Powered by Deep Web Technologies
Note: This page contains sample records for the topic "ventilation systems particulate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Whole Building Ventilation Systems  

Broader source: Energy.gov (indexed) [DOE]

Whole-Building Whole-Building Ventilation Systems for Existing Homes © 2011 Steven Winter Associates, Inc. All rights reserved. © 2011 Steven Winter Associates, Inc. All rights reserved. Home Performance / Weatherization  Addressing ventilation is the exception  Max tightness, e.g. BPI's "Building Airflow Standard" (BAS)  References ASHRAE 62-89  BAS = Max [0.35 ACH, 15 CFM/person], CFM50 eq.  If BD tests show natural infiltration below BAS...  Ventilation must be recommended or installed.  SO DON'T AIR SEAL TO MUCH! © 2011 Steven Winter Associates, Inc. All rights reserved. © 2011 Steven Winter Associates, Inc. All rights reserved. Ventilation Requirements Ventilation systems for existing homes that are:

2

Ventilation Air Preconditioning Systems  

E-Print Network [OSTI]

Ventilation Air Preconditioning Systems Mukesh Khattar Michael J. Brandemuehl Manager, Space Conditioning and Refrigeration Associate Professor Customer Systems Group Joint Center for Energy Management Electric Power Research Institute Campus... costs, the small, modular nature of the system allows great flexibility for fitting into retrofit geometries and saves space in new construction. Moreover, a single chiller can serve multiple air-handling units-in stark contrast to packaged...

Khattar, M.; Brandemuehl, M. J.

1996-01-01T23:59:59.000Z

3

Ventilation Systems for Cooling | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Ventilation Systems for Cooling Ventilation Systems for Cooling Ventilation Systems for Cooling May 30, 2012 - 6:19pm Addthis Proper ventilation helps you save energy and money. | Photo courtesy of JD Hancock. Proper ventilation helps you save energy and money. | Photo courtesy of JD Hancock. Ventilation is the least expensive and most energy-efficient way to cool buildings. Ventilation works best when combined with methods to avoid heat buildup in your home. In some cases, natural ventilation will suffice for cooling, although it usually needs to be supplemented with spot ventilation, ceiling fans, and window fans. For large homes, homeowners might want to investigate whole house fans. Interior ventilation is ineffective in hot, humid climates where

4

Ventilation Systems for Cooling | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Ventilation Systems for Cooling Ventilation Systems for Cooling Ventilation Systems for Cooling May 30, 2012 - 6:19pm Addthis Proper ventilation helps you save energy and money. | Photo courtesy of JD Hancock. Proper ventilation helps you save energy and money. | Photo courtesy of JD Hancock. Ventilation is the least expensive and most energy-efficient way to cool buildings. Ventilation works best when combined with methods to avoid heat buildup in your home. In some cases, natural ventilation will suffice for cooling, although it usually needs to be supplemented with spot ventilation, ceiling fans, and window fans. For large homes, homeowners might want to investigate whole house fans. Interior ventilation is ineffective in hot, humid climates where

5

Ventilation System Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Ventilation System Basics Ventilation System Basics Ventilation System Basics August 16, 2013 - 1:33pm Addthis Ventilation is the process of moving air into and out of an interior space by natural or mechanical means. Ventilation is necessary for the health and comfort of occupants of all buildings. Ventilation supplies air for occupants to breathe and removes moisture, odors, and indoor pollutants like carbon dioxide. Too little ventilation may result in poor indoor air quality, while too much may cause unnecessarily higher heating and cooling loads. Natural Ventilation Natural ventilation occurs when outdoor air is drawn inside through open windows or doors. Natural ventilation is created by the differences in the distribution of air pressures around a building. Air moves from areas of

6

Ventilation System Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Ventilation System Basics Ventilation System Basics Ventilation System Basics August 16, 2013 - 1:33pm Addthis Ventilation is the process of moving air into and out of an interior space by natural or mechanical means. Ventilation is necessary for the health and comfort of occupants of all buildings. Ventilation supplies air for occupants to breathe and removes moisture, odors, and indoor pollutants like carbon dioxide. Too little ventilation may result in poor indoor air quality, while too much may cause unnecessarily higher heating and cooling loads. Natural Ventilation Natural ventilation occurs when outdoor air is drawn inside through open windows or doors. Natural ventilation is created by the differences in the distribution of air pressures around a building. Air moves from areas of

7

Ventilation System Effectiveness and Tested Indoor Air Quality Impacts  

SciTech Connect (OSTI)

Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. It was inferior because the source of outside air was not direct from outside, the ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four System Factor Categories: Balance, Distribution, Outside Air Source, and Recirculation Filtration. Recommended System Factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.

Rudd, A.; Bergey, D.

2014-02-01T23:59:59.000Z

8

Design of industrial ventilation systems  

SciTech Connect (OSTI)

This latest edition has a title change to reflect an expansion to cover the interrelated areas of general exhaust ventilation and makeup air supply. More coverage is also given the need for energy conservation and for the physical isolation of the workspace from major contaminant generation zones. Excellent and generous illustrative matter is included. Contents, abridged are as follows: flow of fluids; air flow through hoods; pipe resistance; piping design; centrifugal exhaust fans; axial-flow fans; monitoring industrial ventilization systems; isolation; and energy conservation.

Alden, J.L.; Kane, J.M.

1982-01-01T23:59:59.000Z

9

Particulate Emissions Control by Advanced Filtration Systems...  

Broader source: Energy.gov (indexed) [DOE]

Particulate Emissions Control by Advanced Filtration Systems or GDI Engines Particulate Emissions Control by Advanced Filtration Systems or GDI Engines 2013 DOE Hydrogen and Fuel...

10

Procedures and Standards for Residential Ventilation System  

E-Print Network [OSTI]

1 Procedures and Standards for Residential Ventilation System Commissioning: An Annotated, commissioning, procedures, standards, ASHRAE 62.2 Please use the following citation for this report: Stratton, J.C. and C.P. Wray. 2013. Procedures and Standards for Residential Ventilation System Commissioning

11

Reaerosolization of Fluidized Spores in Ventilation Systems  

Science Journals Connector (OSTI)

...high-efficiency particulate air filters were added to the air...and air conditioning (HVAC) systems. Particles...deposited on the walls of the HVAC test apparatus (Fig...reaerosolization under simulated HVAC operational conditions...particulate air (HEPA) filter cartridges were added...

Paula Krauter; Arthur Biermann

2007-02-09T23:59:59.000Z

12

Underground ventilation remote monitoring and control system  

SciTech Connect (OSTI)

This paper presents the design and installation of an underground ventilation remote monitoring and control system at the Waste Isolation Pilot Plant. This facility is designed to demonstrate safe underground disposal of U.S. defense generated transuranic nuclear waste. To improve the operability of the ventilation system, an underground remote monitoring and control system was designed and installed. The system consists of 15 air velocity sensors and 8 differential pressure sensors strategically located throughout the underground facility providing real-time data regarding the status of the ventilation system. In addition, a control system was installed on the main underground air regulators. The regulator control system gives indication of the regulator position and can be controlled either locally or remotely. The sensor output is displayed locally and at a central surface location through the site-wide Central Monitoring System (CMS). The CMS operator can review all sensor data and can remotely operate the main underground regulators. Furthermore, the Virtual Address Extension (VAX) network allows the ventilation engineer to retrieve real-time ventilation data on his personal computer located in his workstation. This paper describes the types of sensors selected, the installation of the instrumentation, and the initial operation of the remote monitoring system.

Strever, M.T.; Wallace, K.G. Jr.; McDaniel, K.H.

1995-12-31T23:59:59.000Z

13

Development of SCR on Diesel Particulate Filter System for Heavy...  

Broader source: Energy.gov (indexed) [DOE]

SCR on Diesel Particulate Filter System for Heavy Duty Applications Development of SCR on Diesel Particulate Filter System for Heavy Duty Applications Evaluation of a system...

14

Design of a Natural Ventilation System in the Dunhuang Museum  

E-Print Network [OSTI]

Fresh air and good air quality can be obtained by a natural ventilation system, to fulfill the requirement of near natural conditions for the psychological health of mankind. A natural ventilation system is an ecological, energy saving system...

Zhang, Y.; Guan, W.

2006-01-01T23:59:59.000Z

15

MODELING VENTILATION SYSTEM RESPONSE TO FIRE  

SciTech Connect (OSTI)

Fires in facilities containing nuclear material have the potential to transport radioactive contamination throughout buildings and may lead to widespread downwind dispersal threatening both worker and public safety. Development and implementation of control strategies capable of providing adequate protection from fire requires realistic characterization of ventilation system response which, in turn, depends on an understanding of fire development timing and suppression system response. This paper discusses work in which published HEPA filter data was combined with CFAST fire modeling predictions to evaluate protective control strategies for a hypothetical DOE non-reactor nuclear facility. The purpose of this effort was to evaluate when safety significant active ventilation coupled with safety class passive ventilation might be a viable control strategy.

Coutts, D

2007-04-17T23:59:59.000Z

16

Advanced Controls and Sustainable Systems for Residential Ventilation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Controls and Sustainable Systems for Residential Ventilation Advanced Controls and Sustainable Systems for Residential Ventilation Title Advanced Controls and Sustainable Systems for Residential Ventilation Publication Type Report LBNL Report Number LBNL-5968E Year of Publication 2012 Authors Turner, William J. N., and Iain S. Walker Date Published 12/2012 Keywords ashrae standard 62,2, california title 24, passive ventilation, residential ventilation, ventilation controller Abstract Whole-house ventilation systems are becoming commonplace in new construction, remodeling/renovation, and weatherization projects, driven by combinations of specific requirements for indoor air quality (IAQ), health, and compliance with standards, such as ASHRAE 62.2. At the same time we wish to reduce the energy use in homes and therefore minimize the energy used to provide ventilation. This study examined several approaches to reducing the energy requirements of providing acceptable IAQ in residential buildings. Two approaches were taken. The first used RIVEC - the Residential Integrated VEntilation Controller - a prototype ventilation controller that aims to deliver whole-house ventilation rates that comply with ventilation standards, for the minimum use of energy. The second used passive and hybrid ventilation systems, rather than mechanical systems, to provide whole-house ventilation.

17

Improvement and Simplification of Diesel Particulate Filter System...  

Broader source: Energy.gov (indexed) [DOE]

and Simplification of Diesel Particulate Filter System using a Ceria-Based Fuel-Borne Catalyst in Serial Applications Improvement and Simplification of Diesel Particulate Filter...

18

Maintenance Guide for Greenhouse Ventilation, Evaporative Cooling Heating Systems1  

E-Print Network [OSTI]

condensation in winter, reduced life and reliability of ventilation equipment, and high repair bills cooling and heating systems. VENTILATION SYSTEMS The operating efficiency of a ventilation fan can be pockets of stagnant air, inadequate cooling from evaporative cooling pads, high heating expenses, heavy

Watson, Craig A.

19

Ventilation System to Improve Savannah River Site's Liquid Waste...  

Broader source: Energy.gov (indexed) [DOE]

A process vessel ventilation system is being installed in a facility that houses two tanks that will process decontaminated salt solution at the Saltstone Production Facility. A...

20

Building America Case Study: Selecting Ventilation Systems for...  

Energy Savers [EERE]

requirements must be met? * What is the scope of the renovation project? * What heating, air conditioning, and ventilation systems are currently in the home? * What type of...

Note: This page contains sample records for the topic "ventilation systems particulate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Advanced Controls for Residential Whole-House Ventilation Systems  

SciTech Connect (OSTI)

Whole-house ventilation systems are becoming commonplace in new construction, remodeling/renovation, and weatherization projects, driven by combinations of specific requirements for indoor air quality (IAQ), health and compliance with standards, such as ASHRAE 62.2. Ventilation systems incur an energy penalty on the home via fan power used to drive the airflow, and the additional space-conditioning load associated with heating or cooling the ventilation air. Finding a balance between IAQ and energy use is important if homes are to be adequately ventilated while not increasing the energy burden. This study used computer simulations to examine RIVEC the Residential Integrated Ventilation Controller - a prototype ventilation controller that aims to deliver whole-house ventilation rates that comply with ventilation standards, for the minimum use of energy. Four different whole-house ventilation systems were simulated, both with and without RIVEC, so that the energy and IAQ results could be compared. Simulations were conducted for 13 US climate zones, three house designs, and three envelope leakage values. The results showed that the RIVEC controller could typically return ventilation energy savings greater than 40percent without compromising long-term chronic or short-term acute exposures to relevant indoor contaminants. Critical and average peak power loads were also reduced as a consequence of using RIVEC.

Turner, William; Walker, Iain; Sherman, Max

2014-08-01T23:59:59.000Z

22

Measure Guideline: Selecting Ventilation Systems for Existing Homes  

SciTech Connect (OSTI)

This document addresses adding -or improving - mechanical ventilation systems to existing homes. The purpose of ventilation is to remove contaminants from homes, and this report discusses where, when, and how much ventilation is appropriate in a home, including some discussion of relevant codes and standards. Advantages, disadvantages, and approximate costs of various system types are presented along with general guidelines for implementing the systems in homes. CARB intends for this document to be useful to decision makers and contractors implementing ventilation systems in homes. Choosing the "best" system is not always straightforward; selecting a system involves balancing performance, efficiency, cost, required maintenance, and several other factors. It is the intent of this document to assist contractors in making more informed decisions when selecting systems. Ventilation is an integral part of a high-performance home. With more air-sealed envelopes, a mechanical means of removing contaminants is critical for indoor environmental quality and building durability.

Aldrich, R.

2014-02-01T23:59:59.000Z

23

Results of the Evaluation Study DeAL Decentralized Facade Integrated Ventilation Systems  

E-Print Network [OSTI]

Most office buildings in Germany have either no mechanical ventilation system or a centralized ventilation system with fresh and exhaust air supply. Within the last 10 years some projects using decentralized ventilation systems (DVS) came up. Common...

Mahler, B.; Himmler, R.

24

Electrically heated particulate filter preparation methods and systems  

DOE Patents [OSTI]

A control system that controls regeneration of a particulate filter is provided. The system generally includes a fuel control module that controls injection of fuel into exhaust that passes through the particulate filter. A regeneration module controls current to the particulate filter to initiate regeneration after the fuel has been injected into the exhaust.

Gonze, Eugene V [Pinckney, MI

2012-01-31T23:59:59.000Z

25

Procedures and Standards for Residential Ventilation System Commissioning:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Procedures and Standards for Residential Ventilation System Commissioning: Procedures and Standards for Residential Ventilation System Commissioning: An Annotated Bibliography Title Procedures and Standards for Residential Ventilation System Commissioning: An Annotated Bibliography Publication Type Report LBNL Report Number LBNL-6142E Year of Publication 2013 Authors J. Chris Stratton, and Craig P. Wray Keywords ASHRAE 62.2, commissioning, procedures, residential, standards, ventilation Abstract Beginning with the 2008 version of Title 24, new homes in California must comply with ANSI/ASHRAE Standard 62.2-2007 requirements for residential ventilation. Where installed, the limited data available indicate that mechanical ventilation systems do not always perform optimally or even as many codes and forecasts predict. Commissioning such systems when they are installed or during subsequent building retrofits is a step towards eliminating deficiencies and optimizing the tradeoff between energy use and acceptable IAQ. Work funded by the California Energy Commission about a decade ago at Berkeley Lab documented procedures for residential commissioning, but did not focus on ventilation systems. Since then, standards and approaches for commissioning ventilation systems have been an active area of work in Europe. This report describes our efforts to collect new literature on commissioning procedures and to identify information that can be used to support the future development of residential-ventilation-specific procedures and standards. We recommend that a standardized commissioning process and a commissioning guide for practitioners be developed, along with a combined energy and IAQ benefit assessment standard and tool, and a diagnostic guide for estimating continuous pollutant emission rates of concern in residences (including a database that lists emission test data for commercially-available labeled products).

26

Key Factors in Displacement Ventilation Systems for Better IAQ  

E-Print Network [OSTI]

ICEBO2006, Shenzhen, China Maximize Comfort: Temperature, Humidity and IAQ Vol.I-7-2 Key Factors in Displacement Ventilation Systems for Better IAQ1 Xiaotong Wang Junjun Chen Yike Li Zhiwei Wang Associate Professor...

Wang, X.; Chen, J.; Li, Y.; Wang, Z.

2006-01-01T23:59:59.000Z

27

Comparison of Two Ventilation Systems in a Chinese Commercial Kitchen  

E-Print Network [OSTI]

A numerical simulation of an indoor thermal environment in a Chinese commercial kitchen has been carried out using indoor zero-equation turbulence model. Two different ventilation systems in a Chinese commercial kitchen have been simulated...

Wan, X.; Yu, L.; Hou, H.

2006-01-01T23:59:59.000Z

28

Numerical Simulation of a Displacement Ventilation System with Multi-heat Sources and Analysis of Influential Factors  

E-Print Network [OSTI]

Displacement ventilation (DV) is a promising ventilation concept due to its high ventilation efficiency. In this paper, the application of the CFD method, the velocity and temperature fields of three-dimensional displacement ventilation systems...

Wu, X.; Gao, J.; Wu, W.

2006-01-01T23:59:59.000Z

29

Commissioning Residential Ventilation Systems: A Combined Assessment of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Commissioning Residential Ventilation Systems: A Combined Assessment of Commissioning Residential Ventilation Systems: A Combined Assessment of Energy and Air Quality Potential Values Title Commissioning Residential Ventilation Systems: A Combined Assessment of Energy and Air Quality Potential Values Publication Type Report LBNL Report Number LBNL-5969E Year of Publication 2012 Authors Turner, William J. N., Jennifer M. Logue, and Craig P. Wray Date Published 07/2012 Keywords commissioning, energy, health, indoor air quality, residential, valuation, ventilation Abstract Due to changes in building codes, whole-house mechanical ventilation systems are being installed in new California homes. Few measurements are available, but the limited data suggest that these systems don't always perform as code and forecasts predict. Such deficiencies occur because systems are usually field assembled without design specifications, and there is no consistent process to identify and correct problems. The value of such activities in terms of reducing energy use and improving indoor air quality (IAQ) is poorly understood. Commissioning such systems when they are installed or during subsequent building retrofits is a step towards eliminating deficiencies and optimizing the tradeoff between energy use and IAQ.

30

Preoperational test report, primary ventilation condenser cooling system  

SciTech Connect (OSTI)

This represents the preoperational test report for the Primary Ventilation Condenser Cooling System, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system uses a closed chilled water piping loop to provide offgas effluent cooling for tanks AY101, AY102, AZ1O1, AZ102; the offgas is cooled from a nominal 100 F to 40 F. Resulting condensation removes tritiated vapor from the exhaust stack stream. The piping system includes a package outdoor air-cooled water chiller with parallel redundant circulating pumps; the condenser coil is located inside a shielded ventilation equipment cell. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

Clifton, F.T.

1997-10-29T23:59:59.000Z

31

Utilizing Passive Ventilation to Complement HVAC Systems in Enclosed Buildings  

E-Print Network [OSTI]

Utilizing Passive Ventilation to Complement HVAC Systems in Enclosed Buildings Tom Rogg REU Student to assist HVAC has the potential to significantly reduce life cycle cost and energy consumption and electrical system that will tie thermostats to controlled valves in the actual HVAC system. Based on results

Mountziaris, T. J.

32

Multifamily Individual Heating and Ventilation Systems, Lawrence, Massachusetts (Fact Sheet)  

SciTech Connect (OSTI)

The conversion of an older Massachusetts building into condominiums illustrates a safe, durable, and cost-effective solution for heating and ventilation systems that can potentially benefit millions of multifamily buildings. Merrimack Valley Habitat for Humanity (MVHfH) partnered with U.S. Department of Energy Building America team Building Science Corporation (BSC) to provide high performance affordable housing for 10 families in the retrofit of an existing mass masonry building (a former convent). The original ventilation design for the project was provided by a local engineer and consisted of a single large heat recovery ventilator (HRV) located in a mechanical room in the basement with a centralized duct system providing supply air to the main living space and exhausting stale air from the single bathroom in each apartment. This design was deemed to be far too costly to install and operate for several reasons: the large central HRV was oversized and the specified flows to each apartment were much higher than the ASHRAE 62.2 rate; an extensive system of ductwork, smoke and fire dampers, and duct chases were specified; ductwork required a significant area of dropped ceilings; and the system lacked individual ventilation control in the apartments

Not Available

2013-11-01T23:59:59.000Z

33

CO 2 - Based Demand-Controlled Ventilation Control Strategies for Multi-Zone HVAC Systems  

E-Print Network [OSTI]

CO 2-based demand-controlled ventilation DCV strategy offers a great opportunity to reduce energy consumption in HVAC systems while providing the required ventilation. However, implementing CO 2-based DCV under ASHRAE 62.1.2004 through 2010...

Nassif, N.

2011-01-01T23:59:59.000Z

34

Air flow and particle control with different ventilation systems in a classroom  

E-Print Network [OSTI]

Air flow and particle control with different ventilation systems in a classroom Sture Holmberg, Ph. For displacement ventilation systems, designers normally assume that all pollutants follow the buoyant air flow of the ventilation air flow are shown to play an important role in the control of air quality. Computer simulation

Chen, Qingyan "Yan"

35

Indoor Chemistry: Materials, Ventilation Systems, and Occupant Activities  

SciTech Connect (OSTI)

Chemical processes taking place in indoor environments can significantly alter the nature and concentrations of pollutants. Exposure to secondary contaminants generated in these reactions needs to be evaluated in association with many aspects of buildings to minimize their impact on occupant health and well-being. Focusing on indoor ozone chemistry, we describe alternatives for improving indoor air quality by controlling chemical changes related to building materials, ventilation systems, and occupant activities.

Morrison, G.C.; Corsi, R.L.; Destaillats, H.; Nazaroff, W.W.; Wells, J.R.

2006-05-01T23:59:59.000Z

36

Reaerosolization of Fluidized Spores in Ventilation Systems  

Science Journals Connector (OSTI)

...and air conditioning (HVAC) systems. Particles...velocity included the static charge attraction between...determined (12). The static charge from plastic was...deposited on the walls of the HVAC test apparatus (Fig...the duct system. Air pressure was exerted in the chamber...

Paula Krauter; Arthur Biermann

2007-02-09T23:59:59.000Z

37

Multifamily Individual Heating and Ventilation Systems, Lawrence...  

Energy Savers [EERE]

each apartment were much higher than the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) 62.2 rate; an extensive system of ductwork, smoke and...

38

Commissioning Residential Ventilation Systems: A Combined Assessment of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Commissioning Residential Ventilation Commissioning Residential Ventilation Systems: A Combined Assessment of Energy and Air Quality Potential Values William J.N. Turner, Jennifer M. Logue, Craig P. Wray Environmental Energy Technologies Division July 2012 LBNL-5969E Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein

39

Evaluating Ventilation Systems for Existing Homes  

SciTech Connect (OSTI)

During the course of this project, an affordable and high performance ductwork system to directly address the problems of thermal losses, poor efficiency, and air leakage was designed. To save space and enable direct connections between different floors of the building, the ductwork system was designed in such a way that it occupied interior or exterior frame wall cavities. The ductwork system satisfied building regulations for structural support when bridging multiple floors, the spread of fire and smoke, and insulation to reduce the heat flow into or out of the building. Retrofits of urban residential buildings will be the main focus for the application of this ductwork system. Highly reflective foils and insulating materials were used to aid in the increase of the overall R-value of the ductwork itself and the wall assembly. It is expected that the proposed system will increase the efficiency of the HVAC system and the thermal resistance of the building envelope. The performance of the proposed ductwork design was numerically evaluated in a number of different ways. Our results indicate that the duct method is a very cost attractive alternative to the conventional method.

Aldrich, R.; Arena, L.

2013-02-01T23:59:59.000Z

40

Economizer system cost effectiveness: Accounting for the influence of ventilation rate on sick leave  

E-Print Network [OSTI]

ECONOMIZER SYSTEM COST EFFECTIVENESS: ACCOUNTING FOR THEand economic benefits of an economizer ventilation controlanalyses indicate that the economizer reduces energy costs

Fisk, William J.; Seppanen, Olli; Faulkner, David; Huang, Joe

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ventilation systems particulate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Overall Ventilation System Flow Network Calculation for Site Recommendation  

SciTech Connect (OSTI)

The scope of this calculation is to determine ventilation system resistances, pressure drops, airflows, and operating cost estimates for the Site Recommendation (SR) design as detailed in the ''Site Recommendation Subsurface Layout'' (BSC (Bechtel SAIC Company) 2001a). The statutory limit for emplacement of waste in Yucca Mountain is 70,000 metric tons of uranium (MTU) and is considered the base case for this report. The objective is to determine the overall repository system ventilation flow network for the monitoring phase during normal operations and to provide a basis for the system description document design descriptions. Any values derived from this calculation will not be used to support construction, fabrication, or procurement. The work scope is identified in the ''Technical Work Plan for Subsurface Design Section FY01 Work Activities'' (CRWMS M&O 2001, pp. 6 and 13). In accordance with the technical work plan this calculation was prepared in accordance with AP-3.12Q, ''Calculations'' and other procedures invoked by AP-3.12Q. It also incorporates the procedure AP-SI1.Q, ''Software Management''.

Jeff J. Steinhoff

2001-08-02T23:59:59.000Z

42

An overview of the TA-55, Building PF-4 ventilation system  

SciTech Connect (OSTI)

An overview of the TA-55, Building PF-4 ventilation system is provided in the following sections. Included are descriptions of the zone configurations, equipment-performance criteria, ventilation support systems, and the ventilation-system evaluation criteria. Section 4.2.1.1 provides a brief discussion of the ventilation system function. Section 4.2.1.2 provides details on the overall system configuration. Details of system interfaces and support systems are provided in Section 4.2.1.3. Section 4.2.1.4 describes instrumentation and control needed to operate the ventilation system. Finally, Sections 4.2.1.5 and 4.2.1.6 describe system surveillance/maintenance and Technical Safety Requirements (TSR) Limitations, respectively. Note that the numerical parameters included in this description are considered nominal; set points and other specifications actually fall within operational bands.

NONE

1994-02-22T23:59:59.000Z

43

Building America Case Study: Selecting Ventilation Systems for Existing Homes (Fact Sheet)  

SciTech Connect (OSTI)

This document addresses adding -or improving - mechanical ventilation systems to existing homes. The purpose of ventilation is to remove contaminants from homes, and this report discusses where, when, and how much ventilation is appropriate in a home, including some discussion of relevant codes and standards. Advantages, disadvantages, and approximate costs of various system types are presented along with general guidelines for implementing the systems in homes. CARB intends for this document to be useful to decision makers and contractors implementing ventilation systems in homes. Choosing the "best" system is not always straightforward; selecting a system involves balancing performance, efficiency, cost, required maintenance, and several other factors. It is the intent of this document to assist contractors in making more informed decisions when selecting systems. Ventilation is an integral part of a high-performance home. With more air-sealed envelopes, a mechanical means of removing contaminants is critical for indoor environmental quality and building durability.

Not Available

2014-12-01T23:59:59.000Z

44

Particulate Emissions Control by Advanced Filtration Systems...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Filtration Systems for GDI Engines (ANLCorningHyundai CRADA) June 19, 2014 DOE Annual Merit Review & Peer Evaluation Meeting PI: Kyeong Lee Co-investigators: Seung Choi,...

45

Emission abatement system utilizing particulate traps  

DOE Patents [OSTI]

Emission abatement system. The system includes a source of emissions and a catalyst for receiving the emissions. Suitable catalysts are absorber catalysts and selective catalytic reduction catalysts. A plasma fuel converter generates a reducing gas from a fuel source and is connected to deliver the reducing gas into contact with the absorber catalyst for regenerating the catalyst. A preferred reducing gas is a hydrogen rich gas and a preferred plasma fuel converter is a plasmatron. It is also preferred that the absorber catalyst be adapted for absorbing NO.sub.x.

Bromberg, Leslie (Sharon, MA); Cohn, Daniel R. (Chestnut Hill, MA); Rabinovich, Alexander (Swampscott, MA)

2004-04-13T23:59:59.000Z

46

Ventilation | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Ventilation Ventilation Ventilation Controlled ventilation keeps energy-efficient homes healthy and comfortable. Learn more about ventilation. Controlled ventilation keeps energy-efficient homes healthy and comfortable. Learn more about ventilation. When creating an energy-efficient, airtight home through air sealing, it's very important to consider ventilation. Unless properly ventilated, an airtight home can seal in indoor air pollutants. Ventilation also helps control moisture-another important consideration for a healthy, energy-efficient home. Featured Whole-House Ventilation A whole-house ventilation system with dedicated ducting in a new energy-efficient home. | Photo courtesy of ©iStockphoto/brebca. Tight, energy-efficient homes require mechanical -- usually whole-house --

47

New and Underutilized Technology: Carbon Dioxide Demand Ventilation Control  

Broader source: Energy.gov (indexed) [DOE]

Carbon Dioxide Demand Ventilation Carbon Dioxide Demand Ventilation Control New and Underutilized Technology: Carbon Dioxide Demand Ventilation Control October 4, 2013 - 4:23pm Addthis The following information outlines key deployment considerations for carbon dioxide (CO2) demand ventilation control within the Federal sector. Benefits Demand ventilation control systems modulate ventilation levels based on current building occupancy, saving energy while still maintaining proper indoor air quality (IAQ). CO2 sensors are commonly used, but a multiple-parameter approach using total volatile organic compounds (TVOC), particulate matter (PM), formaldehyde, and relative humidity (RH) levels can also be used. CO2 sensors control the outside air damper to reduce the amount of outside air that needs to be conditioned and supplied to the building when

48

Experimental Study of the Floor Radiant Cooling System Combined with Displacement Ventilation  

E-Print Network [OSTI]

ICEBO2006, Shenzhen, China HVAC Technologies for Energy Efficiency, Vol. IV-11-4 Experimental Study of the Floor Radiant Cooling System Combined with Displacement Ventilation Yanli Ren1, Deying Li2, Yufeng Zhang1 1...

Ren, Y.; Li, D.; Zhang, Y.

2006-01-01T23:59:59.000Z

49

System Performance Measurement Supports Design Recommendations for Solar Ventilation Preheat System (Brochure), Federal Energy Management Program (FEMP)  

Broader source: Energy.gov (indexed) [DOE]

System Performance System Performance Measurement Supports Design Recommendations for Solar Ventilation Preheat System The U.S. Department of Energy's (DOE) Federal Energy Management Program (FEMP) sponsored the installation of a data monitoring system to analyze the efficiency and performance of a large solar ventilation preheat (SVP) system. The system was installed at a Federal installation to reduce energy consumption and costs and to help meet Federal energy goals and mandates. SVP systems draw ventilation air in through a perforated metal solar collector with a dark color on the south side of a build-

50

Economizer system cost effectiveness: Accounting for the influence of ventilation rate on sick leave  

SciTech Connect (OSTI)

This study estimated the health, energy, and economic benefits of an economizer ventilation control system that increases outside air supply during mild weather to save energy. A model of the influence of ventilation rate on airborne transmission of respiratory illnesses was used to extend the limited data relating ventilation rate with illness and sick leave. An energy simulation model calculated ventilation rates and energy use versus time for an office building in Washington, DC with fixed minimum outdoor air supply rates, with and without an economizer. Sick leave rates were estimated with the disease transmission model. In the modeled 72-person office building, our analyses indicate that the economizer reduces energy costs by approximately $2000 and, in addition, reduces sick leave. The financial benefit of the decrease in sick leave is estimated to be between $6,000 and $16,000. This modelling suggests that economizers are much more cost effective than currently recognized.

Fisk, William J.; Seppanen, Olli; Faulkner, David; Huang, Joe

2003-06-01T23:59:59.000Z

51

Software Verification & Validation Report for the 244-AR Vault Interim Stabilization Ventilation System  

SciTech Connect (OSTI)

This document reports on the analysis, testing and conclusions of the software verification and validation for the 244-AR Vault Interim Stabilization ventilation system. Automation control system will use the Allen-Bradley software tools for programming and programmable logic controller (PLC) configuration. The 244-AR Interim Stabilization Ventilation System will be used to control the release of radioactive particles to the environment in the containment tent, located inside the canyon of the 244-AR facility, and to assist the waste stabilization efforts. The HVAC equipment, ducts, instruments, PLC hardware, the ladder logic executable software (documented code), and message display terminal are considered part of the temporary ventilation system. The system consists of a supply air skid, temporary ductwork (to distribute airflow), and two skid-mounted, 500-cfm exhausters connected to the east filter building and the vessel vent system. The Interim Stabilization Ventilation System is a temporary, portable ventilation system consisting of supply side and exhaust side. Air is supplied to the containment tent from an air supply skid. This skid contains a constant speed fan, a pre-filter, an electric heating coil, a cooling coil, and a constant flow device (CFD). The CFD uses a passive component that allows a constant flow of air to pass through the device. Air is drawn out of the containment tent, cells, and tanks by two 500-cfm exhauster skids running in parallel. These skids are equipped with fans, filters, stack, stack monitoring instrumentation, and a PLC for control. The 500CFM exhaust skids were fabricated and tested previously for saltwell pumping activities. The objective of the temporary ventilation system is to maintain a higher pressure to the containment tent, relative to the canyon and cell areas, to prevent contaminants from reaching the containment tent.

YEH, T.

2002-11-20T23:59:59.000Z

52

Demand Controlled Ventilation and Classroom Ventilation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 3 Authors Fisk, William J., Mark J. Mendell, Molly Davies, Ekaterina Eliseeva, David Faulkner, Tienzen Hong, and Douglas P. Sullivan Publisher Lawrence Berkeley National Laboratory City Berkeley Keywords absence, building s, carbon dioxide, demand - controlled ventilation, energy, indoor air quality, schools, ventilation Abstract This document summarizes a research effort on demand controlled ventilation and classroom ventilation. The research on demand controlled ventilation included field studies and building energy modeling. Major findings included:  The single-location carbon dioxide sensors widely used for demand controlled ventilation frequently have large errors and will fail to effectively control ventilation rates (VRs).  Multi-location carbon dioxide measurement systems with more expensive sensors connected to multi-location sampling systems may measure carbon dioxide more accurately.

53

Cleanup and Dismantling of Highly Contaminated Ventilation Systems Using Robotic Tools - 13162  

SciTech Connect (OSTI)

The UP1 plant reprocessed nearly 20,000 tons of used natural uranium gas cooled reactor fuel coming from the first generation of civil nuclear reactors in France. Following operating incidents in the eighties, the ventilation system of the continuous dissolution line facility was shut down and replaced. Two types of remote controlled tool carriers were developed to perform the decontamination and dismantling operations of the highly contaminated ventilation duct network. The first one, a dedicated small robot, was designed from scratch to retrieve a thick powder deposit within a duct. The robot, managed and confined by two dedicated glove boxes, was equipped for intervention inside the ventilation duct and used for carrying various cleanup and inspection tools. The second type, consisting of robotic tools developed on the base of an industrial platform, was used for the clean-up and dismantling of the ventilation duct system. Depending on the type of work to be performed, on the shape constraints of the rooms and any equipment to be dismantled, different kinds of robotic tools were developed and installed on a Brokk 40 carrier. After more than ten years of ventilation duct D and D operations at the UP1 plant, a lot of experience was acquired about remote operations. The three main important lessons learned in terms of remote controlled operation are: characterizing the initial conditions as much as reasonably possible, performing non-radioactive full scale testing and making it as simple and modular as possible. (authors)

Chambon, Frederic [AREVA FEDERAL SERVICES, Columbia MD (United States)] [AREVA FEDERAL SERVICES, Columbia MD (United States); CIZEL, Jean-Pierre [AREVA BE/NV, Marcoule (France)] [AREVA BE/NV, Marcoule (France); Blanchard, Samuel [CEA DEN/DPAD, Marcoule (France)] [CEA DEN/DPAD, Marcoule (France)

2013-07-01T23:59:59.000Z

54

ADMINISTRATIVE AND ENGINEERING CONTROLS FOR THE OPERATION OF VENTILATION SYSTEMS FOR UNDERGROUND RADIOACTIVE WASTE STORAGE TANKS  

SciTech Connect (OSTI)

Liquid radioactive wastes from the Savannah River Site are stored in large underground carbon steel tanks. The majority of the waste is confined in double shell tanks, which have a primary shell, where the waste is stored, and a secondary shell, which creates an annular region between the two shells, that provides secondary containment and leak detection capabilities should leakage from the primary shell occur. Each of the DST is equipped with a purge ventilation system for the interior of the primary shell and annulus ventilation system for the secondary containment. Administrative flammability controls require continuous ventilation to remove hydrogen gas and other vapors from the waste tanks while preventing the release of radionuclides to the atmosphere. Should a leak from the primary to the annulus occur, the annulus ventilation would also serve this purpose. The functionality of the annulus ventilation is necessary to preserve the structural integrity of the primary shell and the secondary. An administrative corrosion control program is in place to ensure integrity of the tank. Given the critical functions of the purge and annulus ventilation systems, engineering controls are also necessary to ensure that the systems remain robust. The system consists of components that are constructed of metal (e.g., steel, stainless steel, aluminum, copper, etc.) and/or polymeric (polypropylene, polyethylene, silicone, polyurethane, etc.) materials. The performance of these materials in anticipated service environments (e.g., normal waste storage, waste removal, etc.) was evaluated. The most aggressive vapor space environment occurs during chemical cleaning of the residual heels by utilizing oxalic acid. The presence of NO{sub x} and mercury in the vapors generated from the process could potentially accelerate the degradation of aluminum, carbon steel, and copper. Once identified, the most susceptible materials were either replaced and/or plans for discontinuing operations are executed.

Wiersma, B.; Hansen, A.

2013-11-13T23:59:59.000Z

55

Radon Mitigation in Schools Utilising Heating, Ventilating and Air Conditioning Systems  

Science Journals Connector (OSTI)

......and Air Conditioning Engineers (ASHRAE) standard Ventilation for Acceptable Indoor Air Quality...Two case studies are presented where HVAC technology was implemented for controlling...system in a two-storey building. The HVAC system's controls were restored and modified......

G. Fisher; B. Ligman; T. Brennan; R. Shaughnessy; B.H. Turk; B. Snead

1994-12-01T23:59:59.000Z

56

Ventilation | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Ventilation Ventilation Ventilation May 7, 2012 - 2:49pm Addthis This ventilation system in a tight, energy-efficient home ensures good indoor air quality. | Photo courtesy of ©iStockphoto.com/brebca. This ventilation system in a tight, energy-efficient home ensures good indoor air quality. | Photo courtesy of ©iStockphoto.com/brebca. What does this mean for me? After you've reduced air leakage in your home, adequate ventilation is critical for health and comfort. Depending on your climate, there are a number of strategies to ventilate your home. Ventilation is very important in an energy-efficient home. Air sealing techniques can reduce air leakage to the point that contaminants with known health effects such as formaldehyde, volatile organic compounds, and radon

57

Ventilation | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Ventilation Ventilation Ventilation May 7, 2012 - 2:49pm Addthis This ventilation system in a tight, energy-efficient home ensures good indoor air quality. | Photo courtesy of ©iStockphoto.com/brebca. This ventilation system in a tight, energy-efficient home ensures good indoor air quality. | Photo courtesy of ©iStockphoto.com/brebca. What does this mean for me? After you've reduced air leakage in your home, adequate ventilation is critical for health and comfort. Depending on your climate, there are a number of strategies to ventilate your home. Ventilation is very important in an energy-efficient home. Air sealing techniques can reduce air leakage to the point that contaminants with known health effects such as formaldehyde, volatile organic compounds, and radon

58

Consideration of air jet angle in open surface tank push-pull ventilation system design  

E-Print Network [OSTI]

CONSIDERATION OF AIR JET ANGLE IN OPEN SURFACE TANK PUSH-PULL VENTILATION SYSTEM DESIGN A Thesis by WAI-HUNG DAVID CHAN Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement for the degree o... MASTER OF SCIENCE May 1983 Major Subjeot: Industrial Hygiene CONSIDERATION OF AIR JET ANGLE IN OPEN SURFACE TANK PUSH-PULL VENTILATION STSTEM DESIGN A Thesis by WAI-HUNG DAVID CHAN Approved as to style and content by: (C an of mmittee) J. Suggs...

Chan, Wai-Hung David

1983-01-01T23:59:59.000Z

59

Particle transport in low-energy ventilation systems. Part 1: theory of steady states  

E-Print Network [OSTI]

of the global population. According to the Energy Information Administration (http://www.eia.doe.gov/) the US of this energy is spent on ventilation of buildings with summer time cooling account for almost 10% of the US total energy budget. To reduce energy consumption various low-energy systems such as displacement

Bolster, Diogo

60

AUTOMATIC VARIABLE VENTILATION CONTROL SYSTEMS BASED ON AIR QUALITY DETECTION  

E-Print Network [OSTI]

Control Systems Based on Air Quality Detection Isaac Turiel,HVAC CONTROL SYSTEM BASED ON AIR QUALITY SENSING To Zl)(lecontrol systems based on air quality detection Isaac Turiel,

Turiel, Isaac

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ventilation systems particulate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

A genetic rule weighting and selection process for fuzzy control of heating, ventilating and air conditioning systems  

Science Journals Connector (OSTI)

In this paper, we propose the use of weighted linguistic fuzzy rules in combination with a rule selection process to develop accurate fuzzy logic controllers dedicated to the intelligent control of heating, ventilating and air conditioning systems concerning ... Keywords: BEMS, building energy management system, FLC, fuzzy logic controller, Fuzzy logic controllers, GA, genetic algorithm, Genetic algorithms, HVAC systems, HVAC, heating, ventilating, and air conditioning, KB, knowledge base, PMV, predicted mean vote index for thermal comfort, Rule selection, Weighted fuzzy rules

Rafael Alcal; Jorge Casillas; Oscar Cordn; Antonio Gonzlez; Francisco Herrera

2005-04-01T23:59:59.000Z

62

Transition dynamics between the multiple steady states in natural ventilation systems : from theories to applications in optimal controls  

E-Print Network [OSTI]

In this study, we investigated the multiple steady state behavior, an important observation in numerical and experimental studies in natural ventilation systems. The-oretical models are developed and their applications in ...

Yuan, Jinchao

2007-01-01T23:59:59.000Z

63

Application Study on Combined Ventilation System of Improving IAQ  

E-Print Network [OSTI]

System[D]. Qingdao: Qingdao Technological university dissertation for master degree, 2005.(In Chinese) [3] Q Chen,A Moser,P Suter. A numerical study of indoor air quality and thermal comfort under six kinds of air diffusion[J].ASHRAE Trans, 1992, 98... System[D]. Qingdao: Qingdao Technological university dissertation for master degree, 2005.(In Chinese) [3] Q Chen,A Moser,P Suter. A numerical study of indoor air quality and thermal comfort under six kinds of air diffusion[J].ASHRAE Trans, 1992, 98...

Hu, S.; Li, G.; Zhang, C.; Ye, B.

2006-01-01T23:59:59.000Z

64

DEMAND CONTROLLED VENTILATION AND CLASSROOM VENTILATION  

SciTech Connect (OSTI)

This document summarizes a research effort on demand controlled ventilation and classroom ventilation. The research on demand controlled ventilation included field studies and building energy modeling. Major findings included: ? The single-location carbon dioxide sensors widely used for demand controlled ventilation frequently have large errors and will fail to effectively control ventilation rates (VRs).? Multi-location carbon dioxide measurement systems with more expensive sensors connected to multi-location sampling systems may measure carbon dioxide more accurately.? Currently-available optical people counting systems work well much of the time but have large counting errors in some situations. ? In meeting rooms, measurements of carbon dioxide at return-air grilles appear to be a better choice than wall-mounted sensors.? In California, demand controlled ventilation in general office spaces is projected to save significant energy and be cost effective only if typical VRs without demand controlled ventilation are very high relative to VRs in codes. Based on the research, several recommendations were developed for demand controlled ventilation specifications in the California Title 24 Building Energy Efficiency Standards.The research on classroom ventilation collected data over two years on California elementary school classrooms to investigate associations between VRs and student illness absence (IA). Major findings included: ? Median classroom VRs in all studied climate zones were below the California guideline, and 40percent lower in portable than permanent buildings.? Overall, one additional L/s per person of VR was associated with 1.6percent less IA. ? Increasing average VRs in California K-12 classrooms from the current average to the required level is estimated to decrease IA by 3.4percent, increasing State attendance-based funding to school districts by $33M, with $6.2 M in increased energy costs. Further VR increases would provide additional benefits.? Confirming these findings in intervention studies is recommended. ? Energy costs of heating/cooling unoccupied classrooms statewide are modest, but a large portion occurs in relatively few classrooms.

Fisk, William J.; Mendell, Mark J.; Davies, Molly; Eliseeva, Ekaterina; Faulkner, David; Hong, Tienzen; Sullivan, Douglas P.

2014-01-06T23:59:59.000Z

65

Ventilative cooling  

E-Print Network [OSTI]

This thesis evaluates the performance of daytime and nighttime passive ventilation cooling strategies for Beijing, Shanghai and Tokyo. A new simulation method for cross-ventilated wind driven airflow is presented . This ...

Graa, Guilherme Carrilho da, 1972-

1999-01-01T23:59:59.000Z

66

Proposal for the award of a contract for the design, supply, installation and commissioning of an HVAC (Heating, Ventilation and Air Conditioning) system for Building 3862  

E-Print Network [OSTI]

Proposal for the award of a contract for the design, supply, installation and commissioning of an HVAC (Heating, Ventilation and Air Conditioning) system for Building 3862

2014-01-01T23:59:59.000Z

67

Proposal for the award of a contract for the design, supply, installation and commissioning of Heating, Ventilation and Air-Conditioning (HVAC) systems for the PS accelerator infrastructure  

E-Print Network [OSTI]

Proposal for the award of a contract for the design, supply, installation and commissioning of Heating, Ventilation and Air-Conditioning (HVAC) systems for the PS accelerator infrastructure

2012-01-01T23:59:59.000Z

68

Proposal for the award of a contract for dismantling, removal and packaging of the existing Heating, Ventilation and Air-Conditioning (HVAC) systems in the PS tunnel  

E-Print Network [OSTI]

Proposal for the award of a contract for dismantling, removal and packaging of the existing Heating, Ventilation and Air-Conditioning (HVAC) systems in the PS tunnel

2012-01-01T23:59:59.000Z

69

Improvement and Simplification of Diesel Particulate Filter System...  

Broader source: Energy.gov (indexed) [DOE]

FBC Improve the ash management (filter) Simplify the onboard dosing system and decrease cost and Chemist Ceramist Fuel system specialist Improve the vehicle integration for a Fit...

70

Energy saving by integrated control of natural ventilation and HVAC systems using model guide for comparison  

Science Journals Connector (OSTI)

Abstract Integrated control by controlling both natural ventilation and HVAC systems based on human thermal comfort requirement can result in significant energy savings. The concept of this paper differs from conventional methods of energy saving in HVAC systems by integrating the control of both these HVAC systems and the available natural ventilation that is based on the temperature difference between the indoor and the outdoor air. This difference affects the rate of change of indoor air enthalpy or indoor air potential energy storage. However, this is not efficient enough as there are other factors affecting the rate of change of indoor air enthalpy that should be considered to achieve maximum energy saving. One way of improvement can be through the use of model guide for comparison (MGFC) that uses physical-empirical hybrid modelling to predict the rate of change of indoor air potential energy storage considering building fabric and its fixture. Three methods (normal, conventional and proposed) are tested on an identical residential building model using predicted mean vote (PMV) sensor as a criterion test for thermal comfort standard. The results indicate that the proposed method achieved significant energy savings compared with the other methods while still achieving thermal comfort.

Raad Z. Homod; Khairul Salleh Mohamed Sahari; Haider A.F. Almurib

2014-01-01T23:59:59.000Z

71

Multifamily Ventilation - Best Practice?  

Broader source: Energy.gov (indexed) [DOE]

Multifamily Ventilation - Best Practice? Multifamily Ventilation - Best Practice? Dianne Griffiths April 29, 2013 Presentation Outline * Basic Objectives * Exhaust Systems * Make-up Air Systems Two Primary Ventilation Objectives 1) Providing Fresh Air - Whole-House 2) Removing Pollutants - Local Exhaust Our goal is to find the simplest solution that satisfies both objectives while minimizing cost and energy impacts. Common Solution: Align local exhaust with fresh air requirements (Ex: 25 Bath + 25 Kitchen) Exhaust-Driven Fresh Air Design * Exhaust slightly depressurizes the units * Outside air enters through leaks, cracks, or planned inlets * Widely used in the North Multifamily Ventilation Best Practice * Step 1: Understand ventilation requirements * Step 2: Select the simplest design that can

72

Exergyeconomic evaluation of heat recovery device in mechanical ventilation system  

Science Journals Connector (OSTI)

Abstract The paper presents new approach in evaluation of heat recovery devices in mechanical ventilation system. The evaluation is based on exergy balance equation and economic analysis, what requires application of one of multicriteria decision aid methodsweighted sum method. The proposed set of evaluation criteria consists of: driving exergy, simple payback time and investment cost. The proposed method is applied to compare the four variants of heat recovery device in inlet-exhaust mechanical ventilation system of the capacity of 10,000m3/h installed in residential part of hotel. The analysis is performed for four preference models. The results of the multicriteria evaluation indicate that counter flow plate heat exchanger and the rotating heat/mass regenerator are better solutions comparing with water loop heat exchanger and heat pipe heat exchanger. Counter flow plate heat exchanger is the most compromise solution for the two preference models PREF_00 (based on statistic approach) and PREF_03 (investment cost priority preference model). Rotating heat/mass regenerator is the most compromise solution for the preference model 01 (driving exergy priority preference model). The proposed method can be helpful in the choice of the most compromise solution of the heat recovery device in pre-design phase.

Tomasz M. Mrz; Anna Dutka

2015-01-01T23:59:59.000Z

73

Phase-change wallboard and mechanical night ventilation in commercial buildings: Potential for HVAC system downsizing  

SciTech Connect (OSTI)

As thermal storage media, phase-change materials (PCMs) such as paraffin, eutectic salts, etc. offer an order-of-magnitude increase in thermal storage capacity, and their discharge is almost isothermal. By embedding PCMs in dypsum board, plaster, or other wall-covering materials, the building structure acquires latent storage properties. Structural elements containing PCMs can store large amounts of energy while maintaining the indoor temperature within a relatively narrow range. As heat storage takes place inside the building where the loads occur, rather than at a central exterior location, the internal loads are removed without the need for additional transport energy. Distributed latent storage can thus be used to reduce the peak power demand of a building, downsize the cooling system, and/or switch to low-energy cooling sources. The authors used RADCOOL, a thermal building simulation program based on the finite difference approach, to numerically evaluate the thermal performance of PCM wallboard coupled with mechanical night ventilation in office buildings offers the opportunity for system downsizing in climates where the outside air temperature drops below 18 C at night. In climates where the outside air temperature remains above 19 C at night, the use of PCM wallboard should be coupled with discharge mechanisms other than mechanical night ventilation with outside air.

Stetiu, C.; Feustel, H.E.

1998-07-01T23:59:59.000Z

74

Development of Advanced Diesel Particulate Filtration (DPF) Systems  

Broader source: Energy.gov (indexed) [DOE]

ILJIN Electric Co., Korea IBIDEN, Japan Relevance and Objectives Existing DPF systems still need to improve filtrationregeneration efficiencies and pressure drops. ...

75

Development of Advanced Diesel Particulate Filtration (DPF) Systems  

Broader source: Energy.gov (indexed) [DOE]

Foster) - Honda Motor in Japan Complimentary Part Supply - Iljin Electric Co. (DPF heating systems for regeneration) 18 - - Summary Experimental setup for DPF filtration...

76

Development of Advanced Diesel Particulate Filtration (DPF) Systems  

Broader source: Energy.gov (indexed) [DOE]

efficient regeneration strategies, which can control thermal run-away. Accurate measurement of heat release is needed. A real-time DPF controlmanagement system is...

77

Techno-economic evaluation of a ventilation system assisted with exhaust air heat recovery, electrical heater and solar energy  

Science Journals Connector (OSTI)

Abstract The energy consumed to condition fresh air is considerable, particularly for the buildings such as cinema, theatre or gymnasium saloons. The aim of the present study is to design a ventilation system assisted with exhaust air heat recovery unit, electrical heater and stored solar energy, then to make an economical analysis based on life cycle cost (LCC) to find out its payback period. The system is able to recover thermal energy of exhaust air, store solar energy during the sunlight period and utilize it in the period between 17:00 and 24:00h. The transient behaviour of the system is simulated by the TRNSYS 16 software for winter period from 1st of November to 31st of March for Izmir city of Turkey. The obtained results show that the suggested ventilation system reduces energy consumption by 86% compared to the conventional ventilation system in which an electrical heater is used. The payback period of the suggested system is found to be 5 years and 8 months which is a promising result in favour of the solar energy usage in building ventilation systems.

Gamze Ozyogurtcu; Moghtada Mobedi; Baris Ozerdem

2014-01-01T23:59:59.000Z

78

An experimental system for advanced heating, ventilating and air conditioning (HVAC) control  

Science Journals Connector (OSTI)

While having the potential to significantly improve heating, ventilating and air conditioning (HVAC) system performance, advanced (e.g., optimal, robust and various forms of adaptive) controllers have yet to be incorporated into commercial systems. Controllers consisting of distributed proportional-integral (PI) control loops continue to dominate commercial HVAC systems. Investigation into advanced HVAC controllers has largely been limited to proposals and simulations, with few controllers being tested on physical systems. While simulation can be insightful, the only true means for verifying the performance provided by HVAC controllers is by actually using them to control an HVAC system. The construction and modeling of an experimental system for testing advanced HVAC controllers, is the focus of this article. A simple HVAC system, intended for controlling the temperature and flow rate of the discharge air, was built using standard components. While only a portion of an overall HVAC system, it is representative of a typical hot water to air heating system. In this article, a single integrated environment is created that is used for data acquisition, controller design, simulation, and closed loop controller implementation and testing. This environment provides the power and flexibility needed for rapid prototyping of various controllers and control design methodologies.

Michael Anderson; Michael Buehner; Peter Young; Douglas Hittle; Charles Anderson; Jilin Tu; David Hodgson

2007-01-01T23:59:59.000Z

79

ALTERNATE HIGH EFFICIENCY PARTICULATE AIR (HEPA) FILTRATION SYSTEM  

SciTech Connect (OSTI)

In Phase IIA of this project, CeraMem has further developed and scaled up ceramic HEPA filters that are appropriate for use on filtration of vent gas from HLW tanks at DOE sites around the country. This work included procuring recrystallized SiC monoliths, developing membrane and cement materials, and defining a manufacturing process for the production of prototype full sizes HEPA filters. CeraMem has demonstrated that prototype full size filters can be manufactured by producing 9 full size filters that passed DOP aerosol testing at the Oak Ridge Filter Test Facility. One of these filters was supplied to the Savannah River Technical Center (SRTC) for process tests using simulated HLW tank waste. SRTC has reported that the filter was regenerable (with some increase in pressure drop) and that the filter retained its HEPA retention capability. CeraMem has also developed a Regenerable HEPA Filter System (RHFS) design and acceptance test plan that was reviewed by DOE personnel. The design and acceptance test plan form the basis of the system proposal for follow-on work in Phase IIB of this project.

Bruce Bishop; Robert Goldsmith; Karsten Nielsen; Phillip Paquette

2002-08-16T23:59:59.000Z

80

Independent Oversight Review of Hanford Tank Farms Safety Basis Amendment for Double-Shell Tank Ventilation System Upgrades, November 2011  

Broader source: Energy.gov (indexed) [DOE]

Hanford Tank Farms Safety Basis Amendment for Double-Shell Tank Ventilation System Upgrades November 2011 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy i Table of Contents 1.0 Purpose ................................................................................................................................................... 1 2.0 Background ............................................................................................................................................ 1 3.0 Scope and Approach .............................................................................................................................. 2

Note: This page contains sample records for the topic "ventilation systems particulate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

HOW THE LEED VENTILATION CREDIT IMPACTS ENERGY CONSUMPTION OF GSHP SYSTEMS A CASE STUDY FOR PRIMARY SCHOOLS  

SciTech Connect (OSTI)

This paper presents a study on the impacts of increased outdoor air (OA) ventilation on the performance of ground-source heat pump (GSHP) systems that heat and cool typical primary schools. Four locations Phoenix, Miami, Seattle, and Chicago are selected in this study to represent different climate zones in the United States. eQUEST, an integrated building and HVAC system energy analysis program, is used to simulate a typical primary school and the GSHP system at the four locations with minimum and 30% more than minimum OA ventilation. The simulation results show that, without an energy recovery ventilator, the 30% more OA ventilation results in an 8.0 13.3% increase in total GSHP system energy consumption at the four locations. The peak heating and cooling loads increase by 20.2 30% and 14.9 18.4%, respectively, at the four locations. The load imbalance of the ground heat exchanger is increased in hot climates but reduced in mild and cold climates.

Liu, Xiaobing [ORNL] [ORNL

2011-01-01T23:59:59.000Z

82

Durability of Diesel Particulate Filters - Bench Studies on Cordierite...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Publications Requirements-Driven Diesel Catalyzed Particulate Trap Design and Optimization Development of Advanced Diesel Particulate Filtration (DPF) Systems fundamental...

83

Reducing Mortality from Terrorist Releases of Chemical and Biological Agents: I. Filtration for Ventilation Systems in Commercial Building  

SciTech Connect (OSTI)

There is growing concern about potential terrorist attacks involving releases of chemical and/or biological (CB) agents, such as sarin or anthrax, in and around buildings. For an external release, the CB agent can enter the building through the air intakes of a building's mechanical ventilation system and by infiltration through the building envelope. For an interior release in a single room, the mechanical ventilation system, which often recirculates some fraction of the air within a building, may distribute the released CB agent throughout the building. For both cases, installing building systems that remove chemical and biological agents may be the most effective way to protect building occupants. Filtration systems installed in the heating, ventilating and air-conditioning (HVAC) systems of buildings can significantly reduce exposures of building occupants in the event of a release, whether the release is outdoors or indoors. Reduced exposures can reduce the number of deaths from a terrorist attack. The purpose of this report is to provide information and examples of the design of filtration systems to help building engineers retrofit HVAC systems. The report also provides background information on the physical nature of CB agents and brief overviews of the basic principles of particle and vapor filtration.

Thatcher, Tracy L.; Daisey, Joan M.

1999-09-01T23:59:59.000Z

84

Integrated Demand Controlled Ventilation for Single Duct VAV System with Conference Rooms  

E-Print Network [OSTI]

. This paper presents a new integrated demand controlled ventilation (IDCV) methodology which can ensure acceptable IAQ and energy savings with lower OA intake ratio. The requirement on hardware and software is simple and the implementation is easy. One office...

Yu, Y.; Liu, M.; Cho, Y.; Xu, K.

2007-01-01T23:59:59.000Z

85

Smart Ventilation (RIVEC) - 2014 BTO Peer Review | Department...  

Broader source: Energy.gov (indexed) [DOE]

technology. Their mechanical ventilation systems dominate for energy use; as the foundation, wall, and roof work together. Smart ventilation is expected to save at least 40% on...

86

Literature Review of Displacement Ventilation  

E-Print Network [OSTI]

) and Nielsen et al. (1988) showed the impact of supply diffusers whereby increasing the entrainment of room air can decrease the temperature gradient in the occupied zone. #0;? Two important parameters to evaluate the performance of displacement ventilation... of Ventilated Rooms, Oslo, Norway. Nielsen, P.V., Hoff, L., Pedersen, L.G. 1988. Displacement Ventilation by Different Types of Diffusers. Proceedings of the 9 th AIVC Conference, Warwick. Niu, J. 1994. Modeling of Cooled-Ceiling Air-Conditioning Systems Ph...

Cho, S.; Im, P.; Haberl, J. S.

87

Ventilation Requirements in Hot Humid Climates  

E-Print Network [OSTI]

the Building America program, LBNL has simulated the effects of mechanical ventilation systems that meet ASHRAE Standard 62.2 on ventilation, energy use and indoor humidity levels. In order to capture moisture related HVAC system operation..., LBNL has simulated the effects of mechanical ventilation systems that meet ASHRAE Standard 62.2 on ventilation, energy use and indoor humidity levels for houses that meet current (2005) International Energy Conservation Code requirements...

Walker, I. S.; Sherman, M. H.

2006-01-01T23:59:59.000Z

88

A robust CO2-based demand-controlled ventilation control strategy for multi-zone HVAC systems  

Science Journals Connector (OSTI)

There have been increasingly growing concerns over the quality of the air inside buildings and the associated energy use. The CO2-based demand-controlled ventilation DCV is one of the strategies that could offer a great opportunity to reduce energy consumption in HVAC systems. However, implementing CO2-based DCV under ASHRAE Standard 62.1 20042010 is not simple as it was under previous versions due to the changes in breathing-zone ventilating rate calculations. Thus, this paper provides insight into the performance of a multi-zone VAV system under different operating and ventilation conditions, discusses the difficulties in the CO2-based DCV, and proposes a robust DCV strategy based on the supply air CO2 concentration. The proposed strategy offers great benefits in terms of better indoor air control and improved energy efficiency. To evaluate the proposed strategy, energy simulations were performed on various USA locations and for a typical two-story office building conditioned by a VAV system. The results show that a significant energy saving could be achieved by implementing the proposed strategy as compared to the design-occupancy ASHRAE Standard 62.1 2010 multi-zone procedure and the amount of saving that could be up to 23% depends mainly on locations and the actual occupancy profile.

Nabil Nassif

2012-01-01T23:59:59.000Z

89

High Efficiency Particulate Air Filters  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

High Efficiency Particulate Air (HEPA) Filters High Efficiency Particulate Air (HEPA) Filters Home Standards DOE Workshops Nuclear Air Cleaning Conference Proceedings Qualified Filter List News Items Related Sites HEPA Related Lessons Learned Contact Us HSS Logo High Efficiency Particulate Air Filters The HEPA Filter web site provides a forum for informing and reporting department-wide activities related to filtration and ventilation issues with special reference to the High Efficiency Particulate Air (HEPA) Filters' use, inspection, and testing. This site contains essentials of DOE HEPA filter test program, procedures, requirements and quality assurance aspects applicable to HEPA filters used in DOE facilities. This site contains information about the DOE-accepted Filter Test Facility and its management, operation and quality assuranceprogram.

90

Vehicle Technologies Office Merit Review 2014: Particulate Emissions Control by Advanced Filtration Systems for GDI Engines  

Broader source: Energy.gov [DOE]

Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about particulate...

91

Whole-House Ventilation | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Whole-House Ventilation Whole-House Ventilation Whole-House Ventilation May 30, 2012 - 2:37pm Addthis A whole-house ventilation system with dedicated ducting in a new energy-efficient home. | Photo courtesy of ©iStockphoto/brebca. A whole-house ventilation system with dedicated ducting in a new energy-efficient home. | Photo courtesy of ©iStockphoto/brebca. What does this mean for me? Whole-house ventilation is critical in an energy-efficient home to maintain adequate indoor air quality and comfort. The whole-house ventilation system you choose will depend upon your climate, budget, and the availability of experienced contractors in your area. Energy-efficient homes -- both new and existing -- require mechanical ventilation to maintain indoor air quality. There are four basic mechanical

92

Measuring Residential Ventilation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Measuring Residential Ventilation Measuring Residential Ventilation System Airflows: Part 2 - Field Evaluation of Airflow Meter Devices and System Flow Verification J. Chris Stratton, Iain S. Walker, Craig P. Wray Environmental Energy Technologies Division October 2012 LBNL-5982E 2 Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any

93

Design characteristics for facilities which process hazardous particulate  

SciTech Connect (OSTI)

Los Alamos National Laboratory is establishing a research and processing capability for beryllium. The unique properties of beryllium, including light weight, rigidity, thermal conductivity, heat capacity, and nuclear properties make it critical to a number of US defense and aerospace programs. Concomitant with the unique engineering properties are the health hazards associated with processing beryllium in a particulate form and the potential for worker inhalation of aerosolized beryllium. Beryllium has the lowest airborne standard for worker protection compared to all other nonradioactive metals by more than an order of magnitude. This paper describes the design characteristics of the new beryllium facility at Los Alamos as they relate to protection of the workforce. Design characteristics to be reviewed include; facility layout, support systems to minimize aerosol exposure and spread, and detailed review of the ventilation system design for general room air cleanliness and extraction of particulate at the source.

Abeln, S.P.; Creek, K.; Salisbury, S.

1998-12-01T23:59:59.000Z

94

Heating, Ventilating, and Air-Conditioning: Recent Advances in Diagnostics and Controls to Improve Air-Handling System Performance  

SciTech Connect (OSTI)

The performance of air-handling systems in buildings needs to be improved. Many of the deficiencies result from myths and lore and a lack of understanding about the non-linear physical principles embedded in the associated technologies. By incorporating these principles, a few important efforts related to diagnostics and controls have already begun to solve some of the problems. This paper illustrates three novel solutions: one rapidly assesses duct leakage, the second configures ad hoc duct-static-pressure reset strategies, and the third identifies useful intermittent ventilation strategies. By highlighting these efforts, this paper seeks to stimulate new research and technology developments that could further improve air-handling systems.

Wray, Craig; Wray, Craig P.; Sherman, Max H.; Walker, I.S.; Dickerhoff, D.J.; Federspiel, C.C.

2008-02-01T23:59:59.000Z

95

Review of Residential Ventilation Technologies.  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Review of Residential Ventilation Technologies. Review of Residential Ventilation Technologies. Title Review of Residential Ventilation Technologies. Publication Type Journal Article LBNL Report Number LBNL-57730 Year of Publication 2007 Authors Russell, Marion L., Max H. Sherman, and Armin F. Rudd Journal HVAC&R Research Volume 13 Start Page Chapter Pagination 325-348 Abstract This paper reviews current and potential ventilation technologies for residential buildings in North America and a few in Europe. The major technologies reviewed include a variety of mechanical systems, natural ventilation, and passive ventilation. Key parameters that are related to each system include operating costs, installation costs, ventilation rates, heat recovery potential. It also examines related issues such as infiltration, duct systems, filtration options, noise, and construction issues. This report describes a wide variety of systems currently on the market that can be used to meet ASHRAE Standard 62.2. While these systems generally fall into the categories of supply, exhaust or balanced, the specifics of each system are driven by concerns that extend beyond those in the standard and are discussed. Some of these systems go beyond the current standard by providing additional features (such as air distribution or pressurization control). The market will decide the immediate value of such features, but ASHRAE may wish to consider modifications to the standard in the future.

96

Reducing Mortality from Terrorist Releases of Chemical and Biological Agents: I. Filtration for Ventilation Systems in Commercial Building  

E-Print Network [OSTI]

R.J. : Effect of ventilation rate in a healthy building.IAQ '91: Healthy Buildings, American Society of Heating,

Thatcher, Tracy L.

2011-01-01T23:59:59.000Z

97

Occurrence of Aliphatic Hydrocarbons in Water, Suspended Particulate Matter and Sediments of Daliao River System, China  

Science Journals Connector (OSTI)

In August of 2005 a study was carried out to evaluate contamination of aliphatic hydrocarbons(AHc) in water, suspended particulate matter (SPM) and sediments...?1 in surface water, from 22.68 to 5,725.36...?1 in ...

W. Guo; M. C. He; Z. F. Yang; C. Y. Lin

2010-05-01T23:59:59.000Z

98

Development of a Residential Integrated Ventilation Controller  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Development of a Residential Integrated Ventilation Controller Development of a Residential Integrated Ventilation Controller Title Development of a Residential Integrated Ventilation Controller Publication Type Report LBNL Report Number LBNL-5554E Year of Publication 2012 Authors Walker, Iain S., Max H. Sherman, and Darryl J. Dickerhoff Keywords ashrae standard 62,2, california title 24, residential ventilation, ventilation controller Abstract The goal of this study was to develop a Residential Integrated Ventilation Controller (RIVEC) to reduce the energy impact of required mechanical ventilation by 20%, maintain or improve indoor air quality and provide demand response benefits. This represents potential energy savings of about 140 GWh of electricity and 83 million therms of natural gas as well as proportional peak savings in California. The RIVEC controller is intended to meet the 2008 Title 24 requirements for residential ventilation as well as taking into account the issues of outdoor conditions, other ventilation devices (including economizers), peak demand concerns and occupant preferences. The controller is designed to manage all the residential ventilation systems that are currently available. A key innovation in this controller is the ability to implement the concept of efficacy and intermittent ventilation which allows time shifting of ventilation. Using this approach ventilation can be shifted away from times of high cost or high outdoor pollution towards times when it is cheaper and more effective. Simulations, based on the ones used to develop the new residential ventilation requirements for the California Buildings Energy code, were used to further define the specific criteria and strategies needed for the controller. These simulations provide estimates of the energy, peak power and contaminant improvement possible for different California climates for the various ventilation systems. Results from a field test of the prototype controller corroborate the predicted performance.

99

Building ventilation and acoustics for people who dont know much about building ventilation.  

Science Journals Connector (OSTI)

The architectural composition required for building ventilation used both for low energy cooling and improved air quality can be anathema to acoustical goals of speech privacy and noise control. This paper presents a short tutorial on the basics of cross ventilation stack ventilation comfort ventilation and indoor air quality as it relates to climate building type and indoor pollutants. It is geared to those without significant prior knowledge and follows a similar tutorial on geothermal systems presented at the Miami ASA conference.

2009-01-01T23:59:59.000Z

100

A New CFD Model for understanding and Managing Diesel Particulate...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Publications Substrate Studies of an Electrically-Assisted Diesel Particulate Filter Diesel Particulate Filter: A Success for Faurecia Exhaust Systems Vehicle Evaluation of...

Note: This page contains sample records for the topic "ventilation systems particulate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Vehicle Technologies Office Merit Review 2014: Particulate Emissions...  

Broader source: Energy.gov (indexed) [DOE]

Particulate Emissions Control by Advanced Filtration Systems for GDI Engines Vehicle Technologies Office Merit Review 2014: Particulate Emissions Control by Advanced Filtration...

102

Evaluation of a Combined Cyclone and Gas Filtration System for Particulate Removal in the Gasification Process  

SciTech Connect (OSTI)

The Wabash gasification facility, owned and operated by sgSolutions LLC, is one of the largest single train solid fuel gasification facilities in the world capable of transforming 2,000 tons per day of petroleum coke or 2,600 tons per day of bituminous coal into synthetic gas for electrical power generation. The Wabash plant utilizes Phillips66 proprietary E-Gas (TM) Gasification Process to convert solid fuels such as petroleum coke or coal into synthetic gas that is fed to a combined cycle combustion turbine power generation facility. During plant startup in 1995, reliability issues were realized in the gas filtration portion of the gasification process. To address these issues, a slipstream test unit was constructed at the Wabash facility to test various filter designs, materials and process conditions for potential reliability improvement. The char filtration slipstream unit provided a way of testing new materials, maintenance procedures, and process changes without the risk of stopping commercial production in the facility. It also greatly reduced maintenance expenditures associated with full scale testing in the commercial plant. This char filtration slipstream unit was installed with assistance from the United States Department of Energy (built under DOE Contract No. DE-FC26-97FT34158) and began initial testing in November of 1997. It has proven to be extremely beneficial in the advancement of the E-Gas (TM) char removal technology by accurately predicting filter behavior and potential failure mechanisms that would occur in the commercial process. After completing four (4) years of testing various filter types and configurations on numerous gasification feed stocks, a decision was made to investigate the economic and reliability effects of using a particulate removal gas cyclone upstream of the current gas filtration unit. A paper study had indicated that there was a real potential to lower both installed capital and operating costs by implementing a char cyclonefiltration hybrid unit in the E-Gas (TM) gasification process. These reductions would help to keep the E-Gas (TM) technology competitive among other coal-fired power generation technologies. The Wabash combined cyclone and gas filtration slipstream test program was developed to provide design information, equipment specification and process control parameters of a hybrid cyclone and candle filter particulate removal system in the E-Gas (TM) gasification process that would provide the optimum performance and reliability for future commercial use. The test program objectives were as follows: 1. Evaluate the use of various cyclone materials of construction; 2. Establish the optimal cyclone efficiency that provides stable long term gas filter operation; 3. Determine the particle size distribution of the char separated by both the cyclone and candle filters. This will provide insight into cyclone efficiency and potential future plant design; 4. Determine the optimum filter media size requirements for the cyclone-filtration hybrid unit; 5. Determine the appropriate char transfer rates for both the cyclone and filtration portions of the hybrid unit; 6. Develop operating procedures for the cyclone-filtration hybrid unit; and, 7. Compare the installed capital cost of a scaled-up commercial cyclone-filtration hybrid unit to the current gas filtration design without a cyclone unit, such as currently exists at the Wabash facility.

Rizzo, Jeffrey J. [Phillips66 Company, West Terre Haute, IN (United States)

2010-04-30T23:59:59.000Z

103

Developing evidence-based prescriptive ventilation rate standards for commercial buildings in California: a proposed framework  

E-Print Network [OSTI]

control with ventilation, given current ventilation and filtration system practices, are the indoor-sourced gaseous pollutants with low octanal-air

Mendell, Mark J.

2014-01-01T23:59:59.000Z

104

Developing an accelerated aging system for gasoline particulate filters and an evaluation test for effects on engine performance  

E-Print Network [OSTI]

Stringent regulations worldwide will limit the level of particulate matter (PM) emitted from gasoline engines equipped with direct fuel injection. Gasoline particulate filters (GPFs) present one strategy for meeting PM ...

Jorgensen, James E. (James Eastman)

2014-01-01T23:59:59.000Z

105

DEMAND CONTROLLED VENTILATION AND CLASSROOM VENTILATION  

E-Print Network [OSTI]

columns indicate the energy and cost savings for demandand class size. (The energy costs of classroom ventilationTotal Increase in Energy Costs ($) Increased State Revenue

Fisk, William J.

2014-01-01T23:59:59.000Z

106

Capability of air filters to retain airborne bacteria and molds in heating, ventilating and air-conditioning (HVAC) systems  

Science Journals Connector (OSTI)

The capability of air filters (filterclass: F6, F7) to retain airborne outdoor microorganisms was examined in field experiments in two heating, ventilating and air conditioning (HVAC) systems. At the beginning of the 15-month investigation period, the first filter stages of both HVAC systems were equipped with new unused air filters. The number of airborne bacteria and molds before and behind the filters were determined simultaneously in 14 days-intervals using 6-stage Andersen cascade impactors. Under relatively dry ( 12 C) outdoor air conditions air filters led to a marked reduction of airborne microorganism concentrations (bacteria by approximately 70 % and molds by > 80 %). However, during long periods of high relative humidity (> 80 % R. H.) a proliferation of bacteria on air filters with subsequent release into the filtered air occured. These microorganisms were mainly smaller than 1.1 ?m therefore being part of the respirable fraction. The results showed furthermore that one possibility to avoid microbial proliferation is to limit the relative humidity in the area of the air filters to 80 % R. H. (mean of 3 days), e. g. by using preheaters in front of air filters in HVAC-systems.

Martin Mritz; Hans Peters; Bettina Nipko; Hennin Rden

2001-01-01T23:59:59.000Z

107

A scale model study of displacement ventilation with chilled ceilings  

E-Print Network [OSTI]

Displacement ventilation is a form of air-conditioning which provides good air quality and some energy savings. The air quality is better than for a conventional mixed ventilation system. The maximum amount of cooling that ...

Holden, Katherine J. A. (Katherine Joan Adrienne)

1995-01-01T23:59:59.000Z

108

Energy and first costs analysis of displacement and mixing ventilation systems for U.S. buildings and climates  

E-Print Network [OSTI]

In the past two decades, displacement ventilation has been increasingly used in Scandinavia and Western Europe to improve indoor air quality and to save energy. By using a detailed computer simulation method, this study ...

Hu, ShiPing, 1970-

1999-01-01T23:59:59.000Z

109

Physical features of small disperse coal dust fraction transportation and structurization processes in iodine air filters of absorption type in ventilation systems at nuclear power plants  

E-Print Network [OSTI]

The research on the physical features of transportation and structurization processes by the air-dust aerosol in the granular filtering medium with the cylindrical coal adsorbent granules in an air filter of the adsorption type in the heating ventilation and cooling (HVAC) system at the nuclear power plant is completed. The physical origins of the coal dust masses distribution along the absorber with the granular filtering medium with the cylindrical coal granules during the air-dust aerosol intake process in the near the surface layer of absorber are researched. The quantitative technical characteristics of air filtering elements, which have to be considered during the optimization of air filters designs for the application in the ventilation systems at the nuclear power plants, are obtained.

Ledenyov, Oleg P; Poltinin, P Ya; Fedorova, L I

2012-01-01T23:59:59.000Z

110

Multifamily Individual Heating and Ventilation Systems, Lawrence, Massachusetts (Fact Sheet), Building America Case Study: Efficient Solutions for New and Existing Homes, Building Technologies Office (BTO)  

Broader source: Energy.gov (indexed) [DOE]

Multifamily Individual Heating Multifamily Individual Heating and Ventilation Systems Lawrence, Massachusetts PROJECT INFORMATION Construction: Retrofit Type: Multifamily, affordable Builder: Merrimack Valley Habitat for Humanity (MVHfH) www.merrimackvalleyhabitat.org Size: 840 to 1,170 ft 2 units Price Range: $125,000-$130,000 Date completed: Slated for 2014 Climate Zone: Cold (5A) PERFORMANCE DATA HERS Index Range: 48 to 63 Projected annual energy cost savings: $1,797 Incremental cost of energy efficiency measures: $3,747 Incremental annual mortgage: $346 Annual cash flow: $1,451 Billing data: Not available The conversion of an older Massachusetts building into condominiums illustrates a safe, durable, and cost-effective solution for heating and ventilation systems that can potentially benefit millions of multifamily buildings. Merrimack Valley

111

Solar ventilation and tempering  

Science Journals Connector (OSTI)

The paper presents basic information about solar panels designed realized and used for solar ventilation of rooms. Used method of numerical flow simulation gives good overview about warming and flowing of the air in several kinds of realized panels (window facade chimney). Yearlong measurements give a good base for calculations of economic return of invested capital. The operation of the system in transient period (spring autumn) prolongs the period without classical heating of the room or building in winter the classical heating is supported. In the summer period the system furnished with chimney can exhaust inner warm air together with necessary cooling of the system by gravity circulation only. System needs not any invoiced energy source; it is supplied entirely by solar energy. Large building systems are supported by classical electric fan respectively.

2014-01-01T23:59:59.000Z

112

Breathing HRV by the Concept of AC Ventilation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Breathing HRV by the Concept of AC Ventilation Breathing HRV by the Concept of AC Ventilation Speaker(s): Hwataik Han Date: July 10, 2007 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Thomas McKone Heat recovery ventilators are frequently used to save heating/cooling loads of buildings for ventilation. There are several types of HRV's, including a parallel plate type, a rotary type, a capillary type, and a heat pipe type. The breathing HRV is a heat recovery ventilator of a new kind using the concept of alternating-current ventilation. The AC ventilation is the ventilation with the airflow directions reversed periodically. It has an advantage of using a single duct system, for both supply and exhaust purposes. In order to develop a breathing HRV system, the thermal recovery performance should be investigated depending on many parameters, such as

113

Proposal for the award of a contract for the design, supply, installation and commissioning of a Heating Ventilation and Air Conditioning (HVAC) system for the HIE-ISOLDE infrastructure  

E-Print Network [OSTI]

Proposal for the award of a contract for the design, supply, installation and commissioning of a Heating Ventilation and Air Conditioning (HVAC) system for the HIE-ISOLDE infrastructure

2012-01-01T23:59:59.000Z

114

Proposal for the award of a contract for the design, supply, installation and commissioning of a Heating, Ventilation and Air-Conditioning (HVAC) system for the computer room of the CERN Control Centre  

E-Print Network [OSTI]

Proposal for the award of a contract for the design, supply, installation and commissioning of a Heating, Ventilation and Air-Conditioning (HVAC) system for the computer room of the CERN Control Centre

2012-01-01T23:59:59.000Z

115

Effect of repository underground ventilation on emplacement drift temperature control  

SciTech Connect (OSTI)

The repository advanced conceptual design (ACD) is being conducted by the Civilian Radioactive Waste Management System, Management & Operating Contractor. Underground ventilation analyses during ACD have resulted in preliminary ventilation concepts and design methodologies. This paper discusses one of the recent evaluations -- effects of ventilation on emplacement drift temperature management.

Yang, H.; Sun, Y.; McKenzie, D.G.; Bhattacharyya, K.K. [Morrison Knudson Corporation, Las Vegas, NV (United States)

1996-02-01T23:59:59.000Z

116

VFD Technology's Energy Conservation Application at Metro Ventilation Air-conditioning System  

E-Print Network [OSTI]

Shenzhen metro has been applied the VFD control technique and close loop negative control logic to adjust and control the temperature and humidity of public area and conserve the energy on HVAC system of children palace station and Fumin station...

Li, G.

2006-01-01T23:59:59.000Z

117

In-depth survey report: Control technology for small business: Evaluation of a flexible duct ventilation system for radiator repair, at A-1 Radiator, Reno, Nevada  

SciTech Connect (OSTI)

An engineering control evaluation was conducted at a radiator repair shop which operated at a very high level of production. The shop had the potential for high exposures to lead (7439921) because of the high volume of work, the number of radiator repair stations, and repairs to huge radiators for mining equipment. Local exhaust ventilation which utilized adjustable arm elephant trunk exhaust hoods had been installed 18 months prior to the visit. The objective of the study was to evaluate the effectiveness of the local exhaust ventilation (LEV) system to control lead exposures during work operations. Time weighted average personal exposures for lead were at or below the OSHA permissible exposure level for ten of 15 mechanics during a high level of production. The elephant trunk ventilation system was capable of controlling lead fumes while shop doors were open, except at one tank in a corner. Work practices were found to be a source of excessive lead exposure. Emissions from a worker's own soldering and from soldering activity upwind of the worker were a major source of lead exposure. Collapse of flexible portions of ducts could reduce exhaust volume. Dampers also showed a tendency to close automatically.

Sheehy, J.W.; Cooper, T.C.; Hall, R.M.; Meier, R.M.

1990-02-01T23:59:59.000Z

118

Demand Controlled Ventilation and Classroom Ventilation  

E-Print Network [OSTI]

columnsindicatetheenergyandcostsavingsfor demandclasssize. (Theenergycosts ofclassroomventilationTotal Increase in Energy Costs ($) Increased State Revenue

Fisk, William J.

2014-01-01T23:59:59.000Z

119

Indoor Humidity Analysis of an Integrated Radiant Cooling and Desiccant Ventilation System  

E-Print Network [OSTI]

, the diameter and depth of the wheel, face flow velocity, rotational speed and other operating conditions. Bulk et al. [11] proposed NTU correlations for design calculation of latent and total effectiveness of enthalpy wheels coated with silica gel..., Wr Te1,We1 Space Fig.2. Passive desiccant system Enthalpy wheels normally use an aluminum substrate coated with a molecular sieve material or silica gel. The effectiveness of an enthalpy wheel depends on the load of desiccant materials...

Gong, X.; Claridge, D. E.

2006-01-01T23:59:59.000Z

120

Proceedings of the Intern. Conference on Passive and Low Energy Architecture (PLEA), Toulouse (2002) 577 Cost efficiency of ventilation systems  

E-Print Network [OSTI]

Proceedings of the Intern. Conference on Passive and Low Energy Architecture (PLEA), Toulouse (2002 of a corresponding low-energy house have been per- formed for a full heating period. They reproduce measurements from, air quality, control of humidity) [1, 2]. In such houses, the ventilation and infiltration losses

Gieseler, Udo D. J.

Note: This page contains sample records for the topic "ventilation systems particulate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Zone heated diesel particulate filter electrical connection  

DOE Patents [OSTI]

An electrical connection system for a particulate filter is provided. The system includes: a particulate filter (PF) disposed within an outer shell wherein the PF is segmented into a plurality of heating zones; an outer mat disposed between the particulate filter and the outer shell; an electrical connector coupled to the outer shell of the PF; and a plurality of printed circuit connections that extend along the outer surface of the PF from the electrical connector to the plurality of heating zones.

Gonze, Eugene V. (Pinckney, MI); Paratore, Jr., Michael J. (Howell, MI)

2010-03-30T23:59:59.000Z

122

Building Science - Ventilation  

Broader source: Energy.gov (indexed) [DOE]

Ventilation Ventilation Joseph Lstiburek, Ph.D., P.Eng, ASHRAE Fellow www.buildingscience.com Build Tight - Ventilate Right Building Science Corporation Joseph Lstiburek 2 Build Tight - Ventilate Right How Tight? What's Right? Building Science Corporation Joseph Lstiburek 3 Air Barrier Metrics Material 0.02 l/(s-m2) @ 75 Pa Assembly 0.20 l/(s-m2) @ 75 Pa Enclosure 2.00 l/(s-m2) @ 75 Pa 0.35 cfm/ft2 @ 50 Pa 0.25 cfm/ft2 @ 50 Pa 0.15 cfm/ft2 @ 50 Pa Building Science Corporation Joseph Lstiburek 4 Getting rid of big holes 3 ach@50 Getting rid of smaller holes 1.5 ach@50 Getting German 0.6 ach@50 Building Science Corporation Joseph Lstiburek 5 Best As Tight as Possible - with - Balanced Ventilation Energy Recovery Distribution Source Control - Spot exhaust ventilation Filtration

123

Evaluation of a Partial Flow Dilution System for Transient Particulate Matter Emissions  

Broader source: Energy.gov [DOE]

A commercially available partial flow dilution system was evaluated against a constant volume sampling system over a suite of transient engine dynamometer tests.

124

Development of SCR on Diesel Particulate Filter System for Heavy Duty Applications  

Broader source: Energy.gov [DOE]

Evaluation of a system consisting of SCRDPF in comparison to a commercial 2010 CDPF system on an engine under high and low engine-out NOx conditions

125

Ventilation in Multifamily Buildings  

Broader source: Energy.gov (indexed) [DOE]

, 2011 , 2011 Ventilation in Multifamily Buildings Welcome to the Webinar! We will start at 2:00 PM Eastern Time Be sure that you are also dialed into the telephone conference call: Dial-in number: 888-324-9601; Pass code: 5551971 Download the presentation at: www.buildingamerica.gov/meetings.html Building Technologies Program eere.energy.gov Building America: Introduction November 1, 2011 Cheryn Engebrecht Cheryn.engebrecht@nrel.gov Building Technologies Program Building Technologies Program eere.energy.gov * Reduce energy use in new and existing residential buildings * Promote building science and systems engineering / integration approach * "Do no harm": Ensure safety, health and durability are maintained or improved * Accelerate adoption of high performance technologies

126

Electrically heated particulate filter embedded heater design  

DOE Patents [OSTI]

An exhaust system that processes exhaust generated by an engine is provided. The system generally includes a particulate filter (PF) that filters particulates from the exhaust wherein an upstream end of the PF receives exhaust from the engine and wherein an upstream surface of the particulate filter includes machined grooves. A grid of electrically resistive material is inserted into the machined grooves of the exterior upstream surface of the PF and selectively heats exhaust passing through the grid to initiate combustion of particulates within the PF.

Gonze, Eugene V.; Chapman, Mark R.

2014-07-01T23:59:59.000Z

127

Electrically heated particulate filter using catalyst striping  

DOE Patents [OSTI]

An exhaust system that processes exhaust generated by an engine is provided. The system generally includes a particulate filter (PF) that filters particulates from the exhaust wherein an upstream end of the PF receives exhaust from the engine. A grid of electrically resistive material is applied to an exterior upstream surface of the PF and selectively heats exhaust passing through the grid to initiate combustion of particulates within the PF. A catalyst coating is applied to the PF that increases a temperature of the combustion of the particulates within the PF.

Gonze, Eugene V; Paratore, Jr., Michael J; Ament, Frank

2013-07-16T23:59:59.000Z

128

Underground and Ventilation System  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 RECOVERY STATUS Tammy Reynolds, NWP Deputy Recovery Manager 5 Worker Safety and ESS * What is an ESS? * ESS stands for Evaluation of the Safety of the Situation (ESS). *...

129

Underground and Ventilation System  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

HQ Total Nuclear Safety Program 8 7 3 2 12 Emergency Management 3 7 2 1 10 NWP Conduct of Operations 1 1 1 0 2 Maintenance Program 2 2 2 2 6 Radiation Protection Program 2 4 1 0 5...

130

Underground and Ventilation System  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

* Camera inspection of shaftropes completed * Preventive maintenance progress good * NDE of ropes completed * Scaling of buildup in shaft underway www.energy.govEM 11 Panel 6...

131

Underground and Ventilation System  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

WIPP * The Recovery Plan outlines the required activities and resources needed to resume waste emplacement operations in the first quarter of 2016 * DOE's highest priority is...

132

Why We Ventilate  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Why We Ventilate Why We Ventilate Title Why We Ventilate Publication Type Conference Paper LBNL Report Number LBNL-5093E Year of Publication 2011 Authors Logue, Jennifer M., Phillip N. Price, Max H. Sherman, and Brett C. Singer Conference Name Proceedings of the 2011 32nd AIVC Conference and 1st Tightvent Conference Date Published October 2011 Conference Location Brussels, Belgium Keywords indoor environment department, resave, ventilation and air cleaning Abstract It is widely accepted that ventilation is critical for providing good indoor air quality (IAQ) in homes. However, the definition of "good" IAQ, and the most effective, energy efficient methods for delivering it are still matters of research and debate. This paper presents the results of work done at the Lawrence Berkeley National Lab to identify the air pollutants that drive the need for ventilation as part of a larger effort to develop a health-based ventilation standard. First, we present results of a hazard analysis that identified the pollutants that most commonly reach concentrations in homes that exceed health-based standards or guidelines for chronic or acute exposures. Second, we present results of an impact assessment that identified the air pollutants that cause the most harm to the U.S. population from chronic inhalation in residences. Lastly, we describe the implications of our findings for developing effective ventilation standards.

133

Ventilation of Electrical Substations  

Science Journals Connector (OSTI)

... THE type of construction used for substations is generally governed by requirements, for example, fire and air-raid precautions, which ... Electrical Engineers, F. Favell and E. W. Connon record their experiences in overcoming substation ventilation problems in particular cases. Adequate and suitably planned ventilation will maintain ...

1943-05-01T23:59:59.000Z

134

Airborne Particulate Matter in HVAC Systems and its Influence on Indoor Air Quality  

E-Print Network [OSTI]

This paper first reviews the mechanisms governing movement of PMs in HVAC systems. Then, the basic equations governing PM deposition in ducts are introduced and investigations on airborne PMs distribution in HVAC systems are reviewed. The influence...

Fu, Z.; Li, N.; Wang, H.

2006-01-01T23:59:59.000Z

135

Modeling, design and thermal performance of a BIPV/T system thermally coupled with a ventilated concrete slab in a low energy solar house: Part 2, ventilated concrete slab  

SciTech Connect (OSTI)

This paper is the second of two papers that describe the modeling and design of a building-integrated photovoltaic-thermal (BIPV/T) system thermally coupled with a ventilated concrete slab (VCS) adopted in a prefabricated, two-storey detached, low energy solar house and their performance assessment based on monitored data. The VCS concept is based on an integrated thermal-structural design with active storage of solar thermal energy while serving as a structural component - the basement floor slab ({proportional_to}33 m{sup 2}). This paper describes the numerical modeling, design, and thermal performance assessment of the VCS. The thermal performance of the VCS during the commissioning of the unoccupied house is presented. Analysis of the monitored data shows that the VCS can store 9-12 kWh of heat from the total thermal energy collected by the BIPV/T system, on a typical clear sunny day with an outdoor temperature of about 0 C. It can also accumulate thermal energy during a series of clear sunny days without overheating the slab surface or the living space. This research shows that coupling the VCS with the BIPV/T system is a viable method to enhance the utilization of collected solar thermal energy. A method is presented for creating a simplified three-dimensional, control volume finite difference, explicit thermal model of the VCS. The model is created and validated using monitored data. The modeling method is suitable for detailed parametric study of the thermal behavior of the VCS without excessive computational effort. (author)

Chen, Yuxiang; Galal, Khaled; Athienitis, A.K. [Dept. of Building, Civil and Environmental Engineering, Concordia University, 1455 De Maisonneuve West, EV6.139, Montreal, Quebec (Canada)

2010-11-15T23:59:59.000Z

136

DEVELOPMENT OF FINE PARTICULATE EMISSION FACTORS AND SPECIATION PROFILES FOR OIL AND GAS-FIRED COMBUSTION SYSTEMS  

SciTech Connect (OSTI)

In 1997, the United States Environmental Protection Agency (EPA) promulgated new National Ambient Air Quality Standards (NAAQS) for particulate matter, including for the first time particles with aerodynamic diameter smaller than 2.5 micrometers ({micro}m) referred to as PM2.5. PM2.5 in the atmosphere also contributes to reduced atmospheric visibility, which is the subject of existing rules for siting emission sources near Class 1 areas and new Regional Haze rules. There are few existing data regarding emissions and characteristics of fine aerosols from oil, gas and power generation industry combustion sources, and the information that is available is generally outdated and incomplete. Traditional stationary source air emission sampling methods tend to underestimate or overestimate the contribution of the source to ambient aerosols because they do not properly account for primary aerosol formation, which occurs after the gases leave the stack. Primary aerosol includes both filterable particles that are solid or liquid aerosols at stack temperature plus those that form as the stack gases cool through mixing and dilution processes in the plume downwind of the source. These deficiencies in the current methods can have significant impacts on regulatory decision-making. PM2.5 measurement issues were extensively reviewed by the American Petroleum Institute (API) (England et al., 1998), and it was concluded that dilution sampling techniques are more appropriate for obtaining a representative particulate matter sample from combustion systems for determining PM2.5 emission rate and chemical speciation. Dilution sampling is intended to collect aerosols including those that condense and/or react to form solid or liquid aerosols as the exhaust plume mixes and cools to near-ambient temperature immediately after the stack discharge. These techniques have been widely used in recent research studies. For example, Hildemann et al. (1994) and McDonald et al. (1998) used filtered ambient air to dilute the stack gas sample followed by 80-90 seconds residence time to allow aerosol formation and growth to stabilize prior to sample collection and analysis. More accurate and complete emissions data generated using the methods developed in this program will enable more accurate source-receptor and source apportionment analysis for PM2.5 National Ambient Air Quality Standards (NAAQS) implementation and streamline the environmental assessment of oil, gas and power production facilities. The overall goals of this program were to: (1) Develop improved dilution sampling technology and test methods for PM2.5 mass emissions and speciation measurements, and compare results obtained with dilution and traditional stationary source sampling methods. (2) Develop emission factors and speciation profiles for emissions of fine particulate matter, especially organic aerosols, for use in source-receptor and source apportionment analyses. (3) Identify and characterize PM2.5 precursor compound emissions that can be used in source-receptor and source apportionment analyses.

Glenn C. England

2004-10-20T23:59:59.000Z

137

Fire tests to evaluate the potential fire threat and its effects on HEPA filter integrity in cell ventilation at the Oak Ridge National Laboratory, Building 7920  

SciTech Connect (OSTI)

As a result of a DOE (Tiger Team) Technical Safety Appraisal (November 1990) of the Radiochemical Engineering Development Center (REDC), ORNL Building 7920, a number of fire protection concerns were identified. The primary concern was the perceived loss of ventilation system containment due to the thermal destruction and/or breaching of the prefilters and/or high-efficiency particulate air filters (HEPA `s) and the resultant radioactive release to the external environment. The following report describes the results of an extensive fire test program performed by the Fire Research Discipline (FRD) of the Special Projects Division of Lawrence Livermore National Lab (LLNL) and funded by ORNL to address these concerns. Full scale mock-ups of a REDC hot cell tank pit, adjacent cubicle pit, and associated ventilation system were constructed at LLNL and 13 fire experiments were conducted to specifically answer the questions raised by the Tiger Team. Our primary test plan was to characterize the burning of a catastrophic solvent spill (kerosene) of 40 liters and its effect on the containment ventilation system prefilters and HEPA filters. In conjunction with ORNL and Lockwood Greene we developed a test matrix that assessed the fire performance of the prefilters and HEPA filters; evaluated the fire response of the fiber reinforced plastic (FRP) epoxy ventilation duct work; the response and effectiveness of the fire protection system, the effect of fire in a cubicle on the vessel off-gas (VOG) elbow, and other fire safety questions.

Hasegawa, H.K.; Staggs, K.J.; Doughty, S.M. [Oak Ridge National Lab., TN (United States)

1992-12-01T23:59:59.000Z

138

Literature review supporting assessment of potential radionuclides in the 291-Z exhaust ventilation  

SciTech Connect (OSTI)

This literature review was prepared to support a study conducted by Pacific Northwest Laboratory to assess the potential deposition and resuspension of radionuclides in the 291-Z ventilation exhaust building located in the 200 West Area of the US Department of Energy`s Hanford Project near Richland, Washington. The filtered ventilation air from three of the facilities at the Plutonium Finishing Plant (PFP) complex are combined together in the 291-Z building before discharge through a common stack. These three facilities contributing filtered exhaust air to the discharge stream are (1) the PFP, also known as the Z-Plant or 234-5Z, (2) the Plutonium Reclamation Facility (PRF or 236-Z), and (3), the Waste Incinerator Building (WIB or 232-Z). The 291-Z building houses the exhaust fans that pull air from the 291-Z central collection plenum and exhausts the air to the stack. Section 2.0 of this report is a description of the physical characteristic of the ventilation system from the High Efficiency Particulate Air (HEPA) filters to the exhaust stack. A description of the processes performed in the facilities that are vented through 291-Z is given in Section 3.0. The description focuses on the chemical and physical forms of potential aerosols given off from the unit operations. A timeline of the operations and events that may have affected the deposition of material in the ventilation system is shown. Aerosol and radiation measurements taken in previous studies are also discussed. Section 4.0 discusses the factors that influence particle deposition and adhesion. Mechanisms of attachment and resuspension are covered with specific attention to the PFP ducts. Conclusions and recommendations are given in Section 5.0.

Mahoney, L.A.; Ballinger, M.Y.; Jette, S.J.; Thomas, L.M. Glissmeyer, J.A. [Pacific Northwest Lab., Richland, WA (United States); Davis, W.E. [Westinghouse Hanford Co., Richland, WA (United States)

1994-08-01T23:59:59.000Z

139

Diesel particulate filters  

Science Journals Connector (OSTI)

Is the broad market introduction of diesel particulate filters throughout Europe wishful thinking or reality? The challenges facing the introduction of diesel particulate filters with a fuel-borne catalyst...

Pierre Macaudire; Laurent Rocher; Wolfgang Naschke

2004-04-01T23:59:59.000Z

140

Ventilation Effectiveness Research at UT-Typer Lab Houses  

Broader source: Energy.gov (indexed) [DOE]

Ventilation Effectiveness Research Ventilation Effectiveness Research at UT-Tyler Lab Houses Source Of Outside Air, Distribution, Filtration Armin Rudd Twin (almost) Lab Houses at UT-Tyler House 2: Unvented attic, House 1: Vented attic lower loads + PV Ventilation Effectiveness Research 30 April 2013 2 * 1475 ft 2 , 3-bedroom houses * House 2 was mirrored plan * 45 cfm 62.2 ventilation rate * Garage connected to house on only one wall * Access to attic via pull-down stairs in garage * Further access to House 2 unvented attic through gasket sealed door Ventilation Effectiveness Research 30 April 2013 3 Testing Approach  Building enclosure and building mechanical systems characterization by measurement of building enclosure air leakage, central air distribution system airflows, and ventilation system airflows.

Note: This page contains sample records for the topic "ventilation systems particulate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Natural Ventilation | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Natural Ventilation Natural Ventilation Natural Ventilation May 30, 2012 - 7:56pm Addthis Opening a window is a simple natural ventilation strategy. | Credit: ©iStockphoto/Simotion Opening a window is a simple natural ventilation strategy. | Credit: ©iStockphoto/Simotion What does this mean for me? If you live in a part of the country with cool nights and breezes, you may be able to cool your house with natural ventilation. If you're building a new home, design it to take advantage of natural ventilation. Natural ventilation relies on the wind and the "chimney effect" to keep a home cool. Natural ventilation works best in climates with cool nights and regular breezes. The wind will naturally ventilate your home by entering or leaving windows, depending on their orientation to the wind. When wind blows against your

142

Residential Ventilation & Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 5 Residential Ventilation & Energy Figure 1: Annual Average Ventilation Costs of the Current U.S. Single-Family Housing Stock ($/year/house). Infiltration and ventilation in dwellings is conventionally believed to account for one-third to one-half of space conditioning energy. Unfortunately, there is not a great deal of measurement data or analysis to substantiate this assumption. As energy conservation improvements to the thermal envelope continue, the fraction of energy consumed by the conditioning of air may increase. Air-tightening programs, while decreasing energy requirements, have the tendency to decrease ventilation and its associated energy penalty at the possible expense of adequate indoor air quality. Therefore, more energy may be spent on conditioning air.

143

Design Feature 7: Continuous Preclosure Ventilation  

SciTech Connect (OSTI)

This design feature (DF) is intended to evaluate the effects of continuous ventilation in the emplacement drifts during preclosure and how the effects, if any, compare to the Viability Assessment (VA) reference design for postclosure long term performance. This DF will be evaluated against a set of criteria provided by the License Application Design Selection (LADS) group. The VA reference design included a continuous ventilation airflow quantity of 0.1 m{sup 3}/s in the emplacement drifts in the design of the repository subsurface facilities. The effects of this continuous ventilation during the preclosure was considered to have a negligible effect on postclosure performance and therefore is not included during postclosure in the assessment of the long term performance. This DF discusses the effects of continuous ventilation on the emplacement drift environment and surrounding rock conditions during preclosure for three increased airflow quantities. The three cases of continuous ventilation systems are: System A, 1.0 m{sup 3}/s (Section 8), System B, 5.0 m{sup 3}/s (Section 9), and System C, 10.0 m{sup 3}/s (Section 10) in each emplacement drift split. An emplacement drift split is half total length of emplacement drift going from the east or west main to the exhaust main. The difference in each system is the quantity of airflow in the emplacement drifts.

A.T. Watkins

1999-06-22T23:59:59.000Z

144

Opaque Ventilated Facades - Performance Simulation Method and Assessment of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Opaque Ventilated Facades - Performance Simulation Method and Assessment of Opaque Ventilated Facades - Performance Simulation Method and Assessment of Simulated Performance Speaker(s): Emanuele Naboni Date: May 29, 2007 - 12:00pm Location: 90-3122 Opaque ventilated façade systems are increasingly used in buildings, even though their effects on the overall thermal performance of buildings have not yet been fully understood. The research reported in this presentation focuses on the modeling of such systems with EnergyPlus. Ventilated façade systems are modeled in EnergyPlus with module "Exterior Naturally Vented Cavity." Not all façade systems can be modeled with this module; this research defined the types of systems that can be modeled, and the limitations of such simulation. The performance of a ventilated façade

145

Effect of Ventilation Strategies on Residential Ozone Levels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Effect of Ventilation Strategies on Residential Ozone Levels Effect of Ventilation Strategies on Residential Ozone Levels Title Effect of Ventilation Strategies on Residential Ozone Levels Publication Type Journal Article LBNL Report Number LBNL-5889E Year of Publication 2012 Authors Walker, Iain S., and Max H. Sherman Journal Building and Environment Volume 59 Start Page 456 Pagination 456-465 Date Published 01/2013 Keywords ashrae standard 62,2, filtration, infiltration, mechanical ventilation, ozone, simulation Abstract Elevated outdoor ozone levels are associated with adverse health effects. Because people spend the vast majority of their time indoors, reduction in indoor levels of ozone of outdoor origin would lower population exposures and might also lead to a reduction in ozone---associated adverse health effects. In most buildings, indoor ozone levels are diminished with respect to outdoor levels to an extent that depends on surface reactions and on the degree to which ozone penetrates the building envelope. Ozone enters buildings from outdoors together with the airflows that are driven by natural and mechanical means, including deliberate ventilation used to reduce concentrations of indoor---generated pollutants. When assessing the effect of deliberate ventilation on occupant health one should consider not only the positive effects on removing pollutants of indoor origin but also the possibility that enhanced ventilation might increase indoor levels of pollutants originating outdoors. This study considers how changes in residential ventilation that are designed to comply with ASHRAE Standard 62.2 might influence indoor levels of ozone. Simulation results show that the building envelope can contribute significantly to filtration of ozone. Consequently, the use of exhaust ventilation systems is predicted to produce lower indoor ozone concentrations than would occur with balanced ventilation systems operating at the same air---exchange rate. We also investigated a strategy for reducing exposure to ozone that would deliberately reduce ventilation rates during times of high outdoor ozone concentration while still meeting daily average ventilation requirements.

146

Carbon-dioxide-controlled ventilation study  

SciTech Connect (OSTI)

The In-House Energy Management (IHEM) Program has been established by the U.S. Department of Energy to provide funds to federal laboratories to conduct research on energy-efficient technology. The Energy Sciences Department of Pacific Northwest Laboratory (PNL) was tasked by IHEM to research the energy savings potential associated with reducing outdoor-air ventilation of buildings. By monitoring carbon dioxide (CO{sub 2}) levels in a building, outdoor air provided by the heating, ventilating, and air-conditioning (HVAC) system can be reduced to the percentage required to maintain satisfactory CO{sub 2} levels rather than ventilating with a higher outdoor-air percentage based on an arbitrary minimum outdoor-air setting. During summer months, warm outdoor air brought into a building for ventilation must be cooled to meet the appropriate cooling supply-air temperature, and during winter months, cold outdoor air must be heated. By minimizing the amount of hot or cold outdoor air brought into the HVAC system, the supply air requires less cooling or heating, saving energy and money. Additionally, the CO{sub 2} levels in a building can be monitored to ensure that adequate outdoor air is supplied to a building to maintain air quality levels. The two main considerations prior to implementing CO{sub 2}-based ventilation control are its impact on energy consumption and the adequacy of indoor air quality (IAQ) and occupant comfort. To address these considerations, six portable CO{sub 2} monitors were placed in several Hanford Site buildings to estimate the adequacy of office/workspace ventilation. The monitors assessed the potential for reducing the flow of outdoor-air to the buildings. A candidate building was also identified to monitor various ventilation control strategies for use in developing a plan for implementing and assessing energy savings.

McMordie, K.L.; Carroll, D.M.

1994-05-01T23:59:59.000Z

147

Natural ventilation generates building form  

E-Print Network [OSTI]

Natural ventilation is an efficient design strategy for thermal comfort in hot and humid climates. The building forms can generate different pressures and temperatures to induce natural ventilation. This thesis develops a ...

Chen, Shaw-Bing

1996-01-01T23:59:59.000Z

148

Dehumidification and cooling loads from ventilation air  

SciTech Connect (OSTI)

The importance of controlling humidity in buildings is cause for concern, in part, because of indoor air quality problems associated with excess moisture in air-conditioning systems. But more universally, the need for ventilation air has forced HVAC equipment (originally optimized for high efficiency in removing sensible heat loads) to remove high moisture loads. To assist cooling equipment and meet the challenge of larger ventilation loads, several technologies have succeeded in commercial buildings. Newer technologies such as subcool/reheat and heat pipe reheat show promise. These increase latent capacity of cooling-based systems by reducing their sensible capacity. Also, desiccant wheels have traditionally provided deeper-drying capacity by using thermal energy in place of electrical power to remove the latent load. Regardless of what mix of technologies is best for a particular application, there is a need for a more effective way of thinking about the cooling loads created by ventilation air. It is clear from the literature that all-too-frequently, HVAC systems do not perform well unless the ventilation air loads have been effectively addressed at the original design stage. This article proposes an engineering shorthand, an annual load index for ventilation air. This index will aid in the complex process of improving the ability of HVAC systems to deal efficiently with the amount of fresh air the industry has deemed useful for maintaining comfort in buildings. Examination of typical behavior of weather shows that latent loads usually exceed sensible loads in ventilation air by at least 3:1 and often as much as 8:1. A designer can use the engineering shorthand indexes presented to quickly assess the importance of this fact for a given system design. To size those components after they are selected, the designer can refer to Chapter 24 of the 1997 ASHRAE Handbook--Fundamentals, which includes separate values for peak moisture and peak temperature.

Harriman, L.G. III [Mason-Grant, Portsmouth, NH (United States); Plager, D. [Quantitative Decision Support, Portsmouth, NH (United States); Kosar, D. [Gas Research Inst., Chicago, IL (United States)

1997-11-01T23:59:59.000Z

149

Natural Ventilation Design for Houses in Thailand Chalermwat Tantasavasdia  

E-Print Network [OSTI]

This paper explores the potential of using natural ventilation as a passive cooling system for new house windows in suburban houses can be opened. Passive cooling design elements are mostly ignored in modern1 Natural Ventilation Design for Houses in Thailand Chalermwat Tantasavasdia , Jelena Srebricb

Chen, Qingyan "Yan"

150

Pitch based foam with particulate  

DOE Patents [OSTI]

A thermally conductive, pitch based foam composite having a particulate content. The particulate alters the mechanical characteristics of the foam without severely degrading the foam thermal conductivity. The composite is formed by mixing the particulate with pitch prior to foaming.

Klett, James W. (Knoxville, TN)

2001-01-01T23:59:59.000Z

151

Heating, Ventilation, and Air Conditioning Renovations | Department of  

Broader source: Energy.gov (indexed) [DOE]

Heating, Ventilation, and Air Conditioning Renovations Heating, Ventilation, and Air Conditioning Renovations Heating, Ventilation, and Air Conditioning Renovations October 16, 2013 - 4:49pm Addthis Renewable Energy Options for HVAC Renovations Geothermal Heat Pumps (GHP) Solar Water Heating (SWH) Biomass Passive Solar Heating Biomass Heating Solar Ventilation Air Preheating Federal building renovations that encompass the heating, ventilation, and air conditioning (HVAC) systems in a facility provide a range of renewable energy opportunities. The primary technology option for HVAC renovations is geothermal heat pumps (GHP). Other options include leveraging a solar water heating (SWH) system to offset heating load or using passive solar heating or a biomass-capable furnace or boiler. Some facilities may also take

152

Argonne TTRDC - Engines - Emissions Control - Advanced Diesel Particulate  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Development of Advanced Diesel Particulate Filtration Systems Development of Advanced Diesel Particulate Filtration Systems The U.S. Environmental Protection Agency regulations require that on-highway diesel vehicles have filtration systems to reduce tail-pipe soot emissions, known as particulate matter (PM). Diesel particulate filtration (DPF) systems are currently the most efficient at directly controlling PM. Argonne researchers, working with Corning, Inc., and Caterpillar, Inc., through a cooperative research and development agreement, are exploiting previously unavailable technology and research results on diesel PM filtration and regeneration processes, aiming to the technology transfer of advanced PM emission control to industry. Argonne's Research In operation of DPF systems, the filtration and regeneration of particulate emissions are the key processes to be controlled for high efficiency. Due to difficulties in accessing the micro-scaled structures of DPF membranes and monitoring particulate filtration and high-temperature thermal processes, however, research has been limited to macroscopic observation for the product.

153

Humidity Implications for Meeting Residential Ventilation Requirements  

E-Print Network [OSTI]

residential ventilation standard, ASHRAE Standard 62.2. Because meeting this standard can significantly change, Kansas City, Seattle, Minneapolis and Phoenix). In order to capture moisture related HVAC system.2, design strategies for moisture control, humidity and comfort. #12;INTRODUCTION ASHRAE standards 62

154

Removal of submicron particles using a carbon fiber ionizer-assisted medium air filter in a heating, ventilation, and air-conditioning (HVAC) system  

Science Journals Connector (OSTI)

Laboratory tests of particle removal were performed with a pair of carbon fiber ionizers installed upstream of a glass fiber air filter. For air flow face velocities of 0.4, 0.6, and 0.8m/s, the overall particle removal efficiencies of the filter for all submicron particles were 17%, 16%, and 14%, respectively, when the ionizers were not turned on. These values increased to 27%, 23%, and 19%, respectively, when the ionizers were used to generate ions of 6.0נ109ions/cm3 in concentration. The carbon fiber ionizers were then installed in front of a glass fiber air filter located in a heating, ventilation, and air-conditioning (HVAC) system. Field tests were performed in a test office room with a total indoor particle concentration of 2.2נ104particles/cm3. When the flow rate was 75 cubic meters per hour (CMH), the steady-state values of the total indoor particle concentrations using the glass fiber air filter with and without ionizers decreased to 0.87נ104particles/cm3 and 1.15נ104particles/cm3, respectively, resulting in a 25% decrease of the ionizer effect. When the operation flow rate was increased to 115 and 150CMH, the effect of the ionizer decreased to 19% and 17%, respectively. These experimental data match the results calculated using a mass-balance model whose parameters were determined from laboratory tests.

Jae Hong Park; Ki Young Yoon; Jungho Hwang

2011-01-01T23:59:59.000Z

155

Radiant heating and cooling, displacement ventilation with heat recovery and storm water cooling: An environmentally responsible HVAC system  

SciTech Connect (OSTI)

This paper describes the design, operation, and performance of an HVAC system installed as part of a project to demonstrate energy efficiency and environmental responsibility in commercial buildings. The systems installed in the 2180 m{sup 2} office building provide superior air quality and thermal comfort while requiring only half the electrical energy of conventional systems primarily because of the hydronic heating and cooling system. Gas use for the building is higher than expected because of longer operating hours and poor performance of the boiler/absorption chiller.

Carpenter, S.C.; Kokko, J.P. [Enermodal Engineering Ltd., Kitchener, Ontario (Canada)

1998-12-31T23:59:59.000Z

156

Kitchen Ventilation Should be High Performance (Not Optional)  

Broader source: Energy.gov (indexed) [DOE]

Kitchen Ventilation Kitchen Ventilation Should be High Performance (not Optional) Brett C. Singer Residential Building Systems & Indoor Environment Groups Lawrence Berkeley National Laboratory Building America Technical Update Denver, CO April 30, 2013 Acknowledgements PROGRAM SUPPORT *U.S. Department of Energy - Building America Program *U.S. Environmental Protection Agency - Indoor Environments Division *U.S. Department of Housing and Urban Development - Office of Healthy Homes & Lead Hazard Control *California Energy Commission - Public Interest Energy Research Program TECHNICAL CONTRIBUTIONS *Woody Delp, Tosh Hotchi, Melissa Lunden, Nasim Mullen, Chris Stratton, Doug Sullivan, Iain Walker Kitchen Ventilation Simplified PROBLEM: * Cooking burners & cooking produce odors, moisture

157

Why We Ventilate - Recent Advances  

Broader source: Energy.gov (indexed) [DOE]

WHY WE VENTILATE: WHY WE VENTILATE: Recent Advances Max Sherman BA Stakeholders meeting ASHRAE BIO  Distinguished Lecturer  Exceptional Service Award  Board of Directors; TechC  Chair of committees:  62.2; Standards Committee  TC 4.3; TC 2.5  Holladay Distinguished Fellow OVERVIEW QUESTIONS  What is Ventilation? What is IAQ?  What functions does it provide?  How much do we need? Why?  How should ventilations standards be made? LBL has working on these problems Who Are You?  Engineers (ASHRAE Members & not);  architects,  contractors,  reps,  builders,  vendors,  code officials WHAT IS VENTILATION  Medicine: To Exchange Air In the Lungs  Latin: Ventilare, "to expose to the wind"  Today: To Bring In Outdoor Air And Replace

158

ADVANCED HYBRID PARTICULATE COLLECTOR  

SciTech Connect (OSTI)

A new concept in particulate control, called an advanced hybrid particulate collector (AHPC), is being developed under funding from the US Department of Energy. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a manner that has not been done before. The AHPC concept consists of a combination of fabric filtration and electrostatic precipitation in the same housing, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emission with conventional ESPs, and it solves the problem of reentrainment and collection of dust in conventional baghouses. The AHPC is currently being tested at the 2.7-MW scale at the Big Stone power station.

Stanley Miller; Rich Gebert; William Swanson

1999-11-01T23:59:59.000Z

159

Reduction of particulate matter and gaseous emission from marine diesel engines using a catalyzed particulate filter  

Science Journals Connector (OSTI)

Diesel engines are used widely as the power sources of coastal ships and international vessels primarily due to their high thermal efficiency, high fuel economy and durable performance. However, the gaseous and solid substances exhausted from diesel engines during the combustion process cause air pollution, in particular around harbor regions. In order to effectively reduce particulate matter and gaseous pollution emissions, a catalyzed particulate filter was equipped in the tail pipe of a marine diesel engine. The engine's performance and emission characteristics under various engine speeds and torques were measured using a computerized engine data control and acquisition system accompanied with an engine dynamometer. The effectiveness of installing a catalyzed particulate filter on the reduction of pollutant emissions was examined. The experimental results show that the exhaust gas temperature, carbon monoxide and smoke opacity were reduced significantly upon installation of the particulate filter. In particular, larger conversion of carbon monoxide to carbon dioxide and thus larger CO2 and lower CO emissions were observed for the marine diesel engine equipped with a catalyzed particulate filter and operated at higher engine speeds. This is presumably due to enhancement of the catalytic oxidation reaction that results from an exhaust gas with stronger stirring motion passing through the filter. The absorption of partial heating energy from the exhaust gas by the physical structure of the particulate filter resulted in a reduction in the exhaust gas temperature. The particulate matter could be burnt to a greater extent due to the effect of the catalyst coated on the surface of the particulate filter. Moreover, the fuel consumption rate was increased slightly while the excess oxygen emission was somewhat decreased with the particulate filter.

Cherng-Yuan Lin

2002-01-01T23:59:59.000Z

160

Low-Cost Ventilation in Production Housing- Building America Top Innovation  

Broader source: Energy.gov [DOE]

This Building America Innovations profile describes Building America research on simple whole-house ventilation systems that cost less than $350 to install and meet code requirements.

Note: This page contains sample records for the topic "ventilation systems particulate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Proposal for the award of a contract for the design, supply, installation and commissioning of a ventilation and air conditioning system for the ECN3 experimental area and the TCC8 and GHN300 service tunnels and for the dismantling of the existing system  

E-Print Network [OSTI]

Proposal for the award of a contract for the design, supply, installation and commissioning of a ventilation and air conditioning system for the ECN3 experimental area and the TCC8 and GHN300 service tunnels and for the dismantling of the existing system

2014-01-01T23:59:59.000Z

162

Electrically-Assisted Diesel Particulate Filter Regeneration...  

Broader source: Energy.gov (indexed) [DOE]

More Documents & Publications Substrate Studies of an Electrically-Assisted Diesel Particulate Filter Electrically-Assisted Diesel Particulate Filter Regeneration...

163

E-Print Network 3.0 - air treatment system Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Last Updated: 41702 Summary: , including refrigeration, air conditioning, heating systems, ventilating fans, roof ventilators, exhaust fans... , water treatment equipment,...

164

E-Print Network 3.0 - air handling systems Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Last Updated: 41702 Summary: , including refrigeration, air conditioning, heating systems, ventilating fans, roof ventilators, exhaust fans... , water treatment equipment,...

165

Predicting residential indoor concentrations of nitrogen dioxide, fine particulate matter, and elemental carbon using questionnaire and geographic information system based data  

E-Print Network [OSTI]

1 2 3 4 5 6 7 8 9 Predicting residential indoor concentrations of nitrogen dioxide, fine collected indoor and outdoor 3-4 day samples of nitrogen dioxide (NO2) and fine particulate matter (PM2

Paciorek, Chris

166

Bad bag detection systems installed on the COHPAC (Compact Hybrid Particulate Collector) at Alabama Power, E.C. Gaston Unit No.3  

SciTech Connect (OSTI)

In December of 1996, Alabama Power Company, a subsidiary of the Southern Company, began operating a baghouse in conjunction with an existing hot-side precipitator on the cold side of the air heaters. The concept combining an electrostatic precipitator and a baghouse is termed a COHPAC (Compact Hybrid Particulate Collector), an EPRI technology. The baghouse is installed on Unit No.3 which is a 280 Mwe pulverized coal fired unit. Unit No.3 shares a common stack with Unit No.4, so the baghouse treats 50% of the total stack flow. The installation has resulted in the ability of both boilers to operate without costly boiler load reductions, which were quite common prior to the installation of the COHPAC system because of stack capacity. To date, after nearly three years of operation the COHPAC system has meet and exceeded all performance expectations. The installation has consistently provided low outlet emissions (<0.01 lb/Mbtu) and low opacity levels. To date, there have not been any known bag failures and maintenance has been minimal. Testing has shown bag life to be finite but no data has been compiled on this type system showing the operating window that would ensure optimal performance. Mullen Burst tests have shown degradation in bag strength, which indicates that this degradation at some point could result in premature failure of the bags. The COHPAC system installed at E.G., Gaston includes over 2,000 bags corresponding to roughly 57,500 ft{sup 2} of collecting surface area. Current methods of finding damaged bags are quite laborious and time intensive. A system to monitor performance and locating damaged bags will be presented. Associated performance and overall historical operating data on Unit No.3 will also be presented.

Berry, M.S.; Harrison, W.; Corina, B.; Wilson, R.; Harrington, J.

1999-07-01T23:59:59.000Z

167

Indoor Air Quality and Ventilation in Residential Deep Energy Retrofits  

SciTech Connect (OSTI)

Because airtightening is a significant part of Deep Energy Retrofits (DERs), concerns about ventilation and Indoor Air Quality (IAQ) have emerged. To investigate this, ventilation and IAQ were assessed in 17 non-smoking California Deep Energy Retrofit homes. Inspections and surveys were used to assess household activities and ventilation systems. Pollutant sampling performed in 12 homes included six-day passive samples of nitrogen dioxide (NO2), formaldehyde and air exchange rate (AER); time-resolved data loggers were used to measure particle counts. Half of the homes provided continuous mechanical ventilation. Despite these homes being twice as airtight (3.0 and 7.6 ACH50, respectively), their median AER was indistinguishable from naturally vented homes (0.36 versus 0.37 hr--1). Numerous problems were found with ventilation systems; however, pollutant levels did not reach levels of concern in most homes. Ambient NO2 standards were exceeded in some gas cooking homes that used legacy ranges with standing pilots, and in Passive House-style homes without range hoods exhausted to outside. Cooking exhaust systems were installed and used inconsistently. The majority of homes reported using low-emitting materials, and formaldehyde levels were approximately half those in conventional new CA homes (19.7 versus 36 ?g/m3), with emissions rates nearly 40percent less (12.3 versus 20.6 ?g/m2/hr.). Presence of air filtration systems led to lower indoor particle number concentrations (PN>0.5: 8.80E+06 PN/m3 versus 2.99E+06; PN>2.5: 5.46E+0.5 PN/m3 versus 2.59E+05). The results indicate that DERs can provide adequate ventilation and IAQ, and that DERs should prioritize source control, particle filtration and well-designed local exhaust systems, while still providing adequate continuous ventilation.

Less, Brennan; Walker, Iain

2014-06-01T23:59:59.000Z

168

Industrial Ventilation Statistics Confirm Energy Savings Opportunity  

E-Print Network [OSTI]

is based on installed on-demand ventilation systems, where sensors and PLC are installed with each system, so data is easily collected. Another critical factor for effective dust collecting is proper air velocities in duct system. Having measured air... of the cutting tool is active or not. Information from the sensor is transmitted to the Omron PLC. The Omron PLC saves data in binary form every 5 minutes (24/7) to the CompactFlash card (a similar card is used in digital cameras) along with the time...

Litomisky, A.

2006-01-01T23:59:59.000Z

169

Evaluation of an Incremental Ventilation Energy Model for Estimating  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Evaluation of an Incremental Ventilation Energy Model for Estimating Evaluation of an Incremental Ventilation Energy Model for Estimating Impacts of Air Sealing and Mechanical Ventilation Title Evaluation of an Incremental Ventilation Energy Model for Estimating Impacts of Air Sealing and Mechanical Ventilation Publication Type Report LBNL Report Number LBNL-5796E Year of Publication 2012 Authors Logue, Jennifer M., William J. N. Turner, Iain S. Walker, and Brett C. Singer Date Published 06/2012 Abstract Changing the rate of airflow through a home affects the annual thermal conditioning energy.Large-scale changes to airflow rates of the housing stock can significantly alter the energy consumption of the residential energy sector. However, the complexity of existing residential energy models hampers the ability to estimate the impact of policy changes on a state or nationwide level. The Incremental Ventilation Energy (IVE) model developed in this study was designed to combine the output of simple airflow models and a limited set of home characteristics to estimate the associated change in energy demand of homes. The IVE model was designed specifically to enable modelers to use existing databases of home characteristics to determine the impact of policy on ventilation at a population scale. In this report, we describe the IVE model and demonstrate that its estimates of energy change are comparable to the estimates of a well-validated, complex residential energy model when applied to homes with limited parameterization. Homes with extensive parameterization would be more accurately characterized by complex residential energy models. The demonstration included a range of home types, climates, and ventilation systems that cover a large fraction of the residential housing sector.

170

Particulate matter dynamics  

E-Print Network [OSTI]

A substantial fraction of the particulate matter released into the atmosphere by industrial or natural processes corresponds to particles whose aerodynamic diameters are greater than 50 mm. It has been shown that, for these particles, the classical description of Gaussian plume diffusion processes, is inadequate to describe the transport and deposition. In this paper we present new results concerning the dispersion of coarse particulate matter. The simulations are done with our own code that uses the Bulirsch Stoer numerical integrator to calculate threedimensional trajectories of particles released into the environment under very general conditions. Turbulent processes are simulated by the Langevin equation and weather conditions are modeled after stable (Monin-Obukhov length L> 0) and unstable conditions (L <0). We present several case studies based on Monte Carlo simulations and discusses the effect of weather on the final deposition of these particles.

Cionco, Rodolfo G; Caligaris, Marta G

2012-01-01T23:59:59.000Z

171

Ventilation performance prediction for buildings: Model Assessment Qingyan Chena,b,*  

E-Print Network [OSTI]

1 Ventilation performance prediction for buildings: Model Assessment Qingyan Chena,b,* , Kisup Leeb building, but cannot provide detailed flow information in a room. The zonal model can be useful when a user ventilation systems for buildings requires a suitable model to assess system performance. The performance can

Chen, Qingyan "Yan"

172

Modeling, design and thermal performance of a BIPV/T system thermally coupled with a ventilated concrete slab in a low energy solar house: Part 1, BIPV/T system and house energy concept  

SciTech Connect (OSTI)

This paper is the first of two papers that describe the modeling, design, and performance assessment based on monitored data of a building-integrated photovoltaic-thermal (BIPV/T) system thermally coupled with a ventilated concrete slab (VCS) in a prefabricated, two-storey detached, low energy solar house. This house, with a design goal of near net-zero annual energy consumption, was constructed in 2007 in Eastman, Quebec, Canada - a cold climate area. Several novel solar technologies are integrated into the house and with passive solar design to reach this goal. An air-based open-loop BIPV/T system produces electricity and collects heat simultaneously. Building-integrated thermal mass is utilized both in passive and active forms. Distributed thermal mass in the direct gain area and relatively large south facing triple-glazed windows (about 9% of floor area) are employed to collect and store passive solar gains. An active thermal energy storage system (TES) stores part of the collected thermal energy from the BIPV/T system, thus reducing the energy consumption of the house ground source heat pump heating system. This paper focuses on the BIPV/T system and the integrated energy concept of the house. Monitored data indicate that the BIPV/T system has a typical efficiency of about 20% for thermal energy collection, and the annual space heating energy consumption of the house is about 5% of the national average. A thermal model of the BIPV/T system suitable for preliminary design and control of the airflow is developed and verified with monitored data. (author)

Chen, Yuxiang; Athienitis, A.K.; Galal, Khaled [Dept. of Building, Civil and Environmental Engineering, Concordia University, 1455 De Maisonneuve West, EV6.139, Montreal, Quebec (Canada)

2010-11-15T23:59:59.000Z

173

Ventilation, temperature, and HVAC characteristics in small and medium  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ventilation, temperature, and HVAC characteristics in small and medium Ventilation, temperature, and HVAC characteristics in small and medium commercial buildings in California Title Ventilation, temperature, and HVAC characteristics in small and medium commercial buildings in California Publication Type Journal Article Refereed Designation Refereed Year of Publication 2012 Authors Bennett, Deborah H., William J. Fisk, Michael G. Apte, X. Wu, Amber L. Trout, David Faulkner, and Douglas P. Sullivan Journal Indoor Air Volume 22 Issue 4 Pagination 309-20 Abstract This field study of 37 small and medium commercial buildings throughout California obtained information on ventilation rate, temperature, and heating, ventilating, and air-conditioning (HVAC) system characteristics. The study included seven retail establishments; five restaurants; eight offices; two each of gas stations, hair salons, healthcare facilities, grocery stores, dental offices, and fitness centers; and five other buildings. Fourteen (38%) of the buildings either could not or did not provide outdoor air through the HVAC system. The air exchange rate averaged 1.6 (s.d. = 1.7) exchanges per hour and was similar between buildings with and without outdoor air supplied through the HVAC system, indicating that some buildings have significant leakage or ventilation through open windows and doors. Not all buildings had sufficient air exchange to meet ASHRAE 62.1 Standards, including buildings used for fitness centers, hair salons, offices, and retail establishments. The majority of the time, buildings were within the ASHRAE temperature comfort range. Offices were frequently overcooled in the summer. All of the buildings had filters, but over half the buildings had a filter with a minimum efficiency reporting value rating of 4 or lower, which are not very effective for removing fine particles. PRACTICAL IMPLICATIONS: Most U.S. commercial buildings (96%) are small- to medium-sized, using nearly 18% of the country's energy, and sheltering a large population daily. Little is known about the ventilation systems in these buildings. This study found a wide variety of ventilation conditions, with many buildings failing to meet relevant ventilation standards. Regulators may want to consider implementing more complete building inspections at commissioning and point of sale.

174

Zone heated inlet ignited diesel particulate filter regeneration  

SciTech Connect (OSTI)

An exhaust system that processes exhaust generated by an engine is provided. The system includes: a particulate filter (PF) that is disposed downstream of the engine and that filters particulates from the exhaust; and a grid that includes electrically resistive material that is segmented by non-conductive material into a plurality of zones and wherein the grid is applied to an exterior upstream surface of the PF.

Gonze, Eugene V [Pinckney, MI; Ament, Frank [Troy, MI

2012-06-26T23:59:59.000Z

175

Energy Recovery Ventilator Membrane Efficiency Testing  

E-Print Network [OSTI]

A test setup was designed and built to test energy recovery ventilator membranes. The purpose of this test setup was to measure the heat transfer and water vapor transfer rates through energy recover ventilator membranes and find their effectiveness...

Rees, Jennifer Anne

2013-05-07T23:59:59.000Z

176

Building Air Quality & Ventilation Models: Review - Evaluation - Proposals  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Building Air Quality & Ventilation Models: Review - Evaluation - Proposals Building Air Quality & Ventilation Models: Review - Evaluation - Proposals Speaker(s): James Axley Date: March 12, 1999 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Richard Sextro Developments in mathematical models for building air quality and ventilation analysis have changed the way we idealize buildings for purposes of analysis, the way we form system equations to effect the analysis, and the way we solve these equations to realize the analysis. While much has been achieved more is possible. This presentation will review the current state of the art - the building idealizations used, the system equations formed, and the solution methods applied - critically evaluate the completeness, complexity and utility of the most advanced models, and present proposals for future development

177

Created: July, 2014 Laboratory Safety Design Guide Section 3 Laboratory Ventilation  

E-Print Network [OSTI]

Created: July, 2014 Laboratory Safety Design Guide Section 3 ­ Laboratory Ventilation 3-1 Section 3 ...................................................................................3-5 #12;Created: July, 2014 Laboratory Safety Design Guide Section 3 ­ Laboratory Ventilation 3-2 A without compromising safety or system integrity. The following should be included unless alternate design

Queitsch, Christine

178

ENERGY ANALYSISF FOR WORKSHOPS WITH FLOOR-SUPPLY DISPLACEMENT VENTILATION UNDER THE U.S. CLIMATES  

E-Print Network [OSTI]

use more fan and boiler energy but less chiller energy than the mixing ventilation system. The total in order to handle the high cooling loads found in U.S. buildings. Thus, the displacement ventilation, the chiller efficiency is increased. Besides, the

Chen, Qingyan "Yan"

179

Ventilation and Air Quality in Indoor Ice Skating Arenas Chunxin Yang, Ph.D.1  

E-Print Network [OSTI]

Ventilation and Air Quality in Indoor Ice Skating Arenas Chunxin Yang, Ph.D.1 Philip Demokritou, and the operation strategy of the ventilation system are significant contributing factors to the indoor air quality contamination levels in the arenas. Keywords: Air distribution, health, skating rink, indoor air quality, space

Chen, Qingyan "Yan"

180

Pleated Ceramic Fiber Diesel Particulate Filter | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Pleated Ceramic Fiber Diesel Particulate Filter Pleated Ceramic Fiber Diesel Particulate Filter 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters...

Note: This page contains sample records for the topic "ventilation systems particulate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Particle Number & Particulate Mass Emissions Measurements on...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Number & Particulate Mass Emissions Measurements on a 'Euro VI' Heavy-duty Engine using the PMP Methodologies Particle Number & Particulate Mass Emissions Measurements on a 'Euro...

182

The International Journal of Ventilation  

E-Print Network [OSTI]

in Buildings: Harrington C and Modera M 345 Estimates of Uncertainty in Multi-Zone Air Leakage Measurements. Introduction Heating, cooling and ventilation can account for 50 percent of total building energy use flow rate. Over the past 15 years, the subject of duct leakage in buildings other than single-family

California at Davis, University of

183

RESIDENTIAL VENTILATION AND ENERGY CHARACTERISTICS*  

E-Print Network [OSTI]

to account for 1/3 to 1/2 of the space conditioning energy. There is not a great deal of measurement data opportunities, the United States Department of Energy and others need to put into perspective the energy based on energy conservation and ventilation strategies. Because of the lack of direct measurements, we

184

Improving Ventilation and Saving Energy: Laboratory Study in a Modular  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Improving Ventilation and Saving Energy: Laboratory Study in a Modular Improving Ventilation and Saving Energy: Laboratory Study in a Modular Classroom Test Bed Title Improving Ventilation and Saving Energy: Laboratory Study in a Modular Classroom Test Bed Publication Type Report Year of Publication 2005 Authors Apte, Michael G., Ian S. Buchanan, David Faulkner, William J. Fisk, Chi-Ming Lai, Michael Spears, and Douglas P. Sullivan Publisher Lawrence Berkeley National Laboratory Abstract The primary goals of this research effort were to develop, evaluate, and demonstrate a practical HVAC system for classrooms that consistently provides classrooms with the quantity of ventilation in current minimum standards, while saving energy, and reducing HVAC-related noise levels. This research was motivated by several factors, including the public benefits of energy efficiency, evidence that many classrooms are under-ventilated, and public concerns about indoor environmental quality in classrooms. This project involved the installation and verification of the performance of an Improved Heat Pump Air Conditioning (IHPAC) system, and its comparison, a standard HVAC system having an efficiency of 10 SEER. The project included the verification of the physical characteristics suitable for direct replacement of existing 10 SEER systems, quantitative demonstration of improved energy efficiency, reduced acoustic noise levels, quantitative demonstration of improved ventilation control, and verification that the system would meet temperature control demands necessary for the thermal comfort of the occupants. Results showed that the IHPAC met these goals. The IHPAC was found to be a direct bolt-on replacement for the 10 SEER system. Calculated energy efficiency improvements based on many days of classroom cooling or heating showed that the IHPAC system is about 44% more efficient during cooling and 38% more efficient during heating than the 10 SEER system. Noise reduction was dramatic, with measured A-weighed sound level for fan only operation conditions of 34.3 dB(A), a reduction of 19 dB(A) compared to the 10 SEER system. Similarly, the IHPAC stage-1 and stage-2 compressor plus fan sound levels were 40.8 dB(A) and 42.7 dB(A), reductions of 14 and 13 dB(A), respectively. Thus, the IHPAC is 20 to 35 times quieter than the 10 SEER systems depending upon the operation mode. The IHPAC system met the ventilation requirements and was able to provide consistent outside air supply throughout the study. Indoor CO2 levels with simulated occupancy were maintained below 1000 ppm. Finally temperature settings were met and controlled accurately. The goals of the laboratory testing phase were met and this system is ready for further study in a field test of occupied classrooms

185

Ventilation Behavior and Household Characteristics in NewCalifornia Houses  

SciTech Connect (OSTI)

A survey was conducted to determine occupant use of windows and mechanical ventilation devices; barriers that inhibit their use; satisfaction with indoor air quality (IAQ); and the relationship between these factors. A questionnaire was mailed to a stratified random sample of 4,972 single-family detached homes built in 2003, and 1,448 responses were received. A convenience sample of 230 houses known to have mechanical ventilation systems resulted in another 67 completed interviews. Some results are: (1) Many houses are under-ventilated: depending on season, only 10-50% of houses meet the standard recommendation of 0.35 air changes per hour. (2) Local exhaust fans are under-utilized. For instance, about 30% of households rarely or never use their bathroom fan. (3) More than 95% of households report that indoor air quality is ''very'' or ''somewhat'' acceptable, although about 1/3 of households also report dustiness, dry air, or stagnant or humid air. (4) Except households where people cook several hours per week, there is no evidence that households with significant indoor pollutant sources get more ventilation. (5) Except households containing asthmatics, there is no evidence that health issues motivate ventilation behavior. (6) Security and energy saving are the two main reasons people close windows or keep them closed.

Price, Phillip N.; Sherman, Max H.

2006-02-01T23:59:59.000Z

186

The impact of demand-controlled and economizer ventilation strategies on energy use in buildings  

SciTech Connect (OSTI)

The overall objective of this work was to evaluate typical energy requirements associated with alternative ventilation control strategies for constant-air-volume (CAV) systems in commercial buildings. The strategies included different combinations of economizer and demand-controlled ventilation, and energy analyses were performed for four typical building types, eight alternative ventilation systems, and twenty US climates. Only single-zone buildings were considered so that simultaneous heating and cooling did not exist. The energy savings associated with economizer and demand-controlled ventilation strategies were found to be very significant for both heating and cooling. In general, the greatest savings in electrical usage for cooling with the addition of demand-controlled ventilation occur in situations where the opportunities for economizer cooling are less. This is true for warm and humid climates and for buildings that have relatively low internal gains (i.e., low occupant densities). As much as 20% savings in electrical energy for cooling were possible with demand-controlled ventilation. The savings in heating energy associated with demand-controlled ventilation were generally much larger but were strongly dependent upon the building type and occupancy schedule. Significantly greater savings were found for buildings with highly variable occupancy schedules and large internal gains (i.e., restaurants) as compared with office buildings. In some cases, the primary heating energy was virtually eliminated by demand-controlled ventilation as compared with fixed ventilation rates. For both heating and cooling, the savings associated with demand-controlled ventilation are dependent on the fixed minimum ventilation rate of the base case at design conditions.

Brandemuehl, M.J.; Braun, J.E.

1999-07-01T23:59:59.000Z

187

Particulate Waste Product Combustion System  

E-Print Network [OSTI]

. The introduction of fuels with high ash or silica content into burn.ers have produced problems of fly ash in the exhaust stream causing extensive darrage to boilers f1red by th gasification process. For exanple, the contlus ioo of the rice hull pre sents a... manner using underfire and overflre air to support fficient gasification of the by product, which results ln he pro:Juction of a c~ bustible gas mixture characteristic of organic sub- stances. Intro:Juction of the fuel stock into t cQ1mustion chamber...

King, D. R.; Chastain, C. E.

1984-01-01T23:59:59.000Z

188

Measuring PM Distribution in a Catalyzed Particulate Filter using a Terahertz Wave Scanner  

Broader source: Energy.gov [DOE]

Terahertz scanning system produced 3-dimensional image of local PM density in catatalyzed particulate filters tested under loading and oxidizing conditions

189

Honda Smart Home to Include Berkeley Lab Ventilation Controller  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Honda Smart Home to Include Berkeley Lab Ventilation Controller Honda Smart Home to Include Berkeley Lab Ventilation Controller Honda smart home October 2013 October-November Special Focus: Energy Efficiency, Buildings, and the Electric Grid Honda Motor Company Inc is proceeding with plans to build a Smart Home in Davis, California, to demonstrate the latest in renewable energy technologies and energy efficiency. The home is expected to produce more energy than is consumed, demonstrating how the goal of "zero net energy" can be met in the near term future. A ventilation controller developed by researchers at Berkeley Lab's Environmental Energy Technologies Division (EETD) will be included in the smart home. EETD is currently working with the developers of the home control system to integrate its control algorithms.

190

Description of the Canadian Particulate-Fill WastePackage (WP) System for Spent-Nuclear Fuel (SNF) and its Applicability to Ligh-Water Reactor SNF WPS with Depleted Uranium-Dioxide Fill  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3502 3502 Chemical Technology Division DESCRIPTION OF THE CANADIAN PARTICULATE-FILL WASTE-PACKAGE (WP) SYSTEM FOR SPENT-NUCLEAR FUEL(SNF) AND ITS APPLICABILITY TO LIGHT- WATER REACTOR SNF WPS WITH DEPLETED URANIUM-DIOXIDE FILL Charles W. Forsberg Oak Ridge National Laboratory * P.O. Box 2008 Oak Ridge, Tennessee 37831-6180 Tel: (423) 574-6783 Fax: (423) 574-9512 Email: forsbergcw@ornl.gov October 20, 1997 _________________________ Managed by Lockheed Martin Energy Research Corp. under contract DE-AC05-96OR22464 for the * U.S. Department of Energy. iii CONTENTS LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii ACRONYMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

191

FEMP-FS--Solar Ventilation Preheating  

Broader source: Energy.gov (indexed) [DOE]

Installing a "solar wall" to heat air before it enters a Installing a "solar wall" to heat air before it enters a building, called solar ventilation preheating, is one of the most efficient ways of reducing energy costs using clean and renewable energy. The system works by heating outside air with a south-facing solar collector-a dark-colored wall made of sheet metal and perforated with tiny holes. Outdoor air is drawn through the holes and heated as it absorbs the wall's warmth. The warm air rises in the space between the solar wall and the building wall and is moved into the air-duct system, usually by means of a fan, to heat the building. Any additional heating needed at night or on cloudy days is supplied by the build- ing's conventional heating system. During summer months, intake air bypasses the solar collector,

192

Heating, Ventilation and Air Conditioning Efficiency  

Broader source: Energy.gov (indexed) [DOE]

Presented By: WALTER E. JOHNSTON, PE Presented By: WALTER E. JOHNSTON, PE CEM, CEA, CLEP, CDSM, CPE Systems The purpose of a Heating, Ventilation and Air Conditioning (HVAC) system is to provide and maintain a comfortable environment within a building for the occupants or for the process being conducted Many HVAC systems were not designed with energy efficiency as one of the design factors 3 Air Air is the major conductor of heat. Lack of heat = air conditioning OR 4 Btu - Amount of heat required to raise one pound of water 1 F = 0.252 KgCal 1 Pound of Water = About 1 Pint of Water ~ 1 Large Glass 1 Kitchen Match Basics of Air Conditioning = 1 Btu 5 = 6 Low Cost Cooling Unit 7 8 Typical Design Conditions 75 degrees F temperature 50% relative humidity 30 - 50 FPM air movement

193

The impact of demand-controlled ventilation on energy use in buildings  

SciTech Connect (OSTI)

The overall objective of this work was to evaluate typical energy requirements associated with alternative ventilation control strategies. The strategies included different combinations of economizer and demand-controlled ventilation controls and energy analyses were performed for a range of typical buildings, systems, and climates. Only single zone buildings were considered, so that simultaneous heating and cooling did not exist. The energy savings associated with economizer and demand-controlled ventilation strategies were found to be very significant for both heating and cooling. In general, the greatest savings in electrical usage for cooling with the addition of demand-controlled ventilation occur in situations where the opportunities for economizer cooling are less. This is true for warm and humid climates, and for buildings that have low relative internal gains (i.e., low occupant densities). As much as 10% savings in electrical energy for cooling were possible with demand-controlled ventilation. The savings in heating energy associated with demand-controlled ventilation were generally much larger, but were strongly dependent upon the occupancy schedule. Significantly greater savings were found for buildings with highly variable occupancy schedules (e.g., stores and restaurants) as compared with office buildings. In some cases, the primary heating energy was reduced by a factor of 10 with demand-controlled ventilation as compared with fixed ventilation rates.

Braun, J.E.; Brandemuehl, M.J.

1999-07-01T23:59:59.000Z

194

Just the Basics: Particulate Matter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

is Particulate is Particulate Matter? One of the major components of air pollution is particulate matter, or PM. PM refers to airborne particles that include dust, dirt, soot, smoke, and liquid droplets. These particles can range in size from microscopic to large enough to be seen. PM is characterized by its size, with fine particles of less than 2.5 micrometers in size designated as PM 2.5 and coarser particles between 2.5 and 10 micrometers in size designated as PM 10 . PM arises from many sources, including combustion occurring in factories, power plants, cars, trucks, buses, trains, or wood fires; or through simple agitation of existing particulates by tilling of land, quarrying and stone-crushing, and off- road vehicular movement. Of particular interest is PM generated during diesel

195

Particulate Contaminant Descriptions and Definitions  

Science Journals Connector (OSTI)

Particulate contaminants can be either solid or liquid. Many of these materials were originally suspended in air or in a process fluid; others derive from nearby sources, such as activities of personnel working i...

Alvin Lieberman

1992-01-01T23:59:59.000Z

196

Greenhouse Ventilation1 Dennis E . Buffington, Ray A. Bucklin, Richard W. Henley and Dennis B. McConnell2  

E-Print Network [OSTI]

high temperatures during the summer caused by the influx of solar radiation, to maintain relative VENTILATION A heating system with adequate capacity is needed in the winter to maintain environmental of the winter, when the heating system is running at full capacity, some ventilation is still required

Watson, Craig A.

197

Energy Impact of Residential Ventilation Norms in the UnitedStates  

SciTech Connect (OSTI)

The first and only national norm for residential ventilation in the United States is Standard 62.2-2004 published by the American Society of Heating, Refrigerating and Air-conditioning Engineers (ASHRAE). This standard does not by itself have the force of regulation, but is being considered for adoption by various jurisdictions within the U.S. as well as by various voluntary programs. The adoption of 62.2 would require mechanical ventilation systems to be installed in virtually all new homes, but allows for a wide variety of design solutions. These solutions, however, may have a different energy costs and non-energy benefits. This report uses a detailed simulation model to evaluate the energy impacts of currently popular and proposed mechanical ventilation approaches that are 62.2 compliant for a variety of climates. These results separate the energy needed to ventilate from the energy needed to condition the ventilation air, from the energy needed to distribute and/or temper the ventilation air. The results show that exhaust systems are generally the most energy efficient method of meeting the proposed requirements. Balanced and supply systems have more ventilation resulting in greater energy and their associated distribution energy use can be significant.

Sherman, Max H.; Walker, Iain S.

2007-02-01T23:59:59.000Z

198

Solar Ventilation Preheating Resources and Technologies  

Broader source: Energy.gov [DOE]

This page provides a brief overview of solar ventilation preheating (SVP) technologies supplemented by specific information to apply SVP within the Federal sector.

199

Hottest spot temperatures in ventilated dry type transformers  

SciTech Connect (OSTI)

The hottest spot temperature allowance to be used for the different insulation system temperature classes is a major unknown facing IEEE Working Groups developing standards and loading guides for ventilated dry type transformers. In 1944, the hottest spot temperature allowance for ventilated dry type transformers was established as 30 C for 80 C average winding temperature rise. Since 1944, insulation temperature classes have increased to 220 C but IEEE standards continue to use a constant 30 C hottest spot temperature allowance. IEC standards use a variable hottest spot temperature allowance from 5 to 30 C. Six full size test windings were manufactured with imbedded thermocouples and 133 test runs performed to obtain temperature rise data. The test data indicated that the hottest spot temperature allowance used in IEEE standards for ventilated dry type transformers above 500 kVA is too low. This is due to the large thermal gradient from the bottom to the top of the windings caused by natural convection air flow through the cooling ducts. A constant ratio of hottest spot winding temperature rise to average winding temperature rise should be used in product standards for all insulation temperature classes. A ratio of 1.5 is suggested for ventilated dry type transformers above 500 kVA. This would increase the hottest spot temperature allowance from 30 C to 60 C and decrease the permissible average winding temperature rise from 150 C to 120 C for the 220 C insulation temperature class.

Pierce, L.W. (General Electric Co., Rome, GA (United States))

1994-01-01T23:59:59.000Z

200

Ventilation Industrielle de Bretagne VIB | Open Energy Information  

Open Energy Info (EERE)

Ventilation Industrielle de Bretagne VIB Ventilation Industrielle de Bretagne VIB Jump to: navigation, search Name Ventilation Industrielle de Bretagne (VIB) Place Ploudalmezeau, France Zip 29839 Sector Geothermal energy, Solar Product Ploudalmezeau-based company producing and marketing energy efficient and ventilation products including air source heat pumps, geothermal water source heat pumps, efficient air filtration systems and solar products. Coordinates 48.540325°, -4.657904° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.540325,"lon":-4.657904,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "ventilation systems particulate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Federal Energy Management Program: Solar Ventilation Preheating Resources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solar Ventilation Solar Ventilation Preheating Resources and Technologies to someone by E-mail Share Federal Energy Management Program: Solar Ventilation Preheating Resources and Technologies on Facebook Tweet about Federal Energy Management Program: Solar Ventilation Preheating Resources and Technologies on Twitter Bookmark Federal Energy Management Program: Solar Ventilation Preheating Resources and Technologies on Google Bookmark Federal Energy Management Program: Solar Ventilation Preheating Resources and Technologies on Delicious Rank Federal Energy Management Program: Solar Ventilation Preheating Resources and Technologies on Digg Find More places to share Federal Energy Management Program: Solar Ventilation Preheating Resources and Technologies on AddThis.com... Energy-Efficient Products

202

Low-Cost Ventilation in Production Housing - Building America...  

Energy Savers [EERE]

Low-Cost Ventilation in Production Housing - Building America Top Innovation Low-Cost Ventilation in Production Housing - Building America Top Innovation This drawing shows simple...

203

Webinar: Ventilation and Filtration Strategies with Indoor airPLUS...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Ventilation and Filtration Strategies with Indoor airPLUS and Zero Energy Ready Homes Webinar: Ventilation and Filtration Strategies with Indoor airPLUS and Zero Energy...

204

Summer Infiltration/Ventilation Test Results from the FRTF Laboratory...  

Broader source: Energy.gov (indexed) [DOE]

Summer InfiltrationVentilation Test Results from the FRTF Laboratory Summer InfiltrationVentilation Test Results from the FRTF Laboratory This presentation was delivered at the...

205

Air Distribution Effectiveness for Residential Mechanical Ventilation: Simulation and Comparison of Normalized Exposures  

SciTech Connect (OSTI)

The purpose of ventilation is to dilute indoor contaminants that an occupant is exposed to. Even when providing the same nominal rate of outdoor air, different ventilation systems may distribute air in different ways, affecting occupants' exposure to household contaminants. Exposure ultimately depends on the home being considered, on source disposition and strength, on occupants' behavior, on the ventilation strategy, and on operation of forced air heating and cooling systems. In any multi-zone environment dilution rates and source strengths may be different in every zone and change in time, resulting in exposure being tied to occupancy patterns.This paper will report on simulations that compare ventilation systems by assessing their impact on exposure by examining common house geometries, contaminant generation profiles, and occupancy scenarios. These simulations take into account the unsteady, occupancy-tied aspect of ventilation such as bathroom and kitchen exhaust fans. As most US homes have central HVAC systems, the simulation results will be used to make appropriate recommendations and adjustments for distribution and mixing to residential ventilation standards such as ASHRAE Standard 62.2.This paper will report on work being done to model multizone airflow systems that are unsteady and elaborate the concept of distribution matrix. It will examine several metrics for evaluating the effect of air distribution on exposure to pollutants, based on previous work by Sherman et al. (2006).

Petithuguenin, T.D.P.; Sherman, M.H.

2009-05-01T23:59:59.000Z

206

Electrically heated particulate filter with reduced stress  

DOE Patents [OSTI]

A system comprises a particulate matter (PM) filter comprising an inlet for receiving exhaust gas. A zoned heater is arranged in the inlet and comprises a resistive heater comprising N zones, where N is an integer greater than one. Each of the N zones comprises M sub-zones, where M is an integer greater than one. A control module selectively activates one of the N zones to initiate regeneration in downstream portions of the PM filter from the one of the N zones and deactivates others of the N zones.

Gonze, Eugene V.

2013-03-05T23:59:59.000Z

207

Mr. John E. Kieling  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

underground facility, causing the ventilation exhaust to automatically shift to high efficiency particulate air (HEPA) filtration mode. The ventilation system has been operating in...

208

Process for particulate removal from coal liquids  

DOE Patents [OSTI]

Suspended solid particulates are removed from liquefied coal products by first subjecting such products to hydroclone action for removal in the underflow of the larger size particulates, and then subjecting the overflow from said hydroclone action, comprising the residual finer particulates, to an electrostatic field in an electrofilter wherein such finer particulates are deposited in the bed of beads of dielectric material on said filter. The beads are periodically cleaned by backwashing to remove the accumulated solids.

Rappe, Gerald C. (Macungie, PA)

1983-01-01T23:59:59.000Z

209

Preserving Diesel Exhaust Ultrafine (Nano-) Particulate Structure...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Preserving Diesel Exhaust Ultrafine (Nano-) Particulate Structure in Genotoxicity Studies to Support Engineering Development of Emission Controls Preserving Diesel Exhaust...

210

Probing into regional ozone and particulate matter pollution in the United States  

E-Print Network [OSTI]

) and fine particulate matter (PM2.5) air pollution and associated health effects have been one of the majorProbing into regional ozone and particulate matter pollution in the United States: 1. A 1 year CMAQ-term simulations using the Community Multiscale Air Quality (CMAQ) modeling system and subsequent process analyses

Jacobson, Mark

211

Review of Current Nuclear Vacuum System Technologies  

SciTech Connect (OSTI)

Nearly all industrial operations generate unwanted dust, particulate matter, and/or liquid wastes. Waste dust and particulates can be readily tracked to other work locations, and airborne particulates can be spread through ventilation systems to all locations within a building, and even vented outside the building - a serious concern for processes involving hazardous, radioactive, or nuclear materials. Several varieties of vacuum systems have been proposed and/or are commercially available for clean up of both solid and liquid hazardous and nuclear materials. A review of current technologies highlights both the advantages and disadvantages of the various systems, and demonstrates the need for a system designed to address issues specific to hazardous and nuclear material cleanup. A review of previous and current hazardous/nuclear material cleanup technologies is presented. From simple conventional vacuums modified for use in industrial operations, to systems specifically engineered for such purposes, the advantages and disadvantages are examined in light of the following criteria: minimal worker exposure; minimal secondary waste generation;reduced equipment maintenance and consumable parts; simplicity of design, yet fully compatible with all waste types; and ease of use. The work effort reviews past, existing and proposed technologies in light of such considerations. Accomplishments of selected systems are presented, including identified areas where technological improvements could be suggested.

Carroll, M.; McCracken, J.; Shope, T.

2003-02-25T23:59:59.000Z

212

Current Concepts: Weaning Patients from the Ventilator  

Science Journals Connector (OSTI)

...neurologic ICUs. Patients who require reintubation have an increased risk of death, a prolonged hospital stay, and a decreased likelihood of returning home, as compared with patients in whom discontinuation of mechanical ventilation is successful. Thus, it is essential that critical care physicians identify... In the United States, almost 800,000 patients who are hospitalized each year require mechanical ventilation.1 This estimate excludes neonates, and there is little doubt that mechanical ventilation will be increasingly used as the number of patients 65 ...

McConville J.F.; Kress J.P.

2012-12-06T23:59:59.000Z

213

Building America Webinar: Multifamily Ventilation Strategies and Compartmentalization Requirements  

Broader source: Energy.gov [DOE]

The webinar will focus on key challenges in multifamily ventilation and strategies to address these challenges.

214

Building America Top Innovations Hall of Fame Profile … Low-Cost Ventilation in Production Housing  

Broader source: Energy.gov (indexed) [DOE]

simple, cost-effective techniques for providing fresh air throughout the home, including exhaust-only and central fan-integrated supply ventilation. Building America has refined simple whole-house ventilation systems that cost less than $350 to install. BUILDING AMERICA TOP INNOVATIONS HALL OF FAME PROFILE INNOVATIONS CATEGORY: 1. Advanced Technologies and Practices 1.3 Assured Health, Safety, and Durability Low-Cost Ventilation in Production Housing As high-performance homes get more air-tight and better insulated, attention to good indoor air quality becomes essential. Building America has effectively guided the nation's home builders to embrace whole-house ventilation by developing low-cost options that adapt well to their production processes. When the U.S. Department of Energy's Building America research teams began

215

Impact of Filtration Velocities and Particulate Matter Characteristics on Diesel Particulate Filter Wall Loading Performance  

SciTech Connect (OSTI)

The impact of different types of diesel particulate matter (PM) and different sampling conditions on the wall deposition and early soot cake build up within diesel particulate filters has been investigated. The measurements were made possible by a newly developed Diesel Exhaust Filtration Analysis (DEFA) system in which in-situ diesel exhaust filtration can be reproduced with in small cordierite wafer disks, which are essentially thin sections of a Diesel Particulate Filter (DPF) wall. The different types of PM were generated from selected engine operating conditions of a single-cylinder heavy-duty diesel engine. Two filtration velocities 4 and 8 cm/s were used to investigate PM deep-bed filtration processes. The loaded wafers were then analyzed in a thermal mass analyzer that measures the Soluble Organic Fraction (SOF) as well as soot and sulfate fractions of the PM. In addition, the soot residing in the wall of the wafer was examined under an optical microscope illuminated with Ultraviolet light and an Environmental Scanning Electron Microscope (E-SEM) to determine the bulk soot penetration depth for each loading condition. It was found that higher filtration velocity results in higher wall loading with approximately the same penetration depth into the wall. PM characteristics impacted both wall loading and soot cake layer characteristics. Results from imaging analysis indicate that soot the penetration depth into the wall was affected more by PM size (which changes with engine operating conditions) rather than filtration velocity.

Lance, Michael J [ORNL; Walker, Larry R [ORNL; Yapaulo, Renato A [ORNL; Orita, Tetsuo [ORNL; Wirojsakunchai, Ekathai [University of Wisconsin; Foster, David [University of Wisconsin; Akard, Michael [Horiba Instruments Inc.

2009-01-01T23:59:59.000Z

216

2011 NNSS Review of DAF-JCO Inoperable HEPA Filtered Vent. System  

Broader source: Energy.gov (indexed) [DOE]

NNSS-2011-07-08 NNSS-2011-07-08 Site: Nevada National Security Site Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for the Review of DAF-JCO-11-01 for Inoperable HEPA-Filtered Ventilation System Dates of Activity : 06/06/2011 - 07/08/2011 Report Preparer: William Macon Activity Description/Purpose: As an operational awareness activity, the Office of Health, Safety and Security (HSS) site lead reviewed a recent Justification for Continued Operations (JCO) for the Inoperable High Efficiency Particulate Air (HEPA)-Filtered Ventilation System at the Device Assembly Facility (DAF) at the Nevada National Security Site (NNSS). DAF- JCO-11-01, Revision 2, was prepared by the contractor, National Security Technologies, LLC (NSTec), on May

217

Economic Passive Solar Warm-Air Heating and Ventilating System Combined with Short Term Storage within Building Components for Residential Houses  

Science Journals Connector (OSTI)

Warm-air heating systems are very suitable for the exploitation of solar energy. A relatively low temperature level combined ... used for transportation and distribution equipment or as storage elements.

K. Bertsch; E. Boy; K.-D. Schall

1984-01-01T23:59:59.000Z

218

Investigation of Methods of Disinfection in an All-air System  

E-Print Network [OSTI]

The experiment of removing bacteria and indoor air particulates by a bag ventilation filter with synthetic media and an electrostatic filter was carried out, and the effect of killing bacteria by ozone application was also tested. The results show...

Wang, J.; Yan, Z.

2006-01-01T23:59:59.000Z

219

Evaluation of Ventilation Strategies in New Construction Multifamily Buildings  

SciTech Connect (OSTI)

In multifamily buildings, particularly in the Northeast, exhaust ventilation strategies are the norm as a means of meeting both local exhaust and whole-unit mechanical ventilation rates. The issue of where the 'fresh' air is coming from is gaining significance as air-tightness standards for enclosures become more stringent, and the 'normal leakage paths through the building envelope' disappear. CARB researchers have found that the majority of high performance, new construction, multifamily housing in the Northeast use one of four general strategies for ventilation: continuous exhaust only with no designated supply or make-up air source, continuous exhaust with ducted make-up air to apartments, continuous exhaust with supply through a make-up air device integral to the unit HVAC, and continuous exhaust with supply through a passive inlet device, such as a trickle vent. Insufficient information is available to designers on how these various systems are best applied. Product performance data are based on laboratory tests, and the assumption is that products will perform similarly in the field. Proper application involves matching expected performance at expected building pressures, but there is no guarantee that those conditions will exist consistently in the finished building. This research effort, which included several weeks of building pressure monitoring, sought to provide field validation of system performance. The performance of four substantially different strategies for providing make-up air to apartments was evaluated.

Maxwell, S.; Berger, D.; Zuluaga, M.

2014-07-01T23:59:59.000Z

220

Particulate matter as an amplifier for astronomical light pollution  

Science Journals Connector (OSTI)

......increased emission of particulate matter in the winter, mainly from coal-fired home heating systems (so-called low emission...Nielsen C. P., eds. Clearing the Air: The Health and Economic Damages of Air Pollution in China (2007) Cambridge, MA......

T. ?ci?zor; M. Kubala

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ventilation systems particulate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

AEDG Implementation Recommendations: Ventilation | Building Energy Codes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ventilation Ventilation The Advanced Energy Design Guide (AEDG) for Small Office Buildings, 30% series, seeks to achieve 30% savings over ASHRAE Standard 90.1-1999. This guide focuses on improvements to small office buildings, less than 20,000ft2. The recommendations in this article are adapted from the implementation section of the guide and focus on ventilation air; exhaust air; control strategies; carbon dioxide sensors; economizers. Publication Date: Wednesday, May 13, 2009 air_ventilation.pdf Document Details Affiliation: DOE BECP Focus: Compliance Building Type: Commercial Code Referenced: ASHRAE Standard 90.1-1999 Document type: AEDG Implementation Recommendations Target Audience: Architect/Designer Builder Contractor Engineer State: All States Contacts Web Site Policies

222

Chlorofluorocarbon Constraints on North Atlantic Ventilation  

Science Journals Connector (OSTI)

The North Atlantic Ocean vigorously ventilates the ocean interior. Thermocline and deep water masses are exposed to atmospheric contact there and are sequestered in two principal classes: Subtropical Mode Water (STMW: 26.5 ? ?? ? 26.8) and ...

Thomas W. N. Haine; Kelvin J. Richards; Yanli Jia

2003-08-01T23:59:59.000Z

223

Scale model studies of displacement ventilation  

E-Print Network [OSTI]

Displacement ventilation is an air conditioning method that provides conditioned air to indoor environments with the goal to improve air quality while reducing energy consumption. This study investigates the performance ...

Okutan, Galip Mehmet

1995-01-01T23:59:59.000Z

224

Assessment of Indoor Air Quality Benefits and Energy Costs of Mechanical Ventilation  

E-Print Network [OSTI]

Quality Benefits and Energy Costs of Mechanical VentilationQuality Benefits and Energy Costs of Mechanical VentilationQuality Benefits and Energy Costs of Mechanical Ventilation

Logue, J.M.

2012-01-01T23:59:59.000Z

225

Eco Design and the Optimization of Passive Cooling Ventilation for Energy Saving in the Buildings: A Framework for Prediction of Wind Environment and Natural Ventilation in Different Neighborhood Patterns  

Science Journals Connector (OSTI)

The idea of utilizing natural ventilation for passive cooling and hence reducing the energy for air conditioning systems of buildings has increasingly attracted the attention of researchers. In urban areas how...

Mohammad Reza Masnavi; Hasan-Ali Laghai

2012-01-01T23:59:59.000Z

226

WASTE HANDLING BUILDING FIRE PROTECTION SYSTEM DESCRIPTION DOCUMENT  

SciTech Connect (OSTI)

The Waste Handling Building Fire Protection System provides the capability to detect, control, and extinguish fires and/or mitigate explosions throughout the Waste Handling Building (WHB). Fire protection includes appropriate water-based and non-water-based suppression, as appropriate, and includes the distribution and delivery systems for the fire suppression agents. The Waste Handling Building Fire Protection System includes fire or explosion detection panel(s) controlling various detectors, system actuation, annunciators, equipment controls, and signal outputs. The system interfaces with the Waste Handling Building System for mounting of fire protection equipment and components, location of fire suppression equipment, suppression agent runoff, and locating fire rated barriers. The system interfaces with the Waste Handling Building System for adequate drainage and removal capabilities of liquid runoff resulting from fire protection discharges. The system interfaces with the Waste Handling Building Electrical Distribution System for power to operate, and with the Site Fire Protection System for fire protection water supply to automatic sprinklers, standpipes, and hose stations. The system interfaces with the Site Fire Protection System for fire signal transmission outside the WHB as needed to respond to a fire emergency, and with the Waste Handling Building Ventilation System to detect smoke and fire in specific areas, to protect building high-efficiency particulate air (HEPA) filters, and to control portions of the Waste Handling Building Ventilation System for smoke management and manual override capability. The system interfaces with the Monitored Geologic Repository (MGR) Operations Monitoring and Control System for annunciation, and condition status.

J. D. Bigbee

2000-06-21T23:59:59.000Z

227

Diesel particulate filter with zoned resistive heater  

DOE Patents [OSTI]

A diesel particulate filter assembly comprises a diesel particulate filter (DPF) and a heater assembly. The DPF filters a particulate from exhaust produced by an engine. The heater assembly has a first metallic layer that is applied to the DPF, a resistive layer that is applied to the first metallic layer, and a second metallic layer that is applied to the resistive layer. The second metallic layer is etched to form a plurality of zones.

Gonze, Eugene V [Pinckney, MI

2011-03-08T23:59:59.000Z

228

Electrically-Assisted Diesel Particulate Filter Regeneration...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Evaluation pm041lance2011p.pdf More Documents & Publications Electrically-Assisted Diesel Particulate Filter Regeneration Substrate Studies of an Electrically-Assisted Diesel...

229

Methods of separating particulate residue streams  

DOE Patents [OSTI]

A particulate residue separator and a method for separating a particulate residue stream may include an air plenum borne by a harvesting device, and have a first, intake end and a second, exhaust end; first and second particulate residue air streams that are formed by the harvesting device and that travel, at least in part, along the air plenum and in a direction of the second, exhaust end; and a baffle assembly that is located in partially occluding relation relative to the air plenum and that substantially separates the first and second particulate residue air streams.

Hoskinson, Reed L. (Rigby, ID); Kenney, Kevin L. (Idaho Falls, ID); Wright, Christopher T. (Idaho Falls, ID); Hess, J. Richard (Idaho Falls, ID)

2011-04-05T23:59:59.000Z

230

Combustor for fine particulate coal  

DOE Patents [OSTI]

A particulate coal combustor with two combustion chambers is provided. The first combustion chamber is toroidal; air and fuel are injected, mixed, circulated and partially combusted. The air to fuel ratio is controlled to avoid production of soot or nitrogen oxides. The mixture is then moved to a second combustion chamber by injection of additional air where combustion is completed and ash removed. Temperature in the second chamber is controlled by cooling and gas mixing. The clean stream of hot gas is then delivered to a prime mover. 4 figs.

Carlson, L.W.

1988-01-26T23:59:59.000Z

231

Combustor for fine particulate coal  

DOE Patents [OSTI]

A particulate coal combustor with two combustion chambers is provided. The first combustion chamber is toroidal; air and fuel are injected, mixed, circulated and partially combusted. The air to fuel ratio is controlled to avoid production of soot or nitrogen oxides. The mixture is then moved to a second combustion chamber by injection of additional air where combustion is completed and ash removed. Temperature in the second chamber is controlled by cooling and gas mixing. The clean stream of hot gas is then delivered to a prime mover.

Carlson, Larry W. (Oswego, IL)

1988-01-01T23:59:59.000Z

232

Optical backscatter probe for sensing particulate in a combustion gas stream  

DOE Patents [OSTI]

A system for sensing particulate in a combustion gas stream is disclosed. The system transmits light into a combustion gas stream, and thereafter detects a portion of the transmitted light as scattered light in an amount corresponding to the amount of particulates in the emissions. Purge gas may be supplied adjacent the light supply and the detector to reduce particles in the emissions from coating or otherwise compromising the transmission of light into the emissions and recovery of scattered light from the emissions.

Parks, James E; Partridge, William P

2013-05-28T23:59:59.000Z

233

Edinburgh Research Explorer Pulmonary diesel particulate increases susceptibility to  

E-Print Network [OSTI]

Edinburgh Research Explorer Pulmonary diesel particulate increases susceptibility to myocardial, MR & Gray, GA 2014, 'Pulmonary diesel particulate increases susceptibility to myocardial ischemia. Pulmonary diesel particulate increases susceptibility to myocardial ischemia/reperfusion injury via

Millar, Andrew J.

234

Reaerosolization of Fluidized Spores in Ventilation Systems  

Science Journals Connector (OSTI)

...investigators that resuspension increases to the power of wind speed or friction velocity where the power can range from 1.1 to 6.4. In Sehmels...the resuspension rate increased with wind speed to a power ranging from 3.4 to 13.8. In a more...

Paula Krauter; Arthur Biermann

2007-02-09T23:59:59.000Z

235

Microsoft Word - Ventilation System Sampling Results 1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

are not broken down to identify isotopic make-up, i.e. how much is plutonium and americium. Both screening and laboratory values are shown as count rates, which provide a...

236

Review on Ventilation Rate Measuring and Modeling Techniques in Naturally  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Review on Ventilation Rate Measuring and Modeling Techniques in Naturally Review on Ventilation Rate Measuring and Modeling Techniques in Naturally Ventilated Building Speaker(s): Sezin Eren Ozcan Date: May 16, 2006 - 12:00pm Location: Bldg. 90 Due to limited energy sources, countries are looking for alternative solutions to decrease energy needs. In that context, natural ventilation can be seen as a very attractive sustainable technique in building design. However, understanding of ventilation dynamics is needed to provide an efficient control. Ventilation rate has to be determined not only in terms of energy, but also for controlling indoor air quality and emissions. For these reasons, agricultural buildings (livestock houses, greenhouses, etc.), naturally ventilated industrial buildings, and residences require a reliable ventilation rate measuring technique. Measuring techniques suffer

237

Advanced particulate matter control apparatus and methods  

DOE Patents [OSTI]

Apparatus and methods for collection and removal of particulate matter, including fine particulate matter, from a gas stream, comprising a unique combination of high collection efficiency and ultralow pressure drop across the filter. The apparatus and method utilize simultaneous electrostatic precipitation and membrane filtration of a particular pore size, wherein electrostatic collection and filtration occur on the same surface.

Miller, Stanley J. (Grand Forks, ND); Zhuang, Ye (Grand Forks, ND); Almlie, Jay C. (East Grand Forks, MN)

2012-01-10T23:59:59.000Z

238

New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy ? FY11 Final Report  

SciTech Connect (OSTI)

The research carried out in this project focuses on developing novel volatile organic compounds (VOCs) air cleaning technologies needed to enable energy-saving reductions in ventilation rates. we targeted a VOC air cleaning system that could enable a 50% reduction in ventilation rates. In a typical commercial HVAC system that provides a mixture of recirculated and outdoor air, a VOC air cleaner in the supply airstream must have a 15% to 20% VOC removal efficiency to counteract a 50% reduction in outdoor air supply.

Sidheswaran, Meera; Destaillats, Hugo; Cohn, Sebastian; Sullivan, Douglas P.; Fisk, William J.

2011-10-31T23:59:59.000Z

239

Characterization of Particulate Matter Emissions from a Common-Rail Diesel Engine  

Science Journals Connector (OSTI)

Department of Materials Science and Chemical Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy ... The preferred approach to control the emissions of diesel engines is the adoption of an exhaust gas recirculation (EGR) system followed by a diesel oxidation catalyst (DOC) in front of a diesel particulate filter (DPF). ... Some fundamental information on the particulate matter (PM) characteristics emitted by an automotive diesel engine was gathered in order to provide a precious tool for the knowledge-based design of a new generation of diesel particulate traps in the EURO VI regulation perspective. ...

D. Fino; N. Russo

2011-02-02T23:59:59.000Z

240

Optimization of Ventilation Energy Demands and Indoor Air Quality in High-Performance Homes  

SciTech Connect (OSTI)

High-performance homes require that ventilation energy demands and indoor air quality (IAQ) be simultaneously optimized. We attempted to bridge these two areas by conducting tests in a research house located in Oak Ridge, TN, that was 20 months old, energy-efficient (i.e., expected to consume 50% less energy than a house built per the 2006 IRC), tightly-built (i.e., natural ventilation rate ~0.02 h-1), unoccupied, and unfurnished. We identified air pollutants of concern in the test home that could generally serve as indicators of IAQ, and conduced field experiments and computer simulations to determine the effectiveness and energy required by various techniques that lessened the concentration of these contaminants. Formaldehyde was selected as the main pollutant of concern among the contaminants that were sampled in the initial survey because it was the only compound that showed concentrations that were greater than the recommended exposure levels. Field data indicate that concentrations were higher during the summer primarily because emissions from sources rise with increases in temperature. Furthermore, supply ventilation and gas-phase filtration were effective means to reduce formaldehyde concentrations; however, exhaust ventilation had minimal influence on this pollutant. Results from simulations suggest that formaldehyde concentrations obtained while ventilating per ASHRAE 62.2-2010 could be decreased by about 20% from May through September through three strategies: 1) increasing ASHRAE supply ventilation by a factor of two, 2) reducing the thermostat setpoint from 76 to 74 F, or 3) running a gas-phase filtration system while decreasing supply ventilation per ASHRAE by half. In the mixed-humid climate of Oak Ridge, these strategies caused increases in electricity cost of ~$5 to ~$15/month depending on outdoor conditions.

Hun, Diana E [ORNL; Jackson, Mark C [University of Texas at Austin; Shrestha, Som S [ORNL

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ventilation systems particulate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Detailed Assessment of Particulate Characteristics from Low-Temperatur...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Detailed Assessment of Particulate Characteristics from Low-Temperature Combustion Engines Detailed Assessment of Particulate Characteristics from Low-Temperature Combustion...

242

Wiremesh Substrates for Enhanced Particulate Oxidation and Efficient...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Wiremesh Substrates for Enhanced Particulate Oxidation and Efficient Urea SCR NOx Reduction Wiremesh Substrates for Enhanced Particulate Oxidation and Efficient Urea SCR NOx...

243

Update on 2007 Diesel Particulate Measurement Research | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2007 Diesel Particulate Measurement Research Update on 2007 Diesel Particulate Measurement Research 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and...

244

Expanded Capacity Microwave-Cleaned Diesel Particulate Filter...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Expanded Capacity Microwave-Cleaned Diesel Particulate Filter Expanded Capacity Microwave-Cleaned Diesel Particulate Filter 2002 DEER Conference Presentation: Industrial Ceramic...

245

Predicting Thermal Stress in Diesel Particulate Filters | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermal Stress in Diesel Particulate Filters Predicting Thermal Stress in Diesel Particulate Filters 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Corning...

246

The State of the Science in Diesel Particulate Control | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

The State of the Science in Diesel Particulate Control The State of the Science in Diesel Particulate Control 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations...

247

Ultra-Lite Diesel Particulate Filter Cartridge for Reduced Regeneratio...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Lite Diesel Particulate Filter Cartridge for Reduced Regeneration Time and Fuel Consumption Ultra-Lite Diesel Particulate Filter Cartridge for Reduced Regeneration Time and Fuel...

248

Neutron Imaging of Diesel Particulate Filters | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Neutron Imaging of Diesel Particulate Filters Neutron Imaging of Diesel Particulate Filters Neutron computed tomography shows soot and ash loading in a cordierite diesel...

249

Local Soot Loading Distribution in Cordierite Diesel Particulate...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Local Soot Loading Distribution in Cordierite Diesel Particulate Filters by Dynamic Neutron Radiography Local Soot Loading Distribution in Cordierite Diesel Particulate Filters by...

250

Non-Destructive Neutron Imaging to Analyze Particulate Filters...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Neutron Imaging to Analyze Particulate Filters Non-Destructive Neutron Imaging to Analyze Particulate Filters Non-destructive, non-invasive imaging is being employed in the...

251

Durability of Diesel Engine Particulate Filters (Agreement ID...  

Broader source: Energy.gov (indexed) [DOE]

Durability of Diesel Engine Particulate Filters (Agreement ID:10461) Durability of Diesel Engine Particulate Filters (Agreement ID:10461) 2013 DOE Hydrogen and Fuel Cells Program...

252

Reduction of Transient Particulate Matter Spikes with Decision...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Transient Particulate Matter Spikes with Decision Tree Based Control Reduction of Transient Particulate Matter Spikes with Decision Tree Based Control Using a non-parametric...

253

Final Report: Particulate Emissions Testing, Unit 1, Potomac...  

Broader source: Energy.gov (indexed) [DOE]

Final Report: Particulate Emissions Testing, Unit 1, Potomac River Generating Station, Alexandria, Virginia Final Report: Particulate Emissions Testing, Unit 1, Potomac River...

254

Optical Backscatter Probe for Sensing Particulate Matter - Energy...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

particulate concentration is then determined by measuring the amount of backscattered light transmitted by particulate matter contained in a sample of engine exhaust. The speed...

255

A. Buonomano, M. Sherman, USA: Analysis of residential hybrid ventilation performance in U.S. climates 1 Intern. Symposium on Building and Ductwork Air tightness  

E-Print Network [OSTI]

A. Buonomano, M. Sherman, USA: Analysis of residential hybrid ventilation performance in U Laboratory, 1 Cyclotron Road, Berkeley 94720, CA, USA. (phone:+1 510 486 4022, fax: +1 510 486 6658, email on analysis methods for hybrid ventilation system is limited. #12;2 A. Buonomano, M. Sherman, USA: Analysis

256

Experimental simulation of wind driven cross-ventilation in a naturally ventilated building  

E-Print Network [OSTI]

A device was designed and constructed to simulate cross-ventilation through a building due to natural wind. The wind driver device was designed for use with a one tenth scale model of an open floor plan office building in ...

Hult, Erin L. (Erin Luelle), 1982-

2004-01-01T23:59:59.000Z

257

May 1999 LBNL -42975 ASHRAE'S RESIDENTIAL VENTILATION  

E-Print Network [OSTI]

indoor air quality in dwellings and to set minimum standards that would allow for energy efficiency Secretary for Energy Efficiency and Renewable Energy, Office of Building Technology of the U.S. Department measures to be evaluated. The standard has requirements for whole-house ventilation, local exhaust

258

Hysteresis effects in hybrid building ventilation  

E-Print Network [OSTI]

Cross- breeze Kitchen Stove Ambient air Case study #3 #12;· Wind plays an integral role in low-energy remains a central challenge for the successful implementation of natural ventilation Case study - summary of population, urban energy consumption grows by 2.1% · Buildings consume 40% of world's energy

Flynn, Morris R.

259

Fuel washout detection system  

DOE Patents [OSTI]

A system for detecting grossly failed reactor fuel by detection of particulate matter as accumulated on a filter.

Colburn, Richard P. (Pasco, WA)

1985-01-01T23:59:59.000Z

260

Section 38 - HVAC (Heating, Ventilation, Air Conditioning)  

Science Journals Connector (OSTI)

The term HVAC is an acronym for Heating, Ventilation (and) Air Conditioning, the industry term for any of various efforts to control conditions in a building or other enclosed area to improve comfort and efficiency. A closely related section is Refrigeration, which follows this one. Some contemporary HVAC techniques have ancient roots. Early forms of central heating and solar home heating were in use in Rome in the first century A.D. The earliest use of glass in windows (as opposed to a covering of wood, cloth, or hide, or simply an opening) is also attributed to the Romans at this same time. The first known use of solar-oriented building design in North America dates back to about the year 1050; i.e., the cliff dwellings built by the Anasazi (Ancient Pueblo) people of the Colorado Plateau area. Geothermal district heating was employed as early as the 1300s, in the Auvergne region of southern France. The foundation for modern central heating was established in the 1700s, first in England and then in France. The 1800s saw significant advances in the use of water heaters, especially the first automatic storage water heater (Edwin Ruud, 1889) and the first commercial solar water heater (Clarence Kemp, 1891). In comparison with heating, cooling technology was late in developing. The first successful method of producing ice occurred in 1851, and it was not until 1902 that Willis Haviland Carrier designed the first industrial air-conditioning system. His Carrier Air Conditioning Corporation would go on to develop air-conditioning systems for stores and theaters (1924) and for residential buildings (1928). Carrier remains the global leader in air conditioner production. The first air-conditioned automobile was produced by Packard in 1939. Recent entries in this section emphasize the use of alternative energy sources in heating and cooling, such as solar, photovoltaic, geothermal, and fuel cells. These advances include the ground-source heat pump, the Trombe wall, the heat pipe, and the PV/thermal hybrid system.

Cutler J. Cleveland; Christopher Morris

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ventilation systems particulate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Building America Top Innovations Hall of Fame Profile … Outside Air Ventilation Controller  

Broader source: Energy.gov (indexed) [DOE]

partner Davis Energy partner Davis Energy Group worked with Monley Cronin Construction to build 100 energy-efficient homes in Woodland, CA, with night- cooling ventilation systems. BUILDING AMERICA TOP INNOVATIONS HALL OF FAME PROFILE INNOVATIONS CATEGORY: 1. Advanced Technologies and Practices 1.3 Assured Health, Safety, and Durability Outside Air Ventilation Controller Building America researchers developed technologies to harness the natural day-night temperature swings in the U.S. Southwest to cut cooling energy peak demand with no compromise in comfort. Building America research has shown that, in dry climates, the use of ventilation cooling can significantly reduce, delay, or completely eliminate air conditioner operation resulting in both energy savings and reduction of peak demand

262

Test Plan to Evaluate the Relationship Among IAQ, Comfort, Moisture, and Ventilation in Humid Climates  

SciTech Connect (OSTI)

This experimental plan describes research being conducted by Pacific Northwest National Laboratory (PNNL), in coordinatation with Florida Solar Energy Center (FSEC), Florida HERO, and Lawrence Berkeley National Laboratory (LBNL) to evaluate the impact of ventilation rate on interior moisture levels, temperature distributions, and indoor air contaminant concentrations. Specifically, the research team will measure concentrations of indoor air contaminants, ventilation system flow rates, energy consumption, and temperature and relative humidity in ten homes in Gainesville, FL to characterize indoor pollutant levels and energy consumption associated with the observed ventilation rates. PNNL and FSEC have collaboratively prepared this experimental test plan, which describes background and context for the proposed study; the experimental design; specific monitoring points, including monitoring equipment, and sampling frequency; key research questions and the associated data analysis approach; experimental logistics, including schedule, milestones, and team member contact information; and clearly identifies the roles and responsibilities of each team in support of project objectives.

Widder, Sarah H.; Martin, Eric

2013-03-15T23:59:59.000Z

263

Development of a Low-Cost Particulate Matter Monitor  

E-Print Network [OSTI]

Forward-looking infrared (FLIR) images taken as a singleforward-looking infrared (FLIR) instrumentation. Particulate

White, Richard M.

2010-01-01T23:59:59.000Z

264

High efficiency particulate removal with sintered metal filters  

SciTech Connect (OSTI)

Because of their particle removal efficiencies and durability, sintered metal filters have been chosen for high efficiency particulate air (HEPA) filter protection in the off-gas treatment system for the proposed Idaho National Engineering Laboratory Transuranic Waste Treatment Facility. Process evaluation of sintered metal filters indicated a lack of sufficient process design data to ensure trouble-free operation. Subsequence pilot scale testing was performed with flyash as the test particulate. The test results showed that the sintered metal filters can have an efficiency greater than 0.9999999 for the specific test conditions used. Stable pressure drop characteristics were observed in pulsed and reversed flow blowback modes of operation. Over 4900 hours of operation were obtained with operating conditions ranging up to approximately 90/sup 0/C and 24 vol % water vapor in the gas stream.

Kirstein, B.E.; Paplawsky, W.J.; Pence, D.T.; Hedahl, T.G.

1981-01-01T23:59:59.000Z

265

NUMERICAL ANALYSIS OF VENTILATION TEMPERATURES REGULATION BY ENERGY STORAGE IN PHASE CHANGE  

E-Print Network [OSTI]

NUMERICAL ANALYSIS OF VENTILATION TEMPERATURES REGULATION BY ENERGY STORAGE IN PHASE CHANGE, the use of thermal energy storage (TES) systems receives increasing interest. To allow high or low temperature thermal energy to be stored for later use, a heat or cool storage with PCM could be designed; Zhu

Paris-Sud XI, Université de

266

Experimental evaluation of a naturally ventilated PV double-skin building envelope in real operating conditions  

E-Print Network [OSTI]

-4Mar2014 Author manuscript, published in "Solar Energy 103 (2014) 223-241" DOI : 10.1016/j.solener.2014. Keywords: Building integrated photovoltaic system; Natural ventilation; Chimney effect; Monitoring 1 fallen by 50%. To these ends, significant investments are being made into solar energy, which is seen

Paris-Sud XI, Université de

267

Particulate matter in the south Atlantic Ocean  

E-Print Network [OSTI]

The particulate matter (PM) distribution in the south Atlantic Ocean and its relationship to water masses and currents were determined from optical and hydrographic data. Attenuation coefficients were obtained by interfacing a beam transmissometer...

Wood, Megan Maria

2012-06-07T23:59:59.000Z

268

Investigation of Direct Injection Vehicle Particulate Matter...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Emissions This study focuses primarily on particulate matter mass analysis of a gasoline direct injection engine in a test cell with a chassis dynamometer. p-10gibbs.pdf...

269

NETL: Control Technology: Advanced Hybrid Particulate Collector  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Hybrid Particulate Collector Advanced Hybrid Particulate Collector Under DOE-NETL sponsorship, the University of North Dakota, Energy and Environmental Research Center (UND-EERC) has developed a new concept in particulate control, called an advanced hybrid particulate collector (AHPC). In addition to DOE and the EERC, the project team includes W.L. Gore & Associates, Inc., Allied Environmental Technologies, Inc., and the Otter Tail Power Company. The AHPC utilizes both electrostatic collection and filtration in a unique geometric configuration that achieves ultrahigh particle collection with much less collection area than conventional particulate control devices. The primary technologies for state-of-the-art particulate control are fabric filters (baghouses) and electrostatic precipitators (ESPs). A major limitation of ESPs is that the fractional penetration of 0.1- to 1.0-µm particles is typically at least an order of magnitude greater than for 10-µm particles, so a situation exists where the particles that are of greatest health concern are collected with the lowest efficiency. Fabric filters are currently considered to be the best available control technology for fine particles, but emissions are dependent on ash properties and typically increase if the air-to-cloth (A/C) ratio is increased. In addition, many fabrics cannot withstand the rigors of high-SO2 flue gases, which are typical for bituminous fuels. Fabric filters may also have problems with bag cleanability and high pressure drop, which has resulted in conservatively designed, large, costly baghouses.

270

Healthy Zero Energy Buildings (HZEB) Program - Cross-Sectional Study of Contaminant Levels, Source, Strengths, and Ventilation Rates in Retail Stores  

SciTech Connect (OSTI)

This field study measured ventilation rates and indoor air quality parameters in 21 visits to retail stores in California. The data was collected to guide the development of new, science-based commercial building ventilation rate standards that balance the dual objectives of increasing energy efficiency and maintaining acceptable indoor air quality. Data collection occurred between September 2011 and March 2013. Three types of stores participated in this study: grocery stores, furniture/hardware stores, and apparel stores. Ventilation rates and indoor air contaminant concentrations were measured on a weekday, typically between 9 am and 6 pm. Ventilation rates measured using a tracer gas decay method exceeded the minimum requirement of Californias Title 24 Standard in all but one store. Even though there was adequate ventilation according to Title 24, concentrations of formaldehyde, acetaldehyde, and acrolein exceeded the most stringent chronic health guidelines. Other indoor air contaminants measured included carbon dioxide (CO{sub 2}), carbon monoxide (CO), ozone (O{sub 3}), and particulate matter (PM). Concentrations of CO{sub 2} were kept low by adequate ventilation, and were assumed low also because the sampling occurred on a weekday when retail stores were less busy. CO concentrations were also low. The indoor-outdoor ratios of O{sub 3} showed that the first-order loss rate may vary by store trade types and also by ventilation mode (mechanical versus natural). Analysis of fine and ultrafine PM measurements showed that a substantial portion of the particle mass in grocery stores with cooking-related emissions was in particles less than 0.3 ?m. Stores without cooking as an indoor source had PM size distributions that were more similar indoors and outdoors. The whole-building emission rates of volatile organic compounds (VOCs) and PM were estimated from the measured ventilation rates and indoor and outdoor contaminant concentrations. Mass balance models were then used to determine the ventilation rates, filtration strategies, or source reductions needed to maintain indoor contaminant concentrations below reference levels. Several scenarios of potential concern were considered: (i) formaldehyde levels in furniture/hardware stores, (ii) contaminants associated with cooking (e.g., PM, acrolein, and acetaldehyde) in grocery stores, and (iii) outdoor contaminants (e.g., PM and O{sub 3}) impacting stores that use natural ventilation. Estimated formaldehyde emission rates suggest that retail stores would need to ventilate at levels far exceeding the current Title 24 requirement to lower indoor concentrations below Californias stringent formaldehyde reference level. Given the high costs of providing ventilation but only modest chronic health benefit is expected, effective source control is an attractive alternative, as demonstrated by some retail stores in this study. Predictions showed that grocery stores need MERV 13 air filters, instead of MERV 8 filters that are more commonly used, to maintain indoor PM at levels that meet the chronic health standards for PM. Exposure to acrolein is a potential health concern in grocery stores, and should be addressed by increasing the use of kitchen range hoods or improving their contaminant removal efficiency. In stores that rely on natural ventilation, indoor PM can be a health concern if the stores are located in areas with high outdoor PM. This concern may be addressed by switching to mechanical ventilation when the outdoor air quality is poor, while continuing natural ventilation when outdoor air quality is good.

Chan, Wanyu R.; Sidheswaran, Meera; Cohn, Sebastian; Sullivan, Douglas P.; Fisk, William

2014-02-01T23:59:59.000Z

271

Performance Assessment of Photovoltaic Attic Ventilator Fans  

Broader source: Energy.gov [DOE]

A case study of photovoltaic attic ventilator fans was conducted on an occupied single family home in Central Florida. Two fans were installed at mid-summer in an instrumented home where attic air temperature, meteorological conditions and space cooling electric power were measured. The home already had an attic radiant barrier, but still experienced attic air temperatures in excess of 130oF.

272

Continuous particulate monitoring for emission control  

SciTech Connect (OSTI)

An optical continuous particle monitoring system has been developed to overcome common problems associated with emissions monitoring equipment. Opacity monitors generally use a single- or double-pass system to analyze the presence of dust particles in the flue gas stream. The particles scatter and absorb light as it passes through the stack. As the particle content in the gas stream increases due to bag failure or some other problem, the amount of light that is blocked also increases. The opacity monitor compares the amount of lost light energy to the total energy of the light available and translates the signal to percentage of opacity. Opacity monitors are typically installed to meet the requirements set forth by pollution control agencies. Most opacity monitors are designed to meet all of the requirements of the Environmental Protection Agency (EPA) 40 CFR, Part 60, Appendix B, Performance Specification. The new continuous particle monitor (CPM) increases the accuracy of emission monitoring and overcomes typical problems found in conventional emission monitoring devices. The CPM is an optically based, calibratible, continuous dust monitor that uses a microprocessor, transmitter head, and receiver head. When calibrated with an isokinetic sample, a continuous readout of particulate concentration (in mg/m[sup 3]) in the exhaust gas is provided. The system can be used as a filter bag failure system or a long-term emission trend analyzer. Formal testing was conducted to evaluate the effectiveness of the optically based CPM. The monitor was calibrated using particles of a range of compositions, size distributions, and concentrations. The feasibility of using the instrument to measure particle concentration as low as 10 mg/m[sup 3] was examined.

Bock, A.H. (BHA Group, Inc., Kansas City, MO (United States))

1993-08-01T23:59:59.000Z

273

Fluid&ParticulateSystems 424514/2010  

E-Print Network [OSTI]

at the wall (exception: steam produced at hot tube wall!) Important is the slip velocity, liquid vs. gas hold at the bottom of the pipe RoNz 7 Gas Liquid 2 liquid water water liquid gasliquid airwater water-phase (G/L) flows Air-water, 2.5 cm diameter horizontal pipe RoNz 8 U is superficial velocity #12;Fluid

Zevenhoven, Ron

274

Particulate Emissions Control by Advanced Filtration Systems...  

Broader source: Energy.gov (indexed) [DOE]

3. Segregated flow solver (2 nd order convection scheme, URF 0.5P, 0.2V) 4. Convective heat loss 5. No flow in axial(z) direction in wall regions 6. PM is homogeneously...

275

Innovative Energy Efficient Industrial Ventilation  

E-Print Network [OSTI]

?, a law of physics, shows why electricity savings can be high (Figure 5). 0 10 20 30 40 50 60 70 80 90 100 0 102030405060708090100 Air volume [CFM %] Power [H.P. %] P o w e r [ H .P . % ] A i r v o l u m e [ C FM %] C F M = 50 % of b l ast... and dust could settle. An on-demand dust collecting system solves this problem by using a PLC (industrial computer) which calculates necessary air volume based on information from the sensors. The PLC is adjusting the RPM of the fan accordingly...

Litomisky, A.

2005-01-01T23:59:59.000Z

276

Impact of Infiltration and Ventilation on Measured Space Conditioning...  

Energy Savers [EERE]

to provide needed ventilation under drier summer and winter conditions and reduce the air introduced during periods of peak space conditioning. For more information, see the...

277

Issue #9: What are the Best Ventilation Techniques?  

Broader source: Energy.gov [DOE]

How do we address ventilation in all climates? What is the best compromise between occupant health and safety and energy efficiency?

278

Radionuclide Releases During Normal Operations for Ventilated Tanks  

SciTech Connect (OSTI)

This calculation estimates the design emissions of radionuclides from Ventilated Tanks used by various facilities. The calculation includes emissions due to processing and storage of radionuclide material.

Blunt, B.

2001-09-24T23:59:59.000Z

279

Summer Infiltration/Ventilation Test Results from the FRTF Laboratory  

Broader source: Energy.gov (indexed) [DOE]

Summer InfiltrationVentilation Test Results from the FRTF Laboratory Building America Technical Review Meeting April 29-30, 2013 A Research Institute of the University of Central...

280

Building America Webinar: Multifamily Ventilation Strategies and Compartmentalization Requirements  

Broader source: Energy.gov [DOE]

This Building America webinar, held on Sept. 24, 2014, focused on key challenges in multifamily ventilation and strategies to address these challenges.

Note: This page contains sample records for the topic "ventilation systems particulate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Impact of Infiltration and Ventilation on Measured Space Conditioning...  

Broader source: Energy.gov (indexed) [DOE]

Hot-humid PERFORMANCE DATA Costs for reducing infiltration and incorporating mechanical ventilation in buildings will vary greatly depending on the condition and...

282

A Bench Study of Intensive Care Unit Ventilators: New versus Old and Turbine-Based versus Compressed Gas-Based Ventilators  

E-Print Network [OSTI]

. Material: Four turbine- based ventilators and nine conventional servo-valve compressed-gas ventilators were1 A Bench Study of Intensive Care Unit Ventilators: New versus Old and Turbine-Based versus Compressed Gas-Based Ventilators Arnaud W. Thille,1 MD; Aissam Lyazidi,1 Biomed Eng MS; Jean-Christophe M

Paris-Sud XI, Université de

283

LBNL-XXXXX | Logue et al., Evaluation of an Incremental Ventilation Energy Model for Estimating Impacts of Air Sealing and Mechanical Ventilation  

E-Print Network [OSTI]

Impacts of Air Sealing and Mechanical Ventilation 1 Evaluation of an Incremental Ventilation Energy Model for Estimating Impacts of Air Sealing and Mechanical Ventilation Jennifer M. Logue, William J. N for Estimating Impacts of Air Sealing and Mechanical Ventilation 2 Disclaimer This document was prepared

284

Heat balance for two commercial broiler barns with solar preheated ventilation air  

Science Journals Connector (OSTI)

In temperate climatic zones, solar air heaters can reduce heating loads, and increase winter ventilation rates thereby improving inside air quality and livestock performance without additional fuel input. A heat balance was carried out to measure bird heat production under field conditions on two commercial broiler barns to evaluate the impact of solar heated ventilation air on bird performance, and identify strategies to reduce winter heating load. Located 40km east of Montreal, Canada, the experimental broiler barns were identically built with three floors housing 6500 birds per floor in an all-in all-out fashion. Equipped with solar air pre-heaters over their fresh air inlets, the barns were instrumented to monitor inlet, inside and outside air conditions, ventilation rate and heating system operating time. The effects on bird performance were observed from November 2007 to March 2009 by alternating their operation between the barns. The measured sensible and total heat productions of 4.5W and 8.4W, respectively, for 1kg birds corresponded to laboratory measured values. Bird performance was not affected by the solar air pre-heaters which increased the ventilation rate above normal during only 20% of the daytime period. Room air temperature stratification resulted in 2040kW of heat losses during the winter, representing 25% of the total natural gas heat load. Because inside air moved directly to the fans, large and rapid increases in ventilation inlet air temperature, produced by the solar air pre-heaters, resulted in further heat losses equivalent to 15% of the solar energy recovered. Sustainable energy management in livestock barns requiring heating should incorporate an air mixing system to eliminate air temperature stratification and improve fan flows.

Sbastien Cordeau; Suzelle Barrington

2010-01-01T23:59:59.000Z

285

Method of dispersing particulate aerosol tracer  

DOE Patents [OSTI]

A particulate aerosol tracer which comprises a particulate carrier of sheet silicate composition having a particle size up to one micron, and a cationic dopant chemically absorbed in solid solution in the carrier. The carrier is preferably selected from the group consisting of natural mineral clays such as bentonite, and the dopant is selected from the group consisting of rare earth elements and transition elements. The tracers are dispersed by forming an aqueous salt solution with the dopant present as cations, dispersing the carriers in the solution, and then atomizing the solution under heat sufficient to superheat the solution droplets at a level sufficient to prevent reagglomeration of the carrier particles.

O'Holleran, Thomas P. (Belleville, MI)

1988-01-01T23:59:59.000Z

286

Particulate hot gas stream cleanup technical issues  

SciTech Connect (OSTI)

The analyses of hot gas stream cleanup particulate samples and descriptions of filter performance studied under this contract were designed to address problems with filter operation that have been linked to characteristics of the collected particulate matter. One objective of this work was to generate an interactive, computerized data bank of the key physical and chemical characteristics of ash and char collected from operating advanced particle filters and to relate these characteristics to the operation and performance of these filters. The interactive data bank summarizes analyses of over 160 ash and char samples from fifteen pressurized fluidized-bed combustion and gasification facilities utilizing high-temperature, high pressure barrier filters.

Pontius, D.H.; Snyder, T.R.

1999-09-30T23:59:59.000Z

287

Electrically heated particulate filter with zoned exhaust flow control  

DOE Patents [OSTI]

A system includes a particulate matter (PM) filter that includes X zones. An electrical heater includes Y heater segments that are associated with respective ones of the X zones. The electrical heater is arranged upstream from and proximate with the PM filter. A valve assembly includes Z sections that are associated with respective ones of the X zones. A control module adjusts flow through each of the Z sections during regeneration of the PM filter via control of the valve assembly. X, Y and Z are integers.

Gonze, Eugene V [Pinckney, MI

2012-06-26T23:59:59.000Z

288

In Vitro Genotoxicity of Particulate and Semi-Volatile Organic...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Particulate and Semi-Volatile Organic Compound Exhaust Materails from a Set of Gasoline and a Set of Diesel Engine Vehicles Operated at 30F In Vitro Genotoxicity of Particulate...

289

Secondary pollutants from ozone reactions with ventilation filters and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Secondary pollutants from ozone reactions with ventilation filters and Secondary pollutants from ozone reactions with ventilation filters and degradation of filter media additives Title Secondary pollutants from ozone reactions with ventilation filters and degradation of filter media additives Publication Type Journal Article Year of Publication 2011 Authors Destaillats, Hugo, Wenhao Chen, Michael G. Apte, Nuan Li, Michael Spears, Jérémie Almosni, Gregory Brunner, Jianshun(Jensen) Zhang, and William J. Fisk Journal Atmospheric Environment Volume 45 Start Page 3561 Issue 21 Pagination 3561-3568 Keywords commercial building ventilation & indoor environmental quality group, commercial building ventilation and indoor environmental quality group, energy analysis and environmental impacts department, indoor environment department, indoor environment group

290

Ventilation and Energy Saving in Auto Manufacturing Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ventilation and Energy Saving in Auto Manufacturing Plants Ventilation and Energy Saving in Auto Manufacturing Plants Speaker(s): Alexander M. Zhivov Date: April 3, 2002 - 12:00pm Location: Bldg. 90 Dr. Alexander Zhivov is currently the chairman of the International Task Force "Autovent International" focusing on environmental problems within the Automotive Industry. This Task Force was formed in 1997 to develop the "Ventilation Guide for Automotive Industry". The guide was to be seen as a building block within the EU sponsored "Industrial Ventilation Design Guide Book" project, covering both theory and applications. In his presentation, Dr. Zhivov will talk about his work with the automotive industry, describe major highlights from the "Ventilation Guide for Automotive Industry" and talk about building, process and HVAC

291

Microscopy investigations of ash and particulate matter accumulation in diesel particulate filter surface pores  

E-Print Network [OSTI]

There has been increased focus on the environmental impact of automobile emissions in recent years. These environmental concerns have resulted in the creation of more stringent particulate matter emissions regulations in ...

Beauboeuf, Daniel P

2010-01-01T23:59:59.000Z

292

Development of Advanced Particulate Filters  

Broader source: Energy.gov (indexed) [DOE]

of Technology ILJIN Electric Co., Korea Relevance and Objectives Existing DPF systems still need to improve filtrationregeneration efficiencies and back pressure. DPF...

293

Total analysis of cooling effects of cross-ventilation affected by microclimate around a building  

Science Journals Connector (OSTI)

This study aims to develop a simulation system for evaluating the passive cooling effects, such as cross-ventilation, solar shading by trees, etc. Since the passive cooling effects are strongly affected by the spatial distributions of airflow, air temperature and radiative heat transports around a building, the microclimate around a building should be accurately predicted for this type of simulations. In this study, convective and radiative heat transports around buildings are analyzed by CFD (computational fluid dynamics) and radiation computations. Furthermore, the heat load calculation with the program TRNSYS was carried out, using the values of the cross-ventilation rates predicted by CFD computation and incoming solar radiation onto the building walls under the shade of trees obtained by the radiation computation as boundary conditions. Indoor velocity and indoor air temperature obtained by the simulation system developed here showed generally good agreement with measured data.

Akashi Mochida; Hiroshi Yoshino; Satoshi Miyauchi; Teruaki Mitamura

2006-01-01T23:59:59.000Z

294

DEMONSTRATION OF A FULL-SCALE RETROFIT OF THE ADVANCED HYBRID PARTICULATE COLLECTOR TECHNOLOGY  

SciTech Connect (OSTI)

The Advanced Hybrid Particulate Collector (AHPC), developed in cooperation between W.L. Gore & Associates and the Energy & Environmental Research Center (EERC), is an innovative approach to removing particulates from power plant flue gas. The AHPC combines the elements of a traditional baghouse and electrostatic precipitator (ESP) into one device to achieve increased particulate collection efficiency. As part of the Power Plant Improvement Initiative (PPII), this project was demonstrated under joint sponsorship from the U.S. Department of Energy and Otter Tail Power Company. The EERC is the patent holder for the technology, and W.L. Gore & Associates was the exclusive licensee for this project. The project objective was to demonstrate the improved particulate collection efficiency obtained by a full-scale retrofit of the AHPC to an existing electrostatic precipitator. The full-scale retrofit was installed on an electric power plant burning Powder River Basin (PRB) coal, Otter Tail Power Company's Big Stone Plant, in Big Stone City, South Dakota. The $13.4 million project was installed in October 2002. Project related testing concluded in December 2005. The following Final Technical Report has been prepared for the project entitled ''Demonstration of a Full-Scale Retrofit of the Advanced Hybrid Particulate Collector Technology'' as described in DOE Award No. DE-FC26-02NT41420. The report presents the operation and performance results of the system.

Tom Hrdlicka; William Swanson

2005-12-01T23:59:59.000Z

295

Airflow Simulation and Energy Analysis in Ventilated Room with a New Type of Air Conditioning  

E-Print Network [OSTI]

quality will be achieved. Our study aims to simulate airflow in the ventilated room with this new type of air conditioning. Radiation is taken into account by the energy conservation in the system. The following section presents algorithm, thermal..., the governing equations to be solved are the conservation equations for continuity, momentum, and energy as well as the equations for turbulent kinetic energy and its dissipation rate. The buoyancy effect is accounted for by Boussinesq approximation...

Liu, D.; Tang, G.; Zhao, F.

2006-01-01T23:59:59.000Z

296

Particulate control for low rank coals  

SciTech Connect (OSTI)

The power generating system in Victoria currently comprises a total capacity of 6650 MW. Eighty percent of this capacity consists of base load stations in the Latrobe Valley using brown coal. The Latrobe Valley brown coals have unique characteristics with high moisture content ranging from 58 percent to 70 percent and an ash content which is relatively low but very variable in nature. These and other factors associated with the coal have caused special problems in handling and combustion of the coal and the de-dusting of the boiler flue gases. In recent years, this has been the basis for the design parameters adopted for all the plants in the system. With respect to flue gas de-dusting, the SECV has carried out extensive laboratory studies to characterize the different ashes obtained from the Latrobe Valley brown coals, including precipitability and aerodynamic tests. It also carried out full-scale tests on operating plants and pilot tests have been conducted on inertial collectors, precipitators and bag filters. The Environmental Protection Authority of Victoria has established a particulate emission level of 0.150 grams/m{sup 3} n.t.p. dry for recent Latrobe Valley boilers. However, the mandated emission level takes into account wide variations in operating conditions, and the plants normally achieve much lower emission levels. The Latrobe Valley plants presently in operation include Yallourn W (2x350 MW + 2x375 MW), Morwell (170 MW total and briquette factory), Hazelwood (8x200 MW) and Loy Yang (4x500 MW). The Yalloum W boilers are supplied with coal from the Yalloum Open Cut, the Morwell and Hazelwood boilers from the Morwell Open Cut and Loy Yang boilers from the Loy Yang Open Cut. All boilers are pulverized coal fired (PCF) and incorporate special firing equipment to enable the as-mined wet coal to be fired directly into the furnaces. All boilers are fitted with electrostatic precipitators. The locations of the stations and open cuts are shown.

Touzel, R.McD.

1993-12-31T23:59:59.000Z

297

Non-thermal Aftertreatment of Particulates  

SciTech Connect (OSTI)

Modern diesel passenger vehicles employing common rail, high speed direct injection engines are capable of matching the drivability of gasoline powered vehicles with the additional benefit of providing high torque at low engine speed [1]. The diesel engine also offers considerable fuel economy and CO2 emissions advantages. However, future emissions standards [2,3] present a significant challenge for the diesel engine, as its lean exhaust precludes the use of aftertreatment strategies employing 3- way catalytic converters, which operate under stoichiometric conditions. In recent years significant developments by diesel engine manufacturers have greatly reduced emissions of both particulates (PM) and oxides of nitrogen (NOx) [4,5]. However to achieve compliance with future legislative limits it has been suggested that an integrated approach involving a combination of engine modifications and aftertreatment technology [1] will be required. A relatively new approach to exhaust aftertreatment is the application of non-thermal plasma (NTP) or plasma catalyst hybrid systems. These have the potential for treatment of both NOx and PM emissions [6- 8]. The primary focus of recent plasma aftertreatment studies [9-12] has concentrated on the removal of NOx. It has been shown that by combining plasmas with catalysts it is possible to chemically reduce NOx. The most common approach is to use a 2- stage system relying upon the plasma oxidation of hydrocarbons to promote NO to NO2 conversion as a precursor to NO2 reduction over a catalyst. However, relatively little work has yet been published on the oxidation of PM by plasma [ 8,13]. Previous investigations [8] have reported that a suitably designed NTP reactor containing a packing material designed to filter and retain PM can effect the oxidation of PM in diesel exhausts at low temperatures. It has been suggested that the retained PM competes with hydrocarbons for O, and possibly OH, radicals. This is an important consideration in plasma - catalyst hybrid schemes for the removal of NOx employing an NO2 selective catalyst, as the oxidation of PM may deplete the key radicals necessary for NO to NO2 conversion. It was also suggested that where simultaneous NOx and PM removal are required, alternative catalyst formulations may be needed which may be selective to NO rather than NO2.

Thomas, S.E.

2000-08-20T23:59:59.000Z

298

Applications of Optimal Building Energy System Selection and Operation  

E-Print Network [OSTI]

direct control of the solar-assisted heating ventilation and5]. And 4. , the solar-assisted heating ventilation and airPerformance of a Solar-Thermal-Assisted HVAC System, Energy

Marnay, Chris

2014-01-01T23:59:59.000Z

299

Energy Crossroads: Ventilation, Infiltration & Indoor Air Quality |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ventilation, Infiltration & Indoor Air Quality Ventilation, Infiltration & Indoor Air Quality Suggest a Listing Air Infiltration and Ventilation Centre (AIVC) The AIVC fulfills its objectives by providing a range of services and facilities which include: Information, Technical Analysis, Technical Interchange, and Coordination. American Conference of Governmental Industrial Hygienists (ACGIH) The ACGIH offers high quality technical publications and learning opportunities. Americlean Services Corp. (ASC) ASC is a certified SBA 8(a) engineering/consulting firm specializing in HVAC contamination detection, abatement, and monitoring. In addition to highly professional ductwork cleaning and HVAC cleaning services, ASC offers a wide range of other engineering/ consulting/ management services

300

Experiments to Evaluate and Implement Passive Tracer Gas Methods to Measure Ventilation Rates in Homes  

E-Print Network [OSTI]

Pollutant Control Index: A New Method of Characterizing Ventilation in Commercial Buildings." Proceedings of Indoor Air'

Lunden, Melissa

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ventilation systems particulate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Text-Alternative Version of Building America Webinar: Multifamily Ventilation Strategies and Compartmentalization Requirements  

Broader source: Energy.gov [DOE]

Transcript of Building America webinar, "Multifamily Ventilation Strategies and Compartmentalization Requirements," held on Sept. 24, 2014.

302

Experimental and numerical VOC concentration field analysis from flooring material in a ventilated room  

E-Print Network [OSTI]

in "7th International Conference, Healthy Buildings 2003, Singapore : Singapore (2003)" #12;Ventilation

Paris-Sud XI, Université de

303

Generator powered electrically heated diesel particulate filter  

DOE Patents [OSTI]

A control circuit for a vehicle powertrain includes a switch that selectivity interrupts current flow between a first terminal and a second terminal. A first power source provides power to the first terminal and a second power source provides power to the second terminal and to a heater of a heated diesel particulate filter (DPF). The switch is opened during a DPF regeneration cycle to prevent the first power source from being loaded by the heater while the heater is energized.

Gonze, Eugene V; Paratore, Jr., Michael J

2014-03-18T23:59:59.000Z

304

Hospital ventilation standards and energy conservation: chemical contamination of hospital air. Final report  

SciTech Connect (OSTI)

In an era of increasing energy conservation consciousness, a critical reassessment of the validity of hospital ventilation and thermal standards is made. If current standards are found to be excessively conservative, major energy conservation measures could be undertaken by rebalancing and/or modification of current HVAC systems. To establish whether or not reducing ventilation rates would increase airborne chemical contamination to unacceptable levels, a field survey was conducted to develop an inventory and dosage estimates of hospital generated airborne chemical contaminants to which patients, staff, and visitors are exposed. The results of the study are presented. Emphasis is on patient exposure, but an examination of occupational exposure was also made. An in-depth assessment of the laboratory air environment is documented. Housekeeping products used in survey hospitals, hazardous properties of housekeeping chemicals and probable product composition are discussed in the appendices.

Rainer, D.; Michaelsen, G.S.

1980-03-01T23:59:59.000Z

305

Measurement of particulate densities in air  

Science Journals Connector (OSTI)

Clean air is one of the most important issues that govern the health of all live forms. However presently there are not many quick and simple methods for measuring impurities like particulates in air. These impurities have an enormous diversity in their physical and chemical structure. They may be unburned carbon particles from a diesel engine exhaust and chimney pollen grains in the spring air or asbestos in a factory. This paper shows that changes in the composition of the air cause a change in the speed of sound. Therefore by measuring the change in the speed of sound it is possible to monitor the density of particulates in the air. Preliminary tests are conducted on various smokeair mixtures. The results demonstrate that this methodology is very sensitive to any changes in the composition of the air. Its implementation is very simple and efficient and costs much less than the conventional method currently used in the auto industry. This technique will be used to calculate the mass density of the particulates resulting from a diesel engine and results thus obtained will be compared with those calculated using other methods.

2001-01-01T23:59:59.000Z

306

Analyzing Ventilation Effects of Different Apartment Styles by CFD  

E-Print Network [OSTI]

ICEBO2006, Shenzhen, China Renewable Renewable Energy Resources and a Greener Future Vol.VIII-3-5 Analyzing Ventilation Effects of Different Apartment Styles by CFD Xiaodong Li Lina Wang Zhixing Ye Associate Professor School...

Li, X.; Wang, L.; Ye, Z.

2006-01-01T23:59:59.000Z

307

Natural ventilation in buildings : modeling, control and optimization  

E-Print Network [OSTI]

Natural ventilation in buildings has the potential to reduce the energy consumption usually associated with mechanical cooling while maintaining thermal comfort and air quality. It is important to know how building parameters, ...

Ip Kiun Chong, Karine

2014-01-01T23:59:59.000Z

308

SURFACE CIRCULATION AND VENTILATION Lynne D. Talley(1)  

E-Print Network [OSTI]

of autonomous subsurface profiling to include oxygen and turbulence profiling, and implementation of local of subsurface circulation in the wind-driven gyres (section 2), and (2) ventilation/upwelling processes

Talley, Lynne D.

309

Study on Influencing Factors of Night Ventilation in Office Rooms  

E-Print Network [OSTI]

& Environmental Engineering, Harbin Institute of Technology Harbin P.R.China, 150090 wzjw02@yahoo.com.cn Abstract: A mathematical and physical model on night ventilation is set up. The fields of indoor air temperature, air velocity and thermal comfort... & Environmental Engineering, Harbin Institute of Technology Harbin P.R.China, 150090 wzjw02@yahoo.com.cn Abstract: A mathematical and physical model on night ventilation is set up. The fields of indoor air temperature, air velocity and thermal comfort...

Wang, Z.; Sun, X.

2006-01-01T23:59:59.000Z

310

A Standard Soot Generator for Diesel Particulate Filter Testing  

Broader source: Energy.gov (indexed) [DOE]

CAMBUSTION A Standard Soot Generator for Diesel Particulate Filter Testing Poster - P10 Diesel Engine Emission Reduction Conference 2007 Chris Nickolaus ...

311

Occupational Medicine Implications of Engineered Nanoscale Particulate Matter  

E-Print Network [OSTI]

Safety in Nanotechnology Research Occupational Medicinenanotechnology revolution promises dramatic advancements in science, technology, medicineMedicine Implications of Engineered Nanoscale Particulate Matter The emerging nanotechnology

Kelly, Richard J.

2008-01-01T23:59:59.000Z

312

Non-Destructive Neutron Imaging to Analyze Particulate Filters  

Broader source: Energy.gov [DOE]

Non-destructive, non-invasive imaging is being employed in the laboratory to understand how soot, ash, and catalytic washcoat are deposited within a diesel particulate filter.

313

Requirements-Driven Diesel Catalyzed Particulate Trap Design...  

Broader source: Energy.gov (indexed) [DOE]

Driven Diesel Catalyzed Particulate Trap (DCPT) Design and Optimization Tom Harris, Donna McConnell and Danan Dou Delphi Catalyst Tulsa, Oklahoma 2 Euro 45 Light Duty...

314

Failure Stress and Apparent Elastic Modulus of Diesel Particulate...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Elastic Modulus of Diesel Particulate Filter Ceramics Three established mechanical test specimen geometries and test methods for brittle materials are adapted to DPF...

315

The constitutive behaviour of strong cohesive particulate gels in compression  

E-Print Network [OSTI]

A simple and popular constitutive model used to describe the compressional strength of a consolidating strongly cohesive particulate gel is tested further with new experimental data.

A. A. Aziz; R. Buscall; R. de Kretzer; M. Kristjansson; P. J. Scales; A. D. Stickland; H-E Teo; S. P. Usher

2014-10-20T23:59:59.000Z

316

Partitioning of Volatile Organics in Diesel Particulate and Exhaust...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Exhaust Partitioning of Volatile Organics in Diesel Particulate and Exhaust Evaluation of how sampling details affect the measurement of volatile organic compounds in...

317

Characterization of Particulate Emissions from GDI Engine Combustion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Emissions from GDI Engine Combustion with Alcohol-blended Fuels Analysis showed that gasoline direct injection engine particulates from alcohol-blended fuels are significantly...

318

Diesel Particulate Oxidation Model: Combined Effects of Fixed...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Volatile Carbon Diesel Particulate Oxidation Model: Combined Effects of Fixed & Volatile Carbon Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research...

319

Neutron Imaging of Diesel Particulate Filters  

SciTech Connect (OSTI)

This article presents nondestructive neutron computed tomography (nCT) measurements of Diesel Particulate Filters (DPFs) as a method to measure ash and soot loading in the filters. Uncatalyzed and unwashcoated 200cpsi cordierite DPFs exposed to 100% biodiesel (B100) exhaust and conventional ultra low sulfur 2007 certification diesel (ULSD) exhaust at one speed-load point (1500rpm, 2.6bar BMEP) are compared to a brand new (never exposed) filter. Precise structural information about the substrate as well as an attempt to quantify soot and ash loading in the channel of the DPF illustrates the potential strength of the neutron imaging technique.

Strzelec, Andrea [ORNL; Bilheux, Hassina Z [ORNL; FINNEY, Charles E A [ORNL; Daw, C Stuart [ORNL; Foster, Prof. Dave [University of Wisconsin; Rutland, Prof. Christopher J. [University of Wisconsin; Schillinger, Burkhard [FRM-II, Technische Universitaet Munchen; Schulz, Michael [FRM-II, Technische Universitaet Munchen

2009-01-01T23:59:59.000Z

320

Next Generation Non-particulate Dry Nonwoven Pad for Chemical Warfare Agent Decontamination  

SciTech Connect (OSTI)

New, non-particulate decontamination materials promise to reduce both military and civilian casualties by enabling individuals to decontaminate themselves and their equipment within minutes of exposure to chemical warfare agents or other toxic materials. One of the most promising new materials has been developed using a needlepunching nonwoven process to construct a novel and non-particulate composite fabric of multiple layers, including an inner layer of activated carbon fabric, which is well-suited for the decontamination of both personnel and equipment. This paper describes the development of a composite nonwoven pad and compares efficacy test results for this pad with results from testing other decontamination systems. The efficacy of the dry nonwoven fabric pad was demonstrated specifically for decontamination of the chemical warfare blister agent bis(2-chloroethyl)sulfide (H or sulfur mustard). GC/MS results indicate that the composite fabric was capable of significantly reducing the vapor hazard from mustard liquid absorbed into the nonwoven dry fabric pad. The mustard adsorption efficiency of the nonwoven pad was significantly higher than particulate activated carbon (p=0.041) and was similar to the currently fielded US military M291 kit (p=0.952). The nonwoven pad has several advantages over other materials, especially its non-particulate, yet flexible, construction. This composite fabric was also shown to be chemically compatible with potential toxic and hazardous liquids, which span a range of hydrophilic and hydrophobic chemicals, including a concentrated acid, an organic solvent and a mild oxidant, bleach.

Ramkumar, S S; Love, A; Sata, U R; Koester, C J; Smith, W J; Keating, G A; Hobbs, L; Cox, S B; Lagna, W M; Kendall, R J

2008-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "ventilation systems particulate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Effect of Outside Air Ventilation Rate on Volatile Organic Compound  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Outside Air Ventilation Rate on Volatile Organic Compound Outside Air Ventilation Rate on Volatile Organic Compound Concentrations in a Call Center Title Effect of Outside Air Ventilation Rate on Volatile Organic Compound Concentrations in a Call Center Publication Type Journal Article Year of Publication 2003 Authors Hodgson, Alfred T., David Faulkner, Douglas P. Sullivan, Dennis L. DiBartolomeo, Marion L. Russell, and William J. Fisk Journal Atmospheric Environment Volume 37 Start Page Chapter Pagination 5517-5528 Abstract A study of the relationship between outside air ventilation rate and concentrations of volatile organic compounds (VOCs) generated indoors was conducted in a call center office building. The building, with two floors and a floor area of 4,600 m2, was located in the San Francisco Bay Area, CA. Ventilation rates were manipulated with the building's four air handling units (AHUs). VOC concentrations in the AHU returns were measured on seven days during a 13-week period. VOC emission factors were determined for individual zones on days when they were operating at near steady-state conditions. The emission factor data were subjected to principal component (PC) analysis to identify groups of co-varying compounds. Potential sources of the PC vectors were ascribed based on information from the literature supporting the associations. Two vectors with high loadings of compounds including formaldehyde, 2,2,4-trimethyl-1,3- pentanediol monoisobutyrate, decamethylcyclopentasiloxane (d5 siloxane), and isoprene likely identified occupant-related sources. One vector likely represented emissions from building materials. Another vector represented emissions of solvents from cleaning products. The relationships between indoor minus outdoor VOC concentrations and ventilation rate were qualitatively examined for eight VOCs. Of these, acetaldehyde and hexanal, which were likely associated with material sources, and d5 siloxane exhibited general trends of higher concentrations at lower ventilation rates. For other compounds, the operation of the building and variations in pollutant generation and removal rates apparently combined to obscure the inverse relationship between VOC concentrations and ventilation. This result emphasizes the importance of utilizing source control measures, in addition to adequate ventilation, to limit concentrations of VOCs of concern in office buildings

322

Modeling and interpreting the observed effects of ash on diesel particulate filter performance and regeneration  

E-Print Network [OSTI]

Diesel particulate filters (DPF) are devices that physically capture diesel particulates to prevent their release to the atmosphere. Diesel particulate filters have seen widespread use in on- and off-road applications as ...

Wang, Yujun, Ph. D. Massachusetts Institute of Technology

2014-01-01T23:59:59.000Z

323

Microsoft Word - Evaluation of an Incremental Ventilation Energy Model for Estimating Impacts of Air Sealing and Mechanical Ventilation_Final2.docx  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

XXXXX | Logue et al., Evaluation of an Incremental Ventilation Energy Model for Estimating XXXXX | Logue et al., Evaluation of an Incremental Ventilation Energy Model for Estimating Impacts of Air Sealing and Mechanical Ventilation 1 Evaluation of an Incremental Ventilation Energy Model for Estimating Impacts of Air Sealing and Mechanical Ventilation Jennifer M. Logue, William J. N. Turner, Iain S. Walker, and Brett C. Singer Environmental Energy Technologies Division June 2012 LBNL-5796E LBNL-XXXXX | Logue et al., Evaluation of an Incremental Ventilation Energy Model for Estimating Impacts of Air Sealing and Mechanical Ventilation 2 Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor

324

Method for immobilizing particulate materials in a packed bed  

DOE Patents [OSTI]

The present invention pertains generally to immobilizing particulate matter contained in a "packed" bed reactor so as to prevent powder migration, compaction, coalescence, or the like. More specifically, this invention relates to a technique for immobilizing particulate materials using a microporous foam-like polymer such that a) the particulate retains its essential chemical nature, b) the local movement of the particulate particles is not unduly restricted, c) bulk powder migration and is prevented, d) physical and chemical access to the particulate is unchanged over time, and e) very high particulate densities are achieved. The immobilized bed of the present invention comprises a vessel for holding particulate matter, inlet and an outlet ports or fittings, a loosely packed bed of particulate material contained within the vessel, and a three dimensional porous matrix for surrounding and confining the particles thereby fixing the movement of individual particle to a limited local position. The established matrix is composed of a series of cells or chambers comprising walls surrounding void space, each wall forming the wall of an adjacent cell; each wall containing many holes penetrating through the wall yielding an overall porous structure and allowing useful levels of gas transport.

Even, Jr., William R. (Livermore, CA); Guthrie, Stephen E. (Livermore, CA); Raber, Thomas N. (Livermore, CA); Wally, Karl (Lafayette, CA); Whinnery, LeRoy L. (Livermore, CA); Zifer, Thomas (Manteca, CA)

1999-01-01T23:59:59.000Z

325

Method for removing particulate matter from a gas stream  

DOE Patents [OSTI]

Particulate matter is removed from a stream of pressurized gas by directing the stream of gas upwardly through a bed of porous material, the porous bed being held in an open ended container and at least partially submerged in liquid. The passage of the gas through the porous bed sets up a circulation in the liquid which cleans the particulate matter from the bed.

Postma, Arlin K. (Benton City, WA)

1984-01-01T23:59:59.000Z

326

Advanced Particulate Filter Technologies for Direct Injection Gasoline Engine Applications  

Broader source: Energy.gov [DOE]

Specific designs and material properties have to be developed for gasoline particulate filters based on the different engine and exhaust gas characteristic of gasoline engines compared to diesel engines, e.g., generally lower levels of engine-out particulate emissions or higher GDI exhaust gas temperatures

327

Process for off-gas particulate removal and apparatus therefor  

DOE Patents [OSTI]

In the event of a breach in the off-gas line of a melter operation requiring closure of the line, a secondary vessel vent line is provided with a particulate collector utilizing atomization for removal of large particulates from the off-gas. The collector receives the gas containing particulates and directs a portion of the gas through outer and inner annular channels. The collector further receives a fluid, such as water, which is directed through the outer channel together with a second portion of the particulate-laden gas. The outer and inner channels have respective ring-like termination apertures concentrically disposed adjacent one another on the outer edge of the downstream side of the particulate collector. Each of the outer and inner channels curves outwardly away from the collector's centerline in proceeding toward the downstream side of the collector. Gasflow in the outer channel maintains the fluid on the channel's wall in the form of a "wavy film," while the gas stream from the inner channel shears the fluid film as it exits the outer channel in reducing the fluid to small droplets. Droplets formed by the collector capture particulates in the gas stream by one of three mechanisms: impaction, interception or Brownian diffusion in removing the particulates. The particulate-laden droplets are removed from the fluid stream by a vessel vent condenser or mist eliminator.

Carl, Daniel E. (Orchard Park, NY)

1997-01-01T23:59:59.000Z

328

Process for off-gas particulate removal and apparatus therefor  

DOE Patents [OSTI]

In the event of a breach in the off-gas line of a melter operation requiring closure of the line, a secondary vessel vent line is provided with a particulate collector utilizing atomization for removal of large particulates from the off-gas. The collector receives the gas containing particulates and directs a portion of the gas through outer and inner annular channels. The collector further receives a fluid, such as water, which is directed through the outer channel together with a second portion of the particulate-laden gas. The outer and inner channels have respective ring-like termination apertures concentrically disposed adjacent one another on the outer edge of the downstream side of the particulate collector. Each of the outer and inner channels curves outwardly away from the collector`s centerline in proceeding toward the downstream side of the collector. Gas flow in the outer channel maintains the fluid on the channel`s wall in the form of a ``wavy film,`` while the gas stream from the inner channel shears the fluid film as it exits the outer channel in reducing the fluid to small droplets. Droplets formed by the collector capture particulates in the gas stream by one of three mechanisms: impaction, interception or Brownian diffusion in removing the particulates. The particulate-laden droplets are removed from the fluid stream by a vessel vent condenser or mist eliminator. 4 figs.

Carl, D.E.

1997-10-21T23:59:59.000Z

329

Influence of different configurations of a catalyst and a trap on particulate emission of a diesel passenger car  

Science Journals Connector (OSTI)

New particulate emission measurements performed on a diesel passenger car to see the influence of different configurations of after-treatment systems are reported. Five combinations of a particle trap and an oxidation catalyst are investigated. These configurations are discussed in view of particulate emission, measured by number and mass. All measurements were carried out at a chassis dynamometer of the EMPA. A diesel passenger car with an IDI engine was operated at four steady state conditions. Exhaust gas was diluted in a standard constant volume sampler (CVS) device (full flow dilution tunnel). Particulate size distributions were measured with a scanning mobility particle sizer (SMPS) and gravimetric measurements were performed according to regulations. Furthermore, measurements without CVS tunnel were done by using external dilution units to see the influence of the sampling method. We used a thermo desorber to distinguish volatile and non-volatile aerosol fractions and we analysed filter samples for determination of organic soluble fraction, water-soluble fraction and sulphur content. Huge differences depending on the configuration of the after-treatment system and load were observed. In general it was found that a large reduction of particulate emission could be obtained by using a particle trap. A catalyst converter has minor effect on particulate emission. Nucleation of new particles was observed under certain conditions depending on configuration and sampling method.

Urs Lehmann; Martin Mohr

2001-01-01T23:59:59.000Z

330

Low Energy Buildings: CFD Techniques for Natural Ventilation and Thermal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Low Energy Buildings: CFD Techniques for Natural Ventilation and Thermal Low Energy Buildings: CFD Techniques for Natural Ventilation and Thermal Comfort Prediction Speaker(s): Malcolm Cook Date: February 14, 2013 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Michael Wetter Malcolm's presentation will cover both his research and consultancy activities. This will cover the work he has undertaken during his time spent working with architects on low energy building design, with a particular focus on natural ventilation and passive cooling strategies, and the role computer simulation can play in this design process. Malcolm will talk about the simulation techniques employed, as well as the innovative passive design principles that have led to some of the UK's most energy efficient buildings. In addition to UK building projects, the talk will

331

Capture and Use of Coal Mine Ventilation-Air Methane  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Capture and use of Coal Mine Capture and use of Coal Mine Ventilation - air Methane Background Methane emissions from coal mines represent about 10 percent of the U.S. anthropogenic methane released to the atmosphere. Methane-the second most important non-water greenhouse gas-is 21 times as powerful as carbon dioxide (CO 2 ) in its global warming potential. Ventilation-air methane (VAM)-the exhaust air from underground coal mines-is the largest source of coal mine methane, accounting for about half of the methane emitted from coal mines in the United States. Unfortunately, because of the low methane concentration (0.3-1.5 percent) in ventilation air, its beneficial use is difficult. However, oxidizing the methane to CO 2 and water reduces its global warming potential by 87 percent. A thermal

332

Formaldehyde emissions from ventilation filters under different relative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Formaldehyde emissions from ventilation filters under different relative Formaldehyde emissions from ventilation filters under different relative humidity conditions Title Formaldehyde emissions from ventilation filters under different relative humidity conditions Publication Type Journal Article Refereed Designation Refereed Year of Publication 2013 Authors Sidheswaran, Meera A., Wenhao Chen, Agatha Chang, Robert Miller, Sebastian Cohn, Douglas P. Sullivan, William J. Fisk, Kazukiyo Kumagai, and Hugo Destaillats Journal Environmental Science and Technology Date Published 04/18/2013 Abstract A method combining life cycle assessment (LCA) and real options analyses is developed to predict project environmental and financial performance over time, under market uncertainties and decision-making flexibility. The method is applied to examine alternative uses for oil sands coke, a carbonaceous byproduct of processing the unconventional petroleum found in northern Alberta, Canada. Under uncertainties in natural gas price and the imposition of a carbon price, our method identifies that selling the coke to China for electricity generation by integrated gasification combined cycle is

333

Final Report: Particulate Emissions Testing, Unit 1, Potomac River  

Broader source: Energy.gov (indexed) [DOE]

Final Report: Particulate Emissions Testing, Unit 1, Potomac River Final Report: Particulate Emissions Testing, Unit 1, Potomac River Generating Station, Alexandria, Virginia Final Report: Particulate Emissions Testing, Unit 1, Potomac River Generating Station, Alexandria, Virginia Docket No. EO-05-01: TRC Environmental Corporation (TRC) of Lowell, Massachusetts was retained by Mirant Potomac River, LLC (Mirant) to provide sampling and analytical support in completing a Particulate Emission Test of Unit 1 of the Potomac River generating facility. The Test Program at the Potomac facility involved the completion of two series of emissions tests for particulate matter (PM), the first during normal unit operation and the second with the injection of TRONA upstream of hot side ESP fields. All tests were completed while Unit 1 was operating at 90% of full load (84MW)

334

E-Print Network 3.0 - ambient particulate matter Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ambient particulate matter Page: << < 1 2 3 4 5 > >> 1 Statistical Issues in the Study of Air Pollution Involving Airborne Particulate Matter Summary: Ambient Air Quality Standards...

335

E-Print Network 3.0 - air particulate analysis Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

air particulate analysis Page: << < 1 2 3 4 5 > >> 1 Statistical Issues in the Study of Air Pollution Involving Airborne Particulate Matter Summary: and the composition of...

336

E-Print Network 3.0 - air particulate samples Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

search results for: air particulate samples Page: << < 1 2 3 4 5 > >> 1 Prevention of Air Pollution from Ships: Diesel Engine Particulate Emission Reduction via...

337

E-Print Network 3.0 - ambient particulate matterpm10 Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

particulate matterpm10 Page: << < 1 2 3 4 5 > >> 1 Statistical Issues in the Study of Air Pollution Involving Airborne Particulate Matter Summary: Ambient Air Quality Standards...

338

E-Print Network 3.0 - ambient particulate matter-induced Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

particulate matter-induced Page: << < 1 2 3 4 5 > >> 1 Statistical Issues in the Study of Air Pollution Involving Airborne Particulate Matter Summary: Ambient Air Quality Standards...

339

Impact of Transportation on Cost, Energy and Particulate Emissions for Recycled Concrete Aggregate.  

E-Print Network [OSTI]

??IMPACT OF TRANSPORTATION ON COST, ENERGY AND PARTICULATE EMISSIONS FOR RECYCLED CONCRETE AGGREGATE Transportation distances can have a huge impact on cost, energy, and particulate (more)

Hameed, Mohamed

2009-01-01T23:59:59.000Z

340

ASHRAE's Residential Ventilation Standard: Exegesis of Proposed Standard 62.2  

E-Print Network [OSTI]

In February 2000, ASHRAE's Standard Project Committee on "Ventilation and Acceptable Indoor Air Quality in Low-Rise Residential Buildings", SPC 62.2P7 recommended ASHRAE's first complete standard on residential ventilation for public review...

Sherman, M.

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ventilation systems particulate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Design and prototyping of a low-cost portable mechanical ventilator  

E-Print Network [OSTI]

This paper describes the design and prototyping of a low-cost portable mechanical ventilator for use in mass casualty cases and resource-poor environments. The ventilator delivers breaths by compressing a conventional ...

Powelson, Stephen K. (Stephen Kirby)

2010-01-01T23:59:59.000Z

342

A sweating model for the internal ventilation of a motorcycle Claudio Canutoa  

E-Print Network [OSTI]

A sweating model for the internal ventilation of a motorcycle helmet Claudio Canutoa , Flavio and optimization of the internal ventilation of a motorcycle hel- met, with the purpose of enhancing the comfort

Ceragioli, Francesca

343

16 P R O G R E S S R E S E a R c h & D i S c O v E R y Nu-Air Ventilation Systems began nearly three  

E-Print Network [OSTI]

of Canada's first LEED platinum buildings. Nu-Air thrives on innovation. In-house engi- neers design all systems to energy efficient buildings across Canada and into the U.S. market Partners: Dalhousie Council of Canada `s Industrial Research Assistance Program (NRC- IRAP), a federal government program

Brownstone, Rob

344

System dynamics based models for selecting HVAC systems for office buildings: a life cycle assessment from carbon emissions perspective.  

E-Print Network [OSTI]

??This study aims to explore the life cycle environmental impacts of typical heating ventilation and air condition (HVAC) systems including variable air volume (VAV) system, (more)

Chen, S

2011-01-01T23:59:59.000Z

345

Building America Webinar: Multifamily Ventilation Strategies and Compartmentalization Requirements- Sean Maxwell  

Broader source: Energy.gov [DOE]

This presentation is included in the Building America webinar, Multifamily Ventilation Strategies and Compartmentalization Requirements, on September 24, 2014.

346

Active Integrated Perimeter Building Systems | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

sensor data, but sharing the data with faade and HVAC control systems to implement load reduction or demand-side ventilation strategies is difficult because the data are...

347

Modeling and Identification for HVAC Systems.  

E-Print Network [OSTI]

?? Heating, Ventilation and Air Conditioning (HVAC) systems consist of all the equipment that control the conditions and distribution of indoor air. Indoor air must (more)

Scotton, Francesco

2012-01-01T23:59:59.000Z

348

Particulate contamination removal from wafers using plasmas and mechanical agitation  

DOE Patents [OSTI]

Particulate contamination removal from wafers is disclosed using plasmas and mechanical agitation. The present invention includes the use of plasmas with mechanical agitation for removing particulate matter from the surface of a wafer. The apparatus hereof comprises a mechanical activator, at least one conducting contact pin for transferring the vibration from the activator to the wafer, clamp fingers that maintain the wafer`s position, and means for generating a plasma in the vicinity of the surface of the wafer, all parts of the cleaning apparatus except the mechanical activator and part of the contact pin being contained inside the processing chamber. By exposing a wafer to a plasma and providing motion thereto in a direction perpendicular to its surface, the bonding between the particulate matter and the surface may be overcome. Once free of the wafer surface, the particulates become charged by electrons from the plasma and are drawn into the plasma by attractive forces which keep them from redepositing. The introduction of a flowing gas through the plasma sweeps the particulates away from the wafer and out of the plasma. The entire surface is cleaned during one cleaning step. The use of an rf plasma to accomplish the particulate removal was found to remove more than 90% of the particulates. 4 figs.

Selwyn, G.S.

1998-12-15T23:59:59.000Z

349

Particulate contamination removal from wafers using plasmas and mechanical agitation  

DOE Patents [OSTI]

Particulate contamination removal from wafers using plasmas and mechanical agitation. The present invention includes the use of plasmas with mechanical agitation for removing particulate matter from the surface of a wafer. The apparatus hereof comprises a mechanical activator, at least one conducting contact pin for transferring the vibration from the activator to the wafer, clamp fingers that maintain the wafer's position, and means for generating a plasma in the vicinity of the surface of the wafer, all parts of the cleaning apparatus except the mechanical activator and part of the contact pin being contained inside the processing chamber. By exposing a wafer to a plasma and providing motion thereto in a direction perpendicular to its surface, the bonding between the particulate matter and the surface may be overcome. Once free of the wafer surface, the particulates become charged by electrons from the plasma and are drawn into the plasma by attractive forces which keep them from redepositing. The introduction of a flowing gas through the plasma sweeps the particulates away from the wafer and out of the plasma. The entire surface is cleaned during one cleaning step. The use of an rf plasma to accomplish the particulate removal was found to remove more than 90% of the particulates.

Selwyn, Gary S. (Los Alamos, NM)

1998-01-01T23:59:59.000Z

350

Frequency domain and finite difference modeling of ventilated concrete slabs and comparison with field measurements: Part 1, modeling methodology  

Science Journals Connector (OSTI)

Abstract This paper is the first of two papers that focus on the thermal modeling of building-integrated thermal energy storage (BITES) systems using frequency response (FR) and lumped-parameter finite difference (LPFD) techniques. Structural/non-structural building fabric components, such as ventilated concrete slabs (VCS) can actively store and release thermal energy effectively by passing air through their embedded air channels. These building components can be described as ventilated BITES systems. To assist the thermal analysis and control of BITES systems, modeling techniques and guidelines for FR and LPFD models of VCS are presented in this two-part paper. In this first part, modeling techniques for FR and LPFD approaches based on network theory are presented. A method for calculating the heat transfer between flowing air and ventilated components is developed for these two approaches. Discretization criteria for explicit LPFD models are discussed. For the FR approach, discrete Fourier series in complex frequency form are used to represent the boundary excitations. In the treatment of heat injection from the flowing air as internal source in the VCS, network techniques such as Thvenin theorem, heat flow division, and Y-diakoptic transform are employed. The techniques presented in this paper are applicable to other BITES with hydronic or electric charging/discharging systems. With the FR techniques, model-based control strategies based on transfer functions can be readily developed.

Yuxiang Chen; Andreas K. Athienitis; Khaled E. Galal

2013-01-01T23:59:59.000Z

351

Energy Saving Guidelines for Portland State University Heating and Ventilation  

E-Print Network [OSTI]

Energy Saving Guidelines for Portland State University Heating and Ventilation Conditioned spaces when a space is not being occupied and be selected with energy efficiency and safety as top priorities scheduling team to consolidate activities into energy efficient buildings on campus. Purchasing When

Caughman, John

352

Energy Impact of Residential Ventilation Norms in the United States  

E-Print Network [OSTI]

legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus by the American Society of Heating, Refrigerating and Air- conditioning Engineers (ASHRAE). This standard does but about the environment in which they lived. Historically, people have ventilated buildings to provide

353

Control of airborne infectious diseases in ventilated spaces  

Science Journals Connector (OSTI)

...Refrigerating and Air-Conditioning Engineers. Badeau, A. , A. Afshari, T. Goldsmith...control of SARS virus aerosols in indoor environment-transmission routes and ward ventilation...transmission of infectious agents in the built environment-a multidisciplinary systematic review...

2009-01-01T23:59:59.000Z

354

Experimental analysis and model validation of an opaque ventilated facade  

Science Journals Connector (OSTI)

Natural ventilation is a convenient way of reducing energy consumption in buildings. In this study an experimental module of an opaque ventilated faade (OVF) was built and tested for assessing its potential of supplying free ventilation and air preheating for the building. A numerical model was created and validated against the experimental data. The experimental results showed that the flow rates induced in the faade cavity were due to mixed driving forces: wind and buoyancy. Depending on the weather conditions one of them was the main driving force, or both were of the same order. When the wind force was the main driving force, higher flow rates were found. In these cases buoyancy acted as supporting driving force. When the wind speed was low and buoyancy prevailed lower flow rates were found. Air and surface temperatures were predicted by the numerical model with a better accuracy than flow and energy rates. The model predicts correctly the influence of the wind and buoyancy driving forces. The experimental OVF module showed potential for free ventilation and air preheating, although it depends on weather and geometrical variables. The use of the numerical model using the right parameters was found viable for analyzing the performance of an OVF.

F. Peci Lpez; R.L. Jensen; P. Heiselberg; M. Ruiz de Adana Santiago

2012-01-01T23:59:59.000Z

355

The Ventilation, Heating, and Management of Churches and Public Buildings  

Science Journals Connector (OSTI)

... THIS book is addressed chiefly to the architects, managers and caretakers of buildings, and its opening chapter deals with the physical principles bearing on ventilation. An interesting ... the writer makes the cryptic statement that "the friction caused by the wind passing over buildings is so great that it is scarcely possible to demonstrate it accurately,"and later ...

J. H. V.

1903-04-02T23:59:59.000Z

356

Association of Classroom Ventilation with Reduced Illness Absence: A  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Association of Classroom Ventilation with Reduced Illness Absence: A Association of Classroom Ventilation with Reduced Illness Absence: A Prospective Study in California Elementary Schools Title Association of Classroom Ventilation with Reduced Illness Absence: A Prospective Study in California Elementary Schools Publication Type Journal Article Refereed Designation Refereed LBNL Report Number LBNL-6259E Year of Publication 2013 Authors Mendell, Mark J., Ekaterina Eliseeva, Morris G. Davies, Michael Spears, Agnes B. Lobscheid, William J. Fisk, and Michael G. Apte Journal Indoor Air Keywords carbon dioxide, Illness absence, indoor environmental quality, schools, ventilation Abstract Limited evidence associates inadequate classroom ventilation rates (VRs) with increased illness absence (IA). We investigated relationships between VRs and IA in Californiaelementary schools over two school years in 162 3rd-5th grade classrooms in 28 schools in three school districts: South Coast (SC), Bay Area (BA), and Central Valley (CV). We estimated relationships between daily IA and VR (estimated from real-time carbon dioxide) in zero-inflated negative binomial models. We also compared IA benefits and energy costs of increased VRs. All school districts had median VRs below the 7.1 L/sec-person California standard. For each additional 1 L/sec-person of VR, IA was reduced significantly (p<0.05) in models for combined districts (-1.6%) and for SC (-1.2%), and non-significantly for districts providing less data: BA (-1.5%) and CV (-1.0%). Assuming associations were causal and generalizable, increasing classroom VRs from the California average (4 L/sec-person) to the State standard would decrease IA by 3.4%, increase attendance-linked funding to schools by $33 million annually, and increase costs only $4 million. Further increasing VRs would provide additional benefits. These findings, while requiring confirmation, suggest that increasing classroom VRs above the State

357

Impacts of a Nanosized Ceria Additive on Diesel Engine Emissions of Particulate and Gaseous Pollutants  

E-Print Network [OSTI]

reductions of CO2, CO, total particulate mass, formaldehyde, acetaldehyde, acrolein, and several polycyclic

Garfunkel, Eric

358

Li2O Particulate Flow Concept, APPLE APEX Interim Report November, 1999  

E-Print Network [OSTI]

Li2O Particulate Flow Concept, APPLE APEX Interim Report November, 1999 9-1 CHAPTER 9: Li2O PARTICULATE FLOW CONCEPT ­ APPLE DESIGN Contributors Lead Author: Dai Kai Sze Dai Kai Sze, Zhanhe Wang (ANL Particulate Flow Concept, APPLE APEX Interim Report November, 1999 9-2 9. LI2O PARTICULATE FLOW CONCEPT

California at Los Angeles, University of

359

Particle deposition in ventilation ducts: Connectors, bends anddeveloping flow  

SciTech Connect (OSTI)

In ventilation duct flow the turbulent flow profile is commonly disturbed or not fully developed and these conditions are likely to influence particle deposition to duct surfaces. Particle deposition rates at eight S-connectors, in two 90{sup o} duct bends and in two ducts where the turbulent flow profile was not fully developed were measured in a laboratory duct system with both galvanized steel and internally insulated ducts with hydraulic diameters of 15.2 cm. In the steel duct system, experiments with nominal particle diameters of 1, 3, 5, 9 and 16 {micro}m were conducted at each of three nominal air speeds: 2.2, 5.3 and 9.0 m/s. In the insulated duct system, deposition of particles with nominal diameters of 1, 3, 5, 8 and 13 {micro}m was measured at nominal air speeds of 2.2, 5.3 and 8.8 m/s. Fluorescent techniques were used to directly measure the deposition velocities of monodisperse fluorescent particles to duct surfaces. Deposition at S-connectors, in bends and in straight ducts with developing turbulence was often greater than deposition in straight ducts with fully developed turbulence for equal particle sizes, air speeds and duct surface orientations. Deposition rates at all locations were found to increase with an increase in particle size or air speed. High deposition rates at S-connectors resulted from impaction and these rates were nearly independent of the orientation of the S-connector. Deposition rates in the two 90{sup o} bends differed by more than an order of magnitude in some cases, probably because of the difference in turbulence conditions at the bend inlets. In straight steel ducts where the turbulent flow profile was developing, the deposition enhancement relative to fully developed turbulence generally increased with air speed and decreased with downstream distance from the duct inlet. This enhancement was greater at the duct ceiling and wall than at the duct floor. In insulated ducts, deposition enhancement was less pronounced overall than in steel ducts. Trends that were observed in steel ducts were present, but weaker, in insulated ducts.

Sippola, Mark R.; Nazaroff, William W.

2004-03-01T23:59:59.000Z

360

Apparatus and method for removing particulate deposits from high temperature filters  

DOE Patents [OSTI]

A combustion of a fuel-air mixture is used to provide a high-temperature and high-pressure pulse of gaseous combustion products for the back-flush cleaning of ceramic filter elements contained in a barrier filter system and utilized to separate particulates from particulate-laden process gases at high temperature and high pressure. The volume of gaseous combustion products provided by the combustion of the fuel-air mixture is preferably divided into a plurality of streams each passing through a sonic orifice and conveyed to the open end of each filter element as a high pressure pulse which passes through the filter elements and dislodges dust cake supported on a surface of the filter element.

Nakaishi, Curtis V. (Morgantown, WV); Holcombe, Norman T. (McMurray, PA); Micheli, Paul L. (Morgantown, WV)

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ventilation systems particulate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Engineering analysis of fugitive particulate matter emissions from cattle feedyards  

E-Print Network [OSTI]

An engineering analysis of the fugitive particulate matter emissions from a feedyard is not simple. The presence of an evening dust peak in concentration measurements downwind of a feedyard complicates the calculation of an average 24-h emission...

Hamm, Lee Bradford

2006-04-12T23:59:59.000Z

362

REVIEW OF DIESEL PARTICULATE MATTER SAMPLING METHODS Supplemental Report # 2  

E-Print Network [OSTI]

Arnold University of Minnesota Department of Mechanical Engineering Center for Diesel Research aerosol. This report focuses on the fundamental chemical and physical processes that affect diesel aerosolREVIEW OF DIESEL PARTICULATE MATTER SAMPLING METHODS Supplemental Report # 2 AEROSOL DYMAMICS

Minnesota, University of

363

Automated particulate sampler field test model operations guide  

SciTech Connect (OSTI)

The Automated Particulate Sampler Field Test Model Operations Guide is a collection of documents which provides a complete picture of the Automated Particulate Sampler (APS) and the Field Test in which it was evaluated. The Pacific Northwest National Laboratory (PNNL) Automated Particulate Sampler was developed for the purpose of radionuclide particulate monitoring for use under the Comprehensive Test Ban Treaty (CTBT). Its design was directed by anticipated requirements of small size, low power consumption, low noise level, fully automatic operation, and most predominantly the sensitivity requirements of the Conference on Disarmament Working Paper 224 (CDWP224). This guide is intended to serve as both a reference document for the APS and to provide detailed instructions on how to operate the sampler. This document provides a complete description of the APS Field Test Model and all the activity related to its evaluation and progression.

Bowyer, S.M.; Miley, H.S.

1996-10-01T23:59:59.000Z

364

Diesel Particulate Filters and NO2 Emission Limits | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Filters and NO2 Emission Limits Diesel Particulate Filters and NO2 Emission Limits EPAs New air quality standards for NO2 will impact future DPF designs deer09ibrahim.pdf More...

365

JV Task 95-Particulate Control Consulting for Minnesota Ore Operations  

SciTech Connect (OSTI)

The purpose of the project was to assist U.S. Steel in the evaluation, selection, planning, design, and testing of potential approaches to help meet U.S. Steel's goal for low-particulate matter emissions and regulatory compliance. The energy-intensive process for producing iron pellets includes treating the pellets in high-temperature kilns in which the iron is converted from magnetite to hematite. The kilns can be fired with either natural gas or a combination of gas and coal or biomass fuel and are equipped with wet venturi scrubbers for particulate control. Particulate measurements at the inlet and outlet of the scrubbers and analysis of size-fractionated particulate samples led to an understanding of the effect of process variables on the measured emissions and an approach to meet regulatory compliance.

Stanley Miller

2008-10-31T23:59:59.000Z

366

PARTICULATE EMISSION ABATEMENT FOR KRAKOW BOILERHOUSES  

SciTech Connect (OSTI)

A U.S./Polish Bilateral Steering Committee (BSC) and the Department of Energy (DOE) selected LSR Technologies, Inc. as a contractor to participate in the Krakow Clean Fuels and Energy Efficiency Program. The objective of this program was the formation of business ventures between U.S. and Polish firms to provide equipment and services to reduce air emissions in the city of Krakow. A cooperative agreement was entered into by DOE and LSR to begin work in April 1994 involving implementation of particulate control technology called a Core Separator{trademark} for coal-fueled boilerhouses in the city. The major work tasks included: (1) conducting a market analysis, (2) completion of a formal marketing plan, (3) obtaining patent protection within Poland, (4) selecting a manufacturing partner, and (5) completing a demonstration unit and commercial installations. In addition to work performed by LSR Technologies, key contributors to this project were (1) the Polish Foundation for Energy Efficiency (FEWE), a non-profit consulting organization specializing in energy and environmental-related technologies, and (2) EcoInstal, a privately held Polish company serving the air pollution control market. As the project concluded in late 1998, five (5) Core Separator{trademark} installations had been implemented in the city of Krakow, while about 40 others were completed in other regions of Poland.

Bruce H. Easom; Leo A, Smolensky; S. Ronald Wysk; Jan Surowka; Miroslaw Litke; Jacek Ginter

1998-09-30T23:59:59.000Z

367

Implementation and main results Ecient Management of HVAC Systems  

E-Print Network [OSTI]

water to remove heat from the air in the building. In HVAC system equipped with chillers, the electrical #12;Motivation Implementation and main results HVAC Systems Multiple-chiller systems Heating, Ventilation and Air-Conditioning System Heating, Ventilation and Air Conditioning Systems (HVAC) represents

Schenato, Luca

368

NETL: Ambient Monitoring - Southern Fine Particulate Monitoring Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Southern Fine Particulate Monitoring Project (SRI) Southern Fine Particulate Monitoring Project (SRI) Southern Research Institute (SRI), Birmingham, AL, is operating a research station in North Birmingham for monitoring fine particulate matter (PM2.5) that exists in that part of the Deep South. The station will be a core PM2.5 mass monitoring and chemical speciation station in the nationwide EPA PM2.5 network. As such, it will be a complement and supplement to DOE-NETL's other ongoing projects for monitoring fine particulate matter in the upper Ohio River valley. Locating additional monitoring equipment in the Deep South will fill an important gap in the national particulate monitoring effort. The region's topography, weather patterns, and variety of emission sources may affect the chemical make-up and airborne transport of fine particles in ways that are different than in other parts of the country. The project's results will support DOE's comprehensive program to evaluate ambient fine particulate matter through better understanding of the chemical and physical properties of these materials.

369

Building America Case Study: Evaluation of Ventilation Strategies in New Construction Multifamily Buildings, New York, New York (Fact Sheet)  

SciTech Connect (OSTI)

In multifamily buildings, particularly in the Northeast, exhaust ventilation strategies are the norm as a means of meeting both local exhaust and whole-unit mechanical ventilation rates. The issue of where the 'fresh' air is coming from is gaining significance as air-tightness standards for enclosures become more stringent, and the 'normal leakage paths through the building envelope' disappear. CARB researchers have found that the majority of high performance, new construction, multifamily housing in the Northeast use one of four general strategies for ventilation: continuous exhaust only with no designated supply or make-up air source, continuous exhaust with ducted make-up air to apartments, continuous exhaust with supply through a make-up air device integral to the unit HVAC, and continuous exhaust with supply through a passive inlet device, such as a trickle vent. Insufficient information is available to designers on how these various systems are best applied. Product performance data are based on laboratory tests, and the assumption is that products will perform similarly in the field. Proper application involves matching expected performance at expected building pressures, but there is no guarantee that those conditions will exist consistently in the finished building. This research effort, which included several weeks of building pressure monitoring, sought to provide field validation of system performance. The performance of four substantially different strategies for providing make-up air to apartments was evaluated.

Not Available

2014-09-01T23:59:59.000Z

370

Measuring Residential Ventilation System Airflows: Part 1 Laboratory  

E-Print Network [OSTI]

of the longest standing drivers for tighter homes are state weatherization programs that include air tightening was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Building Technology, State and Community Programs, of the U.S. Department of Energy under Contract No. DE-AC02-05CH

371

Indoor Chemistry: Materials, Ventilation Systems, and Occupant Activities  

E-Print Network [OSTI]

controls 1 Introduction Indoor chemistry is now recognized as an important factor influencing occupant exposure to air pollutants,

Morrison, G.C.

2011-01-01T23:59:59.000Z

372

Ventilation System to Improve Savannah River Site's Liquid Waste Operations  

Broader source: Energy.gov [DOE]

AIKEN, S.C. The EM program and its liquid waste contractor at the Savannah River Site are improving salt waste disposition work and preparing for eventual operations of the Salt Waste Processing Facility (SWPF) currently being constructed.

373

Indoor Chemistry: Materials, Ventilation Systems, and Occupant Activities  

E-Print Network [OSTI]

1. Weschler. Cleaning products and air fresheners; exposurepollutants from cleaning product and air freshener use inand terpenes from cleaning products and air fresheners [27].

Morrison, G.C.

2011-01-01T23:59:59.000Z

374

Indoor Chemistry: Materials, Ventilation Systems, and Occupant Activities  

E-Print Network [OSTI]

and 1. Ferris, B.G. Nitrogen dioxide inside and outside 137reactive chemicals, such as nitrogen dioxide from unvented

Morrison, G.C.

2011-01-01T23:59:59.000Z

375

Indoor Chemistry: Materials, Ventilation Systems, and Occupant Activities  

E-Print Network [OSTI]

Ozone removal by HVAC filters. Almas. Env. in review, [23]quality [14], and loaded HVAC filters have been linked toparticles captured on HVAC filters. The total surface area

Morrison, G.C.

2011-01-01T23:59:59.000Z

376

Development of a Criticality Evaluation Method Considering the Particulate Behavior of Nuclear Fuel  

SciTech Connect (OSTI)

In conventional criticality evaluations of nuclear powder systems, effects of particulate behavior were not considered. In other words, it is difficult to take into account the particle motion in the criticality evaluations. We have developed a novel criticality evaluation code to resolve this problem. The criticality evaluation code, coupling a discrete element method simulation code with a continuous-energy Monte Carlo transport code, makes it possible to study the effects of the particulate dynamics on criticality. This criticality evaluation code is applied to the mixed-oxide (MOX) fuel powder agitation process. The criticality evaluations are performed while mixing the MOX fuel powder and an additive powder in a stirred vessel to investigate the effects of the powder free surface deformation and the particulate mixture state on the effective multiplication factor. The evaluation results reveal that the effective multiplication factor decreases due to the powder boundary deformation while it increases as the mixture condition of MOX powder and Zn-St powder is close to homogeneous.

Sakai, Mikio; Yamamoto, Toshihiro; Murazaki, Minoru; Miyoshi, Yoshinori [Japan Atomic Energy Research Institute (Japan)

2005-02-15T23:59:59.000Z

377

CANCELLED: Mechanism of Human Responses to Ventilation Rates and Air  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CANCELLED: Mechanism of Human Responses to Ventilation Rates and Air CANCELLED: Mechanism of Human Responses to Ventilation Rates and Air Temperature Speaker(s): Henry Willem Date: July 2, 2010 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Max Sherman (THIS SEMINAR TO BE RESCHEDULED.) Sustainability of the built-environment must be achieved in parallel with the sustenance of occupants' health and comfort. Actions to conserve energy and resources require much forethought and careful consideration due to possible consequences on the human aspects. Thus, many extensive works in the recent decades have focused on identifying the associations between indoor environment and human responses. Results have shown moderate to strong implications of thermal and indoor air quality factors on the prevalence and intensity of sick

378

Ventilation Relevant Contaminants of Concern in Commercial Buildings Screening  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ventilation Relevant Contaminants of Ventilation Relevant Contaminants of Concern in Commercial Buildings Screening Process and Results Srinandini Parthasarathy, Thomas E. McKone, Michael G. Apte Environmental Energy Technologies Division Indoor Environment Department Lawrence Berkeley National Laboratory Berkeley, CA 94720 April 29, 2111 Prepared for the California Energy Commission, Public Interest Energy Research Program, Energy Related Environmental Research Program Legal Notice The Lawrence Berkeley National Laboratory is a national laboratory of the DOE managed by the University of California for the U.S. Department of Energy under Contract Number DE-AC02- 05CH11231. This report was prepared as an account of work sponsored by the Sponsor and pursuant to an M&O Contract with the United States Department of Energy (DOE). Neither the

379

Experiments measuring particle deposition from fully developed turbulent flow in ventilation ducts  

SciTech Connect (OSTI)

Particle deposition in ventilation ducts influences particle exposures of building occupants and may lead to a variety of indoor air quality concerns. Experiments have been performed in a laboratory to study the effects of particle size and air speed on deposition rates of particles from turbulent air flows in galvanized steel and internally insulated ducts with hydraulic diameters of 15.2 cm. The duct systems were constructed of materials typically found in commercial heating, ventilating and air conditioning (HVAC) systems. In the steel duct system, experiments with nominal particle sizes of 1, 3, 5, 9 and 16 {micro}m were conducted at each of three nominal air speeds: 2.2, 5.3 and 9.0 m/s. In the insulated duct system, deposition rates of particles with nominal sizes of 1, 3, 5, 8 and 13 {micro}m were measured at nominal air speeds of 2.2, 5.3 and 8.8 m/s. Fluorescent techniques were used to directly measure the deposition velocities of monodisperse fluorescent particles to duct surfaces (floor, wall and ceiling) at two straight duct sections where the turbulent flow profile was fully developed. In steel ducts, deposition rates were higher to the duct floor than to the wall, which were, in turn, greater than to the ceiling. In insulated ducts, deposition was nearly the same to the duct floor, wall and ceiling for a given particle size and air speed. Deposition to duct walls and ceilings was greatly enhanced in insulated ducts compared to steel ducts. Deposition velocities to each of the three duct surface orientations in both systems were found to increase with increasing particle size or air velocity over the ranges studied. Deposition rates measured in the current experiments were in general agreement with the limited observations of similar systems by previous researchers.

Sippola, Mark R.; Nazaroff, William W.

2003-08-01T23:59:59.000Z

380

Good seal construction and ventilation controls improve airflow  

SciTech Connect (OSTI)

As workings become deeper and more distant from the ventilation inlet, better seal construction technology is needed. Tekseal, a specially formulated pumpable grout which allows a seal to be erected quickly and safety, is Minova's answer to the limitations of traditional block seals. Its use is explained in this article. An alternative product is the Carbonfill range which comprises a two-component phenolic resin based foam generating by a pump. 3 photos.

NONE

2005-12-15T23:59:59.000Z

Note: This page contains sample records for the topic "ventilation systems particulate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Predicting hottest spot temperatures in ventilated dry type transformer windings  

SciTech Connect (OSTI)

Test data indicates that hottest spot allowances used in IEEE standards for ventilated dry type transformers above 500 kVA are too low. A mathematical model to predict hottest spot temperature rises in ventilated dry type transformers was developed. Data from six layer type test windings and a 2500 kva prototype was used to refine the model. A correlation for the local heat transfer coefficient in the cooling ducts was developed. The model was used to study the effect of various parameters on the ratio of hottest spot to average winding temperature rise. The number of conductor layers, insulation thickness, and conductor strand size were found to have only a minor effect on the ratio. Winding height was found to be the main parameter influencing the ratio of hottest spot to average winding temperature rise. The study based on the mathematical model confirmed previous conclusions based on test data that the hottest spot allowances used in IEEE standards for ventilated dry type transformers above 500 kVA should be revised.

Pierce, L.W. (General Electric Co., Rome, GA (United States))

1994-04-01T23:59:59.000Z

382

Buildings Energy Data Book: 5.5 Thermal Distribution Systems  

Buildings Energy Data Book [EERE]

HVAC Equipment Manufacturers (2009 Million) Air-Handling Units 1032 Cooling Towers 533 Pumps 333 Central System Terminal Boxes 192 Classroom Unit Ventilator 160 Fan Coil Units 123...

383

Recovering Energy From Ventilation and Process Airstreams  

E-Print Network [OSTI]

. Heat is transferred from the hot to the cold airstreams as the two move through the plate-type device. Heat can be recovered from exhaust air by using one of these three systems: process to-process, process-to-comfort, and comfort to... between surfaces. One excellent application for a high latent heat recovery device is used in the textile industry. Slide 5 shows air-to liquid plate-type heat exchangers used in a carpet mill to recover energy from hot, .moist exhaust air...

Cheney, W. A.

384

Performance Assessment of Photovoltaic Attic Ventilator Fans  

E-Print Network [OSTI]

. However, when ducts are present in the attic, the magnitude of heat gain to the thermal distribution system under peak conditions can be often much greater than the ceiling heat flux in well-insulated attics (Parker et al.. 1993; Hageman and Modera... this fact Assume a 2,000 square foot ceiling with R-30 attic insulation. Supply ducts in most residences often comprise a combined area of -25% of the gross floor area (see Gu et al. 1997, Appendix G. and Jump and Modera. 1994). but are only insulated...

Parker, D. S.; Sherwin, J. R.

2000-01-01T23:59:59.000Z

385

NETL: News Release - Projects Selected to Study Coal Plant Particulate  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5, 2004 5, 2004 Projects Selected to Study Coal Plant Particulate Matter, Human Health PITTSBURGH, PA - The Department of Energy has selected three projects to help determine whether fine particulates emitted from coal-fired power plants affect human health, and which components of the particulates may be most problematic. Past studies have established that particulate matter smaller than 2.5 microns in diameter from all sources does affect human health, but there is scant information to provide a link between PM2.5 emitted specifically from coal plants and cardiac or respiratory health problems in humans. PM2.5 refers to particles-invisible to the eye-no more than 1/30th of the width of a human hair Coal plants emit only small quantities of "primary" PM2.5 (e.g., fly ash) because all plants have high-efficiency particulate-collection devices. However, coal plants are responsible for a great deal of "secondary" PM2.5, which forms in the atmosphere from emissions of sulfur dioxide (SO2) and nitrogen oxides (NOx). Data collected in the new studies will be used to help design standards reviews and to devise strategies for controlling power plant emissions of PM2.5, SO2, and NOx.

386

Ventilation for an enclosure of a gas turbine and related method  

DOE Patents [OSTI]

A ventilation scheme for a rotary machine supported on pedestals within an enclosure having a roof, end walls and side walls with the machine arranged parallel to the side walls, includes ventilation air inlets located in a first end wall of the enclosure; a barrier wall located within the enclosure, proximate the first end wall to thereby create a plenum chamber. The barrier wall is constructed to provide a substantially annular gap between the barrier wall and a casing of the turbine to thereby direct ventilation air axially along the turbine; one or more ventilation air outlets located proximate a second, opposite end wall on the roof of the enclosure. In addition, one or more fans are provided for pulling ventilating air into said plenum chamber via the ventilation air inlets.

Schroeder, Troy Joseph (Mauldin, SC); Leach, David (Simpsonville, SC); O'Toole, Michael Anthony (Greenfield Center, NY)

2002-01-01T23:59:59.000Z

387

Building America Webinar: Multifamily Ventilation Strategies and Compartmentalization Requirements- Joe Lstiburek  

Broader source: Energy.gov [DOE]

This presentation will be delivered at the U.S. Department of Energy Building America webinar, Multifamily Ventilation Strategies and Compartmentalization Requirements, on September 24, 2014. Joe...

388

THE IMPACT OF REDUCED VENTILATION ON INDOOR AIR QUALITY IN RESIDENTIAL BUILDINGS  

E-Print Network [OSTI]

carbon monoxide and nitrogen dioxide fron gas appliances;quality, infiltration, nitrogen dioxide, radon, ventilation.carbon monoxide (CO), nitrogen dioxide (N02) formaldehyde (

Berk, James V.

2013-01-01T23:59:59.000Z

389

E-Print Network 3.0 - air quality ventilation Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

search results for: air quality ventilation Page: << < 1 2 3 4 5 > >> 1 Healthy Zero Energy Buildings ENVIRONMENTAL AREA RESEARCH Summary: control strategy impacts on indoor air...

390

Developing evidence-based prescriptive ventilation rate standards for commercial buildings in California: a proposed framework  

E-Print Network [OSTI]

quality survey. In: Healthy Buildings 2006. Lisbon,In: Proceedings of Healthy Buildings 2006. Lisbon, Portugal:as ventilation varies. In: Healthy Buildings 2012. Brisbane,

Mendell, Mark J.

2014-01-01T23:59:59.000Z

391

Internal combuston engine having separated cylinder head oil drains and crankcase ventilation passages  

DOE Patents [OSTI]

An internal combustion engine includes separated oil drain-back and crankcase ventilation passages. The oil drain-back passages extend from the cylinder head to a position below the top level of oil in the engine's crankcase. The crankcase ventilation passages extend from passages formed in the main bearing bulkheads from positions above the oil level in the crankcase and ultimately through the cylinder head. Oil dams surrounding the uppermost portions of the crankcase ventilation passages prevent oil from running downwardly through the crankcase ventilation passages.

Boggs, David Lee (Bloomfield Hills, MI); Baraszu, Daniel James (Plymouth, MI); Foulkes, David Mark (Erfstadt, DE); Gomes, Enio Goyannes (Ann Arbor, MI)

1998-01-01T23:59:59.000Z

392

Contribution of organic carbon to wood smoke particulate matter absorption  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Contribution of organic carbon to wood smoke particulate matter absorption Contribution of organic carbon to wood smoke particulate matter absorption of solar radiation Title Contribution of organic carbon to wood smoke particulate matter absorption of solar radiation Publication Type Journal Article Year of Publication 2012 Authors Kirchstetter, Thomas W., and Tracy L. Thatcher Journal Atmospheric Chemistry and Physics Volume 12 Pagination 6067-6072 Abstract A spectroscopic analysis of 115 wintertime partic- ulate matter samples collected in rural California shows that wood smoke absorbs solar radiation with a strong spectral se- lectivity. This is consistent with prior work that has demon- strated that organic carbon (OC), in addition to black car- bon (BC), appreciably absorbs solar radiation in the visible and ultraviolet spectral regions. We apportion light absorp-

393

Biodiesel Fuel Property Effects on Particulate Matter Reactivity  

SciTech Connect (OSTI)

Controlling diesel particulate emissions to meet the 2007 U.S. standard requires the use of a diesel particulate filter (DPF). The reactivity of soot, or the carbon fraction of particulate matter, in the DPF and the kinetics of soot oxidation are important in achieving better control of aftertreatment devices. Studies showed that biodiesel in the fuel can increase soot reactivity. This study therefore investigated which biodiesel fuel properties impact reactivity. Three fuel properties of interest included fuel oxygen content and functionality, fuel aromatic content, and the presence of alkali metals. To determine fuel effects on soot reactivity, the performance of a catalyzed DPF was measured with different test fuels through engine testing and thermo-gravimetric analysis. Results showed no dependence on the aromatic content or the presence of alkali metals in the fuel. The presence and form of fuel oxygen was the dominant contributor to faster DPF regeneration times and soot reactivity.

Williams, A.; Black, S.; McCormick, R. L.

2010-06-01T23:59:59.000Z

394

Apparatus and method for void/particulate detection  

DOE Patents [OSTI]

Apparatus and method for detecting voids and particulates in a fluid within a containing vessel. A diffuse ultrasonic signal is coupled into the fluid by a first transducer and the portion of the ultrasonic signal transmitted through the fluid is detected by a second transducer. The received signal is analyzed by a processor to determine the void fraction of the fluid responsive to the attenuation of the received ultrasonic signal. In addition, voids and particulates are detected by evaluating the increase in side-band energy of the received signal.

Claytor, Thomas N. (Woodridge, IL); Ockert, Carl E. (Vienna, VA); Randall, Richard (Canoga Park, CA)

1987-01-01T23:59:59.000Z

395

A particulate non-specific alkaline phosphatase in Saccharomyces cerevisiae  

E-Print Network [OSTI]

. Dennis J. Opheim A previously undefined alkaline phosphatase in yeast, which is particulate, has been found. This latter form has no mobil- ity on polyacrylamide gels and can be sedimented after centri- fugation at 200, 000 x g for one hour. Over 90X... of the enzyme activity can be solubilized from the particulate fraction with 100 mM sodium cholate. In the solubilized state this enzyme has been found to migrate in the same position on polyacrylamide gels as the already known soluble repressible alkaline...

Mitchell, James Kent

1980-01-01T23:59:59.000Z

396

Imaging of Diesel Particulate Filters using a High-Flux Neutron...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Imaging of Diesel Particulate Filters using a High-Flux Neutron Source Imaging of Diesel Particulate Filters using a High-Flux Neutron Source Detailed images of deposits identified...

397

Radio Frequency Diesel Particulate Filter Sensor Reduces Fuel Consumption, Wins R&D 100 Award  

Office of Energy Efficiency and Renewable Energy (EERE)

Radio Frequency Diesel Particulate Filter Sensor (RF-DPF) is a sensor that uses radio frequencies to measure the amount and distribution of soot and ash in the filters that remove particulate matter from the exhaust of diesel engines.

398

Development of a Sub-Grid Model of a Diesel Particulate Filter...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Sub-Grid Model of a Diesel Particulate Filter: application of the lattice-Boltzmann technique Development of a Sub-Grid Model of a Diesel Particulate Filter: application of the...

399

The effect of lubricant derived ash on the catalytic activity of diesel particulate filters  

E-Print Network [OSTI]

A diesel particulate filter (DPF) is an aftertreatment device used to remove hazardous particulate matter (PM) from diesel engine exhaust. Modem emission restrictions have limited the acceptable amount of PM output by ...

Murray, Timothy Quinn

2014-01-01T23:59:59.000Z

400

Macrophage-Mediated Endothelial Inflammatory Responses to Airborne Particulates: Impact of  

E-Print Network [OSTI]

-Fe/F-Al-Si). We have used these particulates, as well as coal fly ash (CFA) and diesel exhaust particulates (DEP remain unresolved. Using a microporous aluminosilicate zeolite Y as a manifold, we have synthesized 1 µm

Dutta, Prabir K.

Note: This page contains sample records for the topic "ventilation systems particulate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Testing an Active Diesel Particulate Filter on a 2-Cycle Marine...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Testing an Active Diesel Particulate Filter on a 2-Cycle Marine Engine Testing an Active Diesel Particulate Filter on a 2-Cycle Marine Engine Presentation given at DEER 2006,...

402

Distribution of size-fractionated particulate trace metals collected by bottles and in-situ pumps in the Gulf of MaineScotian Shelf and Labrador Sea  

Science Journals Connector (OSTI)

The distribution of size-fractionated particulate trace metals (Al, Fe, Mn, Pb, Cu, V, and Co) was investigated in the Gulf of MaineScotian Shelf and Labrador Sea by collection of particulate matter using water bottles (Go-flo) and large volume in-situ pumps (Challenger Oceanic Systems and Services). Trace metal procedural filter blanks for Poretics membrane filters (0.4- and 10 ?m pore size) and Nitex screens (53 ?m mesh size) were sufficiently low that metal concentrations could be measured reliably. These results validate the use of Challenger Oceanics Systems and Services in-situ pumps for collection of particulate trace metals (Al, Fe, Mn, Pb, Cu, V, and Co) in shelf, slope, and open ocean Atlantic waters. In the Gulf of MaineScotian Shelf and Labrador Sea, trace metal concentrations per volume filtered generally decrease with increasing particle size for all metals. In the upper 250 m of slope waters of the Gulf of MaineScotian Shelf and in the Labrador Sea, trace metal concentrations in all particle sizes are lower than in shelf waters. Higher particulate metal concentrations in shelf waters are consistent with an increase in the supply of these trace metals with proximity to continental sources. In addition, an increase in particulate trace metal concentrations in shelf waters with depth is attributed to an input from resuspended sediment.

Sarah E. Weinstein; S.Bradley Moran

2004-01-01T23:59:59.000Z

403

Confinement Ventilation and Process Gas Treatment Functional Area Qualification Standard  

Broader source: Energy.gov (indexed) [DOE]

. . NOT MEASUREMENT SENSITIVE DOE-STD-1168-2013 October 2013 DOE STANDARD CONFINEMENT VENTILATION AND PROCESS GAS TREATMENT FUNCTIONAL AREA QUALIFICATION STANDARD DOE Defense Nuclear Facilities Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-1168-2013 This document is available on the Department of Energy Technical Standards Program Website at http://energy.gov/hss/information-center/department-energy-technical-standards-program ii DOE-STD-1168-2013 INTENTIONALLY BLANK iv DOE-STD-1168-2013 TABLE OF CONTENTS ACKNOWLEDGMENT...................................................................................................................vii

404

Evaluation of pulmonary ventilation in horses during methoxyflurane anesthesia  

E-Print Network [OSTI]

and venous pH, pCO2, p02, and HCO3 in evaluating pulmonary ventilation and the metabolic status of the horse. LITERATURE REVIEW 8oth methoxyflurane and halothane were first used in the early 1960's as inhalation anesthetics ' ' ' ' ' . These agents were... 7)12, 13, 15, 28&36 primarily responsible for the increase in popularity of gas anesthesia in veterinary medicine. Inhalation anesthesia with these agents pro- duced some long awaited advantages over intravenous long-acting bar- biturates...

McDonald, Don Reed

2012-06-07T23:59:59.000Z

405

Characterization of Particulate Emissions from GDI Engine Combustion with Alcohol-blended Fuels  

Broader source: Energy.gov [DOE]

Analysis showed that gasoline direct injection engine particulates from alcohol-blended fuels are significantly different in morphology and nanostructures

406

Characterization of Pre-Commercial Gasoline Engine Particulates Through Advanced Aerosol Methods  

Broader source: Energy.gov [DOE]

Advanced aerosol analysis methods were used to examine particulates from single cylinder test engines running on gasoline and ethanol blends.

407

Effect of Diesel Oxidation Catalysts on the Diesel Particulate Filter Regeneration Process  

Science Journals Connector (OSTI)

Effect of Diesel Oxidation Catalysts on the Diesel Particulate Filter Regeneration Process ... A Diesel Particulate Filter (DPF) regeneration process was investigated during aftertreatment exhaust of a simulated diesel engine under the influence of a Diesel Oxidation Catalyst (DOC). ... Diesel particulate matter (PM) significantly contributes to urban air pollution and has often been associated with adverse health effects. ...

Leonardo Lizarraga; Stamatios Souentie; Antoinette Boreave; Christian George; Barbara DAnna; Philippe Vernoux

2011-11-03T23:59:59.000Z

408

Direct Capillary Gas Chromatography of Filter-Borne Particulate Emissions from Diesel Engines  

Science Journals Connector (OSTI)

......Filter-Borne Particulate Emissions from Diesel Engines R.D. Cuthbertson P.R. Shore...Filter-Borne Particulate Emissions from Diesel Engines R.D. Cuthbertson and P.R...oil-derived material. Introduction Diesel engines emit particulate matter consisting......

R.D. Cuthbertson; P.R. Shore

1988-03-01T23:59:59.000Z

409

PII S0016-7037(99)00361-0 Dissolved and particulate carbohydrates in contrasting marine sediments  

E-Print Network [OSTI]

PII S0016-7037(99)00361-0 Dissolved and particulate carbohydrates in contrasting marine sediments D) and mid-Atlantic shelf/slope break (continental margin) sediments. Particulate carbohydrates (PCHOs) rep- resented 5­9% of the total sediment particulate organic carbon (POC), and PCHO remineralization appeared

Burdige, David

410

Analysis and feasibility study of residential integrated heat and energy recovery ventilator with built-in economizer using an excel spreadsheet program  

Science Journals Connector (OSTI)

Abstract Currently, heat recovery ventilator (HRV) and energy recovery ventilator (ERV) are commonly studied. Nevertheless, there is limited information regarding the dual-core approach energy recovery. This paper investigates the feasibility of an integrated HRV and ERV system, namely HERV, with a built-in economizer used in the residential sector to reduce dependency on furnace and air conditioning systems. In order to achieve this goal, an excel-based analysis tool was developed, providing a quick estimate of system performance and comparison with the HRV and ERV that are currently being used in research houses. The potential of integrated heat and energy recovery ventilator was evaluated based on its calculated operating cost ratio (OCR) and its payback period. Results collected for Vancouver and Toronto, corresponding to temperate and continental climate, indicated that the \\{OCRs\\} of the HERV were four times smaller than the ERV's, meaning that the proposed system was cost-efficient. It was also evidenced that the high demand on the economizer resulted in higher energy saving and shorter payback period of the system. In conclusion, the integrated HERV system with a built-in economizer could be a feasible option for both temperate and continental climates.

Junlong Zhang; Alan S. Fung; Sumeet Jhingan

2014-01-01T23:59:59.000Z

411

REVIEW OF DIESEL PARTICULATE MATTER SAMPLING METHODS Supplemental Report # 1  

E-Print Network [OSTI]

.D. and Megan Arnold University of Minnesota Department of Mechanical Engineering Center for Diesel Research obtained from engine laboratory visits and present results from a diesel aerosol sampling questionnaireREVIEW OF DIESEL PARTICULATE MATTER SAMPLING METHODS Supplemental Report # 1 DIESEL EXHAUST

Minnesota, University of

412

Removal of residual particulate matter from filter media  

DOE Patents [OSTI]

A method for removing residual filter cakes that remain adhered to a filter after typical particulate removal methodologies have been employed, such as pulse-jet filter element cleaning, for all cleanable filters used for air pollution control, dust control, or powder control.

Almlie, Jay C; Miller, Stanley J

2014-11-11T23:59:59.000Z

413

NUCLEATION PHENOMENON IN SiC PARTICULATE REINFORCED MAGNESIUM COMPOSITE  

E-Print Network [OSTI]

NUCLEATION PHENOMENON IN SiC PARTICULATE REINFORCED MAGNESIUM COMPOSITE Y. Cai, D. Taplin, M.J. Tan performance of matrix metals and alloys. Most magnesium alloy based MMCs are produced via a casting process into the last freezing interdendritic regions. For magnesium based composites, both particle pushing (or capture

Zhou, Wei

414

The distribution of particulate aluminum in the Gulf of Mexico  

E-Print Network [OSTI]

of runoff water in the oceans. Toyota and Okabe (1967) reported vertical distri- butions of particulate aluminum ranging from 1-50 ug Al/L in samples from the Western North Pacific, Indian and Antarctic Oceans. , Stefansson and Atkinson (1969) used...

Feely, Richard Alan

1971-01-01T23:59:59.000Z

415

Economic Analysis and Optimization of Exterior Insulation Requirements for Ventilated Buildings at Power Generation Facilities with High Internal Heat Gain  

E-Print Network [OSTI]

Industrial buildings require a large amount of heating and ventilation equipment to maintain the indoor environment within acceptable levels for personnel protection and equipment protection. The required heating and ventilation equipment...

Hughes, Douglas E.

2010-12-17T23:59:59.000Z

416

Effect of fluctuating wind direction on cross natural ventilation in buildings from large eddy simulation  

E-Print Network [OSTI]

wind direction, and the simulated results agree reasonably with the corresponding experimental data is the use of small-scale models in a wind tunnel to simulate natural ventilation. In general, the mean flow1 Effect of fluctuating wind direction on cross natural ventilation in buildings from large eddy

Chen, Qingyan "Yan"

417

A New Empirical Model for Predicting Single-Sided, Wind-Driven Natural Ventilation in Buildings  

E-Print Network [OSTI]

ventilation rate due to the pulsating flow and eddy penetration of single-sided, wind-driven natural Normal to the opening q Fluctuating flow rate e Eddy penetration Wang, H. and Chen, Q. 2012. "A new buildings. A new empirical model was developed that can predict the mean ventilation rate and fluctuating

Chen, Qingyan "Yan"

418

The Improvement of Natural Ventilation in an Industrial Workshop by Solar Chimney  

Science Journals Connector (OSTI)

This paper presents a numerical simulation based on computational fluid dynamics (CFD) method on the enhancement of natural ventilation in an industrial workshop with heat source induced by solar chimney (SC). Four types of SC were designed to attach ... Keywords: natural ventilation, solar chimney, industrtial workshop, numerical simulation, thermal comfort

Yu-feng Xue; Ya-xin Su

2011-02-01T23:59:59.000Z

419

A case study of boundary layer ventilation by convection and coastal processes  

E-Print Network [OSTI]

of the pollution in the atmosphere originates from emissions in the atmospheric boundary layer, the region; published 12 September 2007. [1] It is often assumed that ventilation of the atmospheric boundary layer responsible for ventilation of the atmospheric boundary layer during a nonfrontal day that occurred on 9 May

Dacre, Helen

420

Modeling Coupled Evaporation and Seepage in Ventilated Cavities  

SciTech Connect (OSTI)

Cavities excavated in unsaturated geological formations are important to activities such as nuclear waste disposal and mining. Such cavities provide a unique setting for simultaneous occurrence of seepage and evaporation. Previously, inverse numerical modeling of field liquid-release tests and associated seepage into cavities were used to provide seepage-related large-scale formation properties by ignoring the impact of evaporation. The applicability of such models was limited to the narrow range of ventilation conditions under which the models were calibrated. The objective of this study was to alleviate this limitation by incorporating evaporation into the seepage models. We modeled evaporation as an isothermal vapor diffusion process. The semi-physical model accounts for the relative humidity, temperature, and ventilation conditions of the cavities. The evaporation boundary layer thickness (BLT) over which diffusion occurs was estimated by calibration against free-water evaporation data collected inside the experimental cavities. The estimated values of BLT were 5 to 7 mm for the open underground drifts and 20 mm for niches closed off by bulkheads. Compared to previous models that neglected the effect of evaporation, this new approach showed significant improvement in capturing seepage fluctuations into open cavities of low relative humidity. At high relative-humidity values (greater than 85%), the effect of evaporation on seepage was very small.

T. Ghezzehei; R. Trautz; S. Finsterle; P. Cook; C. Ahlers

2004-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "ventilation systems particulate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Development of Advanced Diesel Particulate Filtration (DPF) Systems...  

Broader source: Energy.gov (indexed) [DOE]

- 1 i u : Flow velocity p : Pressure : Density : Kinematic viscosity : Laplace operator i : Standard index notation 21% porosity; 60 poreswall; 200...

422

Particulate Emissions Control by Advanced Filtration Systems or GDI Engines  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

423

Development of SCR on Diesel Particulate Filter System for Heavy...  

Broader source: Energy.gov (indexed) [DOE]

with emission control has been introduced With proposed future regulations for GHG control and more emphasis on improved fuel economy, future engines will be designed...

424

Development of Advanced Diesel Particulate Filtration (DPF) Systems  

Broader source: Energy.gov [DOE]

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

425

Diesel Particulate Filter: A Success for Faurecia Exhaust Systems  

Broader source: Energy.gov (indexed) [DOE]

Technical Key points * FBC to lower the temperature of soot combustion process * Fresh nano-crystal catalyst is continuously delivered in the soot * Homogeneous Catalyst...

426

Energy Consumption Analyses of Frequently-used HVAC System Types in High Performance Office Buildings.  

E-Print Network [OSTI]

??The high energy consumption of heating, ventilation and air-conditioning (HVAC) systems in commercial buildings is a hot topic. Office buildings, a typical building set of (more)

Yan, Liusheng

2014-01-01T23:59:59.000Z

427

Mesoscale Simulations of Particulate Flows with Parallel Distributed Lagrange Multiplier Technique  

SciTech Connect (OSTI)

Fluid particulate flows are common phenomena in nature and industry. Modeling of such flows at micro and macro levels as well establishing relationships between these approaches are needed to understand properties of the particulate matter. We propose a computational technique based on the direct numerical simulation of the particulate flows. The numerical method is based on the distributed Lagrange multiplier technique following the ideas of Glowinski et al. (1999). Each particle is explicitly resolved on an Eulerian grid as a separate domain, using solid volume fractions. The fluid equations are solved through the entire computational domain, however, Lagrange multiplier constrains are applied inside the particle domain such that the fluid within any volume associated with a solid particle moves as an incompressible rigid body. Mutual forces for the fluid-particle interactions are internal to the system. Particles interact with the fluid via fluid dynamic equations, resulting in implicit fluid-rigid-body coupling relations that produce realistic fluid flow around the particles (i.e., no-slip boundary conditions). The particle-particle interactions are implemented using explicit force-displacement interactions for frictional inelastic particles similar to the DEM method of Cundall et al. (1979) with some modifications using a volume of an overlapping region as an input to the contact forces. The method is flexible enough to handle arbitrary particle shapes and size distributions. A parallel implementation of the method is based on the SAMRAI (Structured Adaptive Mesh Refinement Application Infrastructure) library, which allows handling of large amounts of rigid particles and enables local grid refinement. Accuracy and convergence of the presented method has been tested against known solutions for a falling sphere as well as by examining fluid flows through stationary particle beds (periodic and cubic packing). To evaluate code performance and validate particle contact physics algorithm, we performed simulations of a representative experiment conducted at the University of California at Berkley for pebble flow through a narrow opening.

Kanarska, Y

2010-03-24T23:59:59.000Z

428

Loading and Regeneration Analysis of a Diesel Particulate Filter with a Radio Frequency-Based Sensor  

SciTech Connect (OSTI)

Accurate knowledge of diesel particulate filter (DPF) loading is critical for robust and efficient operation of the combined engine-exhaust aftertreatment system. Furthermore, upcoming on-board diagnostics regulations require on-board technologies to evaluate the status of the DPF. This work describes the application of radio frequency (RF) based sensing techniques to accurately measure DPF soot levels and the spatial distribution of the accumulated material. A 1.9L GM turbo diesel engine and a DPF with an RF-sensor were studied. Direct comparisons between the RF measurement and conventional pressure-based methods were made. Further analysis of the particulate matter loading rates was obtained with a mass-based soot emission measurement instrument (TEOM). Comparison with pressure drop measurements show the RF technique is unaffected by exhaust flow variations and exhibits a high degree of sensitivity to DPF soot loading and good dynamic response. Additional computational and experimental work further illustrates the spatial resolution of the RF measurements. Based on the experimental results, the RF technique shows significant promise for improving DPF control enabling optimization of the combined engine-aftertreatment system for improved fuel economy and extended DPF service life.

Sappok, Alex [Filter Sensing Technologies] [Filter Sensing Technologies; Prikhodko, Vitaly Y [ORNL] [ORNL; Parks, II, James E [ORNL

2010-01-01T23:59:59.000Z

429

Transpired Solar Collector at NREL's Waste Handling Facility Uses Solar Energy to Heat Ventilation Air (Fact Sheet) (Revised), Federal Energy Management Program (FEMP)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Highlights Highlights System Size 300 ft 2 transpired solar collector Energy Production About 125 Btu/hr/ft 2 (400 W/m 2 ) of heat delivery under ideal conditions (full sun) Installation Date 1990 Motivation Provide solar-heated ventilation air to offset some of the heating with conventional electric resistance heaters Annual Savings 14,310 kWh (49 million Btu/yr) or about 26% of the energy required to heat the facility's ventilation air System Details Components Black, 300 ft 2 corrugated aluminum transpired solar collector with a porosity of 2%; bypass damper; two-speed 3000 CFM vane axial supply fan; electric duct heater; thermostat controller Storage None Loads 188 million Btu/year (55,038 kWh/year) winter average to heat 1,300 ft 2 Waste Handling Facility

430

Transpired Solar Collector at NREL's Waste Handling Facility Uses Solar Energy to Heat Ventilation Air (Fact Sheet) (Revised), Federal Energy Management Program (FEMP)  

Broader source: Energy.gov (indexed) [DOE]

Highlights Highlights System Size 300 ft 2 transpired solar collector Energy Production About 125 Btu/hr/ft 2 (400 W/m 2 ) of heat delivery under ideal conditions (full sun) Installation Date 1990 Motivation Provide solar-heated ventilation air to offset some of the heating with conventional electric resistance heaters Annual Savings 14,310 kWh (49 million Btu/yr) or about 26% of the energy required to heat the facility's ventilation air System Details Components Black, 300 ft 2 corrugated aluminum transpired solar collector with a porosity of 2%; bypass damper; two-speed 3000 CFM vane axial supply fan; electric duct heater; thermostat controller Storage None Loads 188 million Btu/year (55,038 kWh/year) winter average to heat 1,300 ft 2 Waste Handling Facility

431

The Impact of Above-Sheathing Ventilation on the Thermal and Moisture Performance of Steep-Slope Residential Roofs and Attics  

E-Print Network [OSTI]

France of the Building Technologies Program. The IrBCP project team members are Andre? Desjarlais, William Miller, Tom Petrie, Jan Kosny and Achilles Karagiozis, all of ORNLs Buildings Envelope Program. The Metal Construction Association and its affiliate members.... Beal, D., and S. Chandra. 1995. The Measured Summer Performance of Tile Roof Systems and Attic Ventilation Strategies in Hot Humid Climates. In Proceedings of the Thermal Performance of the Exterior Envelopes of Buildings VI. U.S. DOE/ORNL...

Miller, W.; Karagiozis, A.; Wilson, J.

2006-01-01T23:59:59.000Z

432

Formadehyde in New Homes: Ventilation vs. Source Control  

Broader source: Energy.gov (indexed) [DOE]

at at Building America Residential Energy Efficiency Stakeholder Meeting March 1, 2012 Austin, Texas Formaldehyde in New Homes --- Ventilation vs. Source Control Brett C. Singer and Henry Willem Environmental Energy Technologies Division Lawrence Berkeley National Laboratory Acknowledgments * Funding - U.S. Department of Energy - Building America Program - U.S. EPA - Indoor Environments Division - U.S. HUD - Office of Healthy Homes and Lead Hazard Control - Cal. Energy Commission Public Interest Environmental Research * Technical Contributions - Fraunhofer - Ibacos - IEE-SF * LBNL Team - Sherman, Hotchi, Russell, Stratton, and Others Background 1  Formaldehyde is an irritant and a carcinogen  Odor threshold: about 800 ppb  Widely varying health standards  US HUD (8-h): 400 ppb

433

Higher modulus compositions incorporating particulate rubber  

DOE Patents [OSTI]

Rubber particles, to be used as fillers or extenders for various composite polymer systems, are chlorinated by a gas-solid phase reaction with a chlorine-containing gas. A composite polymer containing the chlorinated rubber fillers or extenders exhibits a higher flexural modulus than if prepared using an unchlorinated rubber filler or extender. Chlorination of the rubber particles is carried out by contacting the finely divided rubber particles with a chlorine-containing gas comprising at least about 5 volume percent chlorine. Advantageously, the chlorine can be diluted with air, nitrogen or other essentially inert gases and may contain minor amounts of fluorine. Improved performance is obtained with nitrogen dilution of the chlorine gas over air dilution. Improved polymer composite systems having higher flexural modulus result from the use of the chlorinated rubber particles as fillers instead of unchlorinated rubber particles. 2 figs.

Bauman, B.D.; Williams, M.A.; Bagheri, R.

1997-12-02T23:59:59.000Z

434

Higher modulus compositions incorporating particulate rubber  

DOE Patents [OSTI]

Rubber particles, to be used as fillers or extenders for various composite polymer systems, are chlorinated by a gas-solid phase reaction with a chlorine-containing gas. A composite polymer containing the chlorinated rubber fillers or extenders exhibits a higher flexural modulus than if prepared using an unchlorinated rubber filler or extender. Chlorination of the rubber particles is carried out by contacting the finely divided rubber particles with a chlorine-containing gas comprising at least about 5 volume percent chlorine. Advantageously, the chlorine can be diluted with air, nitrogen or other essentially inert gases and may contain minor amounts of fluorine. Improved performance is obtained with nitrogen dilution of the chlorine gas over air dilution. Improved polymer composite systems having higher flexural modulus result from the use of the chlorinated rubber particles as fillers instead of unchlorinated rubber particles.

Bauman, Bernard D. (Emmaus, PA); Williams, Mark A. (Souderton, PA); Bagheri, Reza (Bethlehem, PA)

1997-12-02T23:59:59.000Z

435

Engines - Particulate Studies - Revealing the True Nature of Diesel  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Engine Nanoparticle Research: Revealing the True Nature of Diesel Particulates Engine Nanoparticle Research: Revealing the True Nature of Diesel Particulates Thermophoretic sampling device Argonne's test engine with the thermophoretic sampling device attached. Nanostructure of graphitic diesel soot under high engine load A transmission electron microscope reveals the nanostructures of graphitic diesel soot sampled under high engine loads. Morphology of particles collected from diesel combustion with iso-paraffin-enriched fuel. Morphology of particles collected from diesel combution with iso-paraffin-enriched fuel. Amorphous soot particle collected from biodiesel combustion undera low-temperature condition. Amorphous soot particle collected from biodiesel combustion under low temperature conditions. Researchers have many ideas about how to reduce the soot produced by diesel

436

Fluidizable particulate materials and methods of making same  

DOE Patents [OSTI]

The invention provides fluidizable, substantially spherical particulate material of improved attrition resistance having an average particle size from about 100 to about 400 microns useful as sorbents, catalysts, catalytic supports, specialty ceramics or the like. The particles are prepared by spray drying a slurry comprising inorganic starting materials and an organic binder. Exemplary inorganic starting materials include mixtures of zinc oxide with titanium dioxide, or with iron oxide, alumina or the like. Exemplary organic binders include polyvinyl alcohol, hydroxypropylemethyl cellulose, polyvinyl acetate and the like. The spray dried particles are heat treated at a first temperature wherein organic binder material is removed to thereby provide a porous structure to the particles, and thereafter the particles are calcined at a higher temperature to cause reaction of the inorganic starting materials and to thereby form the final inorganic particulate material.

Gupta, Raghubir P. (Durham, NC)

1999-01-01T23:59:59.000Z

437

Engine Tests of an Active PM Filter Regeneration System | Department...  

Broader source: Energy.gov (indexed) [DOE]

System 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005deernickolas.pdf More Documents & Publications Diesel Particulate Filter: A...

438

Advanced hybrid particulate collector and method of operation  

DOE Patents [OSTI]

A device and method for controlling particulate air pollutants of the present invention combines filtration and electrostatic collection devices. The invention includes a chamber housing a plurality of rows of filter elements. Between the rows of filter elements are rows of high voltage discharge electrodes. Between the rows of discharge electrodes and the rows of filter elements are grounded perforated plates for creating electrostatic precipitation zones.

Miller, Stanley J. (Grand Forks, ND)

2003-04-08T23:59:59.000Z

439

Co-simulation for performance prediction of integrated building and HVAC systems -An analysis of solution  

E-Print Network [OSTI]

Co-simulation for performance prediction of integrated building and HVAC systems - An analysis performance simulation of buildings and heating, ventilation and air- conditioning (HVAC) systems can help, heating, ventilation and air-conditioning (HVAC) systems are responsible for 10%-60% of the total building

440

Selective catalytic reduction used at Scanraff to reduce NO{sub x}, particulate emissions from FCCU  

SciTech Connect (OSTI)

This article describes various studies conducted to identify how the Scanraff Refinery in Sweden could best comply with environmental legislation for NO{sub x} and particulate emissions. Initial work identified flue gas from the catalyst regenerator of the fluidized catalytic cracking unit as the largest single source of NO{sub x} emissions. A more detailed study identified process modifications to reduce emissions, including the addition of a selective catalytic reduction (SCR) unit and a ceramic hot-gas filter. For the SCR unit, subtopics discussed include design option selection, SCR size and performance, selection of catalyst, catalyst configuration and performance, contamination, and modification of the waste heat boiler. The description of the hot-gas filtration system includes a comparison with electrostatic precipitator systems, the Schumacher filter, filtration medium, design temperature, and handling.

Brook, P.; Hagger, B.; Wood, J. [Foster Wheeler Energy Limited, Reading (United Kingdom)

1996-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "ventilation systems particulate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Liquid additives for particulate emissions control  

DOE Patents [OSTI]

The present invention discloses a process for removing undesired particles from a gas stream including the steps of contacting a composition containing an adhesive with the gas stream; collecting the undesired particles and adhesive on a collection surface to form an aggregate comprising the adhesive and undesired particles on the collection surface; and removing the agglomerate from the collection zone. The composition may then be atomized and injected into the gas stream. The composition may include a liquid that vaporizes in the gas stream. After the liquid vaporizes, adhesive particles are entrained in the gas stream. The process may be applied to electrostatic precipitators and filtration systems to improve undesired particle collection efficiency. 11 figs.

Durham, M.D.; Schlager, R.J.; Ebner, T.G.; Stewart, R.M.; Hyatt, D.E.; Bustard, C.J.; Sjostrom, S.

1999-01-05T23:59:59.000Z

442

Source Apportionment of Airborne Particulate Matter using Inorganic and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Source Apportionment of Airborne Particulate Matter using Inorganic and Source Apportionment of Airborne Particulate Matter using Inorganic and Organic Species as Tracers Title Source Apportionment of Airborne Particulate Matter using Inorganic and Organic Species as Tracers Publication Type Journal Article Year of Publication 2012 Authors Wang, Yungang, Philip K. Hopke, X. Xia, Oliver V. Rattigan, David C. Chalupa, and M. J. Source Journal Atmospheric Environment Volume 55 Start Page 525 Pagination 525-532 Date Published 01/2012 Keywords source apportionment positive matrix factorization (pmf) particulate matter (pm) molecular markers (mm) aethalometer delta-c Abstract Source apportionment is typically performed on chemical composition data derived from particulate matter (PM) samples. However, many common sources no longer emit significant amounts of characteristic trace elements requiring the use of more comprehensive chemical characterization in order to fully resolve the PM sources. Positive matrix factorization (EPA PMF, version 4.1) was used to analyze 24-hr integrated molecular marker (MM), secondary inorganic ions, trace elements, carbonaceous species and light absorption data to investigate sources of PM2.5 in Rochester, New York between October 2009 and October 2010 to explore the role of specific MMs. An eight-factor solutionwas found for which the factors were identified as isoprene secondary organic aerosol (SOA), airborne soil, other SOA, diesel emissions, secondary sulfate, wood combustion, gasoline vehicle, and secondary nitrate contributing 6.9%, 12.8%, 3.7%, 7.8%, 45.5%, 9.1%, 7.9%, and 6.3% to the average PM2.5 concentration, respectively Concentrations of pentacosane, hexacosane, heptacosane, and octacosane in the gasoline vehicles factor were larger compared to diesel emissions. Aethalometer Delta-C was strongly associated with wood combustion. The compounds, n-heptacosanoic acid and n-octacosanoic acid, occasionally used in the past as tracers for road dust, were found to largely associate with SOA in this study. In comparison with a standard PMF analyses without MM, inclusion of themwas necessary to resolve SOA and wood combustion factors in urban areas.

443

PARTICULATE HOT GAS STREAM CLEANUP TECHNICAL ISSUES  

SciTech Connect (OSTI)

This is the fourth annual report describing the activities performed under Task 1 of Contract No. DE-AC21-94MC31160. The analyses of hot gas stream cleanup (HGCU) ashes and descriptions of filter performance studied under this contract are designed to address problems with filter operation that are apparently linked to characteristics of the collected ash. This work is designed to generate a data base of the key characteristics of ashes collected from operating advanced particle filters and to relate these ash properties to the operation and performance of these filters and their components. This report summarizes characterizations of ash and char samples from pressurized fluidized-bed combustion and gasification facilities. Efforts are under way to develop a method for preserving fragile filter cakes formed on ceramic filter elements. The HGCU data base was formatted for Microsoft Access 97 . Plans for the remainder of the project include characterization of additional samples collected during site visits to the Department of Energy / Southern Company Services Power Systems Development Facility and completion and delivery of the HGCU data base.

None

1999-05-05T23:59:59.000Z

444

PARTICULATE HOT GAS STREAM CLEANUP TECHNICAL ISSUES  

SciTech Connect (OSTI)

This is the fourth annual report describing the activities performed under Task 1 of Contract No. DE-AC21-94MC31160. The analyses of hot gas stream cleanup (HGCU) ashes and descriptions of filter performance studied under this contract are designed to address problems with filter operation that are apparently linked to characteristics of the collected ash. This work is designed to generate a data base of the key characteristics of ashes collected from operating advanced particle filters and to relate these ash properties to the operation and performance of these filters and their components. This report summarizes characterizations of ash and char samples from pressurized fluidized-bed combustion and gasification facilities. Efforts are under way to develop a method for preserving fragile filter cakes formed on ceramic filter elements. The HGCU data base was formatted for Microsoft Access 97{reg_sign}. Plans for the remainder of the project include characterization of additional samples collected during site visits to the Department of Energy/Southern Company Services Power Systems Development Facility and completion and delivery of the HGCU data base.

NONE

1999-05-05T23:59:59.000Z

445

PARTICULATE HOT GAS STREAM CLEANUP TECHNICAL ISSUES  

SciTech Connect (OSTI)

This is the fourth annual report describing the activities performed under Task 1 of Contract No. DE-AC21-94MC31160. The analyses of hot gas stream cleanup (HGCU) ashes and descriptions of filter performance studied under this contract are designed to address problems with filter operation that are apparently linked to characteristics of the collected ash. This work is designed to generate a data base of the key characteristics of ashes collected from operating advanced particle filters and to relate these ash properties to the operation and performance of these filters and their components. This report summarizes characterizations of ash and char samples from pressurized fluidized-bed combustion and gasification facilities. Efforts are under way to develop a method for preserving fragile filter cakes formed on ceramic filter elements. The HGCU data base was formatted for Microsoft Access 97 . Plans for the remainder of the project include characterization of additional samples collected during site visits to the Department of Energy / Southern Company Services Power Systems Development Facility and completion and delivery of the HGCU data base.

NONE

1998-11-30T23:59:59.000Z

446

Are We Ready to Propose Guidelines for Health-Based Ventilation?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Are We Ready to Propose Guidelines for Health-Based Ventilation? Are We Ready to Propose Guidelines for Health-Based Ventilation? Speaker(s): Pawel Wargocki Date: October 14, 2013 - 12:00pm - 1:00pm Location: 90-3122 Seminar Host/Point of Contact: Mark Mendell Guidelines for health-based ventilation in Europe are proposed. They follow the premise of controlling exposures to indoor air pollutants of both indoor and outdoor origin. Exposures are controlled through a two-step sequential approach, in which source control is the primary strategy, while ventilation is the secondary strategy once all options for source control have been fully implemented. World Health Organization (WHO) air quality (AQ) guidelines are used to set the exposure limits. A decision diagram is created for guidance through the process of source control and to aid in

447

Influence of ventilation arrangements on particle removal in industrial cleanrooms with various tool coverage  

Science Journals Connector (OSTI)

This paper aims to investigate the influence of comparative ventilation arrangements (wall-return, locally balanced ceiling-return, and four-way ceiling-return) on the airflow distribution and particle fates w...

Yun-Chun Tung; Shih-Cheng Hu; Tengfang Xu; Ren-Huei Wang

2010-03-01T23:59:59.000Z

448

Behavior of a Nuclear Power Plant Ventilation Stack for Wind Loads  

Science Journals Connector (OSTI)

This paper describes behavior of self supporting tall reinforced concrete (RC) ventilation stack of a nuclear power plant (NPP) for wind loads. Since the static and equivalent dynamic wind loads are inter-dependa...

V. Venkatachalapathy

2012-05-01T23:59:59.000Z

449

Modeling Ventilation in Multifamily Buildings John Markley, University of California, Davis -Western Cooling Efficiency Center  

E-Print Network [OSTI]

Modeling Ventilation in Multifamily Buildings John Markley, University of California, Davis outlines the results from energy models of several multifamily building configurations to improve airflow component of multifamily building design due to its effects on occupant health and comfort. Though

California at Davis, University of

450

Workers Remove Glove Boxes from Ventilation at Hanfords Plutonium Finishing Plant  

Broader source: Energy.gov [DOE]

An employee at Hanfords Plutonium Finishing Plant uses a portable band saw to cut the last ventilation duct attached to glove boxes inside the facilitys former processing area.

451

HOSPITAL VENTILATION STANDARDS AND ENERGY CONSERVATION: CHEMICAL CONTAMINATION OF HOSPITAL AIR. FINAL REPORT.  

E-Print Network [OSTI]

LBL-10475 EEB-Hosp 79-6 HOSPITAL VENTILATION STANDARDS ANDCHH1ICAL CONTAMINATION OF HOSPITAL AIR na 1 Report DavidMinnesota 55455 TWIN CITIES HOSPITAL VEtHILATION STANDARDS

Rainer, David

2012-01-01T23:59:59.000Z

452

Increasing ventilation in commercial cattle trailers to decrease shrink, morbidity, and mortality  

E-Print Network [OSTI]

moving livestock trailers, an experimental treatment that increased cross-ventilation within commercial cattle trailers by installing aluminum scoops to punch-hole trailers was evaluated. Environmental factors including temperature, ammonia and carbon...

Giguere, Nicole Marie

2009-06-02T23:59:59.000Z

453

INDOOR AIR QUALITY AND ENERGY EFFICIENT VENTILATION RATES AT A NEW YORK CITY ELEMENTARY SCHOOL  

E-Print Network [OSTI]

UC-95d INDOOR AIR QUALITY AND ENERGY EFFICIENT VENTILATIONVentilation on Indoor Air Quality and Energy Use in Schoo s,EEB~Vent INDOOR AIR QUALITY AND ENERGY EFFICIENT VENTILATION

Young, Rodger A.

2013-01-01T23:59:59.000Z

454

The Potential for Wind Induced Ventilation to Meet Occupant Comfort Conditions  

E-Print Network [OSTI]

This paper describes a simple graphic tool that enables a building designer to evaluate the potential for wind induced ventilation cooling in several climate zones. Long term weather data were analyzed to determine the conditions for which available...

Byrne, S. J.; Huang, Y. J.; Ritschard, R. L.; Foley, D. M.

1985-01-01T23:59:59.000Z

455

A Method for Evaluating the Application of Variable Frequency Drives with Coal Mine Ventilation Fans.  

E-Print Network [OSTI]

??The adjustable-pitch setting on an axial-flow fan is the most common method of controlling airflow for primary coal mine ventilation. With this method, the fan (more)

Murphy, Tyson M.

2006-01-01T23:59:59.000Z

456

Control of the microclimate around the head with opposing jet local ventilation  

E-Print Network [OSTI]

ventilation application. Healthy Buildings 2003, Singapore.21 (1996) 427-436. Healthy Buildings 2009, September 13-17,distance is 1.20m. Healthy Buildings 2009, September 13-17,

Liu, Chonghui; Higuchi, Hiroshi; Arens, Edward; Zhang, Hui Ph.D

2009-01-01T23:59:59.000Z

457

Energy and air quality implications of passive stack ventilation in residential buildings  

E-Print Network [OSTI]

scaling the passive stack diameter with house size (floora single-story house ventilated by a passive stack with andTable 1: Passive stack diameters scaling with house size

Mortensen, Dorthe Kragsig

2011-01-01T23:59:59.000Z

458

Impact of the Driving Cycle on the NOx and Particulate Matter Exhaust Emissions of Diesel Passenger Cars  

Science Journals Connector (OSTI)

Impact of the Driving Cycle on the NOx and Particulate Matter Exhaust Emissions of Diesel Passenger Cars ... The driving cycles used are the New European Driving Cycle (NEDC), the 11 and 15 modes Japanese cycles, and three U.S. driving cycles: Federal Test Procedure (FTP-75), US06, and Highway. ... In general, we can state that a reduction in compression ratio in combination with an advanced boosting system and a fast response of the EGR system with advanced EGR cooling leads to a reduction of the emission level. ...

Efthimios Zervas; George Bikas

2008-02-19T23:59:59.000Z

459

Oxygen Reactivity of Devolatilized Diesel Engine Particulates from Conventional and Biodiesel Fuels  

Science Journals Connector (OSTI)

Oxygen Reactivity of Devolatilized Diesel Engine Particulates from Conventional and Biodiesel Fuels ... Abatement of diesel particulates has led to an overall decrease in the fuel efficiency of diesel engines, and overcoming these losses has been one of the more challenging problems in exhaust aftertreatment. ... (16-18) Establishing a general physical basis for modeling diesel particulate oxidation is especially challenging because of the large variations in microscopic structure that it can have. ...

Andrea Strzelec; Todd J. Toops; C. Stuart Daw

2013-06-10T23:59:59.000Z

460

Effect of outside air ventilation rate on VOC concentrations and emissions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Effect of outside air ventilation rate on VOC concentrations and emissions Effect of outside air ventilation rate on VOC concentrations and emissions in a call center Title Effect of outside air ventilation rate on VOC concentrations and emissions in a call center Publication Type Conference Proceedings Year of Publication 2002 Authors Hodgson, Alfred T., David Faulkner, Douglas P. Sullivan, Dennis L. DiBartolomeo, Marion L. Russell, and William J. Fisk Conference Name Proceedings of the Indoor Air 2002 Conference, Monterey, CA Volume 2 Pagination 168-173 Publisher Indoor Air 2002, Santa Cruz, CA Abstract A study of the relationship between outside air ventilation rate and concentrations of VOCs generated indoors was conducted in a call center. Ventilation rates were manipulated in the building's four air handling units (AHUs). Concentrations of VOCs in the AHU returns were measured on 7 days during a 13- week period. Indoor minus outdoor concentrations and emission factors were calculated. The emission factor data was subjected to principal component analysis to identify groups of co-varying compounds based on source type. One vector represented emissions of solvents from cleaning products. Another vector identified occupant sources. Direct relationships between ventilation rate and concentrations were not observed for most of the abundant VOCs. This result emphasizes the importance of source control measures for limiting VOC concentrations in buildings

Note: This page contains sample records for the topic "ventilation systems particulate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Comparative study of the thermal and power performances of a semi-transparent photovoltaic faade under different ventilation modes  

Science Journals Connector (OSTI)

Abstract This paper studied the thermal and power performances of a ventilated photovoltaic faade under different ventilation modes, and appropriate operation strategies for different weather conditions were proposed accordingly to maximize its energy conversion efficiency. This ventilated PV double-skin faade (PV-DSF) consists of an outside layer of semi-transparent amorphous silicon (a-Si) PV laminate, an inward-openable window and a 400mm airflow cavity. Before installation, the electrical characteristics under standard testing conditions (STC) and the temperature coefficients of the semi-transparent PV module were tested and determined in the laboratory. Field measurements were carried out to investigate the impact of different ventilation modes, namely, ventilated, buoyancy-driven ventilated and non-ventilated, on the thermal and power performances of this PV-DSF. The results show that the ventilated PV-DSF provides the lowest average solar heat gain coefficient (SHGC) and the non-ventilated PV-DSF provides the best thermal insulation performance. In terms of power performance, the energy output of the ventilated PV-DSF is greater than those of the buoyancy-driven ventilated and non-ventilated PV-DSFs by 1.9% and 3%, respectively, due to its much lower operating temperature. Based on the experimental results, a conclusion was drawn that the ventilation design can not only reduce the heat gain of PV-DSF but also improve the energy conversion efficiency of PV modules by bringing down their operating temperature. In addition, an optimum operation strategy is recommended for this kind of PV-DSF to maximize its overall energy efficiency under different weather conditions.

Jinqing Peng; Lin Lu; Hongxing Yang; Tao Ma

2014-01-01T23:59:59.000Z

462

On-Board Engine Exhaust Particulate Matter Sensor for HCCI and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Demonstration of an Electronic Particulate Matter Sensor for Both Engine-Out and Post-DPF Exhaust Monitoring Particle Sensor for Diesel Combustion Monitoring NOx sensor development...

463

On-Board Engine Exhaust Particulate Matter Sensor for HCCI and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Matter Sensor for Both Engine-Out and Post-DPF Exhaust Monitoring On-Board Engine Exhaust Particulate Matter Sensor for HCCI and Conventional Diesel Engines Vehicle...

464

Using rare earth elements to constrain particulate organic carbon flux in marginal seas.  

E-Print Network [OSTI]

??Fluxes of particulate organic carbon (POC) in the East China Sea (ECS) have been reported to decrease from the inner continental shelf towards the outer (more)

Chen, Ya-Feng

2014-01-01T23:59:59.000Z

465

E-Print Network 3.0 - airborne particulates european Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

de mathmatiques Collection: Mathematics 12 Statistical Issues in the Study of Air Pollution Involving Airborne Particulate Matter Summary: Statistical Issues in the Study of...

466

Real-Time Particulate Mass Measurements Pre and Post Diesel Particulat...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2005deeranderson.pdf More Documents & Publications Advanced Radio Frequency-Based Sensors for Monitoring Diesel Particulate Filter Loading and Regeneration Real-Time...

467

E-Print Network 3.0 - airborne particulates impact Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

public health threat of air pollution Summary: . Currently there are six "criteria pollutants" for air pollution: PM10 (defined as particulate matter... a more specific human...

468

E-Print Network 3.0 - airborne fine particulate Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

particulate matter otherwise known as aerosols. However health risks from these pollutants... Airborne Pollution In urban environments What are the real health effects of...

469

Development of particulate-based EPR oximetry for regional, temporal, and rapid measurements in tissue.  

E-Print Network [OSTI]

??Electron paramagnetic resonance (EPR) oximetry is a useful research technique and a potential clinical tool. The goal of this dissertation was to establish particulate-based EPR (more)

Vikram, Deepti S.

2008-01-01T23:59:59.000Z

470

E-Print Network 3.0 - atmospheric fine particulate Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and characterizing the diversity of particulate matter produced from fossil fuel and biomass burn combustion... studies on the mixing state of atmospheric particles and their...

471

E-Print Network 3.0 - air pollution particulate Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Search Powered by Explorit Topic List Advanced Search Sample search results for: air pollution particulate Page: << < 1 2 3 4 5 > >> 1 COLUMBIA UNIVERSITY Department of...

472

E-Print Network 3.0 - air particulate matter Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Collection: Engineering ; Renewable Energy 3 Statistical Issues in the Study of Air Pollution Involving Airborne Particulate Matter Summary: Statistical Issues in the...

473

E-Print Network 3.0 - assisted particulate filter Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

University of Nebraska-Lincoln Collection: Engineering 3 Prevention of Air Pollution from Ships: Diesel Engine Particulate Emission Reduction via Lube-Oil-Consumption...

474

Model of ventilation flows during large tunnel fires  

Science Journals Connector (OSTI)

In order to describe the reduction in the longitudinal airflow velocity due to the fire and hot gases resistances in a large tunnel fire, a theoretical model, taking into consideration the pressure losses over the fire source and obstructions, the thermal stack effects, and the hydraulic resistance induced by the tunnel walls, fire protection boards and a HGV trailer mock-up, is developed and validated using the large-scale tests data from the fire tests performed in the Runehamar tunnel with longitudinal ventilation in Norway 2003. Two large mobile fan units were used to create a longitudinal flow within the tunnel and prevent smoke backlayering upstream of the fire. One fan was located outside the entrance of the tunnel and the other inside the tunnel. The fire load consisted of a mock-up simulating a heavy goods vehicle (HGV) trailer creating a maximum heat release rates in the range of 66202MW. Two methods of calculating the mean temperature related to the thermal expansion and stack effect are proposed and compared.

Haukur Ingason; Anders Lnnermark; Ying Zhen Li

2012-01-01T23:59:59.000Z

475

Energy Performance and Economic Evaluations of the Geothermal Heat Pump System used in the KnowledgeWorks I and II Buildings, Blacksburg, Virginia.  

E-Print Network [OSTI]

??Heating, Ventilating and Air Conditioning Systems (HVAC) are not only one of the most energy consuming components in buildings but also contribute to green house (more)

Charoenvisal, Kongkun

2008-01-01T23:59:59.000Z

476

Effect of Ventilation Strategies on Residential Ozone Levels  

E-Print Network [OSTI]

provided by HVAC system filters, it was assumed filtration from the HVAC system filters brings down HVAC system air leakage and ozone deposition on HAVC system filters.

Walker, Iain S.

2014-01-01T23:59:59.000Z

477

Exploring relationships between outdoor air particulate-associated  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Exploring relationships between outdoor air particulate-associated Exploring relationships between outdoor air particulate-associated polycyclic aromatic hydrocarbon and PM2.5: A case study of benzo(a)pyrene in California metropolitan regions Title Exploring relationships between outdoor air particulate-associated polycyclic aromatic hydrocarbon and PM2.5: A case study of benzo(a)pyrene in California metropolitan regions Publication Type Journal Article LBNL Report Number LBNL-514E Year of Publication 2008 Authors Lobscheid, Agnes B., Thomas E. McKone, and D. A. Valleroc Journal Atmospheric Environment Volume 41 Start Page Chapter Pagination 5659-5672 Abstract Polycyclic aromatic hydrocarbons (PAHs) and particulate matter (PM) are co-pollutants emitted as by-products of combustion processes. Convincing evidence exists for PAHs as a primary toxic component of fine PM (PM2.5). Because PM2.5 is listed by the US EPA as a "Criteria Pollutant," it is monitored regularly at sites nationwide. In contrast, very limited data is available on measured ambient air concentrations of PAHs. However, between 1999-2001, ambient air concentrations of PM2.5 and benzo(a)pyrene (BaP) are available for California locations. We use multivariate linear regression models (MLRMs) to predict ambient air levels of BaP in four air basins based on reported PM2.5 concentrations and spatial, temporal and meteorological variables as variates. We obtain an R2 ranging from 0.57-0.72 among these basins. Significant variables (p<0.05) include the average daily PM2.5 concentration, wind speed, temperature and relative humidity, and the coastal distance as well as season, and holiday or weekend. Combining the data from all sites and using only these variables to estimate ambient BaP levels, we obtain an R2 of 0.55. These R2-values, combined with analysis of the residual error and cross validation using the PRESS-statistic, demonstrate the potential of our method to estimate reported outdoor air PAH exposure levels in metropolitan regions. These MLRMs provide a first step towards relating outdoor ambient PM2.5 and PAH concentrations for epidemiological studies when PAH measurements are unavailable, or limited in spatial coverage, based on publicly available meteorological and PM2.5 data

478

Apparatus for removal of particulate matter from gas streams  

DOE Patents [OSTI]

An apparatus for the removal of particulate matter from the gaseous product stream of an entrained flow coal gasifier which apparatus includes an initial screen, an intermediate screen which is aligned with the direction of flow of the gaseous product stream and a final screen transversely disposed to the flow of gaseous product and which apparatus is capable of withstanding at least a pressure differential of about 10 psi (68.95 kPa) or greater at the temperatures of the gaseous product stream.

Smith, Peyton L. (Baton Rouge, LA); Morse, John C. (Baton Rouge, LA)

2000-01-01T23:59:59.000Z

479

Prospecting by sampling and analysis of airborne particulates and gases  

DOE Patents [OSTI]

A method is claimed for prospecting by sampling airborne particulates or gases at a ground position and recording wind direction values at the time of sampling. The samples are subsequently analyzed to determine the concentrations of a desired material or the ratios of the desired material to other identifiable materials in the collected samples. By comparing the measured concentrations or ratios to expected background data in the vicinity sampled, one can select recorded wind directions indicative of the upwind position of the land-based source of the desired material.

Sehmel, G.A.

1984-05-01T23:59:59.000Z

480

Variable power distribution for zoned regeneration of an electrically heated particulate filter  

DOE Patents [OSTI]

A system includes a particulate matter (PM) filter with multiple zones, an electric heater and a control module. The electrical heater includes heater segments, which each correspond with a respective one of the zones. The electrical heater is arranged upstream from and is proximate with the PM filter. The control module selectively applies a first energy level to a first one of the zones via a first one of the heater segments to initiate regeneration in the first zone. The control module also selectively applies a second energy level that is less than the first energy level to a second one of the zones via a second one of the heater segments to initiate regeneration in the second zone.

Bhatia, Garima [Bangalore, IN; Gonze, Eugene V [Pinckney, MI

2012-04-03T23:59:59.000Z

Note: This page contains sample records for the topic "ventilation systems particulate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Hadley cell influence on 7Be activity concentrations at Australian mainland IMS radionuclide particulate stations  

Science Journals Connector (OSTI)

Abstract Beryllium-7 (7Be) daily data from the four International Monitoring System (IMS) radionuclide particulate stations on mainland Australia are analysed over the period 2001 to 2011. The analysis indicates that levels of 7Be in surface air at the stations follow annual cycles, with yearly peak activity concentrations occurring later at stations further south. The yearly peak migrates northsouth at a rate of approximately 4.4 latitude per month. The change in phase of the 7Be annual cycle between the stations corresponds with the seasonal migration of the Southern Hemisphere Hadley cell across mainland Australia. The implication is that the changing position of the downward limb of the Southern Hemisphere Hadley cell regulates the phase of the annual cycle in 7Be activity concentrations in surface air in the Australian region.

Che Doering; Paul Saey

2014-01-01T23:59:59.000Z

482

Commissioning Lessons from Study of the Advanced Systems at the CMU Intelligent Workplace  

E-Print Network [OSTI]

. The passive desiccant ventilation system was replaced by an active desiccant ventilation system during the winter of 2005. A group of fan coil units are planned for installation in the southern zone to offer additional cooling in the future. The sensible...

Claridge, D. E.; Gong, X.

483

OBSERVE: Occupancy-Based System for Efficient Reduction of HVAC Energy  

E-Print Network [OSTI]

OBSERVE: Occupancy-Based System for Efficient Reduction of HVAC Energy Varick L. Erickson, Miguel Á & control General Terms Algorithms, Machine Learning, Measurement Keywords Occupancy, HVAC, Ventilation for heating, ventilation, and air-conditioning (HVAC) systems[2]. Studies suggest that 15% to 25% of HVAC

Carreira-Perpiñán, Miguel Á.

484

Changing Ventilation Rates in U.S. Offices: Implications for Health, Work  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Changing Ventilation Rates in U.S. Offices: Implications for Health, Work Changing Ventilation Rates in U.S. Offices: Implications for Health, Work Performance, Energy, and Associated Economics Title Changing Ventilation Rates in U.S. Offices: Implications for Health, Work Performance, Energy, and Associated Economics Publication Type Journal Article Refereed Designation Refereed LBNL Report Number LBNL-5035E Year of Publication 2012 Authors Fisk, William J., Douglas R. Black, and Gregory Brunner Journal Building and Environment Volume 47 Pagination 368-372 Date Published 01/2012 Keywords cost-benefit analysis, economizer, health, office, ventilation rate, work performance Abstract This paper provides quantitative estimates of benefits and costs of providing different amounts of outdoor air ventilation in U.S. offices. For four scenarios that modify ventilation rates, we estimated changes in sick building syndrome (SBS) symptoms, work performance, short-term absence, and building energy consumption. The estimated annual economic benefits were $13 billion from increasing minimum ventilation rates (VRs) from 8 to 10 L/s per person, $38 billion from increasing minimum VRs from 8 to 15 L/s per person, and $33 billion from increasing VRs by adding outdoor air economizers for the 50% of the office floor area that currently lacks economizers. The estimated $0.04 billion in annual energy-related benefits of decreasing minimum VRs from 8 to 6.5 L/s per person are very small compared to the projected annual costs of $12 billion. Benefits of increasing minimum VRs far exceeded energy costs while adding economizers yielded health, performance, and absence benefits with energy savings.

485

Reliability and Functional Availability of HVAC Systems  

E-Print Network [OSTI]

This paper presents a model to calculate the reliability and availability of heating, ventilation and air conditioning systems. The reliability is expressed in the terms of reliability, maintainability and decision capability. These terms are a...

Myrefelt, S.

2004-01-01T23:59:59.000Z

486

Diesel emission control: Catalytic filters for particulate removal  

Science Journals Connector (OSTI)

The European diesel engine industry represents a vital sector across the Continent, with more than 2 million direct work positions and a turnover of over 400 billion Euro. Diesel engines provide large paybacks to society since they are extensively used to transport goods, services and people. In recent years increasing attention has been paid to the emissions from diesel engines which, like gasoline engine emissions, include carbon monoxide (CO), hydrocarbons (HC) and oxides of nitrogen (NOx). Diesel engines also produce significant levels of particulate matter (PM), which consists mostly of carbonaceous soot and a soluble organic fraction (SOF) of hydrocarbons that have condensed on the soot.Meeting the emission levels imposed for NOx and PM by legislation (Euro IV in 2005 and, in the 2008 perspective, Euro V) requires the development of a number of critical technologies to fulfill these very stringent emission limits (e.g. 0.005g/km for PM). This review is focused on these innovative technologies with special reference to catalytic traps for diesel particulate removal.

Debora Fino

2007-01-01T23:59:59.000Z

487

Toward Distinguishing Woodsmoke and Diesel Exhaust in Ambient Particulate Matter  

SciTech Connect (OSTI)

Particulate matter (PM) from biomass burning and diesel exhaust has distinct X-ray spectroscopic, carbon specific signatures, which can be employed for source apportionment. Characterization of the functional groups of a wide selection of PM samples (woodsmoke, diesel soot, urban air PM) was carried out using the soft X-ray spectroscopy capabilities at the synchrotron radiation sources in Berkeley (ALS) and Brookhaven (NSLS). The spectra reveal that diesel exhaust particulate (DEP) matter is made up from a semigraphitic solid core and soluble organic matter, predominantly with carboxylic functional groups. Woodsmoke PM has no or a less prevalent, graphitic signature, instead it contains carbon-hydroxyl groups. Using these features to apportion the carbonaceous PM in ambient samples we estimate that the relative contribution of DEP to ambient PM in an urban area such as Lexington, KY and St. Louis, MO is 7% and 13.5%, respectively. These values are comparable to dispersion modeling data from nonurban and urban areas in California, and with elemental carbon measurements in urban locations such as Boston, MA, Rochester, NY, and Washington, DC.

Braun,A.; Huggins, F.; Kubatova, A.; Wirick, S.; Maricq, M.; Mun, B.; McDonald, J.; Kelly, K.; Shah, N.; Huffman, G.

2008-01-01T23:59:59.000Z

488

Cooler and particulate separator for an off-gas stack  

DOE Patents [OSTI]

This report describes an off-gas stack for a melter, furnace or reaction vessel comprising an air conduit leading to two sets of holes, one set injecting air into the off-gas stack near the melter plenum and the second set injecting air downstream of the first set. The first set injects air at a compound angle, having both downward and tangential components, to create a reverse vortex flow, counter to the direction of flow of gas through the stack and also along the periphery of the stack interior surface. Air from the first set of holes prevents recirculation zones from forming and the attendant accumulation of particulate deposits on the wall of the stack and will also return to the plenum any particulate swept up in the gas entering the stack. The second set of holes injects air in the same direction as the gas in the stack to compensate for the pressure drop and to prevent the concentration of condensate in the stack. A set of sprayers, receiving water from a second conduit, is located downstream of the second set of holes and sprays water into the gas to further cool it.

Wright, G.T.

1991-04-08T23:59:59.000Z

489

Characterization and modification of particulate properties to enhance filtration performance  

SciTech Connect (OSTI)

The specific objectives of this project are to characterize the particulate properties that determine the filtration performance of fabric filters, and to investigate methods for modifying these particulate properties to enhance filtration performance. Inherent in these objectives is the development of an experimental approach that will lead to full-scale implementation of beneficial conditioning processes identified during the project. The general approach has included a large number of laboratory evaluations to be followed by optional field tests of a new successful conditioning processes performed on a sidestream device. This project was divided into five tasks. The schedule followed for these tasks is shown in Figure 4. Tasks 2 and 3 each focus on one of the two complementary parts of the project. Task 2 Parametric Tests of Ashes and Fabrics, evaluates the degree to which ash properties and fabric design determine filtration performance. Task 3 Survey of Methods to Modify the Particle Filtration Properties, provides a literature review and laboratory study of techniques to modify ash properties. The results of these two tasks were used in Task 4 Proof-of-Concept Tests of Methods to Modify Particle Filtration Properties to demonstrate the effects on filtration performance of modifying ash properties. The findings of all the tasks are summarized in this Final Report. 13 refs.

Snyder, T.R.; Vann Bush, P.; Robinson, M.S.

1990-06-01T23:59:59.000Z

490

Cooler and particulate separator for an off-gas stack  

DOE Patents [OSTI]

An off-gas stack for a melter comprising an air conduit leading to two sets of holes, one set injecting air into the off-gas stack near the melter plenum and the second set injecting air downstream of the first set. The first set injects air at a compound angle, having both downward and tangential components, to create a reverse vortex flow, counter to the direction of flow of gas through the stack and also along the periphery of the stack interior surface. Air from the first set of holes pervents recirculation zones from forming and the attendant accumulation of particulate deposits on the wall of the stack and will also return to the plenum any particulate swept up in the gas entering the stack. The second set of holes injects air in the same direction as the gas in the stack to compensate for the pressure drop and to prevent the concentration of condensate in the stack. A set of sprayers, receiving water from a second conduit, is located downstream of the second set of holes and sprays water into the gas to further cool it.

Wright, George T. (15 Cherry Hills Dr., Aiken, SC 29803)

1992-01-01T23:59:59.000Z

491

Theoretical Minimum Energy Use of a Building HVAC System  

E-Print Network [OSTI]

This paper investigates the theoretical minimum energy use required by the HVAC system in a particular code compliant office building. This limit might be viewed as the "Carnot Efficiency" for HVAC system. It assumes that all ventilation and air...

Tanskyi, O.

2011-01-01T23:59:59.000Z

492

DOE Zero Energy Ready Home: Ventilation and Filtration Strategies with Indoor airPLUS Webinar (Text Version)  

Broader source: Energy.gov [DOE]

Below is the text version of the webinar, DOE Zero Energy Ready Home: Ventilation and Filtration Strategies with Indoor airPLUS, presented in August 2014.

493

Design of double skin (envelope) as a solar chimney: adapting natural ventilation in double envelope for mild or warm climates.  

E-Print Network [OSTI]

??In United States, space heating, space cooling and ventilation of buildings consume 33% of the annual building energy consumption and 15% of the total annual (more)

Wang, Lutao

2010-01-01T23:59:59.000Z

494

Continuous Energy Management of the HVAC&R System in an Office Building System Operation and Energy Consumption for the Eight Years after Building Completion  

E-Print Network [OSTI]

The authors continuously studied the energy consumption of a heating, ventilating, air- conditioning and refrigerating (HVAC&R) system in an office for the operation of the system in terms of its expected performance. A fault in the system control...

Akashi, Y.; Shinozaki, M.; Kusuda, R.; Ito, S.

2006-01-01T23:59:59.000Z

495

Enrichment and Association of Bacteria and Particulates in Salt Marsh Surface Water  

Science Journals Connector (OSTI)

...Bacteria and Particulates in Salt Marsh Surface Water R. W. Harvey L. Y. Young Environmental...Bacteria and Particulates in Salt Marsh Surface Water R. W. HARVEY AND L. Y. YOUNG...surface. (A) Sippewissett marsh, n = 23, r = 0.91. (B) Palo Alto marsh...

R. W. Harvey; L. Y. Young

1980-04-01T23:59:59.000Z

496

Seasonality and Interaction of Biogenic and Lithogenic Particulate Flux at the Panama Basin  

Science Journals Connector (OSTI)

...particulate flux at the Panama Basin Honjo Susumu Author Woods Hole...Particulate Flux at the Panama Basin Abstract. Time-series sediment...3860 meters) in the Panama Basin. The amount ofhorizontal and...to deep water in the Panama Bight. During January through March...

SUSUMU HONJO

1982-11-26T23:59:59.000Z

497

Assessment of Indoor Air Quality Benefits and Energy Costs of Mechanical Ventilation  

SciTech Connect (OSTI)

Intake of chemical air pollutants in residences represents an important and substantial health hazard. Sealing homes to reduce air infiltration can save space conditioning energy, but can also increase indoor pollutant concentrations. Mechanical ventilation ensures a minimum amount of outdoor airflow that helps reduce concentrations of indoor emitted pollutants while requiring some energy for fan(s) and thermal conditioning of the added airflow. This work demonstrates a physics based, data driven modeling framework for comparing the costs and benefits of whole-house mechanical ventilation and applied the framework to new California homes. The results indicate that, on a population basis, the health benefits from reduced exposure to indoor pollutants in New California homes are worth the energy costs of adding mechanical ventilation as specified by ASHRAE Standard 62.2.This study determines the health burden for a subset of pollutants in indoor air and the costs and benefits of ASHRAE's mechanical ventilation standard (62.2) for new California homes. Results indicate that, on a population basis, the health benefits of new home mechanical ventilation justify the energy costs.

Logue, J.M.; Price, P.N.; Sherman, M.H.; Singer, B.C.

2011-07-01T23:59:59.000Z

498

Should Title 24 Ventilation Requirements Be Amended to include an Indoor Air Quality Procedure?  

SciTech Connect (OSTI)

Minimum outdoor air ventilation rates (VRs) for buildings are specified in standards, including California?s Title 24 standards. The ASHRAE ventilation standard includes two options for mechanically-ventilated buildings ? a prescriptive ventilation rate procedure (VRP) that specifies minimum VRs that vary among occupancy classes, and a performance-based indoor air quality procedure (IAQP) that may result in lower VRs than the VRP, with associated energy savings, if IAQ meeting specified criteria can be demonstrated. The California Energy Commission has been considering the addition of an IAQP to the Title 24 standards. This paper, based on a review of prior data and new analyses of the IAQP, evaluates four future options for Title 24: no IAQP; adding an alternate VRP, adding an equivalent indoor air quality procedure (EIAQP), and adding an improved ASHRAE-like IAQP. Criteria were established for selecting among options, and feedback was obtained in a workshop of stakeholders. Based on this review, the addition of an alternate VRP is recommended. This procedure would allow lower minimum VRs if a specified set of actions were taken to maintain acceptable IAQ. An alternate VRP could also be a valuable supplement to ASHRAE?s ventilation standard.

Dutton, Spencer M.; Mendell, Mark J.; Chan, Wanyu R.

2013-05-13T23:59:59.000Z

499

Building America Top Innovations Hall of Fame Profile … Moisture and Ventilation Solutions in Hot, Humid Climates: Florida Manufactured Housing  

Broader source: Energy.gov (indexed) [DOE]

Duct leakage was a key factor in moisture Duct leakage was a key factor in moisture damage in manufactured homes in humid climates. BUILDING AMERICA TOP INNOVATIONS HALL OF FAME PROFILE INNOVATIONS CATEGORY: 2. House-as-a-System Solutions 2.1 New Homes with Whole-House Packages Moisture and Ventilation Solutions in Hot, Humid Climates: Florida Manufactured Housing Research by Building America diagnosed the causes and prescribed a cure that dramatically reduced moisture problems in manufactured housing in Florida. In the late 1990s, Building America researchers at the Florida Solar Energy Center (FSEC) worked with manufactured home builders to diagnose moisture problems in homes in Florida. Moisture issues were so severe that in some homes researchers could push their fingers through the saturated drywall. Using a

500

An Optical Backscatter Sensor for Particulate Matter Measurement  

SciTech Connect (OSTI)

Diesel engines are prone to emit particulate matter (PM) emissions under certain operation conditions. In-cylinder production of PM from diesel combustion control can occur under a wide variety of operating conditions, and in some cases, operation of a multi-cylinder engine can further complicate PM emissions due to variations in air or fuel charge due to manifold mixing effects. In this study, a probe for detecting PM in diesel exhaust was evaluated on a light-duty diesel engine. The probe is based on an optical backscattering effect. Due to the optical nature of the probe, PM sensing can occur at high rates. The feasibility of the probe for examining PM emissions in the exhaust manifold will be discussed.

Parks, II, James E [ORNL; Prikhodko, Vitaly Y [ORNL; Partridge Jr, William P [ORNL

2009-01-01T23:59:59.000Z