Powered by Deep Web Technologies
Note: This page contains sample records for the topic "ventilation systems upgrading" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Operational test report integrated system test (ventilation upgrade)  

Science Conference Proceedings (OSTI)

Operational Final Test Report for Integrated Systems, Project W-030 (Phase 2 test, RECIRC and HIGH-HEAT Modes). Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks, including upgraded vapor space cooling and filtered venting of tanks AY101, Ay102, AZ101, AZ102.

HARTY, W.M.

1999-10-05T23:59:59.000Z

2

Independent Oversight Review of Hanford Tank Farms Safety Basis Amendment for Double-Shell Tank Ventilation System Upgrades, November 2011  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford Tank Farms Safety Basis Amendment for Double-Shell Tank Ventilation System Upgrades November 2011 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy i Table of Contents 1.0 Purpose ................................................................................................................................................... 1 2.0 Background ............................................................................................................................................ 1 3.0 Scope and Approach .............................................................................................................................. 2

3

Preoperational test report, vent building ventilation system  

Science Conference Proceedings (OSTI)

This represents a preoperational test report for Vent Building Ventilation Systems, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system provides Heating, Ventilation, and Air Conditioning (HVAC) for the W-030 Ventilation Building. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

Clifton, F.T.

1997-11-04T23:59:59.000Z

4

Ventilation Systems  

Energy.gov (U.S. Department of Energy (DOE))

Ventilation is the process of moving air into and out of an interior space by natural or mechanical means. Ventilation is necessary for the health and comfort of occupants of all buildings....

5

Preoperational test report, primary ventilation system  

SciTech Connect

This represents a preoperational test report for Primary Ventilation Systems, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system provides vapor space filtered venting of tanks AY101, AY102, AZ101, AZ102. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

Clifton, F.T.

1997-11-04T23:59:59.000Z

6

Whole Building Ventilation Systems  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Whole-Building Whole-Building Ventilation Systems for Existing Homes © 2011 Steven Winter Associates, Inc. All rights reserved. © 2011 Steven Winter Associates, Inc. All rights reserved. Home Performance / Weatherization  Addressing ventilation is the exception  Max tightness, e.g. BPI's "Building Airflow Standard" (BAS)  References ASHRAE 62-89  BAS = Max [0.35 ACH, 15 CFM/person], CFM50 eq.  If BD tests show natural infiltration below BAS...  Ventilation must be recommended or installed.  SO DON'T AIR SEAL TO MUCH! © 2011 Steven Winter Associates, Inc. All rights reserved. © 2011 Steven Winter Associates, Inc. All rights reserved. Ventilation Requirements Ventilation systems for existing homes that are:

7

NSLS control system upgrade status  

SciTech Connect

The NSLS control system initially installed in 1978 has undergone several modifications but the basic system architecture remained relatively unchanged. The need for faster response, increased reliability and better diagnostics made the control system upgrade a priority. Since the NSLS runs continuously, major changes to the control system are difficult. The upgrade plan had to allow continuous incremental changes to the control system without having any detrimental effect on operations. The plan had to provide for immediate improvement in a few key areas, such as data access rates, and be complete in a short time. At present, most accelerator operations utilize the upgraded control system.

Smith, J.; Ramamoorthy, S.; Tang, Y.; Flannigan, J.; Sathe, S.; Keane, J.; Krinsky, S.

1993-07-01T23:59:59.000Z

8

Meeting Residential Ventilation Standards Through Dynamic Control of Ventilation Systems  

E-Print Network (OSTI)

Rudd. 2007. Review of residential ventilation technologies.2009. EISG Final Report: Residential Integrated VentilationDesign and Operation of Residential Cooling Systems. Proc.

Sherman, Max H.

2011-01-01T23:59:59.000Z

9

Subsurface Ventilation System Description Document  

Science Conference Proceedings (OSTI)

The Subsurface Ventilation System supports the construction and operation of the subsurface repository by providing air for personnel and equipment and temperature control for the underground areas. Although the system is located underground, some equipment and features may be housed or located above ground. The system ventilates the underground by providing ambient air from the surface throughout the subsurface development and emplacement areas. The system provides fresh air for a safe work environment and supports potential retrieval operations by ventilating and cooling emplacement drifts. The system maintains compliance within the limits established for approved air quality standards. The system maintains separate ventilation between the development and waste emplacement areas. The system shall remove a portion of the heat generated by the waste packages during preclosure to support thermal goals. The system provides temperature control by reducing drift temperature to support potential retrieval operations. The ventilation system has the capability to ventilate selected drifts during emplacement and retrieval operations. The Subsurface Facility System is the main interface with the Subsurface Ventilation System. The location of the ducting, seals, filters, fans, emplacement doors, regulators, and electronic controls are within the envelope created by the Ground Control System in the Subsurface Facility System. The Subsurface Ventilation System also interfaces with the Subsurface Electrical System for power, the Monitored Geologic Repository Operations Monitoring and Control System to ensure proper and safe operation, the Safeguards and Security System for access to the emplacement drifts, the Subsurface Fire Protection System for fire safety, the Emplacement Drift System for repository performance, and the Backfill Emplacement and Subsurface Excavation Systems to support ventilation needs.

Eric Loros

2001-07-25T23:59:59.000Z

10

Subsurface Ventilation System Description Document  

Science Conference Proceedings (OSTI)

The Subsurface Ventilation System supports the construction and operation of the subsurface repository by providing air for personnel and equipment and temperature control for the underground areas. Although the system is located underground, some equipment and features may be housed or located above ground. The system ventilates the underground by providing ambient air from the surface throughout the subsurface development and emplacement areas. The system provides fresh air for a safe work environment and supports potential retrieval operations by ventilating and cooling emplacement drifts. The system maintains compliance within the limits established for approved air quality standards. The system maintains separate ventilation between the development and waste emplacement areas. The system shall remove a portion of the heat generated by the waste packages during preclosure to support thermal goals. The system provides temperature control by reducing drift temperature to support potential retrieval operations. The ventilation system has the capability to ventilate selected drifts during emplacement and retrieval operations. The Subsurface Facility System is the main interface with the Subsurface Ventilation System. The location of the ducting, seals, filters, fans, emplacement doors, regulators, and electronic controls are within the envelope created by the Ground Control System in the Subsurface Facility System. The Subsurface Ventilation System also interfaces with the Subsurface Electrical System for power, the Monitored Geologic Repository Operations Monitoring and Control System to ensure proper and safe operation, the Safeguards and Security System for access to the emplacement drifts, the Subsurface Fire Protection System for fire safety, the Emplacement Drift System for repository performance, and the Backfill Emplacement and Subsurface Excavation Systems to support ventilation needs.

NONE

2000-10-12T23:59:59.000Z

11

Meeting Residential Ventilation Standards Through Dynamic Control of Ventilation Systems  

SciTech Connect

Existing ventilation standards, including American Society of Heating, Refrigerating, and Air-conditioning Engineers (ASHRAE) Standard 62.2, specify continuous operation of a defined mechanical ventilation system to provide minimum ventilation, with time-based intermittent operation as an option. This requirement ignores several factors and concerns including: other equipment such as household exhaust fans that might incidentally provide ventilation, negative impacts of ventilation when outdoor pollutant levels are high, the importance of minimizing energy use particularly during times of peak electricity demand, and how the energy used to condition air as part of ventilation system operation changes with outdoor conditions. Dynamic control of ventilation systems can provide ventilation equivalent to or better than what is required by standards while minimizing energy costs and can also add value by shifting load during peak times and reducing intake of outdoor air contaminants. This article describes the logic that enables dynamic control of whole-house ventilation systems to meet the intent of ventilation standards and demonstrates the dynamic ventilation system control concept through simulations and field tests of the Residential Integrated Ventilation-Energy Controller (RIVEC).

Sherman, Max H.; Walker, Iain S.

2011-04-01T23:59:59.000Z

12

Ventilation System Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ventilation System Basics Ventilation System Basics Ventilation System Basics August 16, 2013 - 1:33pm Addthis Ventilation is the process of moving air into and out of an interior space by natural or mechanical means. Ventilation is necessary for the health and comfort of occupants of all buildings. Ventilation supplies air for occupants to breathe and removes moisture, odors, and indoor pollutants like carbon dioxide. Too little ventilation may result in poor indoor air quality, while too much may cause unnecessarily higher heating and cooling loads. Natural Ventilation Natural ventilation occurs when outdoor air is drawn inside through open windows or doors. Natural ventilation is created by the differences in the distribution of air pressures around a building. Air moves from areas of

13

Ventilation Systems for Cooling | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ventilation Systems for Cooling Ventilation Systems for Cooling Ventilation Systems for Cooling May 30, 2012 - 6:19pm Addthis Proper ventilation helps you save energy and money. | Photo courtesy of JD Hancock. Proper ventilation helps you save energy and money. | Photo courtesy of JD Hancock. Ventilation is the least expensive and most energy-efficient way to cool buildings. Ventilation works best when combined with methods to avoid heat buildup in your home. In some cases, natural ventilation will suffice for cooling, although it usually needs to be supplemented with spot ventilation, ceiling fans, and window fans. For large homes, homeowners might want to investigate whole house fans. Interior ventilation is ineffective in hot, humid climates where

14

Ventilation Systems for Cooling | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ventilation Systems for Cooling Ventilation Systems for Cooling Ventilation Systems for Cooling May 30, 2012 - 6:19pm Addthis Proper ventilation helps you save energy and money. | Photo courtesy of JD Hancock. Proper ventilation helps you save energy and money. | Photo courtesy of JD Hancock. Ventilation is the least expensive and most energy-efficient way to cool buildings. Ventilation works best when combined with methods to avoid heat buildup in your home. In some cases, natural ventilation will suffice for cooling, although it usually needs to be supplemented with spot ventilation, ceiling fans, and window fans. For large homes, homeowners might want to investigate whole house fans. Interior ventilation is ineffective in hot, humid climates where

15

Ventilation System Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ventilation System Basics Ventilation System Basics Ventilation System Basics August 16, 2013 - 1:33pm Addthis Ventilation is the process of moving air into and out of an interior space by natural or mechanical means. Ventilation is necessary for the health and comfort of occupants of all buildings. Ventilation supplies air for occupants to breathe and removes moisture, odors, and indoor pollutants like carbon dioxide. Too little ventilation may result in poor indoor air quality, while too much may cause unnecessarily higher heating and cooling loads. Natural Ventilation Natural ventilation occurs when outdoor air is drawn inside through open windows or doors. Natural ventilation is created by the differences in the distribution of air pressures around a building. Air moves from areas of

16

Main Generator Excitation System Upgrade/Retrofit  

Science Conference Proceedings (OSTI)

Upgrading or replacing even a portion of the excitation system of a generator can provide increased reliability and availability while simultaneously decreasing operational and maintenance costs. However, the upgrade or retrofit of an excitation system is a major cost involving some degree of implementation, installation, or performance risk. This report provides lessons learned, experiences, practices and solutions from plants that have installed excitation system retrofits and upgrades. This informatio...

2005-11-07T23:59:59.000Z

17

Steam-system upgrades | Open Energy Information  

Open Energy Info (EERE)

Linked Data Page Edit History Share this page on Facebook icon Twitter icon Steam-system upgrades Jump to: navigation, search TODO: Add description List of Steam-system...

18

Boiler Upgrades and Decentralizing Steam Systems Save Water and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Boiler Upgrades and Decentralizing Steam Systems Save Water and Energy at Naval Air Station Oceana Boiler Upgrades and Decentralizing Steam Systems Save Water and Energy at Naval...

19

Functional design criteria, Project W-059, B Plant Canyon ventilation upgrade  

SciTech Connect

This document outlines the essential functions and requirements to be included in the design of the proposed B Plant canyon exhaust system upgrade. The project will provide a new exhaust air filter system and isolate the old filters from the airstream.

Roege, P.E.

1995-03-02T23:59:59.000Z

20

Commissioning Ventilated Containment Systems in the Laboratory  

SciTech Connect

This Best Practices Guide focuses on the specialized approaches required for ventilated containment systems, understood to be all components that drive and control ventilated enclosures and local exhaust systems within the laboratory. Geared toward architects, engineers, and facility managers, this guide provides information about technologies and practices to use in designing, constructing, and operating operating safe, sustainable, high-performance laboratories.

Not Available

2008-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "ventilation systems upgrading" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Measuring Residential Ventilation System Airflows: Part 2 - Field...  

NLE Websites -- All DOE Office Websites (Extended Search)

Measuring Residential Ventilation System Airflows: Part 2 - Field Evaluation of Airflow Meter Devices and System Flow Verification Title Measuring Residential Ventilation System...

22

Climate balance of biogas upgrading systems  

SciTech Connect

One of the numerous applications of renewable energy is represented by the use of upgraded biogas where needed by feeding into the gas grid. The aim of the present study was to identify an upgrading scenario featuring minimum overall GHG emissions. The study was based on a life-cycle approach taking into account also GHG emissions resulting from plant cultivation to the process of energy conversion. For anaerobic digestion two substrates have been taken into account: (1) agricultural resources and (2) municipal organic waste. The study provides results for four different upgrading technologies including the BABIU (Bottom Ash for Biogas Upgrading) method. As the transport of bottom ash is a critical factor implicated in the BABIU-method, different transport distances and means of conveyance (lorry, train) have been considered. Furthermore, aspects including biogas compression and energy conversion in a combined heat and power plant were assessed. GHG emissions from a conventional energy supply system (natural gas) have been estimated as reference scenario. The main findings obtained underlined how the overall reduction of GHG emissions may be rather limited, for example for an agricultural context in which PSA-scenarios emit only 10% less greenhouse gases than the reference scenario. The BABIU-method constitutes an efficient upgrading method capable of attaining a high reduction of GHG emission by sequestration of CO{sub 2}.

Pertl, A., E-mail: andreas.pertl@boku.ac.a [Institute of Waste Management, Department of Water, Atmosphere and Environment, University of Natural Resources and Applied Life Sciences, Vienna, Muthgasse 107, A-1190 Wien (Austria); Mostbauer, P.; Obersteiner, G. [Institute of Waste Management, Department of Water, Atmosphere and Environment, University of Natural Resources and Applied Life Sciences, Vienna, Muthgasse 107, A-1190 Wien (Austria)

2010-01-15T23:59:59.000Z

23

WASTE HANDLING BUILDING VENTILATION SYSTEM DESCRIPTION DOCUMENT  

SciTech Connect

The Waste Handling Building Ventilation System provides heating, ventilation, and air conditioning (HVAC) for the contaminated, potentially contaminated, and uncontaminated areas of the Monitored Geologic Repository's (MGR) Waste Handling Building (WHB). In the uncontaminated areas, the non-confinement area ventilation system maintains the proper environmental conditions for equipment operation and personnel comfort. In the contaminated and potentially contaminated areas, in addition to maintaining the proper environmental conditions for equipment operation and personnel comfort, the contamination confinement area ventilation system directs potentially contaminated air away from personnel in the WHB and confines the contamination within high-efficiency particulate air (HEPA) filtration units. The contamination confinement areas ventilation system creates airflow paths and pressure zones to minimize the potential for spreading contamination within the building. The contamination confinement ventilation system also protects the environment and the public by limiting airborne releases of radioactive or other hazardous contaminants from the WHB. The Waste Handling Building Ventilation System is designed to perform its safety functions under accident conditions and other Design Basis Events (DBEs) (such as earthquakes, tornadoes, fires, and loss of the primary electric power). Additional system design features (such as compartmentalization with independent subsystems) limit the potential for cross-contamination within the WHB. The system provides status of important system parameters and equipment operation, and provides audible and/or visual indication of off-normal conditions and equipment failures. The Waste Handling Building Ventilation System confines the radioactive and hazardous material within the building such that the release rates comply with regulatory limits. The system design, operations, and maintenance activities incorporate ALARA (as low as is reasonably achievable) principles to maintain personnel radiation doses to all occupational workers below regulatory limits and as low as is reasonably achievable. The Waste Handling Building Ventilation System interfaces with the Waste Handling Building System by being located within the WHB and by maintaining specific pressures, temperatures, and humidity within the building. The system also depends on the WHB for water supply. The system interfaces with the Site Radiological Monitoring System for continuous monitoring of the exhaust air; the Waste Handling Building Fire Protection System for detection of fire and smoke; the Waste Handling Building Electrical System for normal, emergency, and standby power; and the Monitored Geologic Repository Operations Monitoring and Control System for monitoring and control of the system.

P.A. Kumar

2000-06-21T23:59:59.000Z

24

WASTE TREATMENT BUILDING VENTILATION SYSTEM DESCRIPTION DOCUMENT  

SciTech Connect

The Waste Treatment Building Ventilation System provides heating, ventilation, and air conditioning (HVAC) for the contaminated, potentially contaminated, and uncontaminated areas of the Monitored Geologic Repository's (MGR) Waste Treatment Building (WTB). In the uncontaminated areas, the non-confinement area ventilation system maintains the proper environmental conditions for equipment operation and personnel comfort. In the contaminated and potentially contaminated areas, in addition to maintaining the proper environmental conditions for personnel comfort and equipment operation, the contamination confinement area ventilation system directs potentially contaminated air away from personnel in the WTB and confines the contamination within high-efficiency particulate air (HEPA) filtration units. The contamination confinement area ventilation system creates airflow paths and pressure zones to minimize the potential for spreading contamination with the building. The contamination confinement ventilation system also protects the environment and the public by limiting airborne releases of radioactive or other hazardous contaminants from the WTB. The Waste Treatment Building Ventilation System confines the radioactive and hazardous material within the building such that the release rates comply with regulatory limits, The system design, operations, and maintenance activities incorporate ALARA (as low as is reasonably achievable) principles to maintain personnel radiation doses to all occupational workers below regulatory limits and as low as is reasonably achievable. The system provides status of important system parameters and equipment operation, and provides audible and/or visual indication of off-normal conditions and equipment failures. The Waste Treatment Building Ventilation System interfaces with the Waste Treatment Building System by being located in the WTB, and by maintaining specific pressure, temperature, and humidity environments within the building. The system also depends on the WTB for normal electric power supply and the required supply of water for heating, cooling, and humidification. Interface with the Waste Treatment Building System includes the WTB fire protection subsystem for detection of fire and smoke. The Waste Treatment Building Ventilation System interfaces with the Site Radiological Monitoring System for continuous monitoring of the exhaust air and key areas within the WTB, the Monitored Geologic Repository Operations Monitoring and Control System for monitoring and control of system operations, and the Site Generated Radiological Waste Handling System and Site Generated Hazardous, Non-Hazardous & Sanitary Waste Disposal System for routing of pretreated toxic, corrosive, and radiologically contaminated effluent from process equipment to the HEPA filter exhaust ductwork and air-cleaning unit.

P.A. Kumar

2000-06-22T23:59:59.000Z

25

Upgrade of NSLS timing system  

SciTech Connect

We report on the progress of the new NSLS timing system. There are three types of requirements for NSLS timing system: clocks, synchronization and trigger circuits. All ring revolution frequency clocks are generated using ECL and high speed TTL logic. The synchronization circuits allows to fill both storage rings with any bunch pattern. The triggers are generated by using commercially available digital delay generators. The delay unit`s outputs are ultrastable, with a resolution of 5 ps, and are programmed by computer via IEEE 488 interface. The block diagrams, description of all major timing components and the present status are provided in this paper.

Singh, O.; Ramamoorthy, S.; Sheehan, J.; Smith, J.

1995-05-01T23:59:59.000Z

26

Multifamily Ventilation Retrofit Strategies  

SciTech Connect

In multifamily buildings, central ventilation systems often have poor performance, overventilating some portions of the building (causing excess energy use), while simultaneously underventilating other portions (causing diminished indoor air quality). BSC and Innova Services Corporation performed a series of field tests at a mid-rise test building undergoing a major energy audit and retrofit, which included ventilation system upgrades.

Ueno, K.; Lstiburek, J.; Bergey, D.

2012-12-01T23:59:59.000Z

27

Meeting Residential Ventilation Standards Through Dynamic Control of Ventilation Systems  

E-Print Network (OSTI)

increased cost per unit of energy at times of peak demandminimizing energy costs and operation during peak timesenergy and cost impacts of ventilation vary with weather and time

Sherman, Max H.

2011-01-01T23:59:59.000Z

28

Upgrade of the ALICE Inner Tracking System  

E-Print Network (OSTI)

The Inner Tracking System (ITS) is the key ALICE detector for the study of heavy flavour production at LHC. Heavy flavor can be studied via the identification of short-lived hadrons containing heavy quarks which have a mean proper decay length in the order of 100-300 $\\mu$m. To accomplish this task, the ITS is composed of six cylindrical layers of silicon detectors (two pixel, two drift and two strip) with a radial coverage from 3.9 to 43 cm and a material budget of 1.1% X0 per layer. %In particular, the properties of the two innermost layers define the ITS performance in measuring the displaced vertex of such short-lived particles. In order to enhance the ALICE physics capabilities, and, in particular, the tracking performance for heavy-flavour detection, the possibility of an ITS upgrade has been studied in great detail. It will make use of the spectacular progress made in the field of imaging sensors over the last ten years as well as the possibility to install a smaller radius beampipe. The upgraded detector will have greatly improved features in terms of: the impact parameter resolution, standalone tracking efficiency at low $p_{t}$, momentum resolution and readout capabilities. The Conceptual Design Report, which covers the design and performance requirements, the upgrade options, as well as the necessary R&D efforts, was made public in September 2012. An intensive R&D program has been launched to review the different technological options under consideration. The new detector should be ready to be installed during the long LHC shutdown period scheduled in 2017-2018.

Stefan Rossegger

2012-11-22T23:59:59.000Z

29

Emergency Diesel Generator Digital Control System Upgrade Requirements  

Science Conference Proceedings (OSTI)

This interim report documents the development of system requirements for a digital control system upgrade to the station emergency diesel generators (EDGs). Operators of nuclear power plants (NPPs) must be able to replace and upgrade equipment in a cost-effective manner while continuing to meet safety and reliability requirements and controlling modification costs. Upgrades to plant equipmentespecially instrumentation and control (I&C) systemstypically involve replacement of analog ...

2013-12-18T23:59:59.000Z

30

EA-0907: Idaho National Engineering Laboratory Sewer System Upgrade...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Field Sites Power Marketing Administration Other Agencies You are here Home EA-0907: Idaho National Engineering Laboratory Sewer System Upgrade Project, Idaho Falls, Idaho...

31

ALS control system IP I/O module upgrade  

E-Print Network (OSTI)

the Fast Orbit Feedback at the ALS, Proceedings of PAC 2003,ALS Control System IP I/O Module Upgrade* J. M . Weber, M .

Weber, Jonah M.; Chin, Michael

2004-01-01T23:59:59.000Z

32

Advanced Controls and Sustainable Systems for Residential Ventilation  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Controls and Sustainable Systems for Residential Ventilation Advanced Controls and Sustainable Systems for Residential Ventilation Title Advanced Controls and Sustainable Systems for Residential Ventilation Publication Type Report LBNL Report Number LBNL-5968E Year of Publication 2012 Authors Turner, William J. N., and Iain S. Walker Date Published 12/2012 Keywords ashrae standard 62,2, california title 24, passive ventilation, residential ventilation, ventilation controller Abstract Whole-house ventilation systems are becoming commonplace in new construction, remodeling/renovation, and weatherization projects, driven by combinations of specific requirements for indoor air quality (IAQ), health, and compliance with standards, such as ASHRAE 62.2. At the same time we wish to reduce the energy use in homes and therefore minimize the energy used to provide ventilation. This study examined several approaches to reducing the energy requirements of providing acceptable IAQ in residential buildings. Two approaches were taken. The first used RIVEC - the Residential Integrated VEntilation Controller - a prototype ventilation controller that aims to deliver whole-house ventilation rates that comply with ventilation standards, for the minimum use of energy. The second used passive and hybrid ventilation systems, rather than mechanical systems, to provide whole-house ventilation.

33

List of Steam-system upgrades Incentives | Open Energy Information  

Open Energy Info (EERE)

upgrades Incentives upgrades Incentives Jump to: navigation, search The following contains the list of 100 Steam-system upgrades Incentives. CSV (rows 1 - 100) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AlabamaSAVES Revolving Loan Program (Alabama) State Loan Program Alabama Commercial Industrial Institutional Building Insulation Doors Energy Mgmt. Systems/Building Controls Lighting Lighting Controls/Sensors Steam-system upgrades Water Heaters Windows Biodiesel Biomass CHP/Cogeneration Ethanol Fuel Cells using Renewable Fuels Geothermal Electric Hydroelectric energy Landfill Gas Photovoltaics Renewable Fuels Solar Water Heat Commercial Refrigeration Equipment Natural Gas Yes Ameren Missouri (Gas) - Business Energy Efficiency Program (Missouri) Utility Rebate Program Missouri Commercial

34

The DIII-D cryogenic system upgrade  

SciTech Connect

The original DIII-D cryogenic system was commissioned in 1981 and was used to cool the cryopanel arrays for three hydrogen neutral beam injectors. Since then, new demands for liquid helium have arisen including: a fourth neutral beam injector, ten superconducting magnets for the electron cyclotron heating gyrotrons, and more recently, the advanced diverter cryopump which resides inside the tokamak vacuum vessel. The original cryosystem could not meet these demands. Consequently, the cryosystem was upgraded in several phases to increase capacity, improve reliability, and reduce maintenance. The majority of the original system has been replaced with superior equipment. The capacity now exists to support present as well as future demands for liquid helium at DIII-D including a hydrogen pellet injector, which is being constructed by Oak Ridge National Laboratory. Upgrades to the cryosystem include: a recently commissioned 150 {ell}/hr helium liquefier, two 55 g/sec helium screw compressors, a fully automated 20-valve cryogen distribution box, a high efficiency helium wet expander, and the conversion of equipment from manual or pneumatic to programmable logic controller (PLC) control. The distribution box was designed and constructed for compactness due to limited space availability. Overall system efficiency was significantly improved by replacing the existing neutral beam reliquefier Joule-Thomson valve with a reciprocating wet expander. The implementation of a PLC-based automatic control system has resulted in increased efficiency and reliability. This paper will describe the cryosystem design with emphasis on newly added equipment. In addition, performance and operational experience will be discussed.

Schaubel, K.M.; Laughon, G.J.; Campbell, G.L.; Langhorn, A.R.; Stevens, N.C.; Tupper, M.L.

1993-10-01T23:59:59.000Z

35

Upgraded HFIR Fuel Element Welding System  

Science Conference Proceedings (OSTI)

The welding of aluminum-clad fuel plates into aluminum alloy 6061 side plate tubing is a unique design feature of the High Flux Isotope Reactor (HFIR) fuel assemblies as 101 full-penetration circumferential gas metal arc welds (GMAW) are required in the fabrication of each assembly. In a HFIR fuel assembly, 540 aluminum-clad fuel plates are assembled into two nested annular fuel elements 610 mm (24-inches) long. The welding process for the HFIR fuel elements was developed in the early 1960 s and about 450 HFIR fuel assemblies have been successfully welded using the GMAW process qualified in the 1960 s. In recent years because of the degradation of the electronic and mechanical components in the old HFIR welding system, reportable defects in plate attachment or adapter welds have been present in almost all completed fuel assemblies. In October 2008, a contract was awarded to AMET, Inc., of Rexburg, Idaho, to replace the old welding equipment with standard commercially available welding components to the maximum extent possible while maintaining the qualified HFIR welding process. The upgraded HFIR welding system represents a major improvement in the welding system used in welding HFIR fuel elements for the previous 40 years. In this upgrade, the new inner GMAW torch is a significant advancement over the original inner GMAW torch previously used. The innovative breakthrough in the new inner welding torch design is the way the direction of the cast in the 0.762 mm (0.030-inch) diameter aluminum weld wire is changed so that the weld wire emerging from the contact tip is straight in the plane perpendicular to the welding direction without creating any significant drag resistance in the feeding of the weld wire.

Sease, John D [ORNL

2010-02-01T23:59:59.000Z

36

EA-0907: Idaho National Engineering Laboratory Sewer System Upgrade  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7: Idaho National Engineering Laboratory Sewer System Upgrade 7: Idaho National Engineering Laboratory Sewer System Upgrade Project, Idaho Falls, Idaho EA-0907: Idaho National Engineering Laboratory Sewer System Upgrade Project, Idaho Falls, Idaho SUMMARY This EA evaluates the environmental impacts of a proposal to upgrade the Sewer System at the U.S. Department of Energy's Idaho National Engineering Laboratory (INEL) near Idaho Falls, Idaho. The proposed action would include activities conducted at the Central Facilities Area, Test Reactor Area, and the Containment Test Facility at the Test Area North at INEL. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD April 1, 1994 EA-0907: Finding of No Significant Impact Idaho National Engineering Laboratory Sewer System Upgrade Project

37

SRS upgrades helium recovery system | National Nuclear Security  

NLE Websites -- All DOE Office Websites (Extended Search)

upgrades helium recovery system | National Nuclear Security upgrades helium recovery system | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > SRS upgrades helium recovery system SRS upgrades helium recovery system Posted By Office of Public Affairs Savannah River Site (SRS) Tritium Programs recently completed a project to design, build and relocate a new system for separating and capturing

38

ELECTRIC POWER AND VENTILATION SYSTEM OF SILOE  

SciTech Connect

The 15-kv electric power of Siloe is supplied from a central substation, which serves all the laboratories in the Center. The substation transforms primary 3-phase power from 15 kv to 380 to 220 v. Control installations are supplied from sets of rectifiers and batteries with 127 and 48 v direct current. If the normal electric power supply fails, a 12000 kva diesel driven generator is automatically started and in a very short time supplies power. The ventilation system supplies the whole building with conditioned air, holds the shell in negative pressure, and exhausts radioactive effluents. (auth)

Mitault, G.; Faudou, J.-C.

1963-12-01T23:59:59.000Z

39

Characterization of air recirculation in multiple fan ventilation systems.  

E-Print Network (OSTI)

??Booster fans, large underground fans, can increase the volumetric efficiency of ventilation systems by helping to balance the pressure and quantity distribution throughout a mine, (more)

Wempen, Jessica Michelle

2012-01-01T23:59:59.000Z

40

Ventilation and Solar Heat Storage System Offers Big Energy Savings  

Ventilation and Solar Heat Storage System Offers Big Energy Savings ... Heat is either reflected away from the building with radiant barriers, or heat is absorbed

Note: This page contains sample records for the topic "ventilation systems upgrading" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Commissioning results from the recently upgraded RHIC LLRF system  

Science Conference Proceedings (OSTI)

During RHIC Run 10, the first phase of the LLRF Upgrade was successfully completed. This involved replacing the aging VME based system with a modern digital system based on the recently developed RHIC LLRF Upgrade Platform, and commissioning the system as part of the normal RHIC start up process. At the start of Run 11, the second phase of the upgrade is underway, involving a significant expansion of both hardware and functionality. This paper will review the commissioning effort and provide examples of improvements in system performance, flexibility and scalability afforded by the new platform. The RHIC LLRF upgrade is based on the recently developed RHIC LLRF Upgrade Platform. The major design goals of the platform are: (1) Design a stand alone, generic, digital, modular control architecture which can be configured to satisfy all of the application demands we currently have, and which will be supportable and upgradeable into the foreseeable future; and (2) It should integrate seamlessly into existing controls infrastructure, be easy to deploy, provide access to all relevant control parameters (eliminate knobs), provide vastly improved diagnostic data capabilities, and permit remote reconfiguration. Although the system is still in its infancy, we think the initial commissioning results from RHIC indicate that these goals have been achieved, and that we've only begun to realize the benefits the platform provides.

Smith, K.S.; Harvey, M.; Hayes, T.; Narayan, G.; Severino, F.; Yuan, S.; Zaltsman, A.

2011-03-28T23:59:59.000Z

42

Ventilation Systems Operating Experience Review for Fusion Applications  

SciTech Connect

This report is a collection and review of system operation and failure experiences for air ventilation systems in nuclear facilities. These experiences are applicable for magnetic and inertial fusion facilities since air ventilation systems are support systems that can be considered generic to nuclear facilities. The report contains descriptions of ventilation system components, operating experiences with these systems, component failure rates, and component repair times. Since ventilation systems have a role in mitigating accident releases in nuclear facilities, these data are useful in safety analysis and risk assessment of public safety. An effort has also been given to identifying any safety issues with personnel operating or maintaining ventilation systems. Finally, the recommended failure data were compared to an independent data set to determine the accuracy of individual values. This comparison is useful for the International Energy Agency task on fusion component failure rate data collection.

L. C. Cadwallader

1999-12-01T23:59:59.000Z

43

Ventilation planning at Energy West's Deer Creek mine  

SciTech Connect

In 2004 ventilation planning was initiated to exploit a remote area of Deer Creek mine's reserve (near Huntington, Utah), the Mill Fork Area, located under a mountain. A push-pull ventilation system was selected. This article details the design process of the ventilation system upgrade, the procurement process for the new fans, and the new fan startup testing. 5 figs., 1 photo.

Tonc, L.; Prosser, B.; Gamble, G. [Pacific Corp., Huntington, UT (United States)

2009-08-15T23:59:59.000Z

44

Fire protection countermeasures for containment ventilation systems  

SciTech Connect

The goal of this project is to find countermeasures to protect High Efficiency Particulate Air (HEPA) filters, in exit ventilation ducts, from the heat and smoke generated by fire. Initially, methods were developed to cool fire-heated air by fine water spray upstream of the filters. It was recognized that smoke aerosol exposure to HEPA filters could also cause disruption of the containment system. Through testing and analysis, several methods to partially mitigate the smoke exposure to the HEPA filters were identified. A continuous, movable, high-efficiency prefilter using modified commercial equipment was designed. The technique is capable of protecting HEPA filters over the total time duration of the test fires. The reason for success involved the modification of the prefiltration media. Commercially available filter media has particle sorption efficiency that is inversely proportional to media strength. To achieve properties of both efficiency and strength, rolling filter media were laminated with the desired properties. The approach was Edisonian, but truncation in short order to a combination of prefilters was effective. The application of this technique was qualified, since it is of use only to protect HEPA filters from fire-generated smoke aerosols. It is not believed that this technique is cost effective in the total spectrum of containment systems, especially if standard fire protection systems are available in the space. But in areas of high-fire risk, where the potential fuel load is large and ignition sources are plentiful, the complication of a rolling prefilter in exit ventilation ducts to protect HEPA filters from smoke aerosols is definitely justified.

Alvares, N.; Beason, D.; Bergman, V.; Creighton, J.; Ford, H.; Lipska, A.

1980-08-25T23:59:59.000Z

45

Absolute Glovebox Ventilation Filtration System with Unique Filter Replacement Feature  

SciTech Connect

A glovebox ventilation system was designed for a new plutonium-238 processing facility that provided 1) downdraft ventilation, 2) a leak tight seal around the High Efficiency Particulate Air (HEPA) filters, and 3) a method for changing the filters internally without risk of contaminating the laboratory.

Freeman, S. S.; Slusher, W. A.

1975-12-31T23:59:59.000Z

46

Intelligent Control of Heating, Ventilating and Air Conditioning Systems  

Science Conference Proceedings (OSTI)

This paper proposed a simulation-optimization energy saving strategy for heating, ventilating and air conditioning (HVAC) systems' condenser water loop through intelligent control of single speed cooling towers' components. An analysis of system components ...

Patrick Low Kie; Lau Bee Theng

2009-07-01T23:59:59.000Z

47

Quantitative troubleshooting of industrial exhaust ventilation systems  

SciTech Connect

This article proposes two troubleshooting tools that may allow precise and accurate assessment of changes to ventilation systems of any type. Both are useful in discovering and quantifying most modifications that affect the distribution of airflows among the branches and static pressures throughout the system. The approaches are derived from energy balance considerations, using power loss coefficients (X) computed for any contiguous section of the system from the duct velocities and static pressures measured at that section`s inlets and outlets. The value of X for a given portion of the system should be nearly constant with changes in airflow and with modifications to other portions of the system. Responsiveness to local modifications and insensitivity to changes elsewhere in the system - including gross changes in fan performance - make X coefficients a valuable troubleshooting tool. Static pressure ratios within a given branch are functionally related to ratios of X coefficients. Therefore, they vary with modifications to the branch and are highly insensitive to changes outside that branch. Unlike X coefficients, determination of static pressure ratios does not require velocity traverses, making them faster and easier to determine than X values. On the other hand, values of X are more universally applicable and have direct physical significance. Use of both static pressure ratios and X coefficients are described in a suggested troubleshooting procedure. Systematic measurement errors have surprisingly little impact on the usefulness of values of X or static pressure ratios. The major impediment to using either tool is the necessity for {open_quotes}baseline{close_quotes} measurements, which are often unavailable. On the other hand, a baseline for future comparisons can be created piecemeal, beginning at any time and extending over any period of time. 11 refs., 8 figs., 8 tabs.

Guffey, S.E. [Univ. of Washington, Seattle, WA (United States)

1994-04-01T23:59:59.000Z

48

Floor-supply displacement ventilation system  

E-Print Network (OSTI)

Research on indoor environments has received more attention recently because reports of symptoms and other health complaints related to indoor environments have been increasing. Heating, ventilating, and air-conditioning ...

Kobayashi, Nobukazu, 1967-

2001-01-01T23:59:59.000Z

49

Procedures and Standards for Residential Ventilation System Commissioning:  

NLE Websites -- All DOE Office Websites (Extended Search)

Procedures and Standards for Residential Ventilation System Commissioning: Procedures and Standards for Residential Ventilation System Commissioning: An Annotated Bibliography Title Procedures and Standards for Residential Ventilation System Commissioning: An Annotated Bibliography Publication Type Report LBNL Report Number LBNL-6142E Year of Publication 2013 Authors J. Chris Stratton, and Craig P. Wray Keywords ASHRAE 62.2, commissioning, procedures, residential, standards, ventilation Abstract Beginning with the 2008 version of Title 24, new homes in California must comply with ANSI/ASHRAE Standard 62.2-2007 requirements for residential ventilation. Where installed, the limited data available indicate that mechanical ventilation systems do not always perform optimally or even as many codes and forecasts predict. Commissioning such systems when they are installed or during subsequent building retrofits is a step towards eliminating deficiencies and optimizing the tradeoff between energy use and acceptable IAQ. Work funded by the California Energy Commission about a decade ago at Berkeley Lab documented procedures for residential commissioning, but did not focus on ventilation systems. Since then, standards and approaches for commissioning ventilation systems have been an active area of work in Europe. This report describes our efforts to collect new literature on commissioning procedures and to identify information that can be used to support the future development of residential-ventilation-specific procedures and standards. We recommend that a standardized commissioning process and a commissioning guide for practitioners be developed, along with a combined energy and IAQ benefit assessment standard and tool, and a diagnostic guide for estimating continuous pollutant emission rates of concern in residences (including a database that lists emission test data for commercially-available labeled products).

50

EBR-II argon cooling system restricted fuel handling I and C upgrade  

SciTech Connect

The instrumentation and control of the Argon Cooling System (ACS) restricted fuel handling control system at Experimental Breeder Reactor II (EBR-II) is being upgraded from a system comprised of many discrete components and controllers to a computerized system with a graphical user interface (GUI). This paper describes the aspects of the upgrade including reasons for the upgrade, the old control system, upgrade goals, design decisions, philosophies and rationale, and the new control system hardware and software.

Start, S.E.; Carlson, R.B.; Gehrman, R.L. [Argonne National Lab., Idaho Falls, ID (United States). Engineering Div.

1995-06-01T23:59:59.000Z

51

Heating, ventilation and air conditioning systems  

DOE Green Energy (OSTI)

A study is made of several outstanding issues concerning the commercial development of environmental control systems for electric vehicles (EVs). Engineering design constraints such as federal regulations and consumer requirements are first identified. Next, heating and cooling loads in a sample automobile are calculated using a computer model available from the literature. The heating and cooling loads are then used as a basis for estimating the electrical consumption that is to be expected for heat pumps installed in EVs. The heat pump performance is evaluated using an automobile heat pump computer model which has been developed recently at Oak Ridge National Laboratory (ORNL). The heat pump design used as input to the model consists of typical finned-tube heat exchangers and a hermetic compressor driven by a variable-speed brushless dc motor. The simulations suggest that to attain reasonable system efficiencies, the interior heat exchangers that are currently installed as automobile air conditioning will need to be enlarged. Regarding the thermal envelope of the automobile itself, calculations are made which show that considerable energy savings will result if steps are taken to reduce {open_quote}hot soak{close_quote} temperatures and if the outdoor air ventilation rate is well controlled. When these changes are made, heating and cooling should consume less than 10% of the total stored electrical energy for steady driving in most U.S. climates. However, this result depends strongly upon the type of driving: The fraction of total power for heating and cooling ({open_quote}range penalty{close_quote}) increases sharply for driving scenarios having low average propulsion power, such as stop-and-go driving.

Kyle, D.M. [Oak Ridge National Lab., TN (United States); Sullivan, R.A. [Dept. of Energy, Washington, DC (United States)

1993-02-01T23:59:59.000Z

52

Project L-070, ``300 Area process sewer piping system upgrade`` Project Management Plan  

Science Conference Proceedings (OSTI)

This document is the project management plan for Project L-070, 300 Area process sewer system upgrades.

Wellsfry, H.E.

1994-09-16T23:59:59.000Z

53

Project Management Plan (PMP), W-364, 209E septic system upgrade, 200 East Area  

SciTech Connect

The document is the Project Management Plan (PMP) of the design and installation of the 209E Septic System Upgrade.

Lott, D.T.

1994-09-20T23:59:59.000Z

54

Key Factors in Displacement Ventilation Systems for Better IAQ  

E-Print Network (OSTI)

This paper sets up a mathematical model of three-dimensional steady turbulence heat transfer in an air-conditioned room of multi-polluting heat sources. Numerical simulation helps identify key factors in displacement ventilation systems that affect air-quality in rooms of multi-polluting heat sources. Results show that it is very important to determine the suitable air-intemperature , air-inflow, and heat source quantity and dispersion, to obtain better displacement ventilation results.

Wang, X.; Chen, J.; Li, Y.; Wang, Z.

2006-01-01T23:59:59.000Z

55

Posted CX Q14 Sprinkler System Upgrade.pdf  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(NEPA) Categorical Exclusion (eX) (NEPA) Categorical Exclusion (eX) Determination Summary Form Q14 Sprinkler System Upgrade Project REFERENCE J 10 CFR Part 1021 , Department of Energy National Environmental Policy Act Implementation Procedures, Subpart 0 , Typical Classes of Actions PROJECT SCOPE DISCUSSION The project scope will upgrade the Q14 sprinkler system to meet exposed plastic design basis requirements by installing a fire pump and performing modifications to the Q14 sprinkler piping. The fire pump will be a pre-assembled skid system with enclosure diesel powered pump and associated diesel storage tank. The fire pump assembly wi ll be located on a foundation pad in the grassy area ,;!orthwest of 014. Electrical work will include providing general power to the fire pump building and fire pump control/alarm wiring to a fire alarm panel in the 014

56

Meeting Residential Ventilation Standards Through Dynamic Control...  

NLE Websites -- All DOE Office Websites (Extended Search)

Meeting Residential Ventilation Standards Through Dynamic Control of Ventilation Systems Title Meeting Residential Ventilation Standards Through Dynamic Control of Ventilation...

57

Air Distribution Effectiveness for Different MechanicalVentilation Systems  

SciTech Connect

The purpose of ventilation is to dilute indoor contaminants that an occupant is exposed to. In a multi-zone environment such as a house, there will be different dilution rates and different source strengths in every zone. Most US homes have central HVAC systems, which tend to mix conditions between zones. Different types of ventilation systems will provide different amounts of dilution depending on the effectiveness of their air distribution systems and the location of sources and occupants. This paper will report on work being done to both model the impact of different systems and measurements using a new multi-tracer measurement system that has the capacity to measure not only the flow of outdoor air to each zone, but zone-to-zone transport. The ultimate objective of this project is to determine the effectiveness of different systems so that appropriate adjustments can be made in residential ventilation standards such as ASHRAE Standard 62.2.

Sherman, Max H.; Walker, Iain S.

2007-08-01T23:59:59.000Z

58

Commissioning Residential Ventilation Systems: A Combined Assessment of  

NLE Websites -- All DOE Office Websites (Extended Search)

Commissioning Residential Ventilation Systems: A Combined Assessment of Commissioning Residential Ventilation Systems: A Combined Assessment of Energy and Air Quality Potential Values Title Commissioning Residential Ventilation Systems: A Combined Assessment of Energy and Air Quality Potential Values Publication Type Report LBNL Report Number LBNL-5969E Year of Publication 2012 Authors Turner, William J. N., Jennifer M. Logue, and Craig P. Wray Date Published 07/2012 Keywords commissioning, energy, health, indoor air quality, residential, valuation, ventilation Abstract Due to changes in building codes, whole-house mechanical ventilation systems are being installed in new California homes. Few measurements are available, but the limited data suggest that these systems don't always perform as code and forecasts predict. Such deficiencies occur because systems are usually field assembled without design specifications, and there is no consistent process to identify and correct problems. The value of such activities in terms of reducing energy use and improving indoor air quality (IAQ) is poorly understood. Commissioning such systems when they are installed or during subsequent building retrofits is a step towards eliminating deficiencies and optimizing the tradeoff between energy use and IAQ.

59

LLRF System Upgrade for the SLAC Linac  

SciTech Connect

The Linac Coherent Light Source (LCLS) at SLAC is in full user operation and has met the stability goals for stable lasing. The 250pC bunch can be compressed to below 100fS before passing through an undulator. In a new mode of operation a 20pC bunch is compressed to about 10fS. Experimenters are regularly using this shorter X-ray pulse and getting pristine data. The 10fS bunch has timing jitter on the order of 100fS. Physicists are requesting that the RF system achieve better stability to reduce timing jitter. Drifts in the RF system require longitudinal feedbacks to work over large ranges and errors result in reduced performance of the LCLS. A new RF system is being designed to help diagnose and reduce jitter and drift in the SLAC linac.

Hong, Bo; /SLAC; Akre, Ron; /SLAC; Pacak, Vojtech; /SLAC

2012-07-06T23:59:59.000Z

60

UP-GRADED RHIC INJECTION SYSTEM.  

Science Conference Proceedings (OSTI)

The design of the RHIC injection systems anticipated the possibility of filling and operating the rings with a 120 bunch pattern, corresponding to 110 bunches after allowing for the abort gap. Beam measurements during the 2002 run confirmed the possibility, although at the expense of severe transverse emittance growth and thus not on an operational basis. An improvement program was initiated with the goal of reducing the kicker rise time from 110 to {approx}95 ns and of minimizing pulse timing jitter and drift. The major components of the injection system are 4 kicker magnets and Blmlein pulsers using thyratron switches. The kicker terminating resistor and operating voltage was increased to reduce the rise time. Timing has been stabilized by using commercial trigger units and extremely stable dc supplies for the thyratron reservoir. A fiber optical connection between control room and the thyratron trigger unit has been provided, thereby allowing the operator to adjust timing individually for each kicker unit. The changes were successfully implemented for use in the RHIC operation.

HAHN,H.FISCHER,W.SEMERTZIDIS,Y.K.WARBURTON,D.S.

2003-05-12T23:59:59.000Z

Note: This page contains sample records for the topic "ventilation systems upgrading" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

He Puff System For Dust Detector Upgrade  

SciTech Connect

Local detection of surface dust is needed for the safe operation of next-step magnetic fusion devices such as ITER. An electrostatic dust detector, based on a 5 cm x 5 cm grid of interlocking circuit traces biased to 50 V, has been developed to detect dust on remote surfaces and was successfully tested for the first time on the National Spherical Torus Experiment (NSTX). We report on a helium puff system that clears residual dust from this detector and any incident debris or fibers that might cause a permanent short circuit. The entire surface of the detector was cleared of carbon particles by two consecutive helium puffs delivered by three nozzles of 0.45 mm inside diameter. The optimal configuration was found to be with the nozzles at an angle of 30o with respect to the surface of the detector and a helium backing pressure of 6 bar. __________________________________________________

B. Rais, C.H. Skinner A.L. Roquemore

2010-10-01T23:59:59.000Z

62

Utilizing Passive Ventilation to Complement HVAC Systems in Enclosed Buildings  

E-Print Network (OSTI)

Utilizing Passive Ventilation to Complement HVAC Systems in Enclosed Buildings Tom Rogg REU Student to assist HVAC has the potential to significantly reduce life cycle cost and energy consumption and electrical system that will tie thermostats to controlled valves in the actual HVAC system. Based on results

Mountziaris, T. J.

63

The D0 level 3 DAQ system: operation and upgrades  

Science Conference Proceedings (OSTI)

The D{O} Level 3 data acquisition system for Run II of the Tevatron has been reliably operating since May 2002. Designed to handle average event sizes of 250 kilobytes at a rate of 1 kHz, the system has been upgraded to be able to process more events, doubling its typical output rate from 50 Hz to 100 Hz, while coping with higher event sizes at the beginning of high luminosity collider stores. The system routes and transfers event fragments from 63 VME crates to any of approximately 320 processing nodes. The addition of more farm nodes, the performance of the components, and the running experience are described here.

Garcia-Bellido, Aran; Bose, Tulika; Brooijmans, Gustaaf; Chapin, Doug; Cutts, David; Fuess, Stuart; Gadfort, Thomas; Haas, Andrew; Lee, William; Rechenmacher, Ron; Snyder, Scott; /Washington U., Seattle /Brown U. /Columbia U. /Fermilab /Brookhaven

2007-05-01T23:59:59.000Z

64

Water spray ventilator system for continuous mining machines  

DOE Patents (OSTI)

The invention relates to a water spray ventilator system mounted on a continuous mining machine to streamline airflow and provide effective face ventilation of both respirable dust and methane in underground coal mines. This system has two side spray nozzles mounted one on each side of the mining machine and six spray nozzles disposed on a manifold mounted to the underside of the machine boom. The six spray nozzles are angularly and laterally oriented on the manifold so as to provide non-overlapping spray patterns along the length of the cutter drum.

Page, Steven J. (Pittsburgh, PA); Mal, Thomas (Pittsburgh, PA)

1995-01-01T23:59:59.000Z

65

Network Upgrade for the SLC: Control System Modifications  

SciTech Connect

Current communications between the SLAC Linear Collider control system central host and the SLCmicros is built upon the SLAC developed SLCNET communication hardware and protocols. We will describe how the Internet Suite of protocols (TCP/IP) are used to replace the SLCNET protocol interface. The major communication pathways and their individual requirements are described. A proxy server is used to reduce the number of total system TCP/IP connections. The SLCmicros were upgraded to use Ethernet and TCP/IP as well as SLCNET. Design choices and implementation experiences are addressed.

Crane, M.; Mackenzie, R.; Sass, R.; Himel, T.; /SLAC

2011-09-09T23:59:59.000Z

66

Systems integration and upgrade of an Engineering Flight Simulator  

E-Print Network (OSTI)

This thesis presents the system integration and upgrade of the Texas A&M Flight Mechanics Laboratory Engineering Flight Simulator (EFS). This upgrade replaced the previous EFS, a simplistic design that did not resemble an aircraft cockpit or present the pilot with a visual environment adequate for basic flight maneuvers. The EFS goals included: increased field of view for scenery generation, enlarging and improving the cockpit environment, providing a rudimentary cockpit control loader and developing a reliable, portable, data acquisition system. Two head down displays, surrounded by buttons, are installed in a T-37 military trainer cockpit. A digital aircraft configuration indicator completes the instrument panel. Optical encoders monitor all cockpit control effectors connected to a control loader providing a linear stick force gradient and 12 lbs. maximum force. A serial based data acquisition system records all parameters and is compatible with all foreseeable computing platforms. A projector frame, mounts three projectors displaying information from a Silicon Graphics Inc. computer yielding a 148? field of view on three eight foot wide screens. The system provides a significant research tool for testing and evaluation of the General Aviation Pilot Advisor and Training System, a fuzzy logic based pilot advisory system.

Alcorn, William Pleasant

2002-01-01T23:59:59.000Z

67

Measured Air Distribution Effectiveness for Residential Mechanical Ventilation Systems  

SciTech Connect

The purpose of ventilation is dilute or remove indoor contaminants that an occupant is exposed to. In a multi-zone environment such as a house, there will be different dilution rates and different source strengths in every zone. Most US homes have central HVAC systems, which tend to mix the air thus the indoor conditions between zones. Different types of ventilation systems will provide different amounts of exposure depending on the effectiveness of their air distribution systems and the location of sources and occupants. This paper will report on field measurements using a unique multi-tracer measurement system that has the capacity to measure not only the flow of outdoor air to each zone, but zone-to-zone transport. The paper will derive seven different metrics for the evaluation of air distribution. Measured data from two homes with different levels of natural infiltration will be used to evaluate these metrics for three different ASHRAE Standard 62.2 compliant ventilation systems. Such information can be used to determine the effectiveness of different systems so that appropriate adjustments can be made in residential ventilation standards such as ASHRAE Standard 62.2.

Sherman, Max; Sherman, Max H.; Walker, Iain S.

2008-05-01T23:59:59.000Z

68

Multifamily Individual Heating and Ventilation Systems, Lawrence, Massachusetts (Fact Sheet)  

SciTech Connect

The conversion of an older Massachusetts building into condominiums illustrates a safe, durable, and cost-effective solution for heating and ventilation systems that can potentially benefit millions of multifamily buildings. Merrimack Valley Habitat for Humanity (MVHfH) partnered with U.S. Department of Energy Building America team Building Science Corporation (BSC) to provide high performance affordable housing for 10 families in the retrofit of an existing mass masonry building (a former convent). The original ventilation design for the project was provided by a local engineer and consisted of a single large heat recovery ventilator (HRV) located in a mechanical room in the basement with a centralized duct system providing supply air to the main living space and exhausting stale air from the single bathroom in each apartment. This design was deemed to be far too costly to install and operate for several reasons: the large central HRV was oversized and the specified flows to each apartment were much higher than the ASHRAE 62.2 rate; an extensive system of ductwork, smoke and fire dampers, and duct chases were specified; ductwork required a significant area of dropped ceilings; and the system lacked individual ventilation control in the apartments

Metzger, C.; Ueno, K.; Kerrigan, P.; Wytrykowska, H.; Van Straaten, R.

2013-11-01T23:59:59.000Z

69

Financing; A Cost Effective Alternative When Upgrading Energy Efficient Systems  

E-Print Network (OSTI)

In the 1990's, many organizations are attempting to do more, faster, with less cost and improved quality. In many cases, this involves improving the efficiency of their systems. Increased competition is creating pressure to continuously improve in order to effectively compete in the marketplace. One obvious method of reducing costs and improving productivity is to upgrade old, antiquated equipment such as lighting to more modern energy efficient systems. Most projects provide a return on investment to the owner in several years, through energy and demand savings, Power Utility rebates, maintenance savings and increased productivity, however, the initial capital expense required is cost prohibitive. Budget constraints, a lengthy and complicated approval process and large up-front capital requirements are only a few "road blocks" to improvement. In order to make an equipment acquisition, every company must consider how they will pay for it! How do companies acquire the equipment they need to be more competitive? One cost effective solution -FINANCING! There are numerous benefits to both the end user customer (Lessee) and the installing contractor from utilizing financing to upgrade or retrofit to energy efficient systems. It is possible to provide design, material, installation, maintenance and soft costs as well as positive cash flow to the end user by structuring financing terms and payments around the energy savings. A wide array of programs and services are offered by many different financial organizations.

Ertle, J. M.

1994-04-01T23:59:59.000Z

70

MICRON SIZE LASER-WIRE SYSTEM AT THE ATF EXTRACTION LINE, RECENT RESULTS AND ATF-II UPGRADE  

E-Print Network (OSTI)

The KEK Accelerator test facility (ATF) extraction line laser-wire system has been upgraded last year allowing the measurement of micron scale transverse size electron beams. The most recent measurements using the upgraded system are presented. The ATF-II extraction line design call for the major upgrade of the existing laser-wire system. We report on the hardware upgrades, including the major hardware upgrades to the laser transport, the laser beam diagnostics line, and the mechanical control systems.

Blair, G A; Boorman, G; Bosco, A; Deacon, L; Karataev, P; Howell, D; Nevay, L J; Corner, L; Delerue, N; Foster, B; Gannaway, F; Newman, M; Senanayake, R; Walczak, R; Hayano, H; Aryshev, A; Terunuma, N; Urakawa, J

2009-01-01T23:59:59.000Z

71

Avoiding Distribution System Upgrade Costs Using Distributed Generation  

Science Conference Proceedings (OSTI)

PNNL, in cooperation with three utilities, developed a database and methodology to analyze and characterize the avoided costs of Distributed Generation (DG) deployment as an alternative to traditional distribution system investment. After applying a number of screening criteria to the initial set of 307 cases, eighteen were selected for detailed analysis. Alternative DG investment scenarios were developed for these cases to permit capital, operation, maintenance, and fuel costs to be identified and incorporated into the analysis. The customer-owned backup power generator option was also investigated. The results of the analysis of the 18 cases show that none yielded cost savings under the alternative DG scenarios. However, the DG alternative systems were configured using very restrictive assumptions concerning reliability, peak rating, engine types and acceptable fuel. In particular it was assumed that the DG alternative in each case must meet the reliability required of conventional distribution systems (99.91% reliability). The analysis was further constrained by a requirement that each substation meet the demands placed upon it by a one in three weather occurrence. To determine if, by relaxing these requirements, the DG alternative might be more viable, one project was re-examined. The 99.91% reliability factor was still assumed for normal operating conditions but redundancy required to maintain reliability was relaxed for the relatively few hours every three years where extreme weather caused load to exceed present substation capacity. This resulted in the deferment of capital investment until later years and reduced the number of engines required for the project. The cost of both the conventional and DG alternative also dropped because the centralized power generation, variable O&M, and DG fuels costs were calculated based on present load requirements in combination with long-term forecasts of load growth, as opposed to load requirements plus a buffer based on predictions of extraordinary weather conditions. Application of the relaxed set of assumptions reduced the total cost of the DG alternative by roughly 57 percent from $7.0 million to $3.0 million. The reduction, however, did not change the overall result of the analysis, as the cost of the conventional distribution system upgrade alternative remained lower at $1.7 million. This paper also explores the feasibility of using a system of backup generators to defer investment in distribution system infrastructure. Rather than expanding substation capacity at substations experiencing slow load growth rates, PNNL considered a scenario where diesel generators were installed on location at customers participating in a program designed to offer additional power security and reliability to the customer and connection to the grid. The backup generators, in turn, could be used to meet peak demand for a limited number of hours each year, thus deferring distribution system investment. Data from an existing program at one of the three participating utilities was used to quantify the costs associated with the backup generator scenario. The results of the customer owned backup power generator analysis showed that in all cases the nominal cost of the DG scenario is more than the nominal cost of the base-case conventional distribution system upgrade scenario. However, in two of the cases the total present value costs of the alternative backup generator scenarios were between 15 and 22% less than those for the conventional scenarios. Overall, the results of the study offer considerable encouragement that the use of DG systems can defer conventional distribution system upgrades under the right conditions and when the DG configurations are intelligently designed. Using existing customer-owned DG to defer distribution system upgrades appears to be an immediate commercially-viable opportunity.

Schienbein, Lawrence A.; Balducci, Patrick J.; Nguyen, Tony B.; Brown, Daryl R.; DeSteese, John G.; Speer, Gregory A.

2004-01-20T23:59:59.000Z

72

Evaluating Ventilation Systems for Existing Homes  

SciTech Connect

During the course of this project, an affordable and high performance ductwork system to directly address the problems of thermal losses, poor efficiency, and air leakage was designed. To save space and enable direct connections between different floors of the building, the ductwork system was designed in such a way that it occupied interior or exterior frame wall cavities. The ductwork system satisfied building regulations for structural support when bridging multiple floors, the spread of fire and smoke, and insulation to reduce the heat flow into or out of the building. Retrofits of urban residential buildings will be the main focus for the application of this ductwork system. Highly reflective foils and insulating materials were used to aid in the increase of the overall R-value of the ductwork itself and the wall assembly. It is expected that the proposed system will increase the efficiency of the HVAC system and the thermal resistance of the building envelope. The performance of the proposed ductwork design was numerically evaluated in a number of different ways. Our results indicate that the duct method is a very cost attractive alternative to the conventional method.

Aldrich, R.; Arena, L.

2013-02-01T23:59:59.000Z

73

Evaluating Ventilation Systems for Existing Homes  

SciTech Connect

During the course of this project, an affordable and high performance ductwork system to directly address the problems of thermal losses, poor efficiency, and air leakage was designed. To save space and enable direct connections between different floors of the building, the ductwork system was designed in such a way that it occupied interior or exterior frame wall cavities. The ductwork system satisfied building regulations for structural support when bridging multiple floors, the spread of fire and smoke, and insulation to reduce the heat flow into or out of the building. Retrofits of urban residential buildings will be the main focus for the application of this ductwork system. Highly reflective foils and insulating materials were used to aid in the increase of the overall R-value of the ductwork itself and the wall assembly. It is expected that the proposed system will increase the efficiency of the HVAC system and the thermal resistance of the building envelope. The performance of the proposed ductwork design was numerically evaluated in a number of different ways. Our results indicate that the aerogel duct method is a very cost attractive alternative to the conventional method.

Aldrich, R.; Arena, L.

2013-02-01T23:59:59.000Z

74

Indoor Chemistry: Materials, Ventilation Systems, and Occupant Activities  

Science Conference Proceedings (OSTI)

Chemical processes taking place in indoor environments can significantly alter the nature and concentrations of pollutants. Exposure to secondary contaminants generated in these reactions needs to be evaluated in association with many aspects of buildings to minimize their impact on occupant health and well-being. Focusing on indoor ozone chemistry, we describe alternatives for improving indoor air quality by controlling chemical changes related to building materials, ventilation systems, and occupant activities.

Morrison, G.C.; Corsi, R.L.; Destaillats, H.; Nazaroff, W.W.; Wells, J.R.

2006-05-01T23:59:59.000Z

75

Booster Synchrotron RF System Upgrade for SPEAR3  

Science Conference Proceedings (OSTI)

Recent progress at the SPEAR3 includes the increase in stored current from 100 mA to 200 mA and top-off injection to allow beamlines to stay open during injection. Presently the booster injects 3.0 GeV beam to SPEAR3 three times a day. The stored beam decays to about 150 mA between the injections. The growing user demands are to increase the stored current to the design value of 500 mA, and to maintain it at a constant value within a percent or so. To achieve this goal the booster must inject once every few minutes. For improved injection efficiency, all RF systems at the linac, booster and SPEAR3 need to be phase-locked. The present booster RF system is basically a copy of the SPEAR2 RF system with 358.5 MHz and 40 kW peak RF power driving a 5-cell RF cavity for 1.0 MV gap voltage. These requirements entail a booster RF system upgrade to a scaled down version of the SPEAR3 RF system of 476.3 MHz with 1.2 MW cw klystron output power capabilities. We will analyze each subsystem option for their merits within budgetary and geometric space constraints. A substantial portion of the system will come from the decommissioned PEP-II RF stations.

Park, Sanghyun; /SLAC; Corbett, Jeff; /SLAC

2012-07-06T23:59:59.000Z

76

Prototype of time digitizing system for BESIII endcap TOF upgrade  

E-Print Network (OSTI)

The prototype of time digitizing system for the upgrade of BESIII endcap TOF (ETOF) is introduced in this paper. The ETOF readout electronics has a formation of distributed architecture that hit signal from multi-gap resistive plate chamber (MRPC) is signaled as LVDS by front-end electronics (FEE) and sent to the back-end time digitizing system via long shield differential twisted pair cables. The ETOF digitizing system consists of 2 VME crates each of which contains modules of time digitizing, clock, trigger and fast control etc. The time digitizing module (TDIG) of this prototype can support up to 72 electrical channels of hit information measurement. The fast control (FCTL) module can operate at barrel or endcap mode. The barrel FCTL fans fast control signals from the trigger system out to endcap FCTLs, merges data from endcaps and transfers to the trigger system. Without modifying the barrel TOF structure, this time digitizing architecture benefits for improving ETOF performance without degrading barrel TOF measuring. Lab experiments show that the time resolution of this digitizing system can be less than 20ps, and the data throughput to DAQ can be about 92Mbps. Beam experiments show that the complete time resolution can be less than 45ps.

Cao Ping; Sun Wei-Jia; Ji Xiao-Lu; Fan Huan-Huan; Wang Si-Yu; Liu Shu-Bin; An Qi

2013-05-30T23:59:59.000Z

77

High Gradient Operation with the CEBAF Upgrade RF Control System  

SciTech Connect

The CEBAF Accelerator at Jefferson Lab is presently a 6 GeV five pass electron accelerator consisting of two superconducting linacs joined by independent magnetic transport arcs. Energy will be upgraded to 12 GeV with the addition of 10 new high gradient cryomodules (17+ MV/m). The higher gradients pose significant challenges beyond what the present analog low level RF (LLRF) control systems can handle reliably; therefore, a new LLRF control system is needed. A prototype system has been developed incorporating a large FPGA and using digital down and up conversion to minimize the need for analog components. The new system is more flexible and less susceptible to drifts and component nonlinearities. Because resonance control is critical to reach high gradients quickly, the new cryomodules will include a piezoelectric tuner for each cavity, and the LLRF controls must incorporate both feedback and feed-forward methods to achieve optimal resonance control performance. This paper discusses development of the new RF system, system performance for phase and amplitude stability and resonance control under Lorentz detuning measured during recent tests on a prototype cryomodule.

J. Hovater; G. Davis; Hai Dong; Alicia Hofler; Lawrence King; John Musson; Tomasz Plawski

2006-08-16T23:59:59.000Z

78

Commissioning Residential Ventilation Systems: A Combined Assessment of  

NLE Websites -- All DOE Office Websites (Extended Search)

Commissioning Residential Ventilation Commissioning Residential Ventilation Systems: A Combined Assessment of Energy and Air Quality Potential Values William J.N. Turner, Jennifer M. Logue, Craig P. Wray Environmental Energy Technologies Division July 2012 LBNL-5969E Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein

79

Upgrade of the DIII-D vacuum vessel protection system  

SciTech Connect

An upgrade of the General Atomics DIII-D tokamak armor protection system has been completed. The upgrade consisted of armoring the outer wall and the divertor gas baffle with monolithic graphite tiles and cleaning the existing floor, ceiling, and inner wall tiles to remove any deposited impurity layer from the tile surfaces. The new tiles replace the graphite tiles used as local armor for neutral beam shine through, three graphite poloidal back-up limiter bands, and miscellaneous Inconel protection tiles. The total number of tiles increased from 1636 to 3200 and corresponding vessel coverage from 40% to 90%. A new, graphite armored, toroidally continuous, gas baffle between the outer wall and the biased divertor ring was installed in order to accommodate the cryocondensation pump that was installed in parallel with the outer wall tiles. To eliminate a source of copper in the plasma, GRAFOIL gaskets replaced the copper felt metal gaskets previously used as a compliant heat transfer interface between the inertially cooled tiles and the vessel wall. GRAFOIL, an exfoliated, flexible graphite material from Union Carbide, Inc., was used between each tile and the vessel wall and also between each tile and its hold-down hardware. Testing was performed to determine the mechanical compliance, thermal conductance, and vacuum characteristics of the GRAFOIL material. To further decrease the quantity of high Z materials exposed to the plasma, the 1636 existing graphite tiles were identified, removed, and grit blasted to eliminate a thin layer of deposited metals which included nickel, chromium, and molybdenum. Prior to any processing, a selected set of tiles was tested for radioactivity, including tritium contamination. The tiles were grit blasted in a negative-pressure blasting cabinet using 37 {mu}m boron carbide powder as the blast media and dry nitrogen as the propellant.

Hollerbach, M.A.; Lee, R.L.; Smith, J.P.; Taylor, P.L.

1993-10-01T23:59:59.000Z

80

OPERATIONAL EXPERIENCE OF THE UPGRADED CRYOGENIC SYSTEMS AT THE NSCL  

Science Conference Proceedings (OSTI)

The National Superconducting Cyclotron Laboratory (NSCL) is a NSF-supported facility, with additional support from Michigan State University (MSU) for conducting research in nuclear and accelerator science. The facility consists of two superconducting cyclotrons and over fifty individual cryostats, each containing several superconducting magnets that are used in the beam transport system. Beginning in 1999 a major facility upgrade was started. New, larger magnets were added, increasing the total 4.5 K loads, necessitating an increase of the cryogenic capacity. A helium plant (nominal 1750-Watt at 4.5 K) was acquired from the United States Bureau of Mines where it had been operating as a pure liquefier since the early 1980's. It was refurbished for the NSCL with extensive support from the cryogenics group at Thomas Jefferson National Laboratory. The new cryogenic system came online early in 2001. The cold-mass is relatively high in relation to the installed capacity, presenting challenges during cool downs. Reliability over the last five years has been greater than 99%. An overview of the last seven years of operations of our cryogenic systems is presented that includes normal operations, testing of new equipment, noteworthy breakdowns, routine maintenance, and system reliability.

McCartney, A. H.; Laumer, H. L.; Jones, S. A. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI, 48824 (United States)

2010-04-09T23:59:59.000Z

Note: This page contains sample records for the topic "ventilation systems upgrading" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Operating experience review - Ventilation systems at Department of Energy Facilities  

Science Conference Proceedings (OSTI)

The Office of Special Projects (DP-35), formerly Office of Self-Assessment (DP-9), analyzed occurrences caused by problems with equipment and material and recommended the following systems for an in-depth study: (1) Selective Alpha Air Monitor (SAAM), (2) Emergency Diesel Generator, (3) Ventilation System, (4) Fire Alarm System. Further, DP-35 conducted an in-depth review of the problems associated with SAAM and with diesel generators, and made several recommendations. This study focusses on ventilation system. The intent was to determine the causes for the events related to these system that were reported in the Occurrence Reporting and Processing System (ORPS), to identify components that failed, and to provide technical information from the commercial and nuclear industries on the design, operation, maintenance, and surveillance related to the system and its components. From these data, sites can develop a comprehensive program of maintenance management, including surveillance, to avoid similar occurrences, and to be in compliance with the following DOE orders.

Not Available

1994-05-01T23:59:59.000Z

82

Plant Modernization with Digital Reactor Protection System Safety System Upgrades at US Nuclear Power Stations  

SciTech Connect

As the current fleet of nuclear power plants in the US reaches 25+ years of operation, obsolescence is driving many utilities to implement upgrades to both their safety and non-safety-related Instrumentation and Control (I and C) Systems. Digital technology is the predominant replacement technology for these upgrades. Within the last 15 years, digital control systems have been deployed in non-safety- related control applications at many utilities. In addition, a few utilities have replaced small safety-related systems utilizing digital technology. These systems have shown digital technology to be robust, reliable and simpler to maintain. Based upon this success, acceptance of digital technology has gained momentum with both utilities and regulatory agencies. Today, in an effort to extend the operating lives of their nuclear stations and resolve obsolescence of critical components, utilities are now pursuing digital technology for replacement of their primary safety systems. AREVA is leading this effort in the United States with the first significant digital upgrade of a major safety system. AREVA has previously completed upgrades to safety-related control systems emergency diesel engine controls and governor control systems for a hydro station which serves as the emergency power source for a nuclear station. Currently, AREVA is implementing the replacement of both the Reactor Protection System (RPS) and the Engineered Safety Features Actuation System (ESFAS) on all three units at a US PWR site. (authors)

Heckle, Wm. Lloyd; Bolian, Tricia W. [AREVA NP, an AREVA and Siemens Company, 1345 Ridgeland Parkway, Suite 130 (United States)

2006-07-01T23:59:59.000Z

83

Whole-House Ventilation Systems: Improved Control of Air Quality  

SciTech Connect

Fact sheet for homeowners and contractors on how to employ spot ventilation in the home for comfort and safety.

2002-12-01T23:59:59.000Z

84

Design of a ventilation system for carbon dioxide reduction in two gym rooms.  

E-Print Network (OSTI)

?? This project is mainly focused on the improving and design of the ventilation system of two rooms at different levels of a gym (Friskis (more)

Barroeta, Ander

2013-01-01T23:59:59.000Z

85

CFD Simulation of Airflow in Ventilated Wall System Report #9  

DOE Green Energy (OSTI)

The objective of this report was to examine air movements in vinyl and brick ventilation cavities in detail, using a state of the art CFD commercial modeling tool. The CFD activity was planned to proceed the other activities in order to develop insight on the important magnitudes of scales occurring during ventilation air flow. This information generated by the CFD model was to be used to modify (if necessary) and to validate the air flow dynamics already imbedded in the hygrothermal model for the computer-based air flow simulation procedures. A comprehensive program of advanced, state-of-the-art hygrothermal modeling was then envisaged mainly to extend the knowledge to other wall systems and at least six representative climatic areas. These data were then to be used to provide the basis for the development of design guidelines. CFD results provided timely and much needed answers to many of the concerns and questions related to ventilation flows due to thermal buoyancy and wind-driven flow scenarios. The relative strength between these two mechanisms. Simple correlations were developed and are presented in the report providing the overall pressure drop, and flow through various cavities under different exterior solar and temperature scenarios. Brick Rainscreen Wall: It was initially expected that a 50 mm cavity would offer reduced pressure drops and increased air flow compared to a 19 mm cavity. However, these models showed that the size of the ventilation slots through the wall are the limiting factor rather than the cavity depth. Of course, once the slots are enlarged beyond a certain point, this could change. The effects of natural convection within the air cavities, driven by the temperature difference across the cavity, were shown to be less important than the external wind speed (for a wind direction normal to the wall surface), when wind action is present. Vinyl Rainscreen Wall: The CFD model of the vinyl rainscreen wall was simpler than that for the brick wall. Constant wall temperatures were used rather than conjugate heat transfer. Although this is appropriate for a thin surface with little heat capacity, it does mean that an empirical correlation between solar radiation (and perhaps wind speed) and vinyl temperature is required to use these results appropriately. The results developed from this CFD model were correlated to weather parameters and construction details so that they can be incorporated into ORNL s advanced hygrothermal models MOISTURE- EXPERT.

Stovall, Therese K [ORNL; Karagiozis, Achilles N [ORNL

2004-01-01T23:59:59.000Z

86

EA-1247: Electrical Power System Upgrades at Los Alamos National Laboratory, Los Alamos, New Mexico  

Energy.gov (U.S. Department of Energy (DOE))

This EA evaluates the environmental impacts for the proposal to upgrade the electrical power supply system for the U.S. Department of Energy Los Alamos National Laboratory to increase the...

87

An overview of the TA-55, Building PF-4 ventilation system  

Science Conference Proceedings (OSTI)

An overview of the TA-55, Building PF-4 ventilation system is provided in the following sections. Included are descriptions of the zone configurations, equipment-performance criteria, ventilation support systems, and the ventilation-system evaluation criteria. Section 4.2.1.1 provides a brief discussion of the ventilation system function. Section 4.2.1.2 provides details on the overall system configuration. Details of system interfaces and support systems are provided in Section 4.2.1.3. Section 4.2.1.4 describes instrumentation and control needed to operate the ventilation system. Finally, Sections 4.2.1.5 and 4.2.1.6 describe system surveillance/maintenance and Technical Safety Requirements (TSR) Limitations, respectively. Note that the numerical parameters included in this description are considered nominal; set points and other specifications actually fall within operational bands.

NONE

1994-02-22T23:59:59.000Z

88

Work plan for upgrade of SY-101 Hydrogen Mitigation Test Project Data Acquisition and Control System (DACS-1)  

DOE Green Energy (OSTI)

The purpose of this effort is to upgrade the existing DACS-1 used for control and data acquisition in support of the hydrogen mitigation program for tank 101-SY. The planned upgrades will enhance the system capabilities to support additional mitigation projects and improve the system operability by implementing changes identified during operation of the system to date. Once the upgrades have been implemented, the DACS-1 system should operate as it did prior to the upgrade, but with greatly increased speed and capability. No retraining of Test Engineers will be required; the upgrade is designed to be transparent to those who operate it, with only a noticeable increase in the speed of the system. This work plan defines the tasks required for implementing the upgrade. It identifies deliverables, responsible organizations and individuals, interfaces, and schedule. This upgrade effort employs system engineering principles wherever applicable.

Truitt, R.W.

1994-08-01T23:59:59.000Z

89

EIS-0484: Montana-to-Washington Transmission System Upgrade Project in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4: Montana-to-Washington Transmission System Upgrade Project 4: Montana-to-Washington Transmission System Upgrade Project in Washington, Idaho, and Montana EIS-0484: Montana-to-Washington Transmission System Upgrade Project in Washington, Idaho, and Montana SUMMARY This EIS will evaluate the environmental impacts of a proposal to replace roughly 12 miles of transmission line on the Taft-Dworshak 500-kV transmission line, install new series capacitors on the Garrison-Taft 500-kV transmission line, and perform various upgrades to Bell, Hatwai, Dworshak, Garrison, and Hot Springs substations. The project website is http://efw.bpa.gov/environmental_services/Document_Library/M2W/. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVALABLE FOR DOWNLOAD May 3, 2012 EIS-0484: Notice of Intent to Prepare an Environmental Impact Statement

90

Snowmass White Paper CMS Upgrade: Forward Lepton-Photon System  

E-Print Network (OSTI)

This White Paper outlines a proposal for an upgraded forward region to extend CMS lepton (e, mu) and photon physics reach out to 2.2

Bilki, Burak; Onel, Yasar; Winn, David R; Yetkin, Taylan

2013-01-01T23:59:59.000Z

91

Hardware and Software Upgrades to DIII-D Main Computer Control System  

Science Conference Proceedings (OSTI)

The complexities of monitoring and controlling the various DIII-D tokamak systems have always required the aid of high-speed computer resources. Because of recent improvements in computing technology, DIII-D has upgraded both hardware and software for the central DIII-D control system. This system is responsible for coordination of all main DIII-D subsystems during a plasma discharge. The replacement of antiquated older hardware has increased reliability and reduced costs both in the initial procurement and eventual maintenance of the system. As expected, upgrading the corresponding computer software has become the more time consuming and expensive part of this upgrade. During this redesign, the main issues focused on making the most of existing in-house codes, speed with which the new system could be brought on-line, the ability to add new features/enhancements, ease of integration with all DIII-D systems and future portability/upgrades. The resulting system has become a template by which other DIII-D systems can follow during similar upgrade paths; in particular DIII-D's main data acquisition system and neutral beam injection (NBI).

Piglowski, D. A.; Penaflor, B.G.; McHarg, JR., B.B.; Greene, K.L.; Coon, R.M.; Phillips, J.C.

2002-09-01T23:59:59.000Z

92

SYSTEM DESIGN AND PERFORMANCE FOR THE RECENT DIII-D NEUTRAL BEAM COMPUTER UPGRADE  

SciTech Connect

OAK-B135 This operating year marks an upgrade to the computer system charged with control and data acquisition for neutral beam injection system's heating at the DIII-D National Fusion Facility, funded by the US Department of Energy and operated by General Atomics (GA). This upgrade represents the third and latest major revision to a system which has been in service over twenty years. The first control and data acquisition computers were four 16 bit mini computers running a proprietary operating system. Each of the four controlled two ion source over dedicated CAMAC highway. In a 1995 upgrade, the system evolved to be two 32 bit Motorola mini-computers running a version of UNIX. Each computer controlled four ion sources with two CAMAC highways per CPU. This latest upgrade builds on this same logical organization, but makes significant advances in cost, maintainability, and the degree to which the system is open to future modification. The new control and data acquisition system is formed of two 2 GHz Intel Pentium 4 based PC's, running the LINUX operating system. Each PC drives two CAMAC serial highways using a combination of Kinetic Systems PCI standard CAMAC Hardware Drivers and a low-level software driver written in-house expressly for this device. This paper discusses the overall system design and implementation detail, describing actual operating experience for the initial six months of operation.

PHILLIPS,J.C; PENAFLOR,B.G; PHAM,N.Q; PIGLOWSKI,D.A

2003-10-01T23:59:59.000Z

93

Energy Efficiency Upgrades  

Science Conference Proceedings (OSTI)

The energy efficiency upgrades project at Hardin County General Hospital did not include research nor was it a demonstration project. The project enabled the hospital to replace outdated systems with modern efficient models. Hardin County General Hospital is a 501c3, nonprofit hospital and the sole community provider for Hardin and Pope Counties of Illinois. This project provided much needed equipment and facility upgrades that would not have been possible through locally generated funding. Task 1 was a reroofing of the hospital. The hospital architect designed the replacement to increase the energy efficiency of the hospital roof/ceiling structure. Task 2 was replacement and installation of a new more efficient CT scanner for the hospital. Included in the project was replacement of HVAC equipment for the entire radiological suite. Task 5 was a replacement and installation of a new higher capacity diesel-fueled emergency generator for the hospital replacing a 50+ year old gas-fired generator. Task 7 was the replacement of 50+ year-old walk-in cooler/freezer with a newer, energy efficient model. Task 8 was the replacement of 10+ year-old washing machines in the hospital laundry with higher capacity, energy efficient models. Task 9 was replacement of 50-year old single pane curtain window system with double-pane insulated windows. Additionally, insulation was added around ventilation systems and the curtain wall system.

Roby Williams

2012-03-29T23:59:59.000Z

94

Ventilating system for reprocessing of nuclear fuel rods  

Science Conference Proceedings (OSTI)

In a nuclear facility such as a reprocessing plant for nuclear fuel rods, the central air cleaner discharging ventilating gas to the atmosphere must meet preselected standards not only as to the momentary concentration of radioactive components, but also as to total quantity per year. In order to comply more satisfactorily with such standards, reprocessing steps are conducted by remote control in a plurality of separate compartments. The air flow for each compartment is regulated so that the air inventory for each compartment has a slow turnover rate of more than a day but less than a year, which slow rate is conveniently designated as quasihermetic sealing. The air inventory in each such compartment is recirculated through a specialized processing unit adapted to cool and/or filter and/or otherwise process the gas. Stale air is withdrawn from such recirculating inventory and fresh air is injected (eg., By the less than perfect sealing of a compartment) into such recirculating inventory so that the air turnover rate is more than a day but less than a year. The amount of air directed through the manifold and duct system from the reprocessing units to the central air cleaner is less than in reprocessing plants of conventional design.

Szulinski, M.J.

1981-07-07T23:59:59.000Z

95

Advanced Photon Source RF Beam Position Monitor System Upgrade Design and Commissioning  

E-Print Network (OSTI)

This paper describes the Advanced Photon Source (APS) storage ring mono-pulse rf beam position monitor (BPM) system upgrade. The present rf BPM system requires a large dead time of 400 ns between the measured bunch and upstream bunch. The bunch pattern is also constrained by the required target cluster of six bunches of 7 mA minimum necessary to operate the receiver near the top end of the dynamic range. The upgrade design objectives involve resolving bunches spaced as closely as 100 ns. These design objectives require us to reduce receiver front-end losses and reflections. An improved trigger scheme that minimizes systematic errors is also required. The upgrade is in the final phases of installation and commissioning at this time. The latest experimental and commissioning data and results will be presented.

Lill, R; Singh, O

2001-01-01T23:59:59.000Z

96

System Performance Measurement Supports Design Recommendations for Solar Ventilation Preheat System (Brochure), Federal Energy Management Program (FEMP)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

System Performance System Performance Measurement Supports Design Recommendations for Solar Ventilation Preheat System The U.S. Department of Energy's (DOE) Federal Energy Management Program (FEMP) sponsored the installation of a data monitoring system to analyze the efficiency and performance of a large solar ventilation preheat (SVP) system. The system was installed at a Federal installation to reduce energy consumption and costs and to help meet Federal energy goals and mandates. SVP systems draw ventilation air in through a perforated metal solar collector with a dark color on the south side of a build-

97

Ventilation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ventilation Ventilation Ventilation Controlled ventilation keeps energy-efficient homes healthy and comfortable. Learn more about ventilation. Controlled ventilation keeps energy-efficient homes healthy and comfortable. Learn more about ventilation. When creating an energy-efficient, airtight home through air sealing, it's very important to consider ventilation. Unless properly ventilated, an airtight home can seal in indoor air pollutants. Ventilation also helps control moisture-another important consideration for a healthy, energy-efficient home. Featured Whole-House Ventilation A whole-house ventilation system with dedicated ducting in a new energy-efficient home. | Photo courtesy of ©iStockphoto/brebca. Tight, energy-efficient homes require mechanical -- usually whole-house --

98

Upgrading the Data Acquisition and Control System of the LANSCE LINAC  

SciTech Connect

Los Alamos National Laboratory LANL is in the process of upgrading the control system for the Los Alamos Neutron Science Center (LANSCE) linear accelerator. The 38 year-old data acquisition and control equipment is being replaced with COTS hardware. An overview of the current system requirements and how the National Instruments cRIO system meets these requirements will be given, as well as an update on the installation and operation of a prototype system in the LANSCE LINAC.

Baros, Dolores [Los Alamos National Laboratory

2011-01-01T23:59:59.000Z

99

The SF System of Sextupoles for the JLAB 10 KW Free Electron Laser Upgrade  

SciTech Connect

The characteristics of the system of SF Sextupoles for the infrared Free Electron Laser Upgrade1 at the Thomas Jefferson National Accelerator Facility (JLab) are described. These eleven sextupoles possess a large field integral (2.15 T/m) with +/- 0.2%

George Biallas, Mark Augustine, Kenneth Baggett, David Douglas, Robin Wines

2009-05-01T23:59:59.000Z

100

VENTILATION NEEDS DURING CONSTRUCTION  

Science Conference Proceedings (OSTI)

The purpose of this analysis is to determine ventilation needs during construction and development of the subsurface repository and develop systems to satisfy those needs. For this analysis, construction is defined as pre-emplacement excavation and development is excavation that takes place simultaneously with emplacement. The three options presented in the ''Overall Development and Emplacement Ventilation Systems'' analysis (Reference 5.5) for development ventilation will be applied to construction ventilation in this analysis as well as adding new and updated ventilation factors to each option for both construction and development. The objective of this analysis is to develop a preferred ventilation system to support License Application Design. The scope of this analysis includes: (1) Description of ventilation conditions; (2) Ventilation factors (fire hazards, dust control, construction logistics, and monitoring and control systems); (3) Local ventilation alternatives; (4) Global ventilation options; and (5) Evaluation of options.

C.R. Gorrell

1998-07-23T23:59:59.000Z

Note: This page contains sample records for the topic "ventilation systems upgrading" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Mobile zone, spray booth ventilation system. Final report  

SciTech Connect

This concept endeavors to reduce the volume of air (to be treated) from spray paint booths, thereby increasing efficiency and improving air pollution abatement (VOC emissions especially). Most of the ventilation air is recycled through the booth to maintain laminar flow; the machinery is located on the supply side of the booth rather than on the exhaust side. 60 to 95% reduction in spray booth exhaust rate should result. Although engineering and production prototypes have been made, demand is low.

1994-04-26T23:59:59.000Z

102

Assessment of Pollutant Spread from a Building Basement with three Ventilation Systems  

E-Print Network (OSTI)

Ventilation aims at providing a sufficient air renewal for ensuring a good indoor air quality (IAQ), yet building energy policies are leading to adapting various ventilation strategies minimising energy losses through air renewal. A recent IAQ evaluation campaign in French dwellings shows important pollution of living spaces by VOCs such as formaldehyde, acetaldehyde or hexanal, particularly in buildings equipped with a garage. Besides, radon emission from soil is a subject of concern in many countries. Several studies are done to understand its release mode and deal with the spread of this carcinogen gas. This paper aims to experimentally assess a contaminant spread from a house basement using mechanical exhaust and balanced ventilation systems, and natural ventilation.

Koffi, Juslin

2010-01-01T23:59:59.000Z

103

The upgraded rf system for the AGS and high intensity proton beams  

SciTech Connect

The AGS has been upgraded over the past three years to produce a record beam intensity of 6 {times} 10{sup 13} protons per pulse for the fixed-target physics program. The major elements of the upgrade are: the new 1.5 GeV Booster synchrotron, the main magnet power supply, a high frequency longitudinal dilution cavity, a feedback damper for transverse instabilities, a fast gamma transition jump system, and a new high-power rf system. The new rf system and its role in achieving the high intensity goal are the subjects of this report. The rf system is heavily beam loaded, with 7 Amps of rf current in the beam and a peak power of 0.75 MW delivered to the beam by ten cavities. As an example of the scale of beam loading, at one point in the acceleration cycle the cavities are operated at 1.5 kV/gap; whereas, were it not for the new power amplifiers, the beam-induced voltage on the cavities would be over 25 kV/gap. The upgraded rf system, comprising: new power amplifiers, wide band rf feedback, improved cavities, and new low-level beam control electronics, is described. Results of measurements with beam, which characterize the system`s performance, are presented. A typical high intensity acceleration cycle is described with emphasis on the key challenges of beam loading.

Brennan, J.M. [Brookhaven National Lab., Upton, NY (United States). AGS Dept.

1995-05-01T23:59:59.000Z

104

Upgrade To The Pierre Auger Cosmic Ray Observatory's Lidar System.  

E-Print Network (OSTI)

??The Pierre Auger Cosmic Ray Observatory currently operates four elastic lidar systems in order to characterize the atmospheric aerosol content above the observatory. The atmospheric (more)

Petermann, Emily B

2010-01-01T23:59:59.000Z

105

The upgrade project for the RF system for the Brookhaven AGS  

SciTech Connect

The AGS operates a varied program of proton, heavy ion, and polarized proton acceleration for fixed-target experiments and will soon serve as the injector of these beams into the Relativistic Heavy Ion Collider, RHIC. The new Booster synchrotron extends the range of intensities and masses that can be accelerated. The 1.5 GeV injection energy increases the space charge limit by a factor of four to more than 6 {times} 10{sup 13} protons per pulse. To accommodate the increased beam current the rf system will be upgraded to provide more power and lower impedance to the beam. The flexibility of the rf system will also be enhanced by virtue of a new rf beam control system and installation of individual tuning servos for the ten rf cavities. The fundamental necessity for upgrading the rf system is to deliver more power to the accelerating beam. Three key ingredients of the upgrade project addressing this problem is (1) new power amplifiers provide the necessary power, and are closely coupled to the cavities, (2) wideband rf feedback reduces the effective impedance by a factor of 10, and (3) the capacitors loading the acceleration gaps (four per cavity) are increased from 275 pF to 600 pF.

Brennan, J.M.; Ciardullo, D.J.; Hayes, T.; Meth, M.; McNerney, A.J.; Otis, A.; Pirkl, W.; Sanders, R.; Spitz, R.; Toldo, F.; Zaltsman, A.

1993-06-01T23:59:59.000Z

106

Upgraded IMG Data Management System Released by DOE JGI to Eager User  

NLE Websites -- All DOE Office Websites (Extended Search)

4, 2007 4, 2007 Upgraded Integrated Microbial Genomes (IMG) Data Management System Released by DOE JGI to Eager User Community WALNUT CREEK, CA--A powerful set of computational tools established to ease the visualization and exploration of genomes flooding the public domain is now available in IMG Version 2.3--the Integrated Microbial Genomes (IMG) data management system hosted by the U.S. Department of Energy Joint Genome Institute (DOE JGI). The content of IMG 2.3, upgraded with new microbial genomes from the Version 23 release of the National Center for Biotechnology Information (NCBI) Reference Sequence (RefSeq) collection, now includes fungi, protists (eukaryotic unicellular organisms), and plant genomes to enhance the breadth of comparative analysis. A new addition of particular interest to

107

Upgrade of Compressed Air Control System Reduces Energy Costs at Michelin Tire Plant. Office of Industrial Technologies (OIT) BestPractices Project Case Study  

Science Conference Proceedings (OSTI)

This case study highlights the upgraded compressed air system at a Michelin tire manufacturing plant in Spartanburg, South Carolina. The controls upgrade project enabled multiple compressor operation without blow-off, and significantly reduced energy costs.

Not Available

2002-01-01T23:59:59.000Z

108

ENERGY STAR Building Upgrade Manual Chapter 8: Air Distribution Systems |  

NLE Websites -- All DOE Office Websites (Extended Search)

8: Air Distribution 8: Air Distribution Systems Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder

109

Controllability and invariance of monotone systems for robust ventilation automation in buildings  

E-Print Network (OSTI)

[2] and control [3] of Heating, Ventilating and Air Conditioning (HVAC) systems leads to an improved on these matters [4]. Various paths have already been explored for the control of HVAC systems in intelligent and energy saving [7], a model-predictive strategy [8], or a fuzzy logic controller [9]. The notion of Robust

110

Boiler Upgrades and Decentralizing Steam Systems Save Water and Energy at Naval Air Station Oceana  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Location at NAS Oceana. Location at NAS Oceana. by these changes, including bachelor housing, hangers, the galley, office buildings, the chapel, and maintenance facilities. This ESPC also included installing ground source heat pumps in three buildings, adding digital control systems to increase heating, ventilation and air conditioning (HVAC) efficiency, efficient lighting retrofits, and other water conservation measures. These other water conservation measures include over 5,000 water efficient domestic fixtures, includ- ing faucets, showerheads, and toilets

111

Boiler Upgrades and Decentralizing Steam Systems Save Water and Energy at Naval Air Station Oceana  

NLE Websites -- All DOE Office Websites (Extended Search)

Location at NAS Oceana. Location at NAS Oceana. by these changes, including bachelor housing, hangers, the galley, office buildings, the chapel, and maintenance facilities. This ESPC also included installing ground source heat pumps in three buildings, adding digital control systems to increase heating, ventilation and air conditioning (HVAC) efficiency, efficient lighting retrofits, and other water conservation measures. These other water conservation measures include over 5,000 water efficient domestic fixtures, includ- ing faucets, showerheads, and toilets

112

Experimental Evaluation of Ventilation Systems in a Single-Family Dwelling  

E-Print Network (OSTI)

The French regulation on residential building ventilation relies on an overall and continuous air renewal. The fresh air should enter the building through the "habitable rooms" while the polluted air is extracted in the service rooms. In this way, internal air is drained from the lowest polluted rooms to the highest polluted ones. However, internal pressure equilibrium and air movements in buildings result from the combined effects ventilation system and parameters such as wind, temperature difference or doors opening. This paper aims to analyse the influence of these parameters on pollutant transfer within buildings. In so doing, experiments are carried out using tracer gas release for representing pollution sources in an experimental house. Mechanical exhaust, balanced and natural ventilation systems are thus tested. Results show the followings: - For all cases, internal doors' opening causes the most important pollutant spread. - When doors are closed, the best performances are obtained with balanced venti...

Koffi, Juslin; Akoua, Jean-Jacques

2010-01-01T23:59:59.000Z

113

The VERITAS Upgraded Telescope-Level Trigger Systems: Technical Details and Performance Characterization  

E-Print Network (OSTI)

VERITAS is an array of imaging atmospheric Cherenkov telescopes sensitive to gamma rays in the energy range between 85 GeV and 30 TeV. The instrument underwent an upgrade of the camera triggers in November 2011. The new systems use 400 MHz Xilinix Virtex-5 FPGAs for the pixel neighbor coincidence logic necessary to produce a camera-level trigger. The upgraded systems are capable of time-aligning individual triggering pixels to within ~0.2 nanoseconds, allowing for an operational pixel-to-pixel coincidence window of ~5 nanoseconds. This reduced coincidence window provides improved rejection of night-sky background (NSB) which permits a reduction of the energy threshold at the trigger level. The use of FPGAs allows for the future implementation of a topological trigger capable of discriminating events based on an image moment analysis of a bit-wise hit pattern. As part of the commissioning phase for the trigger upgrade, the hardware was initially installed in a single telescope in "parallel" to the (then) curre...

Zitzer, Benjamin

2013-01-01T23:59:59.000Z

114

TNKVNT: A model of the Tank 48 purge/ventilation exhaust system. Revision 1  

DOE Green Energy (OSTI)

The waste tank purge ventilation system for Tank 48 is designed to prevent dangerous concentrations of hydrogen or benzene from accumulating in the gas space of the tank. Fans pull the gas/water vapor mixture from the tank gas space and pass it sequentially through a demister, a condenser, a reheater, and HEPA filters before discharging to the environment. Proper operation of the HEPA filters requires that the gas mixture passing through them has a low relative humidity. The ventilation system has been modified by increasing the capacity of the fans and changing the condenser from a two-pass heat exchanger to a single-pass heat exchanger. It is important to understand the impact of these modifications on the operation of the system. A hydraulic model of the ventilation exhaust system has been developed. This model predicts the properties of the air throughout the system and the flowrate through the system, as functions of the tank gas space and environmental conditions. This document serves as a Software Design Report, a Software Coding report, and a User`s Manual. All of the information required for understanding and using this code is herein contained: the governing equations are fully developed, the numerical algorithms are described in detail, and an extensively commented code listing is included. This updated version of the code models the entire purge ventilation system, and is therefore more general in its potential applications.

Shadday, M.A. Jr.

1996-04-01T23:59:59.000Z

115

System Upgrade  

NLE Websites -- All DOE Office Websites (Extended Search)

check this hotnews again for updates. If you need data before we are operational again, please call our User Services Office at 423-241-3952 or e-mail us at ornldaac@ornl.gov....

116

Demand Controlled Ventilation and Classroom Ventilation  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 Authors Fisk, William J., Mark J. Mendell, Molly Davies, Ekaterina Eliseeva, David Faulkner, Tienzen Hong, and Douglas P. Sullivan Publisher Lawrence Berkeley National Laboratory City Berkeley Keywords absence, building s, carbon dioxide, demand - controlled ventilation, energy, indoor air quality, schools, ventilation Abstract This document summarizes a research effort on demand controlled ventilation and classroom ventilation. The research on demand controlled ventilation included field studies and building energy modeling. Major findings included:  The single-location carbon dioxide sensors widely used for demand controlled ventilation frequently have large errors and will fail to effectively control ventilation rates (VRs).  Multi-location carbon dioxide measurement systems with more expensive sensors connected to multi-location sampling systems may measure carbon dioxide more accurately.

117

Upgrade of the Nuclear Material Protection, Control and Accounting System at the VNIIEF Industrial Zone  

Science Conference Proceedings (OSTI)

The Industrial Zone at the Russian Federal Nuclear Center/All-Russian Scientific Research Institute of Experimental Physics (RFNC/VNEEF) consists of ten guarded areas with twenty two material balance areas (A and As). The type of facilities in the Industrial Zone include storage sites, machine shops, research facilities, and training facilities. Modernization of the Material Protection, Control and Accounting (MPC and A) System at the Industrial Zone started in 1997. This paper provides a description of, the methodology/strategy used in the upgrade of the MFC and A system.

Lewis, J.C.; Maltsev, V.; Singh, S.P.

1999-09-20T23:59:59.000Z

118

Ventilation rates calculated from hydrogen release data in tanks equipped with standard hydrogen monitoring systems (SHMS)  

DOE Green Energy (OSTI)

This report describes a method for estimating the ventilation rates of the high-level radioactive waste tank headspaces at the Hanford Site in Southeastern Washington state. The method, using hydrogen concentration data, is applied to all passively ventilated and selected mechanically ventilated tanks equipped with Standard Hydrogen Monitoring Systems (SHMS) and covers the time period from when the SHMS were installed through July 12, 1998. Results of the analyses are tabulated and compared with results from tracer gas studies and similar analyses of SHMS data. The method relies on instances of above-normal hydrogen releases and assumes the rate at which hydrogen is released by the waste is otherwise approximately constant. It also assumes that hydrogen is uniformly distributed in the tank headspace, so that at any given time the concentration of hydrogen in the effluent is approximately equal to the average headspace concentration and that measured by the SHMS. In general, the greatest single source of error in the method is the determination of the baseline hydrogen concentration, which in this study has been estimated by visual inspection of plotted data. Uncertainties in the calculated ventilation rates due to inaccurate baseline measurements are examined by performing a sensitivity analysis with upper and lower bounding values for the baseline concentration (in addition to the best estimate). A table lists the tanks considered in this report and the range of estimated ventilation rates obtained for each tank. When multiple events of above-normal hydrogen releases were observed, the range of estimated ventilation rates is given. Resulting values and their variability are consistent with those determined using tracer gases.

Sklarew, D.S.; Huckaby, J.L.

1998-09-01T23:59:59.000Z

119

D Note 3563 LED Pulser System for the D Muon Upgrade Scintillation Counters  

E-Print Network (OSTI)

We present the technical design for an LED based pulser system for the D Upgrade Muon Scintillation counters. For Run II, accurate timing information from the scintillation counters is imperative for the proper performance of the muon triggers. The LED Pulser System will serve in the commissioning of the counters and for the continuous monitoring of the PMTs ' performances and gains. A detailed description of the system is presented, as well as the results of tests on individual components and integrated system. Proceedures for production, assembly, quality control, installation, and commissioning are presented. Cost estimates and resource needs to complete the system are presented, as well as an estimated schedule. From the test results, the D LED Pulser System performs at a level exceeding speci cations for a fraction of the initial cost estimated for performing the required tasks.

Pierrick Hanlet Matthew Marcus; Al Ito; Bob Jones; Tom Regan; B. S. Acharya; Juan Pablo Negret; Manuel Zanabria

1999-01-01T23:59:59.000Z

120

RF System Upgrades to the Advanced Photon Source Linear Accelerator in Support of the Fel Operation  

E-Print Network (OSTI)

The S-band linear accelerator, which was built to be the source of particles and the front end of the Advanced Photon Source injector, is now also being used to support a low-energy undulator test line (LEUTL) and to drive a free-electron laser (FEL). The more severe rf stability requirements of the FEL have resulted in an effort to identify sources of phase and amplitude instability and implement corresponding upgrades to the rf generation chain and the measurement system. Test data and improvements implemented and planned are described

Smith, T L; Grelick, A E; Pile, G; Nassiri, A; Arnold, N

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ventilation systems upgrading" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Ventilation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ventilation Ventilation Ventilation May 7, 2012 - 2:49pm Addthis This ventilation system in a tight, energy-efficient home ensures good indoor air quality. | Photo courtesy of ©iStockphoto.com/brebca. This ventilation system in a tight, energy-efficient home ensures good indoor air quality. | Photo courtesy of ©iStockphoto.com/brebca. What does this mean for me? After you've reduced air leakage in your home, adequate ventilation is critical for health and comfort. Depending on your climate, there are a number of strategies to ventilate your home. Ventilation is very important in an energy-efficient home. Air sealing techniques can reduce air leakage to the point that contaminants with known health effects such as formaldehyde, volatile organic compounds, and radon

122

Ventilation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ventilation Ventilation Ventilation May 7, 2012 - 2:49pm Addthis This ventilation system in a tight, energy-efficient home ensures good indoor air quality. | Photo courtesy of ©iStockphoto.com/brebca. This ventilation system in a tight, energy-efficient home ensures good indoor air quality. | Photo courtesy of ©iStockphoto.com/brebca. What does this mean for me? After you've reduced air leakage in your home, adequate ventilation is critical for health and comfort. Depending on your climate, there are a number of strategies to ventilate your home. Ventilation is very important in an energy-efficient home. Air sealing techniques can reduce air leakage to the point that contaminants with known health effects such as formaldehyde, volatile organic compounds, and radon

123

Indoor Humidity Analysis of an Integrated Radiant Cooling and Desiccant Ventilation System  

E-Print Network (OSTI)

Radiant cooling is credited with improving energy efficiency and enhancing the comfort level as an alternative method of space cooling in mild and dry climates, according to recent research. Since radiant cooling panels lack the capability to remove latent heat, they normally are used in conjunction with an independent ventilation system, which is capable of decoupling the space sensible and latent loads. Condensation concerns limit the application of radiant cooling. This paper studies the dehumidification processes of solid desiccant systems and investigates the factors that affect the humidity levels of a radiantly cooled space. Hourly indoor humidity is simulated at eight different operating conditions in a radiantly cooled test-bed office. The simulation results show that infiltration and ventilation flow rates are the main factors affecting indoor humidity level and energy consumption in a radiantly cooled space with relatively constant occupancy. It is found that condensation is hard to control in a leaky office operated with the required ventilation rate. Slightly pressurizing the space is recommended for radiant cooling. The energy consumption simulation shows that a passive desiccant wheel can recover about 50% of the ventilation load.

Gong, X.; Claridge, D. E.

2006-01-01T23:59:59.000Z

124

Definition and means of maintaining the ventilation system confinement portion of the PFP safety envelope  

Science Conference Proceedings (OSTI)

The Plutonium Finishing Plant Heating Ventilation and Cooling system provides for the confinement of radioactive releases to the environment and provides for the confinement of radioactive contamination within designated zones inside the facility. This document identifies the components and procedures necessary to ensure the HVAC system provides these functions. Appendices E through J provide a snapshot of non-safety class HVAC equipment and need not be updated when the remainder of the document and Appendices A through D are updated.

Dick, J.D.; Grover, G.A.; O`Brien, P.M., Fluor Daniel Hanford

1997-03-05T23:59:59.000Z

125

Automated CO2 and VOC-Based Control of Ventilation Systems Under Real-Time Pricing  

Science Conference Proceedings (OSTI)

The potential for shedding or shifting building electric loads in response to real-time prices (RTP) can be significant. Such a strategy provides cost reduction opportunities for commercial building customers as well as load reduction opportunities for electric utilities. This report describes the successful demonstration of an integrated RTP sensor/control system designed to increase the energy efficiency of building ventilation systems, while maintaining indoor air quality via CO2 and volatile organic ...

1998-11-02T23:59:59.000Z

126

Experimental Study of the Floor Radiant Cooling System Combined with Displacement Ventilation  

E-Print Network (OSTI)

As a comfortable and energy-efficient air conditioning system, the application of floor radiant heating system is used increasingly greatly in the north of China. As a result, the feasibility of floor radiant cooling has gained more attention. To examine the thermodynamic performance of the floor radiant cooling system, we measured the operational conditions including the minimum floor surface temperature, the cooling capacity, and the indoor temperature field distribution under different outdoor temperatures in Beijing. Because the ground temperature changes with the mean temperature of the supplied and returned water and room temperature, the mean temperature of the supplied and retuned water was obtained. Finally, we analyzed the phenomenon of dewing and developed measures for preventing it. The dry air layer near the floor formed by a displacement ventilation system can effectively prevent dews on the surface of the floor in the wet and hot days in summer. In addition, for the sake of the displacement ventilation system, the heat transfer effect between floor and space is enhanced. Our analysis pointed out that floor radiant cooling system combined with displacement ventilation ensures good comfort and energy efficiency.

Ren, Y.; Li, D.; Zhang, Y.

2006-01-01T23:59:59.000Z

127

A genetic rule weighting and selection process for fuzzy control of heating, ventilating and air conditioning systems  

Science Conference Proceedings (OSTI)

In this paper, we propose the use of weighted linguistic fuzzy rules in combination with a rule selection process to develop accurate fuzzy logic controllers dedicated to the intelligent control of heating, ventilating and air conditioning systems concerning ... Keywords: BEMS, building energy management system, FLC, fuzzy logic controller, Fuzzy logic controllers, GA, genetic algorithm, Genetic algorithms, HVAC systems, HVAC, heating, ventilating, and air conditioning, KB, knowledge base, PMV, predicted mean vote index for thermal comfort, Rule selection, Weighted fuzzy rules

Rafael Alcal; Jorge Casillas; Oscar Cordn; Antonio Gonzlez; Francisco Herrera

2005-04-01T23:59:59.000Z

128

EVALUATION OF BEST AVAILABLE CONTROL TECHNOLOGY FOR TOXICS -TBACT- DOUBLE SHELL TANK FARMS PRIMARY VENTILATION SYSTEMS SUPPORTING WASTE TRANSFER OPERATIONS  

Science Conference Proceedings (OSTI)

This report is an evaluation of Best Available Control Technology for Toxics (tBACT) for installation and operation of the Hanford double shell (DST) tank primary ventilation systems. The DST primary ventilation systems are being modified to support Hanford's waste retrieval, mixing, and delivery of single shell tank (SST) and DST waste through the DST storage system to the Waste Treatment and Immobilizaiton Plant (WTP).

HAAS CC; KOVACH JL; KELLY SE; TURNER DA

2010-06-24T23:59:59.000Z

129

EVALUATION OF BEST AVAILABLE CONTROL TECHNOLOGY FOR TOXICS (TBACT) DOUBLE SHELL TANK FARMS PRIMARY VENTILATION SYSTEM SUPPORTING WASTE TRANSFER OPERATIONS  

Science Conference Proceedings (OSTI)

This report is an evaluation of Best Available Control Technology for Toxics (tBACT) for installation and operation of the Hanford double shell (DST) tank primary ventilation systems. The DST primary ventilation systems are being modified to support Hanford's waste retrieval, mixing, and delivery of single shell tank (SST) and DST waste throught the DST storage system to the Waste Treatment and Immobilization Plant (WTP).

KELLY SE; HAASS CC; KOVACH JL; TURNER DA

2010-06-03T23:59:59.000Z

130

Effects of Radiant Barrier Systems on Ventilated Attics in a Hot and Humid Climate  

E-Print Network (OSTI)

Results of side-by-side radiant barrier experiments using two identical 144 ft2 (nominal) test houses are presented. The test houses responded very similarly to weather variations prior to the retrofit. The temperatures of the test houses were controlled to within 0.3F. Ceiling heat fluxes were within 2 percent for each house. The results showed that a critical attic ventilation flow rate (0.25 CFM/ft2 ) existed after which the percentage reduction produced by the radiant barrier systems was not sensitive to increased airflows. The ceiling heat flux reductions produced by the radiant barrier systems were between 25 and 34 percent, with 28 percent being the reduction observed most often in the presence of attic ventilation. All results presented in this paper were for attics with R-19 unfaced fiberglass insulation and for a perforated radiant barrier with low emissivities on both sides.

Medina, M. A.; O'Neal, D. L.; Turner, W. D.

1992-05-01T23:59:59.000Z

131

Fort Calhoun Instrumentation & Control Systems Assessment: Volume 1: Baseline Evaluation of I&C Systems; Volume 2: Upgrade Evaluatio n for Electro Hydraulic Control and Turbine Supervisor  

Science Conference Proceedings (OSTI)

EPRI and Omaha Public Power District (OPPD), as a member utility, initiated the long term strategic planning process for the Calhoun instrumentation and control (I&C) systems. The first step was to perform a baseline evaluation of selected I&C systems, generating system status summaries to highlight both problems and opportunities for improvement. Then a more detailed upgrade evaluation was performed to investigate the potential benefits of upgrading the electro hydraulic control and turbine supervisory ...

1998-08-31T23:59:59.000Z

132

4 MW upgrade to the DIII-D fast wave current drive system  

SciTech Connect

The DIII-D fast wave current drive (FWCD) system is being upgraded by an additional 4 MW in the 30 to 120 MHz frequency range. This capability adds to the existing 2 MW 30 to 60 MHz system. Two new ABB transmitters of the type that are in use on the ASDEX-Upgrade tokamak in Garching will be used to drive two new water-cooled four-strap antennas to be installed in DIII-D in early 1994. The transmission and tuning system for each antenna will be similar to that now in use for the first 2 MW system on DIII-D, but with some significant improvements. One improvement consists of adding a decoupler element to counter the mutual coupling between the antenna straps which results in large imbalances in the power to a strap for the usual current drive intrastrap phasing of 90{degrees}. Another improvement is to utilize pressurized, ceramic-insulated transmission lines. The intrastrap phasing will again be controlled in pairs, with a pair of straps coupled in a resonant loop configuration, locking their phase difference at either 0 or 180{degrees}, depending upon the length of line installed. These resonant loops will incorporate a phase shifter so that they will be able to be tuned to resonance at several frequencies in the operating band of the transmitter. With the frequency change capability of the ABB generators, the FWCD frequency will thus be selectable on a shot-to-shot basis, from this preselected set of frequencies. The schedule is for experiments to begin with this added 4 MW capability in mid-1994. The details of the system are described.

deGrassie, J.S.; Pinsker, R.I.; Cary, W.P.

1993-10-01T23:59:59.000Z

133

Microsoft Word - WC_Digital_Communication_System_Upgrade_Project_CX_Update.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5, 2013 5, 2013 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearance Memorandum Ben Deschuytter Project Manager -TEP-CSB-1 Proposed Action: Digital Communication System Upgrade Project: 'D' Analog System Retirement and #WC SONET Ring (update to previous Categorical Exclusion issued on February 22, 2013) Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.19 Microwave, meteorological, and radio towers Location: Douglas County, Washington Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: In addition to the work described in the previous Categorical Exclusion, BPA proposes to add a permanent gravel parking area next to the existing access road outside BPA's Columbia Substation. The new parking area would be used to

134

Experimental Evaluation of a Downsized Residential Air Distribution System: Comfort and Ventilation Effectiveness  

SciTech Connect

Good air mixing not only improves thermal comfort Human thermal comfort is the state of mind that expresses satisfaction with the surrounding environment, according to ASHRAE Standard 55. Achieving thermal comfort for most occupants of buildings or other enclosures is a goal of HVAC design engineers. but also enhances ventilation effectiveness by inducing uniform supply-air diffusion. In general, the performance of an air distribution system in terms of comfort and ventilation effectiveness is influenced by the supply air temperature, velocity, and flow rate, all of which are in part dictated by the HVAC (Heating Ventilation Air Conditioning) In the home or small office with a handful of computers, HVAC is more for human comfort than the machines. In large datacenters, a humidity-free room with a steady, cool temperature is essential for the trouble-free system as well as the thermal load attributes. Any potential deficiencies associated with these design variables can be further exacerbated by an improper proximity of the supply and return outlets with respect to the thermal and geometrical characteristics of the indoor space. For high-performance houses, the factors influencing air distribution performance take on an even greater significance because of a reduced supply-air design flow rate resulting from downsized HVAC systems.

Jalalzadeh-Azar, A. A.

2007-01-01T23:59:59.000Z

135

DOE/EA-1247; Environmental Assessment for Electrical Power System Upgrades at Los Alamos National Laboratory (03/09/00)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

47 47 Environmental Assessment for Electrical Power System Upgrades at Los Alamos National Laboratory Los Alamos, New Mexico Final Document Date Prepared: March 9, 2000 Prepared by: U.S. Department of Energy, Los Alamos Area Office Final EA Electrical Power System Upgrades EA March 9, 2000 DOE/LAAO iii CONTENTS ACRONYMS AND TERMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii EXECUTIVE SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi 1.0 PURPOSE AND NEED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Role of Cooperating Agencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Background . . . . . . .

136

T10 SND UPGRADE  

E-Print Network (OSTI)

The program of upgrade of the Spherical Neutral Detector for future experiments at a new VEPP-2000 e + e ? collider is presented. Modernization includes upgrades of electromagnetic calorimeter, tracking system, detector electronics, data acquisition system, and offline software. It is also planned to equip the detector with two new subsystems: particle identification system based on aerogel ?erenkov counters and external electron tagging system for ?? physics. 1

unknown authors

2001-01-01T23:59:59.000Z

137

Transition dynamics between the multiple steady states in natural ventilation systems : from theories to applications in optimal controls  

E-Print Network (OSTI)

In this study, we investigated the multiple steady state behavior, an important observation in numerical and experimental studies in natural ventilation systems. The-oretical models are developed and their applications in ...

Yuan, Jinchao

2007-01-01T23:59:59.000Z

138

Human-machine interface (HMI) report for 241-SY-101 data acquisition [and control] system (DACS) upgrade study  

SciTech Connect

This report provides an independent evaluation of information for a Windows based Human Machine Interface (HMI) to replace the existing DOS based Iconics HMI currently used in the Data Acquisition and Control System (DACS) used at Tank 241-SY-101. A fundamental reason for this evaluation is because of the difficulty of maintaining the system with obsolete, unsupported software. The DACS uses a software operator interface (Genesis for DOS HMI) that is no longer supported by its manufacturer, Iconics. In addition to its obsolescence, it is complex and difficult to train additional personnel on. The FY 1997 budget allocated $40K for phase 1 of a software/hardware upgrade that would have allowed the old DOS based system to be replaced by a current Windows based system. Unfortunately, budget constraints during FY 1997 has prompted deferral of the upgrade. The upgrade needs to be performed at the earliest possible time, before other failures render the system useless. Once completed, the upgrade could alleviate other concerns: spare pump software may be able to be incorporated into the same software as the existing pump, thereby eliminating the parallel path dilemma; and the newer, less complex software should expedite training of future personnel, and in the process, require that less technical time be required to maintain the system.

Truitt, R.W.

1997-10-22T23:59:59.000Z

139

Whole-House Ventilation | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

air quality. There are four basic mechanical whole-house ventilation systems -- exhaust, supply, balanced, and energy recovery. Comparison of Whole-House Ventilation Systems...

140

FPGA-based Upgrade to RITS-6 Control System, Designed with EMP Considerations  

SciTech Connect

The existing control system for the RITS-6, a 20-MA 3-MV pulsed-power accelerator located at Sandia National Laboratories, was built as a system of analog switches because the operators needed to be close enough to the machine to hear pulsed-power breakdowns, yet the electromagnetic pulse (EMP) emitted would disable any processor-based solutions. The resulting system requires operators to activate and deactivate a series of 110-V relays manually in a complex order. The machine is sensitive to both the order of operation and the time taken between steps. A mistake in either case would cause a misfire and possible machine damage. Based on these constraints, a field-programmable gate array (FPGA) was chosen as the core of a proposed upgrade to the control system. An FPGA is a series of logic elements connected during programming. Based on their connections, the elements can mimic primitive logic elements, a process called synthesis. The circuit is static; all paths exist simultaneously and do not depend on a processor. This should make it less sensitive to EMP. By shielding it and using good electromagnetic interference-reduction practices, it should continue to operate well in the electrically noisy environment. The FPGA has two advantages over the existing system. In manual operation mode, the synthesized logic gates keep the operators in sequence. In addition, a clock signal and synthesized countdown circuit provides an automated sequence, with adjustable delays, for quickly executing the time-critical portions of charging and firing. The FPGA is modeled as a set of states, each state being a unique set of values for the output signals. The state is determined by the input signals, and in the automated segment by the value of the synthesized countdown timer, with the default mode placing the system in a safe configuration. Unlike a processor-based system, any system stimulus that results in an abort situation immediately executes a shutdown, with only a tens-of-nanoseconds delay to propagate across the FPGA. This paper discusses the design, installation, and testing of the proposed system upgrade, including failure statistics and modifications to the original design.

Harold D. Anderson, John T. Williams

2009-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "ventilation systems upgrading" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Upgrading drained coal mine methane to pipeline quality: a report on the commercial status of system suppliers  

Science Conference Proceedings (OSTI)

In today's scenario of growing energy demand worldwide and rising natural gas prices, any methane emitted into the atmosphere is an untapped resource of energy and potentially a lost opportunity for additional revenue. In 2005, 9.7% of the total US anthropogenic emissions of methane were attributed to coal production. In recent years, many gassy coal mines have seized the opportunity to recover coal mine methane (CMM) and supply it to natural gas pipeline systems. With natural gas prices in the US exceeding $7.00 per million Btu, CMM pipeline sales brought in an annual revenue topping $97 million in 2005. However, significant opportunity still exists for tapping into this resource as 22% of the drained CMM remains unutilized as of 2005, primarily because its quality does not meet the requirements of natural gas pipeline systems. Recent advances in technologies now offer off-the-shelf options in the US that can upgrade the drained CMM to pipeline quality. These gas upgrading technologies are not only opening up the market to lower-quality methane resources but also providing significant means for reducing emissions, since methane is over 20 times a more potent greenhouse gas than carbon dioxide. This report reviews current gas upgrading technologies available in the market for removal of typical CMM contaminants, provides examples of their successful commercial implementation and compiles a list of vendors specific to nitrogen rejection systems, since nitrogen exposes the biggest challenge to upgrading CMM. 2 figs., 3 tabs., 9 apps.

Carothers, F.P.; Schultz, M.L.

2008-01-15T23:59:59.000Z

142

RESIDENTIAL INTEGRATED VENTILATION ENERGY CONTROLLER - Energy ...  

A residential controller is described which is used to manage the mechanical ventilation systems of a home, installed to meet whole-house ventilation requirements, at ...

143

Development of an Integrated Residential Heating, Ventilation, Cooling, and Dehumidification System for Residences  

SciTech Connect

The Need and the Opportunity Codes such as ASHRAE 90.2 and IECC, and programs such as Energy Star and Builders Challenge, are causing new homes to be built to higher performance standards. As a result sensible cooling loads in new homes are going down, but indoor air quality prerogatives are causing ventilation rates and moisture loads to increase in humid climates. Conventional air conditioners are unable to provide the low sensible heat ratios that are needed to efficiently cool and dehumidify homes since dehumidification potential is strongly correlated with cooling system operating hours. The project team saw an opportunity to develop a system that is at least as effective as a conventional air conditioner plus dehumidifier, removes moisture without increasing the sensible load, reduces equipment cost by integrating components, and simplifies installation. Project Overview Prime contractor Davis Energy Group led a team in developing an Integrated Heating, Ventilation, Cooling, and Dehumidification (I-HVCD) system under the DOE SBIR program. Phase I and II SBIR project activities ran from July 2003 through December 2007. Tasks included: (1) Mechanical Design and Prototyping; (2) Controls Development; (3) Laboratory and Field Testing; and (4) Commercialization Activities Technology Description. Key components of the prototype I-HVCD system include an evaporator coil assembly, return and outdoor air damper, and controls. These are used in conjunction with conventional components that include a variable speed air handler or furnace, and a two-stage condensing unit. I-HVCD controls enable the system to operate in three distinct cooling modes to respond to indoor temperature and relative humidity (RH) levels. When sensible cooling loads are high, the system operates similar to a conventional system but varies supply airflow in response to indoor RH. In the second mode airflow is further reduced, and the reheat coil adds heat to the supply air. In the third mode, the reheat coil adds additional heat to maintain the supply air temperature close to the return air temperature (100% latent cooling). Project Outcomes Key Phase II objectives were to develop a pre-production version of the system and to demonstrate its performance in an actual house. The system was first tested in the laboratory and subsequently underwent field-testing at a new house in Gainesville, Florida. Field testing began in 2006 with monitoring of a 'conventional best practices' system that included a two stage air conditioner and Energy Star dehumidifier. In September 2007, the I-HVCD components were installed for testing. Both systems maintained uniform indoor temperatures, but indoor RH control was considerably better with the I-HVCD system. The daily variation from average indoor humidity conditions was less than 2% for the I-HVCD vs. 5-7% for the base case system. Data showed that the energy use of the two systems was comparable. Preliminary installed cost estimates suggest that production costs for the current I-HVCD integrated design would likely be lower than for competing systems that include a high efficiency air conditioner, dehumidifier, and fresh air ventilation system. Project Benefits This project verified that the I-HVCD refrigeration compacts are compact (for easy installation and retrofit) and can be installed with air conditioning equipment from a variety of manufacturers. Project results confirmed that the system can provide precise indoor temperature and RH control under a variety of climate conditions. The I-HVCD integrated approach offers numerous benefits including integrated control, easier installation, and reduced equipment maintenance needs. Work completed under this project represents a significant step towards product commercialization. Improved indoor RH control and fresh air ventilation are system attributes that will become increasingly important in the years ahead as building envelopes improve and sensible cooling loads continue to fall. Technologies like I-HVCD will be instrumental in meeting goals set by Building America

Hoeschele, M.A.; D.A. Springer

2008-06-18T23:59:59.000Z

144

Development of an Integrated Residential Heating, Ventilation, Cooling, and Dehumidification System for Residences  

Science Conference Proceedings (OSTI)

The Need and the Opportunity Codes such as ASHRAE 90.2 and IECC, and programs such as Energy Star and Builders Challenge, are causing new homes to be built to higher performance standards. As a result sensible cooling loads in new homes are going down, but indoor air quality prerogatives are causing ventilation rates and moisture loads to increase in humid climates. Conventional air conditioners are unable to provide the low sensible heat ratios that are needed to efficiently cool and dehumidify homes since dehumidification potential is strongly correlated with cooling system operating hours. The project team saw an opportunity to develop a system that is at least as effective as a conventional air conditioner plus dehumidifier, removes moisture without increasing the sensible load, reduces equipment cost by integrating components, and simplifies installation. Project Overview Prime contractor Davis Energy Group led a team in developing an Integrated Heating, Ventilation, Cooling, and Dehumidification (I-HVCD) system under the DOE SBIR program. Phase I and II SBIR project activities ran from July 2003 through December 2007. Tasks included: (1) Mechanical Design and Prototyping; (2) Controls Development; (3) Laboratory and Field Testing; and (4) Commercialization Activities Technology Description. Key components of the prototype I-HVCD system include an evaporator coil assembly, return and outdoor air damper, and controls. These are used in conjunction with conventional components that include a variable speed air handler or furnace, and a two-stage condensing unit. I-HVCD controls enable the system to operate in three distinct cooling modes to respond to indoor temperature and relative humidity (RH) levels. When sensible cooling loads are high, the system operates similar to a conventional system but varies supply airflow in response to indoor RH. In the second mode airflow is further reduced, and the reheat coil adds heat to the supply air. In the third mode, the reheat coil adds additional heat to maintain the supply air temperature close to the return air temperature (100% latent cooling). Project Outcomes Key Phase II objectives were to develop a pre-production version of the system and to demonstrate its performance in an actual house. The system was first tested in the laboratory and subsequently underwent field-testing at a new house in Gainesville, Florida. Field testing began in 2006 with monitoring of a 'conventional best practices' system that included a two stage air conditioner and Energy Star dehumidifier. In September 2007, the I-HVCD components were installed for testing. Both systems maintained uniform indoor temperatures, but indoor RH control was considerably better with the I-HVCD system. The daily variation from average indoor humidity conditions was less than 2% for the I-HVCD vs. 5-7% for the base case system. Data showed that the energy use of the two systems was comparable. Preliminary installed cost estimates suggest that production costs for the current I-HVCD integrated design would likely be lower than for competing systems that include a high efficiency air conditioner, dehumidifier, and fresh air ventilation system. Project Benefits This project verified that the I-HVCD refrigeration compacts are compact (for easy installation and retrofit) and can be installed with air conditioning equipment from a variety of manufacturers. Project results confirmed that the system can provide precise indoor temperature and RH control under a variety of climate conditions. The I-HVCD integrated approach offers numerous benefits including integrated control, easier installation, and reduced equipment maintenance needs. Work completed under this project represents a significant step towards product commercialization. Improved indoor RH control and fresh air ventilation are system attributes that will become increasingly important in the years ahead as building envelopes improve and sensible cooling loads continue to fall. Technologies like I-HVCD will be instrumental in meeting goals set by Building America

Hoeschele, M.A.; D.A. Springer

2008-06-18T23:59:59.000Z

145

A Forward Silicon Strip System for the ATLAS HL-LHC Upgrade  

E-Print Network (OSTI)

The LHC is successfully accumulating luminosity at a centre-of-mass energy of 8 TeV this year. At the same time, plans are rapidly progressing for a series of upgrades, culminating roughly eight years from now in the High Luminosity LHC (HL-LHC) project. The HL-LHC is expected to deliver approximately five times the LHC nominal instantaneous luminosity, resulting in a total integrated luminosity of around 3000 fb-1 by 2030. The ATLAS experiment has a rather well advanced plan to build and install a completely new Inner Tracker (IT) system entirely based on silicon detectors by 2020. This new IT will be made from several pixel and strip layers. The silicon strip detector system will consist of single-sided p-type detectors with five barrel layers and six endcap (EC) disks on each forward side. Each disk will consist of 32 trapezoidal objects dubbed petals, with all services (cooling, read-out, command lines, LV and HV power) integrated into the petal. Each petal will contain 18 silicon sensors grouped in...

Wonsak, S; The ATLAS collaboration

2012-01-01T23:59:59.000Z

146

Physics Design of a 28 GHz Electron Heating System for the National Spherical Torus Experiment Upgrade  

SciTech Connect

A megawatt-level, 28 GHz electron heating system is being designed to support non-inductive (NI) plasma current (I{sub p}) start-up and local heating and current drive (CD) in H-mode discharges in the National Spherical Torus Experiment Upgrade (NSTX-U). The development of fully NI I{sub p} start-up and ramp-up is an important goal of the NSTX-U research program. 28 GHz electron cyclotron (EC) heating is predicted to rapidly increase the central electron temperature (T{sub e}(0)) of low density NI plasmas generated by Coaxial Helicity Injection (CHI). The increased T{sub e}(0) will significantly reduce the Ip decay rate of CHI plasmas, allowing the coupling of fast wave heating and neutral beam injection. Also 28 GHz electron Bernstein wave (EBW) heating and CD can be used during the I{sub p} flat top in NSTX-U discharges when the plasma is overdense. Ray tracing and Fokker-Planck numerical simulation codes have been used to model EC and EBW heating and CD in NSTX-U. This paper presents a pre-conceptual design for the 28 GHz heating system and some of the results from the numerical simulations.

none,

2013-07-09T23:59:59.000Z

147

Energy Upgrade California | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Upgrade California Upgrade California Energy Upgrade California < Back Eligibility Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Other Sealing Your Home Ventilation Manufacturing Heating Windows, Doors, & Skylights Program Info Funding Source The American Reinvestment and Recovery Act of 2009, ratepayer funds State California Program Type State Rebate Program Rebate Amount Basic Upgrade Package: 1,000 Advance Upgrade Package: 1,500 - 4,000 The Energy Upgrade California program serves as a one-stop shop for California homeowners who want to improve the energy efficiency of their homes. The program connects homeowners with qualified contractors, and helps homeowners find all the available incentives from their local

148

Proposal for the award of a contract for the design, supply, installation and commissioning of Heating, Ventilation and Air-Conditioning (HVAC) systems for the PS accelerator infrastructure  

E-Print Network (OSTI)

Proposal for the award of a contract for the design, supply, installation and commissioning of Heating, Ventilation and Air-Conditioning (HVAC) systems for the PS accelerator infrastructure

2012-01-01T23:59:59.000Z

149

Proposal for the award of a contract for dismantling, removal and packaging of the existing Heating, Ventilation and Air-Conditioning (HVAC) systems in the PS tunnel  

E-Print Network (OSTI)

Proposal for the award of a contract for dismantling, removal and packaging of the existing Heating, Ventilation and Air-Conditioning (HVAC) systems in the PS tunnel

2012-01-01T23:59:59.000Z

150

User and Performance Impacts from Franklin Upgrades  

SciTech Connect

The NERSC flagship computer Cray XT4 system"Franklin" has gone through three major upgrades: quad core upgrade, CLE 2.1 upgrade, and IO upgrade, during the past year. In this paper, we will discuss the various aspects of the user impacts such as user access, user environment, and user issues etc from these upgrades. The performance impacts on the kernel benchmarks and selected application benchmarks will also be presented.

He, Yun (Helen)

2009-05-10T23:59:59.000Z

151

Ventilative cooling  

E-Print Network (OSTI)

This thesis evaluates the performance of daytime and nighttime passive ventilation cooling strategies for Beijing, Shanghai and Tokyo. A new simulation method for cross-ventilated wind driven airflow is presented . This ...

Graa, Guilherme Carrilho da, 1972-

1999-01-01T23:59:59.000Z

152

Finding of No Significant Impact and Final Environmental Assessment for the Y-12 Potable Water System Upgrade (03/29/06)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OF NO SIGNIFICANT IMPACT OF NO SIGNIFICANT IMPACT AND FINAL ENVIRONMENTAL ASSESSMENT FOR THE Y-12 POTABLE WATER SYSTEM UPGRADE U.S. Department of Energy Oak Ridge Y-12 Site Office National Nuclear Security Administration DOE/EA - 1548 March 2006 DOE/EA-1548 Finding of No Significant Impact and Final Environmental Assessment for the Y-12 Potable Water System Upgrade U.S. Department of Energy National Nuclear Security Administration March 2006 Final Environmental Assessment for the Y-12 Potable Water System Upgrade

153

Global Scratch Upgrade in Progress  

NLE Websites -- All DOE Office Websites (Extended Search)

Global Scratch Gets Global Scratch Gets an Upgrade Global Scratch Gets an Upgrade Improvements Will Include Higher Data Output Rates, Connection to PDSF October 29, 2013 The most used file system at the National Energy Research Scientific Computing Center (NERSC)-global scratch-just got an upgrade. As a result, some users may see their data output to global scratch reach up to 80 gigabytes per second. Although users will probably not see their 20-terabyte storage quotas increase, the upgrade ensures that global scratch remains flexible and paves the way for PDSF to eventually use the file system Because of the upgrade, users will also be able to better access their temporary data files or "scratch data" from any NERSC system, not just the one that generated it. Prior to the upgrade, Global scratch typically

154

Upgrading of TREAT experimental capabilities  

Science Conference Proceedings (OSTI)

The TREAT facility at the Argonne National Laboratory site in the Idaho National Engineering Laboratory is being upgraded to provide capabilities for fast-reactor-safety transient experiments not possible at any other experimental facility. Principal TREAT Upgrade (TU) goal is provision for 37-pin size experiments on energetics of core-disruptive accidents (CDA) in fast breeder reactor cores with moderate sodium void coefficients. this goal requires a significant enhancement of the capabilities of the TREAT facility, specifically including reactor control, hardened neutron spectrum incident on the test sample, and enlarged building. The upgraded facility will retain the capability for small-size experiments of the types currently being performed in TREAT. Reactor building and crane upgrading have been completed. TU schedules call for the components of the upgraded reactor system to be finished in 1984, including upgraded TREAT fuel and control system, and expanded coverage by the hodoscope fuel-motion diagnostics system.

Dickerman, C.E.; Rose, D.; Bhattacharyya, S.K.

1982-01-01T23:59:59.000Z

155

Construction and Performance of Large-Area Triple-GEM Prototypes for Future Upgrades of the CMS Forward Muon System  

E-Print Network (OSTI)

At present, part of the forward RPC muon system of the CMS detector at the CERN LHC remains uninstrumented in the high-\\eta region. An international collaboration is investigating the possibility of covering the 1.6 radiation hardness, these micro-pattern gas detectors are an appealing option for simultaneously enhancing muon tracking and triggering capabilities in a future upgrade of the CMS detector. A general overview of this feasibility study will be presented. The design and construction of small (10\\times10 cm2) and full-size trapezoidal (1\\times0.5 m2) triple-GEM prototypes will be described. During detector assembly, different techniques for stretching the GEM foils were tested. Results from measurements with x-rays and from test beam campaigns at the CERN SPS will be shown for the small and large prototypes. Preliminary simulation studies on the expected muon reconstruction and trigger performances of this proposed upgraded muon system will be reported.

M. Tytgat; A. Marinov; N. Zaganidis; Y. Ban; J. Cai; H. Teng; A. Mohapatra; T. Moulik; M. Abbrescia; A. Colaleo; G. de Robertis; F. Loddo; M. Maggi; S. Nuzzo; S. A. Tupputi; L. Benussi; S. Bianco; S. Colafranceschi; D. Piccolo; G. Raffone; G. Saviano; M. G. Bagliesi; R. Cecchi; G. Magazzu; E. Oliveri; N. Turini; T. Fruboes; D. Abbaneo; C. Armagnaud; P. Aspell; S. Bally; U. Berzano; J. Bos; K. Bunkowski; J. P. Chatelain; J. Christiansen; A. Conde Garcia; E. David; R. De Oliveira; S. Duarte Pinto; S. Ferry; F. Formenti; L. Franconi; A. Marchioro; K. Mehta; J. Merlin; M. V. Nemallapudi; H. Postema; A. Rodrigues; L. Ropelewski; A. Sharma; N. Smilkjovic; M. Villa; M. Zientek; A. Gutierrez; P. E. Karchin; K. Gnanvo; M. Hohlmann; M. J. Staib

2011-11-30T23:59:59.000Z

156

A multi-objective evolutionary algorithm for an effective tuning of fuzzy logic controllers in heating, ventilating and air conditioning systems  

Science Conference Proceedings (OSTI)

This paper focuses on the use of multi-objective evolutionary algorithms to develop smartly tuned fuzzy logic controllers dedicated to the control of heating, ventilating and air conditioning systems, energy performance, stability and indoor comfort ... Keywords: Fuzzy logic controllers, Genetic tuning, HVAC systems, Heating, ventilating, and air conditioning systems, Linguistic 2-tuples representation, Multi-objective evolutionary algorithms, Rule selection

Mara Jos Gacto; Rafael Alcal; Francisco Herrera

2012-03-01T23:59:59.000Z

157

Multifamily Ventilation - Best Practice?  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Multifamily Ventilation - Best Practice? Multifamily Ventilation - Best Practice? Dianne Griffiths April 29, 2013 Presentation Outline * Basic Objectives * Exhaust Systems * Make-up Air Systems Two Primary Ventilation Objectives 1) Providing Fresh Air - Whole-House 2) Removing Pollutants - Local Exhaust Our goal is to find the simplest solution that satisfies both objectives while minimizing cost and energy impacts. Common Solution: Align local exhaust with fresh air requirements (Ex: 25 Bath + 25 Kitchen) Exhaust-Driven Fresh Air Design * Exhaust slightly depressurizes the units * Outside air enters through leaks, cracks, or planned inlets * Widely used in the North Multifamily Ventilation Best Practice * Step 1: Understand ventilation requirements * Step 2: Select the simplest design that can

158

Cultural Resource Investigation for the Materials and Fuels Complex Wastewater System Upgrade at the Idaho National Laboratory  

SciTech Connect

The Materials and Fuels Complex (MFC) located in Bingham County at the Idaho National Laboratory (INL) in southeastern Idaho is considering several alternatives to upgrade wastewater systems to meet future needs at the facility. In April and May of 2010, the INL Cultural Resource Management Office conducted archival searches, archaeological field surveys, and coordination with the Shoshone-Bannock Tribes to identify cultural resources that may be adversely affected by the proposed construction and to provide recommendations to protect any resources listed or eligible for listing on the National Register of Historic Places. These investigations showed that one National Register-eligible archaeological site is located on the boundary of the area of potential effects for the wastewater upgrade. This report outlines protective measures to help ensure that this resource is not adversely affected by construction.

Brenda R. Pace; Julie B raun Williams; Hollie Gilbert; Dino Lowrey; Julie Brizzee

2010-05-01T23:59:59.000Z

159

EIS-0484: Montana-to-Washington Transmission System Upgrade Project in Washington, Idaho, and Montana  

Energy.gov (U.S. Department of Energy (DOE))

This EIS will evaluate the environmental impacts of a proposal to replace roughly 12 miles of transmission line on the Taft-Dworshak 500-kV transmission line, install new series capacitors on the Garrison-Taft 500-kV transmission line, and perform various upgrades to Bell, Hatwai, Dworshak, Garrison, and Hot Springs substations.

160

HOW THE LEED VENTILATION CREDIT IMPACTS ENERGY CONSUMPTION OF GSHP SYSTEMS A CASE STUDY FOR PRIMARY SCHOOLS  

Science Conference Proceedings (OSTI)

This paper presents a study on the impacts of increased outdoor air (OA) ventilation on the performance of ground-source heat pump (GSHP) systems that heat and cool typical primary schools. Four locations Phoenix, Miami, Seattle, and Chicago are selected in this study to represent different climate zones in the United States. eQUEST, an integrated building and HVAC system energy analysis program, is used to simulate a typical primary school and the GSHP system at the four locations with minimum and 30% more than minimum OA ventilation. The simulation results show that, without an energy recovery ventilator, the 30% more OA ventilation results in an 8.0 13.3% increase in total GSHP system energy consumption at the four locations. The peak heating and cooling loads increase by 20.2 30% and 14.9 18.4%, respectively, at the four locations. The load imbalance of the ground heat exchanger is increased in hot climates but reduced in mild and cold climates.

Liu, Xiaobing [ORNL

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ventilation systems upgrading" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Research on Automatically Identification of Diagonal Air-flow Branches of Complex Ventilation System of Coal Mines  

Science Conference Proceedings (OSTI)

air-flow branches identification and stability analysis is one of the core contents of stability and reliability theory of mine ventilation system. This current paper takes deeply research on diagonal air-flow branches. Limitations of the path method ... Keywords: diagonal air-flow branch, path collection, path method, node-position method

Feng Cai, Zegong Liu

2012-07-01T23:59:59.000Z

162

BUILDOUT AND UPGRADE OF CENTRAL EMERGENCY GENERATOR SYSTEM, GENERATOR 3 AND 4 ELECTRICAL INSTALLATION  

Science Conference Proceedings (OSTI)

SECTION 01000SUMMARY OF WORK PART 1GENERAL 1.1 SUMMARY The work to be performed under this project consists of providing the labor, equipment, and materials to perform "Buildout and Upgrade of Central Emergency Generator System, Generator 3 and 4 Electrical Installation" for the National Aeronautics and Space Administration at the Dryden Flight Research Center (NASA/DFRC), Edwards, California 93523. All modifications to existing substations and electrical distribution systems are the responsibility of the contractor. It is the contractors responsibility to supply a complete and functionally operational system. The work shall be performed in accordance with these specifications and the related drawings. The work of this project is defined by the plans and specifications contained and referenced herein. This work specifically includes but is not limited to the following: Scope of Work - Installation 1. Install all electrical wiring and controls for new generators 3 and 4 to match existing electrical installation for generators 1 and 2 and in accordance with drawings. Contractor shall provide as-built details for electrical installation. 2. Install battery charger systems for new generators 3 and 4 to match existing battery charging equipment and installation for generators 1 and 2. This may require exchange of some battery charger parts already on-hand. Supply power to new battery chargers from panel and breakers as shown on drawings. Utilize existing conduits already routed to generators 3 and 4 to field route the new wiring in the most reasonable way possible. 3. Install electrical wiring for fuel/lube systems for new generators 3 and 4 to match existing installation for generators 1 and 2. Supply power to lube oil heaters and fuel system (day tanks) from panel and breakers as shown on drawings. Utilize existing conduits already routed to generators 3 and 4 to field route the new wiring in the most reasonable way possible. Add any conduits necessary to complete wiring to fuel systems. 4. Install power to new dampers/louvers from panel and breakers as shown on drawings. Wiring shall be similar to installation to existing dampers/louvers. Utilize existing conduits already routed to louver areas to field route the new wiring in the most reasonable way possible. Add any conduits necessary to complete wiring to new dampers/louvers. 5. Install power to jacket water heaters for new generators 3 and 4 from panel and breakers as shown on drawings. Utilize existing conduits already routed to generators 3 and 4 to field route the new wiring in the most reasonable way possible. 6. Install new neutral grounding resistor and associated parts and wiring for new generators 3 and 4 to match existing installation for generators 1 and 2. Grounding resistors will be Government Furnished Equipment (GFE). 7. Install two new switchgear sections, one for generator #3 and one for generator #4, to match existing generator #1 cubicle design and installation and in accordance with drawings and existing parts lists. This switchgear will be provided as GFE. 8. Ground all new switchgear, generators 3 and 4, and any other new equipment to match existing grounding connections for generators 1 and 2, switchgear and other equipment. See drawings for additional details. Grounding grid is already existing. Ensure that all grounding meets National Electrical Code requirements. 9. Cummins DMC control for the generator and switchgear syste

Gary D. Seifert; G. Shawn West; Kurt S. Myers; Jim Moncur

2006-07-01T23:59:59.000Z

163

Modelica Library for Building Heating, Ventilation and Air-Conditioning Systems  

DOE Green Energy (OSTI)

This paper presents a freely available Modelica library for building heating, ventilation and air conditioning systems. The library is based on the Modelica.Fluid library. It has been developed to support research and development of integrated building energy and control systems. The primary applications are controls design, energy analysis and model-based operation. The library contains dynamic and steady-state component models that are applicable for analyzing fast transients when designing control algorithms and for conducting annual simulations when assessing energy performance. For most models, dimensional analysis is used to compute the performance for operating points that differ from nominal conditions. This allows parameterizing models in the absence of detailed geometrical information which is often impractical to obtain during the conceptual design phase of building systems. In the first part of this paper, the library architecture and the main classes are described. In the second part, an example is presented in which we implemented a model of a hydronic heating system with thermostatic radiator valves and thermal energy storage.

Wetter, Michael

2009-06-17T23:59:59.000Z

164

CATEGORICAL EXCLUSION FOR 331 BUILDING IRRIGATION UPGRADES,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EXCLUSION FOR 331 BUILDING IRRIGATION UPGRADES, EXCLUSION FOR 331 BUILDING IRRIGATION UPGRADES, 300 AREA, HANFORD SITE, RICHLAND, WASHINGTON Proposed Action: The U.S. Department of Energy (DOE), Pacific Northwest Site Office (PNSO) proposes to upgrade a landscaping irrigation system in the 300 Area. Location of Action: In the landscaped area around the 331 Building, Hanford Site Description of the Proposed Action: The proposed action is to upgrade the existing 331 Building landscaping irrigation system by using nearby aquaculture effluent instead of

165

Liquid ventilation  

E-Print Network (OSTI)

For 350 million years, fish have breathed liquid through gills. Mammals evolved lungs to breathe air. Rarely, circumstances can occur when a mammal needs to `turn back the clock' to breathe through a special liquid medium. This is particularly true if surface tension at the air-liquid interface of the lung is increased, as in acute lung injury. In this condition, surface tension increases because the pulmonary surfactant system is damaged, causing alveolar collapse, atelectasis, increased right-to-left shunt and hypoxaemia. 69 The aims of treatment are: (i) to offset increased forces causing lung collapse by applying mechanical ventilation with PEEP; (ii) to decrease alveolar surface tension with exogenous surfactant; (iii) to eliminate the air-liquid interface by filling the lung with a fluid in

U. Kaisers; K. P. Kelly; T. Busch

2003-01-01T23:59:59.000Z

166

A systems architecture-based approach to assess candidate upgrades to complex systems  

E-Print Network (OSTI)

The Compatibility Assessment Method (CAM), a new structured process for assessing compatibility between parent systems and child subsystems is proposed and applied to several cases where subsystems are being replaced in ...

Long, David Scott Andrew

2012-01-01T23:59:59.000Z

167

Environmental Assessment for the centralization and upgrading of the sanitary wastewater system at the Savannah River Site  

Science Conference Proceedings (OSTI)

The Department of Energy (DOE) has prepared an environmental assessment for the proposed centralization and upgrading of the sanitary wastewater system on the Savannah River Site (SRS), near Aiken, proposed action is not a major Federal action significantly affecting the South Carolina. Based on the analyses in the EA, DOE has determined that the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement is not required, and DOE is issuing this Finding of No Significant Impact and Floodplain Statement of Findings.

Not Available

1993-09-01T23:59:59.000Z

168

Numerical Simulation of a Displacement Ventilation System with Multi-heat Sources and Analysis of Influential Factors  

E-Print Network (OSTI)

Displacement ventilation (DV) is a promising ventilation concept due to its high ventilation efficiency. In this paper, the application of the CFD method, the velocity and temperature fields of three-dimensional displacement ventilation systems with double heat sources are numerically simulated. The model is verified by experimental data. The results of the study show that thermal stratification characteristics exist in indoor temperature fields. The paper also analyzes the influence of different influential factors, e.g., the distance between heat sources, temperature of heat source, heat characteristics of the wall and outdoor temperature. It was found that the human requirement for comfort is satisfied easily when the distance between heat sources is long. Under the conditions simulated in this paper, when the distance was more than 0.8m, the temperature distribution tended to be average and steady, and it did not change as the distance changed. Second, the temperature change of the thermal current has a large influence on the indoor temperature. The rise in thermal current temperature makes the vertical temperature gradient in the room increase. The upper temperature of the room becomes higher, as does the height of the high temperature air level that lies in the upper part of the room. Finally, both the heat loss of the surrounding structure and the change in outdoor temperature have a large influence on indoor temperature. However, it does not influence the thermal stratification characteristics of DV. The only thing that has changed is the thermal stratification height.

Wu, X.; Gao, J.; Wu, W.

2006-01-01T23:59:59.000Z

169

Demonstration of Demand Control Ventilation Technology  

Science Conference Proceedings (OSTI)

Demand Control Ventilation (DCV) is one of the control strategies that can be used modulate the amount of ventilation air for space conditioning in commercial buildings. DCV modulates the amount of ventilation air introduced into the heating, ventilation and air conditioning (HVAC) system based on carbon dioxide levels sensed in the areas served. The carbon dioxide level is a proxy for the number of people within the space, from which the required quantity of ventilation air is determined. By using this ...

2011-12-30T23:59:59.000Z

170

Ventilation Controller for Improved Indoor Air Quality  

Iain Walker and colleagues at Berkeley Lab have developed a dynamic control system for whole-house ventilation fans that provides maximal air quality while reducing by 18-44% the energy spent on ventilation. The system, the Residential Integrated ...

171

Waste tank 241-SY-101 dome airspace and ventilation system response to a flammable gas plume burn  

SciTech Connect

A series of flammable gas plume burn and transient pressure analyses have been completed for a nuclear waste tank (241-SY-101) and associated tank farm ventilation system at the U.S. Department of Energy`s Hanford facility. The subject analyses were performed to address issues concerning the effects of transient pressures resulting from igniting a small volume of concentrated flammable gas just released from the surface of the waste as a plume and before the flammable gas concentration could be reduced by mixing with the dome airspace by local convection and turbulent diffusion. Such a condition may exist as part of an in progress episode gas release (EGR) or gas plume event. The analysis goal was to determine the volume of flammable gas that if burned within the dome airspace would result in a differential pressure, after propagating through the ventilation system, greater than the current High Efficiency Particulate Filter (HEPA) limit of 2.49 KPa (10 inches of water or 0. 36 psi). Such a pressure wave could rupture the tank ventilation system inlet and outlet HEPA filters leading to a potential release of contaminants to the environment

Heard, F.J.

1995-11-01T23:59:59.000Z

172

The Ural Electrochemical Integrated Plant Sustainability Program of Nuclear Material Protection, Control and Accounting System Upgrades  

Science Conference Proceedings (OSTI)

UEIP has been working on a comprehensive sustainability program that includes establishing a site sustainability working group, information gathering, planning, organizing, developing schedule and estimated costs, trhough joint UEIP-US DOE/NNSA National Laboratory sustainability contracts. Considerable efforts have been necessary in the sustainability planning, monitoring, and control of the scope of work using tools such as Microsoft Excel, Microsoft Project and SAP R/3. While information interchanges within the sustainability program provides adequate US assurances that US funds are well spent through its quarterly reporting methodology, proper information security and protection measures are taken throughout the process. Decommissioning of outdated equipment has also become part of determining sustainability requirements and processes. The sites sustainability program has facilitated the development of a transition plan toward eventual full Russian funding of sustaining nuclear security upgrades.

Vakhonin, Alexander; Yuldashev, Rashid; Dabbs, Richard D.; Carroll, Michael F.; Garrett, Albert G.; Patrick, Scott W.; Ku, Eshter M.

2009-09-30T23:59:59.000Z

173

Descriptions and diagrams of the primary and annulus ventilation systems of the double-shell tank farms as of January 1988  

Science Conference Proceedings (OSTI)

This document is a compilation of information describing the ventilation systems of the Double-Shell Tank farms (214-AN, -AP, -AW, -AW, -AY, -AZ, and -SY). A general description of the primary tank and annulus ventilation systems is given along with specific information on the high efficiency particulate air (HEPA) filters, condensers, preheaters, exhaust fans, and piping. This information is considered to be current as of January 1988. 38 refs, 20 figs, 30 tabs.

Blackman, A.E.; Waters, E.D.

1994-12-28T23:59:59.000Z

174

System Performance Measurement Supports Design Recommendations for Solar Ventilation Preheat System (Brochure)  

DOE Green Energy (OSTI)

Technical briefing to report the outcomes of a data monitoring effort to determine the nature of solar vent preheat system performance problems at a U.S. military installation. The analysis reports up-to-date research and findings regarding system design, helping to clarify the issue as a factor of system design, rather than a shortcoming of SVP systems.

Not Available

2011-08-01T23:59:59.000Z

175

THE RELATIVISTIC HEAVY ION COLLIDER (RHIC) REFRIGERATOR SYSTEM AT BROOKHAVEN NATIONAL LABORATORY: PHASE III OF THE SYSTEM PERFORMANCE AND OPERATIONS UPGRADES FOR 2003  

SciTech Connect

An ongoing program at Brookhaven National Laboratory (BNL) consists of improving the efficiency of the Relativistic Heavy Ion Collider (RHIC) cryogenic system and reducing its power consumption. Phase I and I1 of the program addressed plant operational improvements and modifications that resulted in substantial operational cost reduction and improved system reliability and stability, and a compressor input power reduction of 2 MW has been demonstrated. Phase 111, now under way, consists of plans for further increasing the efficiency of the plant by adding a load ''wet'' turbo-expander and its associated heat exchangers at the low temperature end of the plant. This additional stage of cooling at the coldest level will further reduce the required compressor flow and therefore compressor power input. This paper presents the results of the plant characterization, as it is operating presently, as well as the results of the plant simulations of the various planned upgrades for, the plant. The immediate upgrade includes the changes associated with the load expander. The subsequent upgrade will involve the resizing of expander 5 and 6 to increase their efficiencies. The paper summarizes the expected improvement in the plant efficiency and the overall reduction in the compressor power.

SIDI-YEKHLEF,A.; TUOZZOLO,J.; THAN, R.; KNUDSEN, P.; ARENIUS, D.

2005-08-29T23:59:59.000Z

176

VENTILATION (HVAC) FAILURE (BUILDING WIDE)  

E-Print Network (OSTI)

VENTILATION (HVAC) FAILURE (BUILDING WIDE) A failure or shutdown of the ventilation system will be signaled by cessation of the audible background "rumbling" sound of the building's HVAC system. As building durations. NOTE: Due to unpredictable pressure differentials in and around the labs during an HVAC failure

Strynadka, Natalie

177

Report on Applicability of Residential Ventilation Standards in California  

E-Print Network (OSTI)

but also because passive, whole-house ventilation systemsPassive Ventilation by Constant Area Vents to Maintain Indoor Air Quality in Houses",

Sherman, Max H.; McWilliam, Jennifer A.

2005-01-01T23:59:59.000Z

178

Review of Literature Related to Residential Ventilation Requirements  

E-Print Network (OSTI)

typical existing house. Designed passive ventilation systemsPassive Ventilation by Constant Area Vents to Maintain Indoor Air Quality in Houses."House Ventilation Rates Local Exhaust Rates Air Distribution and Duct Leakage Infiltration Windows and Passive

McWilliams, Jennifer; Sherman, Max

2005-01-01T23:59:59.000Z

179

Innovative Energy Efficient Industrial Ventilation  

E-Print Network (OSTI)

This paper was written to describe an innovative on-demand industrial ventilation system for woodworking, metalworking, food processing, pharmaceutical, chemical, and other industries. Having analyzed existing industrial ventilation in 130 factories, we found striking dichotomy between the classical static design of ventilation systems and constantly changing workflow and business demands. Using data from real factories, we are able to prove that classical industrial ventilation design consumes 70 % more energy than necessary. Total potential electricity saving achieved by using on-demand systems instead of classically designed industrial ventilation in the U.S. could be 26 billion kWh. At the average electricity cost of 7 cents per kWh, this would represent $1.875 billion. Eighty such systems are already installed in the USA and European Union.

Litomisky, A.

2005-01-01T23:59:59.000Z

180

Upgrade Boilers with Energy-Efficient Burners  

SciTech Connect

This revised ITP steam tip sheet on upgrading boilers provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ventilation systems upgrading" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Generic Requirements Specification for Upgrading the Safety-Related Reactor Trip and Engineered Safety Features Actuation Systems in Westinghouse PWR Nuclear Power Plants  

Science Conference Proceedings (OSTI)

To address obsolescence concerns, a generic requirements specification for digital upgrades to existing reactor trip systems and engineered safety features actuation systems in a Westinghouse pressurized water reactor (PWR) was developed. System requirements are based on a 4-loop PWR with a solid-state protection system since this typifies the most advanced capability level. However, the specification is applicable to relay-based 2- and 3-loop plants where some or all of the advances in the newest solid-...

2001-10-19T23:59:59.000Z

182

Recharge Elec. Upgrade Type  

E-Print Network (OSTI)

battery can be plugged in to an electric outlet to be recharged. Background: PHEVs 1. How many U" cost) · Variety of upgrade packages selected--some with zero upgrades · Most popular upgrade" Price Scenario ("home recharges" only) · "Base" PHEV=$3,000 premium · Added costs for upgrades (Full

California at Davis, University of

183

Measuring Residential Ventilation  

NLE Websites -- All DOE Office Websites (Extended Search)

Measuring Residential Ventilation Measuring Residential Ventilation System Airflows: Part 2 - Field Evaluation of Airflow Meter Devices and System Flow Verification J. Chris Stratton, Iain S. Walker, Craig P. Wray Environmental Energy Technologies Division October 2012 LBNL-5982E 2 Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any

184

Whole-House Ventilation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Whole-House Ventilation Whole-House Ventilation Whole-House Ventilation May 30, 2012 - 2:37pm Addthis A whole-house ventilation system with dedicated ducting in a new energy-efficient home. | Photo courtesy of ©iStockphoto/brebca. A whole-house ventilation system with dedicated ducting in a new energy-efficient home. | Photo courtesy of ©iStockphoto/brebca. What does this mean for me? Whole-house ventilation is critical in an energy-efficient home to maintain adequate indoor air quality and comfort. The whole-house ventilation system you choose will depend upon your climate, budget, and the availability of experienced contractors in your area. Energy-efficient homes -- both new and existing -- require mechanical ventilation to maintain indoor air quality. There are four basic mechanical

185

GENII (Generation II): The Hanford Environmental Radiation Dosimetry Software System: Volume 3, Code maintenance manual: Hanford Environmental Dosimetry Upgrade Project  

Science Conference Proceedings (OSTI)

The Hanford Environmental Dosimetry Upgrade Project was undertaken to incorporate the internal dosimetry models recommended by the International Commission on Radiological Protection (ICRP) in updated versions of the environmental pathway analysis models used at Hanford. The resulting second generation of Hanford environmental dosimetry computer codes is compiled in the Hanford Environmental Dosimetry System (Generation II, or GENII). This coupled system of computer codes is intended for analysis of environmental contamination resulting from acute or chronic releases to, or initial contamination of, air, water, or soil, on through the calculation of radiation doses to individuals or populations. GENII is described in three volumes of documentation. This volume is a Code Maintenance Manual for the serious user, including code logic diagrams, global dictionary, worksheets to assist with hand calculations, and listings of the code and its associated data libraries. The first volume describes the theoretical considerations of the system. The second volume is a Users' Manual, providing code structure, users' instructions, required system configurations, and QA-related topics. 7 figs., 5 tabs.

Napier, B.A.; Peloquin, R.A.; Strenge, D.L.; Ramsdell, J.V.

1988-09-01T23:59:59.000Z

186

GENII: The Hanford Environmental Radiation Dosimetry Software System: Volume 2, Users' manual: Hanford Environmental Dosimetry Upgrade Project  

Science Conference Proceedings (OSTI)

The Hanford Environmental Dosimetry Upgrade Project was undertaken to incorporate the internal dosimetry models recommended by the International Commission on Radiological Protection (ICRP) in updated versions of the environmental pathway analysis models used at Hanford. The resulting second generation of Hanford environmental dosimetry computer codes is compiled in the Hanford Environmental Dosimetry System (Generation II, or GENII). The purpose of this coupled system of computer codes is to analyze environmental contamination of, air, water, or soil. This is accomplished by calculating radiation doses to individuals or populations. GENII is described in three volumes of documentation. This second volume is a Users' Manual, providing code structure, users' instructions, required system configurations, and QA-related topics. The first volume describes the theoretical considerations of the system. The third volume is a Code Maintenance Manual for the user who requires knowledge of code detail. It includes logic diagrams, global dictionary, worksheets, example hand calculations, and listings of the code and its associated data libraries. 27 refs., 17 figs., 23 tabs.

Napier, B.A.; Peloquin, R.A.; Strenge, D.L.; Ramsdell, J.V.

1988-11-01T23:59:59.000Z

187

Assessment of Energy Savings Potential from the Use of Demand Control Ventilation Systems in General Office Spaces in California  

E-Print Network (OSTI)

Nonresidential ACM Manual 2.0.3OutdoorAirVentilationACM Manual 3 Table 4 Minimum Outdoor Air

Hong, Tianzhen

2010-01-01T23:59:59.000Z

188

The LHCb VELO Upgrade  

E-Print Network (OSTI)

LHCb is a forward spectrometer experiment dedicated to the study of new physics in the decays of beauty and charm hadrons produced in proton collisions at the Large Hadron Collider (LHC) at CERN. The VErtex LOcator (VELO) is the microstrip silicon detector surrounding the interaction point, providing tracking and vertexing measurements. The upgrade of the LHCb experiment, planned for 2018, will increase the luminosity up to $\\rm 2\\times10^{33}\\ cm^{-2}s^{-1}$ and will perform the readout as a trigger-less system with an event rate of 40 MHz. Extremely non-uniform radiation doses will reach up to $\\rm 5 \\times 10^{15}$ 1 MeV$\\rm n_{eq}/cm^2$ in the innermost regions of the VELO sensors, and the output data bandwidth will be increased by a factor of 40. An upgraded detector is under development based in a pixel sensor of the Timepix/Medipix family, with 55 x 55 $\\rm \\mu m^2$ pixels. In addition a microstrip solution with finer pitch, higher granularity and thinner than the current detector is being developed in parallel. The current status of the VELO upgrade program will be described together with recent testbeam results.

Rodriguez Perez P.; LHCb VELO Group

2013-02-25T23:59:59.000Z

189

X-ray detection system development for tandem mirror experiment upgrade (TMX-U): hardware and software  

SciTech Connect

This x-ray detection system measures the electron Bremsstrahlung spectrum from the Tandem Mirror Experiment-Upgrade (TMX-U). From this spectrum, we can calculate the electron temperature. The low energy portion of the spectrum (0.5 to 40 keV) is measured by a liquid-nitrogen-cooled, lithium-drifted silicon detector. The higher energy spectrometer uses an intrinsic germanium detector to accommodate the 100 to 200 keV spectra. The system proceeds as follows. The preamplified detector signals are digitized by a high-speed A-to-D converter located in a Computer Automated Measurement and Control (CAMAC) crate. The data is then stored in a histogramming memory via a data router. The CAMAC crate interfaces with a local desktop computer or the main data acquisition computer that stores the data. The software sets up the modules, acquires the energy spectra (with sample times as short as 2 ms) and plots it. Up to 40 time-resolved spectra are available during one plasma cycle. The actual module configuration, CAMAC interfacing and software that runs the system are the subjects of this paper.

Jones, R.M.; Failor, B.H.; Coutts, G.W.

1984-12-01T23:59:59.000Z

190

Review of Residential Ventilation Technologies.  

NLE Websites -- All DOE Office Websites (Extended Search)

Review of Residential Ventilation Technologies. Review of Residential Ventilation Technologies. Title Review of Residential Ventilation Technologies. Publication Type Journal Article LBNL Report Number LBNL-57730 Year of Publication 2007 Authors Russell, Marion L., Max H. Sherman, and Armin F. Rudd Journal HVAC&R Research Volume 13 Start Page Chapter Pagination 325-348 Abstract This paper reviews current and potential ventilation technologies for residential buildings in North America and a few in Europe. The major technologies reviewed include a variety of mechanical systems, natural ventilation, and passive ventilation. Key parameters that are related to each system include operating costs, installation costs, ventilation rates, heat recovery potential. It also examines related issues such as infiltration, duct systems, filtration options, noise, and construction issues. This report describes a wide variety of systems currently on the market that can be used to meet ASHRAE Standard 62.2. While these systems generally fall into the categories of supply, exhaust or balanced, the specifics of each system are driven by concerns that extend beyond those in the standard and are discussed. Some of these systems go beyond the current standard by providing additional features (such as air distribution or pressurization control). The market will decide the immediate value of such features, but ASHRAE may wish to consider modifications to the standard in the future.

191

Measure Guideline: Ventilation Cooling  

SciTech Connect

The purpose of this measure guideline on ventilation cooling is to provide information on a cost-effective solution for reducing cooling system energy and demand in homes located in hot-dry and cold-dry climates. This guideline provides a prescriptive approach that outlines qualification criteria, selection considerations, and design and installation procedures.

Springer, D.; Dakin, B.; German, A.

2012-04-01T23:59:59.000Z

192

RF Power Detector/Monitor Upgrade for the 500MHz Systems at the ALS  

E-Print Network (OSTI)

THE 500MHZ SYSTEMS AT THE ALS* K. Baptiste, LBNL, Berkeley,In the Advanced Light Source (ALS) Booster Ring and Storagedetectors in service in the ALS Storage Ring RF System only

Baptiste, K.

2003-01-01T23:59:59.000Z

193

The upgraded data acquisition system for beam loss monitoring at the Fermilab Tevatron and Main Injector  

SciTech Connect

A VME-based data acquisition system for beam-loss monitors has been developed and is in use in the Tevatron and Main Injector accelerators at the Fermilab complex. The need for enhanced beam-loss protection when the Tevatron is operating in collider-mode was the main driving force for the new design. Prior to the implementation of the present system, the beam-loss monitor system was disabled during collider operation and protection of the Tevatron magnets relied on the quench protection system. The new Beam-Loss Monitor system allows appropriate abort logic and thresholds to be set over the full set of collider operating conditions. The system also records a history of beam-loss data prior to a beam-abort event for post-abort analysis. Installation of the Main Injector system occurred in the fall of 2006 and the Tevatron system in the summer of 2007. Both systems were fully operation by the summer of 2008. In this paper we report on the overall system design, provide a description of its normal operation, and show a number of examples of its use in both the Main Injector and Tevatron.

Baumbaugh, A.; Briegel, C.; Brown, B.C.; Capista, D.; Drennan, C.; Fellenz, B.; Knickerbocker, K.; Lewis, J.D.; Marchionni, A.; Needles, C.; Olson, M.; /Fermilab

2011-11-01T23:59:59.000Z

194

Summary of human responses to ventilation  

E-Print Network (OSTI)

coils of commercial air-conditioning systems. Proceedings ofrefrigerating and air-conditioning engineers, inc. pp 601-for ventilation and air-conditioning systems - offices and

Seppanen, Olli A.; Fisk, William J.

2004-01-01T23:59:59.000Z

195

Effect of radiant barriers and attic ventilation on residential attics and attic duct systems: New tools for measuring and modeling  

Science Conference Proceedings (OSTI)

A simple duct system was installed in an attic test module for a large scale climate simulator at a US national laboratory. The goal of the tests and subsequent modeling was to develop an accurate method of assessing duct system performance in the laboratory, enabling limiting conditions to be imposed at will and results to be applied to residential attics with attic duct systems. Steady-state tests were done at a severe summer and a mild winter condition. In all tests the roof surface was heated above ambient air temperatures by infrared lights. The attic test module first included then did not include the duct system. Attic ventilation from eave vents to a ridge vent was varied from none to values achievable by a high level of power ventilation. A radiant barrier was attached to the underside of the roof deck, both with and without the duct system in place. Tests were also done without the radiant barrier, both with and without the duct system. When installed, the insulated ducts ran along the floor of the attic, just above the attic insulation and along the edge of the attic near the eaves and one gable. These tests in a climate simulator achieved careful control and reproducibility of conditions. This elucidated dependencies that would otherwise be hidden by variations in uncontrolled variables. Based on the comparisons with the results of the tests at the mild winter condition and the severe summer condition, model predictions for attic air and insulation temperatures should be accurate within {+-} 10 F ({+-} 6 C). This is judged adequate for design purposes and could be better when exploring the effect of changes in attic and duct parameters at fixed climatic conditions.

Petrie, T.W.; Childs, P.W.; Christian, J.E.; Wilkes, K.E.

1998-07-01T23:59:59.000Z

196

Passive ventilation for residential air quality control  

SciTech Connect

Infiltration has long served the residential ventilation needs in North America. In Northern Europe it has been augmented by purpose-provided natural ventilation systems--so-called passive ventilation systems--to better control moisture problems in dwellings smaller than their North American counterparts and in a generally wetter climate. The growing concern for energy consumption, and the environmental impacts associated with it, has however led to tighter residential construction standards on both continents and as a result problems associated with insufficient background ventilation have surfaced. Can European passive ventilation systems be adapted for use in North American dwellings to provide general background ventilation for air quality control? This paper attempts to answer this question. The configuration, specifications and performance of the preferred European passive ventilation system--the passive stack ventilation (PSV) system--will be reviewed; innovative components and system design strategies recently developed to improve the traditional PSV system performance will be outlined; and alternative system configurations will be presented that may better serve the climatic extremes and more urban contexts of North America. While these innovative and alternative passive ventilation systems hold great promise for the future, a rational method to size the components of these systems to achieve the control and precision needed to meet the conflicting constraints of new ventilation and air tightness standards has not been forthcoming. Such a method will be introduced in this paper and an application of this method will be presented.

Axley, J.

1999-07-01T23:59:59.000Z

197

Upgraded Coal Interest Group  

Science Conference Proceedings (OSTI)

The Upgraded Coal Interest Group (UCIG) is an EPRI 'users group' that focuses on clean, low-cost options for coal-based power generation. The UCIG covers topics that involve (1) pre-combustion processes, (2) co-firing systems and fuels, and (3) reburn using coal-derived or biomass-derived fuels. The UCIG mission is to preserve and expand the economic use of coal for energy. By reducing the fuel costs and environmental impacts of coal-fired power generation, existing units become more cost effective and thus new units utilizing advanced combustion technologies are more likely to be coal-fired.

Evan Hughes

2009-01-08T23:59:59.000Z

198

The Upgrade Path from Legacy VME to VXS Dual Star Connectivity for Large Scale Data Acquisition and Trigger Systems  

SciTech Connect

New instrumentation modules have been designed by Jefferson Lab and to take advantage of the higher performance and elegant backplane connectivity of the VITA 41 VXS standard. These new modules are required to meet the 200KHz trigger rates envisioned for the 12GeV experimental program. Upgrading legacy VME designs to the high speed gigabit serial extensions that VXS offers, comes with significant challenges, including electronic engineering design, plus firmware and software development issues. This paper will detail our system design approach including the critical system requirement stages, and explain the pipeline design techniques and selection criteria for the FPGA that require embedded Gigabit serial transceivers. The entire trigger system is synchronous and operates at 250MHz clock with synchronization signals, and the global trigger signals distributed to each front end readout crate via the second switch slot in the 21 slot, dual star VXS backplane. The readout of the buffered detector signals relies on 2eSST over the standard VME64x path at >200MB/s. We have achieved 20Gb/s transfer rate of trigger information within one VXS crate and will present results using production modules in a two crate test configuration with both VXS crates fully populated. The VXS trigger modules that reside in the front end crates, will be ready for production orders by the end of the 2011 fiscal year. VXS Global trigger modules are in the design stage now, and will be complete to meet the installation schedule for the 12GeV Physics program.

Cuevas, C; Barbosa, F J; Dong, H; Gu, W; Jastrzembski, E; Kaneta, S R; Moffitt, B; Nganga, N; Raydo, B J; Somov, A; Taylor, W M

2011-10-01T23:59:59.000Z

199

Development of a Residential Integrated Ventilation Controller  

NLE Websites -- All DOE Office Websites (Extended Search)

Development of a Residential Integrated Ventilation Controller Development of a Residential Integrated Ventilation Controller Title Development of a Residential Integrated Ventilation Controller Publication Type Report LBNL Report Number LBNL-5554E Year of Publication 2012 Authors Walker, Iain S., Max H. Sherman, and Darryl J. Dickerhoff Keywords ashrae standard 62,2, california title 24, residential ventilation, ventilation controller Abstract The goal of this study was to develop a Residential Integrated Ventilation Controller (RIVEC) to reduce the energy impact of required mechanical ventilation by 20%, maintain or improve indoor air quality and provide demand response benefits. This represents potential energy savings of about 140 GWh of electricity and 83 million therms of natural gas as well as proportional peak savings in California. The RIVEC controller is intended to meet the 2008 Title 24 requirements for residential ventilation as well as taking into account the issues of outdoor conditions, other ventilation devices (including economizers), peak demand concerns and occupant preferences. The controller is designed to manage all the residential ventilation systems that are currently available. A key innovation in this controller is the ability to implement the concept of efficacy and intermittent ventilation which allows time shifting of ventilation. Using this approach ventilation can be shifted away from times of high cost or high outdoor pollution towards times when it is cheaper and more effective. Simulations, based on the ones used to develop the new residential ventilation requirements for the California Buildings Energy code, were used to further define the specific criteria and strategies needed for the controller. These simulations provide estimates of the energy, peak power and contaminant improvement possible for different California climates for the various ventilation systems. Results from a field test of the prototype controller corroborate the predicted performance.

200

An acid-gas removal system for upgrading subquality natural gas  

SciTech Connect

The objective of this project is to develop systems to reduce the cost of treating subquality natural gas. Based on over 1,000 laboratory experiments on vapor-liquid equilibria and mass transfer and simulation studies, the use of N-Formyl Morpholine as a solvent together with structured packings has the following advantages: high capacity for H{sub 2}S and CO{sub 2} removal; little or no refrigeration required; less loss of hydrocarbons (CH{sub 4}, C{sub 2}-C{sub 6}); and dehydration potential. To verify these findings and to obtain additional data base for scale-up, a field test unit capable of processing 1MMSCF/d of natural gas has been installed at the Shell Western E and P Inc. (SWEPI) Fandango processing plant site. The results of the testing at the Fandango site will be presented when available.

Palla, N.; Lee, A.L. [Inst. of Gas Technology, Chicago, IL (United States); Leppin, D. [Gas Research Inst., Chicago, IL (United States); Shoemaker, H.D. [USDOE Morgantown Energy Technology Center, WV (United States); Hooper, H.M.; Emmrich, G. [Krupp Koppers GmbH, Essen (Germany); Moore, T.F.

1996-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "ventilation systems upgrading" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

The D0 detector upgrade  

SciTech Connect

The Fermilab collider program is undergoing a major upgrade of both the accelerator complex and the two detectors. Operation of the Tevatron at luminosities upwards of ten time that currently provided will occur in early 1999 after the commissioning of the new Fermilab Main Injector. The D0 upgrade program has been established to deliver a detector that will meet the challenges of this environment. A new magnetic tracker consisting of a superconducting solenoid, a silicon vertex detector, a scintillating fiber central tracker, and a central preshower detector will replace the current central tracking and transition radiation chambers. We present the design and performance capabilities of these new systems and describe results from physics simulations that demonstrate the physics reach of the upgraded detector.

Bross, A.D.

1995-02-01T23:59:59.000Z

202

An assessment of a partial pit ventilation system to reduce emission under slatted floor - Part 1: Scale model study  

Science Conference Proceedings (OSTI)

Emissions of ammonia and greenhouse gases from naturally ventilated livestock houses cause contamination of the surrounding atmospheric environment. Requests to reduce ammonia emissions from livestock farms are growing in Denmark. It is assumed that ... Keywords: Livestock, Pit ventilation, Scale model, Slatted floor, Tracer gas, Wind tunnel

Wentao Wu; Peter Kai; Guoqiang Zhang

2012-04-01T23:59:59.000Z

203

Available Technologies: Ventilation Controller for Improved Indoor ...  

Iain Walker and colleagues at Berkeley Lab have developed a dynamic control system for whole-house ventilation fans that provides maximal air quality while reducing ...

204

Acceptance test report: Backup power system  

SciTech Connect

Acceptance Test Report for construction functional testing of Project W-030 Backup Power System. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. Backup power includes a single 125 KW diesel generator, three 10-kva uninterruptible power supply units, and all necessary control.

Cole, D.B. [Westinghouse Hanford Co., Richland, WA (United States)

1996-01-26T23:59:59.000Z

205

Upgrading a Multifuncoid ?  

E-Print Network (OSTI)

I define the concepts of multifuncoid (and completary multifuncoid) and upgrading. Then I conjecture that upgrading of certain multifuncoids are multifuncoids (and that upgrading certain completary multifuncoids are completary multifuncoids). I have proved the conjectures for n ? 2. This short article is the first my public writing where I introduce the concept of multidimensional funcoid which I am investigating now. Refer to this Web site for the theory which I now attempt to generalize. 1

L {x Ai

2012-01-01T23:59:59.000Z

206

Ventilation Model and Analysis Report  

Science Conference Proceedings (OSTI)

This model and analysis report develops, validates, and implements a conceptual model for heat transfer in and around a ventilated emplacement drift. This conceptual model includes thermal radiation between the waste package and the drift wall, convection from the waste package and drift wall surfaces into the flowing air, and conduction in the surrounding host rock. These heat transfer processes are coupled and vary both temporally and spatially, so numerical and analytical methods are used to implement the mathematical equations which describe the conceptual model. These numerical and analytical methods predict the transient response of the system, at the drift scale, in terms of spatially varying temperatures and ventilation efficiencies. The ventilation efficiency describes the effectiveness of the ventilation process in removing radionuclide decay heat from the drift environment. An alternative conceptual model is also developed which evaluates the influence of water and water vapor mass transport on the ventilation efficiency. These effects are described using analytical methods which bound the contribution of latent heat to the system, quantify the effects of varying degrees of host rock saturation (and hence host rock thermal conductivity) on the ventilation efficiency, and evaluate the effects of vapor and enhanced vapor diffusion on the host rock thermal conductivity.

V. Chipman

2003-07-18T23:59:59.000Z

207

Development of a Residential Integrated Ventilation Controller  

SciTech Connect

The goal of this study was to develop a Residential Integrated Ventilation Controller (RIVEC) to reduce the energy impact of required mechanical ventilation by 20percent, maintain or improve indoor air quality and provide demand response benefits. This represents potential energy savings of about 140 GWh of electricity and 83 million therms of natural gas as well as proportional peak savings in California. The RIVEC controller is intended to meet the 2008 Title 24 requirements for residential ventilation as well as taking into account the issues of outdoor conditions, other ventilation devices (including economizers), peak demand concerns and occupant preferences. The controller is designed to manage all the residential ventilation systems that are currently available. A key innovation in this controller is the ability to implement the concept of efficacy and intermittent ventilation which allows time shifting of ventilation. Using this approach ventilation can be shifted away from times of high cost or high outdoor pollution towards times when it is cheaper and more effective. Simulations, based on the ones used to develop the new residential ventilation requirements for the California Buildings Energy code, were used to further define the specific criteria and strategies needed for the controller. These simulations provide estimates of the energy, peak power and contaminant improvement possible for different California climates for the various ventilation systems. Results from a field test of the prototype controller corroborate the predicted performance.

Staff Scientist; Walker, Iain; Sherman, Max; Dickerhoff, Darryl

2011-12-01T23:59:59.000Z

208

Energy and first costs analysis of displacement and mixing ventilation systems for U.S. buildings and climates  

E-Print Network (OSTI)

In the past two decades, displacement ventilation has been increasingly used in Scandinavia and Western Europe to improve indoor air quality and to save energy. By using a detailed computer simulation method, this study ...

Hu, ShiPing, 1970-

1999-01-01T23:59:59.000Z

209

Proposed Design for a Coupled Ground-Source Heat Pump/Energy Recovery Ventilator System to Reduce Building Energy Demand.  

E-Print Network (OSTI)

??The work presented in this thesis focuses on reducing the energy demand of a residential building by using a coupled ground-source heat pump/energy recovery ventilation (more)

McDaniel, Matthew Lee

2011-01-01T23:59:59.000Z

210

Electric utility transmission and distribution upgrade deferral benefits from modular electricity storage : a study for the DOE Energy Storage Systems Program.  

DOE Green Energy (OSTI)

The work documented in this report was undertaken as part of an ongoing investigation of innovative and potentially attractive value propositions for electricity storage by the United States Department of Energy (DOE) and Sandia National Laboratories (SNL) Electricity Storage Systems (ESS) Program. This study characterizes one especially attractive value proposition for modular electricity storage (MES): electric utility transmission and distribution (T&D) upgrade deferral. The T&D deferral benefit is characterized in detail. Also presented is a generalized framework for estimating the benefit. Other important and complementary (to T&D deferral) elements of possible value propositions involving MES are also characterized.

Eyer, James M. (Distributed Utility Associates, Inc., Livermore, CA)

2009-06-01T23:59:59.000Z

211

EVALUATION OF TRANSITIONS FOR TESTING AGRICULTURAL VENTILATION FANS WITH THE FAN ASSESSMENT NUMERATION SYSTEM (FANS).  

E-Print Network (OSTI)

??The Fan Assessment Numeration System (FANS) is an improved air velocity traverse method for measuring in situ fan performance. The FANS has been widely used, (more)

Lopes, Igor Moreira

2012-01-01T23:59:59.000Z

212

SY Tank Farm ventilation isolation option risk assessment report  

DOE Green Energy (OSTI)

The safety of the 241-SY Tank Farm ventilation system has been under extensive scrutiny due to safety concerns associated with tank 101-SY. Hydrogen and other gases are generated and trapped in the waste below the liquid surface. Periodically, these gases are released into the dome space and vented through the exhaust system. This attention to the ventilation system has resulted in the development of several alternative ventilation system designs. The ventilation system provides the primary means of mitigation of accidents associated with flammable gases. This report provides an assessment of various alternatives ventilation system designs.

Powers, T.B.; Morales, S.D.

1994-03-01T23:59:59.000Z

213

Multifamily Individual Heating and Ventilation Systems, Lawrence, Massachusetts (Fact Sheet), Building America Case Study: Efficient Solutions for New and Existing Homes, Building Technologies Office (BTO)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Multifamily Individual Heating Multifamily Individual Heating and Ventilation Systems Lawrence, Massachusetts PROJECT INFORMATION Construction: Retrofit Type: Multifamily, affordable Builder: Merrimack Valley Habitat for Humanity (MVHfH) www.merrimackvalleyhabitat.org Size: 840 to 1,170 ft 2 units Price Range: $125,000-$130,000 Date completed: Slated for 2014 Climate Zone: Cold (5A) PERFORMANCE DATA HERS Index Range: 48 to 63 Projected annual energy cost savings: $1,797 Incremental cost of energy efficiency measures: $3,747 Incremental annual mortgage: $346 Annual cash flow: $1,451 Billing data: Not available The conversion of an older Massachusetts building into condominiums illustrates a safe, durable, and cost-effective solution for heating and ventilation systems that can potentially benefit millions of multifamily buildings. Merrimack Valley

214

Physical features of small disperse coal dust fraction transportation and structurization processes in iodine air filters of absorption type in ventilation systems at nuclear power plants  

E-Print Network (OSTI)

The research on the physical features of transportation and structurization processes by the air-dust aerosol in the granular filtering medium with the cylindrical coal adsorbent granules in an air filter of the adsorption type in the heating ventilation and cooling (HVAC) system at the nuclear power plant is completed. The physical origins of the coal dust masses distribution along the absorber with the granular filtering medium with the cylindrical coal granules during the air-dust aerosol intake process in the near the surface layer of absorber are researched. The quantitative technical characteristics of air filtering elements, which have to be considered during the optimization of air filters designs for the application in the ventilation systems at the nuclear power plants, are obtained.

Ledenyov, Oleg P; Poltinin, P Ya; Fedorova, L I

2012-01-01T23:59:59.000Z

215

Assessment of the project W-030 ventilation system following a hypothetical gas release event  

DOE Green Energy (OSTI)

This document is an executive summary of the testing, adjusting and balancing completed for Project W-112 for the HVAC systems. The actual results are document in the Acceptance Test Report.

Ogden, D.M., Westinghouse Hanford

1996-08-06T23:59:59.000Z

216

Modeling buoyancy-driven airflow in ventilation shafts  

E-Print Network (OSTI)

Naturally ventilated buildings can significantly reduce the required energy for cooling and ventilating buildings by drawing in outdoor air using non-mechanical forces. Buoyancy-driven systems are common in naturally ...

Ray, Stephen D. (Stephen Douglas)

2012-01-01T23:59:59.000Z

217

A scale model study of displacement ventilation with chilled ceilings  

E-Print Network (OSTI)

Displacement ventilation is a form of air-conditioning which provides good air quality and some energy savings. The air quality is better than for a conventional mixed ventilation system. The maximum amount of cooling that ...

Holden, Katherine J. A. (Katherine Joan Adrienne)

1995-01-01T23:59:59.000Z

218

Energy Efficient Building Ventilation Systems: Innovative Building-Integrated Enthalpy Recovery  

Science Conference Proceedings (OSTI)

BEETIT Project: A2 is developing a building moisture and heat exchange technology that leverages a new material and design to create healthy buildings with lower energy use. Commercial building owners/operators are demanding buildings with greater energy efficiency and healthier indoor environments. A2 is developing a membrane-based heat and moisture exchanger that controls humidity by transferring the water vapor in the incoming fresh air to the drier air leaving the building. Unlike conventional systems, A2 locates the heat and moisture exchanger within the depths of the buildings wall to slow down the air flow and increase the surface area that captures humidity, but with less fan power. The systems integration into the wall reduces the size and demand on the air conditioning equipment and increases liable floor area flexibility.

None

2010-10-15T23:59:59.000Z

219

The Ventilated Ocean  

Science Conference Proceedings (OSTI)

Adiabatic theories of ocean circulation and density structure have a long tradition, from the concept of the ventilated thermocline to the notion that deep ocean ventilation is controlled by westerly winds over the Southern Ocean. This study ...

Patrick Haertel; Alexey Fedorov

2012-01-01T23:59:59.000Z

220

VENTILATION MODEL REPORT  

SciTech Connect

The purpose of the Ventilation Model is to simulate the heat transfer processes in and around waste emplacement drifts during periods of forced ventilation. The model evaluates the effects of emplacement drift ventilation on the thermal conditions in the emplacement drifts and surrounding rock mass, and calculates the heat removal by ventilation as a measure of the viability of ventilation to delay the onset of peak repository temperature and reduce its magnitude. The heat removal by ventilation is temporally and spatially dependent, and is expressed as the fraction of heat carried away by the ventilation air compared to the fraction of heat produced by radionuclide decay. One minus the heat removal is called the wall heat fraction, or the remaining amount of heat that is transferred via conduction to the surrounding rock mass. Downstream models, such as the ''Multiscale Thermohydrologic Model'' (BSC 2001), use the wall heat fractions as outputted from the Ventilation Model to initialize their postclosure analyses.

V. Chipman

2002-10-31T23:59:59.000Z

Note: This page contains sample records for the topic "ventilation systems upgrading" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Proposal for the award of a contract for the design, supply, installation and commissioning of a Heating, Ventilation and Air-Conditioning (HVAC) system for the computer room of the CERN Control Centre  

E-Print Network (OSTI)

Proposal for the award of a contract for the design, supply, installation and commissioning of a Heating, Ventilation and Air-Conditioning (HVAC) system for the computer room of the CERN Control Centre

2012-01-01T23:59:59.000Z

222

Proposal for the award of a contract for the design, supply, installation and commissioning of a Heating Ventilation and Air Conditioning (HVAC) system for the HIE-ISOLDE infrastructure  

E-Print Network (OSTI)

Proposal for the award of a contract for the design, supply, installation and commissioning of a Heating Ventilation and Air Conditioning (HVAC) system for the HIE-ISOLDE infrastructure

2012-01-01T23:59:59.000Z

223

NERSC's Franklin Supercomputer Upgraded to Double Its Scientific...  

NLE Websites -- All DOE Office Websites (Extended Search)

system. The Department of Energy's (DOE) National Energy Research Scientific Computing (NERSC) Center has officially accepted a series of upgrades to its Cray XT4 supercomputer,...

224

Ventilation measurements in large office buildings  

SciTech Connect

Ventilation rates were measured in nine office buildings using an automated tracer gas measuring system. The buildings range in size from a two-story federal building with a floor area of about 20,000 ft/sup 2/ (1900 m/sup 2/) to a 26-story office building with a floor area of 700,000 ft/sup 2/ (65,000 m/sup 2/). The ventilation rates were measured for about 100 hours in each building over a range of weather conditions. The results are presented and examined for variation with time and weather. In most cases, the ventilation rate of a building is similar for hot and cold weather. In mild weather, outdoor air is used to cool the building and the ventilation rate increases. In the buildings where infiltration is a significant portion of the total ventilation rate, this total rate exhibits a dependence on weather conditions. The measured ventilation rates are discussed in relation to the outdoor air intake strategy in each building. The ventilation rates are also compared to the design rates in the buildings and ventilation rates based on the ASHRAE Standard 62-81. Some of the buildings are at times operated at lower ventilation rates than recommended in Standard 62-81.

Persily, A.K.; Grot, R.A.

1985-01-01T23:59:59.000Z

225

Optics upgrade for switchyard  

SciTech Connect

An upgrade of the Switchyard optics is proposed. This upgrade extends the P3 (old Main Ring) lattice through enclosure C. The septa for the 3-way Meson Area split is moved from enclosure F1 to enclosure M01. The functionality of the Meson Target Train is preserved. Finally, for the purpose of demonstrating that the resulting split can be transported, a straw-man lattice is proposed for enclosure M02 and beyond.

Kobilarcik, Thomas R.; /Fermilab

2005-08-01T23:59:59.000Z

226

MIPP Plastic Ball electronics upgrade  

SciTech Connect

An upgrade electronics design for Plastic Ball detector is described. The Plastic Ball detector was a part of several experiments in the past and its back portion (proposed to be used in MIPP) consists of 340 photomultipliers equipped with a sandwich scintillator. The scintillator sandwich has fast and slow signal component with decay times 10 ns and 1 {micro}s respectively. The upgraded MIPP experiment will collect up to 12,000 events during each 4 second spill and read them out in {approx}50 seconds between spills. The MIPP data acquisition system will employ deadtime-less concept successfully implemented in Muon Electronics of Dzero experiment at Fermilab. An 8-channel prototype design of the Plastic Ball Front End (PBFE) implementing these requirements is discussed. Details of the schematic design, simulation and prototype test results are discussed.

Baldin, Boris; /Fermilab

2009-01-01T23:59:59.000Z

227

Genetic lateral and amplitude tuning with rule selection for fuzzy control of heating, ventilating and air conditioning systems  

Science Conference Proceedings (OSTI)

In this work, we propose the use of a new post-processing method for the lateral and amplitude tuning of membership functions combined with a rule selection to develop accurate fuzzy logic controllers dedicated to the control of heating, ventilating ...

R. Alcal; J. Alcal-Fdez; F. J. Berlanga; M. J. Gacto; F. Herrera

2006-06-01T23:59:59.000Z

228

Breathing HRV by the Concept of AC Ventilation  

NLE Websites -- All DOE Office Websites (Extended Search)

Breathing HRV by the Concept of AC Ventilation Breathing HRV by the Concept of AC Ventilation Speaker(s): Hwataik Han Date: July 10, 2007 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Thomas McKone Heat recovery ventilators are frequently used to save heating/cooling loads of buildings for ventilation. There are several types of HRV's, including a parallel plate type, a rotary type, a capillary type, and a heat pipe type. The breathing HRV is a heat recovery ventilator of a new kind using the concept of alternating-current ventilation. The AC ventilation is the ventilation with the airflow directions reversed periodically. It has an advantage of using a single duct system, for both supply and exhaust purposes. In order to develop a breathing HRV system, the thermal recovery performance should be investigated depending on many parameters, such as

229

Ventilation problems in heritage buildings  

Science Conference Proceedings (OSTI)

The control of indoor conditions in heritage buildings, such as castles or museums, is of paramount importance for the proper preservation of the artworks kept in. As heritage buildings are often not equipped with HVAC systems, it is necessary to provide ... Keywords: CO2 concentration, IAQ, heritage buildings, ventilation

S. Costanzo; A. Cusumano; C. Giaconia; S. Mazzacane

2007-05-01T23:59:59.000Z

230

Energy Basics: Ventilation Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

building through the roof, walls, and windows. Heat-reflecting roofs, insulation, and energy efficient windows will help to reduce that heat conduction. Radiation is heat...

231

Idaho Power - Easy Upgrades for Simple Retrofits Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho Power - Easy Upgrades for Simple Retrofits Rebate Program Idaho Power - Easy Upgrades for Simple Retrofits Rebate Program Idaho Power - Easy Upgrades for Simple Retrofits Rebate Program < Back Eligibility Commercial Industrial Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Construction Design & Remodeling Manufacturing Sealing Your Home Windows, Doors, & Skylights Ventilation Heat Pumps Commercial Lighting Lighting Insulation Maximum Rebate Up to 100,000 per site per year. Program Info Funding Source Conservation Program Funding Charge State Oregon Program Type Utility Rebate Program Rebate Amount A/C or Heat Pumps: $25-$100/ton Economizer Control Addition: $75/ton Air-Side Economizer Repair: $250 Evaporative Coolers: $100-$300/ton

232

Upgrading Below Grade Spaces  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Patrick H. Huelman, Sam Breidenbach, Steve Schirber Patrick H. Huelman, Sam Breidenbach, Steve Schirber NorthernSTAR Building America Partnership Upgrading Below Grade Spaces Residential Energy Efficiency Stakeholder March 1, 2012 Austin, TX * Act 1: Technical Challenges & Opportunities - Pat Huelman, University of Minnesota * Act 2: Assessing Homeowner Priorities & Risks - Sam Breidenbach, TDS Custom Construction * Act 3: An Industry Perspective - Steve Schirber, Cocoon Act 1. Upgrade Below Grade * Basement Remodeling: It Doesn't Get Any Riskier! - Combustion safety - Foundation moisture - Radon (& other soil gases) - Biologicals (mold, dust mites, etc.) - Garage gases (if attached) * And front and center are uncontrolled... - negative pressures in basements (beyond stack)

233

AGS intensity upgrades  

SciTech Connect

After the successful completion of the AGS Booster and several upgrades of the AGS, a new intensity record of 6.3 x 10{sup 13} protons per pulse accelerated to 24 GeV was achieved. The high intensity slow-extracted beam program at the AGS typically serves about five production targets and about eight experiments including three rare Kaon decay experiments. Further intensity upgrades are being discussed that could increase the average delivered beam intensity by up to a factor of four.

Roser, T.

1995-12-01T23:59:59.000Z

234

Building Science - Ventilation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ventilation Ventilation Joseph Lstiburek, Ph.D., P.Eng, ASHRAE Fellow www.buildingscience.com Build Tight - Ventilate Right Building Science Corporation Joseph Lstiburek 2 Build Tight - Ventilate Right How Tight? What's Right? Building Science Corporation Joseph Lstiburek 3 Air Barrier Metrics Material 0.02 l/(s-m2) @ 75 Pa Assembly 0.20 l/(s-m2) @ 75 Pa Enclosure 2.00 l/(s-m2) @ 75 Pa 0.35 cfm/ft2 @ 50 Pa 0.25 cfm/ft2 @ 50 Pa 0.15 cfm/ft2 @ 50 Pa Building Science Corporation Joseph Lstiburek 4 Getting rid of big holes 3 ach@50 Getting rid of smaller holes 1.5 ach@50 Getting German 0.6 ach@50 Building Science Corporation Joseph Lstiburek 5 Best As Tight as Possible - with - Balanced Ventilation Energy Recovery Distribution Source Control - Spot exhaust ventilation Filtration

235

ASHRAE and residential ventilation  

E-Print Network (OSTI)

conditioning Engineers. 2001. ASHRAE, Indoor Air QualityABOUT/IAQ_papr01.htm ASHRAE. Standard 62.2-2003:Ventilation Requirements. ASHRAE Journal, pp. 51- 55, June

Sherman, Max H.

2003-01-01T23:59:59.000Z

236

Measuring Residential Ventilation  

NLE Websites -- All DOE Office Websites (Extended Search)

measured. The local exhaust flows can be measured or can meet prescriptive ducting and fan labeling requirements that use ratings provided by the Home Ventilating Institute (HVI,...

237

Whole-House Ventilation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

into the house to be filtered to remove pollen and dust or dehumidified to provide humidity control Supply ventilation systems work best in hot or mixed climates. Because they...

238

The Upgraded D0 detector  

Science Conference Proceedings (OSTI)

The D0 experiment enjoyed a very successful data-collection run at the Fermilab Tevatron collider between 1992 and 1996. Since then, the detector has been upgraded to take advantage of improvements to the Tevatron and to enhance its physics capabilities. We describe the new elements of the detector, including the silicon microstrip tracker, central fiber tracker, solenoidal magnet, preshower detectors, forward muon detector, and forward proton detector. The uranium/liquid-argon calorimeters and central muon detector, remaining from Run I, are discussed briefly. We also present the associated electronics, triggering, and data acquisition systems, along with the design and implementation of software specific to D0.

Abazov, V.M.; Abbott, B.; Abolins, M.; Acharya, B.S.; Adams, D.L.; Adams, M.; Adams, T.; Agelou, M.; Agram, J.-L.; Ahmed, S.N.; Ahn, S.H.; Ahsan, M.; Alexeev, G.D.; Alkhazov, G.; Alton, A.; Alverson, G.; Alves, G.A.; Anastasoaie, M.; Andeen, T.; Anderson, J.T.; Anderson, S.; /Buenos Aires U. /Rio de Janeiro, CBPF /Sao Paulo, IFT /Alberta U. /Simon Fraser U. /York U., Canada /McGill U. /Beijing, Inst. High Energy Phys. /Hefei, CUST /Andes U., Bogota /Charles U. /Prague, Tech. U. /Prague, Inst. Phys. /San Francisco de Quito U. /Clermont-Ferrand U. /LPSC, Grenoble /Marseille, CPPM /Orsay, LAL /Paris U., VI-VII /DAPNIA, Saclay /Strasbourg, IReS

2005-07-01T23:59:59.000Z

239

Ventilation in Multifamily Buildings  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

, 2011 , 2011 Ventilation in Multifamily Buildings Welcome to the Webinar! We will start at 2:00 PM Eastern Time Be sure that you are also dialed into the telephone conference call: Dial-in number: 888-324-9601; Pass code: 5551971 Download the presentation at: www.buildingamerica.gov/meetings.html Building Technologies Program eere.energy.gov Building America: Introduction November 1, 2011 Cheryn Engebrecht Cheryn.engebrecht@nrel.gov Building Technologies Program Building Technologies Program eere.energy.gov * Reduce energy use in new and existing residential buildings * Promote building science and systems engineering / integration approach * "Do no harm": Ensure safety, health and durability are maintained or improved * Accelerate adoption of high performance technologies

240

Biochemical upgrading of oils  

DOE Patents (OSTI)

A process for biochemical conversion of heavy crude oils is provided. The process includes contacting heavy crude oils with adapted biocatalysts. The resulting upgraded oil shows, a relative increase in saturated hydrocarbons, emulsions and oxygenates and a decrease in compounds containing in organic sulfur, organic nitrogen and trace metals. Adapted microorganisms which have been modified under challenged growth processes are also disclosed.

Premuzic, Eugene T. (East Moriches, NY); Lin, Mow S. (Rocky Point, NY)

1999-01-12T23:59:59.000Z

Note: This page contains sample records for the topic "ventilation systems upgrading" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Biochemical upgrading of oils  

DOE Patents (OSTI)

A process for biochemical conversion of heavy crude oils is provided. The process includes contacting heavy crude oils with adapted biocatalysts. The resulting upgraded oil shows, a relative increase in saturated hydrocarbons, emulsions and oxygenates and a decrease in compounds containing organic sulfur, organic nitrogen and trace metals. Adapted microorganisms which have been modified under challenged growth processes are also disclosed. 121 figs.

Premuzic, E.T.; Lin, M.S.

1999-01-12T23:59:59.000Z

242

Modeling, design and thermal performance of a BIPV/T system thermally coupled with a ventilated concrete slab in a low energy solar house: Part 2, ventilated concrete slab  

Science Conference Proceedings (OSTI)

This paper is the second of two papers that describe the modeling and design of a building-integrated photovoltaic-thermal (BIPV/T) system thermally coupled with a ventilated concrete slab (VCS) adopted in a prefabricated, two-storey detached, low energy solar house and their performance assessment based on monitored data. The VCS concept is based on an integrated thermal-structural design with active storage of solar thermal energy while serving as a structural component - the basement floor slab ({proportional_to}33 m{sup 2}). This paper describes the numerical modeling, design, and thermal performance assessment of the VCS. The thermal performance of the VCS during the commissioning of the unoccupied house is presented. Analysis of the monitored data shows that the VCS can store 9-12 kWh of heat from the total thermal energy collected by the BIPV/T system, on a typical clear sunny day with an outdoor temperature of about 0 C. It can also accumulate thermal energy during a series of clear sunny days without overheating the slab surface or the living space. This research shows that coupling the VCS with the BIPV/T system is a viable method to enhance the utilization of collected solar thermal energy. A method is presented for creating a simplified three-dimensional, control volume finite difference, explicit thermal model of the VCS. The model is created and validated using monitored data. The modeling method is suitable for detailed parametric study of the thermal behavior of the VCS without excessive computational effort. (author)

Chen, Yuxiang; Galal, Khaled; Athienitis, A.K. [Dept. of Building, Civil and Environmental Engineering, Concordia University, 1455 De Maisonneuve West, EV6.139, Montreal, Quebec (Canada)

2010-11-15T23:59:59.000Z

243

The upgrade of GEO600  

E-Print Network (OSTI)

The German / British gravitational wave detector GEO 600 is in the process of being upgraded. The upgrading process of GEO 600, called GEO-HF, will concentrate on the improvement of the sensitivity for high frequency signals and the demonstration of advanced technologies. In the years 2009 to 2011 the detector will undergo a series of upgrade steps, which are described in this paper.

Harald Lck; Christopf Affeldt; Jerome Degallaix; Andreas Freise; Hartmut Grote; Martin Hewitson; Stefan Hild; Jonathan Leong; Mirko Prijatelj; Kenneth A. Strain; Benno Willke; Holger Wittel; Karsten Danzmann

2010-04-02T23:59:59.000Z

244

Why We Ventilate  

NLE Websites -- All DOE Office Websites (Extended Search)

Why We Ventilate Why We Ventilate Title Why We Ventilate Publication Type Conference Paper LBNL Report Number LBNL-5093E Year of Publication 2011 Authors Logue, Jennifer M., Phillip N. Price, Max H. Sherman, and Brett C. Singer Conference Name Proceedings of the 2011 32nd AIVC Conference and 1st Tightvent Conference Date Published October 2011 Conference Location Brussels, Belgium Keywords indoor environment department, resave, ventilation and air cleaning Abstract It is widely accepted that ventilation is critical for providing good indoor air quality (IAQ) in homes. However, the definition of "good" IAQ, and the most effective, energy efficient methods for delivering it are still matters of research and debate. This paper presents the results of work done at the Lawrence Berkeley National Lab to identify the air pollutants that drive the need for ventilation as part of a larger effort to develop a health-based ventilation standard. First, we present results of a hazard analysis that identified the pollutants that most commonly reach concentrations in homes that exceed health-based standards or guidelines for chronic or acute exposures. Second, we present results of an impact assessment that identified the air pollutants that cause the most harm to the U.S. population from chronic inhalation in residences. Lastly, we describe the implications of our findings for developing effective ventilation standards.

245

Environmental assessment for the proposed CMR Building upgrades at the Los Alamos National Laboratory, Los Alamos, New Mexico. Final document  

Science Conference Proceedings (OSTI)

In order to maintain its ability to continue to conduct uninterrupted radioactive and metallurgical research in a safe, secure, and environmentally sound manner, the US Department of Energy (DOE) proposes to upgrade the Los Alamos National Laboratory (LANL) Chemistry and Metallurgy Research (CMR) Building. The building was built in the early 1950s to provide a research and experimental facility for analytical chemistry, plutonium and uranium chemistry, and metallurgy. Today, research and development activities are performed involving nuclear materials. A variety of radioactive and chemical hazards are present. The CMR Building is nearing the end of its original design life and does not meet many of today`s design codes and standards. The Proposed Action for this Environmental Assessment (EA) includes structural modifications to some portions of the CMR Building which do not meet current seismic criteria for a Hazard Category 2 Facility. Also included are upgrades and improvements in building ventilation, communications, monitoring, and fire protection systems. This EA analyzes the environmental effects of construction of the proposed upgrades. The Proposed Action will have no adverse effects upon agricultural and cultural resources, wetlands and floodplains, endangered and threatened species, recreational resources, or water resources. The Proposed Action would have negligible effects on human health and transportation, and would not pose a disproportionate adverse health or environmental impact on minority or low-income populations within an 80 kilometer (50 mile) radius of the CMR Building.

NONE

1997-02-04T23:59:59.000Z

246

A GEM Detector System for an Upgrade of the High-eta Muon Endcap Stations GE1/1 + ME1/1 in CMS  

E-Print Network (OSTI)

Based on the CMS Upgrade R&D Proposal RD10.02, we describe the motivation and main features of the CMS GEM Project for LS2 and propose the addition of a full GE1/12 detector station comprising Gas Electron Multiplier (GEM) chambers to the forward muon system of CMS. The limitations of the currently existing forward muon detector when operating at increasingly high luminosity expected after LS1 are laid out followed by a brief description of the anticipated performance improvements achievable with a GE1/1 station. The second part describes the detector system followed by an overview of electronics and associated services including a discussion of the schedule and cost of the project. Plans for a precursor demonstrator installation in LS1 are presented. This proposal is intended as a concise follow-up of the detailed document CMS-IN-2012-023. If approved, this is to be followed by a detailed Technical Design Report.

Abbaneo, D; Aspell, P; Bianco, S; Hoepfner, K; Hohlmann, M; Maggi, M; De Lentdecker, G; Safonov, A; Sharma, A; Tytgat, M

2012-01-01T23:59:59.000Z

247

CRYOGENICS IN BEPCII UPGRADE.  

SciTech Connect

THIS PAPER PRESENTS A CRYOGENIC DESIGN FOR UPGRADING THE BEIJING ELECTRON POSITRON COLLIDER AT THE INSTITUTE OF HIGH ENERGY PHYSICS IN BEIJING. THE UPGRADE INVOLVES 3 NEW SUPERCONDUCTING FACILITIES, THE INTERACTION REGION QUADRUPOLE MAGNETS, THE DETECTOR SOLENOID MAGNETS AND THE SRF CAVITIES. FOR COOLING OF THESE DEVICES, A NEW CRYPLANT WITH A TOTAL CAPACITY OF 1.0KW AT 4.5K IS TO BE BUILT AT IHEP. AN INTEGRATED CRYOGENIC DESIGN TO FIT THE BEPCII CRYOGENIC LOADS WITH HIGH EFFICIENCY IS CARRIEDOUT USING COMPUTATIONAL PROCESS ANALYSIS SOFTWARE WITH THE EMPHASES ON ECONOMICS AND SAFETY IN BOTH CONSTRUCTION AND OPERATION OF THE PLANT. THIS PAPER DESCRIBES THE CRYOGENIC CHARACTERISTICS OF EACH SUPERCONDUCTING DEVICE, THEIR COOLING SCHEMES AND THE OVERALL CRYOPLANT.

JIA,L.; WANG,L.; LI,S.

2002-07-22T23:59:59.000Z

248

Performance Assessment of Photovoltaic Attic Ventilator Fans  

E-Print Network (OSTI)

Controlling summer attic heat gain is important to reducing air conditioning energy use in homes in hot-humid climates. Both heat transfer through ceilings and t attic duct systems can make up a large part of peak cooling demand, Attic ventilation has long been identified as a method to abate such heat gains. We present test results from using the photovoltaic (PV) attic ventilator fans in a test home to assess impact on attic and cooling energy performance.

Parker, D. S.; Sherwin, J. R.

2000-01-01T23:59:59.000Z

249

Upgrade of a Scara robot using Orocos  

Science Conference Proceedings (OSTI)

This paper presents a bottom-up approach that permits the integration of new devices and functionalities into a robotic cell. Although there are currently notable efforts from the scientific community toward this goal, the initiative presented here combines ... Keywords: Orocos, RTAI, free software, real time systems, robot design and architecture, robot upgrade

Dalton Matsuo Tavares; Rafael Vidal Aroca; Glauco Augusto de Paula Caurin

2007-08-01T23:59:59.000Z

250

The BABAR Detector: Upgrades, Operation and Performance  

E-Print Network (OSTI)

The BABAR detector operated successfully at the PEP-II asymmetric e+e- collider at the SLAC National Accelerator Laboratory from 1999 to 2008. This report covers upgrades, operation, and performance of the collider and the detector systems, as well as the trigger, online and offline computing, and aspects of event reconstruction since the beginning of data taking.

The BABAR Collaboration

2013-05-15T23:59:59.000Z

251

Advanced control strategies for heating, ventilation, air-conditioning, and refrigeration systemsAn overview: Part I: Hard control  

SciTech Connect

A chronological overview of the advanced control strategies for heating, ventilation, air-conditioning, and refrigeration (HVAC&R) is presented in this article. The overview focuses on hard-computing or control techniques, such as proportional-integral-derivative, optimal, nonlinear, adaptive, and robust; soft-computing or control techniques, such as neural networks, fuzzy logic, genetic algorithms; and on the fusion or hybrid of hard- and soft-control techniques. Thus, it is to be noted that the terminology hard and soft computing/control has nothing to do with the hardware and software that is being generally used. Part I of a two-part series focuses on hard-control strategies, and Part II focuses on softand fusion-control in addition to some future directions in HVAC&R research. This overview is not intended to be an exhaustive survey on this topic, and any omission of other works is purely unintentional.

D. Subbaram Naidu; Craig G. Rieger

2011-02-01T23:59:59.000Z

252

Effect of building airtightness and fan size on the performance of mechanical ventilation systems in new U.S. houses: a critique of ASHRAE standard 62.2-2003  

E-Print Network (OSTI)

and Infiltration. Handbook: Fundamentals. American Societyand Ventilation. Handbook: Fundamentals. American Society ofand Ventilation. Handbook: Fundamentals. American Society of

Roberson, J.

2004-01-01T23:59:59.000Z

253

Things to Consider When Upgrading a Non-Power Reactor to a Digital I&C System  

SciTech Connect

Non-Power Reactor (NPR) licensees are increasing their use of state-of-the-art digital technology in instrumentation and control (I&C) systems because digital systems offer improved reactor control, information processing, and information storage. In Generic Letter GL 95-02, the NRC recognized that the design characteristics specific to the new digital electronics could result in failure modes and system malfunctions that either were not considered during the initial plant design or not evaluated in sufficient detail in the safety analysis report. These concerns include potential common mode failures. A conversion from analog to digital I&C systems in NPRs solves some problems while potentially introducing others. Good design, engineering, review, and testing can identify and minimize these risks.

Muhlheim, Michael David [ORNL; Hardin, LeRoy A [U.S. Nuclear Regulatory Commission; Hardesty, Duane [U.S. Nuclear Regulatory Commission; Wilson, Thomas L [ORNL

2011-01-01T23:59:59.000Z

254

Ventilation Effectiveness Research at UT-Typer Lab Houses  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ventilation Effectiveness Research Ventilation Effectiveness Research at UT-Tyler Lab Houses Source Of Outside Air, Distribution, Filtration Armin Rudd Twin (almost) Lab Houses at UT-Tyler House 2: Unvented attic, House 1: Vented attic lower loads + PV Ventilation Effectiveness Research 30 April 2013 2 * 1475 ft 2 , 3-bedroom houses * House 2 was mirrored plan * 45 cfm 62.2 ventilation rate * Garage connected to house on only one wall * Access to attic via pull-down stairs in garage * Further access to House 2 unvented attic through gasket sealed door Ventilation Effectiveness Research 30 April 2013 3 Testing Approach  Building enclosure and building mechanical systems characterization by measurement of building enclosure air leakage, central air distribution system airflows, and ventilation system airflows.

255

Residential pollutants and ventilation strategies: Moisture and combustion products  

SciTech Connect

This paper reviews literature that reports investigations of residential ventilation and indoor air quality. Two important residential pollutant classes, moisture and combustion pollutants, are examined. A companion paper examines volatile organic compounds and radon. Control strategies recommended from the review include appropriate building design to prevent or limit the sources of the pollutants within the space, proper operation and maintenance to prevent adverse conditions from developing during the building's life and appropriate use of ventilation. The characteristics of these pollutant sources suggest that ventilation systems in residences should have several properties. Moisture control puts significant restrictions on a ventilation system. The system should function continuously (averaged over days) and distribute ventilation throughout the habitable space. Combustion sources require task ventilation that functions reliably.

Hadlich, D.E.; Grimsrud, D.T.

1999-07-01T23:59:59.000Z

256

Residential Ventilation & Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 Residential Ventilation & Energy Figure 1: Annual Average Ventilation Costs of the Current U.S. Single-Family Housing Stock ($/year/house). Infiltration and ventilation in dwellings is conventionally believed to account for one-third to one-half of space conditioning energy. Unfortunately, there is not a great deal of measurement data or analysis to substantiate this assumption. As energy conservation improvements to the thermal envelope continue, the fraction of energy consumed by the conditioning of air may increase. Air-tightening programs, while decreasing energy requirements, have the tendency to decrease ventilation and its associated energy penalty at the possible expense of adequate indoor air quality. Therefore, more energy may be spent on conditioning air.

257

Ventilation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(often required by building codes) will help to reduce your use of air conditioning, and attic fans may also help keep cooling costs down. Learn More Whole-House Ventilation...

258

Why We Ventilate  

SciTech Connect

It is widely accepted that ventilation is critical for providing good indoor air quality (IAQ) in homes. However, the definition of"good" IAQ, and the most effective, energy efficient methods for delivering it are still matters of research and debate. This paper presents the results of work done at the Lawrence Berkeley National Lab to identify the air pollutants that drive the need for ventilation as part of a larger effort to develop a health-based ventilation standard. First, we present results of a hazard analysis that identified the pollutants that most commonly reach concentrations in homes that exceed health-based standards or guidelines for chronic or acute exposures. Second, we present results of an impact assessment that identified the air pollutants that cause the most harm to the U.S. population from chronic inhalation in residences. Lastly, we describe the implications of our findings for developing effective ventilation standards.

Logue, Jennifer M.; Sherman, Max H.; Price, Phil N.; Singer, Brett C.

2011-09-01T23:59:59.000Z

259

Natural Ventilation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural Ventilation Natural Ventilation Natural Ventilation May 30, 2012 - 7:56pm Addthis Opening a window is a simple natural ventilation strategy. | Credit: ©iStockphoto/Simotion Opening a window is a simple natural ventilation strategy. | Credit: ©iStockphoto/Simotion What does this mean for me? If you live in a part of the country with cool nights and breezes, you may be able to cool your house with natural ventilation. If you're building a new home, design it to take advantage of natural ventilation. Natural ventilation relies on the wind and the "chimney effect" to keep a home cool. Natural ventilation works best in climates with cool nights and regular breezes. The wind will naturally ventilate your home by entering or leaving windows, depending on their orientation to the wind. When wind blows against your

260

Business reasons for utilizing renewable energy applications in facilities to assist in extending the life of the heating ventilation and air conditioning systems .  

E-Print Network (OSTI)

??This research is intended to discover business reasons for utilizing renewable energy applications in buildings to help extend the life of the heating, ventilation and (more)

Thompson, Glendon Raymond

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ventilation systems upgrading" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Particle deposition in ventilation ducts  

SciTech Connect

Exposure to airborne particles is detrimental to human health and indoor exposures dominate total exposures for most people. The accidental or intentional release of aerosolized chemical and biological agents within or near a building can lead to exposures of building occupants to hazardous agents and costly building remediation. Particle deposition in heating, ventilation and air-conditioning (HVAC) systems may significantly influence exposures to particles indoors, diminish HVAC performance and lead to secondary pollutant release within buildings. This dissertation advances the understanding of particle behavior in HVAC systems and the fates of indoor particles by means of experiments and modeling. Laboratory experiments were conducted to quantify particle deposition rates in horizontal ventilation ducts using real HVAC materials. Particle deposition experiments were conducted in steel and internally insulated ducts at air speeds typically found in ventilation ducts, 2-9 m/s. Behaviors of monodisperse particles with diameters in the size range 1-16 {micro}m were investigated. Deposition rates were measured in straight ducts with a fully developed turbulent flow profile, straight ducts with a developing turbulent flow profile, in duct bends and at S-connector pieces located at duct junctions. In straight ducts with fully developed turbulence, experiments showed deposition rates to be highest at duct floors, intermediate at duct walls, and lowest at duct ceilings. Deposition rates to a given surface increased with an increase in particle size or air speed. Deposition was much higher in internally insulated ducts than in uninsulated steel ducts. In most cases, deposition in straight ducts with developing turbulence, in duct bends and at S-connectors at duct junctions was higher than in straight ducts with fully developed turbulence. Measured deposition rates were generally higher than predicted by published models. A model incorporating empirical equations based on the experimental measurements was applied to evaluate particle losses in supply and return duct runs. Model results suggest that duct losses are negligible for particle sizes less than 1 {micro}m and complete for particle sizes greater than 50 {micro}m. Deposition to insulated ducts, horizontal duct floors and bends are predicted to control losses in duct systems. When combined with models for HVAC filtration and deposition to indoor surfaces to predict the ultimate fates of particles within buildings, these results suggest that ventilation ducts play only a small role in determining indoor particle concentrations, especially when HVAC filtration is present. However, the measured and modeled particle deposition rates are expected to be important for ventilation system contamination.

Sippola, Mark R.

2002-09-01T23:59:59.000Z

262

Chapter 4, Small Commercial and Residential Unitary and Split System HVAC Cooling Equipment-Efficiency Upgrade Evaluation Protocol: The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4: Small Commercial 4: Small Commercial and Residential Unitary and Split System HVAC Cooling Equipment-Efficiency Upgrade Evaluation Protocol David Jacobson, Jacobson Energy Research Subcontract Report NREL/SR-7A30-53827 April 2013 The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures 4 - 1 Chapter 4 - Table of Contents 1 Measure Description .............................................................................................................. 2 2 Application Conditions of Protocol ....................................................................................... 3 2.1 Programs with Enhanced Measures ................................................................................. 5 3 Savings Calculations .............................................................................................................. 6

263

Energy Star Building Upgrade Manual  

NLE Websites -- All DOE Office Websites (Extended Search)

program helping businesses and individuals fight global warming through superior energy efficiency. ENERGY STAR Building Upgrade Manual United States Environmental Protection...

264

MR LLRF VXI upgrade beam study period  

Science Conference Proceedings (OSTI)

AD/RFI/LLRF group personnel performed several studies with the MR LLRF VXI upgrade system during the evening of 7/29/95. The study period lasted about 4 hours. The MR operating conditions were a mixture of $29 and $2B cycles, with beam injected only on the $29. The author believes the $2B cycles were present for reasons unrelated to the study. The basic study period goal was to test the initial VXI version of MR LLRF finite state machine (FSM) execution. This goal represents what has been called MR LLRF VXI Upgrade Implementation Stage No.2 throughout presentations and documentation on the upgrade project. The test includes control of MR LLRF NIM hardware, the MR RF cavities, and beam via XVI TTL FSM outputs. Numerous MR LLRF VXI system objects, or components, must work together correctly for a successful test. Very briefly, the required objects include VXI Front End hardware, the ACNET/Front End interface code, and the VXI/NIM Interface chassis (the chassis solves VXI-CAMAC-NIM RF and FSM output connectivity and development problems). Though this initial FSM does not yet fully support Upgrade Implementation Stage 2 functionality, all code and hardware for the following basic functionality is tested.

Mesiner, K.; /Fermilab

1995-01-01T23:59:59.000Z

265

Minimum Energy Ventilation for Fast Food Restaurant Kitchens  

Science Conference Proceedings (OSTI)

Cooking equipment exhaust systems have a significant impact on the energy consumption of fast food restaurants. This research investigated issues that relate to the energy performance of commercial kitchen ventilation systems and demonstrated that significant energy and cost savings can be achieved by reducing ventilation rates.

1996-10-30T23:59:59.000Z

266

Summary of human responses to ventilation  

E-Print Network (OSTI)

low ventilation rates and increase in health problems:rate. As ventilation rates increase, benefits gained fordetermined that increases in ventilation rates above 10 Ls -

Seppanen, Olli A.; Fisk, William J.

2004-01-01T23:59:59.000Z

267

Infiltration in ASHRAE's Residential Ventilation Standards  

E-Print Network (OSTI)

Related to Residential Ventilation Requirements. Rudd, A. 2005. Review of Residential Ventilationand Matson N.E. , Residential Ventilation and Energy

Sherman, Max

2008-01-01T23:59:59.000Z

268

Design methods for displacement ventilation: Critical review.  

E-Print Network (OSTI)

Displacement Ventilation. ASHRAE Research project-RP-949.displacement ventilation. ASHRAE Transaction, 96 (1). Ar ???due to displacement ventilation. ASHRAE Transaction, 96 (1).

Schiavon, Stefano

2006-01-01T23:59:59.000Z

269

Thomson scattering diagnostic upgrade on DIII-D  

Science Conference Proceedings (OSTI)

The DIII-D Thomson scattering system has been upgraded. A new data acquisition hardware was installed, adding the capacity for additional spatial channels and longer acquisition times for temperature and density measurements. Detector modules were replaced with faster transimpedance circuitry, increasing the signal-to-noise ratio by a factor of 2. This allows for future expansion to the edge system. A second phase upgrade scheduled for 2010-2011 includes the installation of four 1 J/pulse Nd:YAG lasers at 50 Hz repetition rate. This paper presents the first completed phase of the upgrade and performance comparison between the original system and the upgraded system. The plan for the second phase is also presented.

Ponce-Marquez, D. M.; Bray, B. D.; Deterly, T. M.; Liu, C. [General Atomics, P.O. Box 85608, San Diego, California 092186-5608 (United States); Eldon, D. [University of California-San Diego, La Jolla, California 92093-0417 (United States)

2010-10-15T23:59:59.000Z

270

Opaque Ventilated Facades - Performance Simulation Method and Assessment of  

NLE Websites -- All DOE Office Websites (Extended Search)

Opaque Ventilated Facades - Performance Simulation Method and Assessment of Opaque Ventilated Facades - Performance Simulation Method and Assessment of Simulated Performance Speaker(s): Emanuele Naboni Date: May 29, 2007 - 12:00pm Location: 90-3122 Opaque ventilated façade systems are increasingly used in buildings, even though their effects on the overall thermal performance of buildings have not yet been fully understood. The research reported in this presentation focuses on the modeling of such systems with EnergyPlus. Ventilated façade systems are modeled in EnergyPlus with module "Exterior Naturally Vented Cavity." Not all façade systems can be modeled with this module; this research defined the types of systems that can be modeled, and the limitations of such simulation. The performance of a ventilated façade

271

New and Underutilized Technology: Carbon Dioxide Demand Ventilation Control  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Dioxide Demand Ventilation Carbon Dioxide Demand Ventilation Control New and Underutilized Technology: Carbon Dioxide Demand Ventilation Control October 4, 2013 - 4:23pm Addthis The following information outlines key deployment considerations for carbon dioxide (CO2) demand ventilation control within the Federal sector. Benefits Demand ventilation control systems modulate ventilation levels based on current building occupancy, saving energy while still maintaining proper indoor air quality (IAQ). CO2 sensors are commonly used, but a multiple-parameter approach using total volatile organic compounds (TVOC), particulate matter (PM), formaldehyde, and relative humidity (RH) levels can also be used. CO2 sensors control the outside air damper to reduce the amount of outside air that needs to be conditioned and supplied to the building when

272

Tenneco upgrades natural gasoline  

SciTech Connect

Tenneco Oil Co. recently completed a natural gasoline upgrading project at its LaPorte, Tex., facility. The project was started in October 1985. The purpose was to fractionate natural gasoline and isomerize the n-pentane component. Three factors made this a particularly attractive project for the LaPorte complex: 1. The phase down of lead in gasoline made further processing of natural gasoline desirable. 2. Idle equipment and trained personnel were available at the plant as a result of a switch of Tenneco's natural gas liquids (NGL) fractionation to its Mont Belvieu, Tex., facility. 3. The plant interconnects with Houston's local markets. It has pipelines to Mont Belvieu, Texas City, and plants along the Houston Ship Channel, as well as truck, tank car, and barge-loading facilities. Here are the details on the operation of the facilities, the changes which were required to enable the plant to operate successfully, and how this conversion was completed in a timely fashion.

O'Gorman, E.K.

1986-08-01T23:59:59.000Z

273

Carbon-dioxide-controlled ventilation study  

Science Conference Proceedings (OSTI)

The In-House Energy Management (IHEM) Program has been established by the U.S. Department of Energy to provide funds to federal laboratories to conduct research on energy-efficient technology. The Energy Sciences Department of Pacific Northwest Laboratory (PNL) was tasked by IHEM to research the energy savings potential associated with reducing outdoor-air ventilation of buildings. By monitoring carbon dioxide (CO{sub 2}) levels in a building, outdoor air provided by the heating, ventilating, and air-conditioning (HVAC) system can be reduced to the percentage required to maintain satisfactory CO{sub 2} levels rather than ventilating with a higher outdoor-air percentage based on an arbitrary minimum outdoor-air setting. During summer months, warm outdoor air brought into a building for ventilation must be cooled to meet the appropriate cooling supply-air temperature, and during winter months, cold outdoor air must be heated. By minimizing the amount of hot or cold outdoor air brought into the HVAC system, the supply air requires less cooling or heating, saving energy and money. Additionally, the CO{sub 2} levels in a building can be monitored to ensure that adequate outdoor air is supplied to a building to maintain air quality levels. The two main considerations prior to implementing CO{sub 2}-based ventilation control are its impact on energy consumption and the adequacy of indoor air quality (IAQ) and occupant comfort. To address these considerations, six portable CO{sub 2} monitors were placed in several Hanford Site buildings to estimate the adequacy of office/workspace ventilation. The monitors assessed the potential for reducing the flow of outdoor-air to the buildings. A candidate building was also identified to monitor various ventilation control strategies for use in developing a plan for implementing and assessing energy savings.

McMordie, K.L.; Carroll, D.M.

1994-05-01T23:59:59.000Z

274

Methodology for the evaluation of natural ventilation in buildings using a reduced-scale air model  

E-Print Network (OSTI)

Commercial office buildings predominantly are designed to be ventilated and cooled using mechanical systems. In temperate climates, passive ventilation and cooling techniques can be utilized to reduce energy consumption ...

Walker, Christine E. (Christine Elaine)

2006-01-01T23:59:59.000Z

275

Effect of Ventilation Strategies on Residential Ozone Levels  

NLE Websites -- All DOE Office Websites (Extended Search)

Effect of Ventilation Strategies on Residential Ozone Levels Effect of Ventilation Strategies on Residential Ozone Levels Title Effect of Ventilation Strategies on Residential Ozone Levels Publication Type Journal Article LBNL Report Number LBNL-5889E Year of Publication 2012 Authors Walker, Iain S., and Max H. Sherman Journal Building and Environment Volume 59 Start Page 456 Pagination 456-465 Date Published 01/2013 Keywords ashrae standard 62,2, filtration, infiltration, mechanical ventilation, ozone, simulation Abstract Elevated outdoor ozone levels are associated with adverse health effects. Because people spend the vast majority of their time indoors, reduction in indoor levels of ozone of outdoor origin would lower population exposures and might also lead to a reduction in ozone---associated adverse health effects. In most buildings, indoor ozone levels are diminished with respect to outdoor levels to an extent that depends on surface reactions and on the degree to which ozone penetrates the building envelope. Ozone enters buildings from outdoors together with the airflows that are driven by natural and mechanical means, including deliberate ventilation used to reduce concentrations of indoor---generated pollutants. When assessing the effect of deliberate ventilation on occupant health one should consider not only the positive effects on removing pollutants of indoor origin but also the possibility that enhanced ventilation might increase indoor levels of pollutants originating outdoors. This study considers how changes in residential ventilation that are designed to comply with ASHRAE Standard 62.2 might influence indoor levels of ozone. Simulation results show that the building envelope can contribute significantly to filtration of ozone. Consequently, the use of exhaust ventilation systems is predicted to produce lower indoor ozone concentrations than would occur with balanced ventilation systems operating at the same air---exchange rate. We also investigated a strategy for reducing exposure to ozone that would deliberately reduce ventilation rates during times of high outdoor ozone concentration while still meeting daily average ventilation requirements.

276

A study of time-dependent responses of a mechanical displacement ventilation (DV) system and an underfloor air distribution (UFAD) system : building energy performance of the UFAD system  

E-Print Network (OSTI)

strong demands for alternative cooling and heating systemsAs a successful alternative cooling system to an OH system,was introduced as an alternative cooling system for a data

Yu, Jong Keun

2010-01-01T23:59:59.000Z

277

Case Study - Energy Efficiency Upgrades for Fermilab Infrastructure |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Case Study - Energy Efficiency Upgrades for Fermilab Case Study - Energy Efficiency Upgrades for Fermilab Infrastructure Case Study - Energy Efficiency Upgrades for Fermilab Infrastructure October 7, 2013 - 3:29pm Addthis Utility energy service contracting provides needed plant improvements. Photo of Project Coordinator Steve Krstulovich with Fermilab's new 1400-ton, high-efficiency chiller. Project Coordinator Steve Krstulovich with Fermilab's new 1400-ton, high-efficiency chiller. Overview The U.S. Department of Energy's (DOE's) Fermi National Accelerator Laboratory (Fermilab) has replaced old equipment and reduced energy consumption through a partnership with its electric utility, Commonwealth Edison. Fermilab upgraded the centralized cooling system and separated the system into two segments - a "comfort system" to cool the employee office

278

Dehumidification and cooling loads from ventilation air  

SciTech Connect

The importance of controlling humidity in buildings is cause for concern, in part, because of indoor air quality problems associated with excess moisture in air-conditioning systems. But more universally, the need for ventilation air has forced HVAC equipment (originally optimized for high efficiency in removing sensible heat loads) to remove high moisture loads. To assist cooling equipment and meet the challenge of larger ventilation loads, several technologies have succeeded in commercial buildings. Newer technologies such as subcool/reheat and heat pipe reheat show promise. These increase latent capacity of cooling-based systems by reducing their sensible capacity. Also, desiccant wheels have traditionally provided deeper-drying capacity by using thermal energy in place of electrical power to remove the latent load. Regardless of what mix of technologies is best for a particular application, there is a need for a more effective way of thinking about the cooling loads created by ventilation air. It is clear from the literature that all-too-frequently, HVAC systems do not perform well unless the ventilation air loads have been effectively addressed at the original design stage. This article proposes an engineering shorthand, an annual load index for ventilation air. This index will aid in the complex process of improving the ability of HVAC systems to deal efficiently with the amount of fresh air the industry has deemed useful for maintaining comfort in buildings. Examination of typical behavior of weather shows that latent loads usually exceed sensible loads in ventilation air by at least 3:1 and often as much as 8:1. A designer can use the engineering shorthand indexes presented to quickly assess the importance of this fact for a given system design. To size those components after they are selected, the designer can refer to Chapter 24 of the 1997 ASHRAE Handbook--Fundamentals, which includes separate values for peak moisture and peak temperature.

Harriman, L.G. III [Mason-Grant, Portsmouth, NH (United States); Plager, D. [Quantitative Decision Support, Portsmouth, NH (United States); Kosar, D. [Gas Research Inst., Chicago, IL (United States)

1997-11-01T23:59:59.000Z

279

Dynamic Mercury Cycling Model Upgrade  

Science Conference Proceedings (OSTI)

This technical update describes the status of activities to upgrade the Dynamic Mercury Cycling Model (D-MCM), an EPRI simulation model that predicts mercury cycling and bioaccumulation in lakes.

2008-12-17T23:59:59.000Z

280

Heating, Ventilation, and Air Conditioning Renovations | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heating, Ventilation, and Air Conditioning Renovations Heating, Ventilation, and Air Conditioning Renovations Heating, Ventilation, and Air Conditioning Renovations October 16, 2013 - 4:49pm Addthis Renewable Energy Options for HVAC Renovations Geothermal Heat Pumps (GHP) Solar Water Heating (SWH) Biomass Passive Solar Heating Biomass Heating Solar Ventilation Air Preheating Federal building renovations that encompass the heating, ventilation, and air conditioning (HVAC) systems in a facility provide a range of renewable energy opportunities. The primary technology option for HVAC renovations is geothermal heat pumps (GHP). Other options include leveraging a solar water heating (SWH) system to offset heating load or using passive solar heating or a biomass-capable furnace or boiler. Some facilities may also take

Note: This page contains sample records for the topic "ventilation systems upgrading" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

ASHRAE and residential ventilation  

SciTech Connect

In the last quarter of a century, the western world has become increasingly aware of environmental threats to health and safety. During this period, people psychologically retreated away from outdoors hazards such as pesticides, smog, lead, oil spills, and dioxin to the seeming security of their homes. However, the indoor environment may not be healthier than the outdoor environment, as has become more apparent over the past few years with issues such as mold, formaldehyde, and sick-building syndrome. While the built human environment has changed substantially over the past 10,000 years, human biology has not; poor indoor air quality creates health risks and can be uncomfortable. The human race has found, over time, that it is essential to manage the indoor environments of their homes. ASHRAE has long been in the business of ventilation, but most of the focus of that effort has been in the area of commercial and institutional buildings. Residential ventilation was traditionally not a major concern because it was felt that, between operable windows and envelope leakage, people were getting enough outside air in their homes. In the quarter of a century since the first oil shock, houses have gotten much more energy efficient. At the same time, the kinds of materials and functions in houses changed in character in response to people's needs. People became more environmentally conscious and aware not only about the resources they were consuming but about the environment in which they lived. All of these factors contributed to an increasing level of public concern about residential indoor air quality and ventilation. Where once there was an easy feeling about the residential indoor environment, there is now a desire to define levels of acceptability and performance. Many institutions--both public and private--have interests in Indoor Air Quality (IAQ), but ASHRAE, as the professional society that has had ventilation as part of its mission for over 100 years, is the logical place to provide leadership. This leadership has been demonstrated most recently by the publication of the first nationally recognized standard on ventilation in homes, ASHRAE Standard 62.2-2003, which builds on work that has been part of ASHRAE for many years and will presumably continue. Homeowners and occupants, which includes virtually all of us, will benefit from the application of Standard 62.2 and use of the top ten list. This activity is exactly the kind of benefit to society that the founders of ASHRAE envisioned and is consistent with ASHRAE's mission and vision. ASHRAE members should be proud of their Society for taking leadership in residential ventilation.

Sherman, Max H.

2003-10-01T23:59:59.000Z

282

NERSC's Franklin Supercomputer Upgraded to Double Its Scientific Capability  

NLE Websites -- All DOE Office Websites (Extended Search)

NERSC's Franklin NERSC's Franklin Supercomputer Upgraded to Double Its Scientific Capability NERSC's Franklin Supercomputer Upgraded to Double Its Scientific Capability July 20, 2009 OCEAN EDDIES: This image comes from a computer simulation modeling eddies in the ocean. An interesting feature is the abundance of eddies away from the equator, which is shown in the center of the image at y=0. This research collaboration led by Paola Cessi of the Scripps Institute of Oceanography performed over 15,000 years worth of deep ocean circulation simulations with 1.6 million processor core hours on the upgraded Franklin system. The Department of Energy's (DOE) National Energy Research Scientific Computing (NERSC) Center has officially accepted a series of upgrades to its Cray XT4 supercomputer, providing the facility's 3,000 users with twice

283

Value impact analysis of Generic Issue 143, Availability of Heating, Ventilation, Air Conditioning (HVAC) and Chilled Water Systems  

Science Conference Proceedings (OSTI)

This study evaluates the values (benefits) and impacts (costs) associated with potential resolutions to Generic Issue 143, ``Availability of HVAC and Chilled Water Systems.`` The study identifies vulnerabilities related to failures of HVAC, chilled water, and room cooling systems; develops estimates of room heatup rates and safety-related equipment vulnerabilities following losses of HVAC/room cooler systems; develops estimates of the core damage frequencies and public risks associated with failures of these systems; develops three proposed resolution strategies to this generic issue; and performs a value/impact analysis of the proposed resolutions. Existing probabilistic risk assessments for four representative plants, including one plant from each vendor, form the basis for the core damage frequency and public risk calculations. Both internal and external events were considered. It was concluded that all three proposed resolution strategies exceed the $1,000/person-rem cost-effectiveness ratio. Additional evaluations were performed to develop ``generic`` insights on potential design-related and configuration-related vulnerabilities and potential high-frequency ({approximately}1E-04/RY) accident sequences that involve failures of HVAC/room cooling functions. It was concluded that, although high-frequency accident sequences may exist at some plants, these high-frequency sequences are plant-specific in nature or have been resolved through hardware and/or operational changes. The plant-specific Individual Plant Examinations are an effective vehicle for identification and resolution of these plant-specific anomalies and hardware configurations.

Daling, P.M.; Marler, J.E.; Vo, T.V.; Phan, H.; Friley, J.R. [Pacific Northwest Lab., Richland, WA (United States)

1993-11-01T23:59:59.000Z

284

Residential pollutants and ventilation strategies: Volatile organic compounds and radon  

SciTech Connect

This paper reviews literature that reports investigations of residential ventilation and indoor air quality. Two important residential pollutant classes, volatile organic compounds and radon, are examined. A companion paper examines moisture and combustion pollutants. Control strategies recommended from the review include appropriate building design to prevent or limit the sources of the pollutants within the space, proper operation and maintenance to prevent adverse conditions from developing during the building's life and appropriate use of ventilation. The characteristics of these pollutant sources suggest that ventilation systems in residences should have several properties. They should have the extra capacity available to reduce short bursts of pollution, be located close to the expected source of the contamination, and be inexpensive. Mitigation of radon is technically a major success using a form of task ventilation. Whole-house ventilation is, at best, a secondary form of control of excess radon in residences.

Grimsrud, D.T.; Hadlich, D.E.

1999-07-01T23:59:59.000Z

285

A database of PFT ventilation measurements  

SciTech Connect

About five years ago, a method for measuring the ventilation flows of a building was developed at Brookhaven National Laboratory (BNL). This method is based on the use of a family of compounds known as perfluorocarbon tracers or PFTs. Since 1982, BNL has measured ventilation in more than 4000 homes, comprising about 100 separate research projects throughout the world. This measurement set is unique in that it is the only set of ventilation measurements that acknowledge and measure the multizone characteristics of residences. Other large measurement sets assume that a home can be treated as a single well-mixed zone. This report describes the creation of a database of approximately half of the PFT ventilation measurements made by BNL over the last five years. The PFT database is currently available for use on any IBM PC or Apple Macintosh based personal computer system. In addition to its utility in modeling indoor pollutant dispersion, this database may also be useful to those people studying energy conservation, thermal comfort and heating system design in residential buildings. 2 refs.

D' Ottavio, T.W.; Goodrich, R.W.; Spandau, D.J.; Dietz, R.N.

1988-08-01T23:59:59.000Z

286

ENERGY STAR Building Upgrade Manual Chapter 9: Heating and Cooling...  

NLE Websites -- All DOE Office Websites (Extended Search)

care resources Small business resources State and local government resources ENERGY STAR Building Upgrade Manual Chapter 9: Heating and Cooling Upgrades The Building Upgrade...

287

upgrade | OpenEI Community  

Open Energy Info (EERE)

4 4 Varnish cache server Home Groups Community Central Green Button Applications Developer Utility Rate FRED: FRee Energy Database More Public Groups Private Groups Features Groups Blog posts Content Stream Documents Discussions Polls Q & A Events Notices My stuff Energy blogs 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142235354 Varnish cache server upgrade Home Rmckeel's picture Submitted by Rmckeel(297) Contributor 22 October, 2012 - 07:23 Semantic Mediawiki Semantic Forms update developer Incentives and Policies Semantic Mediawiki upgrade Utility Rates We have just updated Semantic Forms on OpenEI to version 2.4 to enable some upgrades to the utility rate forms (thanks Teresa!). If you see any problems in forms you use on OpenEI, please notify us by commenting on this

288

ZPAY Payroll Systems, Inc. PayWindow2012 10.0.23 123 ...  

Science Conference Proceedings (OSTI)

... Acrobat 8 Professional Upgrade 8 Adobe Systems Incorporated Adobe Acrobat 8 Professional Upgrade Middle Eastern Version 1984-2006 Adobe ...

2013-02-08T23:59:59.000Z

289

Ventilation and Work Performance in Office Work  

E-Print Network (OSTI)

A). When ventilation rate increases from V to V\\, the ratiowork when ventilation rates increase. Field studies withper 10 L/s person increase in ventilation rate and relative

Seppanen, Olli; Fisk, William J.; Lei, Q.H.

2005-01-01T23:59:59.000Z

290

NMMSS Upgrade Progress  

National Nuclear Security Administration (NNSA)

) SEO-SSI-2008.0040-S Pg 10 General Menu Options Authority Reference Transactions Inventory Material Balance System - Global Reset Screen Defaults Utilities - Global Parameters...

291

RESIDENTIAL VENTILATION AND ENERGY CHARACTERISTICS*  

E-Print Network (OSTI)

while still providing ventilation for adequate indoor air quality. Various ASHRAE Standards (e.g., 62 to the ASHRAE Standard 119 levels while still providing adequate ventilation through infiltration or mechanical alternatives. Various ASHRAE Standards are used to assist us. ASHRAE Standard 119-19885 classifies the envelope

292

Transpired Air Collectors - Ventilation Preheating  

DOE Green Energy (OSTI)

Many commercial and industrial buildings have high ventilation rates. Although all that fresh air is great for indoor air quality, heating it can be very expensive. This short (2-page) fact sheet describes a technology available to use solar energy to preheat ventilation air and dramatically reduce utility bills.

Christensen, C.

2006-06-22T23:59:59.000Z

293

Kitchen Ventilation Should be High Performance (Not Optional)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kitchen Ventilation Kitchen Ventilation Should be High Performance (not Optional) Brett C. Singer Residential Building Systems & Indoor Environment Groups Lawrence Berkeley National Laboratory Building America Technical Update Denver, CO April 30, 2013 Acknowledgements PROGRAM SUPPORT *U.S. Department of Energy - Building America Program *U.S. Environmental Protection Agency - Indoor Environments Division *U.S. Department of Housing and Urban Development - Office of Healthy Homes & Lead Hazard Control *California Energy Commission - Public Interest Energy Research Program TECHNICAL CONTRIBUTIONS *Woody Delp, Tosh Hotchi, Melissa Lunden, Nasim Mullen, Chris Stratton, Doug Sullivan, Iain Walker Kitchen Ventilation Simplified PROBLEM: * Cooking burners & cooking produce odors, moisture

294

Why We Ventilate - Recent Advances  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WHY WE VENTILATE: WHY WE VENTILATE: Recent Advances Max Sherman BA Stakeholders meeting ASHRAE BIO  Distinguished Lecturer  Exceptional Service Award  Board of Directors; TechC  Chair of committees:  62.2; Standards Committee  TC 4.3; TC 2.5  Holladay Distinguished Fellow OVERVIEW QUESTIONS  What is Ventilation? What is IAQ?  What functions does it provide?  How much do we need? Why?  How should ventilations standards be made? LBL has working on these problems Who Are You?  Engineers (ASHRAE Members & not);  architects,  contractors,  reps,  builders,  vendors,  code officials WHAT IS VENTILATION  Medicine: To Exchange Air In the Lungs  Latin: Ventilare, "to expose to the wind"  Today: To Bring In Outdoor Air And Replace

295

Ventilation Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

is important in understanding cooling strategies for homes and buildings. Principles of Heat Transfer Heat is transferred to and from objects via three processes: conduction,...

296

Infiltration as ventilation: Weather-induced dilution  

NLE Websites -- All DOE Office Websites (Extended Search)

Infiltration as ventilation: Weather-induced dilution Title Infiltration as ventilation: Weather-induced dilution Publication Type Report LBNL Report Number LBNL-5795E Year of...

297

Equivalence in Ventilation and Indoor Air Quality  

NLE Websites -- All DOE Office Websites (Extended Search)

62) specify minimum ventilation rates without taking into account the impact of those rates on IAQ. Innovative ventilation management is often a desirable element of reducing...

298

Solar Ventilation Preheating Resources and Technologies | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ventilation Preheating Resources and Technologies Solar Ventilation Preheating Resources and Technologies October 7, 2013 - 11:50am Addthis Photo of a dark brown perforated metal...

299

Improving Ventilation and Saving Energy: Relocatable Classroom...  

NLE Websites -- All DOE Office Websites (Extended Search)

Improving Ventilation and Saving Energy: Relocatable Classroom Field Study Interim Report Title Improving Ventilation and Saving Energy: Relocatable Classroom Field Study Interim...

300

Development of a Residential Integrated Ventilation Controller  

E-Print Network (OSTI)

Passive Ventilation by Constant Area Vents to Maintain Indoor Air Quality in Houses. Passive Ventilation by Constant Area Vents to Maintain Indoor Air Quality in Houses."

Walker, Iain

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ventilation systems upgrading" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Investment and Upgrade in Distributed Generation under Uncertainty  

E-Print Network (OSTI)

AS, Marnay, C. Distributed generation investment by aand Upgrade in Distributed Generation under Uncertaintyand Upgrade in Distributed Generation under Uncertainty ?

Siddiqui, Afzal

2008-01-01T23:59:59.000Z

302

Energy-saving strategies with personalized ventilation in cold climates  

E-Print Network (OSTI)

designs of personalized ventilation, International Journal of heating, Ventilation and Refrigeration

Schiavon, Stefano; Melikov, Arsen

2009-01-01T23:59:59.000Z

303

Forsyth County Slashes Energy Bills with Upgrades | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Forsyth County Slashes Energy Bills with Upgrades Forsyth County Slashes Energy Bills with Upgrades Forsyth County Slashes Energy Bills with Upgrades September 30, 2010 - 12:04pm Addthis A new energy management system in Forsyth County’s 52,057 square foot courthouse is expected to save about $9,000 annually. | Photo courtesy of Forsyth County A new energy management system in Forsyth County's 52,057 square foot courthouse is expected to save about $9,000 annually. | Photo courtesy of Forsyth County Maya Payne Smart Former Writer for Energy Empowers, EERE What are the key facts? Four large projects funded through Recovery Act grant Energy efficient retrofits to save county about $72,000 annually Forsyth County, Georgia has been among the nation's fastest growing counties for the past ten years. Given the growth, officials are working

304

Forsyth County Slashes Energy Bills with Upgrades | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Forsyth County Slashes Energy Bills with Upgrades Forsyth County Slashes Energy Bills with Upgrades Forsyth County Slashes Energy Bills with Upgrades September 30, 2010 - 12:04pm Addthis A new energy management system in Forsyth County’s 52,057 square foot courthouse is expected to save about $9,000 annually. | Photo courtesy of Forsyth County A new energy management system in Forsyth County's 52,057 square foot courthouse is expected to save about $9,000 annually. | Photo courtesy of Forsyth County Maya Payne Smart Former Writer for Energy Empowers, EERE What are the key facts? Four large projects funded through Recovery Act grant Energy efficient retrofits to save county about $72,000 annually Forsyth County, Georgia has been among the nation's fastest growing counties for the past ten years. Given the growth, officials are working

305

Optimization of Occupancy Based Demand Controlled Ventilation in Residences  

SciTech Connect

Although it has been used for many years in commercial buildings, the application of demand controlled ventilation in residences is limited. In this study we used occupant exposure to pollutants integrated over time (referred to as 'dose') as the metric to evaluate the effectiveness and air quality implications of demand controlled ventilation in residences. We looked at air quality for two situations. The first is that typically used in ventilation standards: the exposure over a long term. The second is to look at peak exposures that are associated with time variations in ventilation rates and pollutant generation. The pollutant generation had two components: a background rate associated with the building materials and furnishings and a second component related to occupants. The demand controlled ventilation system operated at a low airflow rate when the residence was unoccupied and at a high airflow rate when occupied. We used analytical solutions to the continuity equation to determine the ventilation effectiveness and the long-term chronic dose and peak acute exposure for a representative range of occupancy periods, pollutant generation rates and airflow rates. The results of the study showed that we can optimize the demand controlled airflow rates to reduce the quantity of air used for ventilation without introducing problematic acute conditions.

Mortensen, Dorthe K.; Walker, Iain S.; Sherman, Max H.

2011-05-01T23:59:59.000Z

306

About: Why Energy Efficiency Upgrades  

NLE Websites -- All DOE Office Websites (Extended Search)

Why Energy Efficiency Upgrades Why Energy Efficiency Upgrades Two photos side by side showing energy loss through the use of infrared technology. As part of a home energy evaluation, an energy professional can use an infrared camera to pinpoint where air leaks and drafts are occurring in your home or building. Although normally difficult to see, these infrared photos clearly show in color where energy losses are occurring in a typical house. How We Use Energy in Our Buildings How We Use Energy in Our Homes (% of Energy Consumption) A pie chart illustrating the following breakdown: Space heating 43%, space cooling 9.7%, water heating 17.1%, lighting 6.2%, refrigeration 3.9%, electronics 3%, wet cleaning 3.2%, cooking 3.1%, computers 1.6%. Source: 2010 Buildings Energy Data Book, Table 2.1.6

307

Upgrading Methane Using Ultra-Fast Thermal Swing Adsorption  

Science Conference Proceedings (OSTI)

The purpose of this project is to design and demonstrate an approach to upgrade low-BTU methane streams from coal mines to pipeline-quality natural gas. The objective of Phase I of the project was to assess the technical feasibility and cost of upgrading low-BTU methane streams using ultra-fast thermal swing adsorption (TSA) using Velocys modular microchannel process technology. The objective of Phase II is to demonstrate the process at the bench-scale. Natural gas upgrading systems have six main unit operations: feed compressor, dehydration unit, nitrogen rejection unit, deoxygenator, carbon dioxide scrubber, and a sales compressor. The NRU is the focus of the development program, and a bench-scale demonstration has been initiated. The Velocys NRU system targets producing methane with greater than 96% purity and at least 90% recovery for final commercial operation. A preliminary cost analysis of the methane upgrading system, including the Velocys NRU, suggests that costs below $2.00 per million (MM) BTU methane may be achieved. The cost for a conventional methane upgrading system is well above $2.30 per MM BTU, as benchmarked in an Environmental Protection Agency study. The project is on schedule and on budget. Task 4, a bench-scale demonstration of the ultra-fast TSA system is complete. Rapid thermal swing of an adsorbent bed using microchannels has been successfully demonstrated and the separation of a 70% methane and 30% nitrogen was purified to 92% methane. The bench-scale demonstration unit was small relative to the system dead volume for the initial phase of experiments and a purge step was added to sweep the dead volume prior to desorbing the bed and measuring purity. A technical and economic feasibility assessment was completed in Task 3. The proposed Velocys technology appears feasible for the methane upgrading market. Evaluated categories include adsorbent selection, rapid-cycle valve selection, microchannel manufacturability assessment, and system design and cost. The selected adsorbent, granular microporous carbon from either Barnaby-Sutcliffe or Calgon, experimentally demonstrated sufficient methane capacity under differential temperature at 100 pounds per square inch gauge. Several valve options were identified, including candidates that can operate millions of cycles between refurbishment. The microchannel adsorber and desorber designs were made using internal Velocys manufacturability standards, and the associated costs are acceptable as included with the complete nitrogen rejection unit (NRU) cost projection. A system design and cost estimate was completed for the NRU section of the methane upgrading system. As integrated into the complete system, the cost is in line with the market requirement.

Anna Lee Tonkovich

2005-07-01T23:59:59.000Z

308

The FNAL Injector Upgrade Status  

SciTech Connect

The new FNAL H{sup -} injector upgrade is currently being tested before installation in the Spring 2012 shutdown of the accelerator complex. This line consists of an H{sup -} source, low energy beam transport (LEBT), 200 MHz RFQ and medium energy beam transport (MEBT). Beam measurements have been performed to validate the design before installation. The results of the beam measurements are presented in this paper.

Tan, C.Y.; Bollinger, D.S.; Duel, K.L.; Karns, P.R.; Lackey, J.R.; Pellico, W.A; Scarpine, V.E.; Tomlin, R.E.; /Fermilab

2012-05-14T23:59:59.000Z

309

High intensity performance and upgrades at the Brookhaven AGS  

SciTech Connect

For the last two years the Brookhaven AGS has operated the slow extracted beam program at record proton intensities. This high beam intensity allowed for the simultaneous operation of three high precision rare kaon decay experiments. The record beam intensities were achieved after the 1.5 GeV Booster was commissioned and a transition jump system, a powerful transverse damper, and an rf upgrade in the AGS were completed. Recently even higher intensity proton synchrotrons are studied for neutron spallation sources or proton driver for a muon collider. Implications of the experiences from the AGS to these proposals and also possible future upgrades for the AGS are discussed.

Roser, T.

1996-12-31T23:59:59.000Z

310

Energy and Emissions Savings through Insulation Upgrade Projects  

E-Print Network (OSTI)

The presentation demonstrates the value of including insulation system assessment, repairs and upgrades on a facility's physical function and its importance in the overall energy and environmental management program. Financial and environmental benefits are quantified and physical improvements detailed. The presentation will highlight the key components and successful execution of an insulation assessment and upgrade project. This includes: The extent of the problem How the current state happened The stake / reward for plants Specific case studies will be used including Sunoco and Marathon Petroleum

Lettich, M.

2008-01-01T23:59:59.000Z

311

Modeling, design and thermal performance of a BIPV/T system thermally coupled with a ventilated concrete slab in a low energy solar house: Part 1, BIPV/T system and house energy concept  

SciTech Connect

This paper is the first of two papers that describe the modeling, design, and performance assessment based on monitored data of a building-integrated photovoltaic-thermal (BIPV/T) system thermally coupled with a ventilated concrete slab (VCS) in a prefabricated, two-storey detached, low energy solar house. This house, with a design goal of near net-zero annual energy consumption, was constructed in 2007 in Eastman, Quebec, Canada - a cold climate area. Several novel solar technologies are integrated into the house and with passive solar design to reach this goal. An air-based open-loop BIPV/T system produces electricity and collects heat simultaneously. Building-integrated thermal mass is utilized both in passive and active forms. Distributed thermal mass in the direct gain area and relatively large south facing triple-glazed windows (about 9% of floor area) are employed to collect and store passive solar gains. An active thermal energy storage system (TES) stores part of the collected thermal energy from the BIPV/T system, thus reducing the energy consumption of the house ground source heat pump heating system. This paper focuses on the BIPV/T system and the integrated energy concept of the house. Monitored data indicate that the BIPV/T system has a typical efficiency of about 20% for thermal energy collection, and the annual space heating energy consumption of the house is about 5% of the national average. A thermal model of the BIPV/T system suitable for preliminary design and control of the airflow is developed and verified with monitored data. (author)

Chen, Yuxiang; Athienitis, A.K.; Galal, Khaled [Dept. of Building, Civil and Environmental Engineering, Concordia University, 1455 De Maisonneuve West, EV6.139, Montreal, Quebec (Canada)

2010-11-15T23:59:59.000Z

312

Does Mixing Make Residential Ventilation More Effective?  

E-Print Network (OSTI)

2009. ASHRAE Handbook of Fundamentals, Ventilation andleakage. The ASHRAE Handbook of fundamentals (ASHRAE 2009),

Sherman, Max

2011-01-01T23:59:59.000Z

313

Equivalence in Ventilation and Indoor Air Quality  

SciTech Connect

We ventilate buildings to provide acceptable indoor air quality (IAQ). Ventilation standards (such as American Society of Heating, Refrigerating, and Air-Conditioning Enginners [ASHRAE] Standard 62) specify minimum ventilation rates without taking into account the impact of those rates on IAQ. Innovative ventilation management is often a desirable element of reducing energy consumption or improving IAQ or comfort. Variable ventilation is one innovative strategy. To use variable ventilation in a way that meets standards, it is necessary to have a method for determining equivalence in terms of either ventilation or indoor air quality. This study develops methods to calculate either equivalent ventilation or equivalent IAQ. We demonstrate that equivalent ventilation can be used as the basis for dynamic ventilation control, reducing peak load and infiltration of outdoor contaminants. We also show that equivalent IAQ could allow some contaminants to exceed current standards if other contaminants are more stringently controlled.

Sherman, Max; Walker, Iain; Logue, Jennifer

2011-08-01T23:59:59.000Z

314

New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy  

SciTech Connect

Approximately ten percent of the energy consumed in U.S. commercial buildings is used by HVAC systems to condition outdoor ventilation air. Reducing ventilation rates would be a simple and broadly-applicable energy retrofit option, if practical counter measures were available that maintained acceptable concentrations of indoor-generated air pollutants. The two general categories of countermeasures are: 1) indoor pollutant source control, and 2) air cleaning. Although pollutant source control should be used to the degree possible, source control is complicated by the large number and changing nature of indoor pollutant sources. Particle air cleaning is already routinely applied in commercial buildings. Previous calculations indicate that particle filtration consumes only 10percent to 25percent of the energy that would otherwise be required to achieve an equivalent amount of particle removal with ventilation. If cost-effective air cleaning technologies for volatile organic compounds (VOCs) were also available, outdoor air ventilation rates could be reduced substantially and broadly in the commercial building stock to save energy. The research carried out in this project focuses on developing novel VOC air cleaning technologies needed to enable energy-saving reductions in ventilation rates. The minimum required VOC removal efficiency to counteract a 50percent reduction in ventilation rate for air cleaning systems installed in the HVAC supply airstream is modest (generally 20percent or less).

Sidheswaran, Meera; Destaillats, Hugo; Sullivan, Douglas P.; Fisk, William J.

2010-10-27T23:59:59.000Z

315

Considerations for Polarimetric Upgrades to Operational WSR-88D Radars  

Science Conference Proceedings (OSTI)

This paper reports on the steps taken by the National Severe Storms Laboratory (NSSL) to 1) develop open system hardware to facilitate upgrades to the WSR-88D (NEXRAD) radar and 2) improve identification of the type of precipitation and its ...

R. J. Doviak; V. Bringi; A. Ryzhkov; A. Zahrai; D. Zrni?

2000-03-01T23:59:59.000Z

316

Substation voltage upgrading  

SciTech Connect

This report addresses specific issues to support sound yet not unduly conservative uprating practices for substations. The main parts of the report cover the insulation withstand and overvoltage protection aspects, environmental measurements, reliability criteria, and industry experience. First the insulation design concerns are addressed. Substation stress by a backflashover of the line insulation due to lightning in the vicinity of the substation is recognized as a critical stress. A representative part of a 550 kV BIL substation was erected at the EPRI High Voltage Transmission Research Center, where also a special test circuit was assembled to produce a fast front, slow tail (0.2/200 {mu}s) wave. The substation as well as some special configurations were tested for line-to-ground and line-to-line withstand. Computer studies were performed to complement the test results. A number of important conclusions was reached. The most prominent result in that the high frequency oscillations, as caused by reflections within the substation, do not effect the Critical Flashover Voltage (CFO). The present practice, based on the highest peak is therefore very conservative. The slow tail of the wave appears to dictate the CFO. An arrester model for computer studies to represent very fast as well as slow phenomena was derived. It is based on full scale arrester test data, made available in this project. The computer program to calculate arrester model parameters is also a part of the report. The electric environmental measurements are reported for the tested substation at the HVTRC and for the uprated substation of Public Service Company of Colorado, both before and after the uprating. The performance is satisfactory when corona free hardware is used. Insulation design criteria are analyzed based on substation reliability, the system viewpoint and consequences of the failure. Utility experience with uprated substations is reviewed.

Panek, J.; Elahi, H.; Lux, A.; Imece, A.F. (General Electric Co., Schenectady, NY (United States). Power Systems Engineering Dept.); LaPanse, R.A.; Stewart, J.R. (Public Service Co. of Colorado, Denver, CO (United States))

1992-04-01T23:59:59.000Z

317

Capture and Use of Coal Mine Ventilation Air Methane  

Science Conference Proceedings (OSTI)

CONSOL Energy Inc., in conjunction with MEGTEC Systems, Inc., and the U.S. Department of Energy with the U.S. Environmental Protection Agency, designed, built, and operated a commercial-size thermal flow reversal reactor (TFRR) to evaluate its suitability to oxidize coal mine ventilation air methane (VAM). Coal mining, and particularly coal mine ventilation air, is a major source of anthropogenic methane emissions, a greenhouse gas. Ventilation air volumes are large and the concentration of methane in the ventilation air is low; thus making it difficult to use or abate these emissions. This test program was conducted with simulated coal mine VAM in advance of deploying the technology on active coal mine ventilation fans. The demonstration project team installed and operated a 30,000 cfm MEGTEC VOCSIDIZER oxidation system on an inactive coal mine in West Liberty, WV. The performance of the unit was monitored and evaluated during months of unmanned operation at mostly constant conditions. The operating and maintenance history and how it impacts the implementation of the technology on mine fans were investigated. Emission tests showed very low levels of all criteria pollutants at the stack. Parametric studies showed that the equipment can successfully operate at the design specification limits. The results verified the ability of the TFRR to oxidize {ge}95% of the low and variable concentration of methane in the ventilation air. This technology provides new opportunities to reduce greenhouse gas emissions by the reduction of methane emissions from coal mine ventilation air. A large commercial-size installation (180,000 cfm) on a single typical mine ventilation bleeder fan would reduce methane emissions by 11,000 to 22,100 short tons per year (the equivalent of 183,000 to 366,000 metric tonnes carbon dioxide).

Deborah Kosmack

2008-10-31T23:59:59.000Z

318

Technologies for Upgrading Light Water Reactor Outlet Temperature  

SciTech Connect

Nuclear energy could potentially be utilized in hybrid energy systems to produce synthetic fuels and feedstocks from indigenous carbon sources such as coal and biomass. First generation nuclear hybrid energy system (NHES) technology will most likely be based on conventional light water reactors (LWRs). However, these LWRs provide thermal energy at temperatures of approximately 300C, while the desired temperatures for many chemical processes are much higher. In order to realize the benefits of nuclear hybrid energy systems with the current LWR reactor fleets, selection and development of a complimentary temperature upgrading technology is necessary. This paper provides an initial assessment of technologies that may be well suited toward LWR outlet temperature upgrading for powering elevated temperature industrial and chemical processes during periods of off-peak power demand. Chemical heat transformers (CHTs) are a technology with the potential to meet LWR temperature upgrading requirements for NHESs. CHTs utilize chemical heat of reaction to change the temperature at which selected heat sources supply or consume thermal energy. CHTs could directly utilize LWR heat output without intermediate mechanical or electrical power conversion operations and the associated thermodynamic losses. CHT thermal characteristics are determined by selection of the chemical working pair and operating conditions. This paper discusses the chemical working pairs applicable to LWR outlet temperature upgrading and the CHT operating conditions required for providing process heat in NHES applications.

Daniel S. Wendt; Piyush Sabharwall; Vivek Utgikar

2013-07-01T23:59:59.000Z

319

Evaluation of an Incremental Ventilation Energy Model for Estimating  

NLE Websites -- All DOE Office Websites (Extended Search)

Evaluation of an Incremental Ventilation Energy Model for Estimating Evaluation of an Incremental Ventilation Energy Model for Estimating Impacts of Air Sealing and Mechanical Ventilation Title Evaluation of an Incremental Ventilation Energy Model for Estimating Impacts of Air Sealing and Mechanical Ventilation Publication Type Report LBNL Report Number LBNL-5796E Year of Publication 2012 Authors Logue, Jennifer M., William J. N. Turner, Iain S. Walker, and Brett C. Singer Date Published 06/2012 Abstract Changing the rate of airflow through a home affects the annual thermal conditioning energy.Large-scale changes to airflow rates of the housing stock can significantly alter the energy consumption of the residential energy sector. However, the complexity of existing residential energy models hampers the ability to estimate the impact of policy changes on a state or nationwide level. The Incremental Ventilation Energy (IVE) model developed in this study was designed to combine the output of simple airflow models and a limited set of home characteristics to estimate the associated change in energy demand of homes. The IVE model was designed specifically to enable modelers to use existing databases of home characteristics to determine the impact of policy on ventilation at a population scale. In this report, we describe the IVE model and demonstrate that its estimates of energy change are comparable to the estimates of a well-validated, complex residential energy model when applied to homes with limited parameterization. Homes with extensive parameterization would be more accurately characterized by complex residential energy models. The demonstration included a range of home types, climates, and ventilation systems that cover a large fraction of the residential housing sector.

320

Better Buildings Neighborhood Program: Energy Efficiency Upgrades...  

NLE Websites -- All DOE Office Websites (Extended Search)

PYC made the recommended energy efficiency upgrades, which included new insulation and air sealing, a new hot water heater, programmable thermostats, improved lighting, and new...

Note: This page contains sample records for the topic "ventilation systems upgrading" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

ENERGY STAR Building Upgrade Manual | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

ENERGY STAR Building Upgrade Manual Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new...

322

Classroom HVAC: Improving ventilation and saving energy -- field study plan  

E-Print Network (OSTI)

in this study. Classroom HVAC: Improving Ventilation andV8doc.sas.com/sashtml. Classroom HVAC: Improving VentilationBerkeley, CA 94720. Classroom HVAC: Improving Ventilation

Apte, Michael G.; Faulkner, David; Hodgson, Alfred T.; Sullivan, Douglas P.

2004-01-01T23:59:59.000Z

323

On The Valuation of Infiltration towards Meeting Residential Ventilation Needs  

E-Print Network (OSTI)

Literature Related to Residential Ventilation Requirements.A. 2005. Review of Residential Ventilation Technologies,M.H. and Matson N.E. , Residential Ventilation and Energy

Sherman, Max H.

2008-01-01T23:59:59.000Z

324

Recent Upgrade of the Klystron Modulator at SLAC  

SciTech Connect

The SLAC National Accelerator Laboratory employs 244 klystron modulators on its two-mile-long linear accelerator that has been operational since the early days of the SLAC establishment in the sixties. Each of these original modulators was designed to provide 250 kV, 262 A and 3.5 {mu}S at up to 360 pps using an inductance-capacitance resonant charging system, a modified type-E pulse-forming network (PFN), and a pulse transformer. The modulator internal control comprised of large step-start resistor-contactors, vacuum-tube amplifiers, and 120 Vac relays for logical signals. A major, power-component-only upgrade, which began in 1983 to accommodate the required beam energy of the SLAC Linear Collider (SLC) project, raised the modulator peak output capacity to 360 kV, 420 A and 5.0 {mu}S at a reduced pulse repetition rate of 120 pps. In an effort to improve safety, performance, reliability and maintainability of the modulator, this recent upgrade focuses on the remaining three-phase AC power input and modulator controls. The upgrade includes the utilization of primary SCR phase control rectifiers, integrated fault protection and voltage regulation circuitries, and programmable logic controllers (PLC) -- with an emphasis on component physical layouts for safety and maintainability concerns. In this paper, we will describe the design and implementation of each upgraded component in the modulator control system. We will also report the testing and present status of the modified modulators.

Nguyen, M.N.; Burkhart, C.P.; Lam, B.K.; Morris, B.; /SLAC

2011-11-04T23:59:59.000Z

325

Energy and air quality implications of passive stack ventilation in residential buildings  

SciTech Connect

Ventilation requires energy to transport and condition the incoming air. The energy consumption for ventilation in residential buildings depends on the ventilation rate required to maintain an acceptable indoor air quality. Historically, U.S. residential buildings relied on natural infiltration to provide sufficient ventilation, but as homes get tighter, designed ventilation systems are more frequently required particularly for new energy efficient homes and retrofitted homes. ASHRAE Standard 62.2 is used to specify the minimum ventilation rate required in residential buildings and compliance is normally achieved with fully mechanical whole-house systems; however, alternative methods may be used to provide the required ventilation when their air quality equivalency has been proven. One appealing method is the use of passive stack ventilation systems. They have been used for centuries to ventilate buildings and are often used in ventilation regulations in other countries. Passive stacks are appealing because they require no fans or electrical supply (which could lead to lower cost) and do not require maintenance (thus being more robust and reliable). The downside to passive stacks is that there is little control of ventilation air flow rates because they rely on stack and wind effects that depend on local time-varying weather. In this study we looked at how passive stacks might be used in different California climates and investigated control methods that can be used to optimize indoor air quality and energy use. The results showed that passive stacks can be used to provide acceptable indoor air quality per ASHRAE 62.2 with the potential to save energy provided that they are sized appropriately and flow controllers are used to limit over-ventilation.

Mortensen, Dorthe Kragsig; Walker, Iain S.; Sherman, Max

2011-01-01T23:59:59.000Z

326

Residential ventilation standards scoping study  

SciTech Connect

The goals of this scoping study are to identify research needed to develop improved ventilation standards for California's Title 24 Building Energy Efficiency Standards. The 2008 Title 24 Standards are the primary target for the outcome of this research, but this scoping study is not limited to that timeframe. We prepared this scoping study to provide the California Energy Commission with broad and flexible options for developing a research plan to advance the standards. This document presents the findings of a scoping study commissioned by the Public Interest Energy Research (PIER) program of the California Energy Commission to determine what research is necessary to develop new residential ventilation requirements for California. This study is one of three companion efforts needed to complete the job of determining the ventilation needs of California residences, determining the bases for setting residential ventilation requirements, and determining appropriate ventilation technologies to meet these needs and requirements in an energy efficient manner. Rather than providing research results, this scoping study identifies important research questions along with the level of effort necessary to address these questions and the costs, risks, and benefits of pursuing alternative research questions. In approaching these questions and corresponding levels of effort, feasibility and timing were important considerations. The Commission has specified Summer 2005 as the latest date for completing this research in time to update the 2008 version of California's Energy Code (Title 24).

McKone, Thomas E.; Sherman, Max H.

2003-10-01T23:59:59.000Z

327

Transverse instability analysis for the IPNS Upgrade  

SciTech Connect

The proposed 1-MW spallation neutron source upgrade calls for a 2-GeV rapidly-cycling synchrotron (RCS) with an intensity of 1.04{times}10{sup 14} protons per pulse. The potential exists for the excitation of collective, intensity-dependent transverse instabilities. These can normally be controlled by introducing a betatron tune shift or spread, where care is exercised to avoid single-particle resonance effects. Adjusting the chromaticity using sextupoles to vary the head-to-tail phase shift is compared to introducing Landau damping by octupoles. An option for a feedback system is also examined. The momentum spread used for the transverse analysis was obtained from the requirements for longitudinal stability.

Harkay, K.; Cho, Y.

1995-07-01T23:59:59.000Z

328

Analysis Efforts Supporting NSTX Upgrades  

SciTech Connect

The National Spherical Torus Experiment (NSTX) is a low aspect ratio, spherical torus (ST) configuration device which is located at Princeton Plasma Physics Laboratory (PPPL) This device is presently being updated to enhance its physics by doubling the TF field to 1 Tesla and increasing the plasma current to 2 Mega-amperes. The upgrades include a replacement of the centerstack and addition of a second neutral beam. The upgrade analyses have two missions. The first is to support design of new components, principally the centerstack, the second is to qualify existing NSTX components for higher loads, which will increase by a factor of four. Cost efficiency was a design goal for new equipment qualification, and reanalysis of the existing components. Showing that older components can sustain the increased loads has been a challenging effort in which designs had to be developed that would limit loading on weaker components, and would minimize the extent of modifications needed. Two areas representing this effort have been chosen to describe in more details: analysis of the current distribution in the new TF inner legs, and, second, analysis of the out-of-plane support of the existing TF outer legs.

H.Zhang, P. Titus, P. Rogoff, A.Zolfaghari, D. Mangra, M. Smith

2010-11-29T23:59:59.000Z

329

Upgrading Methane Using Ultra-Fast Thermal Swing Adsorption  

Science Conference Proceedings (OSTI)

The purpose of this project is to design and demonstrate an approach to upgrade low-BTU methane streams from coal mines to pipeline-quality natural gas. The objective of Phase I of the project was to assess the technical feasibility and cost of upgrading low-BTU methane streams using ultra-fast thermal swing adsorption (TSA) using Velocys modular microchannel process technology. The objective of Phase II is to demonstrate the process at the bench scale. The project is on schedule and on budget. A technical and economic feasibility assessment was completed in Task 3. The proposed Velocys technology appears feasible for the methane upgrading market. Evaluated categories include adsorbent selection, rapid-cycle valve selection, microchannel manufacturability assessment, and system design and cost. The selected adsorbent, granular microporous carbon from either Barnaby-Sutcliffe or Calgon, experimentally demonstrated sufficient methane capacity under differential temperature at 100 pounds per square inch gauge. Several valve options were identified, including candidates that can operate millions of cycles between refurbishment. The microchannel adsorber and desorber designs were made using internal Velocys manufacturability standards, and the associated costs are acceptable as included with the complete nitrogen rejection unit (NRU) cost projection. A system design and cost estimate was completed for the NRU section of the methane upgrading system. As integrated into the complete system, the cost is in line with the market requirement. The system has six main unit operations: feed compressor, dehydration unit, nitrogen rejection unit, deoxygenator, carbon dioxide scrubber, and a sales compressor. The NRU is the focus of the development program, and a bench-scale demonstration will be initiated in the next fiscal year. The Velocys NRU system targets producing methane with greater than 96% purity and at least 90% recovery for final commercial operation. A preliminary cost analysis of the methane upgrading system, including the Velocys NRU, suggests that costs below $2.00 per million (MM) BTU methane may be achieved. The cost for a conventional methane upgrading system is well above $2.30 per MM BTU, as benchmarked in an Environmental Protection Agency study.

Anna Lee Tonkovich

2004-07-01T23:59:59.000Z

330

Requirements Engineering for Digital Upgrades: Specification, Analysis, and Tracking  

Science Conference Proceedings (OSTI)

As nuclear power plants upgrade their instrumentation and control (I&C) systems with digital equipment to continue meeting safety and reliability requirements while controlling operating costs, the transition to the new technology has brought new challenges in properly specifying and confirming the correct performance of digital systems and devices. This guideline describes an approach that utilities can use to refine and improve their processes for developing and verifying requirements for digital upgra...

1997-12-09T23:59:59.000Z

331

Status of Centralized Environmental Creep Testing Facility Preparation and Upgrade  

SciTech Connect

Because the ASME Codes do not cover environmental issues that are crucial in the design and construction of VHTR system, investigation of long-term impure helium effects on metallurgical stability and properties becomes very important. The present report describes the development of centralized environmental creep testing facility, its close collaborations with the experiments in low velocity helium recirculation loop, important lessons learned, upgrades in system design in FY06, and current status of the development.

Ren, Weiju [ORNL; Battiste, Rick [ORNL

2006-10-01T23:59:59.000Z

332

Project Management Guidance when Upgrading Steam Turbines at Nuclear and Fossil Power Plants  

Science Conference Proceedings (OSTI)

Many power producers upgrade steam turbines to gain megawatts (MW) instead of installing new capacity for a variety of reasons. The engineering challenges encounteredwhen managing procurement and adequately analyzing plant support systems affected by this upgradeare becoming more pronounced.

2007-01-15T23:59:59.000Z

333

Ventilation, temperature, and HVAC characteristics in small and medium  

NLE Websites -- All DOE Office Websites (Extended Search)

Ventilation, temperature, and HVAC characteristics in small and medium Ventilation, temperature, and HVAC characteristics in small and medium commercial buildings in California Title Ventilation, temperature, and HVAC characteristics in small and medium commercial buildings in California Publication Type Journal Article Refereed Designation Refereed Year of Publication 2012 Authors Bennett, Deborah H., William J. Fisk, Michael G. Apte, X. Wu, Amber L. Trout, David Faulkner, and Douglas P. Sullivan Journal Indoor Air Volume 22 Issue 4 Pagination 309-20 Abstract This field study of 37 small and medium commercial buildings throughout California obtained information on ventilation rate, temperature, and heating, ventilating, and air-conditioning (HVAC) system characteristics. The study included seven retail establishments; five restaurants; eight offices; two each of gas stations, hair salons, healthcare facilities, grocery stores, dental offices, and fitness centers; and five other buildings. Fourteen (38%) of the buildings either could not or did not provide outdoor air through the HVAC system. The air exchange rate averaged 1.6 (s.d. = 1.7) exchanges per hour and was similar between buildings with and without outdoor air supplied through the HVAC system, indicating that some buildings have significant leakage or ventilation through open windows and doors. Not all buildings had sufficient air exchange to meet ASHRAE 62.1 Standards, including buildings used for fitness centers, hair salons, offices, and retail establishments. The majority of the time, buildings were within the ASHRAE temperature comfort range. Offices were frequently overcooled in the summer. All of the buildings had filters, but over half the buildings had a filter with a minimum efficiency reporting value rating of 4 or lower, which are not very effective for removing fine particles. PRACTICAL IMPLICATIONS: Most U.S. commercial buildings (96%) are small- to medium-sized, using nearly 18% of the country's energy, and sheltering a large population daily. Little is known about the ventilation systems in these buildings. This study found a wide variety of ventilation conditions, with many buildings failing to meet relevant ventilation standards. Regulators may want to consider implementing more complete building inspections at commissioning and point of sale.

334

Midlevel Ventilations Constraint on Tropical Cyclone Intensity  

Science Conference Proceedings (OSTI)

Midlevel ventilation, or the flux of low-entropy air into the inner core of a tropical cyclone (TC), is a hypothesized mechanism by which environmental vertical wind shear can constrain a tropical cyclones intensity. An idealized framework based ...

Brian Tang; Kerry Emanuel

2010-06-01T23:59:59.000Z

335

702AZ aging waste ventilation facility year 2000 test procedure  

SciTech Connect

This test procedure was developed to determine if the 702AZ Tank Ventilation Facility system is Year 2000 Compliant. The procedure provides detailed instructions for performing the operations necessary and documenting the results. This verification procedure will document that the 702AZ Facility Systems are year 2000 compliant and will correctly meet the criteria established in this procedure.

Winkelman, W.D.

1998-07-22T23:59:59.000Z

336

Research Laboratory Experiments with Energy Efficiency Upgrades |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research Laboratory Experiments with Energy Efficiency Upgrades Research Laboratory Experiments with Energy Efficiency Upgrades Research Laboratory Experiments with Energy Efficiency Upgrades August 30, 2012 - 11:52am Addthis Energy efficiency upgrades -- such as geothermal heating and cooling, nanogel-filled windows, and lighting sensors -- will help the University of Kentucky Center for Applied Energy Research reduce energy use and save money. | Photo courtesy of the University of Kentucky. Energy efficiency upgrades -- such as geothermal heating and cooling, nanogel-filled windows, and lighting sensors -- will help the University of Kentucky Center for Applied Energy Research reduce energy use and save money. | Photo courtesy of the University of Kentucky. Julie McAlpin Communications Liaison, State Energy Program

337

Future Upgrades | Brookhaven and the LHC  

NLE Websites -- All DOE Office Websites (Extended Search)

Future Upgrades Future Upgrades Magnetic field inside a Nb3Sn quadropole magnet Magnetic field inside a Nb3Sn quadropole magnet. Brookhaven leads various technical coordination efforts for the upgrade of the ATLAS detector, including constructing the new silicon tracker, liquid argon electronics, and the new muon chambers. Brookhaven also contributes to the commissioning and future upgrade of the LHC itself in two areas: accelerator physics and superconducting magnets. This work is carried out as part of the U.S. LHC Accelerator Research Program (LARP) in collaboration with Fermilab, Lawrence Berkeley National Lab, and the Stanford Linear Accelerator Center. The ultimate goal of the upgrade program is to increase the rate and efficiency of particle collisions, a measure known as luminosity.

338

Research Laboratory Experiments with Energy Efficiency Upgrades |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research Laboratory Experiments with Energy Efficiency Upgrades Research Laboratory Experiments with Energy Efficiency Upgrades Research Laboratory Experiments with Energy Efficiency Upgrades August 30, 2012 - 11:52am Addthis Energy efficiency upgrades -- such as geothermal heating and cooling, nanogel-filled windows, and lighting sensors -- will help the University of Kentucky Center for Applied Energy Research reduce energy use and save money. | Photo courtesy of the University of Kentucky. Energy efficiency upgrades -- such as geothermal heating and cooling, nanogel-filled windows, and lighting sensors -- will help the University of Kentucky Center for Applied Energy Research reduce energy use and save money. | Photo courtesy of the University of Kentucky. Julie McAlpin Communications Liaison, State Energy Program

339

MMCR Upgrades: Present Status and Future Plans  

NLE Websites -- All DOE Office Websites (Extended Search)

MMCR Upgrades: Present Status and Future Plans MMCR Upgrades: Present Status and Future Plans K. B. Widener and A. S. Koontz Pacific Northwest National Laboratory Richland, Washington K. P. Moran and K. A. Clark National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado C. Chander STC xxxxxxxxx M. A. Miller and K. L. Johnson Brookhaven National Laboratory Upton, New York Abstract In September 2003, the Southern Great Plains (SGP) millimeter wave cloud radar (MMCR) was upgraded to a new digital signal processor that significantly increases the temporal resolution and the processing capability of the MMCR. The Barrow MMCR upgrade will be completed in early 2004. We will discuss the hardware and software C40 upgrade to the MMCRs at SGP and Barrow and the plans

340

Does Mixing Make Residential Ventilation More Effective?  

E-Print Network (OSTI)

under Contract No. DE-AC02-05CH11231. References ASHRAE.2009. ASHRAE Handbook of Fundamentals, Ventilation andChapter. Atlanta GA: ASHRAE. ASHRAE. 2007. Ventilation and

Sherman, Max

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ventilation systems upgrading" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

May 1999 LBNL -42975 ASHRAE'S RESIDENTIAL VENTILATION  

E-Print Network (OSTI)

May 1999 LBNL - 42975 ASHRAE'S RESIDENTIAL VENTILATION STANDARD: EXEGESIS OF PROPOSED STANDARD 62 Berkeley National Laboratory Berkeley, CA 94720 April 1999 In January 1999 ASHRAE's Standard Project, approved ASHRAE's first complete standard on residential ventilation for public review

342

APS Upgrade | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

APS APS View Larger The brightness and energy of x-ray beams are critical properties for research. Higher brightness means more x-rays can be focused onto a smaller, laser-like spot, allowing researchers to gather more data in greater detail in less time. Higher energies allow x-rays to penetrate deeper inside materials to reveal crucial information about a material's structure and function. The combination of high brightness and high energy allows the observation and imaging - in real time - of fast and ultrafast technologically important processes, including fuel sprays, magnetic switching, and biological processes in living organisms. The APS Upgrade project will increase the brightness of the APS high-energy (hard) x-ray beams. This will equip researchers for the groundbreaking

343

APS Upgrade | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Workshop on new science opportunities provided by a multi-bend achromat lattice at the APS APS-U MBA Lattice Workshop Registration is now closed. Please contact Diane Wilkinson ext. 7810 or a member of the Workshop Organizing Committee for changes or modifications to your registration. Submit Comments, Suggestions, and Ideas for MBA Lattice Workshop October 21-22 Advanced Photon Source Argonne National Lab The Advanced Photon Source Upgrade is focused on delivering a powerful, versatile facility for science using high-brightness, high-energy X-rays. At APS, and around the light source community, scientists have been developing storage ring designs that push closer to the ultimate diffraction limit for X-ray sources. A recent report by the Basic Energy Sciences Advisory Committee, which advises the Director of the U.S.

344

Building Air Quality & Ventilation Models: Review - Evaluation - Proposals  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Air Quality & Ventilation Models: Review - Evaluation - Proposals Building Air Quality & Ventilation Models: Review - Evaluation - Proposals Speaker(s): James Axley Date: March 12, 1999 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Richard Sextro Developments in mathematical models for building air quality and ventilation analysis have changed the way we idealize buildings for purposes of analysis, the way we form system equations to effect the analysis, and the way we solve these equations to realize the analysis. While much has been achieved more is possible. This presentation will review the current state of the art - the building idealizations used, the system equations formed, and the solution methods applied - critically evaluate the completeness, complexity and utility of the most advanced models, and present proposals for future development

345

Energy Efficiency Through Lighting Upgrades  

Science Conference Proceedings (OSTI)

Lighting upgrades including neon to LED, incandescent to CFL's and T-12 to T-8 and T-5's were completed through this grant. A total of 16 Chickasaw nation facilities decreased their carbon footprint because of these grant funds. Calculations used were based on comparing the energy usage from the previous year?¢????s average and the current energy usage. For facilities without a full year's set of energy bills, the month after installation was compared to the same month from the previous year. Overall, the effect the lighting change-outs had for the gaming centers and casinos far exceeded expectations. For the Madill Gaming Center; both an interior and exterior upgrade was performed which resulted in a 31% decrease in energy consumption. This same reduction was seen in every facility that participated in the grant. Just by simply changing out light bulbs to newer energy efficient equivalents, a decrease in energy usage can be achieved and this was validated by the return on investment seen at Chickasaw Nation facilities. Along with the technical project tasks were awareness sessions presented at Chickasaw Head Starts. The positive message of environmental stewardship was passed down to head start students and passed along to Chickasaw employees. Excitement was created in those that learned what they could do to help reduce their energy bills and many followed through and took the idea home. For a fairy low cost, the general public can also use this technique to lower their energy consumption both at home and at work. Although the idea behind the project was somewhat simple, true benefits have been gained through environmental awareness and reductions of energy costs.

Kara Berst; Maria Howeth

2010-06-01T23:59:59.000Z

346

Better Buildings Neighborhood Program: Why Energy Efficiency Upgrades  

NLE Websites -- All DOE Office Websites (Extended Search)

About About Printable Version Share this resource Send a link to Better Buildings Neighborhood Program: Why Energy Efficiency Upgrades to someone by E-mail Share Better Buildings Neighborhood Program: Why Energy Efficiency Upgrades on Facebook Tweet about Better Buildings Neighborhood Program: Why Energy Efficiency Upgrades on Twitter Bookmark Better Buildings Neighborhood Program: Why Energy Efficiency Upgrades on Google Bookmark Better Buildings Neighborhood Program: Why Energy Efficiency Upgrades on Delicious Rank Better Buildings Neighborhood Program: Why Energy Efficiency Upgrades on Digg Find More places to share Better Buildings Neighborhood Program: Why Energy Efficiency Upgrades on AddThis.com... Our History Related Federal Programs Why Energy Efficiency Upgrades

347

EA-1321: Proposed Upgrade and Improvement of The National Synchrotron...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Proposed Upgrade and Improvement of The National Synchrotron Light Source Complex at Brookhaven National Laboratory, Upton, New York EA-1321: Proposed Upgrade and Improvement of...

348

Using QECBs for Public Building Upgrades: Reducing Energy Bills...  

NLE Websites -- All DOE Office Websites (Extended Search)

Public Building Upgrades: Reducing Energy Bills in the City of Philadelphia Title Using QECBs for Public Building Upgrades: Reducing Energy Bills in the City of Philadelphia...

349

ENERGY STAR Building Upgrade Manual Chapter 13: Retail Stores...  

NLE Websites -- All DOE Office Websites (Extended Search)

care resources Small business resources State and local government resources ENERGY STAR Building Upgrade Manual Chapter 13: Retail Stores The Building Upgrade Manual is a...

350

ENERGY STAR Building Upgrade Manual Chapter 7: Supplemental Load...  

NLE Websites -- All DOE Office Websites (Extended Search)

care resources Small business resources State and local government resources ENERGY STAR Building Upgrade Manual Chapter 7: Supplemental Load Reduction The Building Upgrade...

351

ENERGY STAR Building Upgrade Manual Chapter 6: Lighting | ENERGY...  

NLE Websites -- All DOE Office Websites (Extended Search)

care resources Small business resources State and local government resources ENERGY STAR Building Upgrade Manual Chapter 6: Lighting The Building Upgrade Manual is a...

352

ENERGY STAR Building Upgrade Manual Chapter 5: Retrocommissioning...  

NLE Websites -- All DOE Office Websites (Extended Search)

care resources Small business resources State and local government resources ENERGY STAR Building Upgrade Manual Chapter 5: Retrocommissioning The Building Upgrade Manual is...

353

ENERGY STAR Building Upgrade Manual Chapter 12: Hotels and Motels...  

NLE Websites -- All DOE Office Websites (Extended Search)

care resources Small business resources State and local government resources ENERGY STAR Building Upgrade Manual Chapter 12: Hotels and Motels The Building Upgrade Manual is...

354

ENERGY STAR Building Upgrade Manual Chapter 10: K-12 Schools...  

NLE Websites -- All DOE Office Websites (Extended Search)

care resources Small business resources State and local government resources ENERGY STAR Building Upgrade Manual Chapter 10: K-12 Schools The Building Upgrade Manual is a...

355

ENERGY STAR Building Upgrade Manual Chapter 4: Financing | ENERGY...  

NLE Websites -- All DOE Office Websites (Extended Search)

care resources Small business resources State and local government resources ENERGY STAR Building Upgrade Manual Chapter 4: Financing The Building Upgrade Manual is a...

356

Modeling study of ventilation, IAQ and energy impacts of residential mechanical ventilation  

SciTech Connect

This paper reports on a simulation study of indoor air quality, ventilation and energy impacts of several mechanical ventilation approaches in a single-family residential building. The study focused on a fictitious two-story house in Spokane, Washington and employed the multizone airflow and contaminant dispersal model CONTAM. The model of the house included a number of factors related to airflow including exhaust fan and forced-air system operation, duct leakage and weather effects, as well as factors related to contaminant dispersal including adsorption/desorption of water vapor and volatile organic compounds, surface losses of particles and nitrogen dioxide, outdoor contaminant concentrations, and occupant activities. The contaminants studied include carbon monoxide, carbon dioxide, nitrogen dioxide, water vapor, fine and coarse particles, and volatile organic compounds. One-year simulations were performed for four different ventilation approaches: a base case of envelope infiltration only, passive inlet vents in combination with exhaust fan operation, an outdoor intake duct connected to the forced-air system return balanced by exhaust fan operation, and a continuously-operated exhaust fan. Results discussed include whole building air change rates, air distribution within the house, heating and cooling loads, contaminants concentrations, and occupant exposure to contaminants.

Persily, A.K.

1998-05-01T23:59:59.000Z

357

Ventilation Based on ASHRAE 62.2  

E-Print Network (OSTI)

Indoor Ventilation Based on ASHRAE 62.2 Arnold Schwarzenegger Governor California Energy Commission Ventilation (ASHRAE 62.2) Minimum Best Practices Guide - Exhaust-Only Ventilation Introduction: The California Energy Commission has created the following guide to provide assistance in complying with ANSI/ASHRAE

358

Commercial Kitchen Ventilation Performance Report: Gas Underfired Broiler Under Wall-Mounted Canopy Hood  

Science Conference Proceedings (OSTI)

This report documents testing of ventilation requirements for a gas underfired broiler under a wall-mounted canopy hood. This appliance and hood combination is one of a series undertaken to provide electric utilities and the foodservice industry with data to optimize the design of commercial kitchen ventilation systems and integrate exhaust requirements with space conditioning design.

1997-11-14T23:59:59.000Z

359

Commercial Kitchen Ventilation Performance Report: Two Gas Pressure Fryers Under Wall-Mounted Canopy Hood  

Science Conference Proceedings (OSTI)

This report documents testing of ventilation requirements two gas pressure fryers under a wall-mounted canopy hood. This appliance and hood combination is one of a series undertaken to provide electric utilities and the foodservice industry with data to optimize the design of commercial kitchen ventilation systems and integrate exhaust requirements with space conditioning design.

1997-10-31T23:59:59.000Z

360

Commercial Kitchen Ventilation Performance Report: Electric Combination Oven Under Wall-Mounted Canopy Hood  

Science Conference Proceedings (OSTI)

This report documents testing of ventilation requirements for an electric combination oven under an exhaust-only canopy hood. This appliance and hood combination is one of a series undertaken to provide electric utilities and the foodservice industry with data to optimize the design of commercial kitchen ventilation systems and integrate exhaust requirements with space conditioning design.

1997-11-14T23:59:59.000Z

Note: This page contains sample records for the topic "ventilation systems upgrading" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Commercial Kitchen Ventilation Performance Report: Electric Underfired Broiler Under Wall-Mounted Canopy Hood  

Science Conference Proceedings (OSTI)

This report documents testing of ventilation requirements for a three-foot electric underfired broiler positioned under an exhaust-only canopy hood. This appliance and hood combination is one of a series undertaken to provide electric utilities and the foodservice industry with data to optimize the design of commercial kitchen ventilation systems and integrate exhaust requirements with space conditioning design.

1997-05-13T23:59:59.000Z

362

Commercial Kitchen Ventilation Performance Report: Two Electric Pressure Fryers Under Wall-Mounted Canopy Hood  

Science Conference Proceedings (OSTI)

This report documents testing of ventilation requirements for two electric pressure fryers under a wall-mounted canopy hood. This appliance and hood combination is one of a series undertaken to provide electric utilities and the foodservice industry with data to optimize the design of commercial kitchen ventilation systems and integrate exhaust requirements with space conditioning design.

1997-09-17T23:59:59.000Z

363

Commercial Kitchen Ventilation Performance Report: Gas Combination Oven Under Wall-Mounted Canopy Hood  

Science Conference Proceedings (OSTI)

This report documents testing of ventilation requirements for a gas combination oven under an exhaust-only canopy hood. This appliance and hood combination is one of a series undertaken to provide electric utilities and the foodservice industry with data to optimize the design of commercial kitchen ventilation systems and integrate exhaust requirements with space conditioning design.

1997-11-14T23:59:59.000Z

364

Improving Ventilation and Saving Energy: Laboratory Study in a Modular  

NLE Websites -- All DOE Office Websites (Extended Search)

Improving Ventilation and Saving Energy: Laboratory Study in a Modular Improving Ventilation and Saving Energy: Laboratory Study in a Modular Classroom Test Bed Title Improving Ventilation and Saving Energy: Laboratory Study in a Modular Classroom Test Bed Publication Type Report Year of Publication 2005 Authors Apte, Michael G., Ian S. Buchanan, David Faulkner, William J. Fisk, Chi-Ming Lai, Michael Spears, and Douglas P. Sullivan Publisher Lawrence Berkeley National Laboratory Abstract The primary goals of this research effort were to develop, evaluate, and demonstrate a practical HVAC system for classrooms that consistently provides classrooms with the quantity of ventilation in current minimum standards, while saving energy, and reducing HVAC-related noise levels. This research was motivated by several factors, including the public benefits of energy efficiency, evidence that many classrooms are under-ventilated, and public concerns about indoor environmental quality in classrooms. This project involved the installation and verification of the performance of an Improved Heat Pump Air Conditioning (IHPAC) system, and its comparison, a standard HVAC system having an efficiency of 10 SEER. The project included the verification of the physical characteristics suitable for direct replacement of existing 10 SEER systems, quantitative demonstration of improved energy efficiency, reduced acoustic noise levels, quantitative demonstration of improved ventilation control, and verification that the system would meet temperature control demands necessary for the thermal comfort of the occupants. Results showed that the IHPAC met these goals. The IHPAC was found to be a direct bolt-on replacement for the 10 SEER system. Calculated energy efficiency improvements based on many days of classroom cooling or heating showed that the IHPAC system is about 44% more efficient during cooling and 38% more efficient during heating than the 10 SEER system. Noise reduction was dramatic, with measured A-weighed sound level for fan only operation conditions of 34.3 dB(A), a reduction of 19 dB(A) compared to the 10 SEER system. Similarly, the IHPAC stage-1 and stage-2 compressor plus fan sound levels were 40.8 dB(A) and 42.7 dB(A), reductions of 14 and 13 dB(A), respectively. Thus, the IHPAC is 20 to 35 times quieter than the 10 SEER systems depending upon the operation mode. The IHPAC system met the ventilation requirements and was able to provide consistent outside air supply throughout the study. Indoor CO2 levels with simulated occupancy were maintained below 1000 ppm. Finally temperature settings were met and controlled accurately. The goals of the laboratory testing phase were met and this system is ready for further study in a field test of occupied classrooms

365

Microsoft Word - CX-AlveyMaintenanceHQ_PoleStorageUpgrade_WEB.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 4 SUBJECT: Environmental Clearance Memorandum Brett Sherer Project Manager - KEP-4 Proposed Action: Environmental protection system upgrades at pole storage facility at Alvey Maintenance Headquarters. Budget Information: Work Order #00283226 Categorical Exclusion Applied (Appendix B to Subpart D, 10 C.F.R. Part 1021): B4.6: Additions or modifications to electric power transmission facilities that would not affect the environment beyond the previously developed facility area including, but not limited to, switchyard rock grounding upgrades, secondary containment projects, paving projects, seismic upgrading, tower modifications, changing insulators, and replacement of poles, circuit breakers, conductors, transformers, and crossarms.

366

Ventilation Behavior and Household Characteristics in NewCalifornia Houses  

SciTech Connect

A survey was conducted to determine occupant use of windows and mechanical ventilation devices; barriers that inhibit their use; satisfaction with indoor air quality (IAQ); and the relationship between these factors. A questionnaire was mailed to a stratified random sample of 4,972 single-family detached homes built in 2003, and 1,448 responses were received. A convenience sample of 230 houses known to have mechanical ventilation systems resulted in another 67 completed interviews. Some results are: (1) Many houses are under-ventilated: depending on season, only 10-50% of houses meet the standard recommendation of 0.35 air changes per hour. (2) Local exhaust fans are under-utilized. For instance, about 30% of households rarely or never use their bathroom fan. (3) More than 95% of households report that indoor air quality is ''very'' or ''somewhat'' acceptable, although about 1/3 of households also report dustiness, dry air, or stagnant or humid air. (4) Except households where people cook several hours per week, there is no evidence that households with significant indoor pollutant sources get more ventilation. (5) Except households containing asthmatics, there is no evidence that health issues motivate ventilation behavior. (6) Security and energy saving are the two main reasons people close windows or keep them closed.

Price, Phillip N.; Sherman, Max H.

2006-02-01T23:59:59.000Z

367

I&C Upgrades for Nuclear Plants -- Desk Reference 1997  

Science Conference Proceedings (OSTI)

To assist utilities in designing, implementing, and managing digital upgrades of instrumentation and control systems, EPRI has produced a set of documents that address the key technical and regulatory issues. However, the aggregate now comprises several thousand pages of printed materials, and it is simply not practical for a utility engineer to become familiar with all of it. This document provides brief descriptions of the available documents, along with navigation aides to quickly steer the user to th...

1997-12-08T23:59:59.000Z

368

Honda Smart Home to Include Berkeley Lab Ventilation Controller  

NLE Websites -- All DOE Office Websites (Extended Search)

Honda Smart Home to Include Berkeley Lab Ventilation Controller Honda Smart Home to Include Berkeley Lab Ventilation Controller Honda smart home October 2013 October-November Special Focus: Energy Efficiency, Buildings, and the Electric Grid Honda Motor Company Inc is proceeding with plans to build a Smart Home in Davis, California, to demonstrate the latest in renewable energy technologies and energy efficiency. The home is expected to produce more energy than is consumed, demonstrating how the goal of "zero net energy" can be met in the near term future. A ventilation controller developed by researchers at Berkeley Lab's Environmental Energy Technologies Division (EETD) will be included in the smart home. EETD is currently working with the developers of the home control system to integrate its control algorithms.

369

Heating, Ventilation and Air Conditioning Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Presented By: WALTER E. JOHNSTON, PE Presented By: WALTER E. JOHNSTON, PE CEM, CEA, CLEP, CDSM, CPE Systems The purpose of a Heating, Ventilation and Air Conditioning (HVAC) system is to provide and maintain a comfortable environment within a building for the occupants or for the process being conducted Many HVAC systems were not designed with energy efficiency as one of the design factors 3 Air Air is the major conductor of heat. Lack of heat = air conditioning OR 4 Btu - Amount of heat required to raise one pound of water 1 F = 0.252 KgCal 1 Pound of Water = About 1 Pint of Water ~ 1 Large Glass 1 Kitchen Match Basics of Air Conditioning = 1 Btu 5 = 6 Low Cost Cooling Unit 7 8 Typical Design Conditions 75 degrees F temperature 50% relative humidity 30 - 50 FPM air movement

370

FEMP-FS--Solar Ventilation Preheating  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Installing a "solar wall" to heat air before it enters a Installing a "solar wall" to heat air before it enters a building, called solar ventilation preheating, is one of the most efficient ways of reducing energy costs using clean and renewable energy. The system works by heating outside air with a south-facing solar collector-a dark-colored wall made of sheet metal and perforated with tiny holes. Outdoor air is drawn through the holes and heated as it absorbs the wall's warmth. The warm air rises in the space between the solar wall and the building wall and is moved into the air-duct system, usually by means of a fan, to heat the building. Any additional heating needed at night or on cloudy days is supplied by the build- ing's conventional heating system. During summer months, intake air bypasses the solar collector,

371

Conceptual design for a linear-transformer driver (LTD)-based refurbishment and upgrade of the Saturn accelerator pulse-power system.  

Science Conference Proceedings (OSTI)

The purpose of this work was to develop a conceptual design for the Saturn accelerator using the modular Liner-Transformer Driver (LTD) technology to identify risks and to focus development and research for this new technology. We present a reference design for a Saturn class driver based on a number of linear inductive voltage adders connected in parallel. This design is very similar to a design reported five years ago [1]. However, with the design reported here we use 1-MA, 100-kV LTD cavities as building blocks. These cavities have already been built and are currently in operation at the HCEI in Tomsk, Russia [2]. Therefore, this new design integrates already-proven individual components into a full system design.

Mazarakis, Michael Gerrassimos; Struve, Kenneth William

2006-09-01T23:59:59.000Z

372

High Resolution BPM Upgrade for the ATF Damping Ring at KEK  

E-Print Network (OSTI)

A beam position monitor (BPM) upgrade at the KEK Accelerator Test Facility (ATF) damping ring has been accomplished, carried out by a KEK/FNAL/SLAC collaboration under the umbrella of the global ILC R&D effort. The upgrade consists of a high resolution, high reproducibility read-out system, based on analog and processing, and also implements a new automatic gain error correction schema. The technical concept and realization as well as results of beam studies are presented.

Eddy, N; Fellenz, B; Gianfelice-Wendt, E; Prieto, P; Rechenmacher, R; Semenov, A; Voy, D; Wendt, M; Zhang, D; Terunuma, N; Urakawa, J

2012-01-01T23:59:59.000Z

373

Upgrading of light Fischer-Tropsch products  

SciTech Connect

The upgrading of Fischer-Tropsch (F-T) light ends was studied at UOP in a program sponsored by the Pittsburgh Energy Technology Center of the US Department of Energy. The goal of the program was to increase the overall yield of marketable transportation fuels from the F-T upgrading complex by focusing on liquefied petroleum gas (LPG) and naphtha. An overview of the entire light-ends program is presented in this paper. Although this contract is specifically concerned with light products (C{sub 3}-C{sub 11}), a separate DOE-sponsored program at UOP investigated the characterization and upgrading of the heavy end of the F-T product spectrum: F-T wax. An economic analysis of the light and heavy ends upgrading was performed to evaluate the conversion of F-T products to marketable transportation fuels. 9 refs., 7 figs., 9 tabs.

Shah, P.P.

1990-11-30T23:59:59.000Z

374

12 GeV Upgrade | Jefferson Lab  

NLE Websites -- All DOE Office Websites

Science Science A Schematic of the 12 GeV Upgrade The 12 GeV Upgrade will greatly expand the research capabilities of Jefferson Lab, adding a fourth experimental hall, upgrading existing halls and doubling the power of the lab's accelerator. A D D I T I O N A L L I N K S: 12 GeV Home Public Interest Scientific Opportunities Hall D Status Updates Contacts Three-Year Accelerator Schedule 2014 - 2016 top-right bottom-left-corner bottom-right-corner 12 GeV Upgrade Physicists at Jefferson Lab are trying to find answers to some of nature's most perplexing questions about the universe by exploring the nucleus of the atom. Their goal is to answer such questions as: "What is the universe made of?" and "What holds everyday matter together?" In their search for answers, physicists smash electrons into atoms using

375

Pricing and Market Segmentation with Software Upgrades.  

E-Print Network (OSTI)

it selects and the number of customers attracted by theseincrease in the number of upgrading customers. Thus, p ? = ?is because: (1) the number of total customers is F c (?) in

Bala, R.; Carr, S. C.

2005-01-01T23:59:59.000Z

376

User and Performance Impacts from Franklin Upgrades  

E-Print Network (OSTI)

J. Lebens. Post- Mortem of the NERSC Franklin XT4 Upgrade toCray User Group Meeting NERSC Franklin Home Page: http://planning from both Cray and NERSC, service interruptions

He, Yun Helen

2009-01-01T23:59:59.000Z

377

Commissioning Results of the Upgraded Neutralized Drift Compression Experiment  

E-Print Network (OSTI)

COMMISSIONING RESULTS OF THE UPGRADED NEUTRALIZED DRIFTexperiments. We report on commissioning results of the

Lidia, S.M.

2009-01-01T23:59:59.000Z

378

Better Buildings Neighborhood Program: Honeymoons Lead to Upgrades in  

NLE Websites -- All DOE Office Websites (Extended Search)

Honeymoons Honeymoons Lead to Upgrades in Western Vermont to someone by E-mail Share Better Buildings Neighborhood Program: Honeymoons Lead to Upgrades in Western Vermont on Facebook Tweet about Better Buildings Neighborhood Program: Honeymoons Lead to Upgrades in Western Vermont on Twitter Bookmark Better Buildings Neighborhood Program: Honeymoons Lead to Upgrades in Western Vermont on Google Bookmark Better Buildings Neighborhood Program: Honeymoons Lead to Upgrades in Western Vermont on Delicious Rank Better Buildings Neighborhood Program: Honeymoons Lead to Upgrades in Western Vermont on Digg Find More places to share Better Buildings Neighborhood Program: Honeymoons Lead to Upgrades in Western Vermont on AddThis.com... Better Buildings Residential Network Progress

379

Microsoft Word - AlbionButteRSCommunicationUpgrade-CX.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4, 2011 4, 2011 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearence Memorandum David Tripp - TEP-CSB-1 Proposed Action: Albion Butte Radio Station Communication Upgrade Budget Information: Work Order # 00253466 Task 03 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021: B1.7 "Acquisition, installation, operation, and removal of communication systems..." Location: Cassia County, Idaho - Section 19, Township 11 South, Range 26 East of the Nibbs Creek Quadrangle Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA proposes to upgrade the communication building and equipment at BPA's Albion Butte Radio Station located in Cassia County, ID. This project is part of an

380

Microsoft Word - Holcomb and Naselle Communication Upgrade CX.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6, 2011 6, 2011 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearence Memorandum David Tripp - TEP-CSB-1 Proposed Action: Holcomb Radio Station and Naselle Substation Communication Upgrade Project Budget Information: Work Order # 00253203 and # 00253206 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021: B1.7 "Acquisition, installation, operation, and removal of communication systems..." Locations: Holcomb Radio Station: Pacific County, Washington - Township 13 North, Range 7 West, Section 30 of the Lebam Quadrangle Naselle Substation: Pacific County, Washington - Township 10 North, Range 9 West, Section 4 of the Oman Ranch Quadrangle Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA is proposing to upgrade the communication equipment at

Note: This page contains sample records for the topic "ventilation systems upgrading" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

The Advanced Light Source Upgrade  

SciTech Connect

The ALS, a third-generation synchrotron light source at Berkeley Lab, has been operating for almost a decade and is generating forefront science by exploiting the high brightness of a third-generation source in three areas: (1) high resolving power for spectroscopy; (2) high spatial resolution for microscopy and spectromicroscopy; and (3) high coherence for experiments such as speckle. However, the ALS was one of the first third-generation machines to be designed, and accelerator and insertion-device technology have significantly changed since its conception. As a result, its performance will inevitably be outstripped by newer, more advanced sources. To remain competitive and then set a new standard, the performance of the ALS, in particular its brightness, must be enhanced. Substantial improvements in brightness and current have always been feasible in principle, but they incur the penalty of a much reduced lifetime, which is totally unacceptable to our users. Significant brightness improvements can be realized in the core soft x-ray region by going to top-off operation, where injection would be quasi-continuous and the lifetime objections disappear. In top-off mode with higher average current, a reduced vertical emittance and beta function, and small-gap permanent-magnet or superconducting insertion devices, one to two orders of magnitude improvement in brightness can be had in the soft x-ray range. These improvements also extend the high energy range of the undulator radiation beyond the current limit of 2000 eV. Descriptions of the upgrade and the important new science achievable are presented.

Chemla, Daniel S.; Feinberg, Benjamin; Hussain, Zahid; Krebs, Gary F.; Padmore, Howard A.; Robin, David S.; Robinson, Arthur L.; Smith, Neville V.

2003-11-04T23:59:59.000Z

382

Upgrade of the JET far infrared interferometer diagnostic  

Science Conference Proceedings (OSTI)

In recent years there has been a major upgrade of the JET far infrared diagnostic system consisting of a new laser system with the wavelength at 118.8 {mu}m at and more advanced processing electronics for phase counting. This provides a second colour measurement of the electron plasma density on the vertical system. Due to the shorter wavelength, the plasma induced laser beam refraction is reduced by a factor of three alleviating density errors caused by loss of signal (so-called 'fringe jumps'[A. Murari et al., Rev. Sci. Instrum. 77, 073505 (2006)]), in particular during high performance plasmas experiments in JET.

Boboc, A.; Edlington, T.; Dorling, S. [EURATOM/CCFE Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Gil, C.; Pastor, P.; Spuig, P. [CEA, IRFM, Cadarache F-13108 Saint-Paul-Lez-Durance (France); Collaboration: JET-EFDA Contributors

2012-10-15T23:59:59.000Z

383

Infiltration Effects on Residential Pollutant Concentrations for Continuous and Intermittent Mechanical Ventilation Approaches  

SciTech Connect

The prevailing residential ventilation standard in North America, American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) Standard 62.2, specifies volumetric airflow requirements as a function of the overall size of the home and the number of bedrooms, assumes a fixed, minimal amount of infiltration, and requires mechanical ventilation to achieve the remainder. The standard allows for infiltration credits and intermittent ventilation patterns that can be shown to provide comparable performance. Whole-house ventilation methods have a substantial effect on time-varying indoor pollutant concentrations. If alternatives specified by Standard 62.2, such as intermittent ventilation, are used, short-term pollutant concentrations could exceed acute health standards even if chronic health standards are met.The authors present a methodology for comparing ASHRAE- and non-ASHRAE-specified ventilation scenarios on relative indoor pollutant concentrations. We use numerical modeling to compare the maximum time-averaged concentrations for acute exposure relevant (1-hour, 8-hour, 24-hour ) and chronic exposure relevant (1-year) time periods for four different ventilation scenarios in six climates with a range of normalized leakage values. The results suggest that long-term concentrations are the most important metric for assessing the effectiveness of whole-house ventilation systems in meeting exposure standards and that, if chronic health exposure standards are met, acute standards will also be met.

Sherman, Max; Logue, Jennifer; Singer, Brett

2010-06-01T23:59:59.000Z

384

Effect of building airtightness and fan size on the performance of mechanical ventilation systems in new U.S. houses: a critique of ASHRAE standard 62.2-2003  

E-Print Network (OSTI)

as sizing a fan to deliver the design ventilation rate (fans and natural infiltration, in order to properly designfans should be as small as necessary to deliver the effective design

Roberson, J.

2004-01-01T23:59:59.000Z

385

Effect of building airtightness and fan size on the performance of mechanical ventilation systems in new U.S. houses: a critique of ASHRAE standard 62.2-2003  

E-Print Network (OSTI)

2002. When Does a House Need Passive Air Inlets? June. VolStudy on Passive Ventilation in Airtight Houses in Coldsupply. Because houses are so tight, passive vents are a

Roberson, J.

2004-01-01T23:59:59.000Z

386

Energy Impact of Residential Ventilation Norms in the UnitedStates  

SciTech Connect

The first and only national norm for residential ventilation in the United States is Standard 62.2-2004 published by the American Society of Heating, Refrigerating and Air-conditioning Engineers (ASHRAE). This standard does not by itself have the force of regulation, but is being considered for adoption by various jurisdictions within the U.S. as well as by various voluntary programs. The adoption of 62.2 would require mechanical ventilation systems to be installed in virtually all new homes, but allows for a wide variety of design solutions. These solutions, however, may have a different energy costs and non-energy benefits. This report uses a detailed simulation model to evaluate the energy impacts of currently popular and proposed mechanical ventilation approaches that are 62.2 compliant for a variety of climates. These results separate the energy needed to ventilate from the energy needed to condition the ventilation air, from the energy needed to distribute and/or temper the ventilation air. The results show that exhaust systems are generally the most energy efficient method of meeting the proposed requirements. Balanced and supply systems have more ventilation resulting in greater energy and their associated distribution energy use can be significant.

Sherman, Max H.; Walker, Iain S.

2007-02-01T23:59:59.000Z

387

Case Study 1 - Ventilation in Manufactured Houses  

Science Conference Proceedings (OSTI)

... Ventilation in Manufactured Houses. ... fan operation, an outdoor air intake duct installed on the forced-air return, and whole house exhaust with and ...

388

Mixed-Mode Ventilation and Building Retrofits  

E-Print Network (OSTI)

November 1994, ENTPE, Lyon. [CIBSE] Chartered Institution ofMixed-mode ventilation. CIBSE Applications Manual AM13.incorporated by the design. CIBSE, 2000 Mixed-mode

Brager, Gail; Ackerly, Katie

2010-01-01T23:59:59.000Z

389

Indoor Air Quality & Ventilation Group Staff Directory  

Science Conference Proceedings (OSTI)

Indoor Air Quality and Ventilation Group Staff. Staff Listing. Dr. Andrew K. Persily, Leader, Supervisory Mechanical Engineer, 301-975-6418. ...

2013-08-30T23:59:59.000Z

390

Does Mixing Make Residential Ventilation More Effective?  

E-Print Network (OSTI)

Does Mixing Make Residential Ventilation More Effective? Maxmanufacturer, or otherwise, does not necessarily constitutethe University of California. Does Mixing Make Residential

Sherman, Max

2011-01-01T23:59:59.000Z

391

Analysis of Demand Controlled Ventilation Technology and ...  

Science Conference Proceedings (OSTI)

... The actual health, comfort, and productivity impacts of mechanical ventilation ... p strat i csp o ... in California and elsewhere is the impact of ambient air ...

2011-01-11T23:59:59.000Z

392

Pulsed power supply for Nova Upgrade. Final report, August 1, 1991 to March 31, 1992  

DOE Green Energy (OSTI)

This report describes work carried out at the Center for Electromechanics at The University of Texas at Austin (CEM-UT). A baseline design of the Nova Upgrade has been completed by Lawrence Livermore National Laboratory. The Nova Upgrade is an 18 beamline Nd: glass laser design utilizing fully relayed 4x4 30 cm aperture segmented optical components. The laser thus consists of 288 independent beamlets nominally producing 1.5 to 2.0 MJ of 0.35 {mu}m light in a 3 to 5 ns pulse. The laser design is extremely flexible and will allow a wide range of pulses to irradiate ICF targets. This facility will demonstrate ignition/gain and the scientific feasibility of ICF for energy and defense applications. The pulsed power requirements for the Nova Upgrade are given. CEM-UT was contracted to study and develop a design for a homopolar generator/inductor (HPG/inductor) opening switch system which would satisfy the pulsed power supply requirements of the Nova Upgrade. The Nd:glass laser amplifiers used in the Nova Upgrade will be powered by light from xenon flashlamps. The pulsed power supply for the Nova Upgrade powers the xenon flashlamps. This design and study was for a power supply to drive flashlamps.

Bacon, J.L.; Kajs, J.P.; Walls, A.; Weldon, W.F.; Zowarka, R.C. [Univ. of Texas, Austin, TX (US). Center for Electromechanics] [Univ. of Texas, Austin, TX (US). Center for Electromechanics

1992-12-31T23:59:59.000Z

393

Ventilation Industrielle de Bretagne VIB | Open Energy Information  

Open Energy Info (EERE)

Ventilation Industrielle de Bretagne VIB Ventilation Industrielle de Bretagne VIB Jump to: navigation, search Name Ventilation Industrielle de Bretagne (VIB) Place Ploudalmezeau, France Zip 29839 Sector Geothermal energy, Solar Product Ploudalmezeau-based company producing and marketing energy efficient and ventilation products including air source heat pumps, geothermal water source heat pumps, efficient air filtration systems and solar products. Coordinates 48.540325°, -4.657904° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.540325,"lon":-4.657904,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

394

Instrumentation upgrades for the Macromolecular Crystallography beamlines  

NLE Websites -- All DOE Office Websites (Extended Search)

Instrumentation upgrades for the Macromolecular Crystallography beamlines Instrumentation upgrades for the Macromolecular Crystallography beamlines of the Swiss Light Source Monday, October 29, 2012 - 2:00am SSRL, Bldg. 137, Rm. 322 Martin Fuchs, MX Group, Swiss Light Source; Paul Scherrer Institute (Villigen, Switzerland) A new unified diffractometer - the D3 - has been developed for the three MX beamlines. The first of the instruments is in general user operation at beamline X10SA since April 2012. The varied demands from both challenging academic research projects as well as high throughput industrial applications on today's macromolecular crystallography beamlines drive developments to both endstations and beamline optics. Recent instrumentation upgrades to the macromolecular crystallography (MX) beamlines of the Swiss Light Source therefore aimed to

395

HERA Upgrade Project | Superconducting Magnet Division  

NLE Websites -- All DOE Office Websites (Extended Search)

HERA Upgrade Project HERA Upgrade Project As part of the HERA luminosity upgrade, 6 superconducting Interaction Region quadrupoles were delivered, accepted, and are in service. These 6 layer magnets were designed to include the main quadrupole focus, a skew quad, a normal and skew dipole, and a final sextupole layer. Because of the physical space constraints imposed by the existing detector region components, the DESY magnets were of necessity designed to be very compact. In addition, they are also are required to operate within the solenoidal detector fields at the collision points, so all construction materials had to be non magnetic. Two types of DESY magnets were fabricated. The first, designated as G0, was a two meter long, constant radius magnet. The second, designated GG, is a

396

ATLAS upgrade June09_v3  

NLE Websites -- All DOE Office Websites (Extended Search)

ATLAS efficiency and intensity upgrade ATLAS efficiency and intensity upgrade Guy Savard and Robert V. F. Janssens June 12, 2009 The ATLAS facility is on a constant quest to improve and increase the capabilities it offers to its Users. ATLAS currently provides beams of essentially all stable isotopes at energies in the vicinity of the Coulomb barrier. These can be used in conjunction with a suite of state-of-the-art instruments such as Gammasphere, the Fragment Mass Analyzer (FMA), the Canadian Penning Trap mass spectrometer (CPT), the split-pole spectrograph, an in-flight radioactive beam line, and the recently commissioned HELIOS spectrometer. At present, these capabilities are being augmented by (1) the addition of the CARIBU upgrade, which will provide low-intensity, neutron-rich radioactive beams from Californium fission fragments in both low-energy and re-

397

Quantitative relationship of sick building syndrome symptoms with ventilation rates  

E-Print Network (OSTI)

32%), and as ventilation rate increases from 10 to 25 L/s-0.85) as ventilation rate increases from 10 to 25 L/s-29% as ventilation rate increases from 10 to 25 L/s-person.

Fisk, William J.

2009-01-01T23:59:59.000Z

398

Upgrading of light Fischer-Tropsch products  

SciTech Connect

Work during this quarter concentrated on Task 4 of the study. The objective of this task is to evaluate the application of the UOP/BP Cyclar* process to the upgrading of Fischer-Tropsch LPG products into aromatics. Results from pilot plant studies were translated into commercial yield estimates as described in Quarterly Report No. 7. This quarterly report documents an economic evaluation of the Cyclar process for converting LPG into aromatics in a Fischer-Tropsch upgrading complex. 1 ref., 11 figs., 9 tabs.

1989-07-11T23:59:59.000Z

399

Energy Upgrade of the Siam Photon Source  

SciTech Connect

The energy upgrade of the storage ring is part of the plans to develop x-ray production capability of the Siam Photon Source. Simulations have been carried out. The bending magnet power supply has been replaced. Energy of the injected 1 GeV beam from the injector is then ramped up 20% in the storage ring. Studies for modification of bending magnet poles have been done to evaluate possibility of further increasing the beam energy to 1.4 GeV in the future. Studies of the energy upgrade plan and details of energy ramping process, together with beam measurements are presented.

Rugmai, S.; Rujirawat, S. [National Synchrotron Research Center, P.O. Box 93, Nakhon Ratchasima, 30000 (Thailand); School of Physics, Suranaree University of Technology, 111 University Avenue, Muang Distrct, Nakhon Ratchasima, 30000 (Thailand); Hoyes, G. G.; Prawanta, S.; Kwankasem, A.; Siriwattanapitoon, S.; Suradet, N.; Pimol, P.; Junthong, N.; Boonsuya, S.; Janpuang, P.; Prawatsri, P.; Klysubun, P. [National Synchrotron Research Center, P.O. Box 93, Nakhon Ratchasima, 30000 (Thailand)

2007-01-19T23:59:59.000Z

400

Infiltration in ASHRAE's Residential Ventilation Standards  

Science Conference Proceedings (OSTI)

The purpose of ventilation is to dilute or remove indoor contaminants that an occupant could be exposed to. It can be provided by mechanical or natural means. ASHRAE Standards including standards 62, 119, and 136 have all considered the contribution of infiltration in various ways, using methods and data from 20 years ago. The vast majority of homes in the United States and indeed the world are ventilated through natural means such as infiltration caused by air leakage. Newer homes in the western world are tight and require mechanical ventilation. As we seek to provide acceptable indoor air quality at minimum energy cost, it is important to neither over-ventilate norunder-ventilate. Thus, it becomes critically important to correctly evaluate the contribution infiltration makes to both energy consumption and equivalent ventilation. ASHRAE Standard 62.2 specifies how much mechanical ventilation is considered necessary to provide acceptable indoor air quality, but that standard is weak on how infiltration can contribute towards meeting the total requirement. In the past ASHRAE Standard 136 was used to do this, but new theoretical approaches and expanded weather data have made that standard out of date. This article will describe how to properly treat infiltration as an equivalent ventilation approach and then use new data and these new approaches to demonstrate how these calculations might be done both in general and to update Standard 136.

Sherman, Max

2008-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "ventilation systems upgrading" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

RF Power Upgrade for CEBAF at Jefferson Laboratory  

Science Conference Proceedings (OSTI)

Jefferson Laboratory (JLab) is currently upgrading the 6GeV Continuous Electron Beam Accelerator Facility (CEBAF) to 12GeV. As part of the upgrade, RF systems will be added, bringing the total from 340 to 420. Existing RF systems can provide up to 6.5 kW of CW RF at 1497 MHZ. The 80 new systems will provide increased RF power of up to 13 kW CW each. Built around a newly designed and higher efficiency 13 kW klystron developed for JLab by L-3 Communications, each new RF chain is a completely revamped system using hardware different than our present installations. This paper will discuss the main components of the new systems including the 13 kW klystron, waveguide isolator, and HV power supply using switch-mode technology. Methodology for selection of the various components and results of initial testing will also be addressed. Notice: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. The U.S. Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce this manuscript for U.S. Government purposes.

Andrew Kimber,Richard Nelson

2011-03-01T23:59:59.000Z

402

Air Distribution Effectiveness for Residential Mechanical Ventilation: Simulation and Comparison of Normalized Exposures  

SciTech Connect

The purpose of ventilation is to dilute indoor contaminants that an occupant is exposed to. Even when providing the same nominal rate of outdoor air, different ventilation systems may distribute air in different ways, affecting occupants' exposure to household contaminants. Exposure ultimately depends on the home being considered, on source disposition and strength, on occupants' behavior, on the ventilation strategy, and on operation of forced air heating and cooling systems. In any multi-zone environment dilution rates and source strengths may be different in every zone and change in time, resulting in exposure being tied to occupancy patterns.This paper will report on simulations that compare ventilation systems by assessing their impact on exposure by examining common house geometries, contaminant generation profiles, and occupancy scenarios. These simulations take into account the unsteady, occupancy-tied aspect of ventilation such as bathroom and kitchen exhaust fans. As most US homes have central HVAC systems, the simulation results will be used to make appropriate recommendations and adjustments for distribution and mixing to residential ventilation standards such as ASHRAE Standard 62.2.This paper will report on work being done to model multizone airflow systems that are unsteady and elaborate the concept of distribution matrix. It will examine several metrics for evaluating the effect of air distribution on exposure to pollutants, based on previous work by Sherman et al. (2006).

Petithuguenin, T.D.P.; Sherman, M.H.

2009-05-01T23:59:59.000Z

403

Federal Energy Management Program: Solar Ventilation Preheating Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Ventilation Solar Ventilation Preheating Resources and Technologies to someone by E-mail Share Federal Energy Management Program: Solar Ventilation Preheating Resources and Technologies on Facebook Tweet about Federal Energy Management Program: Solar Ventilation Preheating Resources and Technologies on Twitter Bookmark Federal Energy Management Program: Solar Ventilation Preheating Resources and Technologies on Google Bookmark Federal Energy Management Program: Solar Ventilation Preheating Resources and Technologies on Delicious Rank Federal Energy Management Program: Solar Ventilation Preheating Resources and Technologies on Digg Find More places to share Federal Energy Management Program: Solar Ventilation Preheating Resources and Technologies on AddThis.com... Energy-Efficient Products

404

CO2 Monitoring for Demand Controlled Ventilation in Commercial...  

NLE Websites -- All DOE Office Websites (Extended Search)

CO2 Monitoring for Demand Controlled Ventilation in Commercial Buildings Title CO2 Monitoring for Demand Controlled Ventilation in Commercial Buildings Publication Type Report Year...

405

Ventilation, temperature, and HVAC characteristics in small and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Ventilation, temperature, and HVAC characteristics in small and medium commercial buildings in California Title Ventilation, temperature, and HVAC characteristics in small and...

406

Association of Classroom Ventilation with Reduced Illness Absence...  

NLE Websites -- All DOE Office Websites (Extended Search)

Ventilation with Reduced Illness Absence: A Prospective Study in California Elementary Schools Title Association of Classroom Ventilation with Reduced Illness Absence: A...

407

Why We Ventilate Our Houses - An Historical Look  

NLE Websites -- All DOE Office Websites (Extended Search)

The knowledge of how to ventilate buildings, and how much ventilation is necessary for human health and comfort, has evolved over centuries of trial and error. Humans and...

408

Improving Ventilation and Saving Energy: Final Report on Indoor...  

NLE Websites -- All DOE Office Websites (Extended Search)

Improving Ventilation and Saving Energy: Final Report on Indoor Environmental Quality and Energy Monitoring in Sixteen Relocatable Classrooms Title Improving Ventilation and Saving...

409

Demand-Controlled Ventilation Using CO2 Sensors - Federal Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

fresh air in a building can be a problem. Over ventilation results in higher energy usage and costs than are necessary with appropriate ventilation while potentially increasing...

410

Modeling indoor exposures to VOCs and SVOCs as ventilation rates...  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling indoor exposures to VOCs and SVOCs as ventilation rates vary Title Modeling indoor exposures to VOCs and SVOCs as ventilation rates vary Publication Type Conference Paper...

411

Network Upgrade for the SLC: PEP II Network  

SciTech Connect

The PEP-II control system required a new network to support the system functions. This network, called CTLnet, is an FDDI/Ethernet based network using only TCP/IP protocols. An upgrade of the SLC Control System micro communications to use TCP/IP and SLCNET would allow all PEP-II control system nodes to use TCP/IP. CTLnet is private and separate from the SLAC public network. Access to nodes and control system functions is provided by multi-homed application servers with connections to both the private CTLnet and the SLAC public network. Monitoring and diagnostics are provided using a dedicated system. Future plans and current status information is included.

Crane, M.; Call, M.; Clark, S.; Coffman, F.; Himel, T.; Lahey, T.; Miller, E.; Sass, R.; /SLAC

2011-09-09T23:59:59.000Z

412

Energy Upgrades to Save Small Arizona Town Big Money | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Upgrades to Save Small Arizona Town Big Money Energy Upgrades to Save Small Arizona Town Big Money July 19, 2010 - 1:00pm Addthis An aerial shot of Oro Valley, Ariz.'s town...

413

Better Buildings Neighborhood Program: Energy Upgrade California Drives  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Upgrade Energy Upgrade California Drives Demand From Behind the Wheel to someone by E-mail Share Better Buildings Neighborhood Program: Energy Upgrade California Drives Demand From Behind the Wheel on Facebook Tweet about Better Buildings Neighborhood Program: Energy Upgrade California Drives Demand From Behind the Wheel on Twitter Bookmark Better Buildings Neighborhood Program: Energy Upgrade California Drives Demand From Behind the Wheel on Google Bookmark Better Buildings Neighborhood Program: Energy Upgrade California Drives Demand From Behind the Wheel on Delicious Rank Better Buildings Neighborhood Program: Energy Upgrade California Drives Demand From Behind the Wheel on Digg Find More places to share Better Buildings Neighborhood Program: Energy Upgrade California Drives Demand From Behind the Wheel on

414

Missouri Water Treatment Plant Upgraded | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Treatment Plant Upgraded Missouri Water Treatment Plant Upgraded July 13, 2010 - 11:30am Addthis The high service pumps at the St. Peters Water Treatment Plant are almost 30...

415

How to Save Energy, Money with Home Energy Upgrades | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

How to Save Energy, Money with Home Energy Upgrades How to Save Energy, Money with Home Energy Upgrades November 1, 2013 - 4:38pm Addthis Tammara Thayer thanks Steve Lemaire (left)...

416

Commercial Kitchen Ventilation Performance Report: Six-Element Electric Range Top Under Wall-Mounted Canopy Hood  

Science Conference Proceedings (OSTI)

This report documents testing of ventilation requirements for a six-element electric range positioned under an exhaust-only canopy hood. This appliance and hood combination is one of a series undertaken to provide electric utilities and the food service industry with data to optimize the design of commercial kitchen ventilation systems and integrate exhaust requirements with space conditioning design.

1997-07-16T23:59:59.000Z

417

Commercial Kitchen Ventilation Performance Report: Six-Burner Gas Range Top Under Wall-Mounted Canopy Hood  

Science Conference Proceedings (OSTI)

This report documents testing of ventilation requirements for a six-element gas range positioned under an exhaust-only canopy hood. This appliance and hood combination is one of a series undertaken to provide electric utilities and the foodservice industry with data to optimize the design of commercial kitchen ventilation systems and integrate exhaust requirements with space conditioning design.

1997-09-17T23:59:59.000Z

418

NSTX Upgrade Armor Plate Backing Plate  

E-Print Network (OSTI)

NSTX Upgrade Armor Plate Backing Plate NSTXU-CALC-24-02-00 Rev 0 February 17, 2011 Prepared By # NSTXU_CALC-24-02-00 Revision # 00 WP #: 1508 (ENG-032) Purpose of Calculation: 1.) To qualify the Armor backing plate calculation 2.) Build and evaluate a Finite Element Model for The Armor Eddy Current

Princeton Plasma Physics Laboratory

419

Preparation for upgrading western subbituminous coal  

SciTech Connect

The objective of this project was to establish the physical and chemical characteristics of western coal and determine the best preparation technologies for upgrading this resource. Western coal was characterized as an abundant, easily mineable, clean, low-sulfur coal with low heating value, high moisture, susceptibility to spontaneous ignition, and considerable transit distances from major markets. Project support was provided by the Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE). The research was conducted by the Western Research Institute, (WRI) in Laramie, Wyoming. The project scope of work required the completion of four tasks: (1) project planning, (2) literature searches and verbal contacts with consumers and producers of western coal, (3) selection of the best technologies to upgrade western coal, and (4) identification of research needed to develop the best technologies for upgrading western coals. The results of this research suggest that thermal drying is the best technology for upgrading western coals. There is a significant need for further research in areas involving physical and chemical stabilization of the dried coal product. Excessive particle-size degradation and resulting dustiness, moisture reabsorption, and high susceptibility to spontaneous combustion are key areas requiring further research. Improved testing methods for the determination of equilibrium moisture and susceptibility to spontaneous ignition under various ambient conditions are recommended.

Grimes, R.W.; Cha, C.Y.; Sheesley, D.C.

1990-11-01T23:59:59.000Z

420

CMS: Present status, limitations, and upgrade plans  

SciTech Connect

An overview of the CMS upgrade plans will be presented. A brief status of the CMS detector will be given, covering some of the issues we have so far experienced. This will be followed by an overview of the various CMS upgrades planned, covering the main motivations for them, and the various R&D efforts for the possibilities under study. The CMS detector has been working extremely well since the start of data-taking at the LHC as is evidenced by the numerous excellent results published by CMS and presented at this workshop and recent conferences. Less well documented are the various issues that have been encountered with the detector. In the spirit of this workshop I will cover some of these issues with particular emphasis on problems that motivate some of the upgrades to the CMS detector for this decade of data-taking. Though the CMS detector has been working extremely well and expectations are great for making the most of the LHC luminosity, there have been a number of issues encountered so far. Some of these have been described and while none currently presents a problem for physics performance, some of them are expected to become more problematic, especially at the highest Phase 1 luminosities for which the majority of the integrated luminosity will be collected. These motivate upgrades for various parts of the CMS detector so that the current excellent physics performance can be maintained or even surpassed in the realm of the highest Phase 1 luminosities.

Cheung, H.W.K.; /Fermilab

2011-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "ventilation systems upgrading" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

UPGRADES TO Monteburns, VERSION 3.0  

SciTech Connect

Monteburns VERSION 3.0 is an upgrade of the existing Monteburns code available through RSICC. The new version includes modern programming style, increased parallel computing, more accurate capture gamma calculations and an automated input generator. This capability was demonstrated through a small PWR core simulation.

Galloway, Jack D [Los Alamos National Laboratory; Trellue, Holly R [Los Alamos National Laboratory

2012-06-22T23:59:59.000Z

422

Guidelines for Home Energy Upgrade Professionals: Standard Work Specifications for Multifamily Energy Upgrades (Fact Sheet)  

Science Conference Proceedings (OSTI)

This fact sheet provides essential information about the 2011 publication of the Workforce Guidelines for Multifamily Home Energy Upgrades, including their origin, their development with the help of industry leaders to create the standard work specifications for retrofit work.

Not Available

2011-08-01T23:59:59.000Z

423

NSTX Upgrade Project Execution Plan NSTX Upgrade Project  

E-Print Network (OSTI)

Project. DOE Order 413.3B will provide the basis for the overall management of the Project. 1.2 Key the principles of project management and control systems outlined in this PEP and DOE Order 413.3B ("Program ..............................................................................................................................1 1.2.1 DOE-approved project documents

Princeton Plasma Physics Laboratory

424

NSTX Upgrade Project Execution Plan NSTX Upgrade Project  

E-Print Network (OSTI)

Project. DOE Order 413.3B will provide the basis for the overall management of the Project. 1.2 Key of project management and control systems outlined in this PEP and DOE Order 413.3B ("Program and Project ..............................................................................................................................1 1.2.1 DOE-approved project documents

Princeton Plasma Physics Laboratory

425

NSTX Upgrade Project Execution Plan NSTX Upgrade Project  

E-Print Network (OSTI)

Project. DOE Order 413.3B will provide the basis for the overall management of the Project. 1.2 Key of project management and control systems outlined in this PEP and DOE Order 413.3B ("Program and Project 10/12/2012 Update to WBS Level 2 Threshold (top of page 20), Change DOE Federal Project Director

Princeton Plasma Physics Laboratory

426

Financing Energy Upgrades for K-12 School Districts  

NLE Websites -- All DOE Office Websites (Extended Search)

Financing Energy Upgrades for K-12 School Districts Financing Energy Upgrades for K-12 School Districts Page 2 Table of Contents Introduction................................................................................................................................................................................................................... 4 What This Guide Covers .................................................................................................................................................................................. 6 Chapter 1: Principles of Financing Energy Upgrades for Schools .................................................................................................. 7 Principle 1. Start with Clear Project Objectives.......................................................................................................................................... 7

427

Appliance Upgrades to Consider for Next Tax Season | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Appliance Upgrades to Consider for Next Tax Season Appliance Upgrades to Consider for Next Tax Season Appliance Upgrades to Consider for Next Tax Season April 15, 2013 - 2:28pm Addthis Solar energy systems are among the renewable and efficiency purchases that are eligible for tax credits. | Photo courtesy of Industrial Solar Technology Corp. Solar energy systems are among the renewable and efficiency purchases that are eligible for tax credits. | Photo courtesy of Industrial Solar Technology Corp. Erik Hyrkas Erik Hyrkas Media Relations Specialist, Office of Energy Efficiency & Renewable Energy What does this mean for me? If you missed the energy efficiency and renewable energy tax credits for 2012, you can still take advantage of them in 2013. Tax season comes to a close today, and if you missed the energy efficiency

428

Classroom HVAC: Improving ventilation and saving energy -- field study plan  

SciTech Connect

The primary goals of this research effort are to develop, evaluate, and demonstrate a very practical HVAC system for classrooms that consistently provides classrooms (CRs) with the quantity of ventilation in current minimum standards, while saving energy, and reducing HVAC-related noise levels. This research is motivated by the public benefits of energy efficiency, evidence that many CRs are under-ventilated, and public concerns about indoor environmental quality in CRs. This document provides a summary of the detailed plans developed for the field study that will take place in 2005 to evaluate the energy and IAQ performance of a new classroom HVAC technology. The field study will include measurements of HVAC energy use, ventilation rates, and IEQ conditions in 10 classrooms with the new HVAC technology and in six control classrooms with a standard HVAC system. Energy use and many IEQ parameters will be monitored continuously, while other IEQ measurements will be will be performed seasonally. Continuously monitored data will be remotely accessed via a LonWorks network. Instrument calibration plans that vary with the type of instrumentation used are established. Statistical tests will be employed to compare energy use and IEQ conditions with the new and standard HVAC systems. Strengths of this study plan include the collection of real time data for a full school year, the use of high quality instrumentation, the incorporation of many quality control measures, and the extensive collaborations with industry that limit costs to the sponsors.

Apte, Michael G.; Faulkner, David; Hodgson, Alfred T.; Sullivan, Douglas P.

2004-10-14T23:59:59.000Z

429

Energy Star Building Upgrade Value Calculator | Open Energy Information  

Open Energy Info (EERE)

Energy Star Building Upgrade Value Calculator Energy Star Building Upgrade Value Calculator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Energy Star Building Upgrade Value Calculator (for Office Properties) Agency/Company /Organization: ENERGY STAR Phase: "Evaluate Options and Determine Feasibility" is not in the list of possible values (Bring the Right People Together, Create a Vision, Determine Baseline, Evaluate Options, Develop Goals, Prepare a Plan, Get Feedback, Develop Finance and Implement Projects, Create Early Successes, Evaluate Effectiveness and Revise as Needed) for this property. User Interface: Spreadsheet Website: www.energystar.gov/index.cfm?c=comm_real_estate.building_upgrade_value The Building Upgrade Value Calculator allows practitioners to analyze the

430

Building America Top Innovations Hall of Fame Profile … Low-Cost Ventilation in Production Housing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

simple, cost-effective techniques for providing fresh air throughout the home, including exhaust-only and central fan-integrated supply ventilation. Building America has refined simple whole-house ventilation systems that cost less than $350 to install. BUILDING AMERICA TOP INNOVATIONS HALL OF FAME PROFILE INNOVATIONS CATEGORY: 1. Advanced Technologies and Practices 1.3 Assured Health, Safety, and Durability Low-Cost Ventilation in Production Housing As high-performance homes get more air-tight and better insulated, attention to good indoor air quality becomes essential. Building America has effectively guided the nation's home builders to embrace whole-house ventilation by developing low-cost options that adapt well to their production processes. When the U.S. Department of Energy's Building America research teams began

431

Dry Transfer Facility #1 - Ventilation Confinement Zoning Analysis  

Science Conference Proceedings (OSTI)

The purpose of this analysis is to establish the preliminary Ventilation Confinement Zone (VCZ) for the Dry Transfer Facility (DTF). The results of this document is used to determine the air quantities for each VCZ that will eventually be reflected in the development of the Ventilation Flow Diagrams. The calculations contained in this document were developed by D and E/Mechanical-HVAC and are intended solely for the use of the D and E/Mechanical-HVAC department in its work regarding the HVAC system for the Dry Transfer Facility. Yucca Mountain Project personnel from the D and E/Mechanical-HVAC department should be consulted before use of the calculation for purposes other than those stated herein or used by individuals other than authorized personnel in D and E/Mechanical-HVAC department.

K.D. Draper

2005-03-23T23:59:59.000Z

432

ATU Advanced Technology Upgrading Ltd | Open Energy Information  

Open Energy Info (EERE)

ATU Advanced Technology Upgrading Ltd ATU Advanced Technology Upgrading Ltd Jump to: navigation, search Name ATU (Advanced Technology Upgrading) Ltd Place Israel Product Focused on development of rechargeable magnesium battery. References ATU (Advanced Technology Upgrading) Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. ATU (Advanced Technology Upgrading) Ltd is a company located in Israel . References ↑ "ATU (Advanced Technology Upgrading) Ltd" Retrieved from "http://en.openei.org/w/index.php?title=ATU_Advanced_Technology_Upgrading_Ltd&oldid=342420" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version

433

AEDG Implementation Recommendations: Ventilation | Building Energy Codes  

NLE Websites -- All DOE Office Websites (Extended Search)

Ventilation Ventilation The Advanced Energy Design Guide (AEDG) for Small Office Buildings, 30% series, seeks to achieve 30% savings over ASHRAE Standard 90.1-1999. This guide focuses on improvements to small office buildings, less than 20,000ft2. The recommendations in this article are adapted from the implementation section of the guide and focus on ventilation air; exhaust air; control strategies; carbon dioxide sensors; economizers. Publication Date: Wednesday, May 13, 2009 air_ventilation.pdf Document Details Affiliation: DOE BECP Focus: Compliance Building Type: Commercial Code Referenced: ASHRAE Standard 90.1-1999 Document type: AEDG Implementation Recommendations Target Audience: Architect/Designer Builder Contractor Engineer State: All States Contacts Web Site Policies

434

Scale model studies of displacement ventilation  

E-Print Network (OSTI)

Displacement ventilation is an air conditioning method that provides conditioned air to indoor environments with the goal to improve air quality while reducing energy consumption. This study investigates the performance ...

Okutan, Galip Mehmet

1995-01-01T23:59:59.000Z

435

Midlevel Ventilation's Constraint on Tropical Cyclone Intensity  

E-Print Network (OSTI)

Midlevel ventilation, or the flux of low-entropy air into the inner core of a tropical cyclone (TC), is a hypothesized mechanism by which environmental vertical wind shear can constrain a tropical cyclones intensity. An ...

Tang, Brian Hong-An

436

A Ventilation Index for Tropical Cyclones  

E-Print Network (OSTI)

An important environmental control of both tropical cyclone intensity and genesis is vertical wind shear. One hypothesized pathway by which vertical shear affects tropical cyclones is midlevel ventilationor the flux of ...

Tang, Brian

437

Development of a Residential Integrated Ventilation Controller  

E-Print Network (OSTI)

Refrigerating, and Air-Conditioning Engineers, Atlanta, GA.Refrigerating, and Air-Conditioning Engineers, Atlanta, GA.of Ventilation and Air Conditioning: Is CERN up to Date With

Walker, Iain

2013-01-01T23:59:59.000Z

438

Cooling airflow design tool for displacement ventilation.  

E-Print Network (OSTI)

withEquation 7.4oftheASHRAEDesignGuidelinesforefficiency air diffusers. The ASHRAE method does not takeVentilation Atlanta: ASHRAE. Jiang, Z. , Chen, Q. , and

Schiavon, Stefano; Bauman, Fred

2009-01-01T23:59:59.000Z

439

Ventilation of the Subtropical North Pacific  

Science Conference Proceedings (OSTI)

The ventilation of the subtropical North Pacific is studied using a simple analytical model. The model is forced by winter mixed layer density and depth calculated from the Levitus climatology and wind stress curl from the Hellerman and ...

Rui Xin Huang; Sarah Russell

1994-12-01T23:59:59.000Z

440

Midlevel ventilation's constraint on tropical cyclone intensity  

E-Print Network (OSTI)

Midlevel ventilation, or the flux of low-entropy air into the inner core of a tropical cyclone (TC), is a hypothesized mechanism by which environmental vertical wind shear can constrain a TC's intensity. An idealized ...

Tang, Brian Hong-An

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ventilation systems upgrading" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Chlorofluorocarbon Constraints on North Atlantic Ventilation  

Science Conference Proceedings (OSTI)

The North Atlantic Ocean vigorously ventilates the ocean interior. Thermocline and deep water masses are exposed to atmospheric contact there and are sequestered in two principal classes: Subtropical Mode Water (STMW: 26.5 ? ?? ? 26.8) and ...

Thomas W. N. Haine; Kelvin J. Richards; Yanli Jia

2003-08-01T23:59:59.000Z

442

An Upgrade for the Advanced Light Source  

SciTech Connect

One of the first third-generation synchrotron light sources, the ALS, has been operating for almost a decade at Berkeley Lab, where experimenters have been exploiting its high brightness for forefront science. However, accelerator and insertion-device technology have significantly changed since the ALS was designed. As a result, the performance of the ALS is in danger of being eclipsed by that of newer, more advanced sources. The ALS upgrade that we are planning includes full-energy, top-off injection with higher storage-ring current and the replacement of five first-generation insertion devices with nine state-of-the art insertion devices and four new application-specific beamlines now being identified in a strategic planning process. The upgrade will help keep the ALS at the forefront of soft x-ray synchrotron light sources for the next two decades.

Chemla, Daniel S.; Feinberg, Benedict; Hussain, Zahid; Kirz,Janos; Krebs, Gary F.; Padmore, Howard A.; Robin, David S.; Robinson,Arthur L.; Smith, Neville V.

2004-08-05T23:59:59.000Z

443

JEFFERSON LAB 12 GEV CEBAF UPGRADE  

Science Conference Proceedings (OSTI)

The existing continuous electron beam accelerator facility (CEBAF) at Thomas Jefferson National Accelerator Facility (TJNAF) is a 5-pass, recirculating cw electron Linac operating at approx6 GeV and is devoted to basic research in nuclear physics. The 12 GeV CEBAF Upgrade is a $310 M project, sponsored by the Department of Energy (DOE) Office of Nuclear Physics, that will expand its research capabilities substantially by doubling the maximum energy and adding major new experimental apparatus. The project received construction approval in September 2008 and has started the major procurement process. The cryogenic aspects of the 12 GeV CEBAF Upgrade includes: doubling the accelerating voltages of the Linacs by adding ten new high-performance, superconducting radiofrequency (SRF) cryomodules (CMs) to the existing 42 1/4 cryomodules; doubling of the 2 K cryogenics plant; and the addition of eight superconducting magnets.

Rode, C. H. [Thomas Jefferson National Accelerator Facility, Newport News, Virginia, 23606 (United States)

2010-04-09T23:59:59.000Z

444

CHALLENGES FOR THE SNS RING ENERGY UPGRADE  

Science Conference Proceedings (OSTI)

The Oak Ridge Spallation Neutron Source accumulator ring presently operates at a beam power of about 1 MW with a beam energy of about 910 MeV. A power upgrade is planned to increase the beam energy to 1.3 GeV. For the accumulator ring this mostly involves modifications to the injection and extraction sections. A variety of modifications to the existing injection section were necessary to achieve 1 MW, and the tools developed and the lessons learned from this work are now being applied to the design of the new injection section. This paper will discuss the tools and the lessons learned, and also present the design and status of the upgrades to the accumulator ring.

Plum, Michael A [ORNL; Gorlov, Timofey V [ORNL; Holmes, Jeffrey A [ORNL; Hunter, W Ted [ORNL; Roseberry, Jr., R Tom [ORNL; Wang, Jian-Guang [ORNL

2012-01-01T23:59:59.000Z

445

Idaho Chemical Processing Plant product denitrator upgrade  

SciTech Connect

The uranium product denitrator at the Idaho Chemical Processing Plant has had serious operating problems since 1970, including inadequate contamintion control, fluidized bed caking, frequent bed heater failure, product overflow plugging, and poor feed control. These problems were minimized through selective redesign and upgrade of the process equipment as part of a process upgrade program completed in March 1981. Following startup and testing of the rebuilt product denitrator, 1044 kg of enriched uranium was processed in three weeks while demonstrating greater reliability, ease of operation, and improved contamination control. To maximize personnel safety in the future, the denitrator vessel should be made critically safe by geometry and process instrumentation isolated from the process for semi-remote operation.

Rindfleisch, J.A.; Durst, P.C.; Dahl, C.A.; Casterline, C.E.; Petig, A.V.

1982-05-01T23:59:59.000Z

446

Sensor-based demand controlled ventilation  

SciTech Connect

In most buildings, occupancy and indoor pollutant emission rates vary with time. With sensor-based demand-controlled ventilation (SBDCV), the rate of ventilation (i.e., rate of outside air supply) also varies with time to compensate for the changes in pollutant generation. In other words, SBDCV involves the application of sensing, feedback and control to modulate ventilation. Compared to ventilation without feedback, SBDCV offers two potential advantages: (1) better control of indoor pollutant concentrations; and (2) lower energy use and peak energy demand. SBDCV has the potential to improve indoor air quality by increasing the rate of ventilation when indoor pollutant generation rates are high and occupants are present. SBDCV can also save energy by decreasing the rate of ventilation when indoor pollutant generation rates are low or occupants are absent. After providing background information on indoor air quality and ventilation, this report provides a relatively comprehensive discussion of SBDCV. Topics covered in the report include basic principles of SBDCV, sensor technologies, technologies for controlling air flow rates, case studies of SBDCV, application of SBDCV to laboratory buildings, and research needs. SBDCV appears to be an increasingly attractive technology option. Based on the review of literature and theoretical considerations, the application of SBDCV has the potential to be cost-effective in applications with the following characteristics: (a) a single or small number of dominant pollutants, so that ventilation sufficient to control the concentration of the dominant pollutants provides effective control of all other pollutants; (b) large buildings or rooms with unpredictable temporally variable occupancy or pollutant emission; and (c) climates with high heating or cooling loads or locations with expensive energy.

De Almeida, A.T. [Universidade de Coimbra (Portugal). Dep. Eng. Electrotecnica; Fisk, W.J. [Lawrence Berkeley National Lab., CA (United States)

1997-07-01T23:59:59.000Z

447

Shut-off mechanism for ventilation hose  

DOE Patents (OSTI)

A shut-off mechanism to provide automatic closure of a ventilation hose when the operation of drawing air through the hose is terminated. The mechanism includes a tube of light gauge metal inside of which are mounted a plurality of louver doors positioned in the closed position due to gravity when the ventilation unit is not operational. When the unit is operational, air flowing into the unit maintains the doors in the open position. 5 figs.

Huyett, J.D.; Meskanick, G.R.

1989-12-07T23:59:59.000Z

448

Tracer dating and ocean ventilation  

E-Print Network (OSTI)

The interpretation of transient tracer observations depends on difcult to obtain information on the evolution in time of the tracer boundary conditions and interior distributions. Recent studies have attempted to circumvent this problem by making use of a derived quantity, age, based on the simultaneous distribution of two complementary tracers, such as tritium and its daughter, helium 3. The age is defined with reference to the surface such that the boundary condition takes on a constant value of zero. We use a two-dimensional model to explore the circumstances under which such a combination of conservation equations for two complementary tracers can lead to a cancellation of the time derivative terms. An interesting aspect of this approach is that mixing can serve as a source or sink of tracer based age. We define an idealized "ventilation age tracer " that is conservative with respect to mixing, and we explore how its behavior compares with that of the tracer-based ages over a range of advective and diffusive parameters. 1.

G. Thiele; J. L. Sarmiento

1990-01-01T23:59:59.000Z

449

Program Finds Unique Way to Fund Energy Upgrades | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Finds Unique Way to Fund Energy Upgrades Program Finds Unique Way to Fund Energy Upgrades Program Finds Unique Way to Fund Energy Upgrades May 4, 2010 - 11:11am Addthis Stephen Graff Former Writer & editor for Energy Empowers, EERE The $40 million of Recovery Acts funds used for weatherizing more than 6,500 homes over the next two years in Arkansas is a welcomed boost, but Martha Jane Murray of the Clinton Foundation is thinking bigger. "How do we create a more robust delivery system that is not just relying on federal dollars," asks Martha Jane, the program director for the foundation's Arkansas Clinton Climate Initiative (CCI AR). For CCI AR, one answer is the Home Energy Affordability Loan, or HEAL, program. In a unique approach to help chip away at the list of homes in need of weatherization and lower industrial energy consumption, CCI AR developed a

450

Novel Silicon n-on-p Edgeless Planar Pixel Sensors for the ATLAS upgrade  

E-Print Network (OSTI)

In view of the LHC upgrade phases towards HL-LHC, the ATLAS experiment plans to upgrade the Inner Detector with an all-silicon system. The n-on-p silicon technology is a promising candidate for the pixel upgrade thanks to its radiation hardness and cost effectiveness, that allow for enlarging the area instrumented with pixel detectors. We report on the development of novel n-in-p edgeless planar pixel sensors fabricated at FBK (Trento, Italy), making use of the "active edge" concept for the reduction of the dead area at the periphery of the device. After discussing the sensor technology and fabrication process, we present device simulations (pre- and post-irradiation) performed for different sensor configurations. First preliminary results obtained with the test-structures of the production are shown.

M. Bomben; A. Bagolini; M. Boscardin; L. Bosisio; G. Calderini; J. Chauveau; G. Giacomini; A. La Rosa; G. Marchori; N. Zorzi

2012-12-14T23:59:59.000Z

451

Pretest Predictions for Phase II Ventilation Tests  

SciTech Connect

The objective of this calculation is to predict the temperatures of the ventilating air, waste package surface, and concrete pipe walls that will be developed during the Phase II ventilation tests involving various test conditions. The results will be used as inputs to validating numerical approach for modeling continuous ventilation, and be used to support the repository subsurface design. The scope of the calculation is to identify the physical mechanisms and parameters related to thermal response in the Phase II ventilation tests, and describe numerical methods that are used to calculate the effects of continuous ventilation. The calculation is limited to thermal effect only. This engineering work activity is conducted in accordance with the ''Technical Work Plan for: Subsurface Performance Testing for License Application (LA) for Fiscal Year 2001'' (CRWMS M&O 2000d). This technical work plan (TWP) includes an AP-2.21Q, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities'', activity evaluation (CRWMS M&O 2000d, Addendum A) that has determined this activity is subject to the YMP quality assurance (QA) program. The calculation is developed in accordance with the AP-3.12Q procedure, ''Calculations''. Additional background information regarding this activity is contained in the ''Development Plan for Ventilation Pretest Predictive Calculation'' (DP) (CRWMS M&O 2000a).

Yiming Sun

2001-09-19T23:59:59.000Z

452

Upgrade of the Proton West secondary beamline  

SciTech Connect

As originally designed and operated, protons entering PW6 were steered by a series of EPB dipoles into a single interaction length beryllium target, some 43 feet from the enclosure wall. Ensuing secondary beams, either p{sup +}/{pi}{sup +} or p{sup -}/{pi}{sup -}, were collected by a string of quadrupoles following the target, steered westward, away from the Proton Center line, through PW6 and PW7, and ultimately focussed on experiment production targets located within the large PW8 hall. Around the Spring of 1988 it was decided to upgrade the existing Proton West secondary beamline to allow for transport of a primary proton beam, anticipated to be either 800 or 900 GeV/c, through PW8. This upgrade project, which is now nearing completion, was largely motivated by the then recent approval of E-771, a hadronic beauty production experiment located in PW8. E-771 represents the third in a series of experiments for the large-acceptance dimuon spectrometer presently located at the end of the Proton West beamline. This Technical Memo is a summary of the upgrade --- an explanation of the underlying strategy and a documentation of the final locations of the secondary beamline elements. 6 refs., 2 figs., 2 tabs.

Spiegel, L.

1989-10-10T23:59:59.000Z

453

The Histoty of Ventilation and Air Conditioning is CERN Up to Date with the latest Technological Developments?  

E-Print Network (OSTI)

The invention of ventilation cannot be ascribed to a certain date. It started with simple aeration when man brought fire into his abode and continued through different stages including air cooling using ice to finally arrive at the time when ventilation and air conditioning has become an essential part of our life and plays an important role in human evolution. This paper presents the history of ventilation and air conditioning, explains the key constraints over the centuries, and shows its influence on everyday life. Some examples of previous air-conditioning plants are described and different approaches to the way of calculation of ventilation systems discussed. It gives an overview of the Heating, Ventilation and Air Conditioning (HVAC) installations at CERN and points out their particularities. It also compares them with the latest technological developments in the field as well as showing the new trends that are being applied at CERN.

Khnl-Kinel, J

2000-01-01T23:59:59.000Z

454

Scientific Upgrades at the Oak Ridge National Laboratory High Flux Isotope Reactor  

Science Conference Proceedings (OSTI)

The United States Department of Energy is sponsoring a number of projects that will provide scientific upgrades to the neutron science facilities associated with the High Flux Isotope Reactor (HFIR) located at Oak Ridge National Laboratory. Funding for the first upgrade project was initiated in 1996 and all presently identified upgrade projects are expected to be completed by the end of 2003. The upgrade projects include: (1) larger beam tubes, (2) a new monochromator drum for the HB-1 beam line, (3) a new HB-2 beam line system that includes one thermal guide and a new monochromator drum, (4) new instruments for the HB-2 beamline, (5) a new monochromator drum for the HB-3 beam line, (6) a supercritical hydrogen cold source system to be retrofitted into the HB-4 beam tube, (7) a 3.5 kW refrigeration system at 20 K to support the cold source and a new building to house it, (8) a new HB-4 beam line system composed of four cold neutron guides with various mirror coatings and associated shielding, (9) a number of new instruments for the cold beams including two new SANS instruments, and (10) construction of support buildings. This paper provides a short summary of these projects including their present status and schedule.

Selby, Douglas L [ORNL; Jones, Amy [ORNL; Crow, Lowell [ORNL

2012-01-01T23:59:59.000Z

455

Fighting City Hall: Entry Deterrence and Technology Upgrades in Cable TV Markets  

Science Conference Proceedings (OSTI)

This article investigates how private firms respond to potential entry from public firms. This paper uses a data set of over 3,000 U.S. cable TV systems to present evidence consistent with entry deterrence. Incumbent cable TV firms upgrade faster when ... Keywords: entry, entry deterrence, public--private interaction, technology

Robert C. Seamans

2012-03-01T23:59:59.000Z

456

STANDARDIZATION OF CEBAF 12 GEV UPGRADE CAVITY TESTING  

SciTech Connect

CEBAF 12GeV upgrade project includes 80 new 7-cell cavities to form 10 cryomodules. Each cavity underwent RF qualification at 2.07K using a high power accelerating gradient test and an HOM survey in Jefferson Lab's Vertical Testing Area (VTA) before cavity string assembly. In order to ensure consistently high quality data, updated cavity t