adopted value: 40215 ± 69 keV (2014WA09) Measurements 2014WA09: C(17Ne, 2p)15Ne, E = 500 MeV/nucleon; measured reaction products; deduced fractional energy spectra, J, π, energy levels, atomic mass excess. 15Ne(2p); measured decay products, Ep, Ip; deduced implications for 13O + p + p system. Back to Top Back to Ground-State Decays Data Main Page Back to

  7. 17Ne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ne β+-Decay Evaluated Data Measurements 1964MC16: 17Ne; measured not abstracted; deduced nuclear properties. 1966HA22: 17Ne; deduced log ft. 1967ES02: 17Ne; measured not abstracted; deduced nuclear properties. 1967FI10: 17Ne. 1971ESZR, 1971HA05: 17Ne; measured β-delayed proton spectra, Eγ, Iγ, T1/2, pγ-coin; deduced log ft. 17F deduced levels, antianalog state, isospin mixing. 1988BO39: 17Ne(β+p), (β+α); measured T1/2, β-delayed E(p), E(α), I(p), I(α), β(particle)-coin. 17Ne deduced

  8. 16Ne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ne Ground-State Decay Evaluated Data Measured Ground-State Γcm for 16Ne Adopted value: 122 ± 37 keV (1993TI07) Measured Mass Excess for 16Ne Adopted value: 23996 ± 20 keV (2003AU02) Measurements 1971MAXQ: 16O(π+, π-); measured particle spectra, σ. 1977HO13: 16O(π+, π-), E = 145 MeV; measured σ; deduced Q. 16Ne deduced mass excess. 1977KEZX: 20Ne(α, 8He), E = 118 MeV; measured σ. 16Ne deduced levels, mass excess. 1978BU09: 16O(π+, π-), E = 145 MeV; measured σ. 16Ne deduced mass

  9. 2011 Workshop Agenda_Ver_19.xlsx | Department of Energy

    Energy Savers [EERE]

    19.xlsx 2011 Workshop Agenda_Ver_19.xlsx PDF icon 2011 Workshop Agenda_Ver_19.xlsx More Documents & Publications 2011 Workshop Agenda_Ver_21.xlsx 2011 Workshop Agenda_Ver_21

  10. 2011 Workshop Agenda_Ver_21.xlsx | Department of Energy

    Energy Savers [EERE]

    21.xlsx 2011 Workshop Agenda_Ver_21.xlsx PDF icon 2011 Workshop Agenda_Ver_21.xlsx More Documents & Publications 2011 Workshop Agenda_Ver_21.xlsx 2011 Workshop Agenda_Ver_19

  11. Geologic Mapping of the Valles Caldera National Preserve, New...

    Open Energy Info (EERE)

    and Bland) are now complete and two others will be finished by 2006 (Valle Toledo and Valle San Antonio). Eventually, the geology of the Valles caldera will be published as a...

  12. Isotopic Analysis At Valles Caldera - Redondo Geothermal Area...

    Open Energy Info (EERE)

    Exploration Activity: Isotopic Analysis At Valles Caldera - Redondo Geothermal Area (Phillips, 2004) Exploration Activity Details Location Valles Caldera - Redondo Geothermal Area...

  13. Valles Caldera - Redondo Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Valles Caldera - Redondo Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Valles Caldera - Redondo Geothermal Area Contents 1 Area Overview 2 History...

  14. Valles Caldera - Sulphur Springs Geothermal Area | Open Energy...

    Open Energy Info (EERE)

    Valles Caldera - Sulphur Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Valles Caldera - Sulphur Springs Geothermal Area Contents 1 Area...

  15. Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs...

    Open Energy Info (EERE)

    Activity: Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs Geothermal Area (Goff, Et Al., 1982) Exploration Activity Details Location Valles Caldera - Sulphur Springs...

  16. Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs...

    Open Energy Info (EERE)

    Activity: Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs Geothermal Area (Goff, Et Al., 1985) Exploration Activity Details Location Valles Caldera - Sulphur Springs...

  17. Compound and Elemental Analysis At Valles Caldera - Sulphur Springs...

    Open Energy Info (EERE)

    Compound and Elemental Analysis At Valles Caldera - Sulphur Springs Geothermal Area (Goff, Et Al., 1985) Exploration Activity Details Location Valles Caldera - Sulphur Springs...

  18. NE-23:

    Office of Legacy Management (LM)

    1 , : -2 rn; NE-23: 4 Whitr%; Ms. Theresa Schaffer 3315 S. Emerald Avenue Chicago, Illinois 60616 Dear Ms. Schaffer: . -. r ;-, .4r.-,. , ' P?;c \ \ ; . EC.. ., . The Department of Energy (DOE), as part of its Formerly Utilized Sites Remedial Action Program (FUSRAP), has reviewed information on the former General Services Administratlon 39th Street Werehouse, Chicago, Illincis, to determine whether it contains residual radioactivity traceable to activities conducted on behalf of the Manhattan

  19. NE-24

    Office of Legacy Management (LM)

    VW- 50 "id AU6 3 1983 NE-24 .' . _ : ' : R&D Decontamination Projects Under the Formerly Utilized Sites Remedial Actlon Program (FUSRAP) '_ F .- ,: 'J,.LaGrone, Manager . Oak Ridge Operations Office As a result of the House-Senate Conference Report and the Energy and Water Appropriations Act for FY 1984, and based on the data in the attached reports indicating radioactive contamination in excess of acceptable guidelines, the sites listed in the attachment and their respective vicinity

  20. NE-20

    Office of Legacy Management (LM)

    hi v. !&-2:. /qL lo 1 OCT 2 9 1984 NE-20 -. Authorization for Remedial Action of the Ashland 2 Site, Tonawanda, New York f! Joe LaGrone, Manager Oak Ridge Operations Office Based on the Aerial Radiological Survey (Attachment 1) and a "walk-on" radiologlcal survey (Attachment 2 , excerpted from the ORNL draft report "Ground-Level Investigation of Anomalous Gamma Radiation Levels in the Tonawanda, New York, Area," January 1980), the property identified as Ashland 2 is

  1. File:VallesGeothermalAreasMap.pdf | Open Energy Information

    Open Energy Info (EERE)

    VallesGeothermalAreasMap.pdf Jump to: navigation, search File File history File usage Metadata File:VallesGeothermalAreasMap.pdf Size of this preview: 593 599 pixels. Other...

  2. File:VallesLocationMap.pdf | Open Energy Information

    Open Energy Info (EERE)

    VallesLocationMap.pdf Jump to: navigation, search File File history File usage Metadata File:VallesLocationMap.pdf Size of this preview: 800 479 pixels. Full resolution (934...

  3. Evolution of a Mineralized Geothermal System, Valles Caldera...

    Open Energy Info (EERE)

    Journal Article: Evolution of a Mineralized Geothermal System, Valles Caldera, New Mexico Abstract The 20-km-diam Valles caldera formed at 1.13 Ma and had continuous...

  4. Modeling-Computer Simulations At Valles Caldera - Redondo Geothermal...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Valles Caldera - Redondo Geothermal Area (Wilt & Haar, 1986)...

  5. Water Sampling At Valles Caldera - Sulphur Springs Geothermal...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Valles Caldera - Sulphur Springs Geothermal Area (Trainer, 1974)...

  6. The Valles natural analogue project

    SciTech Connect (OSTI)

    Stockman, H.; Krumhansl, J.; Ho, C.; McConnell, V.

    1994-12-01

    The contact between an obsidian flow and a steep-walled tuff canyon was examined as an analogue for a highlevel waste repository. The analogue site is located in the Valles Caldera in New Mexico, where a massive obsidian flow filled a paleocanyon in the Battleship Rock tuff. The obsidian flow provided a heat source, analogous to waste panels or an igneous intrusion in a repository, and caused evaporation and migration of water. The tuff and obsidian samples were analyzed for major and trace elements and mineralogy by INAA, XRF, X-ray diffraction; and scanning electron microscopy and electron microprobe. Samples were also analyzed for D/H and {sup 39}Ar/{sup 4O} isotopic composition. Overall,the effects of the heating event seem to have been slight and limited to the tuff nearest the contact. There is some evidence of devitrification and migration of volatiles in the tuff within 10 meters of the contact, but variations in major and trace element chemistry are small and difficult to distinguish from the natural (pre-heating) variability of the rocks.

  7. BooNE Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experiment Goals of BooNE BooNE in a Nutshell Making Neutrinos Detecting Neutrinos schematic of BooNE experiment A sample event (3M animated PDF file) A cosmic ray event as displayed by the MiniBooNE detector.

  8. 2011_Workshop_Agenda_Ver_16(1).pdf | Department of Energy

    Energy Savers [EERE]

    _Workshop_Agenda_Ver_16(1).pdf 2011_Workshop_Agenda_Ver_16(1).pdf PDF icon 2011_Workshop_Agenda_Ver_16(1).pdf More Documents & Publications 2011 Workshop Agenda_Ver_19.xlsx 2011 Workshop Agenda_Ver_21.xlsx 2011 Workshop Agenda_Ver_21.xlsx

  9. BooNE Collaboration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Collaboration The BooNE collaboration consists of approximately sixty-five physicists from 13 institutions. While small on the scale of high energy physics experiments, BooNE thrives from the diversity of its membership. This includes scientists from national laboratories, research universities, predominantly undergraduate institutions, as well as a high school physics teacher. List of Collaborators The BooNE Collaboration The BooNE Collaboration

  10. Rhyolites and Associated Deposits of the Valles-Toledo Caldera...

    Open Energy Info (EERE)

    Complex Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Rhyolites and Associated Deposits of the Valles-Toledo Caldera Complex Abstract...

  11. Fluid Inclusion Analysis At Valles Caldera - Redondo Geothermal...

    Open Energy Info (EERE)

    Redondo Geothermal Area (Sasada, 1988) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Fluid Inclusion Analysis At Valles Caldera - Redondo...

  12. Fluid Inclusion Analysis At Valles Caldera Geothermal Region...

    Open Energy Info (EERE)

    Geothermal Region (1990) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Fluid Inclusion Analysis At Valles Caldera Geothermal Region (1990)...

  13. Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Geothermal...

    Open Energy Info (EERE)

    Phillips, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Geothermal Area...

  14. Core Analysis At Valles Caldera - Sulphur Springs Geothermal...

    Open Energy Info (EERE)

    into younger strata. References Hisatoshi Ito, Kazuhiro Tanaka (1995) Insights On The Thermal History Of The Valles Caldera, New Mexico- Evidence From Zircon Fission-Track...

  15. Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Area...

    Open Energy Info (EERE)

    Details Location Valles Caldera - Sulphur Springs Area Exploration Technique Isotopic Analysis- Rock Activity Date Usefulness not indicated DOE-funding Unknown References...

  16. Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Geothermal...

    Open Energy Info (EERE)

    into younger strata. References Hisatoshi Ito, Kazuhiro Tanaka (1995) Insights On The Thermal History Of The Valles Caldera, New Mexico- Evidence From Zircon Fission-Track...

  17. Density Log At Valles Caldera - Redondo Geothermal Area (Rowley...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Density Log At Valles Caldera - Redondo Geothermal Area (Rowley, Et Al., 1987) Exploration...

  18. Density Log At Valles Caldera - Redondo Geothermal Area (Wilt...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Density Log At Valles Caldera - Redondo Geothermal Area (Wilt & Haar, 1986) Exploration...

  19. Isotopic Analysis At Valles Caldera - Redondo Geothermal Area...

    Open Energy Info (EERE)

    Goff, Et Al., 1982) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis At Valles Caldera - Redondo Geothermal Area (Goff, Et Al.,...

  20. Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Geothermal...

    Open Energy Info (EERE)

    WoldeGabriel & Goff, 1992) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Geothermal...

  1. Core Holes At Valles Caldera - Sulphur Springs Geothermal Area...

    Open Energy Info (EERE)

    Goff, Et Al., 1987) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Holes At Valles Caldera - Sulphur Springs Geothermal Area (Goff, Et Al.,...

  2. Field Mapping At Valles Caldera - Redondo Geothermal Area (Goff...

    Open Energy Info (EERE)

    Goff, Et Al., 2011) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Valles Caldera - Redondo Geothermal Area (Goff, Et Al.,...

  3. Surface Gas Sampling At Valles Caldera - Sulphur Springs Area...

    Open Energy Info (EERE)

    Sulphur Springs Area (Goff & Janik, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Valles Caldera - Sulphur...

  4. Compound and Elemental Analysis At Valles Caldera - Redondo Geothermal...

    Open Energy Info (EERE)

    Valles caldera. Several authors have reported results from these core holes, including Goff et al. (1986, 1987), Gardner et al. (1987, 1989), Hulen & Nielson (1985), Hulen et al....

  5. Conceptual Model At Valles Caldera - Redondo Geothermal Area...

    Open Energy Info (EERE)

    Goff, Et Al., 1988) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Conceptual Model At Valles Caldera - Redondo Geothermal Area (Goff, Et Al.,...

  6. Conceptual Model At Valles Caldera - Sulphur Springs Geothermal...

    Open Energy Info (EERE)

    Area (Goff, Et Al., 1988) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Conceptual Model At Valles Caldera - Sulphur Springs Geothermal Area...

  7. Surface Gas Sampling At Valles Caldera - Redondo Area (Goff ...

    Open Energy Info (EERE)

    Redondo Area (Goff & Janik, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Valles Caldera - Redondo Area (Goff &...

  8. Reflection Survey At Valles Caldera - Redondo Geothermal Area...

    Open Energy Info (EERE)

    Valles caldera. Several authors have reported results from these core holes, including Goff et al. (1986, 1987), Gardner et al. (1987, 1989), Hulen & Nielson (1985), Hulen et al....

  9. Compound and Elemental Analysis At Valles Caldera - Sulphur Springs...

    Open Energy Info (EERE)

    Goff, Et Al., 1982) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Valles Caldera - Sulphur Springs...

  10. Isotopic Analysis- Fluid At Valles Caldera - Redondo Geothermal...

    Open Energy Info (EERE)

    Valles caldera. Several authors have reported results from these core holes, including Goff et al. (1986, 1987), Gardner et al. (1987, 1989), Hulen & Nielson (1985), Hulen et al....

  11. Fluid Inclusion Analysis At Valles Caldera - Sulphur Springs...

    Open Energy Info (EERE)

    Sulphur Springs Geothermal Area (Sasada & Goff, 1995) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Fluid Inclusion Analysis At Valles Caldera...

  12. Field Mapping At Valles Caldera - Sulphur Springs Geothermal...

    Open Energy Info (EERE)

    Goff, Et Al., 2011) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Valles Caldera - Sulphur Springs Geothermal Area (Goff, Et...

  13. Compound and Elemental Analysis At Valles Caldera - Redondo Geothermal...

    Open Energy Info (EERE)

    Compound and Elemental Analysis At Valles Caldera - Redondo Geothermal Area (Goff, Et Al., 1982) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  14. At Valles Caldera - Redondo Geothermal Area (Goff & Grigsby,...

    Open Energy Info (EERE)

    Redondo Geothermal Area (Goff & Grigsby, 1982) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: At Valles Caldera - Redondo Geothermal Area (Goff...

  15. Modeling-Computer Simulations At Valles Caldera - Redondo Geothermal...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Valles Caldera - Redondo Geothermal Area (Roberts, Et Al., 1995)...

  16. Modeling-Computer Simulations At Valles Caldera - Sulphur Springs...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Valles Caldera - Sulphur Springs Geothermal Area (Roberts, Et Al.,...

  17. Modeling-Computer Simulations At Valles Caldera - Sulphur Springs...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Valles Caldera - Sulphur Springs Geothermal Area (Wilt & Haar, 1986)...

  18. Gas Geochemistry Of The Valles Caldera Region, New Mexico And...

    Open Energy Info (EERE)

    LibraryAdd to library Journal Article: Gas Geochemistry Of The Valles Caldera Region, New Mexico And Comparisons With Gases At Yellowstone, Long Valley And Other Geothermal Systems...

  19. Valle Secolo Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Valle Secolo Geothermal Power Station Sector Geothermal energy Location Information Geothermal Resource Area Larderello Geothermal Area Geothermal...

  20. Teleseismic-Seismic Monitoring At Valles Caldera - Sulphur Springs...

    Open Energy Info (EERE)

    Teleseismic-Seismic Monitoring At Valles Caldera - Sulphur Springs Geothermal Area (Roberts, Et Al., 1991) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration...

  1. Water Sampling At Valles Caldera - Redondo Area (Rao, Et Al....

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Valles Caldera - Redondo Area (Rao, Et Al., 1996) Exploration Activity...

  2. Water-Gas Samples At Valles Caldera - Redondo Geothermal Area...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water-Gas Samples At Valles Caldera - Redondo Geothermal Area (Janik & Goff, 2002)...

  3. Water Sampling At Valles Caldera - Sulphur Springs Geothermal...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Valles Caldera - Sulphur Springs Geothermal Area (Goff, Et Al., 1982)...

  4. Water Sampling At Valles Caldera - Redondo Geothermal Area (Goff...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Valles Caldera - Redondo Geothermal Area (Goff, Et Al., 1982) Exploration...

  5. Water Sampling At Valles Caldera - Sulphur Springs Area (Rao...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Valles Caldera - Sulphur Springs Area (Rao, Et Al., 1996) Exploration...

  6. Flow Test At Valles Caldera - Sulphur Springs Geothermal Area...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Valles Caldera - Sulphur Springs Geothermal Area (Musgrave, Et Al., 1989)...

  7. Conceptual Model At Valles Caldera - Redondo Geothermal Area...

    Open Energy Info (EERE)

    Gardner, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Conceptual Model At Valles Caldera - Redondo Geothermal Area (Gardner, 2010)...

  8. Conceptual Model At Valles Caldera - Sulphur Springs Geothermal...

    Open Energy Info (EERE)

    Area (Gardner, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Conceptual Model At Valles Caldera - Sulphur Springs Geothermal Area...

  9. MicroBooNE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MicroBooNE MicroBooNE Investigating the field of high energy physics through experiments that strengthen our fundamental understanding of matter, energy, space, and time. Get Expertise Rajan Gupta (505) 667-7664 Email Bruce Carlsten (505) 667-5657 Email MicroBooNE schematic drawing Figure 1: A schematic drawing of the MicroBooNE liquid argon TPC detector. The main goals of the MicroBooNE experiment are: (1) to demonstrate the capabilities of a liquid argon TPC in the reconstruction of neutrino

  10. SciBooNE/MiniBooNE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    particles * p separation using dEdx 2m 4m Used in K2K experiment Used in CHORUS, HARP and K2K Parts recycled from past experiments 31 SciBooNE publications * NuMu...

  11. AmeriFlux US-Vcp Valles Caldera Ponderosa Pine

    SciTech Connect (OSTI)

    Litvak, Marcy

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Vcp Valles Caldera Ponderosa Pine. Site Description - The Valles Caldera Ponderosa Pine site is located in the 1200km2 Jemez River basin of the Jemez Mountains in north-central New Mexico at the southern margin of the Rocky Mountain ecoregion. The Ponderosa Pine forest is the warmest and lowest (below 2700m) zone of the forests in the Valles Caldera National Preserve. Its vegetation is composed of a Ponderosa Pine (Pinus Ponderosa) overstory and a Gambel Oak (Quercus gambelii) understory.

  12. BooNE: Picture Gallery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Picture Gallery BooNE Collaboration Members of the BooNE collaboration Civil Construction Pictorial progress of BooNE civil construction work Detector Installation Pictorial progress of MiniBooNE detector installation BooNE Scrapbook A selection from BooNE Audio Gallery Horn Concerto The Horn Concerto is a recording of the BooNE horn and the NuMI horn sounding at the same time. The rat-a-tat is BooNE; the syncopated boom is NuMI.

  13. BooNE: Posters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Posters What's a Neutrino? How neutrinos fit into our understanding of the universe. Recipe for a Neutrino Beam Start with some protons... concocting the MiniBooNE beam. The...

  14. MicroBooNE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    optic transmission of the Resistive Wall Monitor (RWM) beam crossing time to transmit the signal to the detector. In the past, for MiniBooNE, this was done with an RG59 copper...

  15. 20Ne Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    p, X) (Current as of 05/15/2012) NSR Reaction Ep (MeV) Cross Section File X4 Dataset Date Added 1981DY03 20Ne(p, p'γ): σ for production of γ-rays threshold - 23 1.63-MeV γ-rays X4 03/15/2011 20Ne(p, pαγ): σ for production of γ-rays threshold - 23 6.13-MeV γ-rays 1975RO08 20Ne(p, γ): S-factors 0.37 - 2.10 Direct Capture (DC) → 332-keV state, DC → 2425-keV state, tail of 2425-keV state X4 04/19/2011 20Ne(p, γ): differential σ at θγ = 90° DC → 332-keV state, 332-keV state →

  16. El Valle de Arroyo Seco, New Mexico: Energy Resources | Open...

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. El Valle de Arroyo Seco is a census-designated place in Santa Fe County, New Mexico.1...

  17. Core Holes At Valles Caldera - Sulphur Springs Geothermal Area...

    Open Energy Info (EERE)

    Dennis L. Nielson, Pisto Larry, C.W. Criswell, R. Gribble, K. Meeker, J.A. Musgrave, T. Smith, D. Wilson (1989) Scientific Core Hole Valles Caldera No. 2B (VC-2B), New Mexico:...

  18. Core Holes At Valles Caldera - Redondo Geothermal Area (Fawcett...

    Open Energy Info (EERE)

    John W. Geissman, Giday WoldeGabriel, Craig D. Allen, Catrina M. Johnson, Susan J. Smith (2007) Two Middle Pleistocene Glacial-Interglacial Cycles from the Valle Grande, Jemez...

  19. Pressure Temperature Log At Valles Caldera - Redondo Geothermal...

    Open Energy Info (EERE)

    New Mexico (VC-1) Jamie N. Gardner, Fraser E. Goff, Sue Goff, Larry Maassen, K. Mathews, Daniel Wachs, D. Wilson (1987) Core Lithology, Valles Caldera No. 1, New Mexico...

  20. Neutron Log At Valles Caldera - Redondo Geothermal Area (Rowley...

    Open Energy Info (EERE)

    New Mexico (VC-1) Jamie N. Gardner, Fraser E. Goff, Sue Goff, Larry Maassen, K. Mathews, Daniel Wachs, D. Wilson (1987) Core Lithology, Valles Caldera No. 1, New Mexico...

  1. Self Potential At Valles Caldera - Redondo Geothermal Area (Rowley...

    Open Energy Info (EERE)

    New Mexico (VC-1) Jamie N. Gardner, Fraser E. Goff, Sue Goff, Larry Maassen, K. Mathews, Daniel Wachs, D. Wilson (1987) Core Lithology, Valles Caldera No. 1, New Mexico...

  2. Caliper Log At Valles Caldera - Redondo Geothermal Area (Rowley...

    Open Energy Info (EERE)

    New Mexico (VC-1) Jamie N. Gardner, Fraser E. Goff, Sue Goff, Larry Maassen, K. Mathews, Daniel Wachs, D. Wilson (1987) Core Lithology, Valles Caldera No. 1, New Mexico...

  3. Gamma Log At Valles Caldera - Redondo Geothermal Area (Rowley...

    Open Energy Info (EERE)

    New Mexico (VC-1) Jamie N. Gardner, Fraser E. Goff, Sue Goff, Larry Maassen, K. Mathews, Daniel Wachs, D. Wilson (1987) Core Lithology, Valles Caldera No. 1, New Mexico...

  4. Resistivity Log At Valles Caldera - Redondo Geothermal Area ...

    Open Energy Info (EERE)

    New Mexico (VC-1) Jamie N. Gardner, Fraser E. Goff, Sue Goff, Larry Maassen, K. Mathews, Daniel Wachs, D. Wilson (1987) Core Lithology, Valles Caldera No. 1, New Mexico...

  5. Core Holes At Valles Caldera - Redondo Geothermal Area (Goff...

    Open Energy Info (EERE)

    Caldera, New Mexico Jamie N. Gardner, Fraser E. Goff, Sue Goff, Larry Maassen, K. Mathews, Daniel Wachs, D. Wilson (1987) Core Lithology, Valles Caldera No. 1, New Mexico John...

  6. 20Ne Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    20Ne(α, X) (Current as of 02/08/2016) NSR Reaction Eα (MeV) Cross Section File X4 Dataset Date Added 1983SC17 20Ne(α, γ): deduced S-factor of capture σ 0.55 - 3.2 X4 09/15/2011 1997WI12 20Ne(α, γ): deduced primary transitions yield 1.64 - 2.65 X4 09/15/2011 1999KO34 20Ne(α, γ): γ-ray yield for the transition 1.9 - 2.8 g.s. 01/03/2012 1369 keV g.s. 10917 keV g.s., 1369 keV 11016 keV g.s. 1975KU06 20Ne(α, γ): σ 2.5 - 20 X4 09/15/2011 1968HI02 20Ne(α, γ): σ 3 - 6 X4 09/15/2011

  7. BooNE: Interesting Facts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interesting Facts About the BooNE experiment: BooNE is the only experiment to search the entire range covered by the LSND oscillation signal. First proposed in 1997, BooNE will be ready to collect data in summer, 2002. The BooNE collaboration is small by high energy physics standards, having 65 physicists from 13 instiutions. If BooNE detects a supernova, it will send an automatic signal to telescopes around the world describing its position. BooNE collaboration - click to enlarge About the

  8. BooNE versus MiniBooNE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by the Los Alamos LSND experiment. MiniBooNE represents the first phase for the BooNE collaboration and consists of a 1 GeV neutrino beam and a single, 800-ton mineral oil...

  9. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Picture Gallery BooNE Collaboration Members of the BooNE collaboration Civil Construction Pictorial progress of BooNE civil construction work Detector Installation Pictorial...

  10. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Booster Neutrino Experiment (BooNE) Goals of BooNE BooNE in a Nutshell Making Neutrinos Detecting Neutrinos

  11. AmeriFlux US-Vcm Valles Caldera Mixed Conifer

    SciTech Connect (OSTI)

    Litvak, Marcy

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Vcm Valles Caldera Mixed Conifer. Site Description - The Valles Caldera Mixed Conifer site is located in the 1200 km2 Jemez River basin in north-central New Mexico. Common to elevations ranging from 3040 to 2740 m in the region, the mixed conifer stand, within the entirety of the tower footprint in all directions, provides an excellent setting for studying the seasonal interaction between snow and vegetation.

  12. The MicroBooNE Experiment - Collaboration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The DOE Tours MicroBooNE! - Nov. 27, 2012

  13. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Booster Neutrino Experiment (BooNE) BooNE vs MiniBooNE Interesting Facts Posters Virtual Tour Picture Gallery News Articles Technical Information BooNE Proposal Original...

  14. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Progress in Delivering Beam to MiniBooNE

  15. UPdate THE NE

    Energy Savers [EERE]

    UPdate THE NE January 2014 Edition U.S. Department of Energy's Nuclear Energy University Programs It's not every day graduate students get to meet one of nuclear energy's most important decision makers. Integrated University Program (IUP) Fellows had this opportunity at the 2013 Winter American Nuclear Society (ANS) Meeting this past November in Washington, D.C. Department of Energy Assistant Secretary for Nuclear Energy, Dr. Pete Lyons, greeted IUP Fellows in a special meeting to discuss

  16. NE-23 W

    Office of Legacy Management (LM)

    >:-1. ,- '"CC3 . ' NE-23 .+ W h itm~ l-l& Mr. Victor 3. Canilov, Director Museum of Science and Industry East 57th Street and Lake Shore Drive Chicago, Illinois 60037 Dear kr. Danilov: The Department of Energy (DOE), as part of its Formerly Utilized Sites Remedial Action Program (FUSPSIP), has reviewed information on the Museum cf Science and Industry, Chicago, Illinois, to determine whether it contains residual radioactivity traceable to activities conducted on behalf of the

  17. US NE MA Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    NE MA Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 $3,000 US NE MA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US NE MA Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US NE MA Expenditures dollars ELECTRICITY ONLY average per household * Massachusetts households use 109 million Btu of energy per home, 22% more than the U.S. average. * The higher than average site consumption

  18. A Low-Velocity Zone in the Basement Beneath the Valles Caldera...

    Open Energy Info (EERE)

    Zone in the Basement Beneath the Valles Caldera, New Mexico Abstract We present quantitative results of forward modeling applied to a suite of travel time delays observed...

  19. 10 CFR 850, Request for Information- Docket Number: HS-RM-10-CBDPP- Curtis Valle

    Broader source: Energy.gov [DOE]

    Commenter: Curtis Valle 10 CFR 850 - Request for Information Docket Number: HS-RM-10-CBDPP Comment Close Date: 2/22/2011

  20. MiniBooNE E. D. Zimmerman

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SciBooNE Detector TargetHorn SciBooNE constraint reduces error at MiniBooNE * Flux errors become 1-2% level: negligible for this analysis * Cross-section errors reduced, but...

  1. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MiniBooNE-darkmatter collaboration Original MiniBooNE collaboration From script reading a simple data base, last updated 2008. from inspirehep.net Booster Neutrino...

  2. A=14Ne (1981AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1AJ01) (Not illustrated) 14Ne has not been observed. See (1976BE1V

  3. BooNE News Articles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Articles FermiNews Fermilab's biweekly magazine (several stories) Beam Line: Special Neutrino Issue A special issue of SLAC's quarterly magazine. Earth & Sky "Catching Ghost Particles": Interview with Janet Conrad Columbia Magazine "The Nature of the Neutrino": MiniBooNE and neutrinos The Los Angeles Times "It's No Small Matter": K. C. Cole's article detailing her summer 2003 stint at Fermilab working on MiniBooNE [text only]

  4. The MicroBooNE Experiment - Collaboration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MicroBooNE In the News MicroBooNE internal newletters (password protected) National Lab Science Day (public debut of virtual MicroBooNE), Fermilab News, 04/29/16 MicroBooNE Project Team Recognized by Department of Energy, Fermilab News, 04/08/16 The Hidden Neutrino, Symmetry Magazine, 03/01/16 Booster Neutrino Beam Reaches Record Beam Intensity, Fermilab This Week, 02/02/16 MicroBooNE Sees First Accelerator-Born Neutrinos, Fermilab Today, 11/02/15 MicroBooNE Sees First Accelerator-Born

  5. ICARUS/MicroBooNE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ) ICARUS/MicroBooNE ν ( Φ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 µ ν µ ν e ν e ν

  6. The MicroBooNE Experiment - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in MiniBooNE and MicroBooNE, MIT Ph.D. thesis, September 2014 Christie Chiu, Liquid Argon Scintillation Light Quenching Due to Nitrogen Impurities: Measurements Performed for...

  7. About the MicroBooNE Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MicroBooNE The MicroBooNE collaboration is currently operating a large 170-ton liquid Argon Time Projection Chamber (LArTPC) that is located on the Booster neutrino beam line at...

  8. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sept. 3, 1999 - The MiniBooNE Detector: The Teletubby Design 1998: Oct. 30, 1998 - Good Physics in a Small Package June 5, 1998 - MiniBooNE Faces the PAC May 1, 1998 - The...

  9. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (505) 695 8364 BooNE Experiment: contact-boone@fnal.gov Current Shifter: (505) 500 5511 Detector Enclosure: (630) 840 6881 or 6081 BooNE Collaborators and Associates:...

  10. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by the Los Alamos LSND experiment. MiniBooNE represents the first phase for the BooNE collaboration and consists of a 1 GeV neutrino beam and a single, 800-ton mineral oil...

  11. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data Releases This page provides MiniBooNE data (histograms, error matrices, ntuples, etc) released in association with particular publications. Only the subset of MiniBooNE papers...

  12. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Results from the MiniBooNE Experiment OpenOffice S. Brice Neutrino08 May 25-31, 2008 Christchurch, New Zealand MiniBooNE Oscillation Serches PowerPoint G.P. Zeller Low Energy ...

  13. A=19Ne (1978AJ03)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    78AJ03) (See Energy Level Diagrams for 19Ne) GENERAL: See (1972AJ02) and Table 19.24 Table of Energy Levels (in PDF or PS). Nuclear models: (1972EN03, 1972NE1B, 1972WE01,...

  14. Insights On The Thermal History Of The Valles Caldera, New Mexico...

    Open Energy Info (EERE)

    Insights On The Thermal History Of The Valles Caldera, New Mexico- Evidence From Zircon Fission-Track Analysis Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  15. The MicroBooNE Experiment - Collaboration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Collaboration (*) The MicroBooNE spokespeople are Bonnie Fleming (Yale) and Sam Zeller (FNAL) (+) The MicroBooNE project manager was Gina Rameika Updated collaboration list for presentations: powerpoint pdf map collaboration photo MicroBooNE organizational chart MicroBooNE contact list (password required) (IB) = Insititutional Board representative (PD) = postdoc (GS) = graduate student (UG) = undergraduate student Laboratory for High Energy Physics, University of Bern, Switzerland Martin Auger

  16. A=14Ne (1986AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6AJ01) (Not illustrated) 14Ne, 14Na and 14Mg have not been observed. See (1983ANZQ

  17. A=14Ne (1991AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    91AJ01) (Not illustrated) 14Ne, 14Na and 14Mg have not been observed. See (1986AN07

  18. A=18Ne (1959AJ76)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    59AJ76) (Not illustrated) Theory: See (RA57). 1. 18Ne(β+)18F Qm = 4.227 The maximum energy of the positrons is 3.2 ± 0.2 MeV, the half-life is 1.6 ± 0.2 sec: log ft = 2.9 ± 0.2 (GO54D). See also (DZ56). 2. 16O(3He, n)18Ne Qm = -2.966 See (KU53A). 3. 19F(p, 2n)18Ne Qm = -15.424 See (GO54D). 4. 20Ne(p, t)18Ne Qm = -19.812 Not reported

  19. A=17Ne (1977AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    77AJ02) (See the Isobar Diagram for 17Ne) GENERAL: See also (1971AJ02) and Table 17.20 [Table of Energy Levels] (in PDF or PS). Theory and reviews: (1971HA1Y, 1973HA77, 1973RE17, 1975BE31). Mass of 17Ne: The mass excess of 17Ne, determined from a measurement of the Q-value of 20Ne(3He, 6He)17Ne is 16.48 ± 0.05 MeV (1970ME11, 1972CE1A). Then 17Ne - 17F = 14.53 MeV and Eb for p, 3He and α are, respectively, 1.50, 6.46 and 9.05 MeV. See also (1971AJ02). 1. (a) 17Ne(β+)17F* → 16O + p Qm = 13.93

  20. Hallam Nuclear Power Facility, NE

    Energy Savers [EERE]

    Hallam Nuclear Power Facility, NE 1969 1998 2. Piqua Nuclear Power Facility, OH 1969 1998 3. Bayo Canyon, NM 1982 1998 4. Kellex/Pierpont, NJ 1982 1998 5. University of California, CA 1982 1998 6. Acid/Pueblo Canyons, NM 1984 1999 7. Chupadera Mesa, NM 1984 1999 8. Canonsburg, PA 1986 1999 9.Shiprock, NM 1987 2000 10. Middlesex Municipal Landfill, NJ 1987 2000 11. Niagara Falls Storage Site Vicinity Properties, NY 1987 2001 12. Salt Lake City, UT 1989 2001 13. Spook, WY 1989 2001 14. National

  1. MiniBooNE E. D. Zimmerman

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NNN'10 Recent Results from MiniBooNE * MiniBooNE * Neutrino cross-sections * Quasielastic and elastic scattering * Hadron production channels * Neutrino Oscillations * Antineutrino Oscillations Motivating MiniBooNE: LSND Liquid Scintillator Neutrino Detector * Stopped + beam at Los Alamos LAMPF produces e , , but no e (due to capture). * Neutron thermalizes, captures ➨2.2 MeV -ray * Look for the delayed coincidence. * Major background non-beam (measured, subtracted) * 3.8 standard dev. excess

  2. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scrapbook Page 2 The BooNE collaboration in winter. A tour of the construction site. Working with the BooNE Horn. BooNE in the winter A tour of the construction site. A day with the Horn Janet, Bonnie, and Jen in the Tank. Janet and Bill: the early years. Bill, Richard, Jeff, and Shawn in the midst of discussion. Preparing the tubes Janet and Bill: the early days Discussion in progress The oil tanker arrives. The final stages of oil filling. The BooNE Collaboration in the summer. The oil tanker

  3. MiniBooNE Pion Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contents: Pion Group Home Pion Group Members Pion References Colin's Cross Section Page MiniBooNE Internal Email M. Tzanov....

  4. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experiment Details This page provides information on the MiniBooNE experiment. Images are linked in their own page with captions. Additional resources are the Talks, Slides and Posters page, Publications page, and Data Release page Beamline Flux Detector Cross sections Light Propagation (Optical Model) Calibration Particle Identification BooNE photo montage

  5. MiniBooNE Results / MicroBooNE Status! Eric Church, Yale University

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    / MicroBooNE Status! Eric Church, Yale University LLWI, 22-Feb-2014 2 G aaah! The US-Canada game is on! right now! (what are we doing at this talk?) 3 Outline  MiniBooNE  past results  future  MicroBooNE  physics motivation  R&D motivation  status: (running is imminent!) 4 The Booster Neutrino Beam BNB p Dirt ~500m Decay region ~50m π + π - ν µ µ - (antineutrino mode) µ Horn polarity flip allows nu or anu modes. 5 MiniBooNE history 6 MiniBooNE  800 tons of

  6. A=16Ne (1982AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    82AJ01) (See the Isobar Diagram for 16Ne) GENERAL: See also (1977AJ02) and Table 16.27 [Table of Energy Levels] (in PDF or PS). Theoretical work: (1978GU10, 1978SP1C, 1981LI1M). Reviews: (1977CE05, 1979AL1J, 1980TR1E). Mass of 16Ne: The Q-values of the 20Ne(α, 8He) and 16O(π+, π-) reactions lead to an atomic mass excess of 24.02 ± 0.04 MeV for 16Ne. 16Ne is then unbound with respect to decay into 14O + 2p by 1.43 MeV and is bound with respect to decay into 15F + p by 0.04 MeV. 1. 16O(π+,

  7. A=17Ne (1993TI07)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    93TI07) (See the Isobar Diagram for 17Ne) GENERAL: See Table Prev. Table 17.26 preview 17.26 [Table of Energy Levels] (in PDF or PS). 1. (a) 17Ne(β+)17F* → 16O + p Qm = 13.928 (b) 17Ne(β+)17F → 13N + α Qm = 8.711 (c) 17Ne(β+)17F Qm = 14.529 The half-life of 17Ne has been reported as 109.0 ± 1.0 msec (1971HA05) and 109.3 ± 0.6 msec (1988BO39): the weighted mean is 109.2 ± 0.6 and we adopt it. The decay is primarily to the proton unstable states of 17F at 4.65, 5.49, 6.04 and 8.08 MeV

  8. MiniBooNE Flux Data Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Neutrino Flux Prediction at MiniBooNE", arXiv:0806.1449 [hep-ex], Phys. Rev. D. 79, 072002 (2009) The following MiniBooNE information from the large flux paper in 2009 is made available to the public: Text files containing flux information for each neutrino species Positive horn polarity (neutrino-enhanced mode) Negative horn polarity (anti neutrino-enhanced mode) Contact Information For clarifications on how to use MiniBooNE public data or for enquiries about additional data not linked

  9. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proceedings This page contains links to conference proceedings submitted by members of the MiniBooNE collaboration New Guidelines for Submitting Proceedings at MiniBooNE: As of June 2007, we have changed the rules on conference proceedings. Proceedings must be read by one other MiniBooNE person (besides the author) of postdoc level or above before being submitted. Proceedings should also be sent to boone-talks@fnal.gov for archiving on this website. back to Talks page Speaker Proceedings Info

  10. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    elastic cross-section paper is on the archive (arXiv:1309.7257) and has been published in Phys. Rev. D91, 012004 (2015). MiniBooNE's antineutrino charged current quasi-elastic...

  11. The MicroBooNE Experiment - Collaboration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact MicroBooNE Spokespeople: Bonnie Fleming, Yale email: bonnie.fleming(AT)yale.edu phone: (203) 432-3235 Sam Zeller, FNAL email: gzeller(AT)fnal.gov phone: (630) 840-6879 Collaboration Members

  12. The NeXus data format

    SciTech Connect (OSTI)

    Könnecke, Mark; Akeroyd, Frederick A.; Bernstein, Herbert J.; Brewster, Aaron S.; Campbell, Stuart I.; Clausen, Björn; Cottrell, Stephen; Hoffmann, Jens Uwe; Jemian, Pete R.; Männicke, David; Osborn, Raymond; Peterson, Peter F.; Richter, Tobias; Suzuki, Jiro; Watts, Benjamin; Wintersberger, Eugen; Wuttke, Joachim

    2015-01-30

    NeXus is an effort by an international group of scientists to define a common data exchange and archival format for neutron, X-ray and muon experiments. NeXus is built on top of the scientific data format HDF5 and adds domain-specific rules for organizing data within HDF5 files, in addition to a dictionary of well defined domain-specific field names. The NeXus data format has two purposes. First, it defines a format that can serve as a container for all relevant data associated with a beamline. This is a very important use case. Second, it defines standards in the form of application definitions for the exchange of data between applications. NeXus provides structures for raw experimental data as well as for processed data.

  13. A=19Ne (1995TI07)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    19.29 (in PDF or PS). The 19Ne decay to 19F*(0.11) J 12+ 12- proceeds by vector and axial vector weak currents, with the former making a negligible contribution. The...

  14. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BooNE will investigate the question of neutrino mass by searching for oscillations of muon neutrinos into electron neutrinos. This will be done by directing a muon neutrino beam...

  15. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Posters What's a Neutrino? How neutrinos fit into our understanding of the universe. Recipe for a Neutrino Beam Start with some protons... concocting the MiniBooNE beam. The...

  16. A=16Ne (1986AJ04)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6AJ04) (See the Isobar Diagram for 16Ne) GENERAL: See also (1982AJ01) and Table 16.26 [Table of Energy Levels] (in PDF or PS) here. See (1981SE1B, 1983ANZQ, 1985AN28, 1985MA1X). Mass of 16Ne: The Q-values of the 20Ne(α, 8He) and 16O(π+, π-) reactions lead to atomic mass excesses of 23.93 ± 0.08 MeV (1978KE06), 23.978 ± 0.024 MeV (1983WO01) and 24.048 ± 0.045 MeV (1980BU15) [recalculated using the (1985WA02) masses for 8He, 16O and 20Ne]. The weighted mean is 23.989 ± 0.020 MeV which is

  17. A=16Ne (1993TI07)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    93TI07) (See the Isobar Diagram for 16Ne) GENERAL: See Table Prev. Table 16.29 preview 16.29 [General Table] (in PDF or PS) and Table Prev. Table 16.32 preview 16.32 [Table of Energy Levels] (in PDF or PS). Mass of 16Ne: The Q-values of the 20Ne(α, 8He) and 16O(π+, π-) reactions lead to atomic mass excesses of 23.93 ± 0.08 MeV (1978KE06), 23.978 ± 0.024 MeV (1983WO01) and 24.048 ± 0.045 MeV (1980BU15) [recalculated using the (1985WA02) masses for 8He, 16O and 20Ne]. The weighted mean is

  18. A=17Ne (1982AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    82AJ01) (See the Isobar Diagram for 17Ne) GENERAL: See (1977AJ02) and Table 17.22 [Table of Energy Levels] (in PDF or PS). Theory and reviews:(1975BE56, 1977CE05, 1978GU10, 1978WO1E, 1979BE1H). Other topics:(1981GR08). Mass of 17Ne: The mass excess adopted by (1977WA08) is 16.478 ± 0.026 MeV, based on unpublished data. We retain the mass excess 16.48 ± 0.05 MeV based on the evidence reviewed in (1977AJ02). 1. (a) 17Ne(β+)17F* → 16O + p Qm = 13.93 (b) 17Ne(β+)17F Qm = 14.53 The half-life of

  19. A=17Ne (1986AJ04)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6AJ04) (See the Isobar Diagram for 17Ne) GENERAL: See (1982AJ01) and Table 17.20 [Table of Energy Levels] (in PDF or PS). Theory and reviews: (1983ANZQ, 1983AU1B, 1985AN28). 1. (a) 17Ne(β+)17F* → 16O + p Qm = 13.93 (b) 17Ne(β+)17F Qm = 14.53 The half-life of 17Ne is 109.0 ± 1.0 msec (1971HA05). Earlier values (see (1971AJ02)) gave a mean value of 108.0 ± 2.7 msec. The decay is primarily to the proton unstable states of 17F at 4.70, 5.52 and 6.04 MeV with Jπ = 3/2-, 3/2- and 1/2-: see

  20. UCB-NE-107 user's manual

    SciTech Connect (OSTI)

    Lee, W.W.L.

    1989-03-01

    The purpose of this manual is to provide users of UCB-NE-107 with the information necessary to use UCB-NE-107 effectively. UCB-NE-107 is a computer code for calculating the fractional rate of readily soluble radionuclides that are released from nuclear waste emplaced in water-saturated porous media. Waste placed in such environments will gradually dissolve. For many species such as actinides and rare earths, the process of dissolution is governed by the exterior flow field, and the chemical reaction rate or leaching rate. However, for readily soluble species such as /sup 135/Cs, /sup 137/Cs, and /sup 129/I, it has been observed that their dissolution rates are rapid. UCB-NE-107 is a code for calculating the release rate at the waste/rock interface, to check compliance with the US Nuclear Regulatory Commission's (USNRC) subsystem performance objective. It is an implementation of the analytic solution given below. 5 refs., 2 figs.

  1. The NeXus data format

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Könnecke, Mark; Akeroyd, Frederick A.; Bernstein, Herbert J.; Brewster, Aaron S.; Campbell, Stuart I.; Clausen, Björn; Cottrell, Stephen; Hoffmann, Jens Uwe; Jemian, Pete R.; Männicke, David; et al

    2015-01-30

    NeXus is an effort by an international group of scientists to define a common data exchange and archival format for neutron, X-ray and muon experiments. NeXus is built on top of the scientific data format HDF5 and adds domain-specific rules for organizing data within HDF5 files, in addition to a dictionary of well defined domain-specific field names. The NeXus data format has two purposes. First, it defines a format that can serve as a container for all relevant data associated with a beamline. This is a very important use case. Second, it defines standards in the form of application definitionsmore » for the exchange of data between applications. NeXus provides structures for raw experimental data as well as for processed data.« less

  2. A=19Ne (1983AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    83AJ01) (See Energy Level Diagrams for 19Ne) GENERAL: See (1978AJ03) and Table 19.23 Table of Energy Levels (in PDF or PS). Nuclear models: (1978MA2H, 1978PE09, 1978PI06,...

  3. A=18Ne (1978AJ03)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1978AJ03) (See Energy Level Diagrams for 18Ne) GENERAL: See also (1972AJ02) and Table 18.22 Table of Energy Levels (in PDF or PS). Model calculations: (1972EN03, 1974LO04)....

  4. A=19Ne (1987AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7AJ02) (See Energy Level Diagrams for 19Ne) GENERAL: See (1983AJ01) and Table 19.21 Table of Energy Levels (in PDF or PS). Nuclear models:(1983BR29, 1983PO02). Special states:...

  5. A=18Ne (1983AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    83AJ01) (See Energy Level Diagrams for 18Ne) GENERAL: See also (1978AJ03) and Table 18.21 Table of Energy Levels (in PDF or PS). Model calculations: (1979DA15, 1979SA31,...

  6. A=18Ne (1987AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7AJ02) (See Energy Level Diagrams for 18Ne) GENERAL: See (1983AJ01) and Table 18.22 Table of Energy Levels (in PDF or PS). Model calculations:(1982ZH01, 1983BR29, 1984SA37,...

  7. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (numbers, plots, details) of the MiniBooNE experiment and analysis pieces. Images are linked in their own page with captions. Additional resources are the Talks, Slides and...

  8. A=20Ne (72AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ) elastic scattering. It is interpreted in terms of a quasi-molecular -particle cluster model (CO69S). See also (WA65M). 18. 17O(, n)20Ne Qm 0.588 Angular...

  9. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Goals of BooNE BooNE's primary goal is to investigate the neutrino oscillation signal reported by the Los Alamos Liquid Scintillator Neutrino Detector (LSND) experiment. In 1995, the LSND collaboration presented strong evidence for the oscillation of muon anti-neutrinos into electron anti-neutrinos. These results led to mass-squared differences around 1 eV2 -- much larger than those observed by atmospheric and solar neutrino oscillation experiments. The LSND measurement remains to be confirmed.

  10. MicroBooNE Detector Move

    ScienceCinema (OSTI)

    Flemming, Bonnie; Rameika, Gina

    2014-07-15

    On Monday, June 23, 2014 the MicroBooNE detector -- a 30-ton vessel that will be used to study ghostly particles called neutrinos -- was transported three miles across the Fermilab site and gently lowered into the laboratory's Liquid-Argon Test Facility. This video documents that move, some taken with time-lapse camerad, and shows the process of getting the MicroBooNE detector to its new home.

  11. The MicroBooNE Experiment - Public Notes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MicroBooNE Public Notes Page Back to the Publications Page

  12. FY17 NE Budget Request Presentation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7 NE Budget Request Presentation FY17 NE Budget Request Presentation PDF icon FY17 NE Budget Request Presentation More Documents & Publications FY16 NE Budget Request Presentation Office of Nuclear Energy Fiscal Year 2014 Budget Request Assessment of Small Modular Reactor Suitability for Use On or Near Air Force Space Command Installations SAND 2016-2600

  13. Cross section analyses in MiniBooNE and SciBooNE experiments

    SciTech Connect (OSTI)

    Katori, Teppei

    2015-05-15

    The MiniBooNE experiment (2002-2012) and the SciBooNE experiment (2007-2008) are modern high statistics neutrino experiments, and they developed many new ideas in neutrino cross section analyses. In this note, I discuss selected topics of these analyses.

  14. Lithologic descriptions and temperature profiles of five wells in the southwestern Valles caldera region, New Mexico

    SciTech Connect (OSTI)

    Shevenell, L.; Goff, F.; Miles, D.; Waibel, A.; Swanberg, C.

    1988-01-01

    The subsurface stratigraphy and temperature profiles of the southern and western Valles caldera region have been well constrained with the use of data from the VC-1, AET-4, WC 23-4, PC-1 and PC-2 wells. Data from these wells indicate that thermal gradients west of the caldera margin are between 110 and 140)degrees)C/km, with a maximum gradient occurring in the bottom of PC-1 equal to 240)degrees)C/km as a result of thermal fluid flow. Gradients within the caldera reach a maximum of 350)degrees)C/km, while the maximum thermal gradient measured southwest of the caldera in the thermal outflow plume is 140)degrees)C/km. The five wells exhibit high thermal gradients (>60)deghrees)C/km) resulting from high conductive heat flow associated with the Rio Grande rift and volcanism in the Valles caldera, as well as high convective heat flow associated with circulating geothermal fluids. Gamma logs run in four of the five wells appear to be of limited use for stratigraphic correlations in the caldera region. However, stratigraphic and temperature data from the five wells provide information about the structure and thermal regime of the southern and western Valles caldera region. 29 refs., 9 figs. 2 tabs.

  15. MiniBooNE Nue Data Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutrino Appearance at the Δm2 ~1 eV2 Scale", arXiv:0704.1500 [hep-ex], Phys. Rev. Lett. 98, 231801 (2007) The following MiniBooNE information from the first oscillation paper in 2007 is made available to the public: Energy Range for Default Oscillation Fit (475 MeV - 3000 MeV reconstructed neutrino energy) ntuple file of official MiniBooNE sin2(2theta) sensitivity and upper limit curves as a function of Dm2, for a 2-neutrino muon-to-electron oscillation fit, and 90% and 3sigma confidence

  16. MiniBooNE Nuebar Data Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Search for Electron Anti-Neutrino Appearance at the Δm2 ~1 eV2 Scale", arXiv:0904.1958 [hep-ex], Phys. Rev. Lett. 103, 111801 (2009) The following MiniBooNE information from the 2009 nuebar appearance paper is made available to the public: Energy Range: 475 MeV - 3000 MeV reconstructed neutrino energy ntuple file of MiniBooNE sin2(2theta) sensitivity and upper limit curves as a function of Dm2, for a 2-neutrino muon-to-electron antineutrino oscillation fit, and 90% and 3sigma confidence

  17. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cross Sections MiniBooNE's neutrino flux (with a mean energy of ~700 MeV) dictates the type of neutrino interactions the experiment sees. At these energies, quasi-elastic (QE) and single pion production processes dominate. For MiniBooNE, the contributions from multi-pion production and deep inelastic scattering (DIS) are small. image: neutrino cross sections vs energy There are several cross sections which contribute at these energies. Here is a plot of the charged current (CC) cross section

  18. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Detector The MiniBooNE tank is 12 m diameter sphere, filled with approximately 800 tons of mineral oil, CH2, which has a density of 0.845 ± 0.001 g/cm3. 1280 PMTs provide about 10% coverage of the inner tank region, and 240 PMTs cover the outer, optically isolated "veto" region in the last 1.3 m in the tank. Most of the tubes were recovered from LSND, and are 'old' tubes, some additional ones were bought for MiniBooNE, and are 'new'; differences in the new vs the old tube function are

  19. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flux The MiniBooNE neutrino flux calculations are described in detail in PRD 79, 072002 (2009) and arXiv:0806.1449 General neutrino fluxes vs true neutrino energy, for MiniBooNE: image:muon neutrino flux image:electron neutrino flux image:final muon and electron neutrino fluxes π+ production Data sets: M.G. Catanesi et al. [HARP Collaboration], ``Measurement of the production cross-section of positive pions in the collision of 8.9-GeV/c protons on beryllium,'', arXiv:hep-ex/0702024 E910

  20. MiniBooNE Nuebar Data Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Event Excess in the MiniBooNE Search for $\bar \nu_\mu \rightarrow \bar \nu_e$ Oscillations", arXiv:1007.1150 [hep-ex],Phys.Rev.Lett.105,181801 (2010) The following MiniBooNE information from the 2010 nuebar appearance paper is made available to the public: Energy Range: 475 MeV - 3000 MeV reconstructed neutrino energy 90% sensitivity contour, 1 sigma limit contour, 90% limit contour and 99% limit contour. Sensitivity and limit curves for a 2-neutrino muon-to-electron antineutrino

  1. MiniBooNE Oscillation Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oscillation Results and Implications Michael H. Shaevitz for the MiniBooNE Collaboration Abstract. The MiniBooNE Collaboration has reported ...rst results of a search for e appearance in a beam. With two largely independent analyses, no signi...cant excess was observed of events above background for reconstructed neutrino energies above 475 MeV and the data are consistent with no oscillations within a two neutrino appearance-only oscillation model. An excess of events (186 27 33 events) is

  2. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Milestones 2008: January 1 1E21 protons on target recorded by MiniBooNE 2007: April 10 25m absorber repaired 2006: August 23 9e16 protons delivered in a single hour (Booster champagne goal) January 18 first antineutrino beam 2004: April 26 Record week (04/19-04/26) 6.83E18 protons delivered. 2003: March 28 Record day: 9.6E17 protons delivered March 18 Record day: 8.18E17 protons delivered March 06 5.5E17 protons delivered to MiniBooNE in 1 hour. (passed the official BD 5E16 milestone) March 01

  3. MicroBooNE First Cosmic Tracks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    First Tracks in MicroBooNE (August 6, 2015) On August 6, 2015, we started to turn on the drift high voltage in the MicroBooNE detector for the very first time. We paused at 58 kV (this is about 1/2 of our design voltage) and immediately started to see tracks across the entire TPC. Below are some of our first images of cosmic rays and UV laser tracks (last picture) recorded by the TPC! Collection plane images: And here is one of the first images of a UV laser track in the TPC. You can tell which

  4. The MicroBooNE Experiment Ryan Grosso

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MicroBooNE Experiment Ryan Grosso University of Cincinnati On Behalf of The MicroBooNE Collaboration MicroBooNE ● Liquid Argon (LAr) Time-Projection Chamber (TPC) with 87 ton active volume. ● Stationed at Fermilab in the Booster Neutrino beam ● Major goals of MicroBooNE: ○ Investigate MiniBooNE's low energy excess ○ Wide range of cross section measurements of neutrinos on Ar ○ R&D for future large LAr detectors Booster Neutrino Beam NuMI Beam Tevatron 2 MiniBooNE Low Energy

  5. Anatomy Of A Middle Miocene Valles-Type Caldera Cluster- Geology...

    Open Energy Info (EERE)

    constructed three large stratovolcanoes, and their eruptive centers migrated from SW to NE. Stocks of pyroxene-bearing quartz monzodiorite to porphyritic granophyre intruded...

  6. MiniBooNE Cross Sections

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sections Group e-mail: BOONE-CROSSSECTIONS(AT)fnal.gov convenors: Alessandro Curioni (alessandro.curioni(AT)yale.edu) and Sam Zeller (gzeller(AT)fnal.gov) Cross Sections at MiniBooNE, Meetings, Reference Articles, Conferences, Useful Links Last updated on 07/19/07

  7. A=16Ne (71AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    predicts M - A 25.15 0.6 MeV (CE68A: 16Ne is then unbound with respect to breakup into 14O + 2p by 2.6 MeV. See also (GO60K, GO60P, BA61F, GO61N, GO62N, GO62O, GA64A,...

  8. A=16Ne (1977AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    predicts M - A 25.15 0.6 MeV (1968CE1A); 16Ne is then unbound with respect to breakup into 14O + 2p by 2.6 MeV: see (1971AJ02) for the earlier work. See also (1972WA07)...

  9. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Civil Construction Pictures The civil construction required for the MiniBooNE experiment consists of two independent construction projects. The Detector Construction: This project was started on October 15, 1999. The 8-GeV Beamline and Target Hall: This project started on June 7, 2000.

  10. UCB-NE-108 user's manual

    SciTech Connect (OSTI)

    Kang, C.H.; Lee, W.W.L.

    1989-04-01

    The purpose of this manual is to provide users of UCB-NE-108 with the information necessary to use UCB-NE-108 effectively. UCB-NE-108 is a computer code for calculating the fractional release rate of readily soluble radionuclides that are released from nuclear waste emplaced in water-saturated porous media, and transported through layers of porous media. Waste placed in such environments will gradually dissolve. For many species such as actinides and rare earths, the process of dissolution is governed by the exterior flow field, and the chemical reaction rate or leaching rate. In a spent-fuel waste package the soluble cesium and iodine accumulated in fuel-cladding gaps, voids, and grain boundaries of spent fuel rods are expected to dissolve rapidly when groundwater penetrates the fuel cladding. UCB-NE-108 is a code for calculating the release rate at the interface of two layers of porous material, such as the backfill around a high-level waste package and natural rock, to check compliance with the US Nuclear Regulatory Commission's (USNRC) subsystem performance objective. It is an implementation of the analytic solution given below. 6 refs., 2 figs.

  11. A=17Ne (71AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Diagram for 17Ne) GENERAL: See also Table 17.22 Table of Energy Levels (in PDF or PS). Theory: (WI64E, MA65J, MA66BB). Reviews: (BA60Q, GO60P, BA61F, GO62N, GO64J, GO66J, GO66L,...

  12. Joint MiniBooNE, SciBooNE Disappearance Analysis Gary Cheng Warren Huelsnitz

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MiniBooNE, SciBooNE Disappearance Analysis Gary Cheng Warren Huelsnitz Columbia University Los Alamos National Lab Fermilab 31 Aug 2012 Friday, August 31, 2012 Acknowledgements * Teppei Katori * Joe Grange * Zarko Pavlovic * Kendall Mahn and Yasuhiro Nakajima 2 * Muon Neutrino CCQE Cross Section Analysis (Phys. Rev. D81, 092005 (2010)) * Neutrino Contamination in Antineutrino Mode (Phys. Rev. D84, 072005 (2011) and arXiv: 1107.5327) * Electron Neutrino (Antineutrino) Appearance (Phys. Rev. Lett.

  13. MiniBooNE at First Physics E. D. Zimmerman

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at First Physics E. D. Zimmerman University of Colorado NBI 2003 KEK, Tsukuba November 7, 2003 MiniBooNE at First Physics Physics motivation: LSND MiniBooNE overview Beam ...

  14. The MicroBooNE Technical Design Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MicroBooNE Technical Design Report The MicroBooNE Collaboration 2/24/2012 The MicroBooNE TDR (2/24/2012-DocDB 1821-v12): Table of Contents Page 2 Contents 1 Executive Summary ............................................................................................................................... 8 2 Scientific Objectives ............................................................................................................................ 11 2.1 Overview

  15. FY16 NE Budget Request Presentation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 NE Budget Request Presentation FY16 NE Budget Request Presentation PDF icon Office of Nuclear Energy FY16 Budget Request Presentation More Documents & Publications FY17 NE Budget Request Presentation Office of Nuclear Energy Fiscal Year 2014 Budget Request FY 2016 Budget Justification

  16. Caldera processes and magma-hydrothermal systems continental scientific drilling program: thermal regimes, Valles caldera research, scientific and management plan

    SciTech Connect (OSTI)

    Goff, F.; Nielson, D.L.

    1986-05-01

    Long-range core-drilling operations and initial scientific investigations are described for four sites in the Valles caldera, New Mexico. The plan concentrates on the period 1986 to 1993 and has six primary objectives: (1) study the origin, evolution, physical/chemical dynamics of the vapor-dominated portion of the Valles geothermal system; (2) investigate the characteristics of caldera fill and mechanisms of caldera collapse and resurgence; (3) determine the physical/chemical conditions in the heat transfer zone between crystallizing plutons and the hydrothermal system; (4) study the mechanism of ore deposition in the caldera environment; (5) develop and test high-temperature drilling techniques and logging tools; and (6) evaluate the geothermal resource within a large silicic caldera. Core holes VC-2a (500 m) and VC-2b (2000 m) are planned in the Sulphur Springs area; these core holes will probe the vapor-dominated zone, the underlying hot-water-dominated zone, the boiling interface and probable ore deposition between the two zones, and the deep structure and stratigraphy along the western part of the Valles caldera fracture zone and resurgent dome. Core hole VC-3 will involve reopening existing well Baca number12 and deepening it from 3.2 km (present total depth) to 5.5 km, this core hole will penetrate the deep-crystallized silicic pluton, investigate conductive heat transfer in that zone, and study the evolution of the central resurgent dome. Core hole VC-4 is designed to penetrate deep into the presumably thick caldera fill in eastern Valles caldera and examine the relationship between caldera formation, sedimentation, tectonics, and volcanism. Core hole VC-5 is to test structure, stratigraphy, and magmatic evolution of pre-Valles caldera rocks, their relations to Valles caldera, and the influences of regional structure on volcanism and caldera formation.

  17. A=18Ne (1972AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2AJ02) (See Energy Level Diagrams for 18Ne) GENERAL: See Table 18.23 [Table of Energy Levels] (in PDF or PS). Shell and cluster model calculations: (1957WI1E, 1969BE1T, 1970BA2E, 1970EL08, 1970HA49, 1972KA01). Electromagnetic transitions: (1970EL08, 1970HA49). Special levels: (1966MI1G, 1969KA29, 1972KA01). Pion reactions: (1965PA1F). Other theoretical calculations: (1965GO1F, 1966KE16, 1968BA2H, 1968BE1V, 1968MU1B, 1968NE1C, 1968VA1J, 1968VA24, 1969BA1Z, 1969GA1G, 1969KA29, 1969MU09, 1969RA28,

  18. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Light propagation in mineral oil Though the dominant light observed in MiniBooNE is Cherenkov light, scintillation and fluorescence (here, reabsorbed Cherenkov light re-emitted) account for about 25% of the light. We model: scintillation light (yield, decay times, spectrum), fluorescence, scattering (Rayleigh, Raman), absorption, reflection (off tank walls, PMT faces) and PMT effects (single pe charge response). External measurements Scintillation from p beam (IUCF) Scintillation from cosmic mu

  19. NE Blog Archive | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Blog Archive NE Blog Archive RSS May 12, 2016 DOE Workshop: Pathway to SMR Commercialization In November 2015, the United States Department of Energy (DOE) launched the Gateway for Accelerated Innovation in Nuclear (GAIN) initiative to accelerate innovation of advanced nuclear technologies by providing potential industry partners with opportunities to access the technical, regulatory, and financial support necessary to move innovative nuclear energy technologies toward commercialization. GAIN is

  20. NE Press Releases | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Press Releases NE Press Releases RSS April 26, 2016 Department of Energy Announces New Awards for Advanced Nuclear Energy Development Building on the President's all-of-the-above energy strategy, the Department of Energy today awarded more than $5 million to undergraduate and graduate students in pursuit of nuclear engineering degrees and other nuclear science and engineering programs relevant to nuclear energy. The awards include 57 undergraduate scholarships and 33 graduate-level fellowships

  1. MicroBooNE Proposal Addendum March

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MicroBooNE Proposal Addendum March 3, 2008 H. Chen, G. de Geronimo, J. Farrell, A. Kandasamy, F. Lanni, D. Lissauer, D. Makowiecki, J. Mead, V. Radeka, S. Rescia, J. Sondericker, B. Yu Brookhaven National Laboratory, Upton, NY L. Bugel, J. M. Conrad, Z. Djurcic, V. Nguyen, M. Shaevitz, W. Willis ‡ Columbia University, New York, NY C. James, S. Pordes, G. Rameika Fermi National Accelerator Laboratory, Batavia, IL C. Bromberg, D. Edmunds Michigan State University, Lansing, MI P. Nienaber St.

  2. Nu2010_MiniBooNE_Osc.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Updated Anti-neutrino Oscillation Results from MiniBooNE (Anti)Neutrino 2010 Athens, Greece June 14, 2010 Richard Van de Water (LANL) For the MiniBooNE collaboration P-25 Subatomic Physics Group TRIUMF 2009  Presenting a review of the MiniBooNE oscillation results: ◦ Motivation for MiniBooNE; Testing the LSND anomaly. ◦ MiniBooNE design strategy and assumptions ◦ Neutrino oscillation results; PRL 102,101802 (2009) ◦ Antineutrino oscillation results; PRL 103,111801 (2009) ◦ Updated

  3. MiniBooNE at All Experimenter's Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Year [2002] [2003] [2004] [2005] [2006][2007] [2008] [2009] [2010] [2011] [2012] [2014] 2014 Date Focus Speaker Every Monday @ 4:00 P.M., Curia II 09/08/14 MiniBooNE Status Report Zarko Pavlovic 08/25/14 MiniBooNE Status Report Zarko Pavlovic 08/18/14 MiniBooNE Status Report Zarko Pavlovic 08/11/14 MiniBooNE Status Report Zarko Pavlovic 08/04/14 MiniBooNE Status Report Zarko Pavlovic 07/28/14 MiniBooNE Status Report Zarko Pavlovic 07/21/14 MiniBooNE Status Report Zarko Pavlovic 07/14/14

  4. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beamline Proton beam 8.89 GeV/c protons from the Fermilab Booster are incident on a beryllium target. The beam is modeled with measured mean position and angle with Gaussian smearing. MiniBooNE simulates the effects of varying the spread in the beam and different focus points of the beam. The typical proton beam contains 4 x 10¹² protons delivered in a spill approximately 1.6 µs in duration. The absolute number of protons on target (p.o.t) is measured by two toroids upstream of the target.

  5. The MicroBooNE Experiment - Getting Started

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Getting Started on MicroBooNE Welcome to MicroBooNE! This page is designed to help new MicroBooNE collaborators find their way around the experiment and Fermilab. Table of Contents Fermilab ID, Computing Accounts, and Required Training Visas for non-US Citizens Traveling to Fermilab Housing/Hotels Getting Around Communication within the Collaboration Software Getting Help Fermilab ID, Computing Accounts, and Required Training Badging changes for non-US visitors Whether obtaining a new Fermilab

  6. A=19Ne (1959AJ76)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    59AJ76) (See Energy Level Diagram for 19Ne) GENERAL: See also Table 19.9 [Table of Energy Levels] (in PDF or PS). Theory: See (EL55A, RE55, RE55B, RA57, RE58). 1. 19Ne(β+)19F Qm = 3.256 The positron end point is 2.18 ± 0.03 (SC52A), 2.23 ± 0.05 (AL57), 2.24 ± 0.01 MeV (WE58B). The half-life is 17.4 ± 0.2 sec (HE59), 17.7 ± 0.1 (PE57), 18.3 ± 0.5 (AL57), 18.5 ± 0.5 (SC52A), 19 ± 1 (NA54B), 19.5 ± 1.0 (WE58B), 20.3 ± 0.5 sec (WH39). The absence of low-energy γ-rays (see 19F) indicates

  7. Djurcic_MiniBooNE_NuFact2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Events Rate Flux x Cross-sections x Detector response External measurements (HARP, etc) rate constrained by neutrino data External and MiniBooNE Measurements 0 ,...

  8. MiniBooNE darkmatter collaboration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MiniBooNE-DM Collaboration A.A. Aguilar-Arevalo,1 B. Batell,2 B.C. Brown,3 R. Carr,4 R. Cooper,5 P. deNiverville,6 R. Dharmapalan,7 R. Ford,3 F.G. Garcia,3 G. T. Garvey,8 J. Grange,9 W. Huelsnitz,8 I. L. de Icaza Astiz,1 R.A. Johnson,10 G. Karagiorgi,4 T. Katori,11 T. Kobilarcik,3 W. Ketchum,8 Q. Liu,8 W.C. Louis,8 C. Mariani,12 W. Marsh,3 D. McKeen,13 C.D. Moore,3 G.B. Mills,8 J. Mirabal,8 P. Nienaber,14 Z. Pavlovic,8 D. Perevalov,3 M. Pospelov,6 H. Ray,9 A. Ritz,6 B.P. Roe,15 M.H. Shaevitz,4

  9. NE-23 List of California Sites NE-23 Hattie Car-well, SAN/NSQA Division

    Office of Legacy Management (LM)

    NE-23 Hattie Car-well, SAN/NSQA Division Attached for your information is the list of California sites we identified in our search of Manhattdn Engineer District records for the Formerly Utilized Sites Remedial Action Program (FUSRAP). None of the facilities listed qualified"fbr'FUSRAP:'~- The only site in California,that was included in FUSRAP was Gilman Hall on the University of California-Berkeley Campus. All California sites that are in our Surplus Facilities Management Prcgram are

  10. SMART (Sandia's Modular Architecture for Robotics and Teleoperation) Ver. 1.0

    Energy Science and Technology Software Center (OSTI)

    2009-12-15

    "SMART Ver. 0.8 Beta" provides a system developer with software tools to create a telerobotic control system, i.e., a system whereby an end-user can interact with mechatronic equipment. It consists of three main components: the SMART Editor (tsmed), the SMART Real-time kernel (rtos), and the SMART Supervisor (gui). The SMART Editor is a graphical icon-based code generation tool for creating end-user systems, given descriptions of SMART modules. The SMART real-time kernel implements behaviors that combinemore » modules representing input devices, sensors, constraints, filters, and robotic devices. Included with this software release is a number of core modules, which can be combined with additional project and device specific modules to create a telerobotic controller. The SMART Supervisor is a graphical front-end for running a SMART system. It is an optional component of the SMART Environment and utilizes the TeVTk windowing and scripting environment. Although the code contained within this release is complete, and can be utilized for defining, running, and interfacing to a sample end-user SMART system, most systems will include additional project and hardware specific modules developed either by the system developer or obtained independently from a SMART module developer. SMART is a software system designed to integrate the different robots, input devices, sensors and dynamic elements required for advanced modes of telerobotic control. "SMART Ver. 0.8 Beta" defines and implements a telerobotic controller. A telerobotic system consists of combinations of modules that implement behaviors. Each real-time module represents an input device, robot device, sensor, constraint, connection or filter. The underlying theory utilizes non-linear discretized multidimensional network elements to model each individual module, and guarantees that upon a valid connection, the resulting system will perform in a stable fashion. Different combinations of modules implement different behaviors. Each module must have at a minimum an initialization routine, a parameter adjustment routine, and an update routine. The SMART runtime kernel runs continuously within a real-time embedded system. Each module is first set-up by the kernel, initialized, and then updated at a fixed rate whenever it is in context. The kernel responds to operator directed commands by changing the state of the system, changing parameters on individual modules, and switching behavioral modes. The SMART Editor is a tool used to define, verify, configure and generate source code for a SMART control system. It uses icon representations of the modules, code patches from valid configurations of the modules, and configuration files describing how a module can be connected into a system to lead the end-user in through the steps needed to create a final system. The SMART Supervisor serves as an interface to a SMART run-time system. It provides an interface on a host computer that connects to the embedded system via TCPIIP ASCII commands. It utilizes a scripting language (Tel) and a graphics windowing environment (Tk). This system can either be customized to fit an end-user's needs or completely replaced as needed.« less

  11. MiniBooNE Numu/Numubar Disappearance Data Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Search for muon neutrino and antineutrino disappearance in MiniBooNE", arXiv:0903.2465 [hep-ex], Phys. Rev. Lett. 103, 061802 (2009) The following MiniBooNE information from the 2009 numu and numubar disappearance paper is made available to the public: Numu Disappearance ntuple file of MiniBooNE numu 90% confidence level sensitivity as a function of Dm2, for a 2-neutrino numu -> nux ocillation fit. The file contains 141 rows, with two columns: Dm2 value in the range 0.4 < Dm2 (eV2)

  12. MiniBooNE QE Cross Section Data Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutrino Charged Current Quasielastic Double Differential Cross section", arXiv:1002:2680 [hep-ex], Phys. Rev. D81, 092005 (2010) The following MiniBooNE information from the 2010 CCQE cross section paper is made available to the public: νμ CCQE cross sections: MiniBooNE flux table of predicted MiniBooNE muon neutrino flux (Table V) flux-integrated double differential cross section (Figure 13) 1D array of bin boundaries partitioning the muon kinetic energy (top) and the cosine of the muon

  13. DOE-NE-STD-1004-92 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NE-STD-1004-92 DOE-NE-STD-1004-92 July 27, 2005 Root Cause Analysis Guidance Document Standard became Inactive This document is a guide for root cause analysis specified by DOE Order 5000.3A, "Occurrence Reporting and Processing of Operations Information." Causal factors identify program control deficiencies and guide early corrective actions. As such, root cause analysis is central to DOE Order 5000.3A. PDF icon DOE-NE-STD-1004-92, Root Cause Analysis Guidance Document More Documents

  14. The MicroBooNE Experiment - About the Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutrino Beam at Fermilab and produce the first neutrino cross section measurements on argon in the 1 GeV energy range. MicroBooNE will also explore the currently unexplained...

  15. MicroBooNE Project Critical Decision Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Critical Decisions for MicroBooNE Documents CD-0 Mission Need CD-1 Selection of Alternatives CD-23a Performance Baseline and Long Lead Procurements CD-3b Start of Construction...

  16. {alpha}-cluster states in N{ne}Z nuclei

    SciTech Connect (OSTI)

    Goldberg, V. Z.; Rogachev, G. V.

    2012-10-20

    The importance of studies of {alpha}-Cluster structure in N{ne}Z light nuclei is discussed. Spin-parity assignments for the low-lying levels in {sup 10}C are suggested.

  17. MiniBooNE/LSND Neutrino Oscillation Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    M. Sorel (IFIC - CSIC & U. Valencia) Workshop on Beyond Three Family Neutrino Oscillations May 3-4, 2011, LNGS (Italy) 1. LSND e (1993-2001) 2. MiniBooNE ...

  18. MiniBooNE_LoNu_Shaevitz.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MiniBooNE MiniBooNE Oscillation Results Oscillation Results and Future and Future Prospects Prospects Mike Mike Shaevitz Shaevitz - Columbia University - Columbia University 6th International Workshop on Low Energy Neutrino Physics 6th International Workshop on Low Energy Neutrino Physics Seoul National University Seoul National University ( ( Nov. 9 - 12, 2011) Nov. 9 - 12, 2011) 2 Neutrino Oscillation Summary Confirmed by K2K and Minos accelerator neutrino exps Confirmed by Kamland reactor

  19. New Oscillation Results From MiniBooNE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    From MiniBooNE Žarko Pavlović Los Alamos National Laboratory Fermilab, June 14 2010 2 Outline ● Introduction ● MiniBooNE exp. ● Data analysis ● Results ● Future outlook ● Conclusion 3 MiniBooNE motivation ● LSND experiment ● Stopped pion beam       ↳e + +  + e ● Excess of  e in   beam ●  e signature: Cherenkov light from e + with delayed n-capture ● Excess=87.9 ± 22.4 ± 6

  20. Exclusive Neutrino Cross Sections From MiniBooNE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Exclusive Neutrino Cross Sections From MiniBooNE Martin Tzanov University of Colorado PANIC 2008, 9-14 November, Eilat, ISRAEL Martin Tzanov, PANIC 2008 Neutrino Cross Sections Today * Precise knowledge needed for precise oscillation measurements. * Cross section well measured above 20 GeV. * Few measurements below 20 GeV. * 20-30 years old bubble chamber experiments (mostly H 2 , D 2 ). * Neutral current cross sections are even less understood. ν CC world data CC world data ν T2K, BooNE K2K,

  1. The MicroBooNE Experiment - About the Detector

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Detector Cryostat delivered Assembly Photos The MicroBooNE time projection chamber (TPC) was assembled at Fermilab in 2012-2013, sealed in the cryostat at the end of 2013, and installed in the Liquid Argon Test Facilty (LArTF) in the Booster neutrino beamline in June 2014. Watch a video of the MicroBooNE detector move! Please check Assembly Photos for a slide-show of the effort These same photos are posted here in a simpler format Photos of Wires Taken from inside the cryostat in April 2015

  2. The MicroBooNE Experiment - At Work

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MicroBooNE at Work At Work Now The Getting Started Page holds links to help find your way around Fermilab services and prepare for working on the experiment. The MicroBooNE Contact List contains contact information for collaboration members. The Working Groups Page is a portal to these sub-sites. The Operations Page is a portal to the running detector. The Meetings Page lists the current regular meeting time slots, and also lists the collaboration meeting dates with links to the DocDB for past

  3. The MicroBooNE Experiment - Conference Talks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Talks and Posters Once you have given a MicroBooNE presentation, please send your talk to Ben Carls so it can be archived. If you have written proceedings to accompany your talk, please upload them to the MicroBooNE DocDB and send the document number to Ben. Also, remember that conference proceedings are required by Fermilab policy to be submitted to the Fermilab Technical Publications archive. Instructions for doing that appear here. Click here for Future talks. Conference Presentations Speaker

  4. MiniBooNE Antineutrino Data Van Nguyen Columbia University

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Moriond EW 2008 Coherent NC π 0 Production in the MiniBooNE Antineutrino Data Van Nguyen Columbia University for the MiniBooNE collaboration Moriond EW 2008 2 Moriond EW 2008 At low energy, NC π 0 's can be created through resonant and coherent production:  Resonant NC π 0 production:  Coherent NC π 0 production: (Signature: π 0 which is highly forward-going) NC π 0 Production 3 Moriond EW 2008 Why study coherent NC π 0 production? ➔ NC π 0 events are the dominant bgd to osc

  5. Appearance Results from MiniBooNE Georgia Karagiorgi Columbia University

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Appearance Results from MiniBooNE Georgia Karagiorgi Columbia University WIN'11 - Cape Town, South Africa 2 Outline of this talk: -- The LSND excess signal: Evidence for high-Δm 2 oscillations -- The MiniBooNE experiment -- MiniBooNE neutrino mode oscillation results: LSND signature refuted -- MiniBooNE antineutrino mode oscillation results: LSND signature confrmed ? -- Light sterile neutrino oscillations: Where we stand today -- Future searches: MiniBooNE, MicroBooNE 1993 -1998 1998 2001

  6. MICROBOONE PHYSICS Ben Carls Fermilab MicroBooNE Physics Outline

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PHYSICS Ben Carls Fermilab MicroBooNE Physics Outline * The detector and beam - MicroBooNE TPC - Booster and NuMI beams at Fermilab * Oscillation physics - Shed light on the ...

  7. High-energy physics detector MicroBooNE sees first accelerator...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MicroBooNE sees first accelerator-born neutrinos High-energy physics detector MicroBooNE ... co-spokesperson and a professor of physics at Yale University. "That kind of ...

  8. DOE-NE Light Water Reactor Sustainability Program and EPRI Long...

    Energy Savers [EERE]

    2-24562 Revision 4 DOE-NE Light Water Reactor Sustainability Program and EPRI Long Term ... INLEXT-12-24562 Revision 4 DOE-NE Light Water Reactor Sustainability Program and EPRI ...

  9. 2011 Annual Planning Summary for Nuclear Energy (NE) | Department of Energy

    Energy Savers [EERE]

    Nuclear Energy (NE) 2011 Annual Planning Summary for Nuclear Energy (NE) The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2011 and 2012 within the Nuclear Energy (NE). PDF icon 2011 Annual Planning Summary for Nuclear Energy (NE) More Documents & Publications 2012 Annual Planning Summary for Fossil Energy, National Energy Technology Laboratory, RMOTC, and Strategic Petroleum Reserve Field Office 2011 Annual Planning Summary for NNSA Service Center

  10. RESULTS OF THE MiniBooNE NEUTRINO OSCILLATION SEARCH E. D. Zimmerman

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RESULTS OF THE MiniBooNE NEUTRINO OSCILLATION SEARCH E. D. Zimmerman University of Colorado American Physical Society Meeting Jacksonville, April 16, 2007 Results of the MiniBooNE Neutrino Oscillation Search * Introduction to MiniBooNE * The oscillation analysis * The initial results and their implications * The next steps MiniBooNE: E898 at Fermilab * Purpose is to test LSND with: * Higher energy * Different beam * Different oscillation signature * Different systematics * L=500 meters, E=0.5-1

  11. Overview of DOE-NE Proliferation and Terrorism Risk Assessment

    SciTech Connect (OSTI)

    Sadasivan, Pratap

    2012-08-24

    Research objectives are: (1) Develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of current reactors; (2) Develop improvements in the affordability of new reactors to enable nuclear energy; (3) Develop Sustainable Nuclear Fuel Cycles; and (4) Understand and minimize the risks of nuclear proliferation and terrorism. The goal is to enable the use of risk information to inform NE R&D program planning. The PTRA program supports DOE-NE's goal of using risk information to inform R&D program planning. The FY12 PTRA program is focused on terrorism risk. The program includes a mix of innovative methods that support the general practice of risk assessments, and selected applications.

  12. PNM Resources 2401 Aztec NE, MS-Z100

    Energy Savers [EERE]

    PNM Resources 2401 Aztec NE, MS-Z100 Albuquerque, NM 87107 505-241-2025 Fax 505 241-2384 PNMResources.com October 29, 2013 Mr. Christopher Lawrence Office of Electricity Delivery and Energy Reliability (OE-20) U.S. Department of Energy 1000 Independence Avenue, SW Washington, DC 20585 Submitted electronically via email to: Christopher.Lawrence@hq.doe.gov Dear Mr. Lawrence: Subject: Department of Energy (DOE)- Improving Performance of Federal Permitting and Review of Infrastructure Projects,

  13. Microsoft PowerPoint - MiniBooNE Neutrino 2008

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oscillation Searches Steve Brice (Fermilab) for the MiniBooNE Collaboration Neutrino 2008 Neutrino 2008 Steve Brice (FNAL) 2 Outline * Electron Neutrino Appearance - Oscillation Result - π 0 Rate Measurement - Combining Analyses - Compatibility of High ∆m 2 Measurements - Low Energy Electron Candidate Excess - Data from NuMI Beam * Muon Neutrino Disappearance * Anti-Electron Neutrino Appearance * Summary Neutrino 2008 Steve Brice (FNAL) 3 2 National Laboratories, 14 Universities, 80

  14. Migration of Nuclear Shell Gaps Studied in the d({sup 24}Ne,p{gamma}){sup 25}Ne Reaction

    SciTech Connect (OSTI)

    Catford, W. N.; Timis, C. N.; Baldwin, T. D.; Gelletly, W.; Pain, S. D.; Lemmon, R. C.; Pucknell, V. P. E.; Warner, D. D.; Labiche, M.; Orr, N. A.; Achouri, N. L.; Chapman, R.; Amzal, N.; Burns, M.; Liang, X.; Spohr, K.; Freer, M.; Ashwood, N. I.

    2010-05-14

    The transfer of neutrons onto {sup 24}Ne has been measured using a reaccelerated radioactive beam of {sup 24}Ne to study the (d,p) reaction in inverse kinematics. The unusual raising of the first 3/2{sup +} level in {sup 25}Ne and its significance in terms of the migration of the neutron magic number from N=20 to N=16 is put on a firm footing by confirmation of this state's identity. The raised 3/2{sup +} level is observed simultaneously with the intruder negative parity 7/2{sup -} and 3/2{sup -} levels, providing evidence for the reduction in the N=20 gap. The coincident gamma-ray decays allowed the assignment of spins as well as the transferred orbital angular momentum. The excitation energy of the 3/2{sup +} state shows that the established USD shell model breaks down well within the sd model space and requires a revised treatment of the proton-neutron monopole interaction.

  15. MiniBooNE LowE Data Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Unexplained Excess of Electron-Like Events From a 1 GeV Neutrino Beam", arXiv:0812.2243 [hep-ex], Phys. Rev. Lett. 102, 101802 (2009) The following MiniBooNE information from the 2009 updated nue oscillation paper is made available to the public: Energy Range for Default Oscillation Fit (475 MeV - 3000 MeV reconstructed neutrino energy) 1D array of bin boundaries in electron neutrino reconstructed neutrino energy 1D array of observed electron neutrino candidate events per reconstructed

  16. Exclusive Neutrino Cross Sections From MiniBooNE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5[BOPW -PVJTJBOB 4UBUF 6OJWFSTJUZ /V'BDU 8PSLTIPQ 8JMMJBNTCVSH +VMZ -BUFTU $SPTT 4FDUJPO 3FTVMUT GSPN .JOJ#PP/& Test of LSND within the context of e appearance only is an essential first step: Keep the same L/E w )JHIFS FOFSHZ BOE MPOHFS CBTFMJOF r & r (F7 L=500m w %JGGFSFOU CFBN w %JGGFSFOU PTDJMMBUJPO TJHOBUVSF F w %JGGFSFOU TZTUFNBUJDT w "OUJOFVUSJOP DBQBCMF CFBN MiniBooNE Experiment ± E898 at Fermilab Booster K + target and horn detector dirt decay region absorber primary beam

  17. The MicroBooNE Project - Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project Home Project Status Reporting Project Reports Monthly Reports Quarterly Reports, pre-CD2 PMG Meetings Project Management Group meetings are held on the 2nd Wednesday of each month, at 1pm CT in the Black Hole meeting room (WH2NW). Presentation materials are posted in the MicroBooNE DocDB, private access user-name is reviewer, password on request. From the DocDB home page, select Calendar, and on the Calendar click on PMG in the appropriate day box to bring up the meeting's Event Page.

  18. Idaho National Laboratory DOE-NE's National Nuclear Capability-

    Energy Savers [EERE]

    -2023 Idaho National Laboratory DOE-NE's National Nuclear Capability- Developing and Maintaining the INL Infrastructure TEN-YEAR SITE PLAN DOE/ID-11474 Final June 2012 Sustainable INL continues to exceed DOE goals for reduction in the use of petroleum fuels - running its entire bus fleet on biodiesel while converting 75% of its light-duty fleet to E85 fuel. The Energy Systems Laboratory (ESL), slated for completion this year, will be a state-of-the-art laboratory with high-bay lab space where

  19. NE-24 Unlverslty of Chicayo Remedial Action Plan

    Office of Legacy Management (LM)

    (YJ 4 tlsj .?I2 416 17 1983 NE-24 Unlverslty of Chicayo Remedial Action Plan 22&d 7 IA +-- E. I.. Keller, Director Technical Services Division Oak Ridge Operations Ufflce In response to your memorandum dated July 29, 1983, the Field Task Proposal/Agreement (FTP/A) received frw Aryonne National Laboratory (ANL) appears to be satisfactory, and this office concurs in the use of ANL to provide the decontamination effort as noted in the FTP/A. The final decontaminatton report should Include the

  20. CA CAIOlf Mr. Andrew Wallo. III, NE-23

    Office of Legacy Management (LM)

    kire 7900. 955 L*E,,fa,u PLUG S. W.. Washin@ on. D.C. 20024-2174, Tekphme: (202) 488-6000 7117-03.87.cdy.43 23 September 1987 CA CAIOlf Mr. Andrew Wallo. III, NE-23 Division of Facility & Site Decommissioning Projects U.S. Department of Energy Germantown, Maryland 20545 CT.05 FL .0-o/ lti.Ob id.Or Dear Mr. Wallo: In/. O-01 flA.05 ELIMINATION RECOMMENDATION -- COLLEGES AND UNIVERSITIES Mbj.o-03 I4 v.o+ The attached elimination recommendation was prepared in accordance ML.o= with your

  1. The MicroBooNE LArTPC Sarah Lockwitz, FNAL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MicroBooNE LArTPC Sarah Lockwitz, FNAL 2013 DPF August 15, 2013 DPF: MicroBooNE TPC S. Lockwitz August 15, 2013 MicroBooNE is a LAr TPC * A liquid argon (LAr) time-projection chamber (TPC) * It will be placed in the Booster Neutrino beam at Fermilab * It has both physics and R&D goals: * Physics: High-statistics measurements of ν's on Ar * Investigate MiniBooNE's low- energy excess * R&D: Gain experience building & operating a LArTPC * Will put a near featured efforts 2 Tevatron

  2. Princeton graduate student Imène Goumiri creates computer program that

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    helps stabilize fusion plasmas | Princeton Plasma Physics Lab Princeton graduate student Imène Goumiri creates computer program that helps stabilize fusion plasmas By John Greenwald and Raphael Rosen April 14, 2016 Tweet Widget Google Plus One Share on Facebook Imène Goumiri led the design of a controller. (Photo by Elle Starkman/Office of Communications) Imène Goumiri led the design of a controller. Imène Goumiri, a Princeton University graduate student, has worked with physicists at

  3. 2014 Annual EM/NE/SC SQA Support Group Meeting | Department of Energy

    Energy Savers [EERE]

    4 Annual EM/NE/SC SQA Support Group Meeting 2014 Annual EM/NE/SC SQA Support Group Meeting 2014 Annual EM/NE/SC SQA Support Group Meeting The 2014 Annual Face-to-Face Meeting of the Environmental Management (EM), Nuclear Energy (NE), and Science (SC) Software Quality Assurance (SQA) Support Group (SG) was held May 6-8, 2014. This meeting was hosted by the Office of Safeguards, Security and Emergency Services (OSSES) at the Savannah River Site (SRS). The Chief of Nuclear Safety (CNS) sponsors

  4. 2015 Annual EM/NE/SC SQA Support Group Meeting | Department of Energy

    Energy Savers [EERE]

    5 Annual EM/NE/SC SQA Support Group Meeting 2015 Annual EM/NE/SC SQA Support Group Meeting 2015 Annual EM/NE/SC SQA Support Group Meeting The Chief of Nuclear Safety (CNS) formed the Environmental Management (EM), Nuclear Energy (NE), and Science (SC) Software Quality Assurance (SQA) Support Group (SG) in March 2007. The first Annual Meeting was held August 2008. The 8th Annual Meeting will be held May 11-14, 2015. This year the Annual Meeting will be hosted by EM's Office of River Protection in

  5. DOE-NE Small Business Voucher Program Launched | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE-NE Small Business Voucher Program Launched DOE-NE Small Business Voucher Program Launched March 1, 2016 - 9:48am Addthis News Media Contact Danielle Miller, 208-569-7806 millerdc@id.doe.gov WASHINGTON - The DOE-NE Voucher Program for eligible small businesses is open for applications. As part of the Gateway for Accelerated Innovation in Nuclear (GAIN) initiative, the NE Voucher program will provide up to $2 million in this pilot year for access to expertise, knowledge, and facilities of the

  6. MiniBooNE: Up and Running Morgan Wascko Morgan Wascko Louisiana...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wascko Louisiana State University Louisiana State University Morgan O. Wascko, LSU Yang Institute Conference 11 October, 2002 MiniBooNE detector at Fermi National Accelerator...

  7. MiniBooNE as realated to "Window's on the Universe"

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "Windows on the Universe" Ray Stefanski Fermilab Blois 2009 Windows on the Universe June 22, 2009 Outline: Introduction Current Status New Results Expectations Summary June 22, 2009 Blois 2009 Windows on the Universe 2 Introduction                 : nce disappeara : appearance s experiment n oscillatio e e   MiniBooNE   SciBooNE accelerator sources stopped muons @ LANL -> LSND BNB @ FNAL -> MiniBooNE -> SciBooNE NuMI

  8. MiniBooNE's First Oscillation Result Morgan Wascko Imperial College...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 July, 2007 Meson Production 9 MiniBooNE Overview * External meson production data * HARP data (CERN) * Parametrisation of cross- sections * Sanford-Wang for pions * Feynman...

  9. Demonstration Assessment of LED Roadway Lighting: NE Cully Blvd., Portland, OR

    SciTech Connect (OSTI)

    Royer, M. P.; Poplawski, M. E.; Tuenge, J. R.

    2012-08-01

    GATEWAY program report on a demonstration of LED roadway lighting on NE Cully Boulevard in Portland, OR, a residential collector road.

  10. Analysis of Neutral Current 0 Events at MiniBooNE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutral Current π 0 Events at MiniBooNE Colin Anderson April 14, 2008 The Experiment Analysis Outline Experiment MiniBooNE Description NC π 0 Overview Analysis Selection and Reconstruction of Events Rate Measurement Correcting Monte Carlo w/ Data Coherent Fraction Measurement C.E. Anderson MiniBooNE NC π 0 Analysis 2/22 The Experiment Analysis MiniBooNE ν e appearance search designed to confirm or refute the LSND result The Beam 8 GeV p's from Booster beam directed at a Be target Produced π

  11. A natural analogue for high-level waste in tuff: Chemical analysis and modeling of the Valles site

    SciTech Connect (OSTI)

    Stockman, H.W.; Krumhansl, J.L.; Ho, C.K.; Kovach, L.; McConnell, V.S.

    1995-03-01

    The contact between an obsidian flow and a steep-walled tuff canyon was examined as an analogue for a high-level waste repository. The analogue site is located in the Valles Caldera in New Mexico, where a massive obsidian flow filled a paleocanyon in the Battleship Rock Tuff. The obsidian flow provided a heat source, analogous to waste panels or an igneous intrusion in a repository, and caused evaporation and migration of water. The tuff and obsidian samples were analyzed for major and trace elements and mineralogy by INAA, XRF, x-ray diffraction, and scanning electron microscopy and electron microprobe. Samples were also analyzed for D/H and {sup 39}Ar/{sup 40}Ar isotopic composition. Overall, the effects of the heating event seem to have been slight and limited to the tuff nearest the contact. There is some evidence of devitrification and migration of volatiles in the tuff within 10 m of the contact, but variations in major and trace element chemistry are small and difficult to distinguish from the natural (pre-heating) variability of the rocks.

  12. Oscillations results from the MiniBooNE experiment Alexis Aguilar-Arévalo (ICN-UNAM),

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oscillations results from the MiniBooNE experiment Alexis Aguilar-Arévalo (ICN-UNAM), for the MiniBooNE collaboration SILAFAE 2010 10 December 2010, Valparaíso, Chile 2 Outlook MiniBooNE Motivation MiniBooNE Description Summary of past Results New Antineutrino Result Future outlook Conclusions A. Aguilar-Arévalo (ICN-UNAM) SILAFAE 2010, Valparaíso, Chile December 6-12, 2010 MiniBooNE Collaboration 3 MiniBooNE motivation ● LSND experiment (Los Alamos) ● Excess of  e in a  

  13. THE GENESIS SOLAR WIND CONCENTRATOR TARGET: MASS FRACTIONATION CHARACTERISED BY NE ISOTOPES

    SciTech Connect (OSTI)

    WIENS, ROGER C.; OLINGER, C.; HEBER, V.S.; REISENFELD, D.B.; BURNETT, D.S.; ALLTON, J.H.; BAUR, H.; WIECHERT, U.; WIELER, R.

    2007-01-02

    The concentrator on Genesis provides samples of increased fluences of solar wind ions for precise determination of the oxygen isotopic composition of the solar wind. The concentration process caused mass fractionation as function of the radial target position. They measured the fractionation using Ne released by UV laser ablation along two arms of the gold cross from the concentrator target to compare measured Ne with modeled Ne. The latter is based on simulations using actual conditions of the solar wind during Genesis operation. Measured Ne abundances and isotopic composition of both arms agree within uncertainties indicating a radial symmetric concentration process. Ne data reveal a maximum concentration factor of {approx} 30% at the target center and a target-wide fractionation of Ne isotopes of 3.8%/amu with monotonously decreasing {sup 20}Ne/{sup 22}Ne ratios towards the center. The experimentally determined data, in particular the isotopic fractionation, differ from the modeled data. They discuss potential reasons and propose future attempts to overcome these disagreements.

  14. Three-dimensional electrical resistivity tomography and its application to Larderello-Valle Secolo geothermal field in Tuscany, Italy

    SciTech Connect (OSTI)

    Shi, Weiqun; Rodi, W.; Toksoez, M.N.; Morgan, F.D.

    1997-10-01

    The Valle Secolo region in the Larderello geothermal field in western Italy is a vapor-dominated reservoir producing steam primarily from shallow, highly fractured Miscan anhydrites. In this area, water re-injection into various wells has been carried out for many years. During this period, electrical resistivity surveys have been conducted for the purpose of monitoring distribution of re-injected water and steam displacement through changes in subsurface electrical properties. This paper describes a 3-D d.c. electrical resistivity inversion algorithm and its application to data obtained from two surveys conducted in 1991 and 1993, respectively. The objective of this effort is to relate the variations in resistivity with position and time to the injection history. Our inversion models indicate that the primary resistivity variations in the Larderello geothermal field are of structural origin, e.g., the variation of conductivity of the geologic section. However, the models from both surveys contain a low resistivity anomaly at a depth of a few hundred meters that does not correlate with structure. From its location relative to the injection wells, and from changes in its properties between the two surveys, we infer that the anomaly is related to the injection and is probably a zone of high permeability or high water saturation. These preliminary results show that it is possible to detect and monitor the re-injection of fluid through the systematic observation of electrical resistivity at the site. The method is also suitable for the detection of environmental contaminant movement. However, field measurements must be repeated using the same geometry and uniform calibration over time.

  15. The Ne-to-O abundance ratio of the interstellar medium from IBEX-Lo observations

    SciTech Connect (OSTI)

    Park, J.; Kucharek, H.; Mbius, E.; Leonard, T.; Bzowski, M.; Sok?, J. M.; Kubiak, M. A.; Fuselier, S. A.; McComas, D. J.

    2014-11-01

    In this paper we report on a two-year study to estimate the Ne/O abundance ratio in the gas phase of the local interstellar cloud (LIC). Based on the first two years of observations with the Interstellar Boundary Explorer, we determined the fluxes of interstellar neutral (ISN) O and Ne atoms at the Earth's orbit in spring 2009 and 2010. A temporal variation of the Ne/O abundance ratio at the Earth's orbit could be expected due to solar cycle-related effects such as changes of ionization. However, this study shows that there is no significant change in the Ne/O ratio at the Earths orbit from 2009 to 2010. We used time-dependent survival probabilities of the ISNs to calculate the Ne/O abundance ratio at the termination shock. Then we estimated the Ne/O abundance ratio in the gas phase of the LIC with the use of filtration factors and the ionization fractions. From our analysis, the Ne/O abundance ratio in the LIC is 0.33 0.07, which is in agreement with the abundance ratio inferred from pickup-ion measurements.

  16. Level-resolved R-matrix calculations for the electron-impact excitation of Ne{sup 3+} and Ne{sup 6+}

    SciTech Connect (OSTI)

    Ludlow, J. A.; Lee, T. G.; Ballance, C. P.; Loch, S. D.; Pindzola, M. S.

    2011-08-15

    Large-scale R-matrix calculations are carried out for the electron-impact excitation of Ne{sup 3+} and Ne{sup 6+}. For Ne{sup 3+}, a 581-LSJ-level R-matrix intermediate coupling frame transformation calculation is made for excitations up to the n=4 shell. For some transitions, large effective collision strength differences are found with current 23-jKJ-level Breit-Pauli R-matrix and earlier 22-LSJ-level R-matrix jj omega (JAJOM) calculations. For Ne{sup 6+}, a 171-jKJ-level Breit-Pauli R-matrix calculation is made for excitations up to the n=5 shell. For some transitions, large effective collision strength differences are found with current 46-jKJ-level Breit-Pauli R-matrix and earlier 46-LSJ-level R-matrix JAJOM calculations. Together with existing R-matrix calculations for other ion stages, high-quality excitation data are now available for astrophysical and laboratory plasma modeling along the entire Ne isonuclear sequence.

  17. MiniBooNE Anti-Neutrino CCQE Cross Section Data Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Anti-Neutrino Double-Differential Charged Current Quasi-Elastic Cross Section", arXiv:1301.7067 [hep-ex] The following MiniBooNE information from the anti-neutrino CCQE cross section paper is made available to the public: νμ CCQE data: MiniBooNE flux table of MiniBooNE anti-neutrino mode flux by neutrino species (Figure 1 and Tables XI-XII). Note that, based on the constraints of the in situ measurements, the muon neutrino flux spectrum given here should be scaled by 0.77. flux-integrated

  18. An accumulator/compressor ring for Ne+ ions (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    An accumulator/compressor ring for Ne+ ions Citation Details In-Document Search Title: An accumulator/compressor ring for Ne+ ions The primary goal of the High Energy Density Physics (HEDP) program is to create an extremely bright ion beam at low duty cycle. For example, a typical set of parameters is: (1) Particle type = Ne{sup +}; (2) Ion energy = 20.1 MeV; (3) One ion pulse = 1 {micro}C, 1 ns, 1 mm{sup 2}; and (4) Repetition rate = 1 Hz. This would give a volume density of {approx}10{sup 12}

  19. WC_2000_001_CLASS_WAIVER_BETWEEN_DOE_and_EMPLOYEES_OF_THE_NE.pdf |

    Energy Savers [EERE]

    Department of Energy 2000_001_CLASS_WAIVER_BETWEEN_DOE_and_EMPLOYEES_OF_THE_NE.pdf WC_2000_001_CLASS_WAIVER_BETWEEN_DOE_and_EMPLOYEES_OF_THE_NE.pdf PDF icon WC_2000_001_CLASS_WAIVER_BETWEEN_DOE_and_EMPLOYEES_OF_THE_NE.pdf More Documents & Publications Class_Waiver_W_C-2000-001.pdf WC_1994_010__CLASS_WAIVER_of_the_Governments_Patent_Rights_.pdf WC_1994_001_CLASS_WAIVER_OF_THE_Governments_Patent_Rights_i

  20. Neutrino Scattering Results from MiniBooNE R. Tayloe, Indiana U.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ν scattering measurments R. Tayloe, ECT ν workshop, 12/11 1 Neutrino Scattering Results from MiniBooNE R. Tayloe, Indiana U. ECT ν workshop Trento, Italy, 12/11 Outline: ● introduction, motivation ● MiniBooNE experiment ● MiniBooNE measurements, results ● interpretations ● further work ● conclusions ΜΒ ν scattering measurments R. Tayloe, ECT ν workshop, 12/11 2 Neutrino scattering measurements In order to understand ν oscillations, it is crucial to understand the detailed

  1. /Users/jzennamo/Desktop/ObsLimit_MiniSciBooNE_SBN_numuDis.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    µ θ 2 2 sin 3 - 10 2 - 10 1 - 10 1 ] 2 [eV 2 m ∆ 1 - 10 1 10 2 10 POT) 20 10 × POT) and T600 (6.6 21 10 × MicroBooNE (1.3 POT) 20 10 × LAr1-ND (6.6 mode, CC Events ν Stat, Flux, Cross Section Uncerts. Reconstructed Energy Efficiency µ ν 80% Shape and Rate 90% CL CL σ 3 CL σ 5 MiniBooNE + SciBooNE 90% CL

  2. Geoffrey Mills Los Alamos National Laboratory For the MiniBooNE Collaboration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ICHEP Paris, France XXV Juillet, MMX New Observations from the MiniBooNE Experiment 1. Motivation 2. MiniBooNE Appearance Results 3. Comparison of LSND and MiniBooNE 4. Future Possibilities 5. Conclusions Neutrino Oscillations The oscillation patterns between the 3 known active neutrino species have been demonstrated by a number of experiments over the last two decades: SNO, Kamland Super-K, K2K, MINOS Armed with that knowledge, measurements of neutrino behavior outside the standard 3

  3. Geoffrey Mills Los Alamos National Laboratory For the MiniBooNE Collaboration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SLAC XXIV August MMX New Observations from the MiniBooNE Experiment 1. Motivation 2. MiniBooNE Appearance Results 3. Comparison of LSND and MiniBooNE 4. Future Possibilities 5. Conclusions Neutrino Oscillations " The oscillation patterns between the 3 known active neutrino species have been demonstrated by a number of experiments over the last two decades: " SNO, Kamland " Super-K, K2K, MINOS " Armed with that knowledge, measurements of neutrino behavior outside the standard

  4. Geoffrey Mills Los Alamos National Laboratory For the MiniBooNE Collaboration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NeuTel2011 Venezia, Italia Results from the MiniBooNE Experiment 1. Motivation 2. MiniBooNE Appearance Results 3. Comparison of LSND and MiniBooNE 4. Future Possibilities 5. Conclusions Mesdames et Mes Neutrino Oscillations " The oscillation patterns between the 3 known active neutrino species have been demonstrated by a number of experiments over the last two decades: " SNO, Kamland " Super-K, K2K, MINOS " Armed with that knowledge, measurements of neutrino behavior outside

  5. Morgan Wascko Imperial College London MiniBooNE's First Neutrino...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MiniBooNE's First Neutrino Oscillation Result Morgan Wascko CalTech Physics Research Conference 26 April, 2007 Outline * A short course in the physics of oscillations * What are ...

  6. MiniBooNE H. A. Tanaka Princeton University Neutrino Factory...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    H. A. Tanaka Princeton University Neutrino Factory 2004 Osaka, Japan The MiniBooNE ... J.L.Raaf University of Colorado: T.Hart, R.H.Nelson, M.Wilking, E.D.Zimmerman Columbia ...

  7. File:USDA-CE-Production-GIFmaps-NE.pdf | Open Energy Information

    Open Energy Info (EERE)

    NE.pdf Jump to: navigation, search File File history File usage Nebraska Ethanol Plant Locations Size of this preview: 776 600 pixels. Full resolution (1,650 1,275 pixels,...

  8. Microsoft Word - MicroBooNE CD-1 appr.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Approve Alternative Selection and Cost Range of the Large Liquid Argon Detector for Neutrino Physics (MicroBooNE) Project at the Fermi National Accelerator Laboratory Office of...

  9. Application for Presidential Permit PP-400 TDI-NE - New England...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PP-400 TDI-NE - New England Clean Power Link Project - Motion to Intervene and Comments of the Vermont Department of Public Service - August 6, 2014 Application for Presidential ...

  10. ARM - Field Campaign - 2001 Philadelphia NE-OPS Air Quality Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Philadelphia NE-OPS Air Quality Experiment ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign...

  11. Microsoft Word - MicroBooNE CD-3b appr.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    B. Project Description and Scope Baseline The goal of the MicroBooNE experiment is to use ... of future, larger-scale detectors such as for Long Baseline Neutrino Experiment (LBNE). ...

  12. REP&" TO A~NOF: NE-23 SUBJECT: Commercial Facilities Used by...

    Office of Legacy Management (LM)

    ... Inc. (2) (also called ' Keledy' ne Hat. Res.) Tocco Heat Treating Cy. (2) Fenval, Inc. ... W-57180 was for three of the systems for installation at the FMPC. Tests.included the heat ...

  13. Fermilab | Newsroom | Press Releases | June 24, 2014: MicroBooNE...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    jpeg images. When using these images, please credit each photo as indicated. Med Res | Hi Res The 30-ton MicroBooNE neutrino detector was transported across the Fermilab site on...

  14. NE & EERE Working Together: 5 Facts About the New Energy Innovation Lab at

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Idaho National Laboratory | Department of Energy NE & EERE Working Together: 5 Facts About the New Energy Innovation Lab at Idaho National Laboratory NE & EERE Working Together: 5 Facts About the New Energy Innovation Lab at Idaho National Laboratory April 24, 2014 - 5:57pm Addthis The Energy Innovation Laboratory at the Energy Department’s Idaho National Laboratory was dedicated earlier this week. The new facility enables researchers to tackle some of the most pressing

  15. 2013 Annual DOE-NE Materials Research Coordination Meeting | Department of

    Energy Savers [EERE]

    Energy Annual DOE-NE Materials Research Coordination Meeting 2013 Annual DOE-NE Materials Research Coordination Meeting The Reactor Materials element of the Nuclear Energy Enabling Technologies (NEET) program conducted its FY 2013 coordination meeting as a series of four web-conferences to act as a forum for the nuclear materials research community. The purpose of this meeting was to report on current and planned nuclear materials research, identify new areas of collaboration and promote

  16. 2015 ANNUAL DOE-NE MATERIALS RESEARCH MEETING | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ANNUAL DOE-NE MATERIALS RESEARCH MEETING 2015 ANNUAL DOE-NE MATERIALS RESEARCH MEETING The Reactor Materials element of the Nuclear Energy Enabling Technologies (NEET) program conducted its FY 2015 coordination meeting as a series of two web-conferences to act as a forum for the nuclear materials research community. The purpose of this meeting was to report on current and planned nuclear materials research, identify new areas of collaboration and promote greater coordination among the various

  17. Princeton graduate student Imène Goumiri creates computer program that

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    helps stabilize fusion plasmas | Princeton Plasma Physics Lab Princeton graduate student Imène Goumiri creates computer program that helps stabilize fusion plasmas By John Greenwald and Raphael Rosen April 14, 2016 Tweet Widget Google Plus One Share on Facebook Imène Goumiri, a Princeton University graduate student, has worked with physicists at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) to simulate a method for limiting instabilities that reduce the

  18. Laboratory, Valles Caldera sponsor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to teach students about watershed hydrology, water quality, wildlife radio telemetry, plant ecology, aquatic and terrestrial invertebrate biology, fish sampling, and Jemez...

  19. Beyond standard model searches in the MiniBooNE experiment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Katori, Teppei; Conrad, Janet M.

    2014-08-05

    Tmore » he MiniBooNE experiment has contributed substantially to beyond standard model searches in the neutrino sector. he experiment was originally designed to test the Δm2~1eV2 region of the sterile neutrino hypothesis by observing νe(ν-e) charged current quasielastic signals from a νμ(ν-μ) beam. MiniBooNE observed excesses of νe and ν-e candidate events in neutrino and antineutrino mode, respectively. o date, these excesses have not been explained within the neutrino standard model (νSM); the standard model extended for three massive neutrinos. Confirmation is required by future experiments such as MicroBooNE. MiniBooNE also provided an opportunity for precision studies of Lorentz violation. he results set strict limits for the first time on several parameters of the standard-model extension, the generic formalism for considering Lorentz violation. Most recently, an extension to MiniBooNE running, with a beam tuned in beam-dump mode, is being performed to search for dark sector particles. In addition, this review describes these studies, demonstrating that short baseline neutrino experiments are rich environments in new physics searches.« less

  20. Application for Presidential Permit OE Docket No. PP-400 TDI- NE New England Clean Power Link Project

    Broader source: Energy.gov [DOE]

    Response to TDI - NE application from State Department to construct, operate, and maintain electric transmission facilities at the U.S. - Canada Border.

  1. Application for Presidential Permit OE Docket No. PP-400 TDI-NE New England Clean Power Link Project

    Broader source: Energy.gov [DOE]

    Response for TDI-NE from Department of Defense to construct, operate, and maintain electric transmission facilities at the U.S. - Canada Border.

  2. MiniBooNE Charged Current Charged Pion Cross Section Data Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Muon Neutrino-Induced Charged-Current Charged Pion Production Cross Sections on Mineral Oil at Enu~1 GeV", arXiv:1011.3572 [hep-ex], submitted to Phys. Rev. D. The following MiniBooNE information for the 2010 CC π+ cross section paper is made available to the public. Tables A root file containing histograms of all of the cross section results in the paper can be found here. A text file of the cross section results can be found here. The MiniBooNE muon neutrino flux distribution can be

  3. Numerical Analysis of Parasitic Crossing Compensation with Wires in DA$\\Phi$NE

    SciTech Connect (OSTI)

    Valishev, A.; Shatilov, D.; Milardi, C.; Zobov, M.

    2015-06-24

    Current-bearing wire compensators were successfully used in the 2005-2006 run of the DAΦNE collider to mitigate the detrimental effects of parasitic beam-beam interactions. A marked improvement of the positron beam lifetime was observed in machine operation with the KLOE detector. In view of the possible application of wire beam-beam compensators for the High Luminosity LHC upgrade, we revisit the DAΦNE experiments. We use an improved model of the accelerator with the goal to validate the modern simulation tools and provide valuable input for the LHC upgrade project.

  4. Simulation of Crab Waist Collisions In DA$\\Phi$NE With KLOE-2 Interaction Region

    SciTech Connect (OSTI)

    Zobov, M.; Drago, A.; Gallo, A.; Milardi, C.; Shatilov, D.; Valishev, A.

    2015-06-24

    After the successful completion of the SIDDHARTA experiment run with crab waist collisions, the electron-positron collider DAΦNE has started routine operations for the KLOE-2 detector. The new interaction region also exploits the crab waist collision scheme, but features certain complications including the experimental detector solenoid, compensating anti-solenoids, and tilted quadrupole magnets. We have performed simulations of the beam-beam collisions in the collider taking into account the real DAΦNE nonlinear lattice. In particular, we have evaluated the effect of crab waist sextupoles and beam-beam interactions on the DAΦNE dynamical aperture and energy acceptance, and estimated the luminosity that can be potentially achieved with and without crab waist sextupoles in the present working conditions. A numerical analysis has been performed in order to propose possible steps for further luminosity increase in DAΦNE such as a better working point choice, crab sextupole strength optimization, correction of the phase advance between the sextupoles and the interaction region. The proposed change of the e- ring working point was implemented and resulted in a significant performance increase.

  5. Strategic Plan for Nuclear Energy -- Knowledge Base for Advanced Modeling and Simulation (NE-KAMS)

    SciTech Connect (OSTI)

    Kimberlyn C. Mousseau

    2011-10-01

    The Nuclear Energy Computational Fluid Dynamics Advanced Modeling and Simulation (NE-CAMS) system is being developed at the Idaho National Laboratory (INL) in collaboration with Bettis Laboratory, Sandia National Laboratory (SNL), Argonne National Laboratory (ANL), Utah State University (USU), and other interested parties with the objective of developing and implementing a comprehensive and readily accessible data and information management system for computational fluid dynamics (CFD) verification and validation (V&V) in support of nuclear energy systems design and safety analysis. The two key objectives of the NE-CAMS effort are to identify, collect, assess, store and maintain high resolution and high quality experimental data and related expert knowledge (metadata) for use in CFD V&V assessments specific to the nuclear energy field and to establish a working relationship with the U.S. Nuclear Regulatory Commission (NRC) to develop a CFD V&V database, including benchmark cases, that addresses and supports the associated NRC regulations and policies on the use of CFD analysis. In particular, the NE-CAMS system will support the Department of Energy Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program, which aims to develop and deploy advanced modeling and simulation methods and computational tools for reliable numerical simulation of nuclear reactor systems for design and safety analysis. Primary NE-CAMS Elements There are four primary elements of the NE-CAMS knowledge base designed to support computer modeling and simulation in the nuclear energy arena as listed below. Element 1. The database will contain experimental data that can be used for CFD validation that is relevant to nuclear reactor and plant processes, particularly those important to the nuclear industry and the NRC. Element 2. Qualification standards for data evaluation and classification will be incorporated and applied such that validation data sets will result in well-defined, well-characterized data. Element 3. Standards will be established for the design and operation of experiments for the generation of new validation data sets that are to be submitted to NE-CAMS that addresses the completeness and characterization of the dataset. Element 4. Standards will be developed for performing verification and validation (V&V) to establish confidence levels in CFD analyses of nuclear reactor processes; such processes will be acceptable and recognized by both CFD experts and the NRC.

  6. Microsoft PowerPoint - NOW2004_MiniBooNE.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NOW2004 Workshop * Extensions to the Neutrino Standard Model: Sterile Neutrinos * MiniBooNE: Status and Prospects * Future Directions if MiniBooNE Sees Oscillations 2 Three Signal Regions * LSND ∆m 2 = 0.1 - 10 eV 2 , small mixing * Atmospheric ∆m 2 = 2.5×10 -3 eV 2 , large mixing * Solar ∆m 2 = 8.2×10 -5 eV 2 , large mixing ∆m 13 ∆m 12 ∆m 23 2 2 2 ( ) 1 sin 2 sin (1.27 / ) P m L E α α ν ν θ → = - ∆ 2 2 2 2 2 2 21 32 31 Three distinct neutrino oscillation signals, with For

  7. NE-24 R&D Decontamination Projects Under the Formerly Utilized Sites Remedial

    Office of Legacy Management (LM)

    " _ ,' ,:.' : NE-24 R&D Decontamination Projects Under the Formerly Utilized Sites Remedial Action Program (FUSRAP) '. * * ,~~'.'J.' L.aGrone, Manager Oak Ridge Operations O fffce As a result of the House-Senate Conference Report and the Energy and W a ter Appropriations Act for FY 1984, and based on the data in the attached reports indicating radioactive contamination In excess of acceptable guidelines, the sites listed In the attachment and their respectfve vicinity properties

  8. Application for Presidential Permit OE Docket No. PP-400 TDI-NE - New

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    England Clean Power Link Project - Comments and Motion to Intervene of Conservation Law Foundation | Department of Energy Project - Comments and Motion to Intervene of Conservation Law Foundation Application for Presidential Permit OE Docket No. PP-400 TDI-NE - New England Clean Power Link Project - Comments and Motion to Intervene of Conservation Law Foundation Conservation Law Foundation (CLF) provides the following comments and Motion to Intervene regarding the Application by TDI-New

  9. Measuring n-N Deep Inelastic Cross Sections at MiniBooNE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    + Cross Section Results from MiniBooNE Mike Wilking TRIUMF / University of Colorado NuInt 22 May 2009 CCπ + in Oscillation Experiments  The next generation of ν oscillation experiments lie at low, mostly unexplored ν energies  CCQE is the signal process for oscillation measurements  At these energies, CCπ + is the dominant charged-current background T2K NOνA CCπ + CCQE DIS Charged Current Cross Sections Previous CCπ + Measurements  The plot shows previous absolute cross

  10. NE-23 Elimination of the Chupadera Mesa and Los Alamos County Industrial Waste

    Office of Legacy Management (LM)

    AM? 2 2 1986 NE-23 Elimination of the Chupadera Mesa and Los Alamos County Industrial Waste Line Sites from Further Consideration for FUSRAP Inclusion Carlos E. Garcia, Director Environmental Safety and Health Division Albuquerque Operations Office The enclosed material is being provided to you to document the final actions taken under the Department's Formerly Utilized Sites Remedial Action Program (FUSRAP) for the Chupadera Mesa area and the Los Alamos County Industrial Waste Lines, New

  11. ENERGY MEASUREMENTS GROUP EG&G SURVEY REPORT NE-F-003

    Office of Legacy Management (LM)

    * * * * * * * * * ~n~EGc.G ENERGY MEASUREMENTS GROUP EG&G SURVEY REPORT NE-F-003 FEBRUARY 1983 THE REMOTE SENSING LABORATORY OF THE UNITED STATES DEPARTMENT OF ENERGY AN AERIAL RADIOLOGICAL SURVEY OF AN AREA SURROUNDING THE FORMER MIDDLESEX SAMPLING PLANT IN MIDDLESEX, NEW JERSEY DATE OF SURVEY: MAY 1978 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of

  12. Possible shape coexistence and magnetic dipole transitions in {sup 17}C and {sup 21}Ne

    SciTech Connect (OSTI)

    Sagawa, H.; Zhou, X. R.; Suzuki, Toshio; Yoshida, N.

    2008-10-15

    Magnetic dipole (M1) transitions of N=11 nuclei {sup 17}C and {sup 21}Ne are investigated by using shell model and deformed Skyrme Hartree-Fock + blocked BCS wave functions. Shell model calculations predict well observed energy spectra and magnetic dipole transitions in {sup 21}Ne, while the results are rather poor to predict these observables in {sup 17}C. In the deformed HF calculations, the ground states of the two nuclei are shown to have large prolate deformations close to {beta}{sub 2}=0.4. It is also pointed out that the first K{sup {pi}}=1/2{sup +} state in {sup 21}Ne is prolately deformed, while the first K{sup {pi}}=1/2{sup +} state in {sup 17}C is predicted to have a large oblate deformation close to the ground state in energy, We point out that the experimentally observed large hindrance of the M1 transition between I{sup {pi}}=1/2{sup +} and 3/2{sup +} in {sup 17}C can be attributed to a shape coexistence near the ground state of {sup 17}C.

  13. MCViNE- An object oriented Monte Carlo neutron ray tracing simulation package

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lin, J. Y. Y.; Smith, Hillary L.; Granroth, Garrett E.; Abernathy, Douglas L.; Lumsden, Mark D.; Winn, Barry L.; Aczel, Adam A.; Aivazis, Michael; Fultz, Brent

    2015-11-28

    MCViNE (Monte-Carlo VIrtual Neutron Experiment) is an open-source Monte Carlo (MC) neutron ray-tracing software for performing computer modeling and simulations that mirror real neutron scattering experiments. We exploited the close similarity between how instrument components are designed and operated and how such components can be modeled in software. For example we used object oriented programming concepts for representing neutron scatterers and detector systems, and recursive algorithms for implementing multiple scattering. Combining these features together in MCViNE allows one to handle sophisticated neutron scattering problems in modern instruments, including, for example, neutron detection by complex detector systems, and single and multiplemore » scattering events in a variety of samples and sample environments. In addition, MCViNE can use simulation components from linear-chain-based MC ray tracing packages which facilitates porting instrument models from those codes. Furthermore it allows for components written solely in Python, which expedites prototyping of new components. These developments have enabled detailed simulations of neutron scattering experiments, with non-trivial samples, for time-of-flight inelastic instruments at the Spallation Neutron Source. Examples of such simulations for powder and single-crystal samples with various scattering kernels, including kernels for phonon and magnon scattering, are presented. As a result, with simulations that closely reproduce experimental results, scattering mechanisms can be turned on and off to determine how they contribute to the measured scattering intensities, improving our understanding of the underlying physics.« less

  14. Comparison of GiBUU calculations with MiniBooNE pion production data

    SciTech Connect (OSTI)

    Lalakulich, O.; Mosel, U.

    2015-05-15

    Background: Neutrino-induced pion production can give important informationon the axial coupling to nucleon resonances. Furthermore, pion production represents a major background to quasielastic-like events. one pion production data from the MiniBooNE in charged current neutrino scattering in mineral oil appeared higher than expected within conventional theoretical approaches. Purpose: We aim to investigate which model parameters affect the calculated cross section and how they do this. Method: The Giessen BoltzmannUehlingUhlenbeck (GiBUU) model is used for an investigation of neutrino-nucleus reactions. Results: Presented are integrated and differential cross sections for 1?{sup +} and 1?{sup 0} production before and after final state interactions in comparison with the MiniBooNE data. Conclusions: For the MiniBooNE flux all processes (QE, 1?-background, ?, higher resonance production, DIS) contribute to the observed final state with one pion of a given charge. The uncertainty in elementary pion production cross sections leads to a corresponding uncertainty in the nuclear cross sections. Final state interactions change the shape of the muon-related observables only slightly, but they significantly change the shape of pion distributions.

  15. TAHOE Ver 1.0

    Energy Science and Technology Software Center (OSTI)

    2002-10-03

    Tahoe is a research-oriented platform for the development of numerical methods and material models. The goal of the work surrounding Tahoe is the simulation of stresses and deformations for situations that cannot be treated by standard continuum simulation techniques. These situations include material fracture or failure, interfacial adhesion and debonding, shear banding, length-scale dependent eleasticity and plasticity, and deformation in small-scale structures. Aside from a collection of standard finite elements. Tahoe includes a number ofmore » "cohesive" approaches for modeling fracture. These incude both surface and bulk constitutive models that incorporate cohesive behavior. Tahoe is capable of performing static and transient dynamic coupled-physics analysis in two and three dimensions. Tahoe is parallelized since even research class problems in corporating material microstructure-based models require considerable computational power, especially in treating three-dimensional geometries.« less

  16. BLOT Ver. 1.65

    Energy Science and Technology Software Center (OSTI)

    2009-03-24

    BLOT is a graphic program for post-processing finite element analyses output in the EXODUS II database format. It is command driven with free-format input and can drive graphics devices supported by the Sandia Virtual Device Interface. BLOT produces mesh plots of the analysis output variables including deformed mesh plots, line contours, filled (painted) contours, vector plots of two/three variables (velocity vectors), and symbol plots of scalar variables (discrete cracks). Features include pathlines of analysis variablesmore » drawn on the mesh, element selection by material, element birth and death, multiple views combining several displays on each plot, symmetry mirroring, and node and element numbering. X-Y plots of the analysis variables include time vs. variable plots or variable vs. variable plots, and distance vs. variable plots at selected time steps where distance is the accumulated distance between pairs of nodes or element centers. BLOT is written in as portable a form as possible. Fortran code is written in ANSI Standard FORTRAN-77. Machine-specific routines are limited in number and are grouped together to minimize the time required to adapt them to a new system. SEACAS codes have been ported to several Unix systems« less

  17. Umbra Ver. 4.8

    Energy Science and Technology Software Center (OSTI)

    2010-02-24

    Umbra is a software package that has been in development at Sandia National Laboratories since 1995, under the name Umbra since 1997. Umbra is a software framework written in C++ and Tcl/Tk that has been applied to many operations, primarily dealing with robotics and simulation. Umbra executables are C++ libraries orchestrated with Tcl/Tk scripts. Two major feature upgrades occurred from 4.7 to 4.8 1. System Umbra Module with its own Update Graph within the C++more » framework. 2. New terrain graph for fast line-of-sight calculations All else were minor updates such as later versions of Visual Studio, OpenSceneGraph and Boost.« less

  18. ZOLTAN Ver.1.0

    Energy Science and Technology Software Center (OSTI)

    2000-02-08

    Zoltan is a dynamic load-balancing library for parallel applications. Zoltan redistributes computational work on-the-fly, as an application is running, in an attempt to minimize processor idle time and maximize computational efficiency. Zoltan's object-oriented interface enables the library to be used by a variety of different applications without limiting the data structures that can be used by the applications. The library contains a suite of algorithms that are all accessed through the same interface. Thus, applicationmore » developers can easily experiment with different algorithms to find those that are most appropriate to their applications. Likewise, algorithm developers can use Zoltan as a test-bed for new algorithm development and compare performance of new algorithms to the methods exiting in Zoltan.« less

  19. IFPACK Ver. 2.0

    Energy Science and Technology Software Center (OSTI)

    2002-08-01

    IFPACK is a preconditioner package for solving linear systems of equations. IFPACK provides a collection of incomplete factorization preconditioners that can be used in conjunction with almost any iterative solver package to accelerate the convergence of iterative methods. IFPACK provides the solution of linear systems of equations arising in engineering and scientific appplications. IFPACK is especially suited for computational fluid dynamics applications, electromagnetics, and other forms of applications that must solve partial differential equations implicitly.more » It is meant to work in conjunction with an iterative solver such as those provided by AztecOO. IFPACK implements a suite of incomplete factorization algorithms that compute an approximate factorization for a given user matrix. This type of factorization is effective as a preconditioner for iterative methods that solve a system of linear equations. IFPACK is written in C++ using object oriented programming techniques.« less

  20. SVDI Ver. 1.1

    Energy Science and Technology Software Center (OSTI)

    2009-06-09

    SVDI is the Sandia Virtual Device Interface library which is an internal library used by SEAMS codes (blot and fastq) to provide graphics to multiple device types; primarily X11R6 clients.

  1. Grope Ver. 1.38

    Energy Science and Technology Software Center (OSTI)

    2009-03-12

    GROPE is a program that examines the input to a finite element analysis (which is in the GENESIS database format) or the output from an analysis (in the EXODUS database format). GROPE allows the user to examine any value in the database. The display can be directed to the user's terminal or to a print file.

  2. LCRM Ver.6.13

    Energy Science and Technology Software Center (OSTI)

    2005-06-06

    LCRM is a computing resource manager and meta-batch system used on high performance computing systems. Its development started at LLNL in 1991 and was originally known as the Distributed Production Control System (DPCS). Versions of it have been in production continually since 1991 to the present. LCRM is used to queue and dispatch user jobs to all the production machines within LLNL’s ICC Computing Center.

  3. Komplex Ver 2.0

    Energy Science and Technology Software Center (OSTI)

    2002-08-01

    Komplex is a package for solving complex-valued linear systems of equations using equivalent real formulations. Komplex converts the original complex-valued problem into a rel-valued problem of twice the dimension and then solves the problem using one o many real-valued solvers. Although most applicatons primarily generate real-valued linear systems of equations, numerous applications have the need to solve complex valued problems, at least occasionally. Komplex provides a low-cost approach to solving complex systems by converting themore » complex problem to an equivalent real system and then using the real-valued solvers already installed in the application to solve the equivalent real system. By writing the complex-valued problem in its real and imaginay parts, we can form a variety of equivalent real-valued systems of twice the dimension. Komplex performs this conversion in an intelligent way and then solves the real-valued system using some other real-valued solver, such as AztecOO.« less

  4. Strategic Plan for Nuclear Energy -- Knowledge Base for Advanced Modeling and Simulation (NE-KAMS)

    SciTech Connect (OSTI)

    Rich Johnson; Kimberlyn C. Mousseau; Hyung Lee

    2011-09-01

    NE-KAMS knowledge base will assist computational analysts, physics model developers, experimentalists, nuclear reactor designers, and federal regulators by: (1) Establishing accepted standards, requirements and best practices for V&V and UQ of computational models and simulations, (2) Establishing accepted standards and procedures for qualifying and classifying experimental and numerical benchmark data, (3) Providing readily accessible databases for nuclear energy related experimental and numerical benchmark data that can be used in V&V assessments and computational methods development, (4) Providing a searchable knowledge base of information, documents and data on V&V and UQ, and (5) Providing web-enabled applications, tools and utilities for V&V and UQ activities, data assessment and processing, and information and data searches. From its inception, NE-KAMS will directly support nuclear energy research, development and demonstration programs within the U.S. Department of Energy (DOE), including the Consortium for Advanced Simulation of Light Water Reactors (CASL), the Nuclear Energy Advanced Modeling and Simulation (NEAMS), the Light Water Reactor Sustainability (LWRS), the Small Modular Reactors (SMR), and the Next Generation Nuclear Power Plant (NGNP) programs. These programs all involve computational modeling and simulation (M&S) of nuclear reactor systems, components and processes, and it is envisioned that NE-KAMS will help to coordinate and facilitate collaboration and sharing of resources and expertise for V&V and UQ across these programs. In addition, from the outset, NE-KAMS will support the use of computational M&S in the nuclear industry by developing guidelines and recommended practices aimed at quantifying the uncertainty and assessing the applicability of existing analysis models and methods. The NE-KAMS effort will initially focus on supporting the use of computational fluid dynamics (CFD) and thermal hydraulics (T/H) analysis for M&S of nuclear reactor systems, components and processes, and will later expand to include materials, fuel system performance and other areas of M&S as time and funding allow.

  5. Beyond standard model searches in the MiniBooNE experiment

    SciTech Connect (OSTI)

    Katori, Teppei; Conrad, Janet M.

    2014-08-05

    The MiniBooNE experiment has contributed substantially to beyond standard model searches in the neutrino sector. The experiment was originally designed to test the Δm2~1eV2 region of the sterile neutrino hypothesis by observing νe(ν-e) charged current quasielastic signals from a νμ(ν-μ) beam. MiniBooNE observed excesses of νe and ν-e candidate events in neutrino and antineutrino mode, respectively. To date, these excesses have not been explained within the neutrino standard model (νSM); the standard model extended for three massive neutrinos. Confirmation is required by future experiments such as MicroBooNE. MiniBooNE also provided an opportunity for precision studies of Lorentz violation. The results set strict limits for the first time on several parameters of the standard-model extension, the generic formalism for considering Lorentz violation. Most recently, an extension to MiniBooNE running, with a beam tuned in beam-dump mode, is being performed to search for dark sector particles. In addition, this review describes these studies, demonstrating that short baseline neutrino experiments are rich environments in new physics searches.

  6. NE-23

    Office of Legacy Management (LM)

    4:00 p.m., Monday through Friday (except Federal holidays), at the DOE Public Document Room located in Room lE-190 of the Forrestal Building, 1000 Independence Avenue, S.W.,...

  7. 19Ne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sec (1984PIXX: Unpublished; L.E. Piilonen, Ph.D. thesis, Princeton University, 1984 (Pro Quest)) 17.219 0.017 sec (1975AZ01) 17.36 0.06 sec (1974WI14) 17.36 0.06 sec...

  8. NE-24

    Office of Legacy Management (LM)

    the Bureau of Hines Site at Albany, Oregon, for Remedial Action Under the Formerly Utilized Sites Remedial Action Program I L@ _I' J.-La&one, Manager Oak Ridge Operations Office Based on the data in the attached draft reports, it has been determined that the subject site is contaminated with residual radioactive material ' as a result of Manhattan Engineer District/Atomic Energy Commission operations P * at this site. The contamination is in excess of the acceptable guidelines and warrants

  9. 18Ne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

  10. 19Ne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

  11. 20Ne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

  12. NE-23,

    Office of Legacy Management (LM)

    DRIASC, P.O. Box 60220 Reno, Nevada 89506 Dear Dr. Warburton: The Department of Energy (DOE), as part of its Formerly Utilized Sites Remedial Action Program (FUSRAP), has...

  13. Slide 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MiniBooNE Alexis A. Aguilar-Arvalo for the MiniBooNE Collaboration February 25, 2008 Les Rencontres de Physique de la Valle d'Aoste Alexis Aguilar-Arvalo Rencontres de...

  14. MiniBooNE Charged Current Neutral Pion Cross Section Data Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Muon Neutrino Induced Charged Current Neutral Pion Cross Sections on Mineral Oil at Enu=0.5-2.0 GeV" , arXiv:1010.3264 [hep-ex] The following MiniBooNE information for the 2010 CC π0 cross section paper is made available to the public. Each of the following tables contains: The bin boundaries and units. The central-value measurement or prediction with its units and multiplicative factor. The statistical uncertainty per bin of each measurement with its units and multiplicative factor. The

  15. HIA 2015 DOE Zero Energy Ready Home Case Study: Charles Thomas Homes, Anna Model, Omaha, NE

    Energy Savers [EERE]

    Thomas Homes Anna Model Omaha, NE DOE ZERO ENERGY READY HOME(tm) The U.S. Department of Energy invites home builders across the country to meet the extraordinary levels of excellence and quality specified in DOE's Zero Energy Ready Home program (formerly known as Challenge Home). Every DOE Zero Energy Ready Home starts with ENERGY STAR Certified Homes Version 3.0 for an energy-efficient home built on a solid foundation of building science research. Advanced technologies are designed in to give

  16. DOE-NE Proliferation and Terrorism Risk Assessment: FY12 Plans Update

    SciTech Connect (OSTI)

    Sadasivan, Pratap

    2012-06-21

    This presentation provides background information on FY12 plans for the DOE Office of Nuclear Energy Proliferation and Terrorism Risk Assessment program. Program plans, organization, and individual project elements are described. Research objectives are: (1) Develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of current reactors; (2) Develop improvements in the affordability of new reactors to enable nuclear energy; (3) Develop Sustainable Nuclear Fuel Cycles; and (4) Understand and minimize the risks of nuclear proliferation and terrorism - Goal is to enable the use of risk information to inform NE R&D program planning.

  17. Photoionization-pumped, Ne II, x-ray laser studies project. Final report

    SciTech Connect (OSTI)

    Richardson, M.C.; Hagelstein, P.L.; Eckart, M.J.; Forsyth, J.M.; Gerrassimenko, M.; Soures, J.M.

    1984-01-01

    The energetics of this pumping scheme are shown. Short-pulse (50 to 100 ps) laser irradiation of an appropriate x-ray flashlamp medium generates broad-band emission in the range of 300 to 800 eV which preferentially photoionizes Ne to the /sup 2/S state of Ne II creating an inversion at approximately 27 eV. Although this approach does not depend on precise spectral overlap between the x-ray pump radiation and the medium to be pumped, it does require that the x-ray medium remain un-ionized prior to photoionization by the soft x-ray emission. Well-controlled focus conditions are required to ensure that the x-ray medium is not subjected to electron or x-ray preheat prior to irradiation by the soft x-ray source. The magnitude of the population inversion is predicted to be critically dependent upon rapid photoionization of the two states; therefore, ultra-short pulse irradiation of the laser flashlamps is required.

  18. OZONE PRODUCTION IN THE PHILADELPHIA URBAN AREA DURING NE-OPS 99.

    SciTech Connect (OSTI)

    KLEINMAN,L.I.; DAUM,P.H.; BRECHTEL,F.; LEE,Y.N.; NUNNERMACKER,L.J.; SPRINGSTON,S.R.; WEINSTEIN-LLOYD,J.

    2001-10-01

    As part of the 1999 NARSTO Northeast Oxidant and Particulate Study (NE-OPS) field campaign, the DOE G-1 aircraft sampled trace gases and aerosols in and around the Philadelphia metropolitan area. Twenty research flights were conducted between July 25 and August 11. The overall goals of these flights were to obtain a mechanistic understanding of O{sub 3} production; to characterize the spatial and temporal behavior of photo-oxidants and aerosols; and to study the evolution of aerosol size distributions, including the process of new particle formation. Within the NE-OPS program, other groups provided additional trace gas, aerosol, and meteorological observations using aircraft, balloon, remote sensing, and surface based instruments (Phillbrick et al., 2000). In this article we provide an overview of the G-1 observations related to O{sub 3} production, focusing on the vertical distribution of pollutants. Ozone production rates are calculated using a box model that is constrained by observed trace gas concentrations. Highest O{sub 3} concentrations were observed on July 31, which we present as a case study. On that day, O{sub 3} concentrations above the 1-hour 120 ppb standard were observed downwind of Philadelphia and also in the plume of a single industrial facility located on the Delaware River south of the city.

  19. Wave packet and statistical quantum calculations for the He + NeH{sup +} → HeH{sup +} + Ne reaction on the ground electronic state

    SciTech Connect (OSTI)

    Koner, Debasish; Panda, Aditya N.; Barrios, Lizandra; González-Lezana, Tomás

    2014-09-21

    A real wave packet based time-dependent method and a statistical quantum method have been used to study the He + NeH{sup +} (v, j) reaction with the reactant in various ro-vibrational states, on a recently calculated ab initio ground state potential energy surface. Both the wave packet and statistical quantum calculations were carried out within the centrifugal sudden approximation as well as using the exact Hamiltonian. Quantum reaction probabilities exhibit dense oscillatory pattern for smaller total angular momentum values, which is a signature of resonances in a complex forming mechanism for the title reaction. Significant differences, found between exact and approximate quantum reaction cross sections, highlight the importance of inclusion of Coriolis coupling in the calculations. Statistical results are in fairly good agreement with the exact quantum results, for ground ro-vibrational states of the reactant. Vibrational excitation greatly enhances the reaction cross sections, whereas rotational excitation has relatively small effect on the reaction. The nature of the reaction cross section curves is dependent on the initial vibrational state of the reactant and is typical of a late barrier type potential energy profile.

  20. Application for Presidential Permit OE Docket No. PP-400 TDI-NE- New England Clean Power Link Project: Federal Register Notice, Volume 79, No. 131- July 9, 2014

    Broader source: Energy.gov [DOE]

    Application from TDI-NE to construct, operate and maintain electric transmission facilities at the U.S. - Canada Border.  Federal Register Notice.

  1. QSO ABSORPTION SYSTEMS DETECTED IN Ne VIII: HIGH-METALLICITY CLOUDS WITH A LARGE EFFECTIVE CROSS SECTION

    SciTech Connect (OSTI)

    Meiring, J. D.; Tripp, T. M. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States)] [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Werk, J. K.; Prochaska, J. X. [University of California Observatories-Lick Observatory, UC Santa Cruz, CA 95064 (United States)] [University of California Observatories-Lick Observatory, UC Santa Cruz, CA 95064 (United States); Howk, J. C. [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556 (United States)] [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); Jenkins, E. B. [Princeton University Observatory, Peyton Hall, Ivy Lane, Princeton, NJ 08544 (United States)] [Princeton University Observatory, Peyton Hall, Ivy Lane, Princeton, NJ 08544 (United States); Lehner, N.; Sembach, K. R. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)] [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2013-04-10

    Using high-resolution, high signal-to-noise ultraviolet spectra of the z{sub em} = 0.9754 quasar PG1148+549 obtained with the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope, we study the physical conditions and abundances of Ne VIII+O VI absorption line systems at z{sub abs} = 0.68381, 0.70152, 0.72478. In addition to Ne VIII and O VI, absorption lines from multiple ionization stages of oxygen (O II, O III, O IV) are detected and are well aligned with the more highly ionized species. We show that these absorbers are multiphase systems including hot gas (T Almost-Equal-To 10{sup 5.7} K) that produces Ne VIII and O VI, and the gas metallicity of the cool phase ranges from Z = 0.3 Z{sub Sun} to supersolar. The cool ( Almost-Equal-To 10{sup 4} K) phases have densities n{sub H} Almost-Equal-To 10{sup -4} cm{sup -3} and small sizes (<4 kpc); these cool clouds are likely to expand and dissipate, and the Ne VIII may be within a transition layer between the cool gas and a surrounding, much hotter medium. The Ne VIII redshift density, dN/dz{approx}7{sup +7}{sub -3}, requires a large number of these clouds for every L > 0.1 L* galaxy and a large effective absorption cross section ({approx}> 100 kpc), and indeed, we find a star-forming {approx}L {sup *} galaxy at the redshift of the z{sub abs} = 0.72478 system, at an impact parameter of 217 kpc. Multiphase absorbers like these Ne VIII systems are likely to be an important reservoir of baryons and metals in the circumgalactic media of galaxies.

  2. Prospective benefits analysis of the DOE Nuclear Energy portfolio: NE R&D program data assumptions, approach, & results

    SciTech Connect (OSTI)

    Bhatt, Vatsal; Friley, Paul; Lee, John; Reisman, Ann

    2006-10-31

    The Office of Nuclear Energy (NE) leads the U.S. Government’s efforts to develop new nuclear energy generation technologies to meet energy and climate goals, and to develop advanced proliferation-resistant nuclear fuel technologies that maximize energy from nuclear fuel; contributes to the R&D for a possible transition to a hydrogen economy; and maintains and enhances the national nuclear technology infrastructure. NE serves the present and future energy needs of the Nation by managing the safe operation and maintenance of the Department of Energy (DOE) critical nuclear in frastructure, providing nuclear technology goods and services, and conducting R&D.

  3. Petrogenesis of Valle Grande Member Rhyolites, Valles Caldera...

    Open Energy Info (EERE)

    to generate highly evolved differentiates (groups 1 and 2). Authors Terry L. Spell and Philip R. Kyle Published Journal Journal of Geophysical Research, 1989 DOI 10.1029...

  4. MiniBooNE NC 1π0 Cross Section Data Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    νμ and ν̅μ induced neutral current single π0 production cross sections on mineral oil at Eν~O(1 GeV)", arXiv:0911.2063 [hep-ex], Phys. Rev. D81, 013005 (2010) The following MiniBooNE information from the 2009 NC 1π0 cross section paper is made available to the public: Neutrino Mode Running νμ NC 1π0 pπ0 Differential Cross Section 1D array of bin boundaries partitioning the momentum of the π0 1D array of the value of the differential cross section in each bin in units of 10-40

  5. Test of ''Crab-Waist'' Collisions at the DA{Phi}NE {Phi} Factory

    SciTech Connect (OSTI)

    Zobov, M.; Alesini, D.; Biagini, M. E.; Biscari, C.; Bocci, A.; Boni, R.; Boscolo, M.; Bossi, F.; Buonomo, B.; Clozza, A.; Delle Monache, G. O.; Demma, T.; Di Pasquale, E.; Di Pirro, G.; Drago, A.; Gallo, A.; Ghigo, A.; Guiducci, S.; Ligi, C.; Marcellini, F.

    2010-04-30

    The electron-positron collider DA{Phi}NE, the Italian {Phi} factory, has been recently upgraded in order to implement an innovative collision scheme based on large crossing angle, small beam sizes at the crossing point, and compensation of beam-beam interaction by means of sextupole pairs creating a ''crab-waist'' configuration in the interaction region. Experimental tests of the novel scheme exhibited an increase by a factor of 3 in the peak luminosity of the collider with respect to the performances reached before the upgrade. In this Letter we present the new collision scheme, discuss its advantages, describe the hardware modifications realized for the upgrade, and report the results of the experimental tests carried out during commissioning of the machine in the new configuration and standard operation for the users.

  6. Effect of supplementation on vitamin A and zinc nutriture of children in northeast (NE) Thailand

    SciTech Connect (OSTI)

    Udomkesmalee, E.; Dhanamitta, S.; Charoenklatkul, S.; Tantipopipat, S.; Banjong, O.; Rojroongwasinkul, N.; Kramer, T.R.; Smith, J.C. Jr. USDA, Beltsville, MD )

    1991-03-11

    Previous surveys of the nutritional status of young children in NE Thailand suggested that they may benefit from vitamin A (VA) and/or zinc (Zn) supplementation. 140 children, with low plasma retinol concentrations were entered in a double-blind study. They were randomized and supplemented with either VA, Zn, VA + Zn or placebo each weekday for 6 mos. All subjects consumed their usual diet that provided adequate protein, less than recommended calories, fat, Zn and VA. Biochemical indices of VA and Zn status increased significantly. The children had adequate VA liver stores as assessed by relative dose response. Zn supplementation resulted in improvement of vision restoration time in dim light using rapid dark adaptometry. VA and Zn synergistically normalized conjunctival epithelium after a 6 mo supplementation. Data suggest that functional improvements of populations with suboptimal VA and Zn nutriture can be accomplished by supplementation with {lt}2 times of RDA of these nutrients.

  7. Demonstration Assessment of LED Roadway Lighting: NE Cully Boulevard Portland, OR

    SciTech Connect (OSTI)

    Royer, Michael P.; Poplawski, Michael E.; Tuenge, Jason R.

    2012-06-29

    A new roadway lighting demonstration project was initiated in late 2010, which was planned in conjunction with other upgrades to NE Cully Boulevard, a residential collector road in the northeast area of Portland, OR. With the NE Cully Boulevard project, the Portland Bureau of Transportation hoped to demonstrate different light source technologies and different luminaires side-by-side. This report documents the initial performance of six different newly installed luminaires, including three LED products, one induction product, one ceramic metal halide product, and one high-pressure sodium (HPS) product that represented the baseline solution. It includes reported, calculated, and measured performance; evaluates the economic feasibility of each of the alternative luminaires; and documents user feedback collected from a group of local Illuminating Engineering Society (IES) members that toured the site. This report does not contain any long-term performance evaluations or laboratory measurements of luminaire performance. Although not all of the installed products performed equally, the alternative luminaires generally offered higher efficacy, more appropriate luminous intensity distributions, and favorable color quality when compared to the baseline HPS luminaire. However, some products did not provide sufficient illumination to all areas—vehicular drive lanes, bicycle lanes, and sidewalks—or would likely fail to meet design criteria over the life of the installation due to expected depreciation in lumen output. While the overall performance of the alternative luminaires was generally better than the baseline HPS luminaire, cost remains a significant barrier to widespread adoption. Based on the cost of the small quantity of luminaires purchased for this demonstration, the shortest calculated payback period for one of the alternative luminaire types was 17.3 years. The luminaire prices were notably higher than typical prices for currently available luminaires purchased in larger quantities. At prices that are more typical, the payback would be less than 10 years. In addition to the demonstration luminaires, a networked control system was installed for additional evaluation and demonstration purposes. The capability of control system to measure luminaire input power was explored in this study. A more exhaustive demonstration and evaluation of the control system will be the subject of future GATEWAY report(s).

  8. Preparation of state purified beams of He, Ne, C, N, and O atoms

    SciTech Connect (OSTI)

    Jankunas, Justin; Reisyan, Kevin S.; Osterwalder, Andreas

    2015-03-14

    The production and guiding of ground state and metastable C, N, and O atoms in a two-meter-long, bent magnetic guide are described. Pure beams of metastable He({sup 3}S{sub 1}) and Ne({sup 3}P{sub 2}), and of ground state N({sup 4}S{sub 3/2}) and O({sup 3}P{sub 2}) are obtained using an Even-Lavie valve paired with a dielectric barrier discharge or electron bombardment source. Under these conditions no electronically excited C, N, or O atoms are observed at the exit of the guide. A general valve with electron impact excitation creates, in addition to ground state atoms, electronically excited C({sup 3}P{sub 2}; {sup 1}D{sub 2}) and N({sup 2}D{sub 5/2}; {sup 2}P{sub 3/2}) species. The two experimental conditions are complimentary, demonstrating the usefulness of a magnetic guide in crossed or merged beam experiments such as those described in Henson et al. [Science 338, 234 (2012)] and Jankunas et al. [J. Chem. Phys. 140, 244302 (2014)].

  9. High Level Requirements for the Nuclear Energy -- Knowledge Base for Advanced Modeling and Simulation (NE-KAMS)

    SciTech Connect (OSTI)

    Rich Johnson; Hyung Lee; Kimberlyn C. Mousseau

    2011-09-01

    The US Department of Energy, Office of Nuclear Energy (DOE-NE), has been tasked with the important mission of ensuring that nuclear energy remains a compelling and viable energy source in the U.S. The motivations behind this mission include cost-effectively meeting the expected increases in the power needs of the country, reducing carbon emissions and reducing dependence on foreign energy sources. In the near term, to ensure that nuclear power remains a key element of U.S. energy strategy and portfolio, the DOE-NE will be working with the nuclear industry to support safe and efficient operations of existing nuclear power plants. In the long term, to meet the increasing energy needs of the U.S., the DOE-NE will be investing in research and development (R&D) and working in concert with the nuclear industry to build and deploy new, safer and more efficient nuclear power plants. The safe and efficient operations of existing nuclear power plants and designing, licensing and deploying new reactor designs, however, will require focused R&D programs as well as the extensive use and leveraging of advanced modeling and simulation (M&S). M&S will play a key role in ensuring safe and efficient operations of existing and new nuclear reactors. The DOE-NE has been actively developing and promoting the use of advanced M&S in reactor design and analysis through its R&D programs, e.g., the Nuclear Energy Advanced Modeling and Simulation (NEAMS) and Consortium for Advanced Simulation of Light Water Reactors (CASL) programs. Also, nuclear reactor vendors are already using CFD and CSM, for design, analysis, and licensing. However, these M&S tools cannot be used with confidence for nuclear reactor applications unless accompanied and supported by verification and validation (V&V) and uncertainty quantification (UQ) processes and procedures which provide quantitative measures of uncertainty for specific applications. The Nuclear Energy Knowledge base for Advanced Modeling and Simulation (NE-KAMS) is being developed at the Idaho National Laboratory in conjunction with Bettis Laboratory, Sandia National Laboratories, Argonne National Laboratory, Utah State University and others with the objective of establishing a comprehensive and web-accessible knowledge base that will provide technical services and resources for V&V and UQ of M&S in nuclear energy sciences and engineering. The knowledge base will serve as an important resource for technical exchange and collaboration that will enable credible and reliable computational models and simulations for application to nuclear reactor design, analysis and licensing. NE-KAMS will serve as a valuable resource for the nuclear industry, academia, the national laboratories, the U.S. Nuclear Regulatory Commission (NRC) and the public and will help ensure the safe, economical and reliable operation of existing and future nuclear reactors. From its inception, NE-KAMS will directly support nuclear energy research, development and demonstration programs within the U.S. Department of Energy (DOE), including the CASL, NEAMS, Light Water Reactor Sustainability (LWRS), Small Modular Reactors (SMR), and Next Generation Nuclear Power Plant (NGNP) programs. These programs all involve M&S of nuclear reactor systems, components and processes, and it is envisioned that NE-KAMS will help to coordinate and facilitate collaboration and sharing of resources and expertise for V&V and UQ across these programs.

  10. Proposal of a new generation of Laser Beacon for time calibration in the KM3NeT neutrino telescope

    SciTech Connect (OSTI)

    Real, Diego [IFIC, Instituto de Fsica Corpuscular, CSIC-Universidad de Valencia, C Collaboration: KM3NeT Collaboration

    2014-11-18

    The KM3NeT collaboration aims at the construction of a multi-km3 high-energy neutrino telescope in the Mediterranean Sea consisting of a matrix of pressure resistant glass spheres holding each a set (31) of small area photomultipliers. The main motivation of the telescope is to observe cosmic neutrinos through the Cherenkov light induced in sea water by charged particles produced in neutrino interactions with the surrounding medium. A relative time calibration between photomultipliers of the order of 1 ns is required to achieve an optimal performance. To this end, several time calibration subsystems have been developed. In this article, the proposal of a last generation Laser Beacon, to be used in KM3NeT and developed to measure and monitor the relative time offsets between photomultipliers, is presented.

  11. Nus and anti-nus from MiniBooNE: searching for the shadow of the ghost

    SciTech Connect (OSTI)

    Mills, Geoffrey B

    2009-01-01

    The latest results from MiniBooNE, the short baseline neutrino experiment operating on the 8 GeV booster's neutrino beam line (the BNB) at Fermilab, are discussed. The standard three active generation model of neutrino oscillations is now grounded firmly by experimental data. Studying the properties of neutrinos at the few percent level and below may uncover new properties of neutrinos and their oscillations and provide a path to physics beyond the standard neutrino model.

  12. Rotational and angular distributions of NO products from NO-Rg(Rg = He, Ne, Ar) complex photodissociation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Heather L. Holmes-Ross; Hall, Gregory E.; Valenti, Rebecca J.; Yu, Hua -Gen; Lawrance, Warren D.

    2016-01-29

    In this study, we present the results of an investigation into the rotational and angular distributions of the NO A~ state fragment following photodissociation of the NO-He, NO-Ne and NO-Ar van der Waals complexed excited via the A~ ← X~ transition. For each complex the dissociation is probed for several values of Ea, the available energy above the dissociation threshold.

  13. A measurement of the neutral current neutrino-nucleon elastic cross section at MiniBooNE

    SciTech Connect (OSTI)

    Cox, David Christopher; /Indiana U.

    2008-02-01

    The neutral current neutrino-nucleon elastic interaction {nu} N {yields} {nu} N is a fundamental process of the weak interaction ideally suited for characterizing the structure of the nucleon neutral weak current. This process comprises {approx}18% of neutrino events in the neutrino oscillation experiment, MiniBooNE, ranking it as the experiment's third largest process. Using {approx}10% of MiniBooNE's available neutrino data, a sample of these events were identified and analyzed to determine the differential cross section as a function of the momentum transfer of the interaction, Q{sup 2}. This is the first measurement of a differential cross section with MiniBooNE data. From this analysis, a value for the nucleon axial mass M{sub A} was extracted to be 1.34 {+-} 0.25 GeV consistent with previous measurements. The integrated cross section for the Q{sup 2} range 0.189 {yields} 1.13 GeV{sup 2} was calculated to be (8.8 {+-} 0.6(stat) {+-} 0.2(syst)) x 10{sup -40} cm{sup 2}.

  14. Monte Carlo calculations for reference dosimetry of electron beams with the PTW Roos and NE2571 ion chambers

    SciTech Connect (OSTI)

    Muir, B. R. Rogers, D. W. O.

    2013-12-15

    Purpose: To investigate recommendations for reference dosimetry of electron beams and gradient effects for the NE2571 chamber and to provide beam quality conversion factors using Monte Carlo simulations of the PTW Roos and NE2571 ion chambers. Methods: The EGSnrc code system is used to calculate the absorbed dose-to-water and the dose to the gas in fully modeled ion chambers as a function of depth in water. Electron beams are modeled using realistic accelerator simulations as well as beams modeled as collimated point sources from realistic electron beam spectra or monoenergetic electrons. Beam quality conversion factors are calculated with ratios of the doses to water and to the air in the ion chamber in electron beams and a cobalt-60 reference field. The overall ion chamber correction factor is studied using calculations of water-to-air stopping power ratios. Results: The use of an effective point of measurement shift of 1.55 mm from the front face of the PTW Roos chamber, which places the point of measurement inside the chamber cavity, minimizes the difference betweenR{sub 50}, the beam quality specifier, calculated from chamber simulations compared to that obtained using depth-dose calculations in water. A similar shift minimizes the variation of the overall ion chamber correction factor with depth to the practical range and reduces the root-mean-square deviation of a fit to calculated beam quality conversion factors at the reference depth as a function of R{sub 50}. Similarly, an upstream shift of 0.34 r{sub cav} allows a more accurate determination of R{sub 50} from NE2571 chamber calculations and reduces the variation of the overall ion chamber correction factor with depth. The determination of the gradient correction using a shift of 0.22 r{sub cav} optimizes the root-mean-square deviation of a fit to calculated beam quality conversion factors if all beams investigated are considered. However, if only clinical beams are considered, a good fit to results for beam quality conversion factors is obtained without explicitly correcting for gradient effects. The inadequacy of R{sub 50} to uniquely specify beam quality for the accurate selection of k{sub Q} factors is discussed. Systematic uncertainties in beam quality conversion factors are analyzed for the NE2571 chamber and amount to between 0.4% and 1.2% depending on assumptions used. Conclusions: The calculated beam quality conversion factors for the PTW Roos chamber obtained here are in good agreement with literature data. These results characterize the use of an NE2571 ion chamber for reference dosimetry of electron beams even in low-energy beams.

  15. I. Neutrino Oscillations with the MiniBooNE Experiment at FNAL Louis … 4-Year Plan and Status of the MiniBooNE Experiment Mills … n Cross Sections, n Fluxes, HARP, & SCIBooNE Van de Water … Electronics & Future n Experiments BooNE & OscSNS II. Hadron Physics with the PHENIX Experiment at BNL Liu … Overview, Spin Physics, J/y's, Muons, W's Leitch … CNM Physics, JPARC, muTr/PHENIX Operations Leitch … FVTX Proposal Summary, Staffing, & Budget Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics from MiniBooNE Geoffrey Mills Los Alamos National Laboratory P-25 Subatomic Physics Group Jan 29, 2009 Searching for Physics Beyond the Standard Neutrino Model 1. Introduction & motivation 2. The MiniBooNE experiment 3. Review of MB oscillation results 4. Anti-neutrino data sheds new light 5. Conclusions and Future Prospects Outline: Motivation: astrophysics and cosmology "Sterile" Neutrinos *Cosmology: o Dark matter o Baryogenisis o Dark energy *Core collapse supernova *

  16. Angular momentum exchange by gravitational torques and infall in the circumbinary disk of the protostellar system L1551 NE

    SciTech Connect (OSTI)

    Takakuwa, Shigehisa; Ho, Paul T. P. [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 10617, Taiwan (China); Saito, Masao [Joint ALMA Observatory, Ave. Alonso de Cordova 3107, Vitacura, Santiago (Chile); Saigo, Kazuya [ALMA Project Office, National Astronomical Observatory of Japan, Osawa 2-21-1, Mitaka, Tokyo 181-8588 (Japan); Matsumoto, Tomoaki [Faculty of Humanity and Environment, Hosei University, Chiyoda-ku, Tokyo 102-8160 (Japan); Lim, Jeremy [Department of Physics, University of Hong Kong, Pokfulam Road (Hong Kong); Hanawa, Tomoyuki, E-mail: takakuwa@asiaa.sinica.edu.tw [Center for Frontier Science, Chiba University, Inage-ku, Chiba 263-8522 (Japan)

    2014-11-20

    We report an ALMA observation of the Class I binary protostellar system L1551 NE in the 0.9 mm continuum, C{sup 18}O (3-2), and {sup 13}CO (3-2) lines at a ?1.6 times higher resolution and a ?6 times higher sensitivity than those of our previous SubMillimeter Array (SMA) observations, which revealed a r ? 300 AU scale circumbinary disk in Keplerian rotation. The 0.9 mm continuum shows two opposing U-shaped brightenings in the circumbinary disk and exhibits a depression between the circumbinary disk and the circumstellar disk of the primary protostar. The molecular lines trace non-axisymmetric deviations from Keplerian rotation in the circumbinary disk at higher velocities relative to the systemic velocity, where our previous SMA observations could not detect the lines. In addition, we detect inward motion along the minor axis of the circumbinary disk. To explain the newly observed features, we performed a numerical simulation of gas orbits in a Roche potential tailored to the inferred properties of L1551 NE. The observed U-shaped dust features coincide with locations where gravitational torques from the central binary system are predicted to impart angular momentum to the circumbinary disk, producing shocks and hence density enhancements seen as a pair of spiral arms. The observed inward gas motion coincides with locations where angular momentum is predicted to be lowered by the gravitational torques. The good agreement between our observation and model indicates that gravitational torques from the binary stars constitute the primary driver for exchanging angular momentum so as to permit infall through the circumbinary disk of L1551 NE.

  17. The Impact of Distributed Wind on Bulk Power System Operations in ISO-NE (Presentation), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Distributed Wind on Bulk Power System Operations in ISO-NE 13 th Wind Integration Workshop Carlo Brancucci Martinez-Anido, Bri-Mathias Hodge, and David Palchak (NREL); and Jari Miettinen (VTT) Berlin, Germany November 11, 2014 NREL/PR-5D00-63083 2 Motivation and Scope * Wind integration is hindered in the U.S. power system o The best wind resources are far from the main load centers o There are difficult regulatory and legal hurdles and substantial investments are required to develop new

  18. Quantum dynamics of solid Ne upon photo-excitation of a NO impurity: A Gaussian wave packet approach

    SciTech Connect (OSTI)

    Unn-Toc, W.; Meier, C.; Halberstadt, N.; Uranga-Pina, Ll.; Rubayo-Soneira, J.

    2012-08-07

    A high-dimensional quantum wave packet approach based on Gaussian wave packets in Cartesian coordinates is presented. In this method, the high-dimensional wave packet is expressed as a product of time-dependent complex Gaussian functions, which describe the motion of individual atoms. It is applied to the ultrafast geometrical rearrangement dynamics of NO doped cryogenic Ne matrices after femtosecond laser pulse excitation. The static deformation of the solid due to the impurity as well as the dynamical response after femtosecond excitation are analyzed and compared to reduced dimensionality studies. The advantages and limitations of this method are analyzed in the perspective of future applications to other quantum solids.

  19. REPLY TO ATTN OF: NE-24 L SUBJECT: Authorization to Conduct Remedial Action at Vicinity Properties In Lodi,

    Office of Legacy Management (LM)

    HBS. - 2- United States Government '--Department of Energy | memorandum 4 ' It) |1~~~~~ e~~~~0i78 DATE: OCT 9 1984 REPLY TO ATTN OF: NE-24 L SUBJECT: Authorization to Conduct Remedial Action at Vicinity Properties In Lodi, New Jersey TO: J. LaGrone, Manager Oak Ridge Operations Office Based on the designation survey conducted by ORNL (Attachments 1-6), the following properties are being authorized for remedial action. It should be noted that the attached survey data are for designation purposes

  20. Transfer mechanism in /sup 16/O+/sup 24/Mg and /sup 20/Ne+/sup 24/Mg elastic scattering

    SciTech Connect (OSTI)

    NING Ping-Zhi; GAO Cheng-Qun; HE Guo-Zhu

    1985-10-01

    The mechanism of transferring a cluster of nucleons between two colliding nuclei is considered to explain the backward angle oscillatory rise in the differential cross section of the elastic scattering between certain nuclei, such as /sup 16/O+/sup 24/Mg or /sup 20/Ne+/sup 24/Mg. The nuclear molecular orbit approximation theory is applied. For one-step transfer, if the parameter involved is assumed to be adjustable, the numerical calculations can be made to fit the experimental results naturally.

  1. Forward fitting of experimental data from a NE213 neutron detector installed with the magnetic proton recoil upgraded spectrometer at JET

    SciTech Connect (OSTI)

    Binda, F. Ericsson, G.; Eriksson, J.; Hellesen, C.; Conroy, S.; Sundn, E. Andersson; Collaboration: JET-EFDA Team

    2014-11-15

    In this paper, we present the results obtained from the data analysis of neutron spectra measured with a NE213 liquid scintillator at JET. We calculated the neutron response matrix of the instrument combining MCNPX simulations, a generic proton light output function measured with another detector and the fit of data from ohmic pulses. For the analysis, we selected a set of pulses with neutral beam injection heating (NBI) only and we applied a forward fitting procedure of modeled spectral components to extract the fraction of thermal neutron emission. The results showed the same trend of the ones obtained with the dedicated spectrometer TOFOR, even though the values from the NE213 analysis were systematically higher. This discrepancy is probably due to the different lines of sight of the two spectrometers (tangential for the NE213, vertical for TOFOR). The uncertainties on the thermal fraction estimates were from 4 to 7 times higher than the ones from the TOFOR analysis.

  2. BLOT II Ver.1.39

    Energy Science and Technology Software Center (OSTI)

    2003-06-03

    BLOT II is a graphic program for post-processing finite element analyses output in the EXODUS II database format. It is command driven with free-format input and can drive graphics devices supported by the Sandia Virtual Device Interface. BLOT produces mesh plots of the analysis output variables including deformed mesh plots, line contours, filled (painted) contours, vector plots of two/three variables (velocity vectors), and symbol plots of scalar variables (discrete cracks). Features include pathlines of analysismore » variables drawn on the mesh, element selection by material, element birth and death, multiple views combining several displays on each plot, symmetry mirroring, and node and element numbering. X-Y plots of the analysis variables include time vs. variable plots or variable vs. variable plots, and distance vs. variable plots at selected time stips where distance is the accumulated distance between pairs of nodes or element centers.« less

  3. Aria Ver. 1.6 Beta

    Energy Science and Technology Software Center (OSTI)

    2007-10-29

    Aria is a prallel finite element analysis software for coupled multiphysics including Navier-Stokes, elasticity, energy transport, species transport, electrostatics; free and moving boundaries; transient or steady state.

  4. 2001 IG Report WEB Ver..pub

    Energy Savers [EERE]

    | Department of Energy - Chapter 2: Wind Turbine Technology Summary Slides 20% Wind Energy by 2030 - Chapter 2: Wind Turbine Technology Summary Slides Summary slides for wind turbine technology, its challenges, and path forward PDF icon 20percent_summary_chap2.pdf More Documents & Publications 20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply Testing, Manufacturing, and Component Development Projects U.S. Offshore Wind Manufacturing and Supply

  5. GEN3D Ver. 1.37

    Energy Science and Technology Software Center (OSTI)

    2012-01-04

    GEN3D is a three-dimensional mesh generation program. The three-dimensional mesh is generated by mapping a two-dimensional mesh into threedimensions according to one of four types of transformations: translating, rotating, mapping onto a spherical surface, and mapping onto a cylindrical surface. The generated three-dimensional mesh can then be reoriented by offsetting, reflecting about an axis, and revolving about an axis. GEN3D can be used to mesh geometries that are axisymmetric or planar, but, due to three-dimensionalmore » loading or boundary conditions, require a three-dimensional finite element mesh and analysis. More importantly, it can be used to mesh complex three-dimensional geometries composed of several sections when the sections can be defined in terms of transformations of two dimensional geometries. The code GJOIN is then used to join the separate sections into a single body. GEN3D reads and writes twodimensional and threedimensional mesh databases in the GENESIS database format; therefore, it is compatible with the preprocessing, postprocessing, and analysis codes used by the Engineering Analysis Department at Sandia National Laboratories, Albuquerque, NM.« less

  6. BLOT II Ver.1.39

    SciTech Connect (OSTI)

    2003-06-03

    BLOT II is a graphic program for post-processing finite element analyses output in the EXODUS II database format. It is command driven with free-format input and can drive graphics devices supported by the Sandia Virtual Device Interface. BLOT produces mesh plots of the analysis output variables including deformed mesh plots, line contours, filled (painted) contours, vector plots of two/three variables (velocity vectors), and symbol plots of scalar variables (discrete cracks). Features include pathlines of analysis variables drawn on the mesh, element selection by material, element birth and death, multiple views combining several displays on each plot, symmetry mirroring, and node and element numbering. X-Y plots of the analysis variables include time vs. variable plots or variable vs. variable plots, and distance vs. variable plots at selected time stips where distance is the accumulated distance between pairs of nodes or element centers.

  7. ver10DOE Form 2220.cdr

    Energy Savers [EERE]

  8. 2012 Workshop Agenda_Ver_25.xlsx

    Energy Savers [EERE]

    START STOP DUR. (min.) TOPIC SPEAKER Tuesday, April 3 7:00 AM 8:00 AM 60 Workshop Registration 8:00 AM 8:05 AM 5 Welcome and Workshop Logistics John Makepeace, Office of Engineering and Construction Management 8:05 AM 8:20 AM 15 Opening Remarks Ingrid Kolb, Director, Office of Management 8:20 AM 8:40 AM 20 Achieving Management and Operational Excellence Melvin G. Williams, Associate Deputy Secretary 8:40 AM 8:55 AM 15 Break 8:55 AM 9:45 AM 50 Project Management Success: Are We There Yet? Paul

  9. NFRRCXD-Form-2011_Ver2.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Facilities Risk Reduction (NFRR) (4457 Rev. 1) Y-12 Site Office Oak Ridge Anderson County Tennessee The purpose of Nuclear Facilities Risk Reduction (NFRR) Project is...

  10. CXD-Form-2011_Ver2.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Y-12 Fire Station Construction Project (4721) Y-12 Site Office Oak RidgeAnderson CountyTennessee The U.S. Department of Energy (DOE) National Nuclear Security Administration...

  11. nem_spread Ver. 5.10

    Energy Science and Technology Software Center (OSTI)

    2009-06-08

    Nem_spread reads it's input command file (default name nem_spread.inp), takes the named ExodusII geometry definition and spreads out the geometry (and optionally results) contained in that file out to a parallel disk system. The decomposition is taken from a scalar Nemesis load balance file generated by the companion utility nem_slice.

  12. nem_slice ver. 3.34

    Energy Science and Technology Software Center (OSTI)

    2009-06-08

    Nem_slice reads in a finite element model description of the geometry of a problem from an ExodusII file and generates either a nodal or elemental graph of the problem. It then calls Chaco to load balance the graph and then outputs a NemesisI load-balance file.

  13. SHE 2015_SUMMARY_Final_Ver_12

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    i SUPER HEAVY NUCLEI International Symposium Texas A&M University, College Station, Texas, USA March 31 - April 02, 2015 http:cyclotron.tamu.edushe2015 Current Status and Future ...

  14. Plant Available Nutrients, Barrow, Alaska, Ver. 1

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sloan, Victoria; Liebig, Jenny; Curtis, Bryan; Hahn, Melanie; Iversen, Colleen; Siegrist, Julie

    2014-02-19

    This dataset consists of measurements of plant available nutrients made using Plant Root Simulator probes (Western Ag Innovations Inc.) during 2012 and 2013. In 2012, Ca, Mg, K, P, Fe, Mn, Cu, Zn, B, S, Pb, Al, Cd, NO3-N and NH4-N were measured during spring, summer and winter in the centers, edges and troughs of four polygons in each of four areas of contrasting moisture regime and polygon type. In 2013, probes were installed in centers, edges and troughs of four polygons in each of two areas (high-centered and low-centered polygons) at two-week intervals and at 3 soil depths to capture fine-scale season dynamics of NO3-N and NH4-N. PRS probes are ion exchange resin membranes held in plastic supports that are inserted into soil to measure ion supply in situ. The anion and cation exchange with the membrane is intended to mimic plant uptake and thus provide a relevant measure of soil nutrient bioavailability. Measurements are made per area of probe membrane and cannot be converted to concentrations or related to soil volume.

  15. MEMScript0.9BetaVer

    Energy Science and Technology Software Center (OSTI)

    2003-01-01

    MEMscript is an integrated vision and actuation automation tool for MEMS. It consists of a scripting language designed specifically for MEMS applications, including powerful machine vision functionality and interferometry capability. It presents a clean interface to the user, and allows for real-time plotting, analysis! and feedback. MEMScript is useful for MEMS testing and characterization. It can automate a wide range of functionality/reliability testing, and can easily be configured to handle new device types.

  16. 2011 Workshop Agenda_Ver_21.xlsx

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7:00 AM 8:00 AM 60 Workshop Registration 8:00 AM 8:05 AM 5 Welcome and Workshop Logistics John Makepeace, Office of Engineering and Construction Management 8:05 AM 8:20 AM 15...

  17. real_property_asset_ver_10.indd

    Broader source: Energy.gov (indexed) [DOE]

    issued report by the National Academy of Science entitled "Intelligent Sustainment and Renewal of DOE Facilities and Infrastructure" singled out NNSA for their signifi cant...

  18. Publisher's Note: Level structure 18Ne and its importance in the 14O(α,p)17F reaction rate [Phys. Rev. C 86, 025801(2012)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Almaraz-Calderon, S.; Tan, W. P.; Aprahamian, A.; Bucher, B.; Roberts, A.; Wiescher, M.; Brune, C. R.; Massey, T. N.; Ozkan, N.; Guray, R. T.; et al

    2012-08-10

    The level structure of 18Ne above the α-decay threshold has been studied using the 16O(3He,n) reaction. A coincidence measurement of neutrons and charged particles decaying from populated states in 18Ne has been made. Decay branching ratios were measured for six resonances and used to calculate the 14O(α,p)17F reaction rate which is a measure of one of two breakout paths from the Hot CNO cycle. As a result, the new experimental information combined with previous experimental and theoretical information, provides a more accurate calculation of the reaction rate.

  19. DOE-NE Light Water Reactor Sustainability Program and EPRI Long-Term Operations Program. Joint Research and Development Plan

    SciTech Connect (OSTI)

    Williams, Don

    2014-04-01

    Nuclear power has contributed almost 20% of the total amount of electricity generated in the United States over the past two decades. High capacity factors and low operating costs make nuclear power plants (NPPs) some of the most economical power generators available. Further, nuclear power remains the single largest contributor (nearly 70%) of non-greenhouse gas-emitting electric power generation in the United States. Even when major refurbishments are performed to extend operating life, these plants continue to represent cost-effective, low-carbon assets to the nation’s electrical generation capability. By the end of 2014, about one-third of the existing domestic fleet will have passed their 40th anniversary of power operations, and about one-half of the fleet will reach the same 40-year mark within this decade. Recognizing the challenges associated with pursuing extended service life of commercial nuclear power plants, the U.S. Department of Energy’s (DOE) Office of Nuclear Energy (NE) and the Electric Power Research Institute (EPRI) have established separate but complementary research and development programs (DOE-NE’s Light Water Reactor Sustainability [LWRS] Program and EPRI’s Long-Term Operations [LTO] Program) to address these challenges. To ensure that a proper linkage is maintained between the programs, DOE-NE and EPRI executed a memorandum of understanding in late 2010 to “establish guiding principles under which research activities (between LWRS and LTO) could be coordinated to the benefit of both parties.” This document represents the third annual revision to the initial version (March 2011) of the plan as called for in the memorandum of understanding.

  20. Using the X-FEL to photo-pump X-ray laser transitions in He-like Ne

    SciTech Connect (OSTI)

    Nilsen, J; Rohringer, N

    2011-08-30

    Nearly four decades ago H-like and He-like resonantly photo-pumped laser schemes were proposed for producing X-ray lasers. However, demonstrating these schemes in the laboratory has proved to be elusive because of the difficulty of finding a strong resonant pump line. With the advent of the X-ray free electron laser (X-FEL) at the SLAC Linac Coherent Light Source (LCLS) we now have a tunable X-ray laser source that can be used to replace the pump line in previously proposed laser schemes and allow researchers to study the physics and feasibility of resonantly photo-pumped laser schemes. In this paper we use the X-FEL at 1174 eV to photo-pump the singly excited 1s2p state of He-like Ne to the doubly excited 2p3p state and model gain on the 2p3p-2p2s transition at 175 eV and the 2p3p-1s3p transition at 1017 eV. One motivation for studying this scheme is to explore possible quenching of the gain due to strong non-linear coupling effects from the intense X-FEL beam We compare this scheme with photo-pumping the He-like Ne ground state to the 1s3p singly excited state followed by lasing on the 3p-2s and 3d-2p transitions at 158 and 151 eV. Experiments are being planned at LCLS to study these laser processes and coherent quantum effects.

  1. Application of the explicitly correlated coupled-cluster models CCSD(F12*) and CC3(F12*) to the hyperpolarizability of the Ne atom

    SciTech Connect (OSTI)

    Hanauer, Matthias; Khn, Andreas

    2015-01-22

    This work demonstrates the performance of the recently proposed explicitly correlated coupled-cluster method CCSD(F12*) and a new method using explicitly correlated triple excitations, CC3(F12*), in the calculation of the static ESHG hyperpolarizability of the Ne atom.

  2. Theoretical investigation of HNgNH{sub 3}{sup +} ions (Ng = He, Ne, Ar, Kr, and Xe)

    SciTech Connect (OSTI)

    Gao, Kunqi; Sheng, Li

    2015-04-14

    The equilibrium geometries, harmonic frequencies, and dissociation energies of HNgNH{sub 3}{sup +} ions (Ng = He, Ne, Ar, Kr, and Xe) were investigated using the following method: Becke-3-parameter-Lee-Yang-Parr (B3LYP), Boese-Matrin for Kinetics (BMK), second-order Mller-Plesset perturbation theory (MP2), and coupled-cluster with single and double excitations as well as perturbative inclusion of triples (CCSD(T)). The results indicate that HHeNH{sub 3}{sup +}, HArNH{sub 3}{sup +}, HKrNH{sub 3}{sup +}, and HXeNH{sub 3}{sup +} ions are metastable species that are protected from decomposition by high energy barriers, whereas the HNeNH{sub 3}{sup +} ion is unstable because of its relatively small energy barrier for decomposition. The bonding nature of noble-gas atoms in HNgNH{sub 3}{sup +} was also analyzed using the atoms in molecules approach, natural energy decomposition analysis, and natural bond orbital analysis.

  3. PETROPHYSICAL INVESTIGATION OF THE SECONDARY RECOVERY POTENTIAL IN THE CHERRY CANYON FORMATION NE LEA FIELD LEA COUNTY, NEW MEXICO

    SciTech Connect (OSTI)

    T. Scott Hickman

    2002-06-01

    Read and Stevens has proposed the evaluation of the waterflood potential from the Cherry Canyon formation in the NE Lea Field in lea County, New Mexico. Much of the development in this area is approaching primary recovery limitations; additional recovery of remaining oil reserves by waterflood needs to be evaluated. The Cherry Canyon formation is composed of fine grained sandstone, containing clay material which results in high water saturation, and also has the tendency to swell and reduce reservoir permeability--the ability of fluid to flow through the rock pores and fractures. There are also abundant organic materials that interfere with obtaining reliable well logs. These complications have limited oil in place calculations and identification of net pay zones, presenting a challenge to the planned waterflood. Core analysis of the Cherry Canyon should improve the understanding of existing well logs and possibly indicate secondary recovery measures, such as waterflood, to enhance field recovery. Lacking truly representative core to provide accurate analyses, Read and Stevens will obtain and preserve fresh core. The consulting firm of T. Scott Hickman and Associates will then collaborate on special core analyses and obtain additional well logs for a more detailed analysis of reservoir properties. The log interpretation will be compared to the core analysis results, and the entire collected data set will be used to assess the potential and economic viability of successfully waterflooding the identified oil zones. Successful results from the project will improve accuracy of log interpretation and establish a methodology for evaluating secondary recovery by waterflood.

  4. The Impact of Improved Solar Forecasts on Bulk Power System Operations in ISO-NE (Presentation), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Improved Solar Forecasts on Bulk Power System Operations in ISO-NE 4 th Solar Integration Workshop Carlo Brancucci Martinez-Anido, Anthony Florita, and Bri-Mathias Hodge Berlin, Germany November 10, 2014 NREL/PR-5000-63082 2 Motivation and Scope * The economic benefits from renewable energy forecasting are largely unquantified in the power community o Current renewable energy penetration levels in the United States are often too low to appreciably quantify the value of improving renewable energy

  5. Study of the K{sub stop}{sup -}A{yields}{Sigma}{sup {+-}}{pi}{sup {+-}}A' reaction at DA{Phi}NE

    SciTech Connect (OSTI)

    Agnello, M.; Benussi, L.; Bertani, M.; Fabbri, F. L.; Gianotti, P.; Lucherini, V.; Bhang, H. C.; Bonomi, G.; Moia, F.; Zenoni, A.; Botta, E.; Bressani, T.; Bufalino, S.; Busso, L.; Calvo, D.; De Mori, F.; Feliciello, A.; Filippi, A.; Marcello, S.; Wheadon, R.

    2010-12-28

    This work describes an experimental study of the K{sub stop}{sup -}A{yields}{pi}{sup {+-}}{Sigma}{sup {+-}}A' reaction performed with the FINUDA spectrometer at the DA{Phi}NE {phi}-factory. The reaction is studied via the detection of {pi}{sup +}{pi}{sup -}n events on {sup 6,7}Li, {sup 9}Be, {sup 13}C and {sup 16}O.

  6. Measurement of K+ production cross section by 8 GeV protons using high energy neutrino interactions in the SciBooNE detector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cheng, G.

    2011-07-28

    The SciBooNE Collaboration reports K+ production cross section and rate measurements using high energy daughter muon neutrino scattering data off the SciBar polystyrene (C8H8) target in the SciBooNE detector. The K+ mesons are produced by 8 GeV protons striking a beryllium target in Fermilab Booster Neutrino Beam line (BNB). Using observed neutrino and antineutrino events in SciBooNE, we measure d2σ/dpdΩ = (5.34 ±0.76) mb/(GeV/c x sr) for p + Be =K+ + X at mean K+ energy of 3.9 GeV and angle (with respect to the proton beam direction) of 3.7 degrees, corresponding to the selected K+ sample. Compared tomore »Monte Carlo predictions using previous higher energy K+ production measurements, this measurement, which uses the NUANCE neutrino interaction generator, is consistent with a normalization factor of 0.85 ± 0.12. This agreement is evidence that the extrapolation of the higher energy K+ measurements to an 8 GeV beam energy using Feynman scaling is valid. This measurement reduces the error on the K+ production cross section from 40% to 14%.« less

  7. Two-chord interferometry using 3.39 {mu}m He-Ne laser on a flux-coil-generated FRC

    SciTech Connect (OSTI)

    Gota, H.; Deng, B. H.; Gupta, D.; Kiyashko, V.; Knapp, K.; Mendoza, R.; Morehouse, M.; Bolte, N.; Roche, T.; Wessel, F.

    2010-10-15

    A two-chord {lambda}{sub IR}{approx}3.39 {mu}m He-Ne laser interferometer system was developed for a flux-coil-generated field-reversed configuration to estimate the electron density and the total temperature of the field-reversed configuration (FRC) plasma. This two-chord heterodyne interferometer system consists of a single {approx}2 mW infrared He-Ne laser, a visible ({lambda}{sub vis}{approx}632.8 nm) He-Ne laser for the alignment, a 40 MHz acousto-optic modulator, photodetectors, and quadrature phase detectors. Initial measurement was performed and the measured average electron densities were 2-10x10{sup 19} m{sup -3} at two different radial positions in the midplane. A time shift in density was observed as the FRC expands radially. The time evolution of the line-averaged density agrees with the density estimated from the in situ internal magnetic probes, based on a rigid-rotor profile model.

  8. Measurement of K+ production cross section by 8 GeV protons using high energy neutrino interactions in the SciBooNE detector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cheng, G.

    2011-07-28

    The SciBooNE Collaboration reports K+ production cross section and rate measurements using high energy daughter muon neutrino scattering data off the SciBar polystyrene (C8H8) target in the SciBooNE detector. The K+ mesons are produced by 8 GeV protons striking a beryllium target in Fermilab Booster Neutrino Beam line (BNB). Using observed neutrino and antineutrino events in SciBooNE, we measure d2σ/dpdΩ = (5.34 ±0.76) mb/(GeV/c x sr) for p + Be =K+ + X at mean K+ energy of 3.9 GeV and angle (with respect to the proton beam direction) of 3.7 degrees, corresponding to the selected K+ sample. Compared tomore » Monte Carlo predictions using previous higher energy K+ production measurements, this measurement, which uses the NUANCE neutrino interaction generator, is consistent with a normalization factor of 0.85 ± 0.12. This agreement is evidence that the extrapolation of the higher energy K+ measurements to an 8 GeV beam energy using Feynman scaling is valid. This measurement reduces the error on the K+ production cross section from 40% to 14%.« less

  9. Profile for Sara Y. Del Valle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biosciences Biosecurity Modeling of viral disease dynamics Epidemiology modeling Computational Physics and Applied Mathematics Mathematics Monte Carlo methods Discrete event ...

  10. Faces of Science: Sara Del Valle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    These experiences, coupled with her passion for mathematics, led Sara to develop computer ... MODELING AND SIMULATION Modeling infectious disease with mathematics While growing up, ...

  11. Faces of Science: Sara Del Valle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 4, 2015 Modeling infectious disease with mathematics While growing up, Sara Del ... Later in life she discovered her love for mathematics, but always in the back of her mind ...

  12. Magnetotellurics At Valles Caldera - Sulphur Springs Geothermal...

    Open Energy Info (EERE)

    from these data with other data used to test the models. References Michael Wilt, Stephen Vonder Haar (1986) A Geological And Geophysical Appraisal Of The Baca Geothermal...

  13. Magnetotellurics At Valles Caldera - Redondo Geothermal Area...

    Open Energy Info (EERE)

    from these data with other data used to test the models. References Michael Wilt, Stephen Vonder Haar (1986) A Geological And Geophysical Appraisal Of The Baca Geothermal...

  14. Laboratory, Valles Caldera sponsor environmental science event

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to teach students about watershed hydrology, water quality, wildlife radio telemetry, plant ecology, aquatic and terrestrial invertebrate biology, fish sampling, and Jemez...

  15. Application for Presidential Permit PP-400 TDI-NE- New England Clean Power Link Project- Motion to Intervene and Comments of the Vermont Department of Public Service- August 6, 2014

    Broader source: Energy.gov [DOE]

    The Vermont Department of Public Service (VDPS) submits the following Motion to Intervene and provides a description of the state-level review of any subsequent petition filed by TDI-NE.

  16. Improved Search for ν̄μ→ν̄e Oscillations in the MiniBooNE Experiment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aguilar-Arevalo, A. A.; Brown, B. C.; Bugel, L.; Cheng, G.; Church, E. D.; Conrad, J. M.; Dharmapalan, R.; Djurcic, Z.; Finley, D. A.; Ford, R.; et al

    2013-04-15

    The MiniBooNE experiment at Fermilab reports results from an analysis of ν¯e appearance data from 11.27×10²⁰ protons on target in the antineutrino mode, an increase of approximately a factor of 2 over the previously reported results. An event excess of 78.4±28.5 events (2.8σ) is observed in the energy range 200QEν<1250 MeV. If interpreted in a two-neutrino oscillation model, ν¯μ→ν¯e, the best oscillation fit to the excess has a probability of 66% while the background-only fit has a χ² probability of 0.5% relative to the best fit. The data are consistent with antineutrino oscillations in the 0.01<Δm²<1.0 eV² range and havemore » some overlap with the evidence for antineutrino oscillations from the Liquid Scintillator Neutrino Detector. All of the major backgrounds are constrained by in situ event measurements so nonoscillation explanations would need to invoke new anomalous background processes. The neutrino mode running also shows an excess at low energy of 162.0±47.8 events (3.4σ) but the energy distribution of the excess is marginally compatible with a simple two neutrino oscillation formalism. Expanded models with several sterile neutrinos can reduce the incompatibility by allowing for CP violating effects between neutrino and antineutrino oscillations.« less

  17. A survey of Existing V&V, UQ and M&S Data and Knowledge Bases in Support of the Nuclear Energy - Knowledge base for Advanced Modeling and Simulation (NE-KAMS)

    SciTech Connect (OSTI)

    Hyung Lee; Rich Johnson, Ph.D.; Kimberlyn C. Moussesau

    2011-12-01

    The Nuclear Energy - Knowledge base for Advanced Modeling and Simulation (NE-KAMS) is being developed at the Idaho National Laboratory in conjunction with Bettis Laboratory, Sandia National Laboratories, Argonne National Laboratory, Oak Ridge National Laboratory, Utah State University and others. The objective of this consortium is to establish a comprehensive knowledge base to provide Verification and Validation (V&V) and Uncertainty Quantification (UQ) and other resources for advanced modeling and simulation (M&S) in nuclear reactor design and analysis. NE-KAMS will become a valuable resource for the nuclear industry, the national laboratories, the U.S. NRC and the public to help ensure the safe operation of existing and future nuclear reactors. A survey and evaluation of the state-of-the-art of existing V&V and M&S databases, including the Department of Energy and commercial databases, has been performed to ensure that the NE-KAMS effort will not be duplicating existing resources and capabilities and to assess the scope of the effort required to develop and implement NE-KAMS. The survey and evaluation have indeed highlighted the unique set of value-added functionality and services that NE-KAMS will provide to its users. Additionally, the survey has helped develop a better understanding of the architecture and functionality of these data and knowledge bases that can be used to leverage the development of NE-KAMS.

  18. 625 Marion St. NE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dear Dr. Kosson: Oregon appreciates the opportunity to provide comments on the draft methodology for the Hanford Site-Wide Risk Review Project. We especially thank you for your...

  19. NE Press Releases

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ...

  20. MiniBooNE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    &5; &6;&17; &6; &5;&14;&22;&5;K&2; &1; F&24;&30;&30;&5;&20;&14; &6;&30;&17; &6;&15;&5;&21; &21; &6; &17; &20;&5;&6; &14; &5; &17; &7; &1; &19;&7;&20;&6;&21;&21;&5;+(66(56-&25;&5;()632&27;&2;%3%&25;&2;&&3;.2&2;4P- &1; 2&6;&21; &5;F &5;&8; &6;&22;&6; &6;&15;&5;&14;&29;&6; &5; &24;&30;&30;&5;&17; &5;,%*P ?E&19;&1;B0B&3;.EO ?E&19;&1;B0B&3;.EO ?E&19;&1;B0B&3;.EO &25;% 27&25;&3;&14;&8;+,&7; N...

  1. MiniBooNE:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Monroe, Columbia University Moriond Electroweak, March 21, 2004 From kaons: &24; data from HARP & BNL E910 on production &24; high energy e() events in detector &24; events in the LMC...

  2. MiniBooNE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 GeV KE protons from Fermilab Booster Accelerator 1.7 beryllium target (HARP results coming soon) horn focusses + sign mesons and K Can reverse...

  3. 18Ne.PDF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

  4. 18Ne_78.PDF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

  5. 19Ne.PDF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

  6. 19Ne_78.PDF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

  7. 20Ne.PDF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

  8. 20Ne_78.PDF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

  9. NE Blog Archive

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    class"field-item odd">

    The 7th Workshop on Risk Informed Regulation and Safety Culture was one of a series of workshops designed by the Office of Nuclear Energy in...

  10. Neutral Current 10 Production at MiniBooNE - Sixth International Workshop on Neutrino-Nucleus Interactions in the Few-GeV Region

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Current 1 0 Production at MiniBooNE Sixth International Workshop on Neutrino-Nucleus Interactions in the Few-GeV Region Colin Anderson May 21, 2009 Outline The Measurement Isolating the NC 1 H Sample Cross Section Calculation Background Subtraction Unsmearing Eciency Correction, Flux Coherent Production Models Resonant Production Measurement C.E. Anderson NC 1 0 Production 2/23 NC  0 Production What Was Measured We measured the cross section for NC interactions resulting

  11. Research Needs for Magnetic Fusion Energy Sciences. Report of the Research Needs Workshop (ReNeW) Bethesda, Maryland, June 8-12, 2009

    SciTech Connect (OSTI)

    2009-06-08

    Nuclear fusion - the process that powers the sun - offers an environmentally benign, intrinsically safe energy source with an abundant supply of low-cost fuel. It is the focus of an international research program, including the ITE R fusion collaboration, which involves seven parties representing half the world's population. The realization of fusion power would change the economics and ecology of energy production as profoundly as petroleum exploitation did two centuries ago. The 21st century finds fusion research in a transformed landscape. The worldwide fusion community broadly agrees that the science has advanced to the point where an aggressive action plan, aimed at the remaining barriers to practical fusion energy, is warranted. At the same time, and largely because of its scientific advance, the program faces new challenges; above all it is challenged to demonstrate the timeliness of its promised benefits. In response to this changed landscape, the Office of Fusion Energy Sciences (OFES ) in the US Department of Energy commissioned a number of community-based studies of the key scientific and technical foci of magnetic fusion research. The Research Needs Workshop (ReNeW) for Magnetic Fusion Energy Sciences is a capstone to these studies. In the context of magnetic fusion energy, ReNeW surveyed the issues identified in previous studies, and used them as a starting point to define and characterize the research activities that the advance of fusion as a practical energy source will require. Thus, ReNeW's task was to identify (1) the scientific and technological research frontiers of the fusion program, and, especially, (2) a set of activities that will most effectively advance those frontiers. (Note that ReNeW was not charged with developing a strategic plan or timeline for the implementation of fusion power.) This Report presents a portfolio of research activities for US research in magnetic fusion for the next two decades. It is intended to provide a strategic framework for realizing practical fusion energy. The portfolio is the product of ten months of fusion-community study and discussion, culminating in a Workshop held in Bethesda, Maryland, from June 8 to June 12, 2009. The Workshop involved some 200 scientists from Universities, National Laboratories and private industry, including several scientists from outside the US. Largely following the Basic Research Needs model established by the Office of Basic Energy Sciences (BES ), the Report presents a collection of discrete research activities, here called 'thrusts.' Each thrust is based on an explicitly identified question, or coherent set of questions, on the frontier of fusion science. It presents a strategy to find the needed answers, combining the necessary intellectual and hardware tools, experimental facilities, and computational resources into an integrated, focused program. The thrusts should be viewed as building blocks for a fusion program plan whose overall structure will be developed by OFES , using whatever additional community input it requests. Part I of the Report reviews the issues identified in previous fusion-community studies, which systematically identified the key research issues and described them in considerable detail. It then considers in some detail the scientific and technical means that can be used to address these is sues. It ends by showing how these various research requirements are organized into a set of eighteen thrusts. Part II presents a detailed and self-contained discussion of each thrust, including the goals, required facilities and tools for each. This Executive Summary focuses on a survey of the ReNeW thrusts. The following brief review of fusion science is intended to provide context for that survey. A more detailed discussion of fusion science can be found in an Appendix to this Summary, entitled 'A Fusion Primer.'

  12. Enhanced T-lymphocyte blastogenic response to tuberculin (PPD) in children of northeast (NE) Thailand supplemented with vitamin A (VA) and zinc (Zn)

    SciTech Connect (OSTI)

    Kramer, T.R.; Udomkesmalee, E.; Dhanamitta, S.; Sirisinha, S.; Charoenkiatkul, S.; Tantipopipat, S.; Banjong, O.; Rojroongwasinkul, N.; Smith, J.C. Jr. Mahidol Univ., Nakhon Pathom )

    1991-03-15

    Beneficial effects of Va and/or Zn supplementation of children in NE Thailand are described in a companion abstract. In the same study, blastogenic response (BR) of T-lymphocytes to concanavalin-A (ConA) and PPD were assayed in cultures containing mononuclear cells (MNC) or whole blood (WB). Methods were previously described. Children were previously vaccinated with BCG. BR to ConA of MNC or WB from children supplemented with VA, Zn, VA + Zn or placebo were similar. BR to PPD of MNC was higher in children receiving VA + Zn than placebo, but not in children supplemented with VA or Zn alone. Data indicate that children with suboptimal VA and Zn nutriture supplemented with < 2 times RDA of these nutrients showed enhanced cellular immunity to PPD. This observation is relevant to BCG immunization program and thus may benefit public health.

  13. Idaho National Laboratory Ten-year Site Plan (2012 through 2021) -- DOE-NE's National Nuclear Capability -- Developing and Maintaining the INL Infrastructure

    SciTech Connect (OSTI)

    Cal Ozaki

    2010-06-01

    To meet long-term objectives to transform the Idaho National Laboratory (INL), we are providing an integrated, long-term vision of infrastructure requirements that support research, development and demonstration (RD&D) goals outlined in the DOE strategic plans, including the NE Roadmap and reports such as Facilities for the Future of Nuclear Energy Research: A Twenty-year Outlook. The goal of the INL Ten-year Site Plan (TYSP) is to clearly link RD&D mission goals and INL core capabilities with infrastructure requirements (single and multi-program), establish the 10-year end-state vision for INL complexes, identify and prioritize infrastructure and capability gaps, as well as the most efficient and economic approaches to closing those gaps.

  14. Collision-induced Raman scattering by rare-gas atoms: The isotropic spectrum of Ne–Ne and its mean polarizability

    SciTech Connect (OSTI)

    Rachet, Florent; Chrysos, Michael; Dixneuf, Sophie

    2015-05-07

    We report the room-temperature isotropic collision-induced light scattering spectrum of Ne–Ne over a wide interval of Raman shifts, and we compare it with the only available experimental spectrum for that system as well as with spectra calculated quantum-mechanically with the employ of advanced ab initio-computed data for the incremental mean polarizability. The spectral range previously limited to 170 cm{sup −1} is now extended to 485 cm{sup −1} allowing us to successfully solve the inverse-scattering problem toward an analytic model for the mean polarizability that perfectly matches our measurements. We also report the depolarization ratio of the scattering process, lingering over the usefulness of this property for more stringent checks between the various polarizability models.

  15. Nuclear Energy -- Knowledge Base for Advanced Modeling and Simulation (NE-KAMS) Code Verification and Validation Data Standards and Requirements: Fluid Dynamics Version 1.0

    SciTech Connect (OSTI)

    Greg Weirs; Hyung Lee

    2011-09-01

    V&V and UQ are the primary means to assess the accuracy and reliability of M&S and, hence, to establish confidence in M&S. Though other industries are establishing standards and requirements for the performance of V&V and UQ, at present, the nuclear industry has not established such standards or requirements. However, the nuclear industry is beginning to recognize that such standards are needed and that the resources needed to support V&V and UQ will be very significant. In fact, no single organization has sufficient resources or expertise required to organize, conduct and maintain a comprehensive V&V and UQ program. What is needed is a systematic and standardized approach to establish and provide V&V and UQ resources at a national or even international level, with a consortium of partners from government, academia and industry. Specifically, what is needed is a structured and cost-effective knowledge base that collects, evaluates and stores verification and validation data, and shows how it can be used to perform V&V and UQ, leveraging collaboration and sharing of resources to support existing engineering and licensing procedures as well as science-based V&V and UQ processes. The Nuclear Energy Knowledge base for Advanced Modeling and Simulation (NE-KAMS) is being developed at the Idaho National Laboratory in conjunction with Bettis Laboratory, Sandia National Laboratories, Argonne National Laboratory, Utah State University and others with the objective of establishing a comprehensive and web-accessible knowledge base to provide V&V and UQ resources for M&S for nuclear reactor design, analysis and licensing. The knowledge base will serve as an important resource for technical exchange and collaboration that will enable credible and reliable computational models and simulations for application to nuclear power. NE-KAMS will serve as a valuable resource for the nuclear industry, academia, the national laboratories, the U.S. Nuclear Regulatory Commission (NRC) and the public and will help ensure the safe, economical and reliable operation of existing and future nuclear reactors.

  16. Extraordinary luminous soft X-ray transient MAXI J0158744 as an ignition of a nova on a very massive O-Ne white dwarf

    SciTech Connect (OSTI)

    Morii, M.; Serino, M.; Mihara, T.; Sugizaki, M.; Tomida, H.; Kimura, M.; Nakahira, S.; Suwa, F.; Negoro, H.; Kennea, J. A.; Pritchard, T.; Page, K. L.; Osborne, J. P.; Curran, P. A.; Walter, F. M.; Kuin, N. P. M.; Hiroi, K.; Usui, R.; Kawai, N.; Gehrels, N.; and others

    2013-12-20

    We present the observation of an extraordinary luminous soft X-ray transient, MAXI J0158744, by the Monitor of All-sky X-ray Image (MAXI) on 2011 November 11. This transient is characterized by a soft X-ray spectrum, a short duration (1.3 10{sup 3} s < ?T{sub d} < 1.10 10{sup 4} s), a rapid rise (<5.5 10{sup 3} s), and a huge peak luminosity of 2 10{sup 40} erg s{sup 1} in 0.7-7.0 keV band. With Swift observations and optical spectroscopy from the Small and Moderate Aperture Research Telescope System, we confirmed that the transient is a nova explosion, on a white dwarf in a binary with a Be star, located near the Small Magellanic Cloud. An early turn-on of the super-soft X-ray source (SSS) phase (<0.44 days), the short SSS phase duration of about one month, and a 0.92 keV neon emission line found in the third MAXI scan, 1296 s after the first detection, suggest that the explosion involves a small amount of ejecta and is produced on an unusually massive O-Ne white dwarf close to, or possibly over, the Chandrasekhar limit. We propose that the huge luminosity detected with MAXI was due to the fireball phase, a direct manifestation of the ignition of the thermonuclear runaway process in a nova explosion.

  17. Production of cold beams of ND{sub 3} with variable rotational state distributions by electrostatic extraction of He and Ne buffer-gas-cooled beams

    SciTech Connect (OSTI)

    Twyman, Kathryn S.; Bell, Martin T.; Heazlewood, Brianna R.; Softley, Timothy P.

    2014-07-14

    The measurement of the rotational state distribution of a velocity-selected, buffer-gas-cooled beam of ND{sub 3} is described. In an apparatus recently constructed to study cold ion-molecule collisions, the ND{sub 3} beam is extracted from a cryogenically cooled buffer-gas cell using a 2.15 m long electrostatic quadrupole guide with three 90 bends. (2+1) resonance enhanced multiphoton ionization spectra of molecules exiting the guide show that beams of ND{sub 3} can be produced with rotational state populations corresponding to approximately T{sub rot} = 918 K, achieved through manipulation of the temperature of the buffer-gas cell (operated at 6 K or 17 K), the identity of the buffer gas (He or Ne), or the relative densities of the buffer gas and ND{sub 3}. The translational temperature of the guided ND{sub 3} is found to be similar in a 6 K helium and 17 K neon buffer-gas cell (peak kinetic energies of 6.92(0.13) K and 5.90(0.01) K, respectively). The characterization of this cold-molecule source provides an opportunity for the first experimental investigations into the rotational dependence of reaction cross sections in low temperature collisions.

  18. Microsoft Word - NURETH14-337 Ver11.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in mitigation steps being taken at the PWR plants which reduce the efficiency of the fuel. ... the velocity vector is represented in a contour plot for measured positions upstream and ...

  19. PSA Vol 1 Tables Revised Ver 2 Print.xls

    Gasoline and Diesel Fuel Update (EIA)

    11 0 -2 0 0 -1 -1 Honduras 0 0 -1 0 0 -3 -3 India 0 0 0 8 0 2 2 Italy 0 0 0 3 0 16 16 Japan 0 0 0 0 0 1 1 Korea, South 0 0 0 1 0 4 4 Latvia 0 0 0 0 1 0 1 Lithuania 0 0 0 0 0 19...

  20. PSA Vol 1 Tables Revised Ver 2 Print.xls

    Gasoline and Diesel Fuel Update (EIA)

    0 0 662 0 0 0 Ecuador 68,516 0 0 0 0 0 0 Finland 0 0 0 0 0 0 0 Germany 0 0 0 198 0 0 0 Japan 0 0 0 176 0 209 209 Korea, South 0 0 41 0 0 1,444 1,444 Malaysia 2,417 0 90 1,443 0 43...

  1. Microsoft Word - US_Japan_REE_agenda_ver7.doc

    Office of Environmental Management (EM)

    i,NationalInstituteofAdvancedIndustrialScienceandTechnology, Japan;CeriainAutomotiveCatalysts 12:30-1:30 Lunch ...

  2. PSA Vol 1 Tables Revised Ver 2 Print.xls

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    0 0 0 0 0 0 0 Israel 0 0 2 0 220 0 220 Italy 0 0 74 0 0 0 0 Jamaica 0 0 0 0 0 0 0 Japan 0 0 9 0 2 5 7 Korea, South 0 0 126 0 1 13 14 Lebanon 0 0 0 0 0 0 0 Mexico 0 0 10,916 0...

  3. PSA Vol 1 Tables Revised Ver 2 Print.xls

    Gasoline and Diesel Fuel Update (EIA)

    0 0 0 0 576 128 RBOB for Blending with Ether 0 0 0 0 0 0 120 0 RBOB for Blending with Alcohol 22 26 0 24 0 0 394 0 Conventional 0 315 0 0 1,359 0 1,718 495 CBOB for Blending with...

  4. PSA Vol 1 Tables Revised Ver 2 Print.xls

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    GTAB 0 0 0 0 0 0 0 RBOB for Blending with Ether 0 0 0 0 0 0 0 RBOB for Blending with Alcohol 0 0 0 0 0 3,223 29,499 Conventional 105 0 615 0 0 244 14,011 CBOB for Blending with...

  5. PSA Vol 1 Tables Revised Ver 2 Print.xls

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    0 0 0 576 131 RBOB for Blending with Ether 0 0 0 0 0 0 0 120 0 RBOB for Blending with Alcohol 22 26 0 24 0 0 0 3,617 31,128 Conventional 105 315 0 615 1,359 0 0 1,962 17,808 CBOB...

  6. LCLS-scheduling-run_6_Ver4.xlsx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LCLS shutdown LCLS Approved Experiments for Run 6, June-December 2012 Instrument Prop Proposal Title Spokesperson XPP L503 Ultrafast Resonant Inelastic X-ray Scattering...

  7. LCLS-scheduling-run_6_Ver4.xlsx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Day IH L431 Frank Com HR CXI inhouse L456 Krasniqi L481/ L481/ Com. IH MEC L525 Night Feng RD Timing L481/494 Com L481/494 L406 Berrah L434 Fuchs June 12 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu

  8. LCLS-scheduling-run_V_Ver9c.xlsx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Day Com Com Com Com Com L421 Coffee Night L477 Robinson Gruebel (L304, run 4) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Thur Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Day L498

  9. PSA Vol 1 Tables Revised Ver 2 Print.xls

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    562 0 856,883 Commercial 1,023,499 - 2,216,850 - 24,198 27,275 2,590,947 562 - 172,339 Strategic Petroleum Reserve (SPR) - - 18,889 - - 8,944 - - - 684,544 Imports by SPR - - 0...

  10. PSA Vol 1 Tables Revised Ver 2 Print.xls

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Crude Oil 2,804 - 6,125 -1,796 66 99 7,098 2 0 Commercial 2,804 - 6,074 - 66 75 7,098 2 - Strategic Petroleum Reserve (SPR) - - 52 - - 25 - - - Imports by SPR - - 0 - - - - - -...

  11. PSA Vol 1 Tables Revised Ver 2 Print.xls

    Gasoline and Diesel Fuel Update (EIA)

    5,178 - 10,074 - 104 - 32 - Alaskan 864 - - - - - - - Lower 48 States 4,314 - - - - - - - Strategic Petroleum Reserve (SPR) - - 52 - 25 - - - Imports by SPR - - 0 - - - - - Imports...

  12. ER CXD-Form-2011_Ver2a.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electro-Refining Project (4624 (Rev.1)) Y-12 Site Office Oak Ridge Anderson County Tennessee The purpose of this project is to install and turnover to operations a process...

  13. PSA Vol 1 Tables Revised Ver 2 Print.xls

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    0 1,605 9 0 1 1,627 9 0 Natural Gas Liquids and LRGs 17 41 64 101 - -4 5 3 220 Pentanes Plus 3 - 0 0 - 0 0 0 3 Liquefied Petroleum Gases 14 41 64 101 - -4 5 3 217 EthaneEthylene...

  14. PSA Vol 1 Tables Revised Ver 2 Print.xls

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    - - - - - 14 - - - Natural Gas Liquids and LRGs 298 105 110 47 - -5 118 14 433 Pentanes Plus 33 - 1 25 - 0 48 4 7 Liquefied Petroleum Gases 265 105 109 22 - -4 70 9 426 Ethane...

  15. PSA Vol 1 Tables Revised Ver 2 Print.xls

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    4,395 949 6,731 1,029 744 1,773 Non OPEC 928,991 3,672 19,941 130,776 874 9,600 10,474 Angola 81,615 10 1,979 1,923 0 0 0 Argentina 2,486 1 2,703 167 0 646 646 Aruba 0 0 0 23,145 0...

  16. PSA Vol 1 Tables Revised Ver 2 Print.xls

    Gasoline and Diesel Fuel Update (EIA)

    0 175 374 7,010 6,188 13,198 Non OPEC 259,980 0 17,385 23,792 78,059 104,593 182,652 Angola 53,254 0 0 100 0 0 0 Argentina 0 0 128 621 0 2,707 2,707 Aruba 0 0 0 1,163 0 0 0...

  17. PSA Vol 1 Tables Revised Ver 2 Print.xls

    Gasoline and Diesel Fuel Update (EIA)

    8,039 6,932 14,971 Non OPEC 1,938,257 4,376 81,256 172,714 78,933 123,273 202,206 Angola 166,404 10 1,979 2,023 0 0 0 Argentina 20,608 1 2,831 788 0 3,353 3,353 Aruba 0 0 0...

  18. PSA Vol 1 Tables Revised Ver 2 Print.xls

    Gasoline and Diesel Fuel Update (EIA)

    0 0 0 0 0 0 0 Venezuela 13,880 0 0 0 0 0 0 Non OPEC 435,408 483 39,774 627 0 877 877 Angola 14,731 0 0 0 0 0 0 Argentina 150 0 0 0 0 0 0 Aruba 0 0 0 294 0 0 0 Australia 314 0 0 0...

  19. MHK Projects/Ocean Trials Ver 2 | Open Energy Information

    Open Energy Info (EERE)

    Project Technology *MHK TechnologiesSurgeWEC *MHK TechnologiesAirWEC Project Licensing Environmental Monitoring and Mitigation Efforts See Tethys << Return to the MHK database...

  20. Microsoft Word - Cybersecurity_RTDCS_Ver_7 FINAL

    Office of Scientific and Technical Information (OSTI)

    origination-is important. The intertwining of financial data, operational data, and instruction for controls results in the need to protect these data equally. The difference...

  1. Plant community composition and vegetation height, Barrow, Alaska, Ver. 1

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sloan, Victoria; Norby, Richard; Siegrist, Julia; Iversen, Colleen; Brooks, Jonathan; Liebig, Jennifer; Wood, Sarah

    This dataset contains i) the results of field surveys of plant community composition and vegetation height made between 17th and 29th July 2012 in 48, 1 x 1 m plots located in areas A-D of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska and ii) results of a mapping exercise undertaken in August 2013 using two perpendicular transects across each polygon containing vegetation plots to determine the boundaries of vegetation communities described in 2012.

  2. PSA Vol 1 Tables Revised Ver 2 Print.xls

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2005 (Thousand Barrels) East Coast Appalachian No. 1 Total IN, IL, KY MN, WI, ND, SD OK, KS, MO Total Liquefied Refinery Gases 14,825 298 15,123 33,928 1,840 2,446 38,214...

  3. PSA Vol 1 Tables Revised Ver 2 Print.xls

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2005 (Thousand Barrels) East Coast Appalachian No. 1 Total IN, IL, KY MN, WI, ND, SD OK, KS, MO Total Natural Gas Liquids 359 5,914 6,273 26,874 4,786 77,174 108,834 Pentanes...

  4. PSA Vol 1 Tables Revised Ver 2 Print.xls

    Gasoline and Diesel Fuel Update (EIA)

    Refining Districts, 2005 East Coast Appalachian No. 1 Total IN, IL, KY MN, WI, ND, SD OK, KS, MO Total Liquefied Refinery Gases 2.5 0.9 2.4 4.2 1.2 0.9 3.1 Finished Motor...

  5. PSA Vol 1 Tables Revised Ver 2 Print.xls

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    14,213 14,346 47,564 2,344 21,862 100,329 Tank Farms and Pipelines (Includes Cushing, OK) 762 54,265 111,331 10,723 23,497 200,578 Cushing, Oklahoma - 21,777 - - - - Leases 44...

  6. PSA Vol 1 Tables Revised Ver 2 Print.xls

    Gasoline and Diesel Fuel Update (EIA)

    2005 (Thousand Barrels) East Coast Appalachian No. 1 Total IN, IL, KY MN, WI, ND, SD OK, KS, MO Total Total Net Input 199,173 1,285 200,458 117,409 24,041 20,032 161,482...

  7. PSA Vol 1 Tables Revised Ver 2 Print.xls

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    95 Liquefied Petroleum Gases 14,528 24,908 905 0 - -17 14,218 6,684 19,456 3,094 EthaneEthylene 44 0 0 0 - -1 0 0 45 0 PropanePropylene 4,842 20,540 672 0 - 130 0 5,589 20,335...

  8. PSA Vol 1 Tables Revised Ver 2 Print.xls

    Gasoline and Diesel Fuel Update (EIA)

    Petroleum Gases 96,786 38,214 39,774 8,116 - -1,564 25,650 3,426 155,378 28,105 EthaneEthylene 42,381 0 215 -20,104 - -929 0 0 23,421 2,622 PropanePropylene 36,474 39,477...

  9. PSA Vol 1 Tables Revised Ver 2 Print.xls

    Gasoline and Diesel Fuel Update (EIA)

    Petroleum Gases 5,202 15,123 23,191 36,994 - -1,344 1,693 1,039 79,122 5,357 EthaneEthylene 148 107 0 0 - 0 0 0 255 0 PropanePropylene 3,359 17,172 20,262 36,150 - -1,318 0...

  10. PSA Vol 1 Tables Revised Ver 2 Print.xls

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Liquefied Petroleum Gases 62,852 1,440 3,251 -51,618 - -58 3,410 185 12,388 1,382 EthaneEthylene 29,950 0 0 -27,892 - -9 0 0 2,067 323 PropanePropylene 20,635 2,967 2,659...

  11. VIPAR - Vortex Inflation PARachute Code Ver. 1.0

    Energy Science and Technology Software Center (OSTI)

    2001-11-01

    VIPAR is a 3-D fluid mechanics code for predicting flow past bluff bodies whose surfaces can be assumed to be made up of shell elements that are simply connected. Version 1.0 of the code contains several first order algorithms, which we are already in the process of replacing with higher order ones. These enhancements will appear in the next version of VIPAR. The present code contains a motion generator, which can be used to producemore » large class of rigid body motions. The present code has also been fully coupled to a structural dynamics code in which the geometry undergoes large time dependent deformations. Initial surface geometry is generated from triangular shell elements using a code such as Patran and is written into an Exodusll data base file for subsequent input into VIPAR. Surface and wake variable information is output into two Exodusll files which can be processed and viewed using software such as EnSight.« less

  12. T-1 Test Program Ver. 6.0.1

    Energy Science and Technology Software Center (OSTI)

    2004-05-21

    The software allows for easy setup and testing of a variety of RF Electronic Sensor Platforms (ESPs). The software interprets RF messages from the ESP and displays the information in a graphical user interface. This program is used primarily for testing of the T-1 Electronic Sensor Platform. The software imports Electronic Tag Data files which are created from the Electronic Sensor Platform Programmer (ESPP). The software will automatically add sensors to its database when amore » RF message s received that the program recognizes. Any data that is generated can be stored to a file for later analysis.« less

  13. PSA Vol 1 Tables Revised Ver 2 Print.xls

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Refinery and Blender Net Production of Finished Petroleum Products by PAD and Refining Districts, 2005 (Thousand Barrels) East Coast Appalachian No. 1 Total IN, IL, KY MN, WI, ND,...

  14. Plant community composition and vegetation height, Barrow, Alaska, Ver. 1

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sloan, Victoria; Norby, Richard; Siegrist, Julia; Iversen, Colleen; Brooks, Jonathan; Liebig, Jennifer; Wood, Sarah

    2014-04-25

    This dataset contains i) the results of field surveys of plant community composition and vegetation height made between 17th and 29th July 2012 in 48, 1 x 1 m plots located in areas A-D of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska and ii) results of a mapping exercise undertaken in August 2013 using two perpendicular transects across each polygon containing vegetation plots to determine the boundaries of vegetation communities described in 2012.

  15. Microsoft Word - chapter FeCrMo_ver2.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Low-Alloy Ferritic Steels Fe-Cr-Mo Tempered December 8, 2005 ... strength level, material processing, and heat treatment 1. ... yield strength, hydrogen gas pressure, and temperature. ...

  16. PSA Vol 1 Tables Revised Ver 2 Print.xls

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Liquefied Petroleum Gases 37,139 145 36,994 72,800 64,684 8,116 96,744 90,236 6,508 EthaneEthylene 0 0 0 13,894 33,998 -20,104 59,102 11,106 47,996 PropanePropylene 36,220 70...

  17. PSA Vol 1 Tables Revised Ver 2 Print.xls

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    1 423 424 2,395 7 Liquefied Petroleum Gases 1,039 3,426 8,005 185 6,684 19,338 53 EthaneEthylene 0 0 0 0 0 0 0 PropanePropylene 206 544 7,332 12 5,589 13,683 37 Normal...

  18. PSA Vol 1 Tables Revised Ver 2 Print.xls

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Pentanes Plus 30 - 1 -17 - 0 6 1 6 Liquefied Petroleum Gases 172 4 9 -141 - 0 9 1 34 EthaneEthylene 82 0 0 -76 - 0 0 0 6 PropanePropylene 57 8 7 -39 - 0 0 0 33 Normal Butane...

  19. PSA Vol 1 Tables Revised Ver 2 Print.xls

    Gasoline and Diesel Fuel Update (EIA)

    221 0 17,018 47 Liquefied Petroleum Gases 23,191 39,774 52,534 3,251 905 119,655 328 Ethane 0 22 16 0 0 38 0 Ethylene 0 193 0 0 0 193 1 Propane 17,562 30,489 28,519 2,659 672...

  20. PSA Vol 1 Tables Revised Ver 2 Print.xls

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    change by sulfur content may not equal total residual fuel oil ending stocks and stock change. LRG Liquefied Refinery Gases. - Not Applicable. Notes: Totals may not equal...

  1. PSA Vol 1 Tables Revised Ver 2 Print.xls

    Gasoline and Diesel Fuel Update (EIA)

    741 317 245 1,303 IsobutaneIsobutylene 206 7 213 155 55 184 394 Other HydrocarbonsHydrogenOxygenates 512 0 512 29 18 0 47 Other HydrocarbonsHydrogen 0 0 0 28 0 0 28...

  2. PSA Vol 1 Tables Revised Ver 2 Print.xls

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Oxygenates 29,966 1,285 31,251 26,396 9,648 5,726 41,770 Other HydrocarbonsHydrogen 0 0 0 1,077 678 587 2,342 Oxygenates 29,966 1,285 31,251 25,319 8,970 5,139 39,428...

  3. LCLS-scheduling-run_V_Ver9c.xlsx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RYAN Time-resolved Auger relaxation via transient x-ray bleaching in O2 L430 XPP FOERST, MICHAEL Nonlinear Phonon Control in Quantum Solids: A Femtosecond Crystallographic...

  4. PSA Vol 1 Tables Revised Ver 2 Print.xls

    Gasoline and Diesel Fuel Update (EIA)

    State Motor Gasoline Kerosene Distillate Fuel Oil a a Distillate stocks located in the "Northeast Heating Oil Reserve" are not included. For details see Appendix C. Notes: Stocks...

  5. Higher temperature reactor materials workshop sponsored by the Department of Energy Office of Nuclear Energy, Science, and Technology (NE) and the Office of Basic Energy Sciences (BES).

    SciTech Connect (OSTI)

    Allen, T.; Bruemmer, S.; Kassner, M.; Odette, R.; Stoller, R.; Was, G.; Wolfer, W.; Zinkle, S.; Elmer, J.; Motta, A.

    2002-08-12

    On March 18-21, 2002, the Department of Energy, Office of Nuclear Energy, Science, and Technology (NE) and the Office of Basic Energy Sciences (BES) sponsored a workshop to identify needs and opportunities for materials research aimed at performance improvements of structural materials in higher temperature reactors. The workshop focused discussion around the reactor concepts proposed as part of the Generation IV Nuclear Energy System Roadmap. The goal of the Generation IV initiative is to make revolutionary improvements in nuclear energy system design in the areas of sustainability, economics, safety and reliability. The Generation IV Nuclear Energy Systems Roadmap working groups have identified operation at higher temperature as an important step in improving economic performance and providing a means for nuclear energy to support thermochemical production of hydrogen. However, the move to higher operating temperatures will require the development and qualification of advanced materials to perform in the more challenging environment. As part of the process of developing advanced materials for these reactor concepts, a fundamental understanding of materials behavior must be established and the data-base defining critical performance limitations of these materials under irradiation must be developed. This workshop reviewed potential reactor designs and operating regimes, potential materials for application in high-temperature reactor environments, anticipated degradation mechanisms, and research necessary to understand and develop reactor materials capable of satisfactory performance while subject to irradiation damage at high temperature. The workshop brought together experts from the reactor materials and fundamental materials science communities to identify research and development needs and opportunities to provide optimum high temperature nuclear energy system structural materials.

  6. US NE MA Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Consumption Survey www.eia.govconsumptionresidential Space heating Water heating Air conditioning Appliances, electronics, lighting Household Energy Use in ...

  7. MiniBooNE Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... B 280, 146 (1992); Y. Fukuda et al., Phys. Lett. B 335, 237 (1994). 16) Y. Fukuda et al., Phys. Rev. Lett. 81, 1562 (1998). 17) W. W. M. Allison et al., Phys. Lett. B 449, 137 ...

  8. BooNE Neutrino Oscillations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

  9. Research Needs for Fusion-Fission Hybrid Systems. Report of the Research Needs Workshop (ReNeW) Gaithersburg, Maryland, September 30 - October 2, 2009

    SciTech Connect (OSTI)

    2009-09-30

    Largely in anticipation of a possible nuclear renaissance, there has been an enthusiastic renewal of interest in the fusion-fission hybrid concept, driven primarily by some members of the fusion community. A fusion-fission hybrid consists of a neutron-producing fusion core surrounded by a fission blanket. Hybrids are of interest because of their potential to address the main long-term sustainability issues related to nuclear power: fuel supply, energy production, and waste management. As a result of this renewed interest, the U.S. Department of Energy (DOE), with the participation of the Office of Fusion Energy Sciences (OFES), Office of Nuclear Energy (NE), and National Nuclear Security Administration (NNSA), organized a three-day workshop in Gaithersburg, Maryland, from September 30 through October 2, 2009. Participants identified several goals. At the highest level, it was recognized that DOE does not currently support any R&D in the area of fusion-fission hybrids. The question to be addressed was whether or not hybrids offer sufficient promise to motivate DOE to initiate an R&D program in this area. At the next level, the workshop participants were asked to define the research needs and resources required to move the fusion-fission concept forward. The answer to the high-level question was given in two ways. On the one hand, when viewed as a standalone concept, the fusion-fission hybrid does indeed offer the promise of being able to address the sustainability issues associated with conventional nuclear power. On the other hand, when participants were asked whether these hybrid solutions are potentially more attractive than contemplated pure fission solutions (that is, fast burners and fast breeders), there was general consensus that this question could not be quantitatively answered based on the known technical information. Pure fission solutions are based largely on existing both fusion and nuclear technology, thereby prohibiting a fair side-by-side comparison. Another important issue addressed at the conference was the time scale on which long-term sustainability issues must be solved. There was a wide diversity of opinion and no consensus was possible. One group, primarily composed of members of the fission community, argued that the present strategies with respect to waste management (on-site storage) and fuel supply (from natural uranium) would suffice for at least 50 years, with the main short-term problem being the economics of light water reactors (LWRs). Many from the fusion community believed that the problems, particularly waste management, were of a more urgent nature and that we needed to address them sooner rather than later. There was rigorous debate on all the issues before, during, and after the workshop. Based on this debate, the workshop participants developed a set of high-level Findings and Research Needs and a companion set of Technical Findings and Research Needs. In the context of the Executive Summary it is sufficient to focus on the high-level findings which are summarized.

  10. Teleseismic-Seismic Monitoring At Valles Caldera - Redondo Geothermal...

    Open Energy Info (EERE)

    - 1987 Usefulness useful DOE-funding Unknown Notes The authors have described the experimental details, data analysis and forward modeling for scattered-wave amplitude data...

  11. Core Analysis At Valles Caldera - Sulphur Springs Geothermal...

    Open Energy Info (EERE)

    temperatures using temperature coefficients of thermal conductivity from Birch & Clark (1940). Conductivity data were also adjusted for in situ porosity determined from the...

  12. Exploratory Well At Valles Caldera - Redondo Geothermal Area...

    Open Energy Info (EERE)

    a part of a geothermal exploration and development program within what was known as the Baca project area (now referred to as the Redondo geothermal area). Of the >42,000 m of hole...

  13. Geochemistry and Isotopes of Fluids from Sulphur Springs, Valles...

    Open Energy Info (EERE)

    >Non-condensible gases consist of roughly 99% CO2 with minor amounts of H2S, H2, and CH4. Empirical gas geothermometry suggests a deep reservoir temperature of 215 to 280C....

  14. At Valles Caldera - Sulphur Springs Geothermal Area (Toyoda,...

    Open Energy Info (EERE)

    from Al and Ti centers were measured using a JEOL RE-1X X-band ESR spectrometer. The ESR signal of the stable component of Ti centers yielded an age of 59 +- 6 ka for the...

  15. Compound and Elemental Analysis At Valles Caldera - Redondo Geothermal...

    Open Energy Info (EERE)

    (including from the VC-3 core hole) to study mineral abundances using X-ray powder diffraction analysis (XRD), examine specific mineral texturemorphology using Scanning electron...

  16. Compound and Elemental Analysis At Valles Caldera - Sulphur Springs...

    Open Energy Info (EERE)

    (including from the VC-3 core hole) to study mineral abundances using X-ray powder diffraction analysis (XRD), examine specific mineral texturemorphology using Scanning electron...

  17. The El Cajete Series, Valles Caldera, New Mexico | Open Energy...

    Open Energy Info (EERE)

    is presently in a state where small magma bodies are transient phenomena. Authors Stephen Self, D.E. Kircher and John A. Wolff Published Journal Journal of Geophysical...

  18. Resistivity Log At Valles Caldera - Sulphur Springs Geothermal...

    Open Energy Info (EERE)

    presents a good target for surface geophysical prospecting. References Michael Wilt, Stephen Vonder Haar (1986) A Geological And Geophysical Appraisal Of The Baca Geothermal...

  19. Analytical Modeling At Valles Caldera - Redondo Geothermal Area...

    Open Energy Info (EERE)

    fluid data from 10 wells were used to better understand the fluid compostion and thermal history of the Redonodo (Baca) geothermal reservoir. Notes Results indicate the presence...

  20. Isotopic Analysis At Valles Caldera - Redondo Geothermal Area...

    Open Energy Info (EERE)

    fluid data from 10 wells were used to better understand the fluid compostion and thermal history of the Redonodo (Baca) geothermal reservoir. Notes Results indicate the presence...

  1. Petrography Analysis At Valles Caldera - Sulphur Springs Geothermal...

    Open Energy Info (EERE)

    revealed that hydrothermal alteration in these rocks (and by association, permeability and fluid flow) is controlled by lithology and by the distribution of fractures,...

  2. Valles Caldera - Redondo Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Resources Council; p. 405-408 Donald W Brown. 2009. Hot Dry Rock Geothermal Energy- Important Lessons From Fenton Hill. In: Proceedings. 34th Workshop on...

  3. A 200 kyr Pleistocene Lacustrine Record from the Valles Caldera...

    Open Energy Info (EERE)

    Magnetism and Paleomagnetism Authors Linda Donohoo-Hurley, John W. Geissman, Peter J. Fawcett, Tim Wawrzyniec and Fraser E. Goff Conference New Mexico Geological Society...

  4. Crust and Upper Mantle P Wave Velocity Structure Beneath Valles...

    Open Energy Info (EERE)

    by mantle-derived melts has occurred. Authors Lee K. Steck, Clifford H. Thurber, Michael C. Fehler, William J. Lutter, Peter M. Roberts, W. Scott Baldridge, Darrik G....

  5. Teleseismic-Seismic Monitoring At Valles Caldera - Sulphur Springs...

    Open Energy Info (EERE)

    and 3703 picks from the 1994 survey). References Lee K. Steck, Clifford H. Thurber, Michael C. Fehler, William J. Lutter, Peter M. Roberts, W. Scott Baldridge, Darrik G....

  6. Teleseismic-Seismic Monitoring At Valles Caldera - Redondo Geothermal...

    Open Energy Info (EERE)

    and 3703 picks from the 1994 survey). References Lee K. Steck, Clifford H. Thurber, Michael C. Fehler, William J. Lutter, Peter M. Roberts, W. Scott Baldridge, Darrik G....

  7. Teleseismic-Seismic Monitoring At Valles Caldera - Redondo Geothermal...

    Open Energy Info (EERE)

    source material to write exploration activity summary. References Takeshi Nishimura, Michael Fehler, W. Scott Baldridge, Peter Roberts, Lee Steck (1997) Heterogeneous...

  8. Teleseismic-Seismic Monitoring At Valles Caldera - Sulphur Springs...

    Open Energy Info (EERE)

    Basis Full text unavailable. Notes Full text unavailable. References Takeshi Nishimura, Michael Fehler, W. Scott Baldridge, Peter Roberts, Lee Steck (1997) Heterogeneous...

  9. Compound and Elemental Analysis At Valles Caldera - Sulphur Springs...

    Open Energy Info (EERE)

    of fluids sampled from the Sulphur Springs within the caldera and from several hotcold springs and drill holes along the Jemez fault zone were used to construct a preliminary...

  10. Teleseismic-Seismic Monitoring At Valles Caldera - Redondo Geothermal...

    Open Energy Info (EERE)

    Abstract does not describe study in explicit detail, need to obtain actual source material to write exploration activity summary. References Peter M. Roberts, Keiiti Aki,...

  11. Collapse and Resurgence of the Valles Caldera, Jemez Mtns, NM...

    Open Energy Info (EERE)

    they are composed of older pre-caldera units that include the lower Bandelier Tuff (1.68 &plusmin; 0.03 Ma), and a dacitic tuff dated at 8.205 &plusmin; 0.083 Ma. The ages of...

  12. Scientific Drilling at Sulphur Springs, Valles Caldera, New Mexico...

    Open Energy Info (EERE)

    zones are apparently separated by a region of tightly sealed rock. Authors Fraser E. Goff, Dennis L. Nielson, Jamie N. Gardner, Jeffrey B. Hulen, Peter Lysne, Lisa Shevenell and...

  13. Conceptual Model At Valles Caldera - Redondo Geothermal Area...

    Open Energy Info (EERE)

    extending to the AET-4 well near Jemez Springs. References Lisa Shevenell, Fraser E. Goff, Dan Miles, Al Waibel, Chandler Swanberg (1988) Lithologic Descriptions and Temperature...

  14. Isotopic Analysis- Fluid At Valles Caldera - Redondo Area (Rao...

    Open Energy Info (EERE)

    analyzed for their hydrogen and oxygen isotope contents as a part of previous studies (Goff & Grigsby, 1982; Vuataz & Goff, 1986). The present study focuses on the interpretation...

  15. Well Log Data At Valles Caldera - Redondo Geothermal Area (Shevenell...

    Open Energy Info (EERE)

    extending to the AET-4 well near Jemez Springs. References Lisa Shevenell, Fraser E. Goff, Dan Miles, Al Waibel, Chandler Swanberg (1988) Lithologic Descriptions and Temperature...

  16. Isotopic Analysis At Valles Caldera - Redondo Geothermal Area...

    Open Energy Info (EERE)

    of 36Cl- as a tracer isotope in geothermal systems. References F.M. Phillips, Fraser E. Goff, Francois D. Vuataz, H.W. Bentley, H.E. Gove (1984) 36Cl as a tracer in geothermal...

  17. Compound and Elemental Analysis At Valles Caldera - Redondo Geothermal...

    Open Energy Info (EERE)

    material to write exploration activity summary. References Jamie N. Gardner, Fraser E. Goff, Sammy Garcia, Roland C. Hagan (1986) Stratigraphic Relations and Lithologic Variations...

  18. Sources Of Chloride In Hydrothermal Fluids From The Valles Caldera...

    Open Energy Info (EERE)

    volcanics are < 100,000 years. Authors Usha Rao, U. Fehn, R. T. D. Teng and Fraser E. Goff Published Journal Journal of Volcanology and Geothermal Research, 1996 DOI Not Provided...

  19. Geologic map of the Sulphur Springs Area, Valles Caldera Geothermal...

    Open Energy Info (EERE)

    and geologic deposits are indicated on the map. (MHR) Cartographers Fraser E. Goff and J. N. Gardner Published Los Alamos National Laboratory, NM, 1980 DOI Not Provided...

  20. Compound and Elemental Analysis At Valles Caldera - Redondo Geothermal...

    Open Energy Info (EERE)

    not controlled by mineral equilibrium. References Art F White, Nancy J Chuma, Fraser E. Goff (1992) Mass Transfer Constraints On The Chemical Evolution Of An Active Hydrothermal...

  1. Compound and Elemental Analysis At Valles Caldera - Sulphur Springs...

    Open Energy Info (EERE)

    not controlled by mineral equilibrium. References Art F White, Nancy J Chuma, Fraser E. Goff (1992) Mass Transfer Constraints On The Chemical Evolution Of An Active Hydrothermal...

  2. Geologic Map of the Valles Caldera | Open Energy Information

    Open Energy Info (EERE)

    new geochronologic data and recent refinements to nomenclature. Cartographers Fraser E. Goff, Jamie N. Gardner, Steven L. Reneau, Shari A. Kelley, Kirt A. Kempter and John R....

  3. Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs...

    Open Energy Info (EERE)

    analyzed for their hydrogen and oxygen isotope contents as a part of previous studies (Goff & Grigsby, 1982; Vuataz & Goff, 1986). The present study focuses on the interpretation...

  4. Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs...

    Open Energy Info (EERE)

    not controlled by mineral equilibrium. References Art F White, Nancy J Chuma, Fraser E. Goff (1992) Mass Transfer Constraints On The Chemical Evolution Of An Active Hydrothermal...

  5. Isotopic Analysis At Valles Caldera - Redondo Geothermal Area...

    Open Energy Info (EERE)

    not controlled by mineral equilibrium. References Art F White, Nancy J Chuma, Fraser E. Goff (1992) Mass Transfer Constraints On The Chemical Evolution Of An Active Hydrothermal...

  6. Compound and Elemental Analysis At Valles Caldera - Sulphur Springs...

    Open Energy Info (EERE)

    analyzed for their hydrogen and oxygen isotope contents as a part of previous studies (Goff & Grigsby, 1982; Vuataz & Goff, 1986). The present study focuses on the interpretation...

  7. The Hydrothermal Outflow Plume of Valles Caldera, New Mexico...

    Open Energy Info (EERE)

    that they can be as old as 106 years and display episodic behavior. Authors Fraser E. Goff, Lisa Shevenell, Jamie N. Gardner, Francois D. Vuataz and Charles O. Grigsby Published...

  8. Valle Vista, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Vista, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.7477981, -116.8933555 Show Map Loading map... "minzoom":false,"mappingser...

  9. Direct-Current Resistivity Survey At Valles Caldera - Redondo...

    Open Energy Info (EERE)

    structure in the reservoir region. Some of the data were reinterpreted using K508 computer models, and interpretations from the various surveys were compared for consistency of...

  10. Direct-Current Resistivity Survey At Valles Caldera - Sulphur...

    Open Energy Info (EERE)

    structure in the reservoir region. Some of the data were reinterpreted using K508 computer models, and interpretations from the various surveys were compared for consistency of...

  11. Field Mapping At Valles Caldera - Redondo Geothermal Area (Bailey...

    Open Energy Info (EERE)

    based on surface mapping of the caldera. References Roy A. Bailey, Robert Leland Smith, Clarence Samuel Ross (1969) Stratigraphic Nomenclature of Volcanic Rocks in the Jemez...

  12. Two Middle Pleistocene Glacial-Interglacial Cycles from the Valle...

    Open Energy Info (EERE)

    John W. Geissman, Giday WoldeGabriel, Craig D. Allen, Catrina M. Johnson and Susan J. Smith Conference New Mexico Geological Society 58th Annual Field Conference;...

  13. Field Mapping At Valles Caldera - Sulphur Springs Geothermal...

    Open Energy Info (EERE)

    based on surface mapping of the caldera. References Roy A. Bailey, Robert Leland Smith, Clarence Samuel Ross (1969) Stratigraphic Nomenclature of Volcanic Rocks in the Jemez...

  14. Core Lithology, Valles Caldera No. 1, New Mexico | Open Energy...

    Open Energy Info (EERE)

    phenomena. Authors Jamie N. Gardner, Fraser E. Goff, Sue Goff, Larry Maassen, K. Mathews, Daniel Wachs and D. Wilson Published Los Alamos National Laboratory, NM, 1987 Report...

  15. Compound and Elemental Analysis At Valles Caldera - Redondo Geothermal...

    Open Energy Info (EERE)

    to other geothermal systems hosted within sedimentary rocks, suggesting that organic carbon and nitrogen in Paleozoic and Miocene strata were depleted during 13 million years...

  16. Gas Sampling At Valles Caldera - Sulphur Springs Geothermal Area...

    Open Energy Info (EERE)

    to other geothermal systems hosted within sedimentary rocks, suggesting that organic carbon and nitrogen in Paleozoic and Miocene strata were depleted during 13 million years...

  17. Compound and Elemental Analysis At Valles Caldera - Sulphur Springs...

    Open Energy Info (EERE)

    to other geothermal systems hosted within sedimentary rocks, suggesting that organic carbon and nitrogen in Paleozoic and Miocene strata were depleted during 13 million years...

  18. Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs...

    Open Energy Info (EERE)

    to other geothermal systems hosted within sedimentary rocks, suggesting that organic carbon and nitrogen in Paleozoic and Miocene strata were depleted during 13 million years...

  19. Internal Geology and Evolution of the Redondo Dome, Valles Caldera...

    Open Energy Info (EERE)

    dome. A comparison of the uplift with a model for formation of the laccoliths of the Henry Mountains indicated the magma was 4700 m thick, in line with the fact that the 3243 m...

  20. Thermal Evolution Models for the Valles Caldera with Reference...

    Open Energy Info (EERE)

    by commercial interests seeking hydrothermal resources. In addition, a number of test wells have been drilled just outside the calderas west margin by the Los Alamos...

  1. The Valles Caldera is ready for its close-up

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ecosystem in the area. The documentary relies on interviews with scientists and animation to help make various scientific concepts more understandable to a general audience....

  2. Design and Operation of A Setup with A Camera and Adjustable Mirror to Inspect the Sense-Wire Planes of the Time Projection Chamber Inside the MicroBooNE Cryostat

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Carls, Benjamin; Horton-Smith, Glenn; James, Catherine C.; Kubinski, Robert M.; Pordes, Stephen; Schukraft, Anne; Strauss, Thomas

    2015-08-26

    Detectors in particle physics, particularly when including cryogenic components, are often enclosed in vessels that do not provide any physical or visual access to the detectors themselves after installation. However, it can be desirable for experiments to visually investigate the inside of the vessel. The MicroBooNE cryostat hosts a TPC with sense-wire planes, which had to be inspected for damage such as breakage or sagging. This inspection was performed after the transportation of the vessel with the enclosed detector to its final location, but before filling with liquid argon. Our paper describes an approach to view the inside of themore » MicroBooNE cryostat with a setup of a camera and a mirror through one of its cryogenic service nozzles. The paper also describes the camera and mirror chosen for the operation, the illumination, and the mechanical structure of the setup. It explains how the system was operated and demonstrates its performance.« less

  3. COS OBSERVATIONS OF METAL LINE AND BROAD LYMAN-{alpha} ABSORPTION IN THE MULTI-PHASE O VI AND Ne VIII SYSTEM AT z = 0.20701 TOWARD HE 0226-4110

    SciTech Connect (OSTI)

    Savage, B. D. [Department of Astronomy, University of Wisconsin-Madison, 475 North Charter Street, Madison, WI 53706 (United States); Lehner, N. [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); Narayanan, A. [Indian Institute of Space Science and Technology, Thiruvananthapuram 695547, Kerala (India)

    2011-12-20

    Observations of the QSO HE 0226-4110 (z{sub em} = 0.495) with the Cosmic Origins Spectrograph (COS) from 1134 to 1796 A with a resolution of {approx}17 km s{sup -1} and signal-to-noise ratio (S/N) per resolution element of 20-40 are used to study the multi-phase absorption system at z = 0.20701 containing O VI and Ne VIII. The system was previously studied with lower S/N observations with Far-Ultraviolet Spectroscopic Explorer (FUSE) and Space Telescope Imaging Spectrograph (STIS). The COS observations provide more reliable measures of the H I and metal lines present in the system and reveal the clear presence of broad Ly{alpha} (BLA) absorption with b = 72(+13, -6) km s{sup -1} and log N(H I) = 13.87 {+-} 0.08. Detecting BLAs associated with warm gas absorbers is crucial for determining the temperature, metallicity, and total baryonic content of the absorbers. The BLA is probably recording the trace amount of thermally broadened H I in the collisionally ionized plasma with log T {approx} 5.7 that also produces the O VI and Ne VIII absorption. The total hydrogen column in the collisionally ionized gas, log N(H) {approx} 20.1, exceeds that in the cooler photoionized gas in the system by a factor of {approx}22. The oxygen abundance in the collisionally ionized gas is [O/H] = -0.89 {+-} 0.08 {+-} 0.07. The absorber probably occurs in the circumgalactic environment (halo) of a foreground L = 0.25L{sub *} disk galaxy with an impact parameter of 109 h{sub 70}{sup -1} kpc identified by Mulchaey and Chen.

  4. Mutual neutralization of atomic rare-gas cations (Ne{sup +}, Ar{sup +}, Kr{sup +}, Xe{sup +}) with atomic halide anions (Cl{sup −}, Br{sup −}, I{sup −})

    SciTech Connect (OSTI)

    Shuman, Nicholas S.; Miller, Thomas M.; Viggiano, Albert A.; Johnsen, Rainer

    2014-01-28

    We report thermal rate coefficients for 12 reactions of rare gas cations (Ne{sup +}, Ar{sup +}, Kr{sup +}, Xe{sup +}) with halide anions (Cl{sup −}, Br{sup −}, I{sup −}), comprising both mutual neutralization (MN) and transfer ionization. No rate coefficients have been previously reported for these reactions; however, the development of the Variable Electron and Neutral Density Attachment Mass Spectrometry technique makes it possible to measure the difference of the rate coefficients for pairs of parallel reactions in a Flowing Afterglow-Langmuir Probe apparatus. Measurements of 18 such combinations of competing reaction pairs yield an over-determined data set from which a consistent set of rate coefficients of the 12 MN reactions can be deduced. Unlike rate coefficients of MN reactions involving at least one polyatomic ion, which vary by at most a factor of ∼3, those of the atom-atom reactions vary by at least a factor 60 depending on the species. It is found that the rate coefficients involving light rare-gas ions are larger than those for the heavier rare-gas ions, but the opposite trend is observed in the progression from Cl{sup −} to I{sup −}. The largest rate coefficient is 6.5 × 10{sup −8} cm{sup 3} s{sup −1} for Ne{sup +} with I{sup −}. Rate coefficients for Ar{sup +}, Kr{sup +}, and Xe{sup +} reacting with Br{sub 2}{sup −} are also reported.

  5. MPO.NE7Summit.120320.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    utilization and ultimately safety of nuclear power GTRF, CRUD & PCI responsible for the majority of failed fuel rods in pressurized water reactors Pellet Clad Interactions CRUD ...

  6. MiniBooNE Pion Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

  7. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    expert on the subject matter shown in the plot. Plots marked RESTRICTED are approved for public viewing but are not to be distributed. A few examples of where these plots may not...

  8. SSL Demonstration: NE Cully Boulevard, Portland, OR

    SciTech Connect (OSTI)

    2012-11-01

    GATEWAY program report brief summarizing an SSL street lighting demonstration in a residential area of Portland, OR

  9. Recent Results from MiniBooNE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Courtesy of Kevin Lee LANNDD detector concept * Evacuable modular structure - beser argon purity * Stackable in a frame * Can run while sEll building Courtesy of Kevin Lee Data...

  10. Djurcic_MiniBooNE_PANIC2008

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    problems? *Incorrect estimation of the background? *New sources of background? *New physics including exotic oscillation scenarios? Any of these backgrounds or signals...

  11. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    includes scientists from national laboratories, research universities, predominantly undergraduate institutions, as well as a high school physics teacher. List of Collaborators...

  12. Mr. Andrew Wallo, III, NE-23

    Office of Legacy Management (LM)

    District (MED) and Atomic Energy Commission (AEC) activities ... also identified and included on the FUSRAP site list. ... Louis University Washington University North Carolina ...

  13. Mr. Andrew Wallo, III, NE-23

    Office of Legacy Management (LM)

    District (MED) and.Atomic Energy Commission (AECI) activities ... also identified and included on the FUSRAP site list. ... NAME (Continued) University of Michigan St. Louis ...

  14. A=20Ne (1978AJ03)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GENERAL: See also (1972AJ02) and Table 20.18 Table of Energy Levels (in PDF or PS). Shell model: (1970CR1A, 1971DE56, 1971RA1B, 1971ZO1A, 1972AB12, 1972AR1F, 1972AS13,...

  15. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from major neutrino experiments and important results in neutrino physics. Includes java applets. Janet's Neutrino Oscillation Page More extensive material about neutrino...

  16. MicroBooNE Project Quarterly Reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2011 Qtr-1 Oct-Nov-Dec Qtr-2 Jan-Feb-Mar Qtr-3 Apr-May-Jun Qtr-4 Jul-Aug-Sep DOE Reviews CD-0 Mission Need Statement DOE CD-1 Review 032-32010 DOE CD-2 Review 810-112011 DOE...

  17. NE Blog Archive | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Curriculum Now Available A new middle school science, technology, engineering, and math (STEM) curriculum called The Harnessed Atom is now available on the Office of Nuclear...

  18. CA Mr. Andrew Wallo, III, NE-23

    Office of Legacy Management (LM)

    ... Several colleges and universities, including the Universit of California, the University ... NAME California Inst. of Technology University of California Yale Heavy Ion Linear ...

  19. Mr. Andrew Wallo, III, NE-23

    Office of Legacy Management (LM)

    Several colleges and universities, including the Univl of California, the University of ... NAME LOCATION REMARKS California Inst. of Technology Pasadena, CA yode 3 University of ...

  20. M r. Andrew Wallo, III, NE-23

    Office of Legacy Management (LM)

    ... N A M E California Inst. of Technology University of California Yale Heavy Ion Linear ... chl itf etr ibr an1 ev 1pr I ndi ibf fit oil. tc1 opr ine iteria rersity lsetts ?S, ll- ...