Powered by Deep Web Technologies
Note: This page contains sample records for the topic "ventower industries saving" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Ventower Industries | Open Energy Information  

Open Energy Info (EERE)

Place Monroe, Michigan Zip 48161 Sector Wind energy Product Michigan-based wind turbine tower manufacturer. References Ventower Industries1 LinkedIn Connections CrunchBase...

2

12 Days of Energy Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Arakawa (ORNL) Secretarial Achievement Awards American Wind Manufacturing Wind Energy In America: Ventower Industries Saving Energy and Resources Revolutionizing Manufacturing...

3

Wind Energy In America: Ventower Industries | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Manufacturing Saving Energy and Resources Revolutionizing Manufacturing INFOGRAPHIC: Wind Energy in America National Wind Technology Center - Colorado America's Wind Testing...

4

Wind Energy In America: Ventower Industries | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

County Courthouse: Before and After Solar Industry At Work The World Renewable Energy Forum in Denver Solar Phoenix 2 Launch Event The Max Tech and Beyond Competition Leon...

5

Energy Savings in Industrial Buildings  

E-Print Network (OSTI)

The industrial sector accounts for more than one-third of total energy use in the United States and emits 28.7 percent of the country’s greenhouse gases. Energy use in the industrial sector is largely for steam and process heating systems, and electricity for equipment such as pumps, air compressors, and fans. Lesser, yet significant, amounts of energy are used for industrial buildings – heating, ventilation, and air conditioning (HVAC), lighting and facility use (such as office equipment). Due to economic growth, energy consumption in the industrial sector will continue to increase gradually, as will energy use in industrial buildings. There is a large potential for energy saving and carbon intensity reduction by improving HVAC, lighting, and other aspects of building operation and technologies. Analyses show that most of the technologies and measures to save energy in buildings would be cost-effective with attractive rates of return. First, this paper will investigate energy performance in buildings within the manufacturing sector, as classified in the North American Industry Classification System (NAICS). Energy use patterns for HVAC and lighting in industrial buildings vary dramatically across different manufacturing sectors. For example, food manufacturing uses more electricity for HVAC than does apparel manufacturing because of the different energy demand patterns. Energy saving opportunities and potential from industrial buildings will also be identified and evaluated. Lastly, barriers for deployment of energy savings technologies will be explored along with recommendations for policies to promote energy efficiency in industrial buildings.

Zhou, A.; Tutterow, V.; Harris, J.

2009-05-01T23:59:59.000Z

6

Industry Leaders Saving Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industry Leaders Saving Energy Industry Leaders Saving Energy Industry Leaders Saving Energy May 6, 2010 - 11:35am Addthis Joshua DeLung Companies such as 3M, Intel, PepsiCo and Whirlpool are participating in the Energy Department's Save Energy Now LEADER initiative, committing to reducing their energy use by 25 percent or more in 10 years. Another established company participating in the program, AT&T, is also making that commitment to saving energy while producing more renewable power at many of its locations across the country."We're taking meaningful steps to run a more-efficient network and explore alternative and renewable energy use," John Schinter, director of energy for AT&T Services, Inc., says. The company utilizes wind and solar power at some of its buildings. In

7

Snapshots of the Year in Energy: 12 Awesome Photos from 2012...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

David Arakawa (ORNL) Secretarial Achievement Awards American Wind Manufacturing Wind Energy In America: Ventower Industries Saving Energy and Resources Revolutionizing...

8

Motor Energy Saving Opportunities in an Industrial Plant  

E-Print Network (OSTI)

Industrial plants have enormous energy saving opportunities with electric motors. Improving motor efficiency is a conventional wisdom to save energy. Re-engineering affords far greater savings opportunities than motor efficiency improvement. Motor energy saving techniques and basics are discussed. A case study is presented where 63% motor energy savings were realized.

Kumar, B.; Elwell, A.

1999-05-01T23:59:59.000Z

9

Delmarva Power - Commercial and Industrial Energy Savings Program...  

Open Energy Info (EERE)

this page on Facebook icon Twitter icon Delmarva Power - Commercial and Industrial Energy Savings Program (Maryland) This is the approved revision of this page, as well as...

10

Wind Energy In America: Ventower Industries | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

All Photo Galleries The Energy Department Goes to New York Energy Week Energy Secretary Moniz at CASL SLIDESHOW: Secretary Moniz Visits Oak Ridge National Laboratory White House...

11

Wind Energy In America: Ventower Industries | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rebuilding a Greener New Orleans on Veteran's Day A Book of Condolences for Fukushima Energy Matters Online Townhall 2 of 5 Clean Energy and Innovation Clean Fleets Announcement 2...

12

Wind Energy In America: Ventower Industries | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Showcase LED Lighting on the National Mall Detroit Auto Show 2012 Federal Energy Management Trade Show Supercomputers' Pictorial Superpowers How the Smart Grid Helps...

13

Wind Energy In America: Ventower Industries | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SLIDESHOW: Shepherds Flat Wind Farm 2013 Washington Auto Show An Express Train to Crescent Junction Photo of the Week: 2013 What&039;s your energypledge? What's your...

14

Industry Leaders Saving Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

at some of its buildings. In Austin, Texas, it uses wind power for 10 percent of its electricity consumption, allowing AT&T to save 7.2 million kWh of fossil-generated electricity...

15

DOE Launches New Website Aimed at Improving Industrial Energy Savings |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Website Aimed at Improving Industrial Energy New Website Aimed at Improving Industrial Energy Savings DOE Launches New Website Aimed at Improving Industrial Energy Savings November 8, 2005 - 2:19pm Addthis Washington, D.C. - Energy Secretary Samuel W. Bodman today announced the launch of a new website providing U.S. manufacturing plants a quick and easy way to sign up for the Department of Energy's Industrial Energy Saving Teams program. The program, launched on October 3, 2005 as part of a national energy saving effort, seeks to improve the energy efficiency of America's most energy-intensive manufacturing facilities through comprehensive energy assessments. "President Bush has called on all Americans to improve efficiency in light of expected higher energy prices this fall. Because they are so energy

16

Control of energy saving at industrial enterprises  

Science Conference Proceedings (OSTI)

Problems connected with improvement of control systems for power systems of industrial enterprises, which are most important elements of energy and fuel consumption in industry, are considered. The growth of energy and fuel cost, the increasing requirements ...

A. F. Rezchikov

2010-10-01T23:59:59.000Z

17

INFOGRAPHIC: Wind Energy in America | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Homes David Arakawa (ORNL) Secretarial Achievement Awards American Wind Manufacturing Wind Energy In America: Ventower Industries Saving Energy and Resources Revolutionizing...

18

American Wind Manufacturing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 Million Weatherized American Homes David Arakawa (ORNL) Secretarial Achievement Awards Wind Energy In America: Ventower Industries Saving Energy and Resources Revolutionizing...

19

U.S. Industries: Partner with DOE to Save Energy and Money  

SciTech Connect

This DOE Industrial Program fact sheet describes Save Energy Now, part of a national campaign to engage the public, the government, and industry in making simple but effective energy-saving choices.

2005-11-01T23:59:59.000Z

20

Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

Demonstration of Energy Savings of Cool Roofs. LawrenceRivers. (1997). Capturing Energy Savings with Steam Traps.CADDET). (1997b). Energy Savings with New Industrial Paint

Galitsky, Christina

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ventower industries saving" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Case Study Impact Evaluations of the Industrial Energy Savings Plan  

E-Print Network (OSTI)

This paper presents the results of a series of five case study impact evaluations of Energy Savings Plan (ESP) industrial energy efficiency projects funded by the Bonneville Power Administration (BPA) and Seattle City Light (City Light). These industrial sector evaluations are among the first in the Pacific Northwest to evaluate both energy and non-energy effects. The projects chosen for evaluation cover a wide range of industrial processes and end-uses. Each industrial setting, the efficiency measures installed and the processes affected are described in this paper. The report presents energy (kWh) and peak demand (kW) savings indexed to changes in production volume, an assessment of non-energy benefits to the participating customer, and cost-effectiveness analyses from four stakeholder perspectives. Levelized cost (expressed in cents per kWh) and benefit-cost ratios were calculated for each project, both including and excluding quantifiable energy non-energy benefits. A summary of conclusions and lessons learned is also provided. The evaluation team included Patrick Lilly of Regional Economic Research Inc., Paresh Parekh of Unicade Inc., D'Arcy Swanson of Pacific Sciences Inc., and Dennis Pearson at Seattle City Light.

Lilly, P.; Pearson, D.

1999-05-01T23:59:59.000Z

22

Update on Energy Saving Opportunities in Industrial Electrical Power Systems  

E-Print Network (OSTI)

High electrical power costs, rising at a rate consistently above that of general inflation, force the industrial power user to continuously update and evaluate available means of saving electrical energy. This paper provides a survey of one company's experience with several methods of energy conservation in electrical distribution systems, and its present practices in this area. Topics covered include the location of large and reducible losses, the determination of the worth of these losses, and a survey of ways to reduce them in an economical manner.

Frasure, J. W.; Fredericks, C. J.

1986-06-01T23:59:59.000Z

23

Energy Use and Savings in the Canadian Industrial Sector  

E-Print Network (OSTI)

The changing role of energy as a production input in the industrial sector in Canada is examined. Energy use patterns are reviewed in terms of the energy input types, both purchased and self-produced, the actual energy form and quality requirements, and the residual energy forms, in particular the rejected gaseous and liquid waste heat streams. The trends in the intensity of energy use are examined, in terms of the energy consumed per unit of production output, and relative to the cost of other production inputs. Energy consumption and intensity have been influenced by many factors: energy prices; energy types used; structural composition and product mix; the state of the national economy and international markets, etc. In addition, energy use management with the achievement of optimum economic efficiency of energy use as the objective became an increasing priority for corporate and national energy planning during the 1970's. The potential for saving energy and money, the costs and benefits, are discussed in the light of evidence from a variety of industry and government sources. It appears that the substitution of energy-saving techniques and technologies as a replacement for the use of energy inputs will remain a high priority during the 1980's.

James, B.

1982-01-01T23:59:59.000Z

24

Save Energy Now: Successful Partnership Benefits Industry's Bottom Line  

SciTech Connect

This fact sheet describes the elements and benefits of the U.S. DOE Industrial Technologies Program's Save Energy Now initiative. Save Energy Now is part of a national campaign, ''Easy Ways to Save Energy'', announced by DOE in 2005. This campaign educates the public about simple but effective energy choices, helps U.S. industry and the government reduce their energy use, and supports national goals for energy security. Through Save Energy Now, DOE's Industrial Technologies Program (ITP) helps industrial plants operate more efficiently and profitably by identifying ways to reduce energy use in key industrial process systems.

2006-10-01T23:59:59.000Z

25

Jump-Start Your Plant's Energy Savings with Quick PEP, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)  

SciTech Connect

This fact sheet describes how the Industrial Technologies Program Quick Plant Energy Profiler (Quick PEP) can help industrial plants identify energy use and find ways to save money and energy.

Not Available

2008-12-01T23:59:59.000Z

26

Energy Saving in the Foundry Industry by using the CRIMSON ...  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2010 TMS Annual Meeting & Exhibition. Symposium , Energy Conservation in Metals. Presentation Title, Energy Saving in the ...

27

Industry-Government Partnership Funds New Energy-Saving ...  

Science Conference Proceedings (OSTI)

... PowerLight Corporation Berkeley, Calif. Solar roof cooling and electricity generation. ... Energy-saving thermostat with variable deadband control. ...

2012-12-13T23:59:59.000Z

28

The Impact of Energy Saving Policies on Industries in China.  

E-Print Network (OSTI)

??Current design and implementation of China's energy saving policies are characterized by multiple, mixed policy instruments and spatially based regulatory disparity. The dissertation replies on… (more)

Zhu, Junming

2013-01-01T23:59:59.000Z

29

Research Findings on Energy Savings in Industrial Power Supplies  

Science Conference Proceedings (OSTI)

This report summarizes the final results of research conducted in 2007 on ways to improve the energy efficiency of industrial power supplies. The research findings and analysis confirm that significant opportunities exist for greater efficiencies in the use of a variety of industrial power supply technologies, especially in the area of transformers, motors, variable speed drives, and lighting.

2008-03-31T23:59:59.000Z

30

Tuesday Webcast for Industry: Key Energy-Saving Projects for Smaller Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Key Energy-Saving Key Energy-Saving Projects for Smaller Facilities January 10, 2012 Program Name or Ancillary Text eere.energy.gov Key Energy-Saving Activities for Small and Medium Sized Facilities Thomas Wenning Oak Ridge National Laboratory Tuesday Webcast for Industry January 10, 2012 3 | Advanced Manufacturing Office eere.energy.gov Percent of Total U.S. Manufacturing Energy Small 5% Mid-Size 37% Large 58% 0 50000 100000 150000 200000 250000 U.S. Manufacturing Plants: By Size Small Plants Mid-Size Plants Large Plants Number of U.S. Plants All Plants 84,298 112,398 4,014 200,710 System-Specific Assessments Crosscutting Assessments Industry Breakdown 4 | Advanced Manufacturing Office eere.energy.gov 4,014 large plants use 58% of the energy Energy Saving

31

Save Energy Now (SEN) Assessment Helps Expand Energy Management Program at Shaw Industries: Flooring Company Saves $872,000 Annually by Improving Steam System Efficiency  

Science Conference Proceedings (OSTI)

This case study describes how the Shaw Industries plant #20 in Dalton, Georgia, achieved annual savings of $872,000 and 93,000 MMBtu after receiving a DOE Save Energy Now energy assessment and implementing recommendations to improve the efficiency of its steam system.

Not Available

2008-07-01T23:59:59.000Z

32

Energy Efficiency Improvement and Cost Saving Oportunities for the Concrete Industry  

SciTech Connect

The U.S. concrete industry is the main consumer of U.S.-produced cement. The manufacturing of ready mixed concrete accounts for more than 75% of the U.S. concrete production following the manufacturing of precast concrete and masonry units. The most significant expenditure is the cost of materials accounting for more than 50% of total concrete production costs - cement only accounts for nearly 24%. In 2009, energy costs of the U.S. concrete industry were over $610 million. Hence, energy efficiency improvements along with efficient use of materials without negatively affecting product quality and yield, especially in times of increased fuel and material costs, can significantly reduce production costs and increase competitiveness. The Energy Guide starts with an overview of the U.S. concrete industry’s structure and energy use, a description of the various manufacturing processes, and identification of the major energy consuming areas in the different industry segments. This is followed by a description of general and process related energy- and cost-efficiency measures applicable to the concrete industry. Specific energy and cost savings and a typical payback period are included based on literature and case studies, when available. The Energy Guide intends to provide information on cost reduction opportunities to energy and plant managers in the U.S. concrete industry. Every cost saving opportunity should be assessed carefully prior to implementation in individual plants, as the economics and the potential energy and material savings may differ.

Kermeli, Katerina; Worrell, Ernst; Masanet, Eric

2011-12-01T23:59:59.000Z

33

Georgia County Turning Industrial and Farm Waste Into Big Energy Savings |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Georgia County Turning Industrial and Farm Waste Into Big Energy Georgia County Turning Industrial and Farm Waste Into Big Energy Savings Georgia County Turning Industrial and Farm Waste Into Big Energy Savings March 30, 2011 - 2:44pm Addthis Interior view of the Gwinnett County "Gas To Energy" Project | Photo Courtesy of Gwinnett County, GA Interior view of the Gwinnett County "Gas To Energy" Project | Photo Courtesy of Gwinnett County, GA Tertia Speiser Project Officer, Golden Field Office What does this project do? Methane gas from biosolids, fats, oils, greases and other high strength industrial wastes is turned into energy. The county is improving efficiency and providing an alternative to clogging the sewers. The "Gas to Energy" system minimizes the impact of rising energy costs on consumers.

34

Georgia County Turning Industrial and Farm Waste Into Big Energy Savings |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Georgia County Turning Industrial and Farm Waste Into Big Energy Georgia County Turning Industrial and Farm Waste Into Big Energy Savings Georgia County Turning Industrial and Farm Waste Into Big Energy Savings March 30, 2011 - 2:44pm Addthis Interior view of the Gwinnett County "Gas To Energy" Project | Photo Courtesy of Gwinnett County, GA Interior view of the Gwinnett County "Gas To Energy" Project | Photo Courtesy of Gwinnett County, GA Tertia Speiser Project Officer, Golden Field Office What does this project do? Methane gas from biosolids, fats, oils, greases and other high strength industrial wastes is turned into energy. The county is improving efficiency and providing an alternative to clogging the sewers. The "Gas to Energy" system minimizes the impact of rising energy costs on consumers.

35

Jump-Start Your Plant's Energy Savings with Quick PEP, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)  

SciTech Connect

This fact sheet describes how the Industrial Technologies Program Quick Plant Energy Profiler (Quick PEP) can help industrial plants identify energy use and find ways to save money and energy.

2008-12-01T23:59:59.000Z

36

Industrial Insulation: An Energy Efficient Technology That Saves Money and Reduces  

E-Print Network (OSTI)

Increasing energy efficiency in U.S. industrial facilities is an important part of the U.S. energy policy for attaining goals such as reduced greenhouse gas emissions, a stronger economy, and greater national security. One of the quickest ways to improve energy efficiency in the manufacturing sector is to install, upgrade, and repair insulation on process piping systems and equipment. Insulation has always been a ""good thing to do"". Everyone knows it save energy by preventing heat loss-but no one knew exactly just how much. Everyone understands that insulation protects people from hot surfaces and that it prevents condensation. Until recently, however no one could quantify the emissions saved for the insulation investment incurred. In fact, quantifying the benefits of insulation in terms of energy saved versus overall cost has always been a difficult task. The chemical plant example presented had an insulation appraisal conducted and was able to quantify the possible reductions of specific greenhouse gases and demonstrate to management that installing insulation could result in major reductions in the facilities operating costs. The insulation appraisal used the new Windows® version of 3E Plus®, a computer software program that can now calculate how much insulation is necessary to reduce NOx, CO2, and Carbon Equivalent (CE) emissions, exactly how much energy is saved throughout applying a range of insulation thicknesses and the dollar cost savings realized through preventing energy waste.

Brayman, B.

1999-05-01T23:59:59.000Z

37

The Use of Electricity in Industry and Energy Saving - The Gamma Co-Efficient  

E-Print Network (OSTI)

Use of electricity in manufacturing processes is not only limited to its specific utilizations as motion power, lighting, electrolysis. Worldwide energy troubles involve in France a great voluntee to substitute in industrial processes the nuclear electricity to the oil-burning one. The main part of these uses the replacement thermal ones. Of course, electrical processes which will develop are technically tested and economically justified. Energetic comparison of concurrent processes leads to the use of simple factors : the gamma factor. It is, when using energy, the number of thermies which are replaced by one kWh. Gamma is not a factor for measuring the oil saving but the using efficiency. For measuring the oil saving, the author uses 'the net gain of oil weight'. Examples of applications and main results are given in various industrial branches.

Wolf, R.; Froehlich, R.

1983-01-01T23:59:59.000Z

38

Tuesday Webcast for Industry: Key Energy-Saving Activities for Smaller Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ADVANCED MANUFACTURING OFFICE Tuesday Webcast for Industry Key Energy-Saving Activities for Smaller Facilities Webcast Questions and Answers: January 10, 2012 Presenters: Tom Wenning, Technical Account Manager, Oak Ridge National Laboratory Richard D. Feustel, Corporate Energy Services Manager, Briggs & Stratton Corporation The U.S. Department of Energy's (DOE's) Office of Advanced Manufacturing Program (AMO) hosts a series of webcasts on the first Tuesday of every month from 2:00 p.m. to 3:00 p.m. Eastern Standard Time. The series' objective is to help industrial personnel learn about software

39

Energy Savings Potential and Policy for Energy Conservation in Selected Indian Manufacturing Industries  

E-Print Network (OSTI)

Minimization of damage from the rising trend of global warming would warrant two kinds of action for a country like India: a) abatement of greenhouse gas emissions and b) adaptation to climate change so as to reduce climate change related vulnerability of the people. The target of low carbon economic growth of India in terms of declining energy and carbon intensity of GDP assumes, therefore, a special significance in such context. Of the different options for lowering carbon intensity of GDP, the option of energy conservation through reduced energy intensity of output happens to be cheaper in most cases than the carbon free energy supply technology options. As the industrial sector has the largest sectoral share of final energy consumption in India this paper focuses on the assessment of energy savings potential in seven highly energy consuming industries. The paper estimates the energy savings potential for each of these industries using unit level Annual Survey of Industries data for 2007-08. The paper further develops an econometric model admitting substitutability among energy and other non-energy inputs as well as that among fuels using translog cost function for the selected industries and

Manish Gupta; Ramprasad Sengupta; Manish Gupta; Ramprasad Sengupta

2012-01-01T23:59:59.000Z

40

Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry  

E-Print Network (OSTI)

Refrigeration: Introducing Energy Saving Opportunities forManufacturing Produces Energy-Saving Opportunities. http://Demonstration of Energy Savings of Cool Roofs. Lawrence

Brush, Adrian

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ventower industries saving" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Energy Efficiency Improvements and Cost Saving Opportunities in the Corn Wet Milling Industry  

E-Print Network (OSTI)

Corn wet milling is the most energy intensive industry in the food and kindred products group (SIC 20). Plants typically spend approximately $15 to 25 million per year on energy, one of its largest operating costs, making energy efficiency improvement an important way to reduce costs and increase predictable earnings, especially in times of high energy-price volatility. After describing the industry's trends, structure and production and the process's energy use, we examine energy-efficiency opportunities for corn wet millers. Where available, we provide energy savings and typical payback periods for each measure based on case studies of plants that have implemented it. Given available resources and technology, there are opportunities to reduce energy consumption cost-effectively in the industry while maintaining the quality of the products produced. Further research on the economics of the measures and their applicability to different wet milling practices is needed to assess implementation of selected technologies at individual plants.

Galitsky, C.; Worrell, E.

2003-05-01T23:59:59.000Z

42

BEST Winery Guidebook: Benchmarking and Energy and Water SavingsTool for the Wine Industry  

Science Conference Proceedings (OSTI)

Not all industrial facilities have the staff or the opportunity to perform a detailed audit of their operations. The lack of knowledge of energy efficiency opportunities provides an important barrier to improving efficiency. Benchmarking has demonstrated to help energy users understand energy use and the potential for energy efficiency improvement, reducing the information barrier. In California, the wine making industry is not only one of the economic pillars of the economy; it is also a large energy consumer, with a considerable potential for energy-efficiency improvement. Lawrence Berkeley National Laboratory and Fetzer Vineyards developed an integrated benchmarking and self-assessment tool for the California wine industry called ''BEST''(Benchmarking and Energy and water Savings Tool) Winery. BEST Winery enables a winery to compare its energy efficiency to a best practice winery, accounting for differences in product mix and other characteristics of the winery. The tool enables the user to evaluate the impact of implementing energy and water efficiency measures. The tool facilitates strategic planning of efficiency measures, based on the estimated impact of the measures, their costs and savings. BEST Winery is available as a software tool in an Excel environment. This report serves as background material, documenting assumptions and information on the included energy and water efficiency measures. It also serves as a user guide for the software package.

Galitsky, Christina; Worrell, Ernst; Radspieler, Anthony; Healy,Patrick; Zechiel, Susanne

2005-10-15T23:59:59.000Z

43

Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry  

E-Print Network (OSTI)

energy costs by implementing energy efficiency measures can2005a). Energy Efficiency Improvement and Cost SavingL ABORATORY Energy Efficiency Improvement and Cost Saving

Brush, Adrian

2012-01-01T23:59:59.000Z

44

Save Energy Now  

SciTech Connect

This DOE Industrial Technologies Program brochure informs industrial audiences about Save Energy Now, part of ''Easy Ways to Save Energy'', a national campaign to save energy and ensure energy security.

2006-01-01T23:59:59.000Z

45

Save Energy Now  

SciTech Connect

This DOE Industrial Technologies Program brochure informs industry about Phase 2 of Save Energy Now, part of "Easy Ways to Save Energy," a national campaign to save energy and ensure energy security.

2006-10-01T23:59:59.000Z

46

Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry, March 2008  

NLE Websites -- All DOE Office Websites (Extended Search)

7335-Revision 7335-Revision ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry ® An ENERGY STAR Guide for Energy and Plant Managers Ernst Worrell, Christina Galitsky, Eric Masanet, and Wina Graus Environmental Energy Technologies Division Sponsored by the U.S. Environmental Protection Agency March 2008 Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or

47

Guidebook for Using the Tool BEST Cement: Benchmarking and Energy Savings Tool for the Cement Industry  

E-Print Network (OSTI)

Energy, Emissions, Savings Potential and Policy Actions, Fraunhofer Institute for Systems Technology and Innovation, Karlsruhe, Germany. Centre for the Analysis

Galitsky, Christina

2009-01-01T23:59:59.000Z

48

Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry  

E-Print Network (OSTI)

Engineering (2005). Industrial Refrigeration Best PracticesEngineering (2007). Industrial Refrigeration Best Practicesdatabase/. Industrial Refrigeration Consortium (IRC) (

Brush, Adrian

2012-01-01T23:59:59.000Z

49

IMPACTS: Industrial Technologies Program, Summary of Program Results for CY2009, Appendix 5: Method of Calculating Results for the Save Energy Now Initiative  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

181 DOE Industrial Technologies Program 181 DOE Industrial Technologies Program Appendix 5: Method of Calculating Results for the Save Energy Now Initiative u Large Plant Assessments .................................................................................................................................................................... 182 u Training .............................................................................................................................................................................................. 183 u Software Tools Distribution................................................................................................................................................................ 183

50

BEST Winery Guidebook: Benchmarking and Energy and Water Savings Tool for the Wine Industry  

E-Print Network (OSTI)

Saving Energy with Daylighting Systems. Maxi Brochure 14 (an efficient daylighting system may provide evenly dispersedrefitted with daylighting systems. Various daylighting

Galitsky, Christina; Worrell, Ernst; Radspieler, Anthony; Healy, Patrick; Zechiel, Susanne

2005-01-01T23:59:59.000Z

51

City energy plan: choices for saving energy in the industrial sector, Task 2. 3 B  

SciTech Connect

The following are covered: how energy is used today, ways to save energy, ways to implement, conservation choices, and impacts of price increases and supply cutbacks. (MHR)

1976-11-01T23:59:59.000Z

52

BEST Winery Guidebook: Benchmarking and Energy and Water Savings Tool for the Wine Industry  

E-Print Network (OSTI)

Drive Opportunities in Industrial Refrigeration Systems, VFDnewsletter for the Industrial Refrigeration Consortium atDrive Opportunities in Industrial Refrigeration Systems, VFD

Galitsky, Christina; Worrell, Ernst; Radspieler, Anthony; Healy, Patrick; Zechiel, Susanne

2005-01-01T23:59:59.000Z

53

Energy Efficiency Improvement and Cost Saving Oportunities for the Concrete Industry  

E-Print Network (OSTI)

a significant source of wasted energy. A typical plant thatused to burn fuel, energy is wasted, because excessive heatenergy savings in compressed air systems. By properly sizing regulators, compressed air that is otherwise wasted

Kermeli, Katerina

2013-01-01T23:59:59.000Z

54

Potential Energy Savings and CO2 Emissions Reduction of China's Cement Industry  

E-Print Network (OSTI)

2030. Three cement output projections are developed based onthese three production projections, energy savings and CO2have been a number of projections of China’s future cement

Ke, Jing

2013-01-01T23:59:59.000Z

55

Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

identify and evaluate energy-saving opportunities, recommendDemonstration of Energy Savings of Cool Roofs. LawrenceT60. Backhausen, J. (2000). Energy – Saving and Emission –

Worrell, Ernst

2008-01-01T23:59:59.000Z

56

Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry  

E-Print Network (OSTI)

Summer Study on Energy Efficiency in Industry. AmericanSummer Study on Energy Efficiency in Industry. AmericanCanada, Office of Energy Efficiency, Ottawa, Ontario. Carbon

Brush, Adrian

2012-01-01T23:59:59.000Z

57

Guidebook for Using the Tool BEST Cement: Benchmarking and Energy Savings Tool for the Cement Industry  

SciTech Connect

The Benchmarking and Energy Savings Tool (BEST) Cement is a process-based tool based on commercially available efficiency technologies used anywhere in the world applicable to the cement industry. This version has been designed for use in China. No actual cement facility with every single efficiency measure included in the benchmark will likely exist; however, the benchmark sets a reasonable standard by which to compare for plants striving to be the best. The energy consumption of the benchmark facility differs due to differences in processing at a given cement facility. The tool accounts for most of these variables and allows the user to adapt the model to operational variables specific for his/her cement facility. Figure 1 shows the boundaries included in a plant modeled by BEST Cement. In order to model the benchmark, i.e., the most energy efficient cement facility, so that it represents a facility similar to the user's cement facility, the user is first required to input production variables in the input sheet (see Section 6 for more information on how to input variables). These variables allow the tool to estimate a benchmark facility that is similar to the user's cement plant, giving a better picture of the potential for that particular facility, rather than benchmarking against a generic one. The input variables required include the following: (1) the amount of raw materials used in tonnes per year (limestone, gypsum, clay minerals, iron ore, blast furnace slag, fly ash, slag from other industries, natural pozzolans, limestone powder (used post-clinker stage), municipal wastes and others); the amount of raw materials that are preblended (prehomogenized and proportioned) and crushed (in tonnes per year); (2) the amount of additives that are dried and ground (in tonnes per year); (3) the production of clinker (in tonnes per year) from each kiln by kiln type; (4) the amount of raw materials, coal and clinker that is ground by mill type (in tonnes per year); (5) the amount of production of cement by type and grade (in tonnes per year); (6) the electricity generated onsite; and, (7) the energy used by fuel type; and, the amount (in RMB per year) spent on energy. The tool offers the user the opportunity to do a quick assessment or a more detailed assessment--this choice will determine the level of detail of the energy input. The detailed assessment will require energy data for each stage of production while the quick assessment will require only total energy used at the entire facility (see Section 6 for more details on quick versus detailed assessments). The benchmarking tool provides two benchmarks--one for Chinese best practices and one for international best practices. Section 2 describes the differences between these two and how each benchmark was calculated. The tool also asks for a target input by the user for the user to set goals for the facility.

Galitsky, Christina; Price, Lynn; Zhou, Nan; Fuqiu , Zhou; Huawen, Xiong; Xuemin, Zeng; Lan, Wang

2008-07-30T23:59:59.000Z

58

Save Energy Now  

SciTech Connect

This trifold describes DOE's Industrial Technologies Program's Save Energy Now campaign, and gives information on partnership opportunities for industry.

2006-03-01T23:59:59.000Z

59

Guidebook for Using the Tool BEST Cement: Benchmarking and Energy Savings Tool for the Cement Industry  

E-Print Network (OSTI)

Pharmaceutical Industry: An ENERGY STAR Guide for Energy andPharmaceutical Industry: An ENERGY STAR Guide for Energy andAn ENERGY STAR ® Guide for Energy and Plant Managers.

Galitsky, Christina

2009-01-01T23:59:59.000Z

60

Industrial Heat Pumps for Steam and Fuel Savings: A BestPractices Steam Technical Brief  

SciTech Connect

The purpose of this Steam Techcial Brief is to introduce heat-pump technology and its applicaiton in industrial processes.

2003-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "ventower industries saving" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Energy Efficiency Improvement and Cost Saving Oportunities for the Concrete Industry  

E-Print Network (OSTI)

air pollutant emissions. Steam distribution system energyimprovements to steam distribution systems primarily focusenergy in industrial steam distribution systems. Improve

Kermeli, Katerina

2013-01-01T23:59:59.000Z

62

Measurement and Verification of Industrial Energy-Savings Projects – Lessons Learned By Measuring Successful and Not-So Successful Projects  

E-Print Network (OSTI)

The current BC Hydro energy-conservation program is called Power Smart and was started in 2001. Of the 1200 projects completed to date over 300 have been in the manufacturing and industrial sector with savings of more than 400 GWh annually. The savings have been verified using BC Hydro’s Measurement and Verification (M&V) standards which follow the International Performance Measurement and Verification Protocol (IPMVP). High-cost projects with large savings have been verified using Option B, retrofit isolation measurement. BC Hydro has performed Option B M&V on 180 of the largest projects including fans, pumps, variable speed drives, compressed air, refrigeration, process controls, process optimization, heat recovery, high-efficiency motors, ball mills, refiner plates, pulp screen rotors and turbine-generators. Data is either gathered from existing metering where possible or in many cases BC Hydro installs temporary three-phase power loggers. The temporary loggers typically capture data in 15-minute intervals for several months during the baseline period and for 12 months of post-retrofit operation. This paper outlines several projects showing baseline and post-retrofit measurements. Successes, failures, and lessons learned are discussed.

Hebert, D

2008-01-01T23:59:59.000Z

63

Energy Efficiency Improvement and Cost Saving Oportunities for the Concrete Industry  

E-Print Network (OSTI)

Council of Industrial Boiler Owners, Burke, Virginia. 9.Conservation (CIPEC). 2001b. Boilers and Heaters, Improving43 5.6.1 Boiler energy efficiency

Kermeli, Katerina

2013-01-01T23:59:59.000Z

64

Energy Efficiency Improvement and Cost Saving Oportunities for the Concrete Industry  

E-Print Network (OSTI)

Section 5.5). Industrial refrigeration systems are anotherindustrial electricity consumer and are used in many plant systems, such as HVAC, compressed air, refrigeration

Kermeli, Katerina

2013-01-01T23:59:59.000Z

65

Guidebook for Using the Tool BEST Cement: Benchmarking and Energy Savings Tool for the Cement Industry  

E-Print Network (OSTI)

and MAIN. 1993. Energy Technology in the Cement IndustrialNo. 16000393, September 9. Energy Technology Support Unit (of China (ITIBMIC). Energy Technology Support Unit (ETSU).

Galitsky, Christina

2009-01-01T23:59:59.000Z

66

Energy Efficiency Improvement and Cost Saving Oportunities for the Concrete Industry  

E-Print Network (OSTI)

of Energy Efficiency and Renewable Energy, Washington, D.C.of Energy, Energy Efficiency and Renewable Energy. Chopin,Office of Energy Efficiency and Renewable Energy, Industrial

Kermeli, Katerina

2013-01-01T23:59:59.000Z

67

Potential Energy Savings and CO2 Emissions Reduction of China's Cement Industry  

E-Print Network (OSTI)

Specific cement energy consumption: conversion of power into2006. Cement industry energy consumption status and energyZhou, H. , 2007a. Energy consumption and environment

Ke, Jing

2013-01-01T23:59:59.000Z

68

Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers  

Science Conference Proceedings (OSTI)

The U.S. glass industry is comprised of four primary industry segments--flat glass, container glass, specialty glass, and fiberglass--which together consume $1.6 billion in energy annually. On average, energy costs in the U.S. glass industry account for around 14 percent of total glass production costs. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There is a variety of opportunities available at individual plants in the U.S. glass industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, system, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. glass industry is provided along with a description of the major process steps in glass manufacturing. Expected savings in energy and energy-related costs are given for many energy efficiency measures, based on case study data from real-world applications in glass production facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. glass industry reduce energy consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of the measures--as well on as their applicability to different production practices--is needed to assess potential implementation of selected technologies at individual plants.

Galitsky, Christina; Worrell, Ernst; Galitsky, Christina; Masanet, Eric; Graus, Wina

2008-03-01T23:59:59.000Z

69

Priority listing of industrial processes by total energy consumption and potential for savings. Final report  

SciTech Connect

A survey of eight of the most energy-intensive segments of the U.S. industry is made to quantify the energy consumed in the principal process units, to identify areas in which significant improvement appear possible, and to rank the process units in terms of total energy consumption and the potential for improvement. Data on the steel, paper, aluminum, textile, cement, and glass industries, petroleum refineries, and olefins and derivative products industries were compiled to help plan the development of new energy sources and to provide targets for energy conservation activities. (MCW)

Streb, A.J.

1977-01-01T23:59:59.000Z

70

Chapter 3, Commercial and Industrial Lighting Controls Evaluation Protocol: The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3: Commercial and 3: Commercial and Industrial Lighting Controls Evaluation Protocol Stephen Carlson, DNV KEMA Subcontract Report NREL/SR-7A30-53827 April 2013 The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures 3 - 1 Chapter 3 - Table of Contents 1 Measure Description .............................................................................................................. 2 2 Application Conditions of Protocol ....................................................................................... 3 3 Savings Calculations .............................................................................................................. 5 3.1 Algorithms ....................................................................................................................... 5

71

Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers  

SciTech Connect

The U.S. pharmaceutical industry consumes almost $1 billion in energy annually. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. pharmaceutical industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy efficient technologies that can be implemented at the component, process, system, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. pharmaceutical industry is provided along with a description of the major process steps in the pharmaceutical manufacturing process. Expected savings in energy and energy-related costs are given for many energy efficiency measures, based on case study data from real-world applications in pharmaceutical and related facilities worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers reduce energy consumption in a cost-effective manner while meeting regulatory requirements and maintaining the quality of products manufactured. At individual plants, further research on the economics of the measures?as well as their applicability to different production practices?is needed to assess potential implementation of selected technologies.

Galitsky, Christina; Galitsky, Christina; Chang, Sheng-chieh; Worrell, Ernst; Masanet, Eric

2008-03-01T23:59:59.000Z

72

Energy-saving cements obtained from chemical gypsum and other industrial wastes  

SciTech Connect

The main sources, properties and uses of chemical gypsum are reviewed and the possibility of its utilization for the manufacturing process of calcium sulfoaluminate cements is explored. In this process other industrial wastes, as sources of reactive silica and alumina, can be employed. Phosphogypsum, blast-furnace slag and fly ash were the main by-products investigated. The principal properties of calcium sulfoaluminate cements, such as synthesis, hydration and strength, were discussed. Some durability problems and suggested solutions were particularly emphasized.

Beretka, J. [CSIRO Div. of Building, Construction and Engineering, Highett, Victoria (Australia)] [CSIRO Div. of Building, Construction and Engineering, Highett, Victoria (Australia); Cioffi, R. [Univ. Degli Studi di Napoli Federico II (Italy). Dipt. di Ingegneria dei Materiali e della Produzione] [Univ. Degli Studi di Napoli Federico II (Italy). Dipt. di Ingegneria dei Materiali e della Produzione; Marroccoli, M.; Valenti, G.L. [Univ. della Basilicata, Potenza (Italy). Dipt. di Ingegneria e Fisica dell`Ambiente] [Univ. della Basilicata, Potenza (Italy). Dipt. di Ingegneria e Fisica dell`Ambiente

1996-12-31T23:59:59.000Z

73

Industrial Insulation: Protects the Environment, Improves Efficiency and Saves More Money Than You Can Imagine!  

E-Print Network (OSTI)

Stabilizing greenhouse gas emissions to stem the impact of global climate change is becoming one of the hottest topics heading into the new century. Regardless of which side of the issue you are on, there is no debate that increasing energy efficiency is important to environmental preservation. One of the most effective energy efficient technologies available is mineral fiber insulation. The examples presented will give energy management professionals the evidence they need to consider industrial insulation a time-tested, off-the-shelf technology for achieving major reductions in operating costs and CO2 emissions.

Brayman, W. J.

1998-04-01T23:59:59.000Z

74

User's Manual for BEST-Dairy: Benchmarking and Energy/water-Saving Tool (BEST) for the Dairy Processing Industry (Version 1.2)  

Science Conference Proceedings (OSTI)

This User's Manual summarizes the background information of the Benchmarking and Energy/water-Saving Tool (BEST) for the Dairy Processing Industry (Version 1.2, 2011), including'Read Me' portion of the tool, the sections of Introduction, and Instructions for the BEST-Dairy tool that is developed and distributed by Lawrence Berkeley National Laboratory (LBNL).

Xu, T.; Ke, J.; Sathaye, J.

2011-04-20T23:59:59.000Z

75

Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

in the Metal Fabrication Industry. 18 th National Industrial40-51. Pharmaceutical Industry Association of Puerto Rico (on Energy Efficiency in Industry. American Council for an

Galitsky, Christina

2008-01-01T23:59:59.000Z

76

Possible Savings Achievable by Recipients of Training and Software Provided by the U.S Department of Energy’s Industrial Technologies Program  

E-Print Network (OSTI)

Through its Save Energy Now (SEN) Initiative, the U.S. Department of Energy’s (DOE’s) Industrial Technologies Program (ITP) disseminates information on energy efficient technologies and practices to U.S. industrial firms to improve the energy efficiency of their operations. Among other things, Save Energy Now conducts training sessions on a variety of energy systems that are important to industry (i.e., compressed air, steam, process heat, pumps, motors, and fans) and distributes software tools on those same topics. A recent Oak Ridge National Laboratory (ORNL) study collected information from recipients of SEN training and software regarding how much their total annual plant energy costs could be reduced by implementing the measures that they identified since receiving SEN services. Those same individuals were also queried regarding the portion of potential savings that were actually achieved. The responses revealed both similarities and differences between training and software recipients as well as substantial variation in the savings associated with the diverse energy systems addressed.

Schweitzer, M.; Martin, M. A.; Schmoyer, R. L.

2008-01-01T23:59:59.000Z

77

Energy savings by means of fuel cell electrodes in electro-chemical industries. Progress report, August 1-October 31, 1978  

DOE Green Energy (OSTI)

Caustic half cells are described and data reported for tests run to evaluate the technology involved in the operation of air cathodes for the Caustic-Chlorine Industry. The majority of tests were run at 300 ASF in a 23% NaOH electrolyte at 75/sup 0/C with a CO/sub 2/ free air efficiency of 33%. Data are presented for a 7200-h life test which is in operation and represents the state of the art. Runs have been made to identify the limiting current density and air efficiency for the standard RA19 type air cathode. Also presented are tests involving cell temperature, electrode platinum variation and evaluation of several thin, porous, conducting substrates on which the catalyst layer is deposited during electrode fabrication. Technical data on advisory meetings and experimental cell design for hydrogen anode evaluation in the electrowinning of zinc were reported. Preliminary results demonstrate a savings of over 0.6 kWh/lb of zinc for 3 to 4 hours runs employing pure hydrogen as fuel and a 0.33 mg/cm/sup 2/ Pt anode. In the area of metal-water-air batteries a consultatory meeting was held, and the initial data obtained at Lawrence Livermore Laboratory for a standard Prototech Company air cathode in an Aluminum-Air Battery were reported to be most encouraging.

Allen, R.J.; Juda, W.; Lindstrom, R.W.

1978-12-01T23:59:59.000Z

78

Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

A Sourcebook on Daylighting Systems and Components. Paris:Saving Energy with Daylighting Systems. Maxi Brochure 14.an efficient daylighting system may provide evenly dispersed

Galitsky, Christina

2008-01-01T23:59:59.000Z

79

Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

Saving Energy with Daylighting Systems. Maxi Brochure 14.an efficient daylighting system may provide evenly dispersedrefitted with daylighting systems. Various daylighting

Worrell, Ernst

2008-01-01T23:59:59.000Z

80

Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

training. Target Group: Industries in Wisconsin Format: OpenU.S. Glass Container Industry. International Glass Review,Study on Energy Efficiency in Industry, Rye Brook, New York.

Worrell, Ernst

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ventower industries saving" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

22 nd National Industrial Energy Technology Conference18 th National Industrial Energy Technology Conferenceof Demonstrated Energy Technologies (CADDET). (1993).

Galitsky, Christina

2008-01-01T23:59:59.000Z

82

Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

Demonstrated Energy Technologies (CADDET), The Netherlands.second National Industrial Energy Technology ConferenceNational Industrial Energy Technology Conference. Houston,

Worrell, Ernst

2008-01-01T23:59:59.000Z

83

Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

with New Industrial Paint Drying and Baking Oven. Case studyovens, heaters, and heat exchangers. Target Group: Any industrial

Galitsky, Christina

2008-01-01T23:59:59.000Z

84

Two hundred Energy Savings Assessments identified potential annual energy savings  

E-Print Network (OSTI)

Center (IAC) teams. The Industrial Technologies Program completed 200 SENAs at U.S. industrial plants3/20/09 Two hundred Energy Savings Assessments identified potential annual energy savings of $485 million Industrial Energy Efficiency The ORNL Industrial Energy Efficiency Team supports DOE's Best

85

Wind Equipment: Creating Jobs Along the Lake Erie Shore | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Equipment: Creating Jobs Along the Lake Erie Shore Wind Equipment: Creating Jobs Along the Lake Erie Shore Wind Equipment: Creating Jobs Along the Lake Erie Shore August 16, 2012 - 9:36am Addthis 1 of 3 Finished wind tower sections await load-out at Ventower Industries, state-of-the-art fabrication facility in Monroe, MI. Image: Ventower Industries. 2 of 3 Ventower operations team loading out first sections produced at Monroe plant. Image: Ventower Industries 3 of 3 Production team members in attendance at Ventower's ribbon cutting ceremony in August 2011. Image: Ventower Industries Monroe, Michigan Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs What are the key facts? Ventower Industries supplies wind turbine towers for projects throughout the Great Lakes and Northeast regions. Since opening, the company has grown to 53 employees.

86

Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

load factor, running time, local energy costs, and availableto significant energy cost savings over time (U.S. EPA/DOEcosts and to increase predictable earnings, especially in times of high energy

Galitsky, Christina

2008-01-01T23:59:59.000Z

87

Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

2006). Teaming Up To Save Energy US EPA, Washington DC (losses Total primary energy Source: U.S. Census (2004), U.S.plant’s total energy demand (U.S. DOE 2002a). Grinding. Most

Worrell, Ernst

2008-01-01T23:59:59.000Z

88

A Water Conservation Scenario for the Residential and Industrial Sectors in California: Potential Saveings of Water and Related Energy  

E-Print Network (OSTI)

evaporation losses in cooling towers through regular towerThe potential savings in cooling towers alone can be sub-been reduced by 27%, for cooling tower blowdown by 87%, for

Benenson, P.

2010-01-01T23:59:59.000Z

89

Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

Energy with Raw Materials. Ceramic Industry, July: 13-15.A New Twist to Oxy-Fuel. Ceramic Industry: October: 42-46.in the Glass Industry. The American Ceramic Society Bulletin

Worrell, Ernst

2008-01-01T23:59:59.000Z

90

VPI Corporation: Industrial Energy Assessment Helps Manufacturer Start Saving $7,000 in Less Than a Year  

SciTech Connect

Industrial Technologies Program's BestPractices case study based on a comprehensive plant assessment conducted at VPI Coporation by ITP's Industrial Assessment Center in conjunction with The Society of the Plastics Industry, Inc.

2005-09-01T23:59:59.000Z

91

Saving Water Saves Energy  

E-Print Network (OSTI)

H. , Groves D. California Water 2030: An Efficient Future,Preemption of California’s Water Conservation Standards for2Epdf Biermayer P. Potential Water and Energy Savings from

McMahon, James E.; Whitehead, Camilla Dunham; Biermayer, Peter

2006-01-01T23:59:59.000Z

92

Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

identify and evaluate energy-saving opportunities, recommendRivers. (1997). Capturing Energy Savings with Steam Traps.Demonstration of Energy Savings of Cool Roofs. Lawrence

Galitsky, Christina

2008-01-01T23:59:59.000Z

93

Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network (OSTI)

to identify and evaluate energy- saving opportunities,Demonstration of Energy Savings of Cool Roofs. LawrencePractice Case Study 300: Energy Savings by Reducing the Size

Neelis, Maarten

2008-01-01T23:59:59.000Z

94

Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

Refrigeration: Introducing Energy Saving Opportunities forPotential for Electric Energy Savings in the ManufacturingManufacturing Produces Energy- Saving Opportunities. http://

Masanet, Eric

2008-01-01T23:59:59.000Z

95

Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

2005a). Energy Efficiency Improvement and Cost Saving59289-Revision Energy Efficiency Improvement and Cost Saving05CH11231. Energy Efficiency Improvement and Cost Saving

Masanet, Eric

2008-01-01T23:59:59.000Z

96

Energy Efficiency Improvement and Cost Saving Opportunities for...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency Improvement and Cost Saving Opportunities for the Baking Industry Title Energy Efficiency Improvement and Cost Saving Opportunities for the Baking Industry...

97

Energy Efficiency Improvement and Cost Saving Opportunities for...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry Title Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry...

98

Energy Efficiency Improvement and Cost Saving Opportunities for...  

NLE Websites -- All DOE Office Websites (Extended Search)

Improvement and Cost Saving Opportunities for the Pulp and Paper Industry Title Energy Efficiency Improvement and Cost Saving Opportunities for the Pulp and Paper Industry...

99

Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

U.S. industrial natural gas price, which might result in significant uncertainties. The fuel consumption

Worrell, Ernst

2008-01-01T23:59:59.000Z

100

Fan Energy Savings Decisions  

E-Print Network (OSTI)

Axial fans are used for thousands of industrial applications consuming millions of kilowatts daily. The decision that saves dollars is to either automatically change fan speed or change blade pitch to save up to 50 percent of consumed power over a fixed pitch, constant speed fan. A discussion of the merits of each type is presented with actual test results.

Monroe, R. C.

1985-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "ventower industries saving" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

National Industrial Energy Technology Conference, New Orleans, LA, May 11-12, 2005 1 Quantifying Savings From Improved Boiler Operation  

E-Print Network (OSTI)

Savings From Improved Boiler Operation Kevin Carpenter Kelly Kissock Graduate Research Assistant Associate/off operation and excess combustion air reduce boiler energy efficiency. This paper presents methods to quantify boilers. The methods include calculation of combustion temperature, calculation of the relationship

Kissock, Kelly

102

Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

the seasonal increases in natural gas prices in 2000 (JamesU.S. industrial natural gas price, which might result inaverage industrial natural gas price for 2002 of $4.02 per

Worrell, Ernst

2008-01-01T23:59:59.000Z

103

Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers  

Science Conference Proceedings (OSTI)

Energy is an important cost factor in the U.S iron and steel industry. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. iron and steel industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the structure, production trends, energy consumption, and greenhouse gas emissions of the iron and steel industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in the steel and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. iron and steel industry reduce energy consumption and greenhouse gas emissions in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures?and on their applicability to different production practices?is needed to assess their cost effectiveness at individual plants.

Worrell, Ernst; Blinde, Paul; Neelis, Maarten; Blomen, Eliane; Masanet, Eric

2010-10-21T23:59:59.000Z

104

Moraine Molded Plastics, Inc.: Industrial Energy Assessment Finds Opportunities to Save $24,000 in Annual Operating Costs  

SciTech Connect

Industrial Technologies Program's BestPractices case study based on a comprehensive plant assessment conducted at the Moraine Molded Plastics by ITP's Industrial Assessment Center in conjunction with The Society of the Plastics Industry, Inc.

2005-09-01T23:59:59.000Z

105

Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

opportunities, recommend energy efficiency actions, developM. Kushler (1997). Energy Efficiency in Automotive and Steelthe ACEEE Summer Study on Energy Efficiency in Industry, Rye

Worrell, Ernst

2008-01-01T23:59:59.000Z

106

Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

and M. Kushler. (1997). Energy Efficiency in Automotive andSummer Study on Energy Efficiency in Industry. AmericanCalifornia Institute of Energy Efficiency ( CIEE). (2000b).

Galitsky, Christina

2008-01-01T23:59:59.000Z

107

Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

and M. Kushler. (1997). Energy Efficiency in Automotive and22 nd National Industrial Energy Technology ConferenceJr. and G. P. Looby. (1996). Energy Conservation and Waste

Galitsky, Christina

2008-01-01T23:59:59.000Z

108

Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

development of renewable energy production facilities in theProduction at a Food Processing Facility. Office of Industrial Technologies, Energy Efficiency and Renewable

Galitsky, Christina

2008-01-01T23:59:59.000Z

109

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Springfield Utility Board - Energy Savings Plan Program Oregon Industrial Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Other Heating Appliances &...

110

Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers  

Science Conference Proceedings (OSTI)

Energy is the most important cost factor in the U.S petrochemical industry, defined in this guide as the chemical industry sectors producing large volume basic and intermediate organic chemicals as well as large volume plastics. The sector spent about $10 billion on fuels and electricity in 2004. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. petrochemical industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the petrochemical industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in the petrochemical and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. petrochemical industry reduce energy consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures--and on their applicability to different production practices--is needed to assess their cost effectiveness at individual plants.

Neelis, Maarten; Worrell, Ernst; Masanet, Eric

2008-09-01T23:59:59.000Z

111

Energy efficiency improvement and cost saving opportunities for the Corn Wet Milling Industry: An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

Practice Case Study 300: Energy Savings by Reducing the SizeRivers. (1997). Capturing Energy Savings with Steam Traps.et al. , 1997). Although energy savings are not available,

Galitsky, Christina; Worrell, Ernst; Ruth, Michael

2003-01-01T23:59:59.000Z

112

Save Energy Now in Your Steam Systems  

SciTech Connect

This DOE Industrial Technologies Program fact sheet describes how manufacturing plants can save energy and money by making energy efficiency improvements to their industrial steam systems.

2006-01-01T23:59:59.000Z

113

Energy efficiency improvement and cost saving opportunities for the Corn Wet Milling Industry: An ENERGY STAR Guide for Energy and Plant Managers  

Science Conference Proceedings (OSTI)

Corn wet milling is the most energy intensive industry within the food and kindred products group (SIC 20), using 15 percent of the energy in the entire food industry. After corn, energy is the second largest operating cost for corn wet millers in the United States. A typical corn wet milling plant in the United States spends approximately $20 to $30 million per year on energy, making energy efficiency improvement an important way to reduce costs and increase predictable earnings, especially in times of high energy-price volatility. This report shows energy efficiency opportunities available for wet corn millers. It begins with descriptions of the trends, structure and production of the corn wet milling industry and the energy used in the milling and refining process. Specific primary energy savings for each energy efficiency measure based on case studies of plants and references to technical literature are provided. If available, typical payback periods are also listed. The report draws upon the experiences of corn, wheat and other starch processing plants worldwide for energy efficiency measures. The findings suggest that given available resources and technology, there are opportunities to reduce energy consumption cost-effectively in the corn wet milling industry while maintaining the quality of the products manufactured. Further research on the economics of the measures, as well as the applicability of these to different wet milling practices, is needed to assess the feasibility of implementation of selected technologies at individual plants.

Galitsky, Christina; Worrell, Ernst; Ruth, Michael

2003-07-01T23:59:59.000Z

114

Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers  

SciTech Connect

The U.S. fruit and vegetable processing industry--defined in this Energy Guide as facilities engaged in the canning, freezing, and drying or dehydrating of fruits and vegetables--consumes over $800 million worth of purchased fuels and electricity per year. Energy efficiency improvement isan important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. fruit and vegetable processing industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. fruit and vegetable processing industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures applicable to fruit and vegetable processing plants are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in fruit and vegetable processing facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. Given the importance of water in fruit and vegetable processing, a summary of basic, proven measures for improving plant-level water efficiency are also provided. The information in this Energy Guide is intended to help energy and plant managers in the U.S. fruit and vegetable processing industry reduce energy and water consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures--as well as on their applicability to different production practices--is needed to assess their cost effectiveness at individual plants.

Masanet, Eric; Masanet, Eric; Worrell, Ernst; Graus, Wina; Galitsky, Christina

2008-01-01T23:59:59.000Z

115

Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry - An ENERGY STAR® Guide for Energy and Plant Managers  

NLE Websites -- All DOE Office Websites (Extended Search)

779E 779E ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR ® Guide for Energy and Plant Managers Ernst Worrell, Paul Blinde, Maarten Neelis, Eliane Blomen, and Eric Masanet Environmental Energy Technologies Division Sponsored by the U.S. Environmental Protection Agency October 2010 Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or

116

Cool roofs could save money, save planet  

NLE Websites -- All DOE Office Websites (Extended Search)

Cool roofs could save money, save planet Title Cool roofs could save money, save planet Publication Type Broadcast Year of Publication 2009 Authors Akbari, Hashem, and Arthur H....

117

Industry  

E-Print Network (OSTI)

from refrigeration equipment used in industrial processesfrom refrigeration equipment used in industrial processesfrom refrigeration equipment used in industrial processes

Bernstein, Lenny

2008-01-01T23:59:59.000Z

118

Saving Water Saves Energy  

SciTech Connect

Hot water use in households, for showers and baths as wellas for washing clothes and dishes, is a major driver of household energyconsumption. Other household uses of water (such as irrigatinglandscaping) require additional energy in other sectors to transport andtreat the water before use, and to treat wastewater. In California, 19percent of total electricity for all sectors combined and 32 percent ofnatural gas consumption is related to water. There is a criticalinterdependence between energy and water systems: thermal power plantsrequire cooling water, and water pumping and treatment require energy.Energy efficiency can be increased by a number of means, includingmore-efficient appliances (e.g., clothes washers or dishwashers that useless total water and less heated water), water-conserving plumbingfixtures and fittings (e.g., showerheads, faucets, toilets) and changesin consumer behavior (e.g., lower temperature set points for storagewater heaters, shorter showers). Water- and energy-conserving activitiescan help offset the stress imposed on limited water (and energy) suppliesfrom increasing population in some areas, particularly in drought years,or increased consumption (e.g., some new shower systems) as a result ofincreased wealth. This paper explores the connections between householdwater use and energy, and suggests options for increased efficiencies inboth individual technologies and systems. Studies indicate that urbanwater use can be reduced cost-effectively by up to 30 percent withcommercially available products. The energy savings associated with watersavings may represent a large additional and largely untappedcost-effective opportunity.

McMahon, James E.; Whitehead, Camilla Dunham; Biermayer, Peter

2006-06-15T23:59:59.000Z

119

Energy Efficiency Improvement and Cost Saving Opportunities for...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry Title Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy...

120

Get to the Savings NOW!  

E-Print Network (OSTI)

The majority of industrial processes are served by support systems (process heating, process cooling, etc) which have energy savings opportunities which can be divided into two distinct categories: Shutdown savings and operating point savings. It has been repeatedly demonstrated at large industrial facilities that introducing even a short idle mode on process support systems can generate paybacks of less than a year, and operating point changes often pay for themselves in a matter of months. This paper will serve to identify the potential in rotating equipment savings by either introducing an idle mode or matching the operating point of rotating equipment to the process requirement.

Sherman, J. C.

2007-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "ventower industries saving" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Save water to save energy | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Save water to save energy Save water to save energy Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Learn the benefits Get started Use Portfolio Manager Save energy Stamp out energy waste Find cost-effective investments Engage occupants Purchase energy-saving products Put computers to sleep Get help from an expert Take a comprehensive approach Install renewable energy systems

122

Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

Saving Energy with Daylighting Systems. Maxi Brochure 14.IAC, 2001). 4 Many daylighting systems have been installed

Galitsky, Christina

2008-01-01T23:59:59.000Z

123

Save Money  

NLE Websites -- All DOE Office Websites (Extended Search)

for specific makes and models in Find and Compare Cars. Why Is Fuel Economy Important? Save Money Reduce Oil Dependence Costs Reduce Climate Change Increase Energy Sustainability...

124

Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

Engineering (2005). Industrial Refrigeration Best Practicesdatabase/ Industrial Refrigeration Consortium (IRC) (2004a).Drive Opportunities in Industrial Refrigeration Systems:

Masanet, Eric

2008-01-01T23:59:59.000Z

125

Industry  

E-Print Network (OSTI)

energy-conservation supply curve for the US iron and steel industryindustries include electricity savings. To prevent double counting with the energy supply

Bernstein, Lenny

2008-01-01T23:59:59.000Z

126

Industry  

E-Print Network (OSTI)

oxide emission reductions in industry in the EU. Europeanissues: Annual survey of industries. Central StatisticalDesiccated coconut industry of Sri- Lanka’s opportunities

Bernstein, Lenny

2008-01-01T23:59:59.000Z

127

RESULTS FROM THE U.S. DOE 2006 SAVE ENERGY NOW ASSESSMENT INITIATIVE: DOE's Partnership with U.S. Industry to Reduce Energy Consumption, Energy Costs, and Carbon Dioxide Emissions  

Science Conference Proceedings (OSTI)

In the wake of Hurricane Katrina and other severe storms in 2005, natural gas supplies were restricted, prices rose, and industry sought ways to reduce its natural gas use and costs. In October 2005, U.S. Department of Energy (DOE) Energy Secretary Bodman launched his Easy Ways to Save Energy campaign with a promise to provide energy assessments to 200 of the largest U.S. manufacturing plants. A major thrust of the campaign was to ensure that the nation's natural gas supplies would be adequate for all Americans, especially during home heating seasons. In a presentation to the National Press Club on October 3, 2005, Secretary Bodman said: 'America's businesses, factories, and manufacturing facilities use massive amounts of energy. To help them during this period of tightening supply and rising costs, our Department is sending teams of qualified efficiency experts to 200 of the nation's most energy-intensive factories. Our Energy Saving Teams will work with on-site managers on ways to conserve energy and use it more efficiently.' DOE's Industrial Technologies Program (ITP) responded to the Secretary's campaign with its Save Energy Now initiative, featuring a new and highly cost-effective form of energy assessments. The approach for these assessments drew heavily on the existing resources of ITP's Technology Delivery component. Over the years, ITP-Technology Delivery had worked with industry partners to assemble a suite of respected software decision tools, proven assessment protocols, training curricula, certified experts, and strong partnerships for deployment. Because of the program's earlier activities and the resources that had been developed, ITP was prepared to respond swiftly and effectively to the sudden need to promote improved industrial energy efficiency. Because of anticipated supply issues in the natural gas sector, the Save Energy Now initiative strategically focused on natural gas savings and targeted the nation's largest manufacturing plants--those that consume a total of 1 trillion British thermal units (Btu) or more annually. The approximately 6800 U.S. facilities that fall into this category collectively account for about 53% of all energy consumed by industry in the United States. The 2006 Save Energy Now energy assessments departed from earlier DOE plant assessments by concentrating solely on steam and process heating systems, which are estimated to account for approximately 74% of all natural gas use for manufacturing. The assessments also integrated a strong training component designed to teach industrial plant personnel how to use DOE's steam or process heating opportunity assessment software tools. This approach had the advantages of promoting strong buy-in of plant personnel for the assessment and its outcomes and preparing them better to independently replicate the assessment process at the company's other facilities. The Save Energy Now initiative also included provisions to help plants that applied for but did not qualify for assessments (based on the 1 trillion Btu criterion). Services offered to these plants included (1) an assessment by one of DOE's 26 university-based Industrial Assessment Centers (IACs), (2) a telephone consultation with a systems expert at the DOE's Energy Efficiency and Renewable Energy Information Center, or (3) other technical materials and services available through ITP (e.g., the Save Energy Now CD). By the end of 2006, DOE had completed all 200 of the promised assessments, identifying potential natural gas savings of more than 50 trillion Btu and energy cost savings of about $500 million. These savings, if fully implemented, could reduce CO2 emissions by 4.04 million metric tons annually. These results, along with the fact that a large percentage of U.S. energy is used by a relatively small number of very large plants, clearly suggest that assessments are an expedient and cost-effective way to significantly affect large amounts of energy use. Building on the success of the 2006 initiative, ITP has expanded the effort in 2007 with the goal of conducting 250 more asse

Wright, Anthony L [ORNL; Martin, Michaela A [ORNL; Gemmer, Bob [U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy; Scheihing, Paul [U.S. Department of Energy, Industrial Technologies Program; Quinn, James [U.S. Department of Energy

2007-09-01T23:59:59.000Z

128

Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers  

Science Conference Proceedings (OSTI)

The motor vehicle industry in the U.S. spends about $3.6 billion on energy annually. In this report, we focus on auto assembly plants. In the U.S., over 70 assembly plants currently produce 13 million cars and trucks each year. In assembly plants, energy expenditures is a relatively small cost factor in the total production process. Still, as manufacturers face an increasingly competitive environment, energy efficiency improvements can provide a means to reduce costs without negatively affecting the yield or the quality of the product. In addition, reducing energy costs reduces the unpredictability associated with variable energy prices in today?s marketplace, which could negatively affect predictable earnings, an important element for publicly-traded companies such as those in the motor vehicle industry. In this report, we first present a summary of the motor vehicle assembly process and energy use. This is followed by a discussion of energy efficiency opportunities available for assembly plants. Where available, we provide specific primary energy savings for each energy efficiency measure based on case studies, as well as references to technical literature. If available, we have listed costs and typical payback periods. We include experiences of assembly plants worldwide with energy efficiency measures reviewed in the report. Our findings suggest that although most motor vehicle companies in the U.S. have energy management teams or programs, there are still opportunities available at individual plants to reduce energy consumption cost effectively. Further research on the economics of the measures for individual assembly plants, as part of an energy management program, is needed to assess the potential impact of selected technologies at these plants.

Galitsky, Christina; Galitsky, Christina; Worrell, Ernst

2008-01-01T23:59:59.000Z

129

Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

A Sourcebook on Daylighting Systems and Components. Paris,Saving Energy with Daylighting Systems. Maxi Brochure 14.an efficient daylighting system may provide evenly dispersed

Masanet, Eric

2008-01-01T23:59:59.000Z

130

Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network (OSTI)

Saving Energy with Daylighting Systems. Centre for theA Sourcebook on Daylighting Systems and Components.an efficient daylighting system may provide evenly dispersed

Neelis, Maarten

2008-01-01T23:59:59.000Z

131

Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network (OSTI)

such an important cost factor, energy efficiency is a verythe cost-effectiveness of energy efficiency opportunities2005). Energy Efficiency Improvement and Cost Saving

Neelis, Maarten

2008-01-01T23:59:59.000Z

132

Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network (OSTI)

Nath (2000). Improve Steam Turbine Efficiency. HydrocarbonOIT (2000c). New steam turbine saves chemical manufacturer $demand. Back-pressure steam turbines which may be used to

Neelis, Maarten

2008-01-01T23:59:59.000Z

133

Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network (OSTI)

i=2 Wisconsin – Focus on Energy Description: Target Group:Format: Contact: URL: Energy advisors offer free servicesidentify and evaluate energy-saving opportunities, recommend

Worrell, Ernst

2011-01-01T23:59:59.000Z

134

Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

and M. Kushler. (c. 1997). Energy Efficiency in Automotiveof Demonstrated Energy Technologies ( CADDET). (1987).Rivers. (1997). Capturing Energy Savings with Steam Traps.

Galitsky, Christina

2008-01-01T23:59:59.000Z

135

Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network (OSTI)

and was able to reduce water intake by half through doublingreporting reductions in water intake of up to 50% (Polleyplant), identifying water intake savings exceeding 50%, with

Worrell, Ernst

2011-01-01T23:59:59.000Z

136

Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network (OSTI)

Energy Management in Industry. Centre for the Analysis andEnergy Efficiency. Canadian Industry Program for Energyefficiency lighting in Industry and Commercial Buildings.

Neelis, Maarten

2008-01-01T23:59:59.000Z

137

Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network (OSTI)

fuel and electricity supplied to the industries are based onof all electricity in the chemical industry is consumed byuse of electricity in the total chemical industry and the

Neelis, Maarten

2008-01-01T23:59:59.000Z

138

Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

on electricity and fuels, respectively, by industry sub-end use of electricity in the industry is refrigeration,purchasers of electricity in the industry are the frozen

Masanet, Eric

2008-01-01T23:59:59.000Z

139

Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network (OSTI)

Management in the Flemish Steel Industry: the Arcelor Gentfor the iron and steel industry. Parekh, P. (2000).in the Canadian Steel Industry, Ottawa, Canada: CANMET.

Worrell, Ernst

2011-01-01T23:59:59.000Z

140

DOE Distributes Energy-Saving Tools to Help Manufacturers Save Energy |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Distributes Energy-Saving Tools to Help Manufacturers Save DOE Distributes Energy-Saving Tools to Help Manufacturers Save Energy DOE Distributes Energy-Saving Tools to Help Manufacturers Save Energy July 26, 2006 - 4:41pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) has distributed Save Energy Now CD-ROMs containing energy-saving information and software to 3,500 large industrial plant managers across the nation as part of a DOE initiative to help cut excessive energy use at industrial facilities across the nation. The CDs bring together - in a single product - a compendium of tip sheets, case studies, technical manuals and software tools to help plants assess energy-saving opportunities. "President Bush has called on all Americans to be more energy efficient, and private industry, along with the federal government, are taking

Note: This page contains sample records for the topic "ventower industries saving" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

DOE Distributes Energy-Saving Tools to Help Manufacturers Save Energy |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Distributes Energy-Saving Tools to Help Manufacturers Save Distributes Energy-Saving Tools to Help Manufacturers Save Energy DOE Distributes Energy-Saving Tools to Help Manufacturers Save Energy July 26, 2006 - 4:41pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) has distributed Save Energy Now CD-ROMs containing energy-saving information and software to 3,500 large industrial plant managers across the nation as part of a DOE initiative to help cut excessive energy use at industrial facilities across the nation. The CDs bring together - in a single product - a compendium of tip sheets, case studies, technical manuals and software tools to help plants assess energy-saving opportunities. "President Bush has called on all Americans to be more energy efficient, and private industry, along with the federal government, are taking

142

Industry  

E-Print Network (OSTI)

the paper, glass or ceramics industry) making it difficulttechnology in the ceramic manufacturing industry. industries: iron and steel, non-ferrous metals, chemicals (including fertilisers), petroleum refining, minerals (cement, lime, glass and ceramics) and

Bernstein, Lenny

2008-01-01T23:59:59.000Z

143

Industry  

E-Print Network (OSTI)

in the iron and steel industry: a global model. Energy, 30,report of the world steel industry 2005. International Irontrends in the iron and steel industry. Energy Policy, 30,

Bernstein, Lenny

2008-01-01T23:59:59.000Z

144

Energy Conservation: Policy Issues and End-Use Scenarios of Savings Potential -- Part 3, Policy Barriers and Investment Decisions in Industry  

E-Print Network (OSTI)

The Capital Formation Challenge Facing the Steel Industry,"National Steel Industry Economics Seminar, Chicago,69-72. Industry ( 5 ) " Steel Industry Ne e d s , " Am e r i

Benenson, Peter

2011-01-01T23:59:59.000Z

145

Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

of Demonstrated Energy Technologies ( CADDET). (1987).second National Industrial Energy Technology Conferencesecond National Industrial Energy Technology Conference

Galitsky, Christina

2008-01-01T23:59:59.000Z

146

Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

with New Industrial Paint Drying and Baking Oven. Case studyovens, heaters, and heat exchangers. Target Group: Any industrial

Galitsky, Christina

2008-01-01T23:59:59.000Z

147

Energy Efficiency Savings Protocols | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency Savings Protocols Energy Efficiency Savings Protocols Energy Efficiency Savings Protocols In April 2013 the U.S. Department of Energy published the first set of protocols for determining energy savings from energy efficiency measures and programs. You can read individual protocols below or all of them combined into a single report titled The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures. Acknowledgements Introduction Commercial and Industrial Lighting Evaluation Protocol Commercial and Industrial Lighting Controls Evaluation Protocol Small Commercial and Residential Unitary and Split System HVAC Cooling Equipment-Efficiency Upgrade Evaluation Protocol Residential Furnaces and Boilers Evaluation Protocol Residential Lighting Evaluation Protocol

148

Save Energy Now in Your Process Heating Systems  

Science Conference Proceedings (OSTI)

This DOE Industrial Technologies Program fact sheet describes how manufacturing plants can save energy and money by making energy efficiency improvements to their industrial process heating systems.

Not Available

2006-01-01T23:59:59.000Z

149

EERE: Energy-Saving Homes, Buildings, and Manufacturing - Manufacturin...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

program has delivered technical assistance to thousands of industrial plants, saved industry billions of dollars and cut carbon emissions by millions of tons. With diverse...

150

Save Energy Now in Your Motor-Driven Systems  

SciTech Connect

This DOE Industrial Technologies Program fact sheet describes how manufacturing plants can save energy and money by making energy efficiency improvements to their industrial motor-driven systems.

2006-01-01T23:59:59.000Z

151

Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network (OSTI)

2006) Teaming Up to Save Energy Guide. U.S. Environmentala cost-effective manner. This Energy Guide discusses energyThe information in this Energy Guide is intended to help

Worrell, Ernst

2011-01-01T23:59:59.000Z

152

Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

s Teaming Up to Save Energy guide (U.S. EPA 2006), which isis used throughout this Energy Guide for consistency. With aAn ENERGY STAR ® Guide for Energy and Plant Managers

Galitsky, Christina

2008-01-01T23:59:59.000Z

153

Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

the 2005 price for industrial electricity averaged 7.62the average industrial price for electricity rose from 4.91in industrial natural gas and electricity prices in the

Masanet, Eric

2008-01-01T23:59:59.000Z

154

Industry  

E-Print Network (OSTI)

and power in US industry. Energy Policy, 29, pp. 1243-1254.Paris. IEA, 2004: Energy Policies of IEA Countries: Finlandand steel industry. Energy Policy, 30, pp. 827-838. Kim, Y.

Bernstein, Lenny

2008-01-01T23:59:59.000Z

155

Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network (OSTI)

opportunities, recommend energy efficiency actions, developSummer Study on Energy efficiency in Industry. AmericanACEEE Summer Study on Energy Efficiency in Industry, ACEEE,

Worrell, Ernst

2011-01-01T23:59:59.000Z

156

Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

M. Kushler. (c. 1997). Energy Efficiency in Automotive andSummer Study on Energy Efficiency in Industry, Americanof Industrial Technologies, Energy Efficiency and Renewable

Galitsky, Christina

2008-01-01T23:59:59.000Z

157

Energy-Efficiency Improvement Opportunities for the Textile Industry  

E-Print Network (OSTI)

Industry (CII), 2007. ?Energy Saving in After TreatmentTechnologies for Energy Savings/GHG Emissions Reduction (Practice Case Study 300: Energy Savings by Reducing the Size

Hasanbeigi, Ali

2010-01-01T23:59:59.000Z

158

Energy savings by means of fuel cell electrodes in electro-chemical industries. Annual report for August 1, 1978-July 31, 1979  

DOE Green Energy (OSTI)

The objectives of the subject program are: to evaluate experimentally, on a laboratory scale, energy and cost savings in electrowinning of zinc by substituting, for the conventional lead anode, a Prototech proprietary hydrogen anode operating on pure and impure feeds; to similarly evaluate experimentally, again on a laboratory scale, voltage, and thus energy savings in chlor-alkali membrane cells by substituting, for the conventional steel cathode, a Prototech proprietary air cathode; to consult with Lockheed and Lawrence Livermore Laboratory (LLL) on the subject of suitable air electrodes for metal/water/air batteries; and prepare cost estimates of all processes investigated based on laboratory results.

Allen, R.J.; Juda, W.; Lindstrom, R.W.; Petrow, H.G.

1979-10-31T23:59:59.000Z

159

Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

in an Appliance Industry Abstract This report provides a starting point for appliance energy efficiency policy to be informed by an understanding of: the baseline rate and...

160

Save water to save energy | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

Save water to save energy Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction...

Note: This page contains sample records for the topic "ventower industries saving" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Saving Energy Saves You Money | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Saving Energy Saves You Money Saving Energy Saves You Money July 19, 2011 - 3:06pm Addthis Saving energy saves you money. What could you buy with the money you save? (Ad Council...

162

Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

winter 2001 spike in natural gas prices across the Unitedthe average industrial natural gas price was even higher in2002 U.S. industrial natural gas price of $5.13 per MBtu was

Masanet, Eric

2008-01-01T23:59:59.000Z

163

Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

An Exploration of Innovation and An Exploration of Innovation and Energy Efficiency in an Appliance Industry Prepared by Margaret Taylor, K. Sydny Fujita, Larry Dale, and James McMahon For the European Council for an Energy Efficient Economy March 29, 2012 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY LBNL - 5689E An Exploration of Innovation and Energy Efficiency in an Appliance Industry Abstract This report provides a starting point for appliance energy efficiency policy to be informed by an understanding of: the baseline rate and direction of technological change of product industries; the factors that underlie the outcomes of innovation in these industries; and the ways the innovation system might respond to any given intervention. The report provides an overview of the dynamics of energy efficiency policy and innovation in the appliance

164

Industry  

E-Print Network (OSTI)

milling industry: An ENERGY STAR Guide for Energy and Plantcement mak- ing - An ENERGY STAR Guide for Energy and Plantre- fineries - An ENERGY STAR Guide for Energy and Plant

Bernstein, Lenny

2008-01-01T23:59:59.000Z

165

U.S. DOE Save Energy Now | Open Energy Information  

Open Energy Info (EERE)

U.S. DOE Save Energy Now U.S. DOE Save Energy Now (Redirected from Save Energy Now) Jump to: navigation, search Tool Summary Name: Save Energy Now Initiative Resources Agency/Company /Organization: U.S. Department of Energy Partner: US National Labs Sector: Energy Focus Area: Energy Efficiency, Industry Topics: Policies/deployment programs Website: www1.eere.energy.gov/industry/saveenergynow/index.html References: Save Energy Now [1] Logo: Save Energy Now Initiative Resources Save Energy Now is a U.S. Department of Energy Program partnering with US National labs is to reduce industrial energy intensity by at least 25% over a period of 10 years. Save Energy Now is a U.S. Department of Energy Program partnering with US National labs is to reduce industrial energy intensity by at least 25% over

166

Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network (OSTI)

second National Industrial Energy Technology ConferenceDissemination of Demonstrated Energy Technologies, projectof Demonstrated Energy Technologies. Project JP-1990-022,

Worrell, Ernst

2011-01-01T23:59:59.000Z

167

Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network (OSTI)

in the chemical and refinery industries. Energy Researchand by petroleum refineries from the fluid catalyticproduction of propylene at refineries. In the first quarter

Neelis, Maarten

2008-01-01T23:59:59.000Z

168

Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

industry natural gas consumption in 2002 (U.S. DOE 2005a).natural gas consumption, in physical units, of the four U.S.

Masanet, Eric

2008-01-01T23:59:59.000Z

169

Industry  

Science Conference Proceedings (OSTI)

This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of industrial mitigation for sustainable development is discussed in Section 7.7. Section 7.8 discusses the sector's vulnerability to climate change and options for adaptation. A number of policies have been designed either to encourage voluntary GHG emission reductions from the industrial sector or to mandate such reductions. Section 7.9 describes these policies and the experience gained to date. Co-benefits of reducing GHG emissions from the industrial sector are discussed in Section 7.10. Development of new technology is key to the cost-effective control of industrial GHG emissions. Section 7.11 discusses research, development, deployment and diffusion in the industrial sector and Section 7.12, the long-term (post-2030) technologies for GHG emissions reduction from the industrial sector. Section 7.13 summarizes gaps in knowledge.

Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

2007-12-01T23:59:59.000Z

170

Productivity benefits of industrial energy efficiency measures  

E-Print Network (OSTI)

energy savings are related to energy price changes through1997 dollars. All energy prices and savings were evaluatedthe relationship of energy prices to industry-wide energy

Worrell, Ernst

2011-01-01T23:59:59.000Z

171

Industrial Energy Efficiency and Climate Change Mitigation  

E-Print Network (OSTI)

and Paper n Other Industries, Electricity Conservation s65% of electricity consumed by industry is used by motorof the main industries include electricity savings. q

Worrell, Ernst

2009-01-01T23:59:59.000Z

172

Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network (OSTI)

in Industry, ACEEE, Washington DC, USA. Jones, T. (2001).Economy, Berkeley, CA/Washington, DC, USA. McPherson, G. ,Efficient Economy, Washington, DC, USA. Neelis, M.L. , M.

Neelis, Maarten

2008-01-01T23:59:59.000Z

173

Energy efficiency improvement and cost saving opportunities for the Corn Wet Milling Industry: An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

2001b). Energy Efficiency Opportunity Guide in the LimeMilling Industry An ENERGY STAR Guide for Energy and PlantAn ENERGY STAR ® Guide for Energy and Plant Managers

Galitsky, Christina; Worrell, Ernst; Ruth, Michael

2003-01-01T23:59:59.000Z

174

Industrial  

Gasoline and Diesel Fuel Update (EIA)

Industrial Industrial 8,870,422 44.3% Commercial 3,158,244 15.8% Electric Utilities 2,732,496 13.7% Residential 5,241,414 26.2% Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." T e x a s L o u i s i a n a C a l i f o r n i a A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Industrial Billion Cubic Meters T e x a s C a l i f o r n i a F l o r i d a A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Electric Utilities Billion Cubic Meters N e w Y o r k C a l i f o r n i a I l l i n o i s A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Commercial Billion Cubic Meters I l l i n o i s C a l i f o r n i a N e w Y o r k A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Residential Billion Cubic Meters 11. Natural Gas Delivered to Consumers in the United States, 1996 Figure Volumes in Million Cubic Feet Energy Information Administration

175

U.S. DOE Save Energy Now | Open Energy Information  

Open Energy Info (EERE)

U.S. DOE Save Energy Now U.S. DOE Save Energy Now Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Save Energy Now Initiative Resources Agency/Company /Organization: U.S. Department of Energy Partner: US National Labs Sector: Energy Focus Area: Energy Efficiency, Industry Topics: Policies/deployment programs Website: www1.eere.energy.gov/industry/saveenergynow/index.html References: Save Energy Now [1] Logo: Save Energy Now Initiative Resources Save Energy Now is a U.S. Department of Energy Program partnering with US National labs is to reduce industrial energy intensity by at least 25% over a period of 10 years. Save Energy Now is a U.S. Department of Energy Program partnering with US National labs is to reduce industrial energy intensity by at least 25% over a period of 10 years. Many of the Program's best practice resources,

176

Energy Saving Curtain.  

E-Print Network (OSTI)

?? This paper presents the energy saving curtains, in order to make the consumers be more aware of the energy efficiency of the energy saving… (more)

Zou, Fan

2008-01-01T23:59:59.000Z

177

Using ITP Decision Tools to Save Energy Now  

Science Conference Proceedings (OSTI)

This DOE Industrial Technologies Program fact sheet describes how the program's software tools and information help manufacturers save energy and money, increase productivity, and improve reliability.

Not Available

2006-02-01T23:59:59.000Z

178

Taiwan's National Energy-Saving Management Programs- Taiwan's...  

NLE Websites -- All DOE Office Websites (Extended Search)

Taiwan's National Energy-Saving Management Programs- Taiwan's Experiences in Industrial, Commercial and Institution Sectors Speaker(s): Wen-Bohr (Dennis) Wang Date: June 27, 2007 -...

179

Energy Efficiency Improvement and Cost Saving Opportunities for...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry: An ENERGY STAR Guide for Energy and Plant Managers Title Energy Efficiency...

180

Energy Efficiency Improvement and Cost Saving Opportunities for...  

NLE Websites -- All DOE Office Websites (Extended Search)

268E ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Energy Efficiency Improvement and Cost Saving Opportunities for the Pulp and Paper Industry An ENERGY STAR Guide for...

Note: This page contains sample records for the topic "ventower industries saving" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Energy Efficiency Improvement and Cost Saving Opportunities for...  

NLE Websites -- All DOE Office Websites (Extended Search)

i LBNL-5342E ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Energy Efficiency Improvement and Cost Saving Opportunities for the Concrete Industry An ENERGY STAR Guide for...

182

Energy Efficiency Improvement and Cost Saving Opportunities for...  

NLE Websites -- All DOE Office Websites (Extended Search)

12E ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Energy Efficiency Improvement and Cost Saving Opportunities for the Baking Industry An ENERGY STAR Guide for Plant and...

183

Energy Efficiency Improvement and Cost Saving Opportunities for...  

NLE Websites -- All DOE Office Websites (Extended Search)

289-Revision ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry An...

184

Energy Efficiency Improvement and Cost Saving Opportunities for...  

NLE Websites -- All DOE Office Websites (Extended Search)

9-Revision ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry An ENERGY STAR ...

185

Energy-Saving Homes, Buildings, & Manufacturing (Fact Sheet)  

SciTech Connect

This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in saving energy in homes, buildings, and industrial plants.

Not Available

2012-09-01T23:59:59.000Z

186

Save Energy and Money with a Corporate Energy Management Program  

SciTech Connect

This DOE Industrial Technologies Program fact sheet describes corporate energy management programs and how manufacturing companies can save energy and money by establishing their own program.

2006-02-01T23:59:59.000Z

187

Energy-Saving Homes, Buildings, & Manufacturing (Fact Sheet)  

SciTech Connect

This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in saving energy in homes, buildings, and industrial plants.

2012-09-01T23:59:59.000Z

188

Otter Tail Power Company - Commercial and Industrial Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Energy Efficiency Rebate Program < Back Eligibility Agricultural Commercial Industrial Savings Category Home Weatherization Commercial Weatherization Heating &...

189

Methods for Determining Energy Efficiency Savings for Specific Measures |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Methods for Determining Energy Efficiency Savings for Specific Methods for Determining Energy Efficiency Savings for Specific Measures Methods for Determining Energy Efficiency Savings for Specific Measures This document provides a set of model protocols for determining energy and demand savings that result from specific energy efficiency measures implemented through state and utility efficiency programs. The methods described here are approaches that are-or are among-the most commonly used in the energy efficiency industry for certain measures or programs. Acknowledgements Introduction Commercial and Industrial Lighting Evaluation Protocol Commercial and Industrial Lighting Controls Evaluation Protocol Small Commercial and Residential Unitary and Split System HVAC Cooling Equipment-Efficiency Upgrade Evaluation Protocol

190

Longmont Power & Communications - Commercial and Industrial Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

are here Home Savings Longmont Power & Communications - Commercial and Industrial Energy Efficiency Rebate Program Longmont Power & Communications - Commercial and...

191

Building Technologies Office: Saving Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Saving Energy Printable Version Share this resource Send a link to Building Technologies Office: Saving Energy to someone by E-mail Share Building Technologies Office: Saving...

192

Building Technologies Office: Saving Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Saving Energy Walmart Partnership Brings LEDs to Parking Lots Achieving 50% Energy Savings for Water Heaters Refrigerator Standards Save Consumers Billions Previous Next Contacts...

193

Saving Electricity | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Saving Electricity Saving Electricity Reducing energy use in your home saves you money, increases our energy security and reduces the pollution that is emitted from non-renewable...

194

Thermal Monitoring Approaches for Energy Savings Verification  

E-Print Network (OSTI)

This paper reviews and summarizes techniques for monitoring thermal energy flows for the purpose of verifying energy savings in industrial and large institutional energy conservation projects. Approaches for monitoring hot and chilled water, steam, steam condensate and boiler feedwater in large facilities are described. Insights gained and lessons learned through the actual in-field installation of thermal monitoring equipment for energy savings verification purposes at over 100 sites at various locations throughout the United States are presented.

McBride, J. R.; Bohmer, C. J.; Lippman, R. H.; Zern, M. J.

1996-04-01T23:59:59.000Z

195

Coldwater Board of Public Utilities - Commercial & Industrial...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

here Home Savings Coldwater Board of Public Utilities - Commercial & Industrial Lighting Rebate Program Coldwater Board of Public Utilities - Commercial & Industrial Lighting...

196

Emerging Energy-Efficient Technologies for Industry  

E-Print Network (OSTI)

1998. “Emerging Energy-Saving Technologies and Practices for200 emerging energy-efficient technologies in industry, of2000. “Emerging Energy-Efficient Industrial Technologies,”

2005-01-01T23:59:59.000Z

197

Benchmarking and Energy Saving Tool | Open Energy Information  

Open Energy Info (EERE)

Benchmarking and Energy Saving Tool Benchmarking and Energy Saving Tool Jump to: navigation, search Tool Summary Name: Benchmarking and Energy Saving Tool Agency/Company /Organization: Lawrence Berkeley National Laboratory Sector: Energy Focus Area: Energy Efficiency, - Central Plant, Industry Topics: Pathways analysis Resource Type: Software/modeling tools User Interface: Spreadsheet Website: industrial-energy.lbl.gov/node/100 Cost: Free Language: English References: Benchmarking and Energy Saving Tool [1] Logo: Benchmarking and Energy Saving Tool The Benchmarking and Energy Saving Tool (BEST) is an Excel-based spreadsheet energy analysis tool developed by Lawrence Berkeley National Laboratory. The Benchmarking and Energy Saving Tool (BEST) is an Excel-based spreadsheet energy analysis tool developed by Lawrence Berkeley National

198

Department of Energy Achieves Goal of 200 Energy Savings Assessments |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Achieves Goal of 200 Energy Savings Achieves Goal of 200 Energy Savings Assessments Department of Energy Achieves Goal of 200 Energy Savings Assessments March 2, 2007 - 10:28am Addthis Over 50 Trillion Btus of Natural Gas Savings Found AUSTIN, TX - The U.S. Department of Energy (DOE) Assistant Secretary for Energy Efficiency and Renewable Andy Karsner today announced the completion of Energy Savings Assessments (ESAs) at 200 of the largest industrial facilities in the nation, identifying opportunities to save over 50 trillion Btus of natural gas - roughly equivalent to the natural gas used in 700,000 American homes. In 2007, DOE will conduct 250 additional Energy Savings Assessments and offer cost-sharing options with industry, utilities and other partners. Assistant Secretary Karsner made the

199

SAVE THIS | EMAIL THIS | Close  

NLE Websites -- All DOE Office Websites (Extended Search)

SAVE THIS | EMAIL THIS | Close SAVE THIS | EMAIL THIS | Close Monitoring laser weld quality Due to the increasing use of high-power CO 2 lasers for welding automotive transmission components at Chrysler (now DaimlerChrysler Corporation), executive board members realized the significance of developing a real-time weld process monitor to ensure that its high quality automotive standards are maintained. This led to a mandate that a monitoring system would be developed and installed on all laser welding systems at Chrysler. Accepting the challenge to develop the technology, a team at Argonne National Laboratory headed by Dr. Keng Leong, was given mandatory specifications that the system had to be real time, user friendly, low cost, robust, and above all, reliable. Dr. Leong brought Spawr Industries Inc. (Lake Havasu City, AZ) into

200

Purchase energy-saving products | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Purchase energy-saving products Purchase energy-saving products Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Learn the benefits Get started Use Portfolio Manager Save energy Stamp out energy waste Find cost-effective investments Engage occupants Purchase energy-saving products Purchasing and procurement case studies Put computers to sleep Get help from an expert

Note: This page contains sample records for the topic "ventower industries saving" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Boost Process Heating Efficiency, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)  

Science Conference Proceedings (OSTI)

This fact sheet describes how the Industrial Technologies Program Process Heating Assessment and Survey Tool (PHAST) can help industrial plants indentify opportunities to save energy.

Not Available

2008-12-01T23:59:59.000Z

202

Tools to Boost Steam System Efficiency, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)  

SciTech Connect

This fact sheet describes how the Industrial Technologies Program steam software tools can help industrial plants identify steam system improvements to save energy and money.

Not Available

2008-12-01T23:59:59.000Z

203

Quantifying National Energy Savings  

NLE Websites -- All DOE Office Websites (Extended Search)

Quantifying National Energy Savings Potential of Lighting Controls in Commercial Buildings Alison Williams, Barbara Atkinson, Karina Garbesi and Francis Rubinstein Energy Analysis...

204

TMS Group Savings Plus  

Science Conference Proceedings (OSTI)

A money-saving group discount on auto and homeowners policies; Convenient payment plans Including automatic checking account deduction or direct home ...

205

Energy-Saving Opportunities for Manufacturing Enterprises (International English Fact Sheet)  

SciTech Connect

This fact sheet provides information about the Industrial Technologies Program Save Energy Now energy audit process, software tools, training, energy management standards, and energy efficient technologies to help U.S. companies identify energy cost savings.

2011-02-01T23:59:59.000Z

206

DOE Launches Save Energy Now LEADER Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Save Energy Now LEADER Program Save Energy Now LEADER Program DOE Launches Save Energy Now LEADER Program December 2, 2009 - 12:00am Addthis WASHINGTON, DC - Energy Secretary Steven Chu announced today the launch of the Save Energy Now® LEADER Program, which will provide technical assistance and resources to companies that pledge significant improvements in industrial energy efficiency. At an event this afternoon, 32 companies representing a broad spectrum of the U.S. industrial sector will join with DOE Assistant Secretary for Energy Efficiency and Renewable Energy Cathy Zoi to sign a voluntary pledge to reduce their industrial energy intensity by 25 percent over the next decade. "These companies' commitments to energy efficiency not only generate significant energy and carbon savings, but also show the entire business

207

Slim holes haul in savings  

SciTech Connect

This article reports that during 1986 BP Exploration Company Ltd. successfully drilled six UK land wells with a Microdrill MD-3 ultra-slimhole drilling rig. The objective of the program was to evaluate the slimhole drilling technique, from both a technical and cost-effective viewpoint. Earlier studies indicated up to 30 percent savings in well costs compared to conventionally drilled UK land wells. The technology of drilling slim holes with small rigs is not new. For many years the mineral exploration industry has used small drilling and coring rigs. However, these rigs are not normally equipped with pressure control equipment, oilfield mud and cementing systems or the ability to run complex logs or production test. More recently, the oil industry has made efforts to adapt these rigs to slimhole oil and gas exploration, notably in Australia and Canada. The Microdrill MD-3 rig is a product of this evolution.

Floyd, K.

1987-07-01T23:59:59.000Z

208

Save Energy, Save Date Night | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy, Save Date Night Energy, Save Date Night Save Energy, Save Date Night February 11, 2013 - 1:42pm Addthis Saving energy allows you to spend that money elsewhere. Saving energy allows you to spend that money elsewhere. John Chu John Chu Communications Specialist with the Office of Energy Efficiency and Renewable Energy How can I participate? Follow these tips to save energy and money this Valentine's Day. Valentine's Day. For many couples, it means cards, flowers, and prix fixe candlelight dinners. It also means for many couples a hefty withdrawal at the ATM to express their love. Fortunately, there are ways to save money by saving energy - even during the date - so you can spend the money you save on the things that really matter to your sweetheart. Here are five easy tips for those couples out there who want to save energy, save

209

Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets  

E-Print Network (OSTI)

industrial sectors (Vermeeren, 2008). Steel industry ? TheDutch steel industry implemented 82 energy-saving projectsfoodstuffs, steel, and mining industries are the most

Price, Lynn

2010-01-01T23:59:59.000Z

210

Verizon, Save Energy Now (SEN) Data Center Assessment Summary  

SciTech Connect

This assessment summary describes how the industrial Technologies Program helped Verizon to find ways to improve the efficiency of its data center by performing a Save Energy Now energy assessment.

Not Available

2008-12-01T23:59:59.000Z

211

Lucasfilm, Save Energy Now (SEN) Data Center Assessment Summary  

SciTech Connect

This assessment summary describes how the industrial Technologies Program helped Lucasfilm to find ways to improve the efficiency of its data center by performing a Save Energy Now energy assessment.

2008-10-01T23:59:59.000Z

212

Energy Smart - Commercial and Industrial Energy Efficiency Rebate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency Rebate Program (20 Municipalities) < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Cooling...

213

Energy Efficiency Improvement in the Petroleum Refining Industry  

E-Print Network (OSTI)

Chemical Manufacturing and Petroleum Refining Industries.Saving Opportunities for Petroleum Refineries. An ENERGYAdministration (EIA), 2002. Petroleum Supply Annual 2001,

Worrell, Ernst; Galitsky, Christina

2005-01-01T23:59:59.000Z

214

Industrial Energy Efficiency Cooperative Partnership (Chinese/English)  

SciTech Connect

Chinese/English brochure on the Save Energy Now process for DOE Industrial Energy Efficiency Partnership with China.

2008-01-01T23:59:59.000Z

215

Saving Electricity | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Saving Electricity Saving Electricity April 30, 2013 Residential Renewable Energy Tax Credit Established by The Energy Policy Act of 2005, the federal tax credit for residential...

216

AlabamaSAVES Revolving Loan Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AlabamaSAVES Revolving Loan Program AlabamaSAVES Revolving Loan Program AlabamaSAVES Revolving Loan Program < Back Eligibility Commercial Industrial Institutional Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Construction Commercial Heating & Cooling Appliances & Electronics Commercial Lighting Lighting Water Heating Biofuels Alternative Fuel Vehicles Bioenergy Manufacturing Buying & Making Electricity Hydrogen & Fuel Cells Water Solar Heating & Cooling Maximum Rebate Maximum loan: $4,000,000 Program Info State Alabama Program Type State Loan Program Rebate Amount Minimum loan: $50,000 Provider Abundant Power Solutions The Alabama Department of Economic and Community Affairs (ADECA) is now offering an energy efficiency and renewable energy revolving loan fund

217

Cedarburg Light & Water Utility - Commercial Shared Savings Loan Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cedarburg Light & Water Utility - Commercial Shared Savings Loan Cedarburg Light & Water Utility - Commercial Shared Savings Loan Program (Wisconsin) Cedarburg Light & Water Utility - Commercial Shared Savings Loan Program (Wisconsin) < Back Eligibility Agricultural Commercial Industrial Savings Category Other Heating & Cooling Commercial Heating & Cooling Heating Cooling Appliances & Electronics Manufacturing Home Weatherization Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Commercial Weatherization Ventilation Construction Heat Pumps Commercial Lighting Lighting Water Heating Maximum Rebate $50,000 Program Info State Wisconsin Program Type Utility Loan Program Rebate Amount $2,500 - $50,000 Provider Cedarburg Light and Water Utility Cedarburg Light and Water Utility (CLWU) provides loans for commercial,

218

Gas-Saving Tips  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Gas-Saving Tips Some consumers believe fuel economy ratings are a fixed num- ber, like engine size or cargo volume. However, a vehicle's fuel economy can vary significantly due to...

219

Save energy | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

energy Stamp out energy waste Find cost-effective investments Engage occupants Purchase energy-saving products Put computers to sleep Get help from an expert Take a comprehensive...

220

Energy Department Awards $16.5 Million for State Energy Savings...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savings Projects August 30, 2005 - 2:53pm Addthis To Improve Energy Efficiency in Schools, Promote Energy-Efficient Industrial Technologies, and Support Solar, Wind and...

Note: This page contains sample records for the topic "ventower industries saving" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in the Iron and Steel Industry in China  

E-Print Network (OSTI)

industry, encouraging widespread energy saving, emission reduction, increased steel scrap recycling rate,

Hasanbeigi, Ali

2013-01-01T23:59:59.000Z

222

Acquisition Savings Reporting Process Template  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savings Reporting Process Savings Reporting Process Reporting Template 083112 FINAL 1 of 7 As of August 28, 2012 ` Process 1 STEP 1 - Select Savings Type You must first determine if the savings is through a Strategic Sourcing process or an Other Acquisition Savings process. If it is Strategic Sourcing, it must satisfy the 8 step definition. If it does not satisfy the eight steps, then it is an Other Acquisition Savings process. 2 STEP 2 - Select Savings Methodology (In Order of Preference) Regardless if it is Strategic Sourcing or an Other Acquisition Savings process, the next step is to determine the savings methodology that will be used to calculate the savings. You must select only one methodology. a. Transactions are not reported as savings in multiple categories.

223

Loveland Water & Power - Commercial and Industrial Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here Home Savings Loveland Water & Power - Commercial and Industrial Energy Efficiency Rebate Program Loveland Water & Power - Commercial and Industrial Energy...

224

Improve the Energy Efficiency of Fan Systems, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)  

Science Conference Proceedings (OSTI)

This fact sheet describes how the Industrial Technologies Program Fan System Assessment Tool (FSAT) can help quantify energy consumption and savings opportunities in industrial fan systems.

Not Available

2008-12-01T23:59:59.000Z

225

Estimate of Cost-Effective Potential for Minimum Efficiency Performance Standards in 13 Major World Economies Energy Savings, Environmental and Financial Impacts  

E-Print Network (OSTI)

Electric Motors Industry Total Considering carbon emissions (Tables 33 and 34) on top of energy savings (Electric Motors Industry Residential Total A few key results: Water heating is the end use from which the most savingsElectric Motors Industry Total AUS EU RUS ZAF USA In the CEP scenario, because the focus is on maximizing energy savings,

Letschert, Virginie E.

2013-01-01T23:59:59.000Z

226

THE PRESIDENT'S SAVE AWARD  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PRESIDENT'S SAVE AWARD PRESIDENT'S SAVE AWARD July 8, 2010 "Last year, I issued a challenge to every federal employee: If you see a way the government could do its job better, or do the same job for less money, I want to know about it. That was the idea behind the first-annual President's SAVE Award. And in just three weeks, we received more than 38,000 responses...These ideas are proof that it pays to take a hard look at the way we do business here in Washington. And it also goes to show that the best ideas often come from the folks on the ground - the men and women who make our federal government run every day." President Barack Obama July 8, 2010 The President is committed to cutting waste and modernizing government so it's more open and

227

Energy saving thermostat  

Science Conference Proceedings (OSTI)

An energy saving thermostat adapted to be connected to a remote temperature conditioning apparatus for controlling the temperature of air in a space maintains a first temperature during a first time period and a second energy saving temperature during other time periods of the day. The thermostat has a visual indicating means so that when a manually settable switch is pushed, a time interval counter means is energized for indicating and storing a series of pulses each indicative of an hour of setback time into a storage means. The thermostat also has a review button for reviewing the stored time by pulsing the visual indicating means for the number of hours of the time period energy saving temperature.

Adams, J.T.; Kompelien, A.D.; Nelson, M.D.; Pinckaers, B.H.

1982-02-23T23:59:59.000Z

228

Saving Energy and Money with Energy Savings Performance Contracts |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Saving Energy and Money with Energy Savings Performance Contracts Saving Energy and Money with Energy Savings Performance Contracts Saving Energy and Money with Energy Savings Performance Contracts July 25, 2012 - 11:38am Addthis Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy On the Energy Savers Blog, we talk a lot about what you, our readers, can do to make your homes, workplaces, and vehicles more energy efficient. We love to hear from you about what you think about some of the energy-saving tips we pass along and the stories we tell about our own projects and experiences. But I thought our readers might also like to have a peek at one of the ways that federal agencies are leading by example and saving money by saving energy. Federal agencies are creating jobs and reducing energy costs at federal

229

Energy-Saving Opportunities for Manufacturing Companies, International Fact Sheet (Spanish)  

Science Conference Proceedings (OSTI)

This English/Spanish fact sheet describes the Industrial Technologies Program Save Energy Now model and provides information on tools and resources to help manufacturing facilities reduce industrial energy intensity.

Not Available

2010-08-01T23:59:59.000Z

230

Energy-Saving Opportunities for Manufacturing Companies (English/Portuguese Brochure)  

Science Conference Proceedings (OSTI)

This English/Portuguese brochure describes the Industrial Technologies Program Save Energy Now model and provides information on tools and resources to help manufacturing facilities reduce industrial energy intensity.

Not Available

2011-07-01T23:59:59.000Z

231

Energy-Saving Opportunities for Manufacturing Enterprises in China (International Brochure)  

Science Conference Proceedings (OSTI)

This English/Chinese brochure describes the Industrial Technologies Program Save Energy Now model and provides information on tools and resources to help Chinese manufacturing facilities reduce industrial energy intensity.

Not Available

2010-10-01T23:59:59.000Z

232

Energy-Saving Opportunities for Manufacturing Companies, (English/Russian Fact Sheet) (Revised)  

SciTech Connect

This English/Russian brochure describes the Industrial Technologies Program Save Energy Now model and provides information on tools and resources to help manufacturing facilities reduce industrial energy intensity.

2011-07-01T23:59:59.000Z

233

Emerging energy-efficient technologies for industry  

E-Print Network (OSTI)

Market Information: Industries Iron and Steel SIC 331 End-use(s) Process heating Energyinformation on energy savings, economic, non-energy benefits, major market

2001-01-01T23:59:59.000Z

234

Emerging energy-efficient technologies for industry  

E-Print Network (OSTI)

Market Information: Industries Iron and Steel SIC 331 End-use(s) Process heating Energyinformation on energy savings, economic, non-energy benefits, major market

2004-01-01T23:59:59.000Z

235

Emerging energy-efficient technologies for industry  

E-Print Network (OSTI)

1998. “Emerging Energy-Saving Technologies and Practices for2000. “Emerging Energy-Efficient Industrial Technologies,”of cleaner, more energy- efficient technologies can play a

2004-01-01T23:59:59.000Z

236

Emerging energy-efficient technologies for industry  

E-Print Network (OSTI)

1998. “Emerging Energy-Saving Technologies and Practices for2000. “Emerging Energy-Efficient Industrial Technologies,”of cleaner, more energy- efficient technologies can play a

2001-01-01T23:59:59.000Z

237

Advanced Manufacturing Office: Tuesday Webcasts for Industry  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

the Most Value from ISO 50001 January 10, 2012 - Tuesday Webcast for Industry: Key Energy-Saving Projects for Smaller Facilities Webcast Questions and Answers December 13, 2011...

238

Success stories: Industrial energy management | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

stories Production Strategy Saves Money & Energy: Eastman Chemical Company Related resources Guidelines for Energy Management Energy guides Industrial service and product providers...

239

Saving Fuel, Reducing Emissions  

E-Print Network (OSTI)

cost and the marginal fuel savings (assuming a base case of ten cents per kWhper kWh, which would bring it in line with the break-even costcost per mile: electricity vs. gasoline PRICE OF ELECTRICITY ($/kWh)

Kammen, Daniel M.; Arons, Samuel M.; Lemoine, Derek M.; Hummel, Holmes

2009-01-01T23:59:59.000Z

240

Help Consumers Save Money by Saving Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Help Consumers Save Money by Saving Energy Help Consumers Save Money by Saving Energy Help Consumers Save Money by Saving Energy July 11, 2011 - 2:21pm Addthis Secretary Chu Secretary Chu Former Secretary of Energy What does this mean for me? The lightbulbs you buy every day will be 75-80% more efficient, and last 10-25 times longer. At a time when families are struggling to pay their energy bills, leaders in the House are pushing to roll back common sense standards for residential lighting that save families money by saving energy. It's important to remember that these standards were passed just a few years ago with overwhelming bipartisan support from 86 Senators and 314 members of the House. They were championed and co-sponsored by the former Speaker of the House, Dennis Hastert, and signed into law by President

Note: This page contains sample records for the topic "ventower industries saving" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Save Energy, Save Date Night | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Date Night February 11, 2013 - 1:42pm Addthis Saving energy allows you to spend that money elsewhere. Saving energy allows you to spend that money elsewhere. John Chu John Chu...

242

Help Consumers Save Money by Saving Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Help Consumers Save Money by Saving Energy Help Consumers Save Money by Saving Energy Help Consumers Save Money by Saving Energy July 11, 2011 - 2:21pm Addthis Secretary Chu Secretary Chu Former Secretary of Energy What does this mean for me? The lightbulbs you buy every day will be 75-80% more efficient, and last 10-25 times longer. At a time when families are struggling to pay their energy bills, leaders in the House are pushing to roll back common sense standards for residential lighting that save families money by saving energy. It's important to remember that these standards were passed just a few years ago with overwhelming bipartisan support from 86 Senators and 314 members of the House. They were championed and co-sponsored by the former Speaker of the House, Dennis Hastert, and signed into law by President

243

MassSAVE (Electric) - Commercial New Construction Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MassSAVE (Electric) - Commercial New Construction Program MassSAVE (Electric) - Commercial New Construction Program MassSAVE (Electric) - Commercial New Construction Program < Back Eligibility Commercial Construction Industrial Installer/Contractor Institutional Local Government Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Other Construction Heat Pumps Heating Appliances & Electronics Commercial Lighting Lighting Maximum Rebate 70% of incremental cost of higher efficiency equipment, or an amount that buys down the incremental investment to a 1.5 year simple payback. Program Info State Massachusetts Program Type Utility Rebate Program Rebate Amount Custom Lighting: $0.40 - $1.00/watt saved High Efficiency Fluorescent Systems: $10-$35/fixture High and Low Bay Fluorescents: $20 - $40/fixture

244

Savings by Design (Offered by five Utilities) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savings by Design (Offered by five Utilities) Savings by Design (Offered by five Utilities) Savings by Design (Offered by five Utilities) < Back Eligibility Commercial Construction Industrial Nonprofit Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Water Heating Windows, Doors, & Skylights Solar Maximum Rebate Whole Building (owner): $150,000 Whole Building (designer): $50,000 Systems (owner): $150,000 All incentives are limited to 75% of the incremental cost Program Info State California Program Type Utility Rebate Program Rebate Amount '''Whole Building Approach (owner)''' $0.10 - $0.30/annualized kWh savings, $1.00/therm, or $100/peak kW

245

Identify energy-saving actions | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Identify energy-saving actions Identify energy-saving actions Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Learn the benefits Get started Use Portfolio Manager Save energy Stamp out energy waste Find cost-effective investments Engage occupants Provide a seat at the table Share energy goals and progress Identify energy-saving actions Spread the word about how to help

246

Potential energy savings from aquifer thermal energy storage  

DOE Green Energy (OSTI)

Pacific Northwest Laboratory researchers developed an aggregate-level model to estimate the short- and long-term potential energy savings from using aquifer thermal storage (ATES) in the United States. The objectives of this effort were to (1) develop a basis from which to recommend whether heat or chill ATES should receive future research focus and (2) determine which market sector (residential, commercial, or industrial) offers the largest potential energy savings from ATES. Information was collected on the proportion of US land area suitable for ATES applications. The economic feasibility of ATES applications was then evaluated. The potential energy savings from ATES applications was calculated. Characteristic energy use in the residential, commercial, and industrial sectors was examined, as was the relationship between waste heat production and consumption by industrial end-users. These analyses provided the basis for two main conclusions: heat ATES applications offer higher potential for energy savings than do chill ATES applications; and the industrial sector can achieve the highest potential energy savings for the large consumption markets. Based on these findings, it is recommended that future ATES research and development efforts be directed toward heat ATES applications in the industrial sector. 11 refs., 6 figs., 9 tabs.

Anderson, M.R.; Weijo, R.O.

1988-07-01T23:59:59.000Z

247

Gas-Saving Tips  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Gas-Saving Tips Gas-Saving Tips Some consumers believe fuel economy ratings are a fixed number, like engine size or cargo volume. However, a vehicle's fuel economy can vary significantly due to several factors, including how the vehicle is driven, the vehicle's mechanical condition, and the environment in which it is driven. That's good news. It means you may be able to improve your vehicle's gas mileage through proper maintenance and driving habits. In fact, studies suggest the average driver can improve his/her fuel economy by roughly 10 percent. Here are a few simple tips to help you get the best possible fuel economy from your vehicle and reduce your fuel costs. Adopt Good Driving Habits Drive Sensibly Aggressive driving (speeding, rapid acceleration and braking)

248

Learning about saving energy  

SciTech Connect

This fact sheet for use in primary and junior high school classes describes what energy is, how people use energy, and how energy can be conserved. This last section lists ways to save energy in heating and cooling, electric appliances, automobiles, and in manufacturing. A list of activities are suggested and resources for further information, both groups and books, are listed. A glossary is also included.

1995-02-01T23:59:59.000Z

249

Assessment of Retrofit Energy Savings Device (RESD) Technologies -- Phase II  

Science Conference Proceedings (OSTI)

This report describes and documents the energy savings, energy efficiency, and limited power quality and performance assessment of six retrofit energy-saving devices that the Electric Power Research Institute (EPRI) tested. These devices include lighting controls, electric motor controls, and one residential home energy saver. These devices were selected based on industry interest and for informational purposes for customers. Most of the testing was conducted at EPRI’s Knoxville laboratory ...

2013-08-21T23:59:59.000Z

250

Saving Energy and Money with Energy Savings Performance Contracts |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

with Energy Savings Performance Contracts with Energy Savings Performance Contracts Saving Energy and Money with Energy Savings Performance Contracts July 25, 2012 - 11:38am Addthis Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy On the Energy Savers Blog, we talk a lot about what you, our readers, can do to make your homes, workplaces, and vehicles more energy efficient. We love to hear from you about what you think about some of the energy-saving tips we pass along and the stories we tell about our own projects and experiences. But I thought our readers might also like to have a peek at one of the ways that federal agencies are leading by example and saving money by saving energy. Federal agencies are creating jobs and reducing energy costs at federal

251

Savings Project: Insulate Hot Water Pipes for Energy Savings | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Insulate Hot Water Pipes for Energy Savings Insulate Hot Water Pipes for Energy Savings Savings Project: Insulate Hot Water Pipes for Energy Savings Addthis Project Level Medium Energy Savings $8-$12 annually Time to Complete 3 hours for a small house Overall Cost $10-$15 Insulating water pipes can save you water, energy, and money. | Photo courtesy of iStockphoto.com/nsj-images Insulating water pipes can save you water, energy, and money. | Photo courtesy of iStockphoto.com/nsj-images Insulating your hot water pipes reduces heat loss and can raise water temperature 2°F-4°F hotter than uninsulated pipes can deliver, allowing for a lower water temperature setting. You also won't have to wait as long for hot water when you turn on a faucet or showerhead, which helps conserve water. Paying for someone to insulate your pipes-as a project on its own-may

252

Untapped Energy Savings from Cooling Towers  

E-Print Network (OSTI)

A cooling tower is often an overlooked source of easy energy savings. As long as it's running not much thought is usually given to it, but when numbers are applied to how much a degree of colder water is worth it can become a valuable and ready source of energy and monetary savings. Many of these savings can come from simple maintenance or by changing the way the tower is operated. The more dramatic savings can come from changing to advanced fill concepts. Over our 40 years of working in the cooling tower industry we have measured the effects of doing simple maintenance, the effects of blocking air flow with seemingly good ideas like maintenance walkways, the effects of nearby heat sources, and what fill changes are likely to get. We have put numbers to what a degree is worth to a large petrochemical company so you can get an idea of the magnitude of what these sometimes simple changes are actually worth. Also, we've included a way to monitor your tower for changes in performance.

Phelps Jr., P.

2011-01-01T23:59:59.000Z

253

Saving Electricity | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Saving Electricity Saving Electricity Saving Electricity Reducing energy use in your home saves you money, increases our energy security and reduces the pollution that is emitted from non-renewable sources of energy. Learn more about reducing your electricity use. Reducing energy use in your home saves you money, increases our energy security and reduces the pollution that is emitted from non-renewable sources of energy. Learn more about reducing your electricity use. We rely on electricity to power our lights, appliances, and electronics in our homes. Many of us also use electricity to provide our homes with hot water, heat, and air conditioning. As we use more electricity in our homes,

254

Retrofit Savings for Brazos County  

E-Print Network (OSTI)

This report presents the energy and dollar savings for the period May 2000 - April 2001 for 10 of the Brazos County facilities that have been retrofit. The electricity use saved was 555,170 kWh and the demand was 1062 kW, which is equivalent to a $31,743 dollars savings, $24,650 from electricity use and $7,093 from the electric demand. These savings represent a 60.8% of the audit-estimated savings and a 93.7% of the audit-estimated savings if just the positive one were taken in account. The savings have improved somewhat from the previous report that included the billing periods for January to August 1999. The savings for the earlier period were 48.0% of the audit-estimated savings that means compared with 60.8% for the current period. In general has been an improvement in the energy saving in most of the facilities. The cases where are observed negative savings are the Minimum Security Jail, where is known that the area was increased significantly, the Arena Hall, where the modeling can be normalized due to kind of use of this facility, and the Road and bridges Shop, which looks to be operated more time in this period.

Baltazar-Cervantes, J. C.; Shao, X.; Claridge, D. E.

2001-01-01T23:59:59.000Z

255

U.S. Department of Energy Announces Completion of 500 Industrial...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Completion of 500 Industrial Energy Saving Assessment U.S. Department of Energy Announces Completion of 500 Industrial Energy Saving Assessment May 9, 2008 - 11:30am Addthis Over...

256

Does Daylight Saving Time Save Energy? Evidence from a Natural Experiment in Indiana  

E-Print Network (OSTI)

R. and H. Wolff. In press. Does Extending Daylight SavingCSEM WP 179 Does Daylight Saving Time Save Energy? Evidence94720-5180 www.ucei.org Does Daylight Saving Time Save

Kotchen, Matthew J; Grant, Laura E.

2008-01-01T23:59:59.000Z

257

Ventilation and Energy Saving in Auto Manufacturing Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Ventilation and Energy Saving in Auto Manufacturing Plants Ventilation and Energy Saving in Auto Manufacturing Plants Speaker(s): Alexander M. Zhivov Date: April 3, 2002 - 12:00pm Location: Bldg. 90 Dr. Alexander Zhivov is currently the chairman of the International Task Force "Autovent International" focusing on environmental problems within the Automotive Industry. This Task Force was formed in 1997 to develop the "Ventilation Guide for Automotive Industry". The guide was to be seen as a building block within the EU sponsored "Industrial Ventilation Design Guide Book" project, covering both theory and applications. In his presentation, Dr. Zhivov will talk about his work with the automotive industry, describe major highlights from the "Ventilation Guide for Automotive Industry" and talk about building, process and HVAC

258

Retrofitting for Energy Savings  

E-Print Network (OSTI)

Energy audits provide a measure of current energy usage and indicate areas where energy usage can be reduced from present levels. The next step is to make an in-depth process engineering review lo quantify what modifications can be made to a plant, what energy savings will result and what capital costs are needed for particular modifications that must be made. Economic considerations, together with space availability for new equipment, determine what can be done in an existing plant to economically reduce energy usage.

Elshout, R. V.

1983-01-01T23:59:59.000Z

259

Energy-saving tips for small businesses  

SciTech Connect

This flyer provides proven, straightforward, energy-saving actions that could save 10% to 50% on energy bills.

1995-09-01T23:59:59.000Z

260

Assessing Plant Performance for Energy Savings | ENERGY STAR Buildings &  

NLE Websites -- All DOE Office Websites (Extended Search)

Assessing Plant Performance for Energy Savings Assessing Plant Performance for Energy Savings Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories

Note: This page contains sample records for the topic "ventower industries saving" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

ENERGY STAR Healthcare Energy Savings Financial Analysis Calculators |  

NLE Websites -- All DOE Office Websites (Extended Search)

Healthcare Energy Savings Financial Analysis Healthcare Energy Savings Financial Analysis Calculators Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources

262

Profiles in Energy Efficiency Production Strategy Saves Money & Energy:  

NLE Websites -- All DOE Office Websites (Extended Search)

Production Strategy Saves Money & Production Strategy Saves Money & Energy: Eastman Chemical Company Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources

263

Sebesta Blomberg & 3M Teaming Presentation- Engineerd Savings Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Sebesta Blomberg & 3M Teaming Presentation- Engineerd Savings Sebesta Blomberg & 3M Teaming Presentation- Engineerd Savings Program (ESP): Enhanced Opportunities for Energy Conservation Through Plant and System Assessements Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager

264

China's Industrial Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

China's Industrial Energy China's Industrial Energy Consumption Trends and Impacts of the Top-1000 Enterprises Energy- Saving Program and the Ten Key Energy-Saving Projects Jing Ke, Lynn Price, Stephanie Ohshita, David Fridley, Nina Khanna, Nan Zhou, Mark Levine China Energy Group Environmental Energy Technologies Division Lawrence Berkeley National Laboratory Reprint version of journal article published in "Energy Policy", Volume 50, Pages 562-569, November 2012 October 2012 This work was supported by the China Sustainable Energy Program of the Energy Foundation through the U.S. Department of Energy under Contract No. DE-AC02- 05CH11231. ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY

265

Remanufacturing and energy savings  

E-Print Network (OSTI)

The substantial growth in industrial production, demand for materials, and population has led to an increasing need for sustainable manufacturing processes to mitigate the negative impacts on the environment and meet the ...

Boustani, Avid

2010-01-01T23:59:59.000Z

266

Reduce Natural Gas Use in Your Industrial Steam Systems: Ten Timely Tips  

SciTech Connect

This DOE Industrial Technologies Program brochure provides 10 timely tips to help industrial manufacturing plants save money and reduce natural gas use in their steam systems.

2006-02-01T23:59:59.000Z

267

Building Technologies Office: SAVING ENERGY  

NLE Websites -- All DOE Office Websites (Extended Search)

and money to operate. Business owners have long recognized the potential of light-emitting diode (LED) technology in parking lot lighting-to save energy, reduce maintenance...

268

Learning About Saving Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE/GO-10095-070 DOE/GO-10095-070 FS 218 January 1995 ENERGY EFFICIENCY Learning About AND RENEWABLE Saving Energy CLEARINGHOUSE ENERGY What is energy? Energy is the ability to do work. It can come in the forms of heat and light. There are two types of energy: working energy and stored energy. Stored energy becomes working energy when we use it. You eat food for energy. Then your body stores the energy until you need it. When you work and play, your stored energy becomes working energy. We use energy every day. We use it to grow our food, warm and cool our homes, make our electricity, run our cars, and make products like clothes and toys. It is a very important part of our lives. Most of the time, we use stored energy for fuel. Burning fuel sets the stored energy free in the form

269

Partnering to Save Water  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Partnering Partnering to Save Water Phill Consiglio Southern California Edison What We Are Going to Discuss * A Little Bit About Water * The Energy Cost of Water * Water Technologies * What We Have Done * Where We Are Going A Little Bit About Water *The Earth Has A Finite Supply Of Fresh Water. - Water Is Stored In Aquifers, Surface Waters And The Atmosphere - Sometimes Oceans Are Mistaken For Available Water, But The Amount Of Energy Needed To Convert Saline Water To Potable Water Is Prohibitive Today *This Has Created A Water Crisis Due To: - Inadequate Access To Safe Drinking Water For About 884 Million People - Inadequate Access To Water For Sanitation And Waste Disposal For 2.5 Billion People - Groundwater Overdrafting (Excessive Use) Leading To Diminished Agricultural Yields

270

MassSAVE (Gas) - Commercial Retrofit Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MassSAVE (Gas) - Commercial Retrofit Program MassSAVE (Gas) - Commercial Retrofit Program MassSAVE (Gas) - Commercial Retrofit Program < Back Eligibility Commercial Construction Industrial Installer/Contractor Institutional Local Government Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Other Manufacturing Commercial Weatherization Appliances & Electronics Water Heating Maximum Rebate Projects over $25,000 or involve 5 or more equipment units, customers should contact their utility Program Info State Massachusetts Program Type Utility Rebate Program Rebate Amount Warm Air Furnaces with Electronic Commutated Motor (ECM): $500-$800 Condensed Unit Heaters: $7500 Condensing Boilers: $1,000 - $10,000 Infrared Heaters: $750 Condensing Water Heater: $500 On-Demand Tankless Water Heater: $500 - $800

271

Uniform Methods Project for Determining Energy Efficiency Program Savings |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for Determining Energy Efficiency Program for Determining Energy Efficiency Program Savings Uniform Methods Project for Determining Energy Efficiency Program Savings Under the Uniform Methods Project, DOE is developing a framework and a set of protocols for determining the energy savings from specific energy efficiency measures and programs. The protocols provide a straightforward method for evaluating gross energy savings for common residential and commercial measures offered in ratepayer-funded initiatives in the United Sates. They represent a refinement of the body of knowledge supporting energy efficiency evaluation, measurement, and verification (EM&V) activities. They have been written by technical experts within the field and reviewed by industry experts. Read the first set of protocols published April 2013.

272

Better Buildings Challenge Reports First Year's Savings; Partners on  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Challenge Reports First Year's Savings; Partners Challenge Reports First Year's Savings; Partners on Track to Meet 2020 Goal Better Buildings Challenge Reports First Year's Savings; Partners on Track to Meet 2020 Goal May 22, 2013 - 12:00pm Addthis News Media Contact (202) 586-4940 WASHINGTON - Today, Energy Secretary Ernest Moniz recognized the Administration's Better Buildings Challenge partners for the first year's progress toward our goal of making American commercial and industrial buildings 20 percent more energy efficient by 2020. Today's announcement builds upon Secretary Moniz's first speech as Secretary at the 2013 Energy Efficiency Global Forum yesterday which focused on his commitment to saving energy. New data submitted by the Challenge partners shows that they have improved facility energy efficiency by more than 2.5 percent per year on average

273

Better Buildings Challenge Reports First Year's Savings; Partners on  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Better Buildings Challenge Reports First Year's Savings; Partners Better Buildings Challenge Reports First Year's Savings; Partners on Track to Meet 2020 Goal Better Buildings Challenge Reports First Year's Savings; Partners on Track to Meet 2020 Goal May 22, 2013 - 12:00pm Addthis News Media Contact (202) 586-4940 WASHINGTON - Today, Energy Secretary Ernest Moniz recognized the Administration's Better Buildings Challenge partners for the first year's progress toward our goal of making American commercial and industrial buildings 20 percent more energy efficient by 2020. Today's announcement builds upon Secretary Moniz's first speech as Secretary at the 2013 Energy Efficiency Global Forum yesterday which focused on his commitment to saving energy. New data submitted by the Challenge partners shows that they have improved

274

Manufacturers Saving with Lost Foam Metal Casting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manufacturers Saving with Lost Foam Metal Casting Manufacturers Saving with Lost Foam Metal Casting Manufacturers Saving with Lost Foam Metal Casting December 18, 2009 - 2:43pm Addthis Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy What are the key facts? Metal casting was identified as one of the top 10 energy users in manufacturing. The technology represents a 20- to 25-percent reduction in production costs and uses 7 percent fewer materials than traditional processes. One example of this technology is being used by General Motors to make lightweight engine blocks for the fuel-efficient vehicles they manufacture. A government-funded effort to support development of foam metal casting helped reduce an estimated 9.4 million tons of solid waste between 1994 and 2005, which saved industry an estimated 3 trillion Btu.

275

Developing Information on Energy Savings and Associated Costs and Benefits of Energy Efficient Emerging Technologies Applicable in California  

E-Print Network (OSTI)

on energy efficiency, energy savings, market adoption, andIndustries End-use(s) Energy types Market segment 2015Industries End-use(s) Energy types Market segment 2015

Xu, Tengfang

2011-01-01T23:59:59.000Z

276

CHARACTERIZING COSTS, SAVINGS AND BENEFITS OF A SELECTION OF ENERGY EFFICIENT EMERGING TECHNOLOGIES IN THE UNITED STATES  

E-Print Network (OSTI)

on energy efficiency, energy savings, market adoption, andIndustries End-use(s) Energy types Market segment 2015Industries End-use(s) Energy types Market segment 2020

Xu, T.

2011-01-01T23:59:59.000Z

277

Industrial Energy Efficiency Assessments  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency Energy Efficiency Assessments Lynn Price Staff Scientist China Energy Group Energy Analysis Department Environmental Energy Technologies Division Lawrence Berkeley National Laboratory Industrial Energy Efficiency Assessments - Definition and overview of key components - International experience - Chinese situation and recommendations - US-China collaboration Industrial Energy Efficiency Assessments - Analysis of the use of energy and potential for energy efficiency in an industrial facility * Current situation * Recommendations for improving energy efficiency * Cost-benefit analysis of recommended options * An action plan for realizing potential savings Types of Industrial Energy Efficiency Assessments - Preliminary or walk-through - Detailed or diagnostic Audit criteria

278

Incorporating Non-energy Benefits into Energy Savings Performance Contracts  

NLE Websites -- All DOE Office Websites (Extended Search)

Non-energy Benefits into Energy Savings Performance Contracts Non-energy Benefits into Energy Savings Performance Contracts Title Incorporating Non-energy Benefits into Energy Savings Performance Contracts Publication Type Conference Paper Year of Publication 2012 Authors Larsen, Peter H., Charles A. Goldman, Donald Gilligan, and Terry E. Singer Conference Name 2012 ACEEE Summer Study on Energy Efficiency in Buildings Date Published 2012 Publisher ACEEE Conference Location Asilomar Conference Center, Pacific Grove, California Abstract This paper evaluates the issue of non-energy benefits within the context of the U.S. energy services company (ESCO) industry-a growing industry comprised of companies that provide energy savings and other benefits to customers through the use of performance-based contracting. Recent analysis has found that ESCO projects in the public/institutional sector, especially at K-12 schools, are using performance-based contracting, at the behest of the customers, to partially -- but not fully -- offset substantial accumulated deferred maintenance needs (e.g., asbestos removal, wiring) and measures that have very long paybacks (roof replacement). This trend is affecting the traditional economic measures policymakers use to evaluate success on a benefit to cost basis. Moreover, the value of non-energy benefits which can offset some or all of the cost of the non-energy measures -- including operations and maintenance (O&M) savings, avoided capital costs, and tradable pollution emissions allowances -- are not always incorporated into a formal cost-effectiveness analysis of ESCO projects. Non- energy benefits are clearly important to customers, but state and federal laws that govern the acceptance of these types of benefits for ESCO projects vary widely (i.e., 0-100% of allowable savings can come from one or more non-energy categories). Clear and consistent guidance on what types of savings are recognized in Energy Savings Agreements under performance contracts is necessary, particularly where customers are searching for deep energy efficiency gains in the building sector.

279

Refrigerator Standards Save Consumers $ Billions | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Refrigerator Standards Save Consumers $ Billions Refrigerator Standards Save Consumers $ Billions Refrigerator Standards Save Consumers $ Billions March 5, 2013 - 10:35am Addthis Refrigerator Standards Refrigerator Standards Refrigerator technology has come a long way since Dr. John Gorrie (1803 - 1855), a forward-looking inventor, was granted U. S. Patent #8080 for mechanical refrigeration in 1851. In those days, ice was expensive, if it was even available: Blocks of natural ice were carved from frozen lakes and rivers and stored in special warehouses under layers of sawdust for insulation. By the 1890s, pollution and sewage dumping caused by population growth compromised sources of pure, natural ice, threatening the brewing, meat-packing, and dairy industries. As these and other industries sought better solutions, modern refrigeration technology started to evolve.

280

Lean, Energy, and Savings: Energy Impacts of Lean Manufacturing  

E-Print Network (OSTI)

Most utility energy efficiency programs for industry focus on equipment replacement. A key result is confidence in the amount of resulting energy savings. Utility programs focusing on behavior - that is, using a piece of equipment more optimally - often suffer from a perceived inability to accurately quantify resulting savings. The last few decades have seen a proliferation of Lean Manufacturing practices across industry, where organizations focus on eliminating waste. Energy is often a component of these wastes, but challenges in quantifying results have slowed the inclusion of Lean in utility energy efficiency programs. In 2011 the Northwest Energy Efficiency Alliance completed an effort that applied energy concepts within the Manufacturing Extension Partnership organizations of the Northwest. A critical project component was quantifying the energy savings from a Lean implementation at a food processing facility. This paper provides details on that project's approach, results, and next steps.

Milward, R.; Gilless, C.; Brown, K.

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ventower industries saving" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Development of a Roof Savings Calculator  

SciTech Connect

A web-based Roof Savings Calculator (RSC) has been deployed for the Department of Energy as an industry-consensus tool to help building owners, manufacturers, distributors, contractors and researchers easily run complex roof and attic simulations. This tool employs the latest web technologies and usability design to provide an easy input interface to an annual simulation of hour-by-hour, whole-building performance using the world-class simulation tools DOE-2.1E and AtticSim. Building defaults were assigned and can provide annual energy and cost savings after the user selects nothing more than building location. In addition to cool reflective roofs, the RSC tool can simulate multiple roof types at arbitrary inclinations. There are options for above sheathing ventilation, radiant barriers and low-emittance surfaces. The tool also accommodates HVAC ducts either in the conditioned space or in the attic with custom air leakage rates. Multiple layers of thermal mass, ceiling insulation and other parameters can be compared side-by-side to generate energy/cost savings between two buildings. The RSC tool was benchmarked against field data for demonstration homes in Ft Irwin, CA.

New, Joshua Ryan [ORNL; Miller, William A [ORNL; Huang, Joe [Lawrence Berkeley National Laboratory (LBNL); Erdem, Ender [Lawrence Berkeley National Laboratory (LBNL)

2011-01-01T23:59:59.000Z

282

Development of a Roof Savings Calculator  

SciTech Connect

A web-based Roof Savings Calculator (RSC) has been deployed for the Department of Energy as an industry-consensus tool to help building owners, manufacturers, distributors, contractors and researchers easily run complex roof and attic simulations. This tool employs the latest web technologies and usability design to provide an easy input interface to an annual simulation of hour-by-hour, whole-building performance using the world-class simulation tools DOE-2.1E and AtticSim. Building defaults were assigned and can provide estimated annual energy and cost savings after the user selects nothing more than building location. In addition to cool reflective roofs, the RSC tool can simulate multiple roof types at arbitrary inclinations. There are options for above sheathing ventilation, radiant barriers, and low-emittance surfaces. The tool also accommodates HVAC ducts either in the conditioned space or in the attic with custom air leakage rates. Multiple layers of building materials, ceiling and deck insulation, and other parameters can be compared side-by-side to generate an energy/cost savings estimate between two buildings. The RSC tool was benchmarked against field data for demonstration homes in Ft. Irwin, CA.

New, Joshua Ryan [ORNL; Miller, William A [ORNL; Desjarlais, Andre Omer [ORNL; Erdem, Ender [Lawrence Berkeley National Laboratory (LBNL); Huang, Joe [Lawrence Berkeley National Laboratory (LBNL)

2011-01-01T23:59:59.000Z

283

ENERGY EFFICIENCY OPPORTUNITIES IN THE U.S. PULP AND PAPER INDUSTRY  

E-Print Network (OSTI)

a portion of the industry’s electricity use. In 2002, thesteam, electricity, and direct fuel used by the industry inpulp and paper industry could lead to electricity savings of

Kramer, Klaas Jan

2010-01-01T23:59:59.000Z

284

Industrial Assessment Center  

SciTech Connect

This project involved providing technical assistance to help small and medium size industries in Wisconsin to reduce operating costs by managing energy, waste and productivity. The project helped save 525 companies on average about $40,000 per year. Under the direction of Dr. Saxena, more than twenty undergraduate and ten graduate students were trained in energy, waste, and productivity management.

Umesh K. Saxena

2009-06-04T23:59:59.000Z

285

Waste Minimization: A Hidden Energy Savings?  

E-Print Network (OSTI)

Several changes in the last few years have forced a re-examination of waste generation within the petrochemical industry. In today's political/regulatory arena, industrial waste, both hazardous and non-hazardous, has become an extreme potential liability in handling, storing, and disposal. Traditional methods, such as fueling boilers and furnaces, are coming under increasing regulatory scrutiny and control. Even when the heat value of a waste material can be recovered, the energy used to manufacture that material is lost. The answers are becoming apparent: to (1) preferably not produce waste at all, or (2) recover as a usable product. This results in not only a reduction in cost and liability but a substantial reduction in energy use per unit of product sold. The following is a discussion of how a large Gulf Coast petrochemical facility is tackling waste minimization and a look at some of the energy savings that have been attained.

Good, R. L.; Hunt, K. E.

1989-09-01T23:59:59.000Z

286

Energy Savings by Veneering  

E-Print Network (OSTI)

With the Oil Crisis of 1972-1973, the attitude by Industry on fuel usage and conservation began an evolutionary change in attitudes. This change in attitudes was brought about by three strong motivators for conservation: rising prices, availability of fuel, and government voluntary energy improvement program for the 10 largest fuel consuming industries by 1980. While each region of the United States has its own particular set of inflationary fuel costs, the experience at our Babcock & Wilcox plant in Augusta, Georgia is probably a very typical example of the cost rises experienced by Industry since the 1972-1973 period. 1. Electric Power Increase: 190% per KWH 2. Natural Gas Increase: 320% per Therm 3. No.2 Oil Increase: 271% per Gallon 4. No.4 Oil Increase: 339% per Gallon 5. Propane Increase: 250% per Gallon Price increases of 50% to over 100% are conceivable in the next five years, plus the availability of fuels may also be a matter of serious concern.

Cook, T. H.

1980-01-01T23:59:59.000Z

287

Industrial Energy Efficiency Programs: Development and Trends  

E-Print Network (OSTI)

As more states establish Energy Efficiency Resource Standards (EERS), goals for energy efficiency savings are increasing across the country. Increasingly, states are relying on their industrial energy efficiency programs to find and help implement those savings. Historically, industrial energy efficiency programs have not been completely effective at finding those savings, in large part because the programs have not been flexible enough to accommodate the heterogeneous needs and unique characteristics of the industrial sector. This paper will discuss the state of industrial energy efficiency programs today. Relying on an ACEEE-administered survey of 35 industrial energy efficiency programs, we will determine current trends and challenges, address emerging needs, and identify best practices in the administration of today's industrial efficiency programs. The paper will serve as an update on industrial energy efficiency program activities and discuss the ways in which today's programs are trying to serve their industrial clients better.

Chittum, A.; Kaufman, N.; Elliot, N.

2010-01-01T23:59:59.000Z

288

Kansas City Power & Light - Commercial/Industrial Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Administration Other Agencies You are here Home Savings Kansas City Power & Light - CommercialIndustrial Energy Efficiency Rebate Program Kansas City Power & Light -...

289

Coldwater Board of Public Utilities - Commercial and Industrial...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Smart" program, offers a wide range of incentives that encourage commercial and industrial to pursue energy efficient equipment and energy saving measures. Prescriptive...

290

Snohomish County PUD No 1 - Commercial and Industrial Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Custom incentives are paid based on the amount of electricity saved. Commercial, industrial, school, non-profit, or governmental buildings in Snohomish County can be...

291

Otter Tail Power Company- Commercial & Industrial Energy Efficiency Grant Program  

Energy.gov (U.S. Department of Energy (DOE))

Otter Tail Power Company Grants for Conservation Program allows its commercial and industrial customers to submit energy-saving proposals and receive grants for their custom efficiency projects....

292

World Best Practice Energy Intensity Values for Selected Industrial Sectors  

E-Print Network (OSTI)

Industry. Brussels: IISI. The best practice coke plant isa modern coke plant using standard technology, includingspeed drives on motors and fans. Coke dry quenching saves an

Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

2007-01-01T23:59:59.000Z

293

The New EnergySaver.gov -- Save Money by Saving Energy! | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The New EnergySaver.gov -- Save Money by Saving Energy The New EnergySaver.gov -- Save Money by Saving Energy September 10, 2012 - 11:35am Addthis By taking simple steps to...

294

Boise Paper: Process Pumping System Optimization Saves Energy and Improves Production  

SciTech Connect

This DOE Industrial Technologies Program spotlight describes how Boise Paper is saving 498,000 kWh annually after improving the process pumping system efficiency of its Wallula, Washington, mill.

2006-05-01T23:59:59.000Z

295

Save Energy Now Reveals New Opportunities for Steel Manufacturers to Reduce Costs and Energy Use  

Science Conference Proceedings (OSTI)

This case study describes how the Industrial Technologies Program helps steel companies find ways to improve the efficiency of energy-intensive process heating and steam systems by performing Save Energy Now energy assessments.

Not Available

2008-08-01T23:59:59.000Z

296

Jump-Start Your Plant's Energy Savings with Quick PEP (Plant Energy Profiler)  

SciTech Connect

This DOE Industrial Technologies Program fact sheet describes a new, easy-to-use software tool that can help manufacturing firms identify ways to save energy and money in their plants.

2006-07-01T23:59:59.000Z

297

Improve Overall Plant Efficiency and Fuel Use, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)  

SciTech Connect

This fact sheet describes how the Industrial Technologies Program combined heat and power (CHP) tool can help identify energy savings in gas turbine-driven systems.

2008-12-01T23:59:59.000Z

298

Saving Energy Saves You Money | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

in their homes and using energy efficient products. "Americans spend about 2,000 per household on energy every year - but many of them could save a few hundred of that without...

299

Demonstration of Energy Savings of Cool Roofs  

E-Print Network (OSTI)

description building ft daily a/c savings insulation Davislocation building type daily a/c savings 1000ft insulationbuilding type location daily a/c savings 1000ft kWh/1000ft insulation

Konopacki, S.

2010-01-01T23:59:59.000Z

300

Verify and document your savings | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

my money go? Set and Save with ENERGY STAR Product Finder Rebate Finder Store Locator Energy Savings At Home Energy Savings At Home Improving your home's energy efficiency with...

Note: This page contains sample records for the topic "ventower industries saving" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Analysis of annual energy savings due to radiant barriers  

Science Conference Proceedings (OSTI)

Radiant barriers are receiving increasing attention as an energy conservation measure for residential buildings, especially for warmer climates. They are being actively promoted for use in residential attics, sometimes with exaggerated claims about savings in utility bills that will results from their installation. In order to provide consumers with factual information that would assist them in deciding upon an investment in a radiant barrier, the Department of Energy, along with an industry advisory panel, has developed a Radiant Barrier Fact Sheet. A major part of this fact sheet is estimates of energy savings that might be expected from radiant barriers in various climates. This paper presents the details of the methodology underlying the energy savings estimates, and gives a summary of values listed in the Fact Sheet. The energy savings estimates were obtained from calculations using a detailed attic thermal model coupled with DOE-2.1C. A life cycle cost analysis was performed to estimate the present value savings on utility fuel costs. The results show that the fuel cost savings vary significantly with the level of conventional insulation already in the attic and from one climate to another.

Wilkes, K.E.

1990-01-01T23:59:59.000Z

302

Emerging Technologies for Energy Savings Performance Contracting...  

NLE Websites -- All DOE Office Websites (Extended Search)

Emerging Technologies for Energy Savings Performance Contracting in the Federal Sector A report by the Alliance to Save Energy to the US DOE Federal Energy Management Program...

303

Training Reciprocity Achieves Greater Consistency, Saves Time...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Training Reciprocity Achieves Greater Consistency, Saves Time and Money for Idaho, Other DOE Sites Training Reciprocity Achieves Greater Consistency, Saves Time and Money for...

304

Improving Ventilation and Saving Energy: Relocatable Classroom...  

NLE Websites -- All DOE Office Websites (Extended Search)

Improving Ventilation and Saving Energy: Relocatable Classroom Field Study Interim Report Title Improving Ventilation and Saving Energy: Relocatable Classroom Field Study Interim...

305

Federal Energy Management Program: Energy Savings Performance...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Savings Performance Contracts to someone by E-mail Share Federal Energy Management Program: Energy Savings Performance Contracts on Facebook Tweet about Federal Energy...

306

Improved methods to evaluate realised energy savings.  

E-Print Network (OSTI)

??This thesis regards the calculation of realised energy savings at national and sectoral level, and the policy contribution to total savings. It is observed that… (more)

Boonekamp, P.G.M.

2005-01-01T23:59:59.000Z

307

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Filter By Filter State All Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware...

308

Defining a Standard Metric for Electricity Savings  

NLE Websites -- All DOE Office Websites (Extended Search)

Defining a Standard Metric for Electricity Savings Title Defining a Standard Metric for Electricity Savings Publication Type Report LBNL Report Number LBNL-2213E Year of...

309

Energy Savings Performance Contracts Summary | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Centers Field Sites Power Marketing Administration Other Agencies You are here Home Energy Savings Performance Contracts Summary Energy Savings Performance Contracts Summary...

310

Saving Electricity | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4, 2012 Lighting Choices Save You Money. Energy-efficient light bulbs are available in a wide variety of sizes and shapes. Tips: Lighting Find out how to switch to energy-efficient...

311

Saving Electricity | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

30, 2012 Simple and inexpensive actions can help you save energy and money during the warm spring and summer months. | Photo courtesy of iStockphoto.comeyedias. Spring and Summer...

312

Michigan Saves- Business Energy Financing  

Energy.gov (U.S. Department of Energy (DOE))

Michigan Saves is a non-profit that offers financing options for energy efficiency improvements throughout Michigan. The Business Energy Financing Program was started with seed funding from the...

313

Saving Electricity | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Money The Energy Department's new PSAs offer practical and simple actions that both homeowners and renters can take to save money on their energy bills. June 10, 2013 Common Sense...

314

Building Technologies Office: SAVING ENERGY  

NLE Websites -- All DOE Office Websites (Extended Search)

that could be used to power a third of Africa for an entire year. It's also equivalent to saving consumers a collective 21 billion on energy bills through 2043. It IS Easy-and...

315

Daylight metrics and energy savings  

E-Print Network (OSTI)

for determining electric lighting usage. Some of the moreAny savings in electric lighting usage were determined oras well as on electric lighting usage. 23 of 30 To this end,

Mardaljevic, John

2011-01-01T23:59:59.000Z

316

Saving Electricity | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Programmable thermostats can save you money on utility bills. May 30, 2012 Image of a heat exchanger. | Photo from iStockphoto.com Heat Exchangers for Solar Water Heating...

317

Household savings and portfolio choice  

E-Print Network (OSTI)

This thesis consists of three essays that examine household savings and portfolio choice behavior. Chapter One analyses the effects of employer matching contributions and tax incentives on participation and contribution ...

Klein, Sean Patrick

2010-01-01T23:59:59.000Z

318

Daylight metrics and energy savings  

E-Print Network (OSTI)

for determining electric lighting usage. Some of the moreAny savings in electric lighting usage were determined orload as well as on electric lighting usage. 23 of 30 To this

Mardaljevic, John

2011-01-01T23:59:59.000Z

319

Saving Opportunities in the Restructured Texas Electric Market  

E-Print Network (OSTI)

This paper will discuss the opportunities available to businesses, industries, and public entities in the restructured electric market in Texas. We will provide a case study of the demand side and supply side options that have been used by the City of Farmers Branch to optimize their savings and comply with Senate Bill 5. The paper will also discuss the experiences, future opportunities and obstacles that can be used by customer groups to increase their savings through load profile shaping and load management. These and other methods of involving public and private entities in the restructured Texas market will be covered.

Smolen, P.; Fox, M.

2003-05-01T23:59:59.000Z

320

Energy and economic savings from improved catalysts: Executive summary  

SciTech Connect

The energy, economic costs and benefits of applying the materials-by-design concept to catalysts were estimated. Catalysts are of particular interest because of the competitive challenge from Japan, West Germany, and France. Initial estimates developed in this study reveal a potential capital cost savings of $31 billion and an operating cost savings of $69 billion for chemical and petroleum refining plants over a 15-year period. The findings of this study substantiate the claim that a major US effort to enhance materials-by-design technology is warranted, at least for catalyst materials. In addition, this technology would ensure pre-eminence by the US industry.

1986-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "ventower industries saving" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Energy-Saving Homes, Buildings, & Manufacturing (Fact Sheet), Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy (DOE)  

Energy.gov (U.S. Department of Energy (DOE))

This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in saving energy in homes, buildings, and industrial plants.

322

Advanced Manufacturing Office: Industrial Assessment Centers (IACs)  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial Assessment Industrial Assessment Centers (IACs) to someone by E-mail Share Advanced Manufacturing Office: Industrial Assessment Centers (IACs) on Facebook Tweet about Advanced Manufacturing Office: Industrial Assessment Centers (IACs) on Twitter Bookmark Advanced Manufacturing Office: Industrial Assessment Centers (IACs) on Google Bookmark Advanced Manufacturing Office: Industrial Assessment Centers (IACs) on Delicious Rank Advanced Manufacturing Office: Industrial Assessment Centers (IACs) on Digg Find More places to share Advanced Manufacturing Office: Industrial Assessment Centers (IACs) on AddThis.com... Industrial Assessment Centers (IACs) Learn More Learn how companies have benefited from IAC assessments. Search the IAC Database for recommendations and savings achieved.

323

Atlanta Suburb Greases the Path to Savings with Biodiesel | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Atlanta Suburb Greases the Path to Savings with Biodiesel Atlanta Suburb Greases the Path to Savings with Biodiesel Atlanta Suburb Greases the Path to Savings with Biodiesel December 7, 2011 - 3:33pm Addthis Downtown Smyrna, Georgia, a town that's poised to see big savings thanks to their investment in biodiesel. | Photo by Ken Cook Downtown Smyrna, Georgia, a town that's poised to see big savings thanks to their investment in biodiesel. | Photo by Ken Cook Chris Galm Marketing & Communications Specialist, Office of Energy Efficiency & Renewable Energy What does this project do? Reduces fuel consumption Saves the city money Extends the lifespan of city owned service vehicles "We sat down and actually met with several people out of the biodiesel industry and found out how amazingly simple it was for us to do this. To

324

Atlanta Suburb Greases the Path to Savings with Biodiesel | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Atlanta Suburb Greases the Path to Savings with Biodiesel Atlanta Suburb Greases the Path to Savings with Biodiesel Atlanta Suburb Greases the Path to Savings with Biodiesel December 7, 2011 - 3:33pm Addthis Downtown Smyrna, Georgia, a town that's poised to see big savings thanks to their investment in biodiesel. | Photo by Ken Cook Downtown Smyrna, Georgia, a town that's poised to see big savings thanks to their investment in biodiesel. | Photo by Ken Cook Chris Galm Marketing & Communications Specialist, Office of Energy Efficiency & Renewable Energy What does this project do? Reduces fuel consumption Saves the city money Extends the lifespan of city owned service vehicles "We sat down and actually met with several people out of the biodiesel industry and found out how amazingly simple it was for us to do this. To

325

MassSAVE (Electric) - Commercial Retrofit Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » MassSAVE (Electric) - Commercial Retrofit Program MassSAVE (Electric) - Commercial Retrofit Program < Back Eligibility Commercial Construction Industrial Installer/Contractor Institutional Local Government Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Other Construction Heat Pumps Heating Appliances & Electronics Commercial Lighting Lighting Maximum Rebate 50% of cost of upgraded equipment, or an amount that buys down the cost of the project to a 1.5 year simple payback. Program Info Start Date 1/1/2011 State Massachusetts Program Type Utility Rebate Program Rebate Amount Fluorescent Systems: $10-$50/fixture High and Low Bay Fluorescents: Up to $100/fixture LED Interior: $15-$50/fixture

326

Improved Manufacturing Processes Save Company One Billion Dollars |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Improved Manufacturing Processes Save Company One Billion Dollars Improved Manufacturing Processes Save Company One Billion Dollars Improved Manufacturing Processes Save Company One Billion Dollars October 12, 2011 - 3:17pm Addthis This simulation of a droplet of liquid falling into a pool of liquid was modeled using Los Alamos National Laboratory's Computational Fluid Dynamics Library (CFDLib), which was also used by Procter and Gamble to simulate a manufacturing process. The computer code is now available to help American industries become more competitive. | Courtesy of Los Alamos National Laboratory This simulation of a droplet of liquid falling into a pool of liquid was modeled using Los Alamos National Laboratory's Computational Fluid Dynamics Library (CFDLib), which was also used by Procter and Gamble to simulate a

327

Federal Energy Management Program: Energy and Cost Savings Calculators for  

NLE Websites -- All DOE Office Websites (Extended Search)

and Cost Savings Calculators for Energy-Efficient Products and Cost Savings Calculators for Energy-Efficient Products The energy and cost calculators below allow Federal agencies to enter their own input values (such as utility rates, hours of use) to estimate energy and cost savings for energy-efficient products. Some are Web-based tools; others are Excel spreadsheets provided by ENERGY STAR® for download. Lighting Compact Fluorescent Lamps Exit Signs Commercial and Industrial Equipment Commercial Unitary Air Conditioners Air-Cooled Chillers Commercial Heat Pumps Boilers Food Service Equipment Dishwashers Freezers Fryers Griddles Hot Food Holding Cabinets Ovens Refrigerators Steam Cookers Ice Machines Office Equipment Computers, Monitors, and Imaging Equipment Appliances Dishwashers Clothes Washers Residential Equipment Central Air Conditioners

328

Reduce Natural Gas Use in Your Industrial Process Heating Systems  

Science Conference Proceedings (OSTI)

This DOE Industrial Program fact sheet describes ten effective ways to save energy and money in industrial process heating systems by making some changes in equipment, operations, and maintenance.

Not Available

2007-09-01T23:59:59.000Z

329

2014 NEJC Save the Date (Spanish)  

Energy.gov (U.S. Department of Energy (DOE))

2014 National Environmental Justice Conference and Training Program Save the Date, March 26 to 28, 2014

330

Estimation of Energy Savings Resulting From the BestPractices Program, Fiscal Year 2002  

SciTech Connect

Within the U.S. Department of Energy (DOE), the Office of Energy Efficiency and Renewable Energy (EERE) has a vision of a future with clean, abundant, reliable, and affordable energy. Within EERE, the Industrial Technologies Program (ITP), formerly the Office of Industrial Technologies, works in partnership with industry to increase energy efficiency, improve environmental performance, and boost productivity. The BestPractices (BP) Program, within ITP, works directly with industries to encourage energy efficiency. The purpose of the BP Program is to improve energy utilization and management practices in the industrial sector. The program targets distinct technology areas, including pumps, process heating, steam, compressed air, motors, and insulation. This targeting is accomplished with a variety of delivery channels, such as computer software, printed publications, Internet-based resources, technical training, technical assessments, and other technical assistance. A team of program evaluators from Oak Ridge National Laboratory (ORNL) was tasked to evaluate the fiscal year 2002 (FY02) energy savings of the program. The ORNL assessment enumerates levels of program activity for technology areas across delivery channels. In addition, several mechanisms that target multiple technology areas--e.g., Plant-wide Assessments (PWAs), the ''Energy Matters'' newsletter, and special events--are also evaluated for their impacts. When possible, the assessment relies on published reports and the Industrial Assessment Center (IAC) database for estimates of energy savings that result from particular actions. Data were also provided by ORNL, Lawrence Berkeley National Laboratory (LBNL) and Project Performance Corporation (PPC), the ITP Clearinghouse at Washington State University, the National Renewable Energy Laboratory (NREL), Energetics Inc., and the Industrial Technologies Program Office. The estimated energy savings in FY02 resulting from activities of the BP Program are almost 81.9 trillion Btu (0.0819 Quad), which is about 0.25% of the 32.5 Quads of energy consumed during FY02 by the industrial sector in the United States. The technology area with the largest estimated savings is steam, with 32% of the total energy savings. The delivery mechanism with the largest savings is that of software systems distribution, encompassing 44% of the total savings. Training results in an energy savings of 33%. Energy savings from PWAs and PWA replications equal 10%. Sources of overestimation of energy savings might derive from (1) a possible overlap of energy savings resulting from separate events (delivery channels) occurring in conjunction with one another (e.g., a training event and CTA at the same plant), and (2) a possible issue with the use of the average CTA value to assess savings for training and software distribution. Any overestimation attributable to these sources probably is outweighed by underestimations caused by the exclusion of savings resulting from general awareness workshops, data not submitted to the ITP Tracking Database, omission of savings attributable to web downloads of publications, use of BP products by participants over multiple years, and the continued utilization of equipment installed or replaced in previous years. Next steps in improving these energy savings estimates include continuing to enhance the design of the ITP Tracking Database and to improve reporting of program activities for the distribution of products and services; obtaining more detailed information on implementation rates and savings estimates for software training, tools, and assessments; continuing attempts to quantify savings based on Qualified Specialist activities; defining a methodology for assessing savings based on web downloads of publications; establishing a protocol for evaluating savings from other BP-sponsored events and activities; and continuing to refine the estimation methodology and reduction factors.

Truett, LF

2003-09-24T23:59:59.000Z

331

Estimation of Energy Savings Resulting From the BestPractices Program, Fiscal Year 2002  

DOE Green Energy (OSTI)

Within the U.S. Department of Energy (DOE), the Office of Energy Efficiency and Renewable Energy (EERE) has a vision of a future with clean, abundant, reliable, and affordable energy. Within EERE, the Industrial Technologies Program (ITP), formerly the Office of Industrial Technologies, works in partnership with industry to increase energy efficiency, improve environmental performance, and boost productivity. The BestPractices (BP) Program, within ITP, works directly with industries to encourage energy efficiency. The purpose of the BP Program is to improve energy utilization and management practices in the industrial sector. The program targets distinct technology areas, including pumps, process heating, steam, compressed air, motors, and insulation. This targeting is accomplished with a variety of delivery channels, such as computer software, printed publications, Internet-based resources, technical training, technical assessments, and other technical assistance. A team of program evaluators from Oak Ridge National Laboratory (ORNL) was tasked to evaluate the fiscal year 2002 (FY02) energy savings of the program. The ORNL assessment enumerates levels of program activity for technology areas across delivery channels. In addition, several mechanisms that target multiple technology areas--e.g., Plant-wide Assessments (PWAs), the ''Energy Matters'' newsletter, and special events--are also evaluated for their impacts. When possible, the assessment relies on published reports and the Industrial Assessment Center (IAC) database for estimates of energy savings that result from particular actions. Data were also provided by ORNL, Lawrence Berkeley National Laboratory (LBNL) and Project Performance Corporation (PPC), the ITP Clearinghouse at Washington State University, the National Renewable Energy Laboratory (NREL), Energetics Inc., and the Industrial Technologies Program Office. The estimated energy savings in FY02 resulting from activities of the BP Program are almost 81.9 trillion Btu (0.0819 Quad), which is about 0.25% of the 32.5 Quads of energy consumed during FY02 by the industrial sector in the United States. The technology area with the largest estimated savings is steam, with 32% of the total energy savings. The delivery mechanism with the largest savings is that of software systems distribution, encompassing 44% of the total savings. Training results in an energy savings of 33%. Energy savings from PWAs and PWA replications equal 10%. Sources of overestimation of energy savings might derive from (1) a possible overlap of energy savings resulting from separate events (delivery channels) occurring in conjunction with one another (e.g., a training event and CTA at the same plant), and (2) a possible issue with the use of the average CTA value to assess savings for training and software distribution. Any overestimation attributable to these sources probably is outweighed by underestimations caused by the exclusion of savings resulting from general awareness workshops, data not submitted to the ITP Tracking Database, omission of savings attributable to web downloads of publications, use of BP products by participants over multiple years, and the continued utilization of equipment installed or replaced in previous years. Next steps in improving these energy savings estimates include continuing to enhance the design of the ITP Tracking Database and to improve reporting of program activities for the distribution of products and services; obtaining more detailed information on implementation rates and savings estimates for software training, tools, and assessments; continuing attempts to quantify savings based on Qualified Specialist activities; defining a methodology for assessing savings based on web downloads of publications; establishing a protocol for evaluating savings from other BP-sponsored events and activities; and continuing to refine the estimation methodology and reduction factors.

Truett, LF

2003-09-24T23:59:59.000Z

332

Department of Energy Awards $2.2 Million to Save Energy in the Pulp and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Awards $2.2 Million to Save Energy in the Pulp Awards $2.2 Million to Save Energy in the Pulp and Paper Industry Department of Energy Awards $2.2 Million to Save Energy in the Pulp and Paper Industry December 20, 2005 - 4:50pm Addthis Total Cost-Shared Value of Research is $4.3 Million WASHINGTON, DC - The U.S. Department of Energy (DOE) today awarded $2.2 million in research and development grants for projects to save energy in the pulp and paper industry. The research will focus on removing water from pulp in the paper making process and determining the technical and commercial feasibility of next generation manufacturing concepts. "New efficient technologies and processes are key to reducing our energy consumption now and in the future," said Douglas L. Faulkner, Acting Assistant Secretary for Energy Efficiency and Renewable Energy.

333

Energy Saving Glass Lamination via Selective Radio-Frequency Heating  

SciTech Connect

This Inventions and Innovations program supported the technical and commercial research and development needed to elevate Ceralink's energy saving process for flat glass lamination from bench scale to a self-supporting technology with significant potential for growth. Radio-frequency heating was any un-explored option for laminating glass prior to this program. With significant commercial success through time and energy savings in the wood, paper, and plastics industries, RF heating was found to have significant promise for the energy intensive glass lamination industry. A major technical goal of the program was to demonstrate RF lamination across a wide range of laminate sizes and materials. This was successfully accomplished, dispelling many skeptics' concerns about the abilities of the technology. Ceralink laminated panels up to 2 ft x 3 ft, with four sets processed simultaneously, in a 3 minute cycle. All major categories of interlayer materials were found to work with RF lamination. In addition to laminating glass, other materials including photovoltaic silicon solar cells, light emitting diodes, metallized glass, plastics (acrylic and polycarbonate), and ceramics (alumina) were found compatible with the RF process. This opens up a wide range of commercial opportunities beyond the initially targeted automotive industry. The dramatic energy savings reported for RF lamination at the bench scale were found to be maintained through the scale up of the process. Even at 2 ft x 3 ft panel sizes, energy savings are estimated to be at least 90% compared to autoclaving or vacuum lamination. With targeted promotion through conference presentations, press releases and internet presence, RF lamination has gained significant attention, drawing large audiences at American Ceramic Society meetings. The commercialization success of the project includes the establishment of a revenue-generating business model for providing process development and demonstrations for potential RF lamination users. A path to industrial energy benefits and revenue through industrial equipment sales was established in a partnership with Thermex Thermatron, a manufacturer of RF equipment.

Shulman, Holly S.; Allan, Shawn M.

2009-11-11T23:59:59.000Z

334

Industrial cogeneration optimization program  

SciTech Connect

The purpose of this program was to identify up to 10 good near-term opportunities for cogeneration in 5 major energy-consuming industries which produce food, textiles, paper, chemicals, and refined petroleum; select, characterize, and optimize cogeneration systems for these identified opportunities to achieve maximum energy savings for minimum investment using currently available components of cogenerating systems; and to identify technical, institutional, and regulatory obstacles hindering the use of industrial cogeneration systems. The analysis methods used and results obtained are described. Plants with fuel demands from 100,000 Btu/h to 3 x 10/sup 6/ Btu/h were considered. It was concluded that the major impediments to industrial cogeneration are financial, e.g., high capital investment and high charges by electric utilities during short-term cogeneration facility outages. In the plants considered an average energy savings from cogeneration of 15 to 18% compared to separate generation of process steam and electric power was calculated. On a national basis for the 5 industries considered, this extrapolates to saving 1.3 to 1.6 quads per yr or between 630,000 to 750,000 bbl/d of oil. Properly applied, federal activity can do much to realize a substantial fraction of this potential by lowering the barriers to cogeneration and by stimulating wider implementation of this technology. (LCL)

1980-01-01T23:59:59.000Z

335

Visual Analytics for Roof Savings Calculator Ensembles  

SciTech Connect

The Roof Savings Calculator (RSC) has been deployed for DOE as an industry-consensus, web-based tool for easily running complex building energy simulations. These simulations allow both homeowners and experts to determine building-specific cost and energy savings for modern roof and attic technologies. Using a database of over 3 million RSC simulations for different combinations of parameters, we have built a visual analytics tool to assist in the exploration and identification of features in the data. Since the database contains multiple variables, both categorical and continuous, we employ a coordinated multi-view approach that allows coordinated feature exploration through multiple visualizations at once. The main component of our system, a parallel coordinates view, has been adapted to handle large-scale, mixed data types as are found in RSC simulations. Other visualizations include map coordinated plots, high dynamic range (HDR) line plot rendering, and an intuitive user interface. We demonstrate these techniques with several use cases that have helped identify software and parametric simulation issues.

Jones, Chad [University of California, Davis; New, Joshua Ryan [ORNL; Sanyal, Jibonananda [ORNL; Ma, Kwan-Liu [University of California, Davis

2012-01-01T23:59:59.000Z

336

Industrial electronics [Technology 2000 analysis and forecast  

Science Conference Proceedings (OSTI)

Energy savings and higher intelligence are hallmarks of today's highly competitive world of industrial automation. While power electronics devices and systems deliver ever more watts, they also contribute to electromagnetic interference (EMI), and users ...

G. Kaplan

2000-01-01T23:59:59.000Z

337

Allegheny Power - Commercial and Industrial Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Contact Utility Custom: 0.05kWh saved Provider SAIC FirstEnergy company Potomac Edison offers rebates to eligible commercial and industrial customers in Maryland service...

338

Energy-saving lighting systems. [Includes glossary  

SciTech Connect

Artificial lighting accounts for 20% of electrical energy, 7.6% of total energy, and 3.8% of total fuel in the US. Because conserving lighting energy can reduce operating costs as well as save energy, this book explores several practical ways to do that. The book first describes the complete range of light sources and their accessories, then goes on to cover photometric reports, techniques of lighting design, fluorescent luminaires, industrial lighting systems, manual and automatic lighting controls, the impact of air-conditioning on lighting systems, and exterior lighting. A glossary of lighting terminology, conversion tables, and recommended illumination levels appear in the appendix. The book is designed for students and practicity lighting engineers and designers. 56 references, 169 figures, 45 tables. (DCK)

Sorcar, P.C.

1982-01-01T23:59:59.000Z

339

Energy Saving with Absorption Refrigeration Technologies  

E-Print Network (OSTI)

Absorption refrigeration technology can be an economical and cost effective means of reducing energy cost and/or improving the efficiency and output of your process. We believe the potential benefits of absorption refrigeration technology have generally been overlooked by the process industry. This paper will address the application of the lithium bromide-water cycle in various energy saving modes. A waste heat powered absorption chiller producing chilled water can reduce energy consumption in a process plant by replacing an existing mechanical refrigeration system or replacing cooling tower water with a lower temperature cooling medium at negligible increase in energy cost. A variety of waste heat sources can be used at temperatures as low as 150 F.

Davis, R. C.

1984-01-01T23:59:59.000Z

340

Bayesian Analysis of Savings from Retrofit Projects  

SciTech Connect

Estimates of savings from retrofit projects depend on statistical models, but because of the complicated analysis required to determine the uncertainty of the estimates, savings uncertainty is not often considered. Numerous simplified methods have been proposed to determine savings uncertainty, but in all but the simplest cases, these methods provide approximate results only. The objective of this paper is to show that Bayesian inference provides a consistent framework for estimating savings and savings uncertainty in retrofit projects. We review the mathematical background of Bayesian inference and Bayesian regression, and present two examples of estimating savings and savings uncertainty in retrofit projects. The first is a simple case where both baseline and post-retrofit monthly natural gas use can be modeled as a linear function of monthly heating degree days. The Efficiency Valuation Organization (EVO 2007) defines two methods of determining savings in such cases: reporting period savings, which is an estimate of the savings during the post-retrofit period; and normalized savings, which is an estimate of the savings that would be obtained during a typical year at the project site. For reporting period savings, classical statistical analysis provides exact analytic results for both savings and savings uncertainty in this case. We use Bayesian analysis to calculate reporting period savings and savings uncertainty and show that the results are identical to the analytical results. For normalized savings, the literature contains no exact expression for the uncertainty of normalized savings; we use Bayesian inference to calculate this quantity for the first time, and compare it with the result of an approximate formula that has been proposed. The second example concerns a problem where the baseline data exhibit nonlinearity and serial autocorrelation, both of which are common in real-world retrofit projects. No analytical solutions exist to determine savings or savings uncertainty in this situation, but several simplified formulas have been proposed. We model the data using a 5-parameter model with first-order autoregressive errors, and use Bayesian inference to develop distributions for the model parameters and for the reporting period savings, which allows us to determine the savings uncertainty. We find the energy savings to be about 5% lower than the result obtained by ignoring the autocorrelation. In addition, the Bayesian analysis finds the savings uncertainty to be narrower than the approximate uncertainty calculated using the simplified formula. These results show that Bayesian inference can be used to determine savings and savings uncertainty for a wide variety of real-world problems.

Im, Piljae [ORNL

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ventower industries saving" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Tools for Assessing Building Energy Use in Industrial Plants  

E-Print Network (OSTI)

This presentation will cover a brief history of building energy measures savings potential for industrial plants and briefly characterize building energy measures and their savings identified over approximately the past 15 years in energy audits. The nature and extent of building energy assessment tools will then be profiled, and the beneficial use of an appropriate subset of these tools for assessing energy savings in buildings at industrial plants will be described. Possible future tools that may be useful will also be mentioned.

Martin, M.; MacDonald, M.

2007-01-01T23:59:59.000Z

342

Large Hospital 50% Energy Savings: Technical Support Document  

SciTech Connect

This Technical Support Document documents the technical analysis and design guidance for large hospitals to achieve whole-building energy savings of at least 50% over ANSI/ASHRAE/IESNA Standard 90.1-2004 and represents a step toward determining how to provide design guidance for aggressive energy savings targets. This report documents the modeling methods used to demonstrate that the design recommendations meet or exceed the 50% goal. EnergyPlus was used to model the predicted energy performance of the baseline and low-energy buildings to verify that 50% energy savings are achievable. Percent energy savings are based on a nominal minimally code-compliant building and whole-building, net site energy use intensity. The report defines architectural-program characteristics for typical large hospitals, thereby defining a prototype model; creates baseline energy models for each climate zone that are elaborations of the prototype models and are minimally compliant with Standard 90.1-2004; creates a list of energy design measures that can be applied to the prototype model to create low-energy models; uses industry feedback to strengthen inputs for baseline energy models and energy design measures; and simulates low-energy models for each climate zone to show that when the energy design measures are applied to the prototype model, 50% energy savings (or more) are achieved.

Bonnema, E.; Studer, D.; Parker, A.; Pless, S.; Torcellini, P.

2010-09-01T23:59:59.000Z

343

Save Energy Now Assessments Results 2008 Summary Report  

SciTech Connect

In October 2005, U.S. Department of Energy Secretary Bodman launched his Easy Ways to Save Energy campaign with a promise to provide energy assessments to 200 of the largest U.S. manufacturing plants. DOE's Industrial Technologies Program (ITP) responded to the Secretary's campaign with its Save Energy Now initiative, featuring a new and highly cost-effective form of energy savings assessment. The approach for these assessments drew heavily on the existing resources of ITP's technology delivery component. Over the years, ITP Technology Delivery has worked with industry partners to assemble a suite of respected software tools, proven assessment protocols, training curricula, certified energy experts, and strong partnerships for deployment. The Save Energy Now assessments conducted in calendar year 2006 focused on natural gas savings and targeted many of the nation's largest manufacturing plants - those that consume at least 1 TBtu of energy annually. The 2006 Save Energy Now assessments focused primarily on assessments of steam and process heating systems, which account for an estimated 74% of all natural gas use by U.S. manufacturing plants. Because of the success of the Save Energy Now assessments conducted in 2006 and 2007, the program was expanded and enhanced in two major ways in 2008: (1) a new goal was set to perform at least 260 assessments; and (2) the assessment focus was expanded to include pumping, compressed air, and fan systems in addition to steam and process heating. DOE ITP also has developed software tools to assess energy efficiency improvement opportunities in pumping, compressed air, and fan systems. The Save Energy Now assessments integrate a strong training component designed to teach industrial plant personnel how to use DOE's opportunity assessment software tools. This approach has the advantages of promoting strong buy-in of plant personnel for the assessment and its outcomes and preparing them better to independently replicate the assessment process at the company's other facilities. Another important element of the Save Energy Now assessment process is the follow-up process used to identify how many of the recommended savings opportunities from individual assessments have been implemented in the industrial plants. Plant personnel involved with the Save Energy Now assessments are contacted 6 months, 12 months, and 24 months after individual assessments are completed to determine implementation results. A total of 260 Save Energy Now assessments were successfully completed in calendar year 2008. This means that a total of 718 assessments were completed in 2006, 2007, and 2008. As of July 2009, we have received a total of 239 summary reports from the ESAs that were conducted in year 2008. Hence, at the time that this report was prepared, 680 final assessment reports were completed (200 from year 2006, 241 from year 2007, and 239 from year 2008). The total identified potential cost savings from these 680 assessments is $1.1 billion per year, including natural gas savings of about 98 TBtu per year. These results, if fully implemented, could reduce CO{sub 2} emissions by about 8.9 million metric tons annually. When this report was prepared, data on implementation of recommended energy and cost savings measures from 488 Save Energy Now assessments were available. For these 488 plants, measures saving a total of $147 million per year have been implemented, measures that will save $169 million per year are in the process of being implemented, and plants are planning implementation of measures that will save another $239 million per year. The implemented recommendations are already achieving total CO{sub 2} reductions of about 1.8 million metric tons per year. This report provides a summary of the key results for the Save Energy Now assessments completed in 2008; details of the 6-month, 12-month, and 24-month implementation results obtained to date; and an evaluation of these implementation results. This report also summarizes key accomplishments, findings, and lessons learn

Wright, Anthony L [ORNL; Martin, Michaela A [ORNL; Nimbalkar, Sachin U [ORNL; Quinn, James [U.S. Department of Energy; Glatt, Ms. Sandy [DOE Industrial Technologies Program; Orthwein, Mr. Bill [U.S. Department of Energy

2010-09-01T23:59:59.000Z

344

Oklahoma Industrial Energy Management Program  

E-Print Network (OSTI)

In Oklahoma, industry consumes about 35% of the total energy consumed. While it is true that much work has been done in the larger companies, most small to medium sized companies have yet to undertake a substantial energy management program. Often they simply do not understand the savings possible or the techniques available. Recognizing this, a program was developed to acquaint Oklahoma industry with the potential savings allowable through energy management techniques. The program is entitled 'Oklahoma Industrial Energy; Management Program' and is located at Oklahoma State University. This paper describes past, on-going, and proposed activities of this Program and assesses their impact. Included are industrial energy management conferences, closed circuit television short courses on selected energy management topics, energy auditing, industrial energy audits (through the Oklahoma Energy Analysis and Diagnostic Center) , energy and water management research, and two courses currently being offered.

Turner, W. C.; Estes, C. B.

1982-01-01T23:59:59.000Z

345

Conservation Regional Conservation SavingsRegional Conservation Savings  

E-Print Network (OSTI)

1 Northwest Power and Conservation Council Regional Conservation SavingsRegional Conservation the Plan''s Targets?s Targets? March 14, 2008 slide 2 Northwest Power and Conservation Council 55thth Plan Conservation ResourcePlan Conservation Resource Acquisition TargetsAcquisition Targets 20052005 ­­ 2009 = 700 a

346

Industrial Retrofits are Possible  

E-Print Network (OSTI)

Ontario is the industrial heartland of Canada and more than 80% of its energy comes from Canadian sources with the remainder from the neighbouring U.S. states. Because of the ever increasing demand for energy relating to increased economic activity, the provincial government's major energy priority is efficiency. In April of 1987, the provincial government initiated a program to assist industrial energy users to reduce their energy usage. This program was designed to concentrate on an in-depth analysis of the complete operations of industrial plants with the analyses being performed by specialist, private sector, engineering consultants. The program is in 3 phases providing an Ontario industrial plant with an Energy Analysis, a Feasibility Analysis Grant and a Project Engineering Design Grant. In this presentation, the author will outline the results of the program to date and will attempt to share with the audience the individual case experiences. Since the program's start, the Ontario Ministry of Energy has completed over 320 energy analyses of industrial plants which had combined energy bills of over $420 million. The potential annual energy savings identified were over $40 million or 9.51%. Electricity and natural gas are the major fuels used by Ontario industries and our surveys to date have shown savings of 6% in electricity and 11% in natural gas. Over the first two years of the program, individual plants have or are intending to implement more than half of the energy analysis recommendations.

Stobart, E. W.

1990-06-01T23:59:59.000Z

347

Savings Program | Y-12 National Security Complex  

NLE Websites -- All DOE Office Websites (Extended Search)

Savings Program Savings Program Savings Program The Savings Program offers a convenient, tax-effective way to save and invest for the future. At retirement, Savings Program benefits are designed to work together with the Pension Plan and Social Security benefits to provide retirement income. More information is available in the Book of Benefits. Employees can also find current information on the internal Benefits web site (restricted access) or log on to the Schwab Retirement Plan Services Company website. The Internal Revenue Service has announced the new changes in amounts and limits as they relate to our Savings Program and Pension Plan. Employees & Retirees Benefits Employee Book of Benefits Retiree Book of Benefits Health Plans Savings Program Savings Program and Pension Plan Changes

348

FY 1996 cost savings report  

SciTech Connect

Cost savings are an integral part of Hanford site operations. Congressional actions towards establishing a balanced budget have resulted in reductions to funding for all federal agencies, including the Department of Energy (DOE) Environmental Management (EM) cleanup mission. In September 1994 the DOE Richland Operations Office (RL) approved the FY 1995 multi-year baseline that included a cost estimate of $1.9 billion for FY 1996. However, Congress only appropriated $1.3 billion for that year. The shortfall of $600 million resulted in a significant challenge to accomplish the required workscope. Therefore, RL initiated an aggressive cost savings program to eliminate the shortfall by deleting workscope that was unnecessary and performing the remaining workscope more efficiently. RL initiated baseline planning actions (including deletions, deferrals, transfers, and additions) during the FY 1996 multi-year baseline development process to match workscope and anticipated funding and identified $205 million of workscope deletions. CFR (Contract Finance and Review Division) then reviewed over 200 cost baseline change requests during FY 1996 and documented an additional $95 million of FY 1996 cost savings. This included $73 million of workscope deletions and $22 million of efficiencies. Total savings as a result of FY 1996 initiatives, including baseline planning actions and current year initiatives, were $300 million.

Andrews-Smith, K.L.

1997-08-15T23:59:59.000Z

349

Introduction to Energy Savings in Process Heating for the Corn Refining  

NLE Websites -- All DOE Office Websites (Extended Search)

Savings in Process Heating for the Corn Savings in Process Heating for the Corn Refining Industry Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources

350

Poultry Industry: Industry Brief  

Science Conference Proceedings (OSTI)

This Electric Power Research Institute (EPRI) Industry Brief provides an overview of the U.S. poultry industry and ways in which electric-powered processes and technologies can be used in poultry and egg production and processing. The poultry industry, which consists of poultry production for meat as well as egg production and processing, is one of the fastest growing segments of the U.S. food manufacturing industry. It is also an energy-intensive industry. In fact, a 2010 report by the USDA illustrates ...

2011-03-30T23:59:59.000Z

351

Energy Savings Measure Packages: Existing Homes  

SciTech Connect

This document presents the most cost effective Energy Savings Measure Packages (ESMP) for existing mixed-fuel and all electric homes to achieve 15% and 30% savings for each BetterBuildings grantee location across the US. These packages are optimized for minimum cost to homeowners for given source energy savings given the local climate and prevalent building characteristics (i.e. foundation types). Maximum cost savings are typically found between 30% and 50% energy savings over the reference home. The dollar value of the maximum annual savings varies significantly by location but typically amounts to $300 - $700/year.

Casey, S.; Booten, C.

2011-11-01T23:59:59.000Z

352

Texas Industries of the Future  

E-Print Network (OSTI)

The purpose of the Texas Industries of the Future program is to facilitate the development, demonstration and adoption of advanced technologies and adoption of best practices that reduce industrial energy usage, emissions, and associated costs, resulting in improved competitive performance. The bottom line for Texas industry is savings in energy and materials, cost-effective environmental compliance, increased productivity, reduced waste, and enhanced product quality. The state program leverages the programs and tools of the federal Department of Energy's Industries of the Future. At the federal level, there are nine Industries of the Future: refining, chemicals, aluminum, steel, metal casting, glass, mining, agriculture, and forest products. These industries were selected nationally because they supply over 90% of the U.S. economy's material needs and account for 75% of all energy use by U.S. industry. In Texas, three IOF sectors, chemicals, refining and forest products, account for 86% of the energy used by industry in this state.

Ferland, K.

2002-04-01T23:59:59.000Z

353

Save billions in software industry each year with new ...  

Science Conference Proceedings (OSTI)

... The design of software methodology and the structure of project ... also becomes anchored in contracts, subcontracts and work- breakdown structures ...

2011-08-02T23:59:59.000Z

354

Delmarva Power - Commercial and Industrial Energy Savings Program...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heating & Cooling Cooling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Custom: 50% of project cost All Incentives: 250,000account...

355

Industrial Assessment Center  

SciTech Connect

Since its inception, the University of Florida Industrial Assessment Center has successfully completed close to 400 energy assessments of small to medium manufacturing facilities in Florida, southern Georgia and southern Alabama. Through these efforts, recommendations were made that would result in savings of about $5 million per year, with an implementation rate of 20-25%. Approximately 80 engineering students have worked for the UF-IAC, at least 10 of whom went on to work in energy related fields after graduation. Additionally, through the popular course in Industrial Energy Management, many students have graduated from the University of Florida with a strong understanding and support of energy conservation methods.

Dr. Diane Schaub

2007-03-05T23:59:59.000Z

356

Industrial Distributed Energy: Combined Heat & Power  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(DOE) (DOE) Industrial Technology Program (ITP) Industrial Distributed Energy: Combined Heat & Power (CHP) Richard Sweetser Senior Advisor DOE's Mid-Atlantic Clean Energy Application Center 32% Helping plants save energy today using efficient energy management practices and efficient new technologies Activities to spur widespread commercial use of CHP and other distributed generation solutions 10% Manufacturing Energy Systems 33% Industries of the Future R&D addressing top priorities in America's most energy-intensive industries and cross-cutting activities applicable to multiple industrial subsectors 25% Industrial Distributed Energy Industrial Technical Assistance DOE ITP FY'11 Budget: $100M Knowledge development and

357

Industrial Assessment Center  

SciTech Connect

The University of Dayton (UD) performed energy assessments, trained students and supported USDOE objectives. In particular, the UD Industrial Assessment Center (IAC) performed 96 industrial energy assessment days for mid-sized manufacturers. The average identified and implemented savings on each assessment were $261,080 per year and $54,790 per year. The assessments served as direct training in industrial energy efficiency for 16 UD IAC students. The assessments also served as a mechanism for the UD IAC to understand manufacturing energy use and improve upon the science of manufacturing energy efficiency. Specific research results were published in 16 conference proceedings and journals, disseminated in 22 additional invited lectures, and shared with the industrial energy community through the UD IAC website.

J. Kelly Kissock; Becky Blust

2007-04-17T23:59:59.000Z

358

"Saving Money by Saving Energy" Goes National | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

"Saving Money by Saving Energy" Goes National "Saving Money by Saving Energy" Goes National "Saving Money by Saving Energy" Goes National August 1, 2011 - 8:03am Addthis Chris Stewart Senior Communicator at DOE's National Renewable Energy Laboratory A couple of weeks ago the U.S. Department of Energy (DOE) and the Ad Council launched a national education campaign to help consumers save money on utility bills. Videos, tips, an "energy savings IQ" quiz, and a photo gallery on Facebook-as well as videos posted on YouTube-are designed to save money by saving energy. While this idea isn't new to Energy Savers, the concept is gaining ground as more and more people realize how easy it is. "Americans spend about $2,000 per household on energy every year-but many of them could save a few hundred of that without changing their lifestyle,"

359

"Saving Money by Saving Energy" Goes National | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

"Saving Money by Saving Energy" Goes National "Saving Money by Saving Energy" Goes National "Saving Money by Saving Energy" Goes National August 1, 2011 - 8:03am Addthis Chris Stewart Senior Communicator at DOE's National Renewable Energy Laboratory A couple of weeks ago the U.S. Department of Energy (DOE) and the Ad Council launched a national education campaign to help consumers save money on utility bills. Videos, tips, an "energy savings IQ" quiz, and a photo gallery on Facebook-as well as videos posted on YouTube-are designed to save money by saving energy. While this idea isn't new to Energy Savers, the concept is gaining ground as more and more people realize how easy it is. "Americans spend about $2,000 per household on energy every year-but many of them could save a few hundred of that without changing their lifestyle,"

360

Energy efficiency programs and policies in the industrial sector in industrialized countries  

E-Print Network (OSTI)

and ENERGY STAR’ S Energy Guides for entire industries,as a part of their Energy Guides for “focus” partners.savings manual, an energy management guide, an interactive

Galitsky, Christina; Price, Lynn; Worrell, Ernst

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ventower industries saving" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures; January 2012 - March 2013  

SciTech Connect

Under the Uniform Methods Project, DOE is developing a framework and a set of protocols for determining the energy savings from specific energy efficiency measures and programs. The protocols provide a straightforward method for evaluating gross energy savings for common residential and commercial measures offered in ratepayer-funded initiatives in the United States. They represent a refinement of the body of knowledge supporting energy efficiency evaluation, measurement, and verification (EM&V) activities. This document deals with savings from the following measures: commercial and industrial lighting, commercial and industrial lighting controls, small commercial and residential unitary and split system HVAC cooling equipment, residential furnaces and boilers, residential lighting, refrigerator recycling, whole-building retrofit using billing analysis, metering, peak demand and time-differentiated energy savings, sample design, survey design and implementation, and assessing persistence and other evaluation issues.

Jayaweera, T.; Haeri, H.

2013-04-01T23:59:59.000Z

362

DataTrends Benchmarking and Energy Savings  

NLE Websites -- All DOE Office Websites (Extended Search)

Benchmarking and Energy Savings Do buildings that consistently benchmark energy performance save energy? The answer is yes, based on the large number of buildings using the U.S....

363

Teaming Up to Save Energy | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

Up to Save Energy Teaming Up to Save Energy is a "how-to" guide on building an energy management team. This 40-page booklet discusses the structure, launch, and maintenance of...

364

A Survey of the U.S. Energy ServiceA Survey of the U.S. Energy Service Company (ESCO) Industry: MarketCompany (ESCO) Industry: MarketCompany (ESCO) Industry: MarketCompany (ESCO) Industry: Market  

E-Print Network (OSTI)

A Survey of the U.S. Energy ServiceA Survey of the U.S. Energy Service Company (ESCO) Industry and savings 33 #12;Estimated Size of U.S. ESCO IndustryEstimated Size of U.S. ESCO Industry Energy AnalysisGrowth Projections for U.S. ESCO Industry Energy Analysis Department Electricity Markets and Policy Group 55 #12

365

J.R. Simplot: Burner Upgrade Project Improves Performance and Saves Energy at a Large Food Processing Plant  

SciTech Connect

This DOE Industrial Program case study describes how the J.R. Simplot Company saved energy and money by increasing the efficiency of the steam system in its potato processing plant in Caldwell, Idaho.

Not Available

2005-09-01T23:59:59.000Z

366

Onondaga County Department of Water Environment Protection: Process Optimization Saves Energy at Metropolitan Syracuse Wastewater Treatment Plant  

SciTech Connect

This DOE Industrial Technologies Program spotlight describes how Onondaga County, New York, is saving nearly 3 million kWh and 270 million Btu annually at a wastewater treatment plant after replacing inefficient motors and upgrading pumps.

Not Available

2005-12-01T23:59:59.000Z

367

Energy Efficiency Improvement and Cost Saving Opportunities for Cement Making. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

1997 ACEEE Summer Study on Energy Efficiency in Industry.American Council for an Energy-Efficient Economy,Park, NC. Birch, E. , 1990. “Energy Savings in Cement Kiln

Worrell, Ernst

2008-01-01T23:59:59.000Z

368

Dal-Tile: Optimized Compressed Air System Improves Performance and Saves Energy at a Tile Manufacturing Plant  

SciTech Connect

This DOE Industrial Technologies Program case study describes the significant energy and costs savings resulting from compressed air system improvements at Dal-Tile, a Texas tile manufacturing plant.

2005-08-01T23:59:59.000Z

369

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

& Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Natural Gas Savings Program 05312013 Ohio River Valley Water Sanitation Commission...

370

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Michigan Saves - Business Energy Financing Michigan Commercial Nonprofit Home Weatherization Commercial Weatherization Sealing Your Home Design & Remodeling Windows, Doors, &...

371

Energy Savings by Cell Design Improvements  

Science Conference Proceedings (OSTI)

Mar 3, 2011 ... Aluminum Reduction Technology: Energy Savings by Cell Design Improvements Sponsored by: The Minerals, Metals and Materials Society, ...

372

AutoSaved SDDS Plots  

NLE Websites -- All DOE Office Websites (Extended Search)

AutoSaved SDDS Plots for Storage Ring Systems AutoSaved SDDS Plots for Storage Ring Systems L4 and L5 Power and Vacuum Plots These plots are updated every 10 minutes L4 Beamline Vacuum L4 Sled Power L5 Beamline Vacuum L5 Sled Power Storage Ring Current, Lifetime and On-Axis Brilliance 24-hour History Plots These plots are updated every 2 Minutes and every 5 Minutes for On-Axis Brilliance Current Lifetime On-Axis Brilliance Storage Ring Vacuum Pump 24 hour History Plots These plots are updated every 15 Minutes Sector 01 Sector 02 Sector 03 Sector 04 Sector 05 Sector 06 Sector 07 Sector 08 Sector 09 Sector 10 Sector 11 Sector 12 Sector 13 Sector 14 Sector 15 Sector 16

373

Energy Savings Performance Contracts Summary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ENERGY SAVINGS PERFORMANCE CONTRACTS SUMMARY ENERGY SAVINGS PERFORMANCE CONTRACTS SUMMARY Site Contract Number Delivery or Task Order # Contractor Performance Period Contract Value Contract Description Richland DE-AC06-97RL13184 N/A Johnson Controls, Inc. 11/15/1996- 11/14/2021 $160.7M Conversion from central coal-fired steam plant to decentralized diesel boilers for Hanford Areas 200 & 300 (Site specific, standalone contract) DE-AM36-97EE73568 DE-AT06-09RL14923 Johnson Controls, Inc. 10/10/2008- 3/31/2033 $19.9M HVAC, Automation, Boiler Improvements Savannah River DE-AM36-02-NT41457 DE-AT09-09SR22572 Ameresco Federal Solutions 5/15/2009- 4/15/2031 $795M Biomass Cogeneration Facility and K and L Area Heating Plants

374

Utility Energy Savings Contract Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utility Energy Savings Utility Energy Savings Contract Project Redstone Arsenal, Alabama Presented by Doug Dixon, Pacific Northwest National Laboratory For Mark D. Smith, PE, CEM, CEA Energy Manager, Redstone Arsenal Federal Utility Partnership Working Group - Fall 2010 UNCLASSIFIED UNCLASSIFIED 0 50 100 150 200 250 Klbs FY09 Total Hourly Steam FY09 Total Threshold $22.76 / MMBTU (Minimum take-or-pay base rate) (Consumer Price Index) Average FY09 Natural Gas Price $5.52 / MMBTU $16.91 / MMBTU (High capacity rate) (Petroleum Price Index) Hours UNCLASSIFIED Resolution * Manage the steam load to the minimum take-or- pay thresholds under the existing contract.  Prune the distribution system by eliminating long runs with low density and high thermal losses.  Ensure summer steam loads are utilized.

375

Save Energy with Axial Fans  

E-Print Network (OSTI)

There are several ways to save energy in wet cooling towers and air cooled heat exchangers using axial fans. This paper will discuss ways to improve fan system efficiency in wet and dry towers both during the design phase and after installation by specifying energy efficient equipment. Variable pitch fan versus fixed pitch fan operation is discussed in terms of energy savings and means of control. The areas of interest to wet cooling tower users would be the influence on fan diameter and operating point on horsepower, how and when are velocity recovery stacks effective, the effect of varying fan speed to improve efficiency, and tip clearance effects. The areas of interest to dry tower (air cooled heat exchanger) users would be the effect of inlet losses, approach velocity losses, and losses due to air recirculation.

Monroe, R. C.

1981-01-01T23:59:59.000Z

376

Save the Date - NTSF 2013  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Save the Date Save the Date U.S. Department of Energy National Transportation Stakeholders Forum May 14-16 th , 2013 Buffalo, New York Please mark your calendar to attend the next meeting of the U.S. Department of Energy (DOE) National Transportation Stakeholders Forum (NTSF) scheduled for May 14-16, 2013. This annual event will be held at the Hyatt Regency Hotel, located near the downtown business and entertainment districts in Buffalo, New York. The 2013 meeting is co-sponsored by DOE's Offices of Environmental Management and Nuclear Energy and follows several highly successful yearly gatherings. It is co-hosted by the Council of State Governments Eastern Regional Conference and the Northeast High-Level Radioactive Waste Transportation Task Force.

377

Entergy Arkansas - Commercial and Industrial Energy Efficiency Programs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Entergy Arkansas - Commercial and Industrial Energy Efficiency Entergy Arkansas - Commercial and Industrial Energy Efficiency Programs Entergy Arkansas - Commercial and Industrial Energy Efficiency Programs < Back Eligibility Agricultural Commercial Industrial Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Windows, Doors, & Skylights Maximum Rebate Feasibility Study: 25% of cost Program Info State Arkansas Program Type Utility Rebate Program Rebate Amount Small Business Energy Solutions (under 100kW): $0.21 - $0.50/kwh first year savings Large Commercial/Industrial (Prescriptive): $0.09/kwh first year savings Large Commercial/Industrial (Custom): $0.07 - $0.15/kwh first year savings

378

Learn how Portfolio Manager helps you save | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

you save energy, save money ... and save the environment. Manage energy and water consumption for any building You can use Portfolio Manager to manage the energy and water...

379

Assessment of Retro-Fit Energy Savings Devices: Line-Side Electronic Dimmer  

Science Conference Proceedings (OSTI)

The past two decades have seen the introduction of several new technologies, such as retrofit energy saving devices (RESDs), which are intended to save energy. In most cases, RESDs devices are added after-the-fact to existing commercial and industrial electrical systems with the intent to improve energy efficiency, usually without directly affecting end-use equipment. In some cases, an RESD such as an electronic lamp dimmer is part of the original construction of a residential or commercial facility. Dev...

2010-06-01T23:59:59.000Z

380

Potential Water and Energy Savings from Showerheads  

SciTech Connect

This paper estimates the benefits and costs of six water reduction scenarios. Benefits and costs of showerhead scenarios are ranked in this paper by an estimated water reduction percentage. To prioritize potential water and energy saving scenarios regarding showerheads, six scenarios were analyzed for their potential water and energy savings and the associated dollar savings to the consumer.

Biermayer, Peter J.

2005-09-28T23:59:59.000Z

Note: This page contains sample records for the topic "ventower industries saving" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

ASHRAE's Proposed Guideline 14P for Measurement of Energy and Demand Savings: How to Determine What Was Really Saved by the Retrofit  

E-Print Network (OSTI)

ASHRAE has recently completed the development of Guideline 14 to fill a need for a standard set of energy (and demand) savings calculation procedures. Guideline 14 is intended to be a guideline that provides a minimum acceptable level of performance in the measurement of energy and demand savings from energy management projects applied to residential, commercial or industrial buildings. Such measurements can serve as the basis for commercial transactions between Energy Service Companies (ESCOs) and their customers, or other energy conservation providers that rely on energy savings as the basis for repayment of the costs of the retrofit. When applied properly, ASHRAE Guideline 14 is expected to provide adequate assurance for the payment of services by allowing for well specified measurement methods that provide reasonably accurate savings calculations. ASHRAE Guideline 14 may also be used by governments to calculate pollution reductions from energy efficiency activities. Since Guideline 14 is intended to be applied to an individual building, or a few buildings served by a utility meter, large scale utility energy conservation programs, such as those involving statistical sampling, are not addressed by the current version of Guideline 14. Furthermore, metering standards and procedures for calculating savings from modifications to major industrial process loads are also not covered. This paper presents an overview of the measurement methods contained in ASHRAE Guideline 14 , including a discussion about how they were developed, and their intended relationship with other national protocols for measuring savings from energy conservation programs, such as the USDOE's International Performance Measurement and Verification Protocols (IPMVP).

Haberl, J. S.; Reeves, G.; Gillespie, K.; Claridge, D. E.; Cowan, J.; Culp, C.; Frazell, W.; Heinemeier, K.; Kromer, S.; Kummer, J.; Mazzucchi, R.; Reddy, A.; Schiller, S.; Sud, I.; Wolpert, J.; Wutka, T.

2001-01-01T23:59:59.000Z

382

Potential Energy Savings and CO2 Emissions Reduction of China's Cement  

NLE Websites -- All DOE Office Websites (Extended Search)

Potential Energy Savings and CO2 Emissions Reduction of China's Cement Potential Energy Savings and CO2 Emissions Reduction of China's Cement Industry Title Potential Energy Savings and CO2 Emissions Reduction of China's Cement Industry Publication Type Report Year of Publication 2012 Authors Ke, Jing, Nina Zheng, David Fridley, Lynn K. Price, and Nan Zhou Date Published 06/2012 Publisher Lawrence Berkeley National Laboratory Keywords cement industry, china energy, china energy group, emission reduction, energy analysis and environmental impacts department, energy efficiency, industrial energy efficiency, Low Emission & Efficient Industry, policy studies Abstract This study analyzes current energy and carbon dioxide (CO2) emission trends in China's cement industryas the basis for modeling different levels of cement production and rates of efficiency improvement andcarbon reduction in 2011-2030. Three cement output projections are developed based on analyses ofhistorical production and physical and macroeconomic drivers. For each of these three productionprojections, energy savings and CO2 emission reduction potentials are estimated in a best practicescenario and two continuous improvement scenarios relative to a frozen scenario. The results reveal thepotential for cumulative final energy savings of 27.1 to 37.5 exajoules and energy-related directemission reductions of 3.2 to 4.4 gigatonnes in 2011-2030 under the best practice scenarios. Thecontinuous improvement scenarios produce cumulative final energy savings of 6.0 to 18.9 exajoules andreduce CO2 emissions by 1.0 to 2.4 gigatonnes. This analysis highlights that increasing energy efficiencyis the most important policy measure for reducing the cement industry's energy and emissions intensity,given the current state of the industry and the unlikelihood of significant carbon capture and storagebefore 2030. In addition, policies to reduce total cement production offer the most direct way ofreducing total energy consumption and CO2 emissions.

383

Industrial Energy Management Tool 1.0 Webcast Presentation  

Science Conference Proceedings (OSTI)

Designed for use by utility sales and marketing representatives as well as industrial plant personnel, the Industrial Energy Management Tool 1.0 is a simple online tool that can help users prioritize energy efficiency measures. The tool provides an initial assessment of the percentage potential energy savings and, in a few cases, the costs effectiveness in $/kWh of energy saving measures. Three industries are covered in version 1.0 of the tool: Food processing (fruits & vegetables) Pharmaceuticals Plasti...

2009-03-23T23:59:59.000Z

384

DOE Recognizes Midwest Industrial Efficiency Leaders | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Midwest Industrial Efficiency Leaders Midwest Industrial Efficiency Leaders DOE Recognizes Midwest Industrial Efficiency Leaders September 10, 2009 - 12:00am Addthis DETROIT, MI - The U.S. Department of Energy and Michigan Governor Jennifer M. Granholm joined with over 300 industry, state, and federal leaders to recognize industrial efficiency leaders and plot a course to accelerate industrial energy efficiency in the Midwest. As part of the Midwest Industrial Energy Efficiency Exchange that began last night and continued today, Governor Granholm and DOE announced 11 Save Energy Now awards recognizing industry leaders for their exemplary energy saving accomplishments. Attendees at the Energy Efficiency Exchange also had an opportunity to learn about new energy saving technologies and ways to

385

Estimation of Fuel Savings by Recuperation of Furnace Exhausts to Preheat Combustion Air  

E-Print Network (OSTI)

The recovery of waste energy in furnace exhaust gases is gaining in importance as fuel costs continue to escalate. Installation of a recuperator in the furnace exhaust stream to preheat the combustion air can result in considerable savings in fuel usage. These savings are primarily the result of the sensible heat increase of the combustion air and, to some extent, improved combustion efficiency. The amount of fuel saved will depend on the exhaust gas temperature, amount of excess air used, the type of burner and the furnace control system. These fuel savings may be accurately measured by metering the energy consumption per unit of production before and after installation of the recuperator. In the design of a waste heat recuperation system, it is necessary to be able to estimate the fuel saved by use of such a system. Standard industrial practice refers to the method described in the North American Combustion Handbook with its curves and tables that directly predict the percentage fuel savings. This paper analyzes the standard estimation technique and suggests a more realistic approach to calculation of percent fuel savings. Mass and enthalpy balances are provided for both methods and a typical furnace recuperation example is detailed to illustrate the differences in the two methods of calculating the percent energy saved.

Rebello, W. J.; Kohnken, K. H.; Phipps, H. R., Jr.

1980-01-01T23:59:59.000Z

386

ENERGY EFFICIENCY OPPORTUNITIES IN THE U.S. PULP AND PAPER INDUSTRY  

E-Print Network (OSTI)

Waste. Office of Energy Efficiency and Renewable Energy,Industry. Office of Energy Efficiency and Renewable Energy,Savings. Office of Energy Efficiency and Renewable Energy,

Kramer, Klaas Jan

2010-01-01T23:59:59.000Z

387

Federal Aviation Administration retained savings program proposal  

SciTech Connect

Federal legislation allows federal agencies to retain up to 50% of the savings associated with implementing energy efficiency and water conservation measures and practices. Given budget pressures to reduce expenditures, the use of retained savings to fund additional projects represents a source of funds outside of the traditional budget cycle. The Southwest Region Federal Aviation Administration (FAA) has tasked Pacific Northwest National Laboratory (PNNL) to develop a model retained savings program for Southwest Region FAA use and as a prototype for consideration by the FAA. PNNL recommends the following steps be taken in developing a Southwest Region FAA retained savings program: Establish a retained savings mechanism. Determine the level at which the retained savings should be consolidated into a fund. The preliminary recommendation is to establish a revolving efficiency loan fund at the regional level. Such a mechanism allows some consolidation of savings to fund larger projects, while maintaining a sense of facility ownership in that the funds will remain within the region.

Hostick, D.J.; Larson, L.L. [Pacific Northwest National Lab., Richland, WA (United States); Hostick, C.J. [IBP, Inc., Pasco, WA (United States)

1998-03-01T23:59:59.000Z

388

An Analysis of Energy Savings Possible Through Advances in Automotive Tooling Technology  

SciTech Connect

The use of lightweight and highly formable advanced materials in automobile and truck manufacturing has the potential to save fuel. Advances in tooling technology would promote the use of these materials. This report describes an energy savings analysis performed to approximate the potential fuel savings and consequential carbon-emission reductions that would be possible because of advances in tooling in the manufacturing of, in particular, non-powertrain components of passenger cars and heavy trucks. Separate energy analyses are performed for cars and heavy trucks. Heavy trucks are considered to be Class 7 and 8 trucks (trucks rated over 26,000 lbs gross vehicle weight). A critical input to the analysis is a set of estimates of the percentage reductions in weight and drag that could be achieved by the implementation of advanced materials, as a consequence of improved tooling technology, which were obtained by surveying tooling industry experts who attended a DOE Workshop, Tooling Technology for Low-Volume Vehicle Production, held in Seattle and Detroit in October and November 2003. The analysis is also based on 2001 fuel consumption totals and on energy-audit component proportions of fuel use due to drag, rolling resistance, and braking. The consumption proportions are assumed constant over time, but an allowance is made for fleet growth. The savings for a particular component is then the product of total fuel consumption, the percentage reduction of the component, and the energy audit component proportion. Fuel savings estimates for trucks also account for weight-limited versus volume-limited operations. Energy savings are assumed to be of two types: (1) direct energy savings incurred through reduced forces that must be overcome to move the vehicle or to slow it down in braking. and (2) indirect energy savings through reductions in the required engine power, the production and transmission of which incur thermodynamic losses, internal friction, and other inefficiencies. Total savings for an energy use component are estimated by scaling up the direct savings with an approximate total-to-direct savings ratio. Market penetration for new technology vehicles is estimated from projections about scrappage. Retrofit savings are assumed negligible, but savings are also assumed to accrue with increases in the fleet size, based on economic growth forecasts. It is assumed that as vehicles in the current fleet are scrapped, they are replaced with advanced-technology vehicles. Saving estimates are based on proportions of new vehicles, rather than new-vehicle mileages. In practice, of course, scrapped vehicles are often replaced with used vehicles, and used vehicles are replaced with new vehicles. Because new vehicles are typically driven more than old, savings estimates based on count rather than mileage proportions tend to be biased down (i.e., conservative). Savings are expressed in terms of gallons of fuel saved, metric tons of CO2 emissions reductions, and percentages relative to 2001 levels of fuel and CO2. The sensitivity of the savings projections to inputs such as energy-audit proportions of fuel consumed for rolling resistance, drag, braking, etc. is assessed by considering different scenarios. Though based on many approximations, the estimates approximate the potential energy savings possible because of improvements in tooling. For heavy trucks, annual diesel savings of 2.4-6.8 percent, and cumulative savings on the order of 54-154 percent, of 2001 consumption could accrue by 2050. By 2050, annual gasoline savings of 2.8-12 percent, and cumulative savings on the order of 83-350 percent of 2001 consumption could accrue for cars.

Rick Schmoyer, RLS

2004-12-03T23:59:59.000Z

389

U.S. Department of Energy Announces Completion of 500 Industrial Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Completion of 500 Industrial Completion of 500 Industrial Energy Saving Assessment U.S. Department of Energy Announces Completion of 500 Industrial Energy Saving Assessment May 9, 2008 - 11:30am Addthis Over 80 Trillion Btus of Natural Gas Savings Found WASHINGTON - The U.S. Department of Energy (DOE) today announced that it has completed the 500th Energy Saving Assessment (ESA) at the nation's largest industrial facilities. These assessments have helped companies identify opportunities to save over an estimated 80 trillion British Thermal Units of natural gas - roughly equivalent to the natural gas used in over one million American homes - more than $800 million in potential energy savings. If all of the recommendations from the assessments conducted are fully implemented by the industrial facilities, the

390

Energy Savings from Window Attachments  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

from from Window Attachments October 2013 Prepared for: Building Technologies Office Office of Energy Efficiency and Renewable Energy U.S. Department of Energy Prepared by: Lawrence Berkeley National Laboratory October 2013 Prepared for: Building Technologies Office Office of Energy Efficiency and Renewable Energy U.S. Department of Energy Prepared By: Lawrence Berkeley National Laboratory One Cyclotron Road, MS 90R3111 Berkeley, CA 94720 Authors: D. Charlie Curcija Mehry Yazdanian Christian Kohler Robert Hart Robin Mitchell Simon Vidanovic 1 ENERGY SAVINGS FROM WINDOW ATTACHMENTS TABLE OF CONTENTS: TABLE OF CONTENTS:................................................................................................... 1 1. EXECUTIVE SUMMARY ......................................................................................... 3

391

Energy Savings from Window Attachments  

NLE Websites -- All DOE Office Websites (Extended Search)

from from Window Attachments October 2013 Prepared for: Building Technologies Office Office of Energy Efficiency and Renewable Energy U.S. Department of Energy Prepared by: Lawrence Berkeley National Laboratory October 2013 Prepared for: Building Technologies Office Office of Energy Efficiency and Renewable Energy U.S. Department of Energy Prepared By: Lawrence Berkeley National Laboratory One Cyclotron Road, MS 90R3111 Berkeley, CA 94720 Authors: D. Charlie Curcija Mehry Yazdanian Christian Kohler Robert Hart Robin Mitchell Simon Vidanovic 1 ENERGY SAVINGS FROM WINDOW ATTACHMENTS TABLE OF CONTENTS: TABLE OF CONTENTS:................................................................................................... 1 1. EXECUTIVE SUMMARY ......................................................................................... 3

392

Missouri Agricultural and Energy Saving Team - A Revolutionary...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Agricultural and Energy Saving Team - A Revolutionary Opportunity (MAESTRO) Missouri Agricultural and Energy Saving Team - A Revolutionary Opportunity (MAESTRO) Eligibility...

393

Savings potential of ENERGY STAR (registered trademark) voluntary labeling programs  

E-Print Network (OSTI)

electric carbon factor affects only carbon dioxide savings,carbon dioxide savings. We used an electricity carbon emissions factor

Webber, Carrie A.; Brown, Richard E.

1998-01-01T23:59:59.000Z

394

Taiwan's National Energy-Saving Management Programs- Taiwan's Experiences  

NLE Websites -- All DOE Office Websites (Extended Search)

Taiwan's National Energy-Saving Management Programs- Taiwan's Experiences Taiwan's National Energy-Saving Management Programs- Taiwan's Experiences in Industrial, Commercial and Institution Sectors Speaker(s): Wen-Bohr (Dennis) Wang Date: June 27, 2007 - 12:00pm Location: 90-2063 Seminar Host/Point of Contact: Kui-Peng Lee Peng Xu The energy policy in Taiwan aims at the integration of the "3Es" (economic development, environmental protection, and energy security) and moving toward sustainable development to realize the mission of a "nuclear-free homeland". Its priority is to promote energy conservation and energy efficiency, thereby strengthening Taiwan's international competitiveness. Even though Taiwan is not a member of the UN, it would like to take on this obligation as a member of the Society of Earth in

395

Fuel Saving Ideas for Metal and Ceramic Processing  

E-Print Network (OSTI)

An easy method is presented for analyzing sources of heat loss from industrial processing furnaces, kilns, and ovens; and thus for recognizing opportunities for fuel saving. This will relate to melting, heat treating and hot forming of metals such as steel, aluminum and copper; plus firing of glass and ceramic material such as structural clay products, sanitary wear, containers, porcelain and electronic ceramics. Fuel saving methods will be discussed as prescriptions for remedying the above-mentioned losses, including precise fuel/air ratio control, furnace pressure control, and heat recovery systems applicable to these high temperature furnaces. Special attention will be devoted to use of flue gases to generate steam and to preheat combustion air.

Reed, R. J.

1982-01-01T23:59:59.000Z

396

Dairy Industry: Industry Brief  

Science Conference Proceedings (OSTI)

This Electric Power Research Institute (EPRI) Industry Brief provides an overview of the U.S. dairy industry and ways in which electric-powered processes and technologies can be used in milk production and processing. Because of the different processes involved, the characteristics of energy consumption at milk production and processing facilities vary by facility. Most energy used in milk production is in the form of diesel fuel, followed by electricity and then by petroleum products such as gasoline an...

2011-03-30T23:59:59.000Z

397

NEEA Study: Examples of Deep Energy Savings in Existing Buildings | ENERGY  

NLE Websites -- All DOE Office Websites (Extended Search)

NEEA Study: Examples of Deep Energy Savings in Existing Buildings NEEA Study: Examples of Deep Energy Savings in Existing Buildings Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources

398

Analysis of Job Creation and Energy Cost Savings From Building Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Analysis of Job Creation and Energy Cost Savings From Building Analysis of Job Creation and Energy Cost Savings From Building Energy Rating and Disclosure Policy Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports

399

Boiler Tune-ups: Improve efficiency, reduce pollution, and save money! |  

NLE Websites -- All DOE Office Websites (Extended Search)

Boiler Tune-ups: Improve efficiency, reduce pollution, and save Boiler Tune-ups: Improve efficiency, reduce pollution, and save money! Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources

400

Saving Money on Your Energy-Saving Upgrades | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Saving Money on Your Energy-Saving Upgrades Saving Money on Your Energy-Saving Upgrades Saving Money on Your Energy-Saving Upgrades August 16, 2011 - 11:17am Addthis Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy Summer is one of the best times of the year to get motivated to make those energy efficiency upgrades on your to-do list, and the Department of Energy can point you to some incentives to make the initial investment more affordable. Energy-saving products will save you considerable money over the long term, helping these products pay for themselves and significantly reducing your monthly energy bills. Homeowners ready to take advantage of the savings should check out the energy efficiency tax credits offered through the IRS and promoted by the

Note: This page contains sample records for the topic "ventower industries saving" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Choosing Energy-Saving Lighting Products Saves You Money | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Choosing Energy-Saving Lighting Products Saves You Money Choosing Energy-Saving Lighting Products Saves You Money Choosing Energy-Saving Lighting Products Saves You Money May 30, 2012 - 11:58am Addthis Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy If you've been to a home improvement store lately, you've probably noticed more and more energy-saving light bulbs available on the shelves. Traditional incandescent light bulbs give off about 90% of the energy they use in the form of heat, and only 10% as light, making them a major money-waster compared to better lighting options that are currently available. Lighting homes and businesses with more efficient products is one of the easiest ways to reduce America's reliance on fossil fuels and save money. Those savings can really add up: You may be paying $6 each year to light a

402

Choosing Energy-Saving Lighting Products Saves You Money | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Choosing Energy-Saving Lighting Products Saves You Money Choosing Energy-Saving Lighting Products Saves You Money Choosing Energy-Saving Lighting Products Saves You Money May 30, 2012 - 11:58am Addthis Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy If you've been to a home improvement store lately, you've probably noticed more and more energy-saving light bulbs available on the shelves. Traditional incandescent light bulbs give off about 90% of the energy they use in the form of heat, and only 10% as light, making them a major money-waster compared to better lighting options that are currently available. Lighting homes and businesses with more efficient products is one of the easiest ways to reduce America's reliance on fossil fuels and save money. Those savings can really add up: You may be paying $6 each year to light a

403

The New EnergySaver.gov -- Save Money by Saving Energy! | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The New EnergySaver.gov -- Save Money by Saving Energy! The New EnergySaver.gov -- Save Money by Saving Energy! The New EnergySaver.gov -- Save Money by Saving Energy! September 10, 2012 - 11:35am Addthis By taking simple steps to improve your home's energy efficiency, you can save up to 30 percent on your energy bill. | Infographic by Sarah Gerrity. By taking simple steps to improve your home's energy efficiency, you can save up to 30 percent on your energy bill. | Infographic by Sarah Gerrity. By taking simple steps to improve your home's energy efficiency, you can save up to 30 percent on your energy bill. | Infographic by Sarah Gerrity. By taking simple steps to improve your home's energy efficiency, you can

404

Oklahoma Industrial Energy Management Program  

E-Print Network (OSTI)

Each and every citizen has been affected by the energy crisis by now. Business and industry have especially been hurt as the rising cost of energy and its dwindling supplies are the twin jaws of a vise rapidly closing in on profits. Much work is being done in large companies; but most small to medium companies have yet to undertake a substantial energy management program. The reasons are many but often they simply I do not understand the savings possible or the techniques available. Recognizing this, the Oklahoma Department of Energy designed a program to acquaint Oklahoma industry with the potential savings available through energy management and some basic techniques. The program is, entitled "Oklahoma Industrial Energy Management Program" and is housed at Oklahoma State University. The program is funded by the U. S. Department of Energy through the State Energy Conservation Plan. This paper describes the program offerings, impact to date and plans for the future.

Estes, C. B.; Turner, W. C.

1980-01-01T23:59:59.000Z

405

Nailing down home energy savings  

SciTech Connect

Investments in energy efficiency in the home, leading to the term Energy Mortgage Value (EMV) are discussed. Uses of EMV are considered as well as the basis of its actual value which includes: (1) the interest rate on the investment; (2) the term of the loan; and (3) the estimated monthly energy savings from the investment. Calculation of EMV is illustrated. As an example, a $38/month energy savings on a home amortized over 30 years at 15% would yield an EMV of $3000, the amount to be added to the appraised value of the house. The uses of EMV for profit building by builders is illustrated as well as its use as a design tool to show ceiling investment levels for any degree of energy efficiency desired. Reasons for disclosing the EMV value to the mortgage finance community are discussed as well as uses of EMV by lenders. It is concluded that the use of EMV can be of value to the builder, the lender, the appraiser, and the buyer. (MJJ)

Foute, S.J.

1982-06-01T23:59:59.000Z

406

Industry Profile | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industry Profile Industry Profile Industry Profile November 1, 2013 - 11:40am Addthis The largest energy consuming industrial sectors account for the largest share of CHP capacity; namely: Chemicals (30%), Petroleum Refining (17%), and Paper Products (14%). Other industrial sectors include: Commercial/Institutional (12%), Food (8%), Primary Metals (5%), Other Manufacturing (8%), and Other Industrial (6%). Combined heat and power (CHP)-sometimes referred to as cogeneration-involves the sequential process of producing and utilizing electricity and thermal energy from a single fuel. CHP is widely recognized to save energy and costs, while reducing carbon dioxide (CO2) and other pollutants. CHP is a realistic, near-term option for large energy efficiency improvements and significant CO2 reductions.

407

Virginia Regional Industrial Facilities Act (Virginia) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Regional Industrial Facilities Act (Virginia) Regional Industrial Facilities Act (Virginia) Virginia Regional Industrial Facilities Act (Virginia) < Back Eligibility Commercial Construction Developer Industrial Investor-Owned Utility Local Government Municipal/Public Utility Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Virginia Program Type Industry Recruitment/Support Provider Regional Industrial Facility Authorities The Virginia Regional Industrial Facilities Act is meant to aid the economic development of localities within the Commonwealth. The Act provides a mechanism for localities to establish regional industrial facility authorities, enabling them to pool financial resources to stimulate economic development. The purpose of a regional industrial

408

Otter Tail Power Company - Commercial and Industrial Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Otter Tail Power Company - Commercial and Industrial Energy Otter Tail Power Company - Commercial and Industrial Energy Efficiency Grant Program Otter Tail Power Company - Commercial and Industrial Energy Efficiency Grant Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Other Heat Pumps Manufacturing Appliances & Electronics Program Info State Minnesota Program Type Utility Grant Program Rebate Amount Varies Provider Customer Service Otter Tail Power Company Grants for Conservation Program allows its commercial and industrial customers to submit energy-saving proposals and receive grants for their custom efficiency projects. Possibilities include but are not limited to:

409

Entergy New Orleans - Small Commercial and Industrial Solutions Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Entergy New Orleans - Small Commercial and Industrial Solutions Entergy New Orleans - Small Commercial and Industrial Solutions Program Entergy New Orleans - Small Commercial and Industrial Solutions Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Windows, Doors, & Skylights Maximum Rebate $50,000 or full cost of upgrade Program Info Funding Source New Orleans City Council State Louisiana Program Type Utility Rebate Program Rebate Amount Energy Assessment: Free Small Commercial Solutions Efficiency Improvements: $0.125 per kWh saved Large Commercial and Industrial Solutions Lighting Improvements: $0.10 per

410

The Industrial Machinery Tax Credit (Tennessee) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Machinery Tax Credit (Tennessee) Industrial Machinery Tax Credit (Tennessee) The Industrial Machinery Tax Credit (Tennessee) < Back Eligibility Agricultural Commercial Construction Developer Fuel Distributor General Public/Consumer Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Systems Integrator Transportation Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Tennessee Program Type Corporate Tax Incentive Provider Tennessee Department of Economic and Community Development The Industrial Machinery Tax Credit provides tax savings from equipment investments dependent upon the size investment made during the period. To qualify for this credit, companies are not required to create new jobs.

411

Federal Energy Management Program: Energy Savings Calculator...  

NLE Websites -- All DOE Office Websites (Extended Search)

Savings Calculator for Commercial Boilers (Closed Loop, Space Heating Applications Only) This cost calculator is a screening tool that estimates a product's lifetime energy cost...

412

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- Bonus Rebate Program (Illinois) Illinois Residential Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Natural Gas Savings Program 05...

413

Defining a Standard Metric for Electricity Savings  

E-Print Network (OSTI)

1991. The Potential for Electricity Efficiency Improvementswww.eia.doe.gov/cneaf/electricity/page/eia860.html>. FigureA STANDARD METRIC FOR ELECTRICITY SAVINGS Jonathan Koomey*,

Koomey, Jonathan

2009-01-01T23:59:59.000Z

414

When wall insulation doesn`t save  

Science Conference Proceedings (OSTI)

A recent study in Florida concluded that while wall insulation clearly saves heating energy, it is less effective at saving cooling energy. The study focused on concrete block houses on slab foundations, and determined that whether insulation saves cooling energy depends significantly on the interior thermostat setpoint, the lower the thermostat below outside temperature, the more likely wall installation was to save energy. This article describes the design of the study and compares it to other studies. Results in their entirety are described. 1 fig.

Johnson, D.

1997-05-01T23:59:59.000Z

415

How Plug-in Hybrids Save Money  

NLE Websites -- All DOE Office Websites (Extended Search)

of gasoline's widespread availability and quick refueling. Plug-in hybrids also save energy through regenerative braking, which recovers much of the energy typically lost when...

416

Saving Energy Down South | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Down South Saving Energy Down South December 12, 2011 - 4:54am Addthis Stephanie Price Communicator, National Renewable Energy Laboratory I spent Thanksgiving week in Arizona with...

417

Saving Energy | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Printable Version Development Adoption Compliance Regulations Resource Center Saving Energy DOE Compliance Methodology and Approach RFI Featured Resources Advanced Energy Design...

418

Identify energy-saving actions | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

Identify energy-saving actions Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction...

419

Federal Energy Management Program: Energy Savings Performance...  

NLE Websites -- All DOE Office Websites (Extended Search)

Federal Financing Specialists to someone by E-mail Share Federal Energy Management Program: Energy Savings Performance Contract Federal Financing Specialists on Facebook Tweet...

420

Energy Savings Performance Contracts (ESPCs) (Fact Sheet)  

Science Conference Proceedings (OSTI)

Overview of the U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP) energy savings performance contract (ESPC) program.

Not Available

2012-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "ventower industries saving" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Energy Savings Performance Contracts (ESPCs) (Fact Sheet)  

SciTech Connect

Overview of the U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP) energy savings performance contract (ESPC) program.

Not Available

2011-07-01T23:59:59.000Z

422

Utility Savings Estimators | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

the Utility Savings Estimators: Commercial Estimator | Residential Estimator (These *.zip files contain the Microsoft Excel macro-enabled (*.xlsm) estimator files. You will...

423

Saving Electrical Energy in Commercial Buildings.  

E-Print Network (OSTI)

??With the commercial and institutional building sectors using approximately 29% and 34% of all electrical energy consumption in Canada and the United States, respectively, saving… (more)

Case, Ryan

2012-01-01T23:59:59.000Z

424

DEFINING A STANDARD METRIC FOR ELECTRICITY SAVINGS  

NLE Websites -- All DOE Office Websites (Extended Search)

DEFINING A STANDARD METRIC FOR ELECTRICITY SAVINGS Jonathan Koomey*, Hashem Akbari, Carl Blumstein, Marilyn Brown, Richard Brown, Chris Calwell, Sheryl Carter, Ralph Cavanagh,...

425

Federal Energy Management: Helping Agencies Achieve Savings ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Achieve Savings October 30, 2013 - 1:30pm Addthis The Energy Department's Federal Energy Management Program guides and advises agencies on how to use funding more...

426

Energy savings from using mobile smart technologies  

Science Conference Proceedings (OSTI)

This paper presents the most recent results of energy saving benefits from the convergence of consumer products into a multi-function smart device

2013-01-01T23:59:59.000Z

427

Energy Saving Absorption Heat Pump Water Heater  

energy savings and can reduce the use of fossil fuels by buildings. While conventional heat pump water heater designs are limited to using toxic ammonia water ...

428

Federal Energy Management Program: Energy Savings Performance...  

NLE Websites -- All DOE Office Websites (Extended Search)

of Energy - Energy Efficiency and Renewable Energy Federal Energy Management Program Energy Savings Performance Contracts Laws and Regulations Legislation authorizing energy...

429

Federal Energy Management Program: Energy Savings Performance...  

NLE Websites -- All DOE Office Websites (Extended Search)

of Energy - Energy Efficiency and Renewable Energy Federal Energy Management Program Energy Savings Performance Contract Federal Financing Specialists FEMP's Federal financing...

430

Federal Energy Management Program: Energy Savings Performance...  

NLE Websites -- All DOE Office Websites (Extended Search)

Printable Version Share this resource Send a link to Federal Energy Management Program: Energy Savings Performance Contract Training to someone by E-mail Share Federal Energy...

431

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Xcel Energy Services Xcel Residential Yellowstone Valley Electric Cooperative York Electric Cooperative, Inc Your Energy Savings Expiration Date Chesapeake Bay, Drilling for...

432

Nebraska Dollar and Energy Saving Loans  

Science Conference Proceedings (OSTI)

The Nebraska Energy Office administers the Nebraska Dollar and Energy Savings Loans that makes available low-cost financing for energy efficiency projects for state citizens and businesses.

Loos, J.

2003-02-01T23:59:59.000Z

433

Building Technologies Office: SAVING ENERGY  

NLE Websites -- All DOE Office Websites (Extended Search)

the exterior front of the Leavenworth, Kansas, Walmart featuring a tall light in the parking lot. the exterior front of the Leavenworth, Kansas, Walmart featuring a tall light in the parking lot. WALMART Submitted Date: October 31, 2011 Photo of the front of the Walmart Supercenter at dusk with outside lighting on. Photo of a light pole topped with quad-configuration of GE Evolve LED luminaires. Photo of the Walmart parking lot at night. The parking lot is well lit but the neighborhood next to the parking lot is dark. Photo of the Walmart Supercenter from across the parking lot at night. The photo shows the uniform lighting of the entire site. Save Money and Energy With LED Lighting: Get details on the LED Site Lighting Performance Specification or read the fact sheet. Learn about DOE's CBEAs. Become an REA member. Read about DOE's work in Solid-State Lighting.

434

Shared Signals: Using Existing Facility Meters for Energy Savings Verification  

E-Print Network (OSTI)

This paper reviews and summarizes techniques for using or sharing signals from existing facility and utility meters for the purpose of verifying energy savings from industrial, institutional and large commercial energy conservation projects. Techniques for sharing or using signals from existing electric, natural gas, fuel oil, steam, steam condensate, boiler feedwater, hot water and chilled water meters will be described. The techniques and experiences reported in this paper are based on the results of the actual in-field installation of energy monitoring equipment in several hundred sites at various locations throughout the United States.

McBride, J. R.; Bohmer, C. J.; Price, S. D.; Carlson, K.; Lopez, J.

1997-04-01T23:59:59.000Z

435

ComEd - Small Business Energy Savings Program (Illinois) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Small Business Energy Savings Program (Illinois) Small Business Energy Savings Program (Illinois) ComEd - Small Business Energy Savings Program (Illinois) < Back Eligibility Commercial Industrial Multi-Family Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Other Commercial Weatherization Manufacturing Appliances & Electronics Commercial Lighting Lighting Water Heating Maximum Rebate Natural Gas incentives and measures may vary across territories. Program Info Start Date 6/1/2012 Expiration Date 5/31/2013 State Illinois Program Type Utility Rebate Program Rebate Amount '''Free Measures''' Energy Assessments Compact Fluorescent Lamps (CFLs) Low-flow Showerheads/Aerators Vending Machine Controls Devices Pre-rinse Sprayers '''Incentives covered up to 70% of the cost''' T8 Fluorescent Lighting Upgrades

436

Have You Added Value to Your Home with Energy Saving Upgrades? | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Have You Added Value to Your Home with Energy Saving Upgrades? Have You Added Value to Your Home with Energy Saving Upgrades? Have You Added Value to Your Home with Energy Saving Upgrades? July 15, 2011 - 3:47pm Addthis This week, Eric shared his thoughts on Building Value with Energy-Saving Upgrades in Homes and Businesses. He also mentioned the U.S. Department of Energy's Commercial Building Initiative, which is a partnership between the department and industry representatives to encourage the development of higher commercial building efficiency measures. Read the full text of the partnership agreement. How about you? Have you done any energy-efficient remodeling and seen your home increase in either value or appeal to potential buyers? Or are you planning to do so in the next few years? Each week, you have the chance to share your thoughts on a question about

437

Energy Department Awards $16.5 Million for State Energy Savings Projects |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Awards $16.5 Million for State Energy Savings Energy Department Awards $16.5 Million for State Energy Savings Projects Energy Department Awards $16.5 Million for State Energy Savings Projects August 30, 2005 - 2:53pm Addthis To Improve Energy Efficiency in Schools, Promote Energy-Efficient Industrial Technologies, and Support Solar, Wind and Biomass Renewable Energy Sources WASHINGTON, DC -- Secretary of Energy Samuel W. Bodman announced today that the Department of Energy (DOE) will provide $16,509,819 for 178 energy efficiency and renewable energy projects in 42 states. The funding for these energy-saving projects is being provided through DOE State Energy Program Special Projects competitive grants, and will be awarded in September. State energy offices will use these funds to improve the energy efficiency

438

Potential For Energy, Peak Demand, and Water Savings in California Tomato Processing Facilities  

E-Print Network (OSTI)

Tomato processing is a major component of California's food industry. Tomato processing is extremely energy intensive, with the processing season coinciding with the local electrical utility peak period. Significant savings are possible in the electrical energy, peak demand, natural gas consumption, and water consumption of facilities. The electrical and natural gas energy usage and efficiency measures will be presented for a sample of California tomato plants. A typical end-use distribution of electrical energy in these plants will be shown. Results from potential electrical efficiency, demand response, and natural gas efficiency measures that have applications in tomato processing facilities will be presented. Additionally, water conservation measures and the associated savings will be presented. It is shown that an estimated electrical energy savings of 12.5%, electrical demand reduction of 17.2%, natural gas savings of 6.0%, and a fresh water usage reduction of 15.6% are achievable on a facility-wide basis.

Trueblood, A. J.; Wu, Y. Y.; Ganji, A. R.

2013-01-01T23:59:59.000Z

439

Goodyear Tire Plant Gains Traction on Energy Savings After Completing Save Energy Now Assessment (Revised)  

Science Conference Proceedings (OSTI)

This DOE Save Energy Now case study describes how the Goodyear Tire Plant saves approx. 93,000 MMBtu and $875,000 annually after increasing steam system energy efficiency in the Union City, TN, plant.

Not Available

2008-04-01T23:59:59.000Z

440

Energy Department Invests to Save Small Buildings Money by Saving Energy |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Invests to Save Small Buildings Money by Saving Invests to Save Small Buildings Money by Saving Energy Energy Department Invests to Save Small Buildings Money by Saving Energy July 17, 2013 - 1:00pm Addthis News Media Contact (202) 586-4940 WASHINGTON -- Building on President Obama's Climate Action Plan, which calls for steady, responsible steps to reduce carbon pollution and reduce energy bills for U.S. businesses, the Energy Department today announced an award of $10 million for six projects to help small commercial buildings save money by saving energy. These small commercial buildings are less than 50,000 square feet in size and include schools, churches, strip malls, restaurants and grocery stores. The six projects are aimed at developing user-friendly tools and resources that can be easily deployed at any small building. The Energy

Note: This page contains sample records for the topic "ventower industries saving" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Energy Department Invests to Save Small Buildings Money by Saving Energy |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Invests to Save Small Buildings Money by Saving Energy Department Invests to Save Small Buildings Money by Saving Energy Energy Department Invests to Save Small Buildings Money by Saving Energy July 17, 2013 - 1:00pm Addthis News Media Contact (202) 586-4940 WASHINGTON -- Building on President Obama's Climate Action Plan, which calls for steady, responsible steps to reduce carbon pollution and reduce energy bills for U.S. businesses, the Energy Department today announced an award of $10 million for six projects to help small commercial buildings save money by saving energy. These small commercial buildings are less than 50,000 square feet in size and include schools, churches, strip malls, restaurants and grocery stores. The six projects are aimed at developing user-friendly tools and resources that can be easily deployed at any small building. The Energy

442

Does Extending Daylight Saving Time Save Energy? Evidence from an Australian Experiment  

E-Print Network (OSTI)

CSEM WP 163 Does Extending Daylight Saving Time Save Energy?advantage of the fact that DST does not affect electricityHowever, the simulation does not include non-residential

KELLOGG, RYAN M; Wolff, Hendrik

2007-01-01T23:59:59.000Z

443

Expert Meeting Report: Energy Savings You Can Bank On | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Savings You Can Bank On Energy Savings You Can Bank On Expert Meeting Report: Energy Savings You Can Bank On In October 2011, ARBI organized and conducted an Experts Meeting on the topic of performance guarantees and financing vehicles for Energy Efficiency Upgrades. The meeting brought together technical, policy, and financial experts, including researchers, experienced installation contractors, and innovative energy business leaders, in order to discuss the opportunities and challenges for the energy efficiency upgrade industry to increase market uptake of Home Energy Upgrades (HEUs) through innovative offerings, such as performance guarantees. The meeting had several primary goals. First, it sought to understand how other industries have developed successful models for financing renewable energy installations while

444

Saving Clams in the Halibut Capital of the World | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Saving Clams in the Halibut Capital of the World Saving Clams in the Halibut Capital of the World Saving Clams in the Halibut Capital of the World December 20, 2011 - 10:44am Addthis Homer, population 5,364, known far and wide for its importance to Alaska's commercial fishing industry, spent $847,000 to conduct an initial energy audit and implement energy efficiency improvements that will drop the city's energy bill by $100,000 annually -- a reduction of approximately 14 percent. | Photo courtesy of Wikimedia Commons. Homer, population 5,364, known far and wide for its importance to Alaska's commercial fishing industry, spent $847,000 to conduct an initial energy audit and implement energy efficiency improvements that will drop the city's energy bill by $100,000 annually -- a reduction of approximately 14

445

A preliminary review of energy savings from EADC plant audits  

SciTech Connect

This paper reviews the long-term energy savings attributed to industrial plant energy audits conducted under the US Department of Energy`s (DOE`s) Energy Analysis and Diagnostic Center (EADC) Program. By the end of FY91, this program is expected to have performed over 3600 plant energy audits since it began in late 1976. During FY91, 500 of the 3600 are expected to be completed. Currently, 18 universities participate in the program. DOE`s expansion plan, as specified in the National Energy Strategy, calls for adding three universities to the program during FY92. This review, requested by the OIT as part of their program planning effort, is preliminary and limited in scope. The primary purpose of this paper is to independently assess the accuracy of past energy savings reporting, specifically: whether a 2-year assessment horizon for identifying implemented ECOs captures all the ECOs implemented under the program whether the number of implemented ECOs and thus, the energy savings associated with program audits, significantly decrease in years 3 through 7 after the audit.

Wilfert, G.L.; Kinzey, B.R.; Kaae, P.S.

1993-03-01T23:59:59.000Z

446

A preliminary review of energy savings from EADC plant audits  

SciTech Connect

This paper reviews the long-term energy savings attributed to industrial plant energy audits conducted under the US Department of Energy's (DOE's) Energy Analysis and Diagnostic Center (EADC) Program. By the end of FY91, this program is expected to have performed over 3600 plant energy audits since it began in late 1976. During FY91, 500 of the 3600 are expected to be completed. Currently, 18 universities participate in the program. DOE's expansion plan, as specified in the National Energy Strategy, calls for adding three universities to the program during FY92. This review, requested by the OIT as part of their program planning effort, is preliminary and limited in scope. The primary purpose of this paper is to independently assess the accuracy of past energy savings reporting, specifically: whether a 2-year assessment horizon for identifying implemented ECOs captures all the ECOs implemented under the program whether the number of implemented ECOs and thus, the energy savings associated with program audits, significantly decrease in years 3 through 7 after the audit.

Wilfert, G.L.; Kinzey, B.R.; Kaae, P.S.

1993-01-01T23:59:59.000Z

447

ConEd (Gas) - Commercial and Industrial Energy Efficiency Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ConEd (Gas) - Commercial and Industrial Energy Efficiency Program ConEd (Gas) - Commercial and Industrial Energy Efficiency Program ConEd (Gas) - Commercial and Industrial Energy Efficiency Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Construction Design & Remodeling Manufacturing Other Appliances & Electronics Water Heating Maximum Rebate Large Commercial Energy Study: 50,000 (gas); 67,000 (combined with electric) VFD: 12,000 Program Info Expiration Date 12/31/2015 State New York Program Type Utility Rebate Program Rebate Amount Energy Study: 50% of the cost Custom: $1/therm at less than 20% savings; $2/therm at greater than 20% savings Control/Automation Systems: $2/therm saved, up to 50% of cost

448

EPUD - Commercial and Industrial Energy Efficiency Rebate Program...  

Open Energy Info (EERE)

see program worksheet on web site Custom Industrial Projects: 0.25kWh of verified energy savings Energy Smart Grocer Program Auto-Closers: 25 - 170 Gaskets: 35 - 70...

449

Xcel Energy- Commercial and Industrial Standard Offer Program  

Energy.gov (U.S. Department of Energy (DOE))

Xcel Energy Large Commercial and Industrial Standard Offer Program (SOP) pays incentives to businesses for retrofit and new construction projects that save energy in peak summer demand periods and...

450

Innovative Energy Efficient Industrial Ventilation  

E-Print Network (OSTI)

This paper was written to describe an innovative “on-demand” industrial ventilation system for woodworking, metalworking, food processing, pharmaceutical, chemical, and other industries. Having analyzed existing industrial ventilation in 130 factories, we found striking dichotomy between the classical “static” design of ventilation systems and constantly changing workflow and business demands. Using data from real factories, we are able to prove that classical industrial ventilation design consumes 70 % more energy than necessary. Total potential electricity saving achieved by using on-demand systems instead of classically designed industrial ventilation in the U.S. could be 26 billion kWh. At the average electricity cost of 7 cents per kWh, this would represent $1.875 billion. Eighty such systems are already installed in the USA and European Union.

Litomisky, A.

2005-01-01T23:59:59.000Z

451

An Implementation of Intellignt Energy Saving System  

Science Conference Proceedings (OSTI)

This study was constructed an intelligent energy saving system that based on the components of Zigbee. We proposed a modular design to adapt various utilized environments, such as the lighting, air condition, office automation devices etc. We also implemented ... Keywords: Wireless Sensor Network, Energy-Saving, Context-Aware, Intelligent Control

Dong-liang Lee; Chung-liang Hsu

2011-08-01T23:59:59.000Z

452

Making Sense of Oil Stamp Saving Schemes  

E-Print Network (OSTI)

or part for one's oil bill. In this paper, we explore why this is. After ruling out high costs associated with more conventional savings vehicles (such as bank accounts) and the notion that oil stamps serve some purpose other than saving for heating oil...

Brutscher, Philipp-Bastian

2012-01-23T23:59:59.000Z

453

Power Saving Techniques for Wireless LANs  

E-Print Network (OSTI)

Fast wireless access has rapidly become commonplace. Wireless access points and Hotspot servers are sprouting everywhere. Battery lifetime continues to be a critical issue in mobile computing. This paper first gives an overview of WLAN energy saving strategies, followed by an illustration of a system-level methodology for saving power in heterogeneous wireless environments.

Simunic, T

2011-01-01T23:59:59.000Z

454

Metering and Monitoring Approaches for Verifying Energy Savings from Energy Conservation Retrofits: Experiences from the Field  

E-Print Network (OSTI)

This paper describes instrumentation approaches used in the verification of energy savings from industrial and large institutional energy conservation retrofits. Techniques for monitoring electricity, natural gas and thermal energy flows are presented. Insights gained from the actual in-field installation of monitoring equipment are shared and lessons learned are provided.

McBride, J. R.; Bohmer, C. J.; Lippman, R. H.

1995-04-01T23:59:59.000Z

455

Early Detection Saves Lives | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Early Detection Saves Lives Early Detection Saves Lives Early Detection Saves Lives September 20, 2012 - 2:39pm Addthis What does this mean for me? It can save your life. It can save the life of someone you love. The Worker Health Protection Program (WHPP) is the DOE's Former Worker Medical Screening Program at 13 DOE sites. WHPP provides free medical evaluations for selected occupational diseases every three years to eligible former DOE workers under a national medical protocol established by the DOE. WHPP is funded by the DOE and is operated by a consortium of the City University of New York, the United Steelworkers, and the Atomic Trades & Labor Council in association with clinical facilities in communities near DOE sites. The sites covered under WHPP include the K-25 Gaseous Diffusion Plant, Y-12 National Security Complex, Oak Ridge National

456

Thrift Savings Plan (TSP) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services » New Employee Orientation » Thrift Savings Plan (TSP) Services » New Employee Orientation » Thrift Savings Plan (TSP) Thrift Savings Plan (TSP) The Thrift Savings Plan (TSP) is a voluntary retirement savings and investment plan for federal employees. TSP Effective July 1, 2005 contribution elections will be processed under the new rules - that is, the elections must be made effective no later than the first full pay period after they are filed. Participants must continue to file contribution elections with their agencies or services, and the agencies and services must continue to implement the elections by deducting contributions from participants' pay and reporting these amounts to TSP each pay period. The law does not affect the waiting period new employees who are covered by the Federal Employees' Retirement System must serve before they become

457

Alliance to Save Energy | Open Energy Information  

Open Energy Info (EERE)

Energy Energy Jump to: navigation, search Name Alliance to Save Energy Place Washington, DC Zip 20036 Sector Efficiency Product String representation "Founded in 1977 ... ther countries." is too long. References Alliance to Save Energy[1] Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Electricity Resources & Building Systems Integration LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Alliance to Save Energy is a company located in Washington, DC . References ↑ "Alliance to Save Energy" Retrieved from "http://en.openei.org/w/index.php?title=Alliance_to_Save_Energy&oldid=381953

458

Thift Savings Plan (TSP) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thift Savings Plan (TSP) Thift Savings Plan (TSP) Thift Savings Plan (TSP) TSP is a retirement savings and investment plan for Federal employees and members of the uniformed services, including the Ready Reserve. It was established by Congress in the Federal Employees' Retirement System Act of 1986 and offers the same types of savings and tax benefits that many private corporations offer their employees under 401(k) plans. TSP is a defined contribution plan, meaning that the retirement income you receive from your TSP account will depend on how much you (and your agency, if you are eligible to receive agency contributions) put into your account during your working years and the earnings accumulated over that time. TSP and Life Events Throughout your life you will encounter circumstances that may influence

459

Risk transfer via energy savings insurance  

SciTech Connect

Among the key barriers to investment in energy efficiency improvements are uncertainties about attaining projected energy savings and apprehension about potential disputes over these savings. The fields of energy management and risk management are thus intertwined. While many technical methods have emerged to manage performance risks (e.g. building commissioning), financial risk transfer techniques are less developed in the energy management arena than in other more mature segments of the economy. Energy Savings Insurance (ESI) - formal insurance of predicted energy savings - is one method of transferring financial risks away from the facility owner or energy services contractor. ESI offers a number of significant advantages over other forms of financial risk transfer, e.g. savings guarantees or performance bonds. ESI providers manage risk via pre-construction design review as well as post-construction commissioning and measurement and verification of savings. We found that the two mos t common criticisms of ESI - excessive pricing and onerous exclusions - are not born out in practice. In fact, if properly applied, ESI can potentially reduce the net cost of energy savings projects by reducing the interest rates charged by lenders, and by increasing the level of savings through quality control. Debt service can also be ensured by matching loan payments to projected energy savings while designing the insurance mechanism so that payments are made by the insurer in the event of a savings shortfall. We estimate the U.S. ESI market potential of $875 million/year in premium income. From an energy-policy perspective, ESI offers a number of potential benefits: ESI transfers performance risk from the balance sheet of the entity implementing the energy savings project, thereby freeing up capital otherwise needed to ''self-insure'' the savings. ESI reduces barriers to market entry of smaller energy services firms who do not have sufficiently strong balance sheets to self-insure th e savings. ESI encourages those implementing energy saving projects to go beyond standard, tried-and-true measures and thereby achieve more significant levels of energy savings; and ESI providers stand to be proponents of improved savings measurement and verification techniques, as well as maintenance, thereby contributing to national energy savings objectives and perhaps elevating the quality of information available for program evaluation. Governmental agencies have been pioneers in the use of ESI and could continue to play a role in developing this innovative risk-transfer mechanism. There is particular potential for linkages between ESI and the ENERGY STAR (registered trademark) Buildings Program. It is likely that ENERGY STAR (registered trademark)-labeled commercial buildings (which have lower performance risk thanks to commissioning) would be attractive to providers of energy savings insurance. Conversely, the award of energy savings insurance to an ENERGY STAR (registered trade mark)-labeled building would raise the perceived credibility of the Label and energy savings attributed to the Program.

Mills, Evan

2001-10-01T23:59:59.000Z

460

Effective Transfer of Industrial Energy Conservation Technologies  

E-Print Network (OSTI)

Voluntary participation in industrial energy conservation programs resulted in savings of approximately 1 million barrels of oil equivalent per day in the U.S. during 1981. These energy savings accrued largely from the development, introduction, and acceptance by industry of new energy conserving technologies. These new technologies were developed through cost sharing programs between the Department of Energy and private industry. These joint efforts reduced the risk to industry, thus making them willing to accept and use these new technologies at an accelerated rate. Examples of several technologies that were used by industry at an accelerated rate are described in this paper. These technologies are; textile foam finishing and dyeing, forging furnace modifications, and high efficiency metallic recuperators.

Clement, M.; Vallario, R. W.

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ventower industries saving" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial and Agricultural Production Efficiency Program Oregon Agricultural Industrial Other Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial...

462

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Duke Energy (Electric) - CommercialIndustrial Energy Efficiency Rebate Program Ohio Commercial Industrial Institutional Schools Heating & Cooling Commercial Heating & Cooling...

463

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nonprofit, Local Government, State Government, Tribal Government, Multi-Family Residential, Institutional Commercial, Industrial, Residential Commercial, Industrial, Schools...

464

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Local Government Residential Wind Buying & Making Electricity California Energy Commission Feed-In Tariff California Agricultural Commercial Industrial Local...

465

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Revenue Bond Issuance Cost Assistance (Wisconsin) Wisconsin Agricultural Commercial Construction Fed. Government Fuel Distributor General PublicConsumer Industrial...

466

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Indiana Michigan Power - Commercial and Industrial Rebates Program Indiana Commercial Industrial Heating & Cooling Commercial Heating & Cooling Cooling Other Appliances &...

467

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Valley Electric Cooperative - Commercial and Industrial Energy Efficiency Rebate Program Minnesota Agricultural Commercial Fed. Government Industrial Local Government Nonprofit...

468

FY 1995 cost savings report  

SciTech Connect

Fiscal Year (FY) 1995 challenged us to dramatically reduce costs at Hanford. We began the year with an 8 percent reduction in our Environmental Management budget but at the same time were tasked with accomplishing additional workscope. This resulted in a Productivity Challenge whereby we took on more work at the beginning of the year than we had funding to complete. During the year, the Productivity Challenge actually grew to 23 percent because of recissions, Congressional budget reductions, and DOE Headquarters actions. We successfully met our FY 1995 Productivity Challenge through an aggressive cost reduction program that identified and eliminated unnecessary workscope and found ways to be more efficient. We reduced the size of the workforce, cut overhead expenses, eliminated paperwork, cancelled construction of new facilities, and reengineered our processes. We are proving we can get the job done better and for less money at Hanford. DOE`s drive to do it ``better, faster, cheaper`` has led us to look for more and larger partnerships with the private sector. The biggest will be privatization of Hanford`s Tank Waste Remediation System, which will turn liquid tank waste into glass logs for eventual disposal. We will also save millions of dollars and avoid the cost of replacing aging steam plants by contracting Hanford`s energy needs to a private company. Other privatization successes include the Hanford Mail Service, a spinoff of advanced technical training, low level mixed waste thermal treatment, and transfer of the Hanford Museums of Science and history to a private non-profit organization. Despite the rough roads and uncertainty we faced in FY 1995, less than 3 percent of our work fell behind schedule, while the work that was performed was completed with an 8.6 percent cost under-run. We not only met the FY 1995 productivity challenge, we also met our FY 1995-1998 savings commitments and accelerated some critical cleanup milestones. The challenges continue. Budgets remain on the decline, even while the expectations increase. Yet we are confident in our ability to keep our commitments and goals by identifying new efficiencies in the Hanford cleanup program. We will also pursue new contracting arrangements that will allow us to foster greater competition and use more commercial practices while maintaining our commitment to the safety and health of the public, our workers, and the environment.

Andrews-Smith, K.L., Westinghouse Hanford

1996-06-21T23:59:59.000Z

469

Federal Energy Management Program: Energy Savings Performance Contract Case  

NLE Websites -- All DOE Office Websites (Extended Search)

Savings Savings Performance Contract Case Studies to someone by E-mail Share Federal Energy Management Program: Energy Savings Performance Contract Case Studies on Facebook Tweet about Federal Energy Management Program: Energy Savings Performance Contract Case Studies on Twitter Bookmark Federal Energy Management Program: Energy Savings Performance Contract Case Studies on Google Bookmark Federal Energy Management Program: Energy Savings Performance Contract Case Studies on Delicious Rank Federal Energy Management Program: Energy Savings Performance Contract Case Studies on Digg Find More places to share Federal Energy Management Program: Energy Savings Performance Contract Case Studies on AddThis.com... Energy Savings Performance Contracts Assistance & Contacts

470

Development of Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Iron and Steel Sector  

E-Print Network (OSTI)

energy savings with discounts rates 10%, 20% and 30% in the U.S. iron and steel industryenergy savings with discounts rates 10%, 20% and 30% in the U.S. iron and steel industry.

Xu, T.T.

2011-01-01T23:59:59.000Z

471

Research Projects in Industrial Technology.  

Science Conference Proceedings (OSTI)

The purpose of this booklet is to briefly describe ongoing and completed projects being carried out by Bonneville Power Administration's (BPA) Industrial Technology Section. In the Pacific Northwest, the industrial sector is the largest of the four consuming sectors. It accounted for thirty-nine percent of the total firm demand in the region in 1987. It is not easy to asses the conservation potential in the industrial sector. Recognizing this, the Northwest Power Planning Council established an objective to gain information on the size, cost, and availability of the conservation resource in the industrial sector, as well as other sectors, in its 1986 Power Plan. Specifically, the Council recommended that BPA operate a research and development program in conjunction with industry to determine the potential costs and savings from efficiency improvements in industrial processes which apply to a wide array of industrial firms.'' The section, composed of multidisciplinary engineers, provides technical support to the Industrial Programs Branch by designing and carrying out research relating to energy conservation in the industrial sector. The projects contained in this booklet are arranged by sector --industrial, utility, and agricultural -- and, within each sector, chronologically from ongoing to completed, with those projects completed most recently falling first. For each project the following information is given: its objective approach, key findings, cost, and contact person. Completed projects also include the date of completion, a report title, and report number.

United States. Bonneville Power Administration. Industrial Technology Section.

1990-06-01T23:59:59.000Z

472

Kansas City Plant submits productivity savings under share-in-savings  

NLE Websites -- All DOE Office Websites (Extended Search)

Kansas City Plant submits productivity savings under share-in-savings Kansas City Plant submits productivity savings under share-in-savings program | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Kansas City Plant submits productivity savings under ... Kansas City Plant submits productivity savings under share-in-savings program Posted By Gayle Fisher

473

Industrial - Utility Cogeneration Systems  

E-Print Network (OSTI)

Cogeneration may be described as an efficient method for the production of electric power in conjunction with process steam or heat which optimizes the energy supplied as fuel to maximize the energy produced for consumption. In a conventional electric utility power plant, considerable energy is wasted in the form of heat rejection to the atmosphere thru cooling towers, ponds or lakes, or to rivers. In a cogeneration system heat rejection can be minimized by systems which apply the otherwise wasted energy to process systems requiring energy in the form of steam or heat. Texas has a base load of some 75 million pounds per hour of process steam usage, of which a considerable portion could be generated through cogeneration methods. The objective of this paper is to describe the various aspects of cogeneration in a manner which will illustrate the energy saving potential available utilizing proven technology. This paper illustrates the technical and economical benefits of cogeneration in addition to demonstrating the fuel savings per unit of energy required. Specific examples show the feasibility and desirability of cogeneration systems for utility and industrial cases. Consideration of utility-industrial systems as well as industrial-industrial systems will be described in technical arrangement as well as including a discussion of financial approaches and ownership arrangements available to the parties involved. There is a considerable impetus developing for the utilization of coal as the energy source for the production of steam and electricity. In many cases, because of economics and site problems, the central cogeneration facility will be the best alternative for many users.

Harkins, H. L.

1979-01-01T23:59:59.000Z

474

California’s Industrial Energy Efficiency Best Practices Technical Outreach and Training Program  

E-Print Network (OSTI)

This paper describes the California Energy Commission’s (Commission) energy policies and programs that save energy and money for California’s manufacturing and food processing industries to help retain businesses in-state and reduce greenhouse gases through decreased energy use. The Commission’s objective is to achieve 2 trillion British Thermal Units (Btu) per year in energy savings for California industry by the year 2010. These energy savings will come from implementation of projects that are a direct result of plant assessments conducted by the Commission, and from improved skills of industrial equipment operators attending United States Department of Energy (DOE)-funded industrial BestPractices workshops conducted by the Commission in partnership with industry and the state’s utilities. In addition to energy and cost savings for California’s industrial sector, this program will also reduce direct carbon dioxide emissions from industrial processes by over 110,500 tons each year.

Kazama, D. B.; Wong, T.; Wang, J.

2007-01-01T23:59:59.000Z

475

PEPCO - Commercial and Industrial Energy Efficiency Incentives Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PEPCO - Commercial and Industrial Energy Efficiency Incentives PEPCO - Commercial and Industrial Energy Efficiency Incentives Program PEPCO - Commercial and Industrial Energy Efficiency Incentives Program < Back Eligibility Commercial Fed. Government Industrial Institutional Local Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Maximum Rebate All Incentives: 50% of the total installed project cost Custom Incentive Program: 50% and $250,000/electric account (including all incentive applications in a program year) Program Info Start Date 3/1/2011 State Maryland Program Type Utility Rebate Program Rebate Amount Custom Incentives: $0.16/annual kWh saved

476

Progress Energy Carolinas - Commercial and Industrial Energy-Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Industrial and Industrial Energy-Efficiency Program Progress Energy Carolinas - Commercial and Industrial Energy-Efficiency Program < Back Eligibility Commercial Construction Industrial Multi-Family Residential Nonprofit Schools Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Maximum Rebate Custom Projects: 75% of the incremental measure costs Technical Efficiency Studies: 50% of cost up to $10,000-$20,000 Design Incentive (New Construction): $50,000 Program Info Expiration Date 1/1/2013 State North Carolina Program Type Utility Rebate Program Rebate Amount Custom: $0.08 per kW hour saved annually

477

DTE Energy (Electric) - Commercial and Industrial Energy Efficiency Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DTE Energy (Electric) - Commercial and Industrial Energy Efficiency DTE Energy (Electric) - Commercial and Industrial Energy Efficiency Program DTE Energy (Electric) - Commercial and Industrial Energy Efficiency Program < Back Eligibility Commercial Industrial Institutional Local Government State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Cooling Appliances & Electronics Manufacturing Other Construction Heat Pumps Commercial Lighting Lighting Insulation Design & Remodeling Water Heating Windows, Doors, & Skylights Maximum Rebate Facility: $200,000 Project: $200,000 Customer: $750,000 Program Info State Michigan Program Type Utility Rebate Program Rebate Amount Custom Measures: $0.08/kWh first year energy savings Lighting: Varies ECM Motors/Controls: Varies

478

DTE Energy (Gas) - Commercial and Industrial Energy Efficiency Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DTE Energy (Gas) - Commercial and Industrial Energy Efficiency DTE Energy (Gas) - Commercial and Industrial Energy Efficiency Program DTE Energy (Gas) - Commercial and Industrial Energy Efficiency Program < Back Eligibility Commercial Industrial Institutional Local Government State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Other Construction Manufacturing Insulation Design & Remodeling Appliances & Electronics Water Heating Windows, Doors, & Skylights Maximum Rebate Facility: $200,000 Project: $100,000 Customer: $200,000 Program Info State Michigan Program Type Utility Rebate Program Rebate Amount Custom Measures: $4/MCF of first year energy savings Whole Building Design Incentive: 50% of cost up to $3,000 Steam Trap Repair/Replacement: $100

479

Tacoma Power - Commercial and Industrial Energy Efficiency Rebate Programs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tacoma Power - Commercial and Industrial Energy Efficiency Rebate Tacoma Power - Commercial and Industrial Energy Efficiency Rebate Programs Tacoma Power - Commercial and Industrial Energy Efficiency Rebate Programs < Back Eligibility Commercial Industrial Local Government Multi-Family Residential Nonprofit Retail Supplier Schools Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Other Home Weatherization Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Custom Retrofit: 70% of project cost Compressed Air: 70% of project cost Lighting: 70% of the project cost Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount Custom Retrofit: $0.23/annual kWh saved

480

Electric energy savings from new technologies  

DOE Green Energy (OSTI)

Purpose of the report is to provide information about the electricity-saving potential of new technologies to OCEP that it can use in developing alternative long-term projections of US electricity consumption. Low-, base-, and high-case scenarios of the electricity savings for ten technologies were prepared. The total projected annual savings for the year 2000 for all ten technologies were 137 billion kilowatt hours (BkWh), 279 BkWh, and 470 BkWh, respectively, for the three cases. The magnitude of these savings projections can be gauged by comparing them to the Department's reference case projection for the 1985 National Energy Policy Plan. In the Department's reference case, total consumption in 2000 is projected to be 3319 BkWh. Thus, the savings projected here represent between 4% and 14% of total consumption projected for 2000. Because approximately 75% of the base-case estimate of savings are already incorporated into the reference forecast, reducing projected electricity consumption from what it otherwise would have been, the savings estimated here should not be directly subtracted from the reference forecast.

Moe, R.J.; Harrer, B.J.; Kellogg, M.A.; Lyke, A.J.; Imhoff, K.L.; Fisher, Z.J.

1986-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ventower industries saving" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

China's Industrial Energy Consumption Trends and Impacts of the Top-1000  

NLE Websites -- All DOE Office Websites (Extended Search)

China's Industrial Energy Consumption Trends and Impacts of the Top-1000 China's Industrial Energy Consumption Trends and Impacts of the Top-1000 Enterprises Energy-Saving Program and the Ten Key Energy-Saving Projects Title China's Industrial Energy Consumption Trends and Impacts of the Top-1000 Enterprises Energy-Saving Program and the Ten Key Energy-Saving Projects Publication Type Journal Year of Publication 2012 Authors Ke, Jing, Lynn K. Price, Stephanie Ohshita, David Fridley, Nina Zheng Khanna, Nan Zhou, and Mark D. Levine Keywords energy saving, energy trends, industrial energy efficiency, top-1000 Abstract This study analyzes China's industrial energy consumption trends from 1996 to 2010 with a focus on the impact of the Top-1000 Enterprises Energy-Saving Program and the Ten Key Energy-Saving Projects. From 1996 to 2010, China's industrial energy consumption increased by 134%, even as the industrial economic energy intensity decreased by 46%. Decomposition analysis shows that the production effect was the dominant cause of the rapid growth in industrial energy consumption, while the efficiency effect was the major factor slowing the growth of industrial energy consumption. The structural effect had a relatively small and fluctuating influence. Analysis shows the strong association of industrial energy consumption with the growth of China's economy and changing energy policies. An assessment of the Top-1000 Enterprises Energy-Saving Program and the Ten Key Energy-Saving Projects indicates that the economic energy intensity of major energy-intensive industrial sub-sectors, as well as the physical energy intensity of major energy-intensive industrial products, decreased significantly during China's 11th Five Year Plan (FYP) period (2006-2010). This study also shows the importance and challenge of realizing structural change toward less energy-intensive activities in China during the 12th FYP period (2011-2015).

482

Spring Forward and Start Saving Money | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Spring Forward and Start Saving Money Spring Forward and Start Saving Money March 8, 2013 - 10:15am Addthis Installing blinds or draperies can help you save on cooling costs during...

483

What Motivates You to Save Energy? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Save Energy at Home Consumers can track their energy usage and get energy-saving tips with online tools | File photo Homeowners using smart technology to save energy, money...

484

Cool Colored Roofs to Save Energy and Improve Air Quality  

E-Print Network (OSTI)

Konopacki. 1998b. "Measured Energy Savings of Light- coloredPeak Power and Cooling Energy Savings of High-Albedo Roofs,”Peak Power and Cooling Energy Savings of High-albedo Roofs,"

Akbari, Hashem; Levinson, Ronnen; Miller, William; Berdahl, Paul

2005-01-01T23:59:59.000Z

485

What Are Your Reasons for Saving Energy? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reasons for Saving Energy? What Are Your Reasons for Saving Energy? January 14, 2010 - 7:30am Addthis This week, Elizabeth discussed how saving energy could be contagious. There...

486

Chiller Controls-related Energy Saving Opportunities in Federal Facilities  

E-Print Network (OSTI)

Chiller Controls-related Energy Savings CBE/UC BerkeleyControls-related Energy Savings CBE/UC Berkeley FEMP/NTDPControls-related Energy Savings CBE/UC Berkeley FEMP/NTDP

Webster, Tom

2003-01-01T23:59:59.000Z

487

Energy_Savings_Light_Emitting_Diodes_Niche_Lighting_Apps.pdf...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EnergySavingsLightEmittingDiodesNicheLightingApps.pdf EnergySavingsLightEmittingDiodesNicheLightingApps.pdf EnergySavingsLightEmittingDiodesNicheLightingApps.p...

488

DataTrends: Benchmarking and Energy Savings | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

my money go? Set and Save with ENERGY STAR Product Finder Rebate Finder Store Locator Energy Savings At Home Energy Savings At Home Improving your home's energy efficiency with...

489

NEEA Study: Examples of Deep Energy Savings in Existing Buildings...  

NLE Websites -- All DOE Office Websites (Extended Search)

my money go? Set and Save with ENERGY STAR Product Finder Rebate Finder Store Locator Energy Savings At Home Energy Savings At Home Improving your home's energy efficiency with...

490

ENERGY STAR Healthcare Energy Savings Financial Analysis Calculators...  

NLE Websites -- All DOE Office Websites (Extended Search)

my money go? Set and Save with ENERGY STAR Product Finder Rebate Finder Store Locator Energy Savings At Home Energy Savings At Home Improving your home's energy efficiency with...

491

Sebesta Blomberg & 3M Teaming Presentation- Engineerd Savings...  

NLE Websites -- All DOE Office Websites (Extended Search)

my money go? Set and Save with ENERGY STAR Product Finder Rebate Finder Store Locator Energy Savings At Home Energy Savings At Home Improving your home's energy efficiency with...

492

Introduction to Energy Savings in Process Heating for the Corn...  

NLE Websites -- All DOE Office Websites (Extended Search)

my money go? Set and Save with ENERGY STAR Product Finder Rebate Finder Store Locator Energy Savings At Home Energy Savings At Home Improving your home's energy efficiency with...

493

Saving Tons at the Register  

SciTech Connect

Duct losses have a significant effect on the efficiency of delivering space cooling to U.S. homes. This effect is especially dramatic during peak demand periods where half of the cooling equipment's output can be wasted. Improving the efficiency of a duct system can save energy, but can also allow for downsizing of cooling equipment without sacrificing comfort conditions. Comfort, and hence occupant acceptability, is determined not only by steady-state temperatures, but by how long it takes to pull down the temperature during cooling start-up, such as when the occupants come home on a hot summer afternoon. Thus the delivered tons of cooling at the register during start-up conditions are critical to customer acceptance of equipment downsizing strategies. We have developed a simulation technique which takes into account such things as weather, heat-transfer (including hot attic conditions), airflow, duct tightness, duct location and insulation, and cooling equipment performance to determine the net tons of cooling delivered to occupied space. Capacity at the register has been developed as an improvement over equipment tonnage as a system sizing measure. We use this concept to demonstrate that improved ducts and better system installation is as important as equipment size, with analysis of pull-down capability as a proxy for comfort. The simulations indicate that an improved system installation including tight ducts can eliminate the need for almost a ton of rated equipment capacity in a typical new 2,000 square foot house in Sacramento, California. Our results have also shown that a good duct system can reduce capacity requirements and still provide equivalent cooling at start-up and at peak conditions.

Brown, Karl; Seigel, Jeff; Sherman, Max; Walker, Iain

1998-05-01T23:59:59.000Z

494

Energy saving through effective lighting control  

SciTech Connect

The energy savings associated with various lighting control strategies was investigated at the World Trade Center in New York using a relay-based lighting control system. By reducing after-hours lighting loads to one-third of daytime levels, a 32% energy savings was realized. Combining a very tight lighting schedule with lighting-load shedding in daylit areas reduced energy consumption for lighting 52% relative to baseline operation. The dependency of energy savings on the size of the switching zone was also investigated.

Peterson, D.; Rubinstein, F.

1982-02-01T23:59:59.000Z

495

Pollution prevention cost savings potential  

SciTech Connect

The waste generated by DOE facilities is a serious problem that significantly impacts current operations, increases future waste management costs, and creates future environmental liabilities. Pollution Prevention (P2) emphasizes source reduction through improved manufacturing and process control technologies. This concept must be incorporated into DOE`s overall operating philosophy and should be an integral part of Total Quality Management (TQM) program. P2 reduces the amount of waste generated, the cost of environmental compliance and future liabilities, waste treatment, and transportation and disposal costs. To be effective, P2 must contribute to the bottom fine in reducing the cost of work performed. P2 activities at LLNL include: researching and developing innovative manufacturing; evaluating new technologies, products, and chemistries; using alternative cleaning and sensor technologies; performing Pollution Prevention Opportunity Assessments (PPOAs); and developing outreach programs with small business. Examples of industrial outreach are: innovative electroplating operations, printed circuit board manufacturing, and painting operations. LLNL can provide the infrastructure and technical expertise to address a wide variety of industrial concerns.

Celeste, J.

1994-12-01T23:59:59.000Z

496

Federal Energy Management Program: Energy Savings Performance Contract  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Savings Energy Savings Performance Contract Project Facilitators to someone by E-mail Share Federal Energy Management Program: Energy Savings Performance Contract Project Facilitators on Facebook Tweet about Federal Energy Management Program: Energy Savings Performance Contract Project Facilitators on Twitter Bookmark Federal Energy Management Program: Energy Savings Performance Contract Project Facilitators on Google Bookmark Federal Energy Management Program: Energy Savings Performance Contract Project Facilitators on Delicious Rank Federal Energy Management Program: Energy Savings Performance Contract Project Facilitators on Digg Find More places to share Federal Energy Management Program: Energy Savings Performance Contract Project Facilitators on AddThis.com...

497

Training Your Thermostat to Save Money... and Energy! | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Training Your Thermostat to Save Money... and Energy Training Your Thermostat to Save Money... and Energy June 25, 2012 - 6:14pm Addthis Kristin Swineford Communication...

498

Energy Efficiency: Saving Money and Preserving Jobs | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency: Saving Money and Preserving Jobs Energy Efficiency: Saving Money and Preserving Jobs November 15, 2011 - 12:06pm Addthis National Renewable Energy Laboratory...

499

Florida County Helping Homeowners Save Energy and Money | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Florida County Helping Homeowners Save Energy and Money Florida County Helping Homeowners Save Energy and Money March 9, 2011 - 1:23pm Addthis Jennifer Holman Project Officer,...

500

Profiles in Energy Efficiency Boiler Upgrades Save Money & Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

State and local government resources Profiles in Energy Efficiency Boiler Upgrades Save Money & Energy: Cargill Krefeld This profiles explains how Cargill's Krefeld mill saved...